

Automated Testing of Object Oriented

Systems using VDM++ and UML
Communication Diagrams

A Dissertation Submitted by

AAMER NADEEM

PC 033004

Towards the Degree of

Doctor of Philosophy (Computer Science)

Mohammad Ali Jinnah University

January, 2007

ii

Automated Testing of Object Oriented

Systems using VDM++ and UML
Communication Diagrams

A Dissertation Submitted to

MOHAMMAD ALI JINNAH UNIVERSITY

Towards the Degree of Doctor of Philosophy in Computer Science

BY

AAMER NADEEM

PC 033004

Supervisor: Dr. Muhammad Jaffar-ur-Rehman (Late)

 Professor, Mohammad Ali Jinnah University

 Islamabad, Pakistan

Co-supervisor: Dr. Michael R. Lyu

 Professor, The Chinese University of Hong Kong

 Hong Kong S.A.R., China

Mohammad Ali Jinnah University

January, 2007

iii

Dedicated to,

The Memory of Late Dr. Muhammad Jaffar-ur-Rehman and his Family

iv

Abstract

The rapidly growing applications of software in critical systems such as railways,

aviation, automobiles, and medicine, demand a much higher level of reliability and error-

free operation. The use of formal methods in such applications not only helps avoid

specification errors, ambiguities, and inconsistencies in early phases of software life

cycle, but also provides a sound basis for generation of an effective set of test cases.

However, the existing research on formal specification based testing has focused on unit

level testing only.

This research is aimed at automating the generation of class level as well as integration

level test cases for an object-oriented system using formal specifications. We use

VDM++ formal specification language for this purpose. As a result of our research, we

present a framework, called SpecTGS, that automatically generates specification based

test cases for object-oriented systems using VDM++ as the specification language. For

class testing, the SpecTGS uses the trace structure definition of a VDM++ class

specification to derive allowable method call sequences, and partition analysis to generate

test data. For integration testing, we have proposed a novel idea that extracts testing

information from the VDM++ specification and UML communication diagrams. The

SpecTGS derives message sequences from a UML communication diagram, and uses the

VDM++ specification to construct state invariants for the states in which a class can

receive a message. A new strategy for constructing sub-states from a state invariant called

partitioned boundary state coverage that combines two existing strategies, i.e. partition

v

analysis strategy and the boundary state coverage strategy. Each message sequence

generated from the UML communication diagrams is combined with the sub-states to

construct a test model. The test model is then used to derive the test paths under various

coverage criteria. A proof-of-concept tool has been developed to implement and evaluate

the SpecTGS framework. The results for the integration testing approach have been

shown for a real-life case study selected from the literature.

vi

Acknowledgements

First of all, I thank the Almighty Allah for giving me the strength and determination to

undertake and complete this enormous task. Without His blessings, it would have been

impossible for me to achieve this goal.

I express my deepest gratitude to my supervisor Professor Dr. Muhammad Jaffar-ur-

Rehman (late), Former Dean, Faculty of Engineering and Sciences at Mohammad Ali

Jinnah University (MAJU), for sparing time from his extremely busy schedule, whenever

I needed his guidance. His supervision and advice played a key role in successful

completion of this work. Unfortunately, he passed away in the devastating earthquake

that hit northern Pakistan in October 2005.

I am deeply indebted to Professor Dr. Michael R. Lyu, Department of Computer Science

and Engineering, The Chinese University of Hong Kong (CUHK), for his valuable

guidance, support, and useful discussions on my work during my three-month visit to the

CUHK in summer 2005. Not only did he help and guide me during my stay at the CUHK,

but also he was kind enough to act as my co-supervisor after sudden and unexpected

death of my supervisor. I have no hesitation in acknowledging that it was his support that

helped me complete my work in a timely manner.

I am strongly indebted to the management of Mohammad Ali Jinnah University for their

full support and cooperation which enabled me to continue and complete my work even

vii

after I lost my supervisor. In particular, I would like to thank Mr. Syed Ali Imran,

Executive Vice President, Professor Dr. Muhammad Mansoor Ahmad, Dean Faculty of

Engineering and Sciences, and Professor Zafar I. Malik, Head of the Computer Science

Department.

I am also thankful to the foreign experts who evaluated my thesis, namely Eric Wong,

Associate Professor, University of Texas at Dallas (USA), Jin-Song Dong, Associate

Professor, National University of Singapore (Singapore), S.C. Cheung, Associate

Professor, The Hong Kong University of Science and Technology (Hong Kong S.A.R.,

China), and ZhiQuan Zhou, Lecturer, University of Wollongong (Australia). They

offered valuable comments which helped me improve my work.

I thank my colleagues and students at the Center for Software Dependability (CSD),

Mohammad Ali Jinnah University, for bearing with me during this difficult period and

for their moral support.

Last but not the least, I express sincere thanks to my family and friends, particularly my

wife for her moral support, her prayers, and her patience.

viii

Table of Contents

Chapter 1: Introduction..15

Chapter 2: Background...21

2.1 Specification Based Testing.. 23

2.2 VDM++ Specification Language.. 26

2.3 Unified Modeling Language ... 29

Chapter 3: Formal Specification Based Testing Techniques31

3.1 Evaluation Criteria .. 31

3.2 The Testing Techniques Surveyed.. 33
3.2.1 Hall, 1988 ..33
3.2.2 Tsai, Volovik & Keefe, 1990...34
3.2.3 Doong & Frankl, 1991...34
3.2.4 Amla & Ammann, 1992 ..35
3.2.5 Dick & Faivre, 1993 ..36
3.2.6 Laycock, 1993 ...37
3.2.7 Weyuker, Goradia & Singh, 1994 ...37
3.2.8 Blackburn & Busser, 1996...38
3.2.9 Stocks & Carrington, 1996 ..39
3.2.10 Helke, Neustupny & Santen, 1997 ..40
3.2.11 Hierons, 1997 ..40
3.2.12 Richardson & O’Malley, 1997 ..42
3.2.13 Singh, Conrad & Sadeghipour, 1997...43
3.2.14 Meudec, 1998 ..43
3.2.15 Offutt & Liu, 1999...44
3.2.16 Boyapati, Khurshid & Marinov, 2002 ...45
3.2.17 Liu, Miao & Zhan, 2002..46
3.2.18 Bernard, Legeard, Luck & Peureux, 2004 ...46
3.2.18 Miao & Liu, 2006 ..48

3.3 Conclusion .. 48

Chapter 4: UML Based Integration Testing Techniques50

ix

4.1 Abdurazik & Offutt, 2000... 51

4.2 Basanieri & Bertolino, 2000 ... 52

4.3 Basanieri, Bertolino and Marchetti, 2001 ... 52

4.4 Pilskalns, Andrews, France & Ghosh, 2003 ... 53

4.5 Fraikin & Leonhardt, 2002 ... 54

4.6 Wittevrongel & Maurer, 2001... 54

4.7 Wu, Chen & Offut, 2003... 55

4.8 Pelliccione, Muccini, Bucchiarone, & Facchini, 2004 55

4.9 Gallagher, Offutt & Cincotta, 2006 .. 55

4.10 Ali, Briand, Rehman, Asghar, Zafar & Nadeem, 2006..................................... 56

4.11 Conclusion .. 57

Chapter 5: The SpecTGS Framework ...58

5.1 Class Testing... 59
5.1.1 Configuration Matching ..64
5.1.2 Trace Structure Analysis ...66
5.1.3 Predicate Parsing ...70
5.1.4 Generating Code for Method Predicates..70
5.1.5 Constructing the Symbol Tables..73
5.1.6 Generating Test Shells...73
5.1.7 Generating Test Data...74
5.1.8 Generating Test Cases ...75

5.2 Setting the Object State... 76

5.3 Test Driver .. 79

5.4 Inheritance and Polymorphic Testing ... 80
5.4.1 Specifying Inheritance and Polymorphism in VDM++...81
5.4.2 Offutt et al.’s Fault Model ...83
5.4.3 The Testing Strategy..84
5.4.4 An Example...85

Chapter 6: Integration Testing with SpecTGS...89

6.1 The Proposed Approach.. 91

6.2 Generating Message Sequences.. 93

6.3 Constructing State Invariants.. 98

x

6.3.1 Partition Analysis ..100
6.3.2 Boundary State Coverage ..102
6.3.3 Partitioned Boundary State Coverage..102
6.3.4 Coverage Criteria for Partitioned Boundary State Testing ..104
6.3.5 An Example...105

6.4 Constructing the Test Model... 107

6.5 Generating Test Paths ... 108

6.6 Test Coverage Criteria .. 110
6.6.1 Message Coverage...110
6.6.2 Message Sequence Coverage...110
6.6.3 Message/State Coverage..111
6.6.4 Message Sequence/State Coverage..111
6.6.5 All-Path Coverage ...112

6.7 Discussion... 114

Chapter 7: SpecTGS Implementation and Evaluation......................... 116

7.1 Implementation ... 116

7.2 Case Study .. 118
7.2.1 UML Models ...120
7.2.2 Generating Message Sequences...122
7.2.3 Constructing State Invariants...123
7.2.4 Constructing Test Model ...125
7.2.5 Generating Test Paths..126

7.3 Evaluation of the SpecTGS Framework.. 129

Chapter 8: Conclusion and Future Work .. 131

8.1 Conclusion .. 131

8.2 Future Directions .. 133

References.. 134

Appendix-I: Test Cases for the add method of the NNComplex Class 143

Appendix-II: VDM++ Specification of CSLaM Case Study................. 146

xi

Appendix-III: XMI Output for Communication Diagram of CSLaM

Case Study ... 151

Appendix-IV: Integration Test Paths for the HeadMeetsBeacon Event

.. 193

xii

List of Figures

Figure 5.1. Architecture of the SpecTGS.. 59

Figure 5.2. VDM++ Specification for NNcomplex class .. 63

Figure 5.3. Implementation of the NNcomplex class in C++... 64

Figure 5.4. Mappings of VDM++ types to C++ types.. 65

Figure 5.5. Mappings identified by the configuration matcher .. 66

Figure 5.6. Algorithm for generating operation sequences... 69

Figure 5.7. Code Generated by Predicate Parser .. 71

Figure 5.8. C++ boolean expressions for VDM++ predicates.. 72

Figure 5.9. Symbol Table for add() method ... 73

Figure 5.10. Test values generated for add() method ... 76

Figure 5.11. Class diagram for Bank Account hierarchy.. 85

Figure 5.12a. VDM++ specification for the Account class .. 86

Figure 5.12b. VDM++ specification for the SavingsAccount class 87

Figure 6.1. Integration testing part of the SpecTGS framework....................................... 93

Figure 6.2. A communication diagram ... 94

Figure 6.3. MSTs for communication diagram of Figure 6.2... 96

Figure 6.4. Algorithm to generate message sequences ... 97

Figure 6.5: Partition analysis applied to the predicate A∨B... 100

Figure 6.6: Boundary state coverage .. 103

Figure 6.7: Partitioned boundary state coverage... 103

Figure 6.8. The states in which the pop message can be received.................................. 108

xiii

Figure 6.9. A test model for the message sequence (m1 (m2 (m3) (m5 (m7))) (m6 (m8)

(m9))) .. 109

Figure 6.10. Subsumption relationships among coverage criteria.................................. 112

Figure 7.1. Architecture of the SpecTGS Tool ... 117

Figure 7.1: Class diagram for CSLaM system.. 121

Figure 7.2: Communication diagram for the HeadMeetsBeacon event.......................... 122

Figure 7.3: MSTs for the HeadMeetsBeacon event.. 124

Figure 7.4: Test model for the message sequence (m1(m2(m5(m11)))) 126

xiv

List of Tables

TABLE 6.1. NUMBER OF TEST PATHS AGAINST THE COVERAGE CRITERIA....................... 114

TABLE 7.1: NUMBER OF RECEIVING CLASS STATES FOR EACH MESSAGE IN

COMMUNICATION DIAGRAM FOR HEADMEETSBEACON EVENT.................................. 127

TABLE 7.2: NUMBER OF TEST PATHS GENERATED FOR EACH MESSAGE SEQUENCE OF

HEADMEETSBEACON EVENT... 128

TABLE 7.3: NUMBER OF TEST PATHS AGAINST COVERAGE CRITERIA FOR THE

HEADMEETSBEACON EVENT... 128

15

Chapter 1

Introduction

Safety-critical systems are rapidly becoming commonplace in our lives [KT98]. The

human society now has greater-than-ever dependence on software or software-controlled

systems, and this dependence is growing day-by-day. Software-controlled systems have

found their way into almost all walks of human lives, such as aerospace, aviation,

defense, nuclear power plants, industrial robotics, medicine, automobiles, railways, and

home appliances. Littlewood and Strigini [LS00] identify the various dimensions of the

society’s dependence on computer systems, as follows:

a) Software-based systems are replacing older technologies in safety- or mission-

critical applications, such as aircraft engine control, railroad interlocking, and

nuclear power plant protection.

b) Software is moving from an auxiliary to a primary role in providing critical

services, e.g., in air traffic control systems.

c) Software is becoming the only way of performing some function which is not

viewed as critical but whose failures would deeply affect individuals or groups,

16

e.g., databases and software used by hospitals, super markets, airline reservation

etc.

d) Software-provided services are becoming increasingly an accepted part of

everyday life without any special scrutiny, such as the widespread use of

spreadsheet programs in decision-making.

e) Software-based systems are increasingly integrated and interacting, often without

effective human control. For instance, in large, closely coupled systems the

effects of software failures can propagate more quickly, and with little or no

human control.

The controlling software at the core of such systems is of critical importance, since its

failure can result in a catastrophe, loss of human life, significant financial loss, or damage

to the environment. Some well-known disasters that occurred due to failure of a critical

software include the ARIANE 5 rocket launch disaster [Lio96], the Therac-25 radiation

therapy machine failure [LT93], and the London Ambulance Service accident [FD96].

Thus, safety and reliability of such software systems are of paramount importance.

A major source of software faults is an erroneous, inconsistent, or ambiguous

specification. A reliable and fault-free software cannot be produced from an ambiguous

specification. Since natural languages are inherently ambiguous, it is practically

impossible to write a precise and unambiguous software specification in a natural

language. Semi-formal notations such as the Unified Modeling Language (UML) are

17

widely used in the industry for modeling object-oriented systems, but they lack formal

semantics.

Formal methods are widely recognized as a means to write precise, consistent, and

unambiguous specifications [KT98]. Bowen and Hinchey point out that formal

specification techniques make the specifications more concise and explicit [BH95]. Clark

and Wing conclude that interest in using formal methods is growing because of their

potential to improve software quality [CW96]. The use of formal methods helps avoid

specification errors, ambiguities, and misinterpretations in early phases of software life

cycle. Unlike natural languages, formal languages are based on sound mathematical

principles, and allow aspects of the specification to be rigorously demonstrated using

mathematical proofs. However, the use of formal specification methods, by itself,

provides no guarantee that the implementation will be correct, or it will conform to the

specifications.

The widely recognized role of formal methods in program verification is their use in a

correctness proof. A formal proof of correctness is usually done by proving program

properties, since it is impossible to prove the total correctness of an arbitrary program due

to the undecidability of the halting problem. Moreover, a formal proof of correctness is

not cost-effective, or even practical, for most software systems because of the complexity

and size of any non-trivial software system. Even after a formal proof, testing is required

to build confidence in the system being developed [Meu98]. Therefore, the need for

18

rigorous testing is not eliminated by the use of formal methods. In fact, formal methods

and testing are complementary to each other.

However, even for the most trivial systems, exhaustive testing is practically impossible

due to the resource constraints and almost infinite combinations of input values to be

tested. Thus, it becomes necessary to find ways to identify a representative set of test

cases. For large and complex systems, manually generating such a set of test cases,

executing them, and comparing the results with expected outputs can be a tedious and

time-consuming process. Fortunately, the existence of a formal specification provides an

opportunity to automate much of the testing process, from test case generation to test

execution to results evaluation. The model-based formal specification languages such as

Z, VDM, and their object-oriented dialects (Object-Z, Z++, and VDM++) have been used

to automate the generation of test cases, e.g., [DF93] [SC96] [Meu98] [LMZ02].

In this dissertation, we focus on a particular formal specification language, i.e. VDM++,

to automate the generation of specification based test cases. We develop a complete test

generation framework, called SpecTGS, for object-oriented systems, that generates both

unit and integration level test cases. The SpecTGS uses a VDM++ specification to

generate test cases for class testing, as well as inheritance and polymorphic testing.

However, generation of integration level test cases requires that the specification define

the dynamic interactions between the objects. An implicit VDM++ specification (as well

as other model-based formal notations such as Object-Z) lacks this information, i.e., it

does not specify the dynamic behavior of a system – it only specifies the static structure

19

of the system, i.e. classes, their attributes and operations, and relationships among the

classes, which makes it impossible to generate integration tests from the formal

specification without supplementing it with some other artifact. As pointed out by Offutt

et al., most of the research on formal specification based testing focuses on unit testing

only [Off98] [OLAA03]. A major reason for this is that the formal notations are not

adapted to specifying the dynamic interactions between the objects. Thus, integration

testing of an object-oriented system from a formal specification is still a largely

unexplored area, while a lot of the existing work focuses on unit testing.

Thus, for generating integration level test cases, we need this additional information

about object interactions, along with the VDM++ specification. For this purpose, we

introduce a novel idea that extracts information from two different artifacts, i.e. VDM++

specification and UML communication diagrams, to generate test data. The SpecTGS

framework uses UML communication diagrams to extract the information about object

interactions. The use of UML, together with a formal specification, to specify the system

behavior is not a new idea. As observed by Agerholm and Schafer [AS99], as well as

other researchers [ELCKAH98] [HCKKTFSMSCM95], despite a lack of formal

semantics, the role of the UML is recognized in the formal methods community in

decomposing complex problems and presenting abstract visual perspectives of the

models. The use of the UML along with a formal specification offers complementary

benefits such as visualization of the models, and providing higher-level structural views

of the system, while the formal notations can fill in the processing details with their

precise and unambiguous syntax [AS99].

20

The SpecTGS framework uses the trace structure definition of a VDM++ class

specification to derive allowable method call sequences of a class, and partition analysis

together with boundary value analysis to generate test data. For integration testing, the

SpecTGS derives message sequences from a UML communication diagram, and uses the

VDM++ specification to construct state invariants for the states in which a class can

receive a message. The state invariants are used to construct sub-state invariants under a

novel strategy called partitioned boundary state coverage which is based on a

combination of two existing strategies, i.e. partition analysis and boundary state

coverage. Each message sequence is then combined with the sub-state invariants to

construct a test model. The test model is then used to derive the test paths under various

coverage criteria. Tool support has also been provided to implement the SpecTGS

framework, and the integration testing approach has been demonstrated on a case study.

The rest of this dissertation is organized as follows: Chapter 2 gives a brief background

of formal specification based testing, VDM++ notation, and the Unified Modeling

Language. Chapter 3 presents a literature survey of the existing formal specification

based testing techniques, while chapter 4 covers the survey of integration testing

techniques based on the UML. Chapters 5 and 6 give the details of the SpecTGS test

generation framework for unit testing and integration testing, respectively. Chapter 7

covers implementation and a detailed case study that demonstrates the integration testing

approach adopted in SpecTGS. Finally chapter 8 concludes the work.

21

Chapter 2

Background

This chapter gives a brief background of the key concepts necessary to the understanding

of the ideas presented in this dissertation. In particular, we cover the basic formal

specification based testing strategies, an introduction to the VDM++ specification

language, the Unified Modeling Language (UML) and its role in testing.

Dijkstra observed that a major limitation of software testing is that it can only show the

presence of faults, and not their absence [DDH72]. Despite this obvious limitation,

software testing is recognized as a necessary means of program verification. Even when

other program verification techniques such as static analyses and formal proofs are

employed, testing is still considered necessary to complement these techniques, and to

build greater confidence in the system being developed. There are two fundamental

approaches to testing, i.e. specification based testing and code based testing. Other

approaches use software design models, and combinations of the various artifacts. While

code of a software contains detailed information that may be required to generate test

cases, a major drawback of testing based on only the code is that the code does not

specify what the system should do. For instance, if the system implements a wrong

22

(undesired) function correctly, the tester might never know what the system was

supposed to do, if testing is based on code only. Offutt et al. [OLAA03] identify several

other advantages of specification based testing over code based testing, i.e.

- test cases can be created before software is coded which, in turn, leads to shifting

of testing activities to early phases of software development life cycle and better

planning and allocation of resources.

- test generation from the specification helps in identifying inconsistencies and

ambiguities in the specification which prevents propagation of specification errors

to later phases of software development.

- the essential part of the test data is independent of any particular implementation

which enables the test cases to be run on any implementation regardless of the

design chosen and the implementation language chosen.

In practice, however, a combination of specification based and code based testing

strategies is used to build greater confidence in the system under test. The most common

way of doing this is to generate test cases from the specifications and then employ code

coverage analysis to assess effectiveness of the generated test suite [OLAA03]. In this

dissertation, our focus is on the specification based testing only. We use a VDM++

formal specification and UML communication diagrams to generate test cases. The next

section introduces common specification based testing strategies, while VDM++ and

UML are briefly described in the last two sections of this chapter.

23

2.1 Specification Based Testing

Specification based testing, also commonly known as black box testing [Bei95], is a

general approach to software testing in which testing information is extracted from the

software requirements specification. The software requirements may be described

informally in a natural language, or may be modeled using some graphical notation, or

may be formally specified in a formal specification language. The advantages of using a

formal notation are obvious: ambiguities and inconsistencies can be avoided at the

specification stage of SDLC (Software Development Life Cycle), and thus propagation of

specification errors to the design and implementation phases can be avoided. Software

testing consists of three main activities, i.e., generation of test cases, execution of test

cases, and evaluation of results. The goal in the first of these activities is to generate an

effective set of test cases that has the ability to uncover maximum faults. Effectiveness of

a test case is measured by the number of faults that it can potentially detect. If two test

cases t1 and t2 are in the same test suite such that the set of faults that t2 can potentially

detect is a subset of the set of faults that t1 can potentially detect, then t1 is said to be an

effective test case, and t2 is said to be a redundant test case. A randomly generated test

suite is likely to contain a high ratio of redundant test cases. Thus random test case

generation is not guaranteed to produce an effective test suite. For this reason, various

test generation strategies are employed that enhance the effectiveness of the generated

test suite. Traditional black box testing strategies are,

- Equivalence class partitioning

- Boundary value analysis

- Category-partition method

24

- Partition analysis

- Cause-effect graphing, and

- Error guessing

In equivalence class partitioning [Mye79], each input domain is divided into sub-domains

such that the expected behavior of the software is uniform in a sub-domain. For each

input variable, a typical value is selected from a sub-domain, and all such combinations

of values of the variables are tested. Boundary value analysis suggests that the input

variables should be tested at their boundary values. The underlying assumption in

boundary value analysis is that the boundaries are implemented as decision predicates in

the software, and because of predicate errors the chances of errors at the boundary values

of the input variables are greater.

The category-partition method was first introduced in 1988 by Ostrand and Balcer

[OB88]. In this method, an input domain is divided into categories on the basis of

characteristics of the inputs. Each category is then partitioned into a set of disjoint

choices. Test cases are generated so as to cover each combination of choices for the input

variables. Partition analysis is a widely used strategy in formal specification based

software testing. It is based on partitioning of the pre-condition predicate of an operation,

such that a solution to each partition represents a solution to the entire predicate. The

most widely used method to partition a predicate is to convert the predicate expression

into DNF (Disjunctive Normal Form) or CDNF (Canonical Disjunctive Normal Form).

25

In cause-effect graphing, a graph is constructed from the requirements specification by

identifying the causes (input conditions) and effects (output conditions) [Elm73]. The

graph describes the relationships between the causes and the effects using the Boolean

logic operators. Test cases are then generated from the graph. Error guessing [Mye79] is

an informal strategy in which the tester uses his/her intuition and experience to guess

certain types of errors and lists them. Test cases are constructed from the list of probable

errors so as to expose the errors.

Formal specification based testing approaches have been classified into the following

three categories by Offutt et al. [OL99],

- Model based approaches

- State based approaches, and

- Property based approaches

Model based approaches are based on formal specification notations such as Z, ObjectZ,

VDM-SL and VDM++ which are based on the set theory and support modeling of the

software in terms of set-theoretic models. State based approaches are based on formal

notations which model the system as a state transition machine such as the SCR formal

language. Property based approaches are based on the formal specifications which do not

model the system but instead define the relationships between functions through the use

of axioms. Algebraic specifications are a typical example of system formal specifications.

26

2.2 VDM++ Specification Language

VDM-SL [Daw91] [Jon90], one of the few formal languages whose syntax and semantics

have been completely formally defined, is a model-based specification language based on

denotational semantics. VDM++ [DK92] is an object-oriented extension of the ISO

VDM-SL. It supports various forms of abstraction, and step wise refinement of abstract

models into a concrete implementation. In VDM++, representational abstraction is

supported by mathematical data structures, such as sets, sequences, maps, composite

objects, Cartesian products and unions. At a lower level, the language provides various

numeric types, the Boolean type, tokens and enumeration types. By using the data-

structuring mechanism and the basic data types, compound data types can be formed with

a specific mathematical structure. Subtyping is supported by attaching domain invariants

to domain definitions.

Operational abstraction is supported in VDM++ by function specification, and the

operation specification. Both functions and operations may be specified implicitly using

pre and post conditions, or explicitly using applicative constructs to specify functions and

imperative constructs to specify operations. Operations have direct access to a collection

of global objects – the state of the specification. The state is constructed as a composite

object, built from labeled components.

A VDM++ specification typically consists of a collection of classes. Each class has a

state description, domain definitions, constant definitions, a collection of operations and a

collection of functions. An initial specification should be as abstract as possible. Two

27

techniques are available for further development of the initial specification: data

reification, which addresses the refinement of the state elements, and operation modeling,

which addresses the refinement of the functions and operations. Data reification involves

the transition from abstract to concrete data types, and a justification of this transition.

Choosing a more concrete data model implies a redefinition of all operations and

functions on the original model in terms of the new model, a process called operation

modeling [PKT92].

In VDM++, the top-level system specification consists of a collection of related classes.

The body of each class contains the following optional elements,

- type definitions

- value definitions

- instance variable definitions

- operation definitions

- function definitions

- synchronization definitions

- thread definitions

For each class, the header specifies class name and optional super class name(s) using is

subclass of clause with the class name. For example,

 class A is subclass of B

 …

28

 …

 end A

When a class is defined as a subclass of an already existing class, the subclass definition

introduces an extended class, which is composed of the definitions of the superclass, and

the definitions of the newly defined subclass. The interface to the objects of the subclass

is the same as the interface to its superclass extended with the new definitions within the

subclass. A subclass inherits from the superclass all of its value and type definitions,

instance variables, operation and function definitions, and synchronization definitions.

A class may inherit from more than one superclasses. However, a name conflict occurs

when two constructs with the same name and of the same kind are inherited from

different superclasses. Name conflicts must be explicitly resolved through name

qualification, i.e. prefixing the construct with the name of the superclass and a `-sign

(back-quote).

Polymorphic behavior cannot be explicitly specified in VDM++. However, a variable v

of the superclass can be assigned an object of a subclass which allows overriding

methods of the subclass to be invoked through v. Moreover, in a superclass, it is possible

to delegate the responsibility to define an operation to the subclass(es) by using the is

subclass responsibility clause, e.g.,

29

class A

 …

 operations

 op1() is subclass responsibility

end A

The operation op1() is defined by a subclass B derived from class A. A superclass

containing one or more abstract operations acts as an abstract base class.

In this thesis, we use the CSK VDM++ [CSK05] for specification based test case

generation. CSK VDM++ was originally called IFAD VDM++, developed at IFAD,

Denmark. A tool called VDMTools is also available for CSK VDM++ that supports

syntax checking and consistency analysis of a VDM++ specification.

2.3 Unified Modeling Language

The Unified Modeling Language (UML) [OMG05a] is widely recognized as a standard

graphical notation for specifying the structure as well as behavior of object-oriented

systems. It consists of a set of constructs common to most object-oriented languages.

However, the semantics of the UML have not been formalized [EFLR98]. While the

Object Management Group (OMG) was responsible for the standardizing of the UML as

a notation, the semantics of the UML is still a research issue [PB00]. Despite this

limitation of the UML, the formal methods community has come to recognize the role of

the UML in decomposing complex problems and presenting abstract visual perspectives

of the models [AS99] [ELCKAH98] [HCKKTFSMSCM95]. The use of the UML along

with a formal specification offers complementary benefits such as visualization of the

30

models, and providing higher-level structural views of the system, while the formal

notations can fill in the processing details with their precise and unambiguous syntax

[AS99].

In an object-oriented system, related classes interact with each other to provide some

system functionality. Even though individual classes may function correctly, integration

of classes can result in several new kinds of errors such as interface errors, conflicting

functions, missing functions [Bin99]. Thus, testing of all possible interactions between

collaborating classes is required to ensure correct functionality of the system. However,

an implicit specification in VDM++ does not model the interactions between classes.

In recent years, the researchers have realized the potential of UML in software testing.

Many of the UML design artifacts have been used in different ways to perform different

kinds of testing. For instance, UML state-charts have been used to perform unit testing,

and interaction diagrams (communication and sequence diagrams) have been used to test

class interactions. In this dissertation, we propose a novel technique that combines a

UML communication diagram with the formal specification to automatically generate test

paths for integration testing of object-oriented systems. We use the UML communication

diagrams to generate message sequences, and the formal specification to generate state

invariant predicates for the states in which each class can receive a message. The

message sequences are combined with the state invariants to construct test models, which

are used to generate the test paths.

31

Chapter 3

Formal Specification Based Testing
Techniques

A survey of the literature reveals a large volume of research work in the area of formal

specification based software testing. However, the existing testing techniques focus only

on unit testing – the use of formal specifications in object-oriented integration testing is

still a relatively unexplored area. In this chapter, a survey of the testing techniques based

on formal specifications is presented. The survey comprises of a brief description of each

testing technique followed by its analysis.

3.1 Evaluation Criteria

We define the following criteria as a basis for analysis of the existing formal specification

based testing techniques:

- Object-orientation: OO paradigm is the de facto industry standard for software

development. In order to support object-oriented development, the existing

model-based formal specification notations have also been extended with OO

constructs. In our analysis, we consider whether the testing technique supports

32

object-oriented paradigm or not, i.e., whether the formal specification language

used for generating test cases allows specifying an object-oriented system. If a

structured (non object-oriented) formal notation is used, it is considered whether

the test generation approach can be adapted to object-oriented specification or not.

- Testing level: This considers the level at which a testing technique is applicable,

i.e., whether the test cases are generated for class testing, integration testing, or

system level testing.

- Strategy Flexibility: This parameter considers that if the testing technique is

restricted a particular test generation strategy or it allows the tester to select a

strategy. Strategy flexibility is an important parameter for analysis of testing

techniques, since it allows the tester to apply different strategies to generate test

cases, thus allowing more thorough testing. Some commonly used black-box

testing strategies have been described in Chapter 2.

- Notation Adaptability: Most authors demonstrate their testing techniques for a

particular formal specification language. However, a more adaptable testing

technique should be applicable to multiple formal notations without major

changes in the technique itself. The notation adaptibility parameter considers

whether a testing technique can be easily adapted to some other formal

specification language or not.

- Automation: This parameter considers whether the proposed testing technique can

be automated, and if so, whether full automation is possible or only partial

automation can be done; do the authors provide algorithms for automation? If a

33

technique is fully or partially automatable, then it is considered whether or not it

is supported by a tool, and whether the tool is a prototype or a complete version.

3.2 The Testing Techniques Surveyed

This section surveys the formal specification based testing techniques and gives a brief

analysis against each technique using the evaluation criteria defined above. The

techniques appear in chronological order by the year of publication.

3.2.1 Hall, 1988

Hall proposed a test case generation technique [Hal88] based on the Z specification

language. The proposed technique used partition analysis strategy to divide the input

space into partitions, for test generation purposes. A brief analysis of Hall’s technique is

as below:

- Z is a structured specification notation, so the proposed technique does not cater

to object-oriented paradigm.

- The testing technique proposed by Hall is based on partitioning of input

predicates, which is a generic idea, i.e., it can be easily applied to other formal

notations based on first-order logic.

- The partition analysis strategy used in the proposed approach can be generalized

to other test generation strategies as well.

- The testing technique is described at an abstract level, and there is no discussion

on whether it can be automated or not. Also, there is no tool support for the

proposed technique.

34

3.2.2 Tsai, Volovik & Keefe, 1990

Tsai, Volovik and Keefe proposed a testing technique [TVK90] based on relational

algebra specifications. Their proposed technique transforms relational algebra

expressions to predicates which are further converted to systems of linear equations. Test

cases are then generated by solving these systems of linear equations. The authors have

defined mapping rules for transformation of relational algebra expressions to predicates

and predicates to systems of linear equations. They also propose automation of their

technique and demonstrate the results. The following is a brief analysis of the Tsai et al.’s

testing technique:

- Since the proposed technique is based on relational algebraic specifications, it

cannot be easily generalized to the model-based formal specification languages.

- There is no support for object-orientation, and it is not obvious whether the

technique can be extended for testing of object-oriented systems.

- The testing strategy used is the domain testing, however, the proposed technique

is flexible and allows other testing strategies to be used as well.

- Although automation of the technique has been proposed, no tool support exists.

3.2.3 Doong & Frankl, 1991

Doong and Frankl proposed a set of tools for object-oriented testing [DF91] called as

ASTOOT. The tool set includes tools for test case generation, test driver generation, test

case execution and evaluation of the results. It is based on an algebraic specification of

abstract data types and the specification language used is LOBAS. Their approach is

based on testing interactions among operations of a class, and is demonstrated on two

case studies. A brief analysis of the Doong and Frankl’s approach is as below:

35

- The proposed technique supports object-orientation, and has been demonstrated

on two case studies.

- Even though it tests interactions between the operations of a class, the technique

is applicable at the class level testing only, i.e. it does not test interactions

between the objects of a system.

- Doong and Frankl’s work is based on an algebraic specification language

LOBAS, and cannot be easily extended for other specification languages.

However, it is flexible enough to be used with different testing strategies.

- The proposed technique is automatable and is also supported by a tool that

generates test cases and the test driver.

3.2.4 Amla & Ammann, 1992

Amla and Ammann apply the category-partition method to the Z specification [AA92].

They apply the category-partition method to obtain a TSL (Test Specification Language)

script from a Z specification. Their work shows that TSL can be obtained from a formal

specification more easily than from an informal requirements specification. The

following is a brief analysis:

- Amla and Ammann’s technique is based on structured Z specification and applies

to unit level testing only. It can be applied to other model based formal notations

as well, however, a major issue to be considered is how a TSL specification can

be obtained from other formal specification notations.

- As Z is not an object-oriented specification language, so the issues in OO testing

have not been discussed. However, the technique can be extended to class level

testing for object-oriented systems.

36

- The test generation strategy used in Amla and Ammann’s work is the category-

partition method which ensures proper specification coverage.

- Amla and Ammann have not shown how their technique can be automated and no

tool exists to support the technique. However, generation of TSL scripts can be

automated.

3.2.5 Dick & Faivre, 1993

Dick and Faivre [DF93] proposed a methodology to convert VDM-SL precondition

expressions into disjunctive normal form (DNF), so that a solution to each disjunct

represents a solution to the entire expression. A finite state automaton (FSA) is then

constructed from the partition predicates, and a Prolog tool is used to derive test cases

from the FSA under a given coverage criterion. A brief analysis of the technique is as

below:

- The technique proposed by Dick and Faivre has been frequently referenced in

several works, and has also been extended in several works by other researchers.

Although the technique was originally demonstrated on VDM-SL specification, it

can be easily applied to other formal notations that are based on first-order logic.

- It has been demonstrated for unit level testing, i.e., the test cases are generated for

testing of individual operations. The issues of object-oriented testing have not

been discussed, however, the proposed technique can be extended to class level

testing of object-oriented systems.

- Dick and Faivre’s technique is partially automatable and is supported by a Prolog

tool. However, a major limitation of this technique is that it suffers from the state

explosion problem, and is thus not scalable to larger systems.

37

3.2.6 Laycock, 1993

Laycock [Lay93] presents a case study that uses Ostrand and Balcer’s category-partition

method [OB88] to generate test cases from a Z specification. The author applies the

category-partition method to generate test cases for a single function for which categories

can be identified and partitions can be made. However, the technique does not discuss

how category-partition method may be applied to a complex system involving

interactions between functions and the situations where categories and partitions cannot

be easily identified. A brief analysis of the proposed technique is presented below:

- The proposed technique is independent of the specification language, however, it

requires the tester to identify categories and partitions.

- It applies to unit level testing only, and the authors do not discuss its application

to testing of object-oriented systems. However, the proposed technique can be

extended to class level testing for OO systems.

- Since this work is highly dependent on the category-partition method, it cannot be

easily adapted for other testing strategies.

- The technique can be partially automated but is not supported by any tool.

3.2.7 Weyuker, Goradia & Singh, 1994

Weyuker, Goradia and Singh proposed a technique [WGS94] to generate test data from a

Boolean formula by converting it into canonical disjunctive normal form (CDNF). The

proposed technique is not notation-specific and can be applied to any formal notation that

is based on the first-order logic. Their technique generate both positive and negative test

38

cases with sufficient coverage of the specification. A brief analysis of Weyuker et al.’s

technique is presented below:

- The proposed technique is independent of the specification language, however, it

requires the specification to be represented as Boolean formulas.

- It applies to unit level testing only, and the authors do not discuss its application

to testing of object-oriented systems. However, the proposed technique can be

extended to class level testing for OO systems.

- The testing strategy used in Weyuker et al.’s work is partition analysis. Since their

work is highly dependent on this strategy, it cannot be easily adapted for other

testing strategies.

- The technique can be automated and is also supported by a tool.

3.2.8 Blackburn & Busser, 1996

Blackburn and Busser [BB96] proposed a technique to generate test cases from state-

based formal specifications. Their technique is based on deriving the constraints from

functional relationships between inputs and outputs, and then solving the constraints to

generate test cases. Their technique is supported by a tool called T-VEC (Test VECtor)

that automatically test cases consisting of the input values and their expected outputs.

Following is a brief analysis of Blackburn and Busser’s technique:

- The proposed technique has been demonstrated for state-based formal

specifications, and it is not obvious if it can be applied to the model-based formal

specification languages or not.

- The issue of object-orientation has not been discussed, and apparently the

technique cannot be easily adapted for testing of object-oriented systems.

39

- The technique is based on the partition analysis strategy, but again it does not

have the flexibility to be adapted for other testing strategies.

- A major advantage is that the technique is fully automatable and is also supported

by a tool called T-VEC.

3.2.9 Stocks & Carrington, 1996

Stocks and Carrington proposed a test template framework which uses the Z notation to

generate test templates [Sto93] [SC93] [CS94] [SC96]. This work was further extended

by Carrington et. al. [CMMMS00] for specification-based class testing. Carrington et. al.

show their proposed framework to be flexible by allowing test generation strategy to be

specified. However, their framework has not been fully implemented. Following is a brief

analysis of their work:

- The authors have used the Z specification language to demonstrate their approach,

however, the technique presented is not specific to any particular notation and can

be easily applied to other formal notations.

- The original technique proposed in [CS94] and [SC96] was based on structured Z

specification, but later it was extended for object-oriented notations and

demonstrated using Object-Z. However, it is limited to the class level testing only.

- The proposed framework does not restrict itself to any particular testing strategy,

and is flexible enough to adapt to any specified strategy.

- The test template framework proposed by Stocks and Carrington can be partially

automated, however, no tool support exists.

40

3.2.10 Helke, Neustupny & Santen, 1997

Helke, Neustupny and Santen [HNS97] describe the use of a theorem prover tool Isabelle

to automate the generation of test cases from Z specifications encoded in Isabelle/HOL.

The tool converts Z predicates to DNF, eliminates unsatisfiable disjuncts, and generates

valid test cases by searching the state space.

- Helke et al.’s technique applies to the Z specification language which does not

cover object-orientation. It is not obvious how the technique can be extended for

object-oriented formal specifications.

- It applies to the unit level testing only.

- The testing strategy used is partition analysis, however other strategies may also

be used.

- It is automatable and is supported by a tool.

3.2.11 Hierons, 1997

Hieron’s work on Z specification based testing [Hie97] demonstrates a formal analysis of

the Z specification to produce testing related information. He also gives an algorithm that

rewrites a Z specification into a form that can be used to partition the input domains for

test case generation, and to derive the states of a finite state automaton (FSA) used to

control the testing process. The algorithm given by Hierons rewrites the Z specification

as a first-order predicate calculus expression in the form of a conjunction of the

preconditions with postconditions, for each operation. These predicate calculus

expressions are then separated into input predicates and output predicates, and then

partitioned into sub-domains. Test cases are then generated for each sub-expression and

from each sub-domain. Hierons recognizes that the problem of scale may arise if the

41

technique is applied to a large system, and discusses the abstraction and independence

techniques to alleviate this problem. However, this problem is still open to further

research. Hierons also suggests that a tool similar to the one developed by Horcher and

Peleska can be developed for his algorithm, to partition the predicate logic expressions.

An analysis of the Hierons’ technique is given below:

- Hierons’ work is confined to the structured Z specifications only, and no further

work has been done to extend it to object-oriented formal notations. However, the

ideas of conjoining pre and post conditions for the Z operation schemas, and the

construction of an FSA can be applied to class level testing of an object-oriented

system. But further research is required to explore the feasibility of applying these

ideas to classes.

- It is not clear as to whether the Hierons’ technique can be easily applied to other

formal notations. Further research is required to explore how his ideas might

apply to VDM-SL and other model-based specification languages.

- The test generation strategy used in Hierons’ work is the domain propagation

strategy. The technique lacks flexibility, since it does not support the other

specification-based test generation strategies.

- Another problem as mentioned earlier, is that of the scale, i.e., the proposed

technique may not be feasible for large systems due to the problem of state

explosion. Moreover, the performance of the algorithm may become degraded for

larger systems.

42

- The proposed technique supports test sequence generation and generation of

partitions, but does not support generation of test data.

- The technique is not supported by a tool, however, it can be automated in part at

least.

3.2.12 Richardson & O’Malley, 1997

Richardson and O’Malley’s approach [RM97] is based on Anna [LH85] and Larch

[GHW85] specification languages. The basic idea proposed by Richardson and O’Malley

is to apply the code based testing approaches to formal specifications. They propose two

kinds of testing strategies, i.e., error-based and fault-based strategies, and apply them to

Anna and Larch specifications. The following is a brief analysis of Richardson and

O’Malley’s approach:

- Richardson and O’Malley’s technique applies to structured formal specifications

only, however, it can be adapted for object-oriented specifications. The level at

which the technique is applicable is the unit level.

- Although Richardson and O’Malley have demonstrated their testing approach for

Anna and Larch specification languages, it can be easily applied to other formal

languages as well.

- Their work extends the white-box testing strategies so that they can be applied to

formal specifications. A major advantage of their technique is its flexibility to

adapt to a number of different black-box and white-box testing strategies.

- No tool support is provided, however, the technique can be partially automated.

43

3.2.13 Singh, Conrad & Sadeghipour, 1997

Singh et al.’s work [SCS97] is based on the Z specification language. They use the

classification tree method to organize the input predicates, and then use the disjunctive

normal form (DNF) to construct the disjuncts. The classification tree method is based on

the well-known category-partition method [OB88]. It is a partitioning method that

partitions the input domains with respect to the classifications that are relevant to testing.

The input domain is kept at the root of the tree, and the lowest-level classifications appear

at the leaf nodes of the tree. These classifications become headers of a combination table

that represents the partitioning information, such that each row of the table corresponds to

a test case. The following is an analysis of the testing technique proposed by Singh et al.

- The technique proposed by Singh et al. applies to the Z specification language,

and combines the classification tree method and the DNF, both of which can be

generalized to other formal notations.

- It gives a thorough coverage of the specification by extracting the predicates from

the Z specification, and partitioning them.

- Since the technique is based on Z specification language, as such it does not

support object-oriented testing and is limited to unit level testing only.

- Singh et al.’s testing technique can be partially automated, and is also supported

by a tool called CTE.

3.2.14 Meudec, 1998

Meudec [Meu98] proposed a method to generate test cases from VDM-SL specifications

by converting the pre and post condition expressions into DNF, partitioning the DNF into

equivalence classes and using boundary value analysis to generate test cases from the

44

equivalence classes. The approach is based on parsing VDM-SL expressions, and was

later implemented by Atterer [Att00]. A brief analysis of this approach appears below:

- The proposed is applied to VDM-SL specification, but it can be extended to other

formal specification notations as well.

- However, it does not address the issue of object-orientation, and it is not clear

whether the technique can be easily extended for testing of object-oriented

systems.

- It applies at the unit testing level only, and there is no discussion on how it can be

extended for object-oriented testing.

- It employs partition analysis and boundary value analysis strategies, but other

black-box strategies may also be used.

- The technique is shown to be automatable and a tool was implemented by Atterer

[Att00].

3.2.15 Offutt & Liu, 1999

Offutt and Liu propose a test generation technique [OL99] for the SOFL specification

language. The SOFL is a formal development methodology that combines structured and

object-oriented methodologies with formal methods. A SOFL specification consists of

three types of components called as a Condition Data Flow Diagram (CDFD), S-modules,

and I-modules. The technique proposed by Offutt and Liu uses all three components to

generate the test cases. A brief analysis of the technique follows:

- The proposed technique does support some aspects of object-oriented paradigm

since SOFL is based on combination structured and object-oriented

45

methodologies. However, it is highly dependent on the structure of a SOFL

specification, and cannot be easily generalized for other formal notations.

- It supports both unit level as well as integration level testing.

- The proposed technique uses partition analysis strategy on the predicates,

however, other testing strategies may also be used.

- Although no tool is available for the proposed technique, it can be almost

completely automated.

3.2.16 Boyapati, Khurshid & Marinov, 2002

Boyapati, Khurshid and Marinov presented a framework [BKM02], called Korat, that

uses Java Modeling Language (JML) predicates to generate the input space, and a

finitization class to bound the input state space. The bounded state space is searched and

invalid objects are discarded. The authors have implemented their proposed framework,

and have shown it to be efficient and effective, but its main limitation is that it is Java

specific. The following is a brief analysis of their work:

- Boyapati et al.’s work is based on the Java Modeling Language, and as such it

does support object-orientation, but the test cases are generated for class level

testing only.

- A major limitation of this work is that it is based on the JML specification which

is embedded within a Java program, thus it cannot be generalized and adapted for

other formal notations.

- The proposed technique is fully automatable and is also supported by a tool

named Korat.

46

3.2.17 Liu, Miao & Zhan, 2002

Liu, Miao and Zhan [LMZ02] further extended the work of Stocks and Carrington

[SC96] for object-oriented specifications. It is based on Object-Z notation, and can be

partially automated. The proposed framework in [LMZ02] generates a valid input space

(VIS) for class methods, and applies a strategy on VIS to generate test data. Valid

sequences of execution of methods are determined by constructing a finite state machine

(FSM) for the class under test. The following is a brief analysis of their work:

- As an extension of Stocks and Carrington’s work for Object-Z notation, it does

support the object-oriented paradigm. However, the test cases are generated for

class level testing only.

- As in Stocks and Carrington’s work, the proposed testing technique is

independent of the testing strategies, i.e. any specified strategy can be used to

generate test cases.

- The proposed framework is partially automatable, and is also partially

implemented.

3.2.18 Bernard, Legeard, Luck & Peureux, 2004

Legeard and Peureux present a case study on generating test sequences for Smart Card

GSM 11-11 standard [BLLP04] to evaluate the effectiveness of B Testing Tools (BTT)

testing environment on a large real-life application. In another paper, Legeard, Peureux

and Utting [LPU02a] compare the BTT testing environment with the TTF framework of

Stocks and Carrington [SC96]. The test generation method used in the BTT environment

is based on the B notation. The testing approach is based on computation of all the

boundary states for the B machine (a boundary state is defined as a state in which at least

47

one state variable has the minimum or maximum value), and generating a test path for

each boundary state. The test paths (called preambles) ensure that a boundary state is

reached from the initial state. The operation to be tested is then invoked from each

boundary state and the final state is examined. The authors demonstrate that the BTT

method gives a wide coverage (compared with manually generated tests) and saves 30%

of test design time.

In BTT method, the preamble is computed automatically using a best-first search

algorithm on a constrained reachability graph. The authors mention a limitation of this

approach as being based on the assumption of uniformity on the domain of the path.

Another limitation is that only the first path discovered by the algorithm is used as the

preamble. As there can be multiple paths (possibly infinite) leading to a boundary state

from the initial state, the single path coverage may not be adequate. A brief analysis of

the approach follows:

- The BTT generates test cases for an operation of an abstract machine specified

using the B notation. Although it does not directly support object-orientation, the

technique can be easily extended to class level testing of object-oriented systems.

- It is based on the B method but can be applied to other model-based formal

notations as well.

- The testing strategies used are partition analysis and boundary value analysis,

however, other similar strategies may also be used.

- The proposed technique is highly automatable and is also supported by a tool.

48

3.2.18 Miao & Liu, 2006

Miao and Liu [ML06] extended the work of Stocks and Carrington [SC96] and Liu et al.

[LMZ02]. They proposed a test class framework for object-oriented class testing using

Object-Z specification. Their proposed framework is partially automatable. It generates a

valid input space (VIS) for class methods, and applies a testing strategy on VIS to

generate test data. Valid sequences of execution of methods are determined by

constructing a finite state machine (FSM) for the class under test. The following is a brief

analysis of their work:

- It supports the object-oriented testing. However, the test cases are generated for

class level testing only.

- As in Stocks and Carrington’s work, the technique proposed by Miao and Liu is

independent of the testing strategies, i.e. any specified strategy can be used to

generate test cases.

- The test class framework is partially automatable, and is also partially

implemented.

3.3 Conclusion

From the analysis of existing formal specification based testing techniques given in

section 3.2, we make the following conclusions:

- the existing formal specification based testing techniques primarily focus on unit

level testing only, while integration testing is largely ignored.

- most of the existing techniques have been developed for structured systems – only

a few of them support testing of object-oriented systems.

49

- the techniques that support testing of object-oriented systems focus on class level

testing only. Formal specification based integration testing of object-oriented

systems is still a research issue.

- while inheritance and polymorphism are powerful features in object-oriented

paradigm, the existing formal specification based testing techniques almost

completely ignore testing of inheritance and polymorphic relationships in object-

oriented systems.

The above conclusions motivated us to explore the possibility of integration testing using

formal specifications, and to develop a comprehensive framework for object-oriented

testing based on formal specification. We chose VDM++ as the specification language

since it has well-defined syntax and semantics, and it is also supported by a tool called

VDMTools.

50

Chapter 4

UML Based Integration Testing
Techniques

In object-oriented paradigm, a class is considered as a unit, which is the focus of unit

testing. Integration testing is concerned with testing of the interactions between classes.

The purpose of integration testing is to validate that classes, provide the intended

functionality when they are made to interact with each other. While individual classes

may be implemented correctly, and thoroughly tested, faults may occur due to their faulty

interaction. The interactions between classes are realized by method calls from an object

of one class to an object of another class. The implementation of any useful functionality

of the system involves interaction between multiple classes. While unit testing considers

the state of a single object of a class, integration testing involves considering the states of

multiple classes involved at the same time in an interaction. The rapidly growing trend in

software development community towards component based development also

necessitates efficient and effective integration testing, as the most important part of the

development of such systems is integration testing.

51

UML-based testing techniques have focused on both unit testing and integration testing.

UML interaction diagrams, i.e., sequence and communication diagrams (formerly called

collaboration diagrams), are used to model the interactions between classes. Even though

both types of interaction diagrams are essentially equivalent, the sequence diagrams are

commonly used for test generation purpose, communication diagrams have been rarely

used for this purpose. In our framework, we use UML communication diagrams together

with a VDM++ specification to derive integration level test cases. The information

extracted from a collaboration diagram is how the objects interact with each other to

provide some functionality, while the VDM++ specification is used to determine the

various states in which an object can be while receiving a message. This chapter surveys

the UML based integration testing techniques proposed in the literature.

4.1 Abdurazik & Offutt, 2000

Aburazik and Offutt [AO00] used UML collaboration diagrams for test generation,

however, their technique is not supported by any tool and no algorithms have been

suggested to automate the generation of test cases. Their main contribution was to adapt

the conventional data and control flow testing strategies to UML collaboration diagrams.

The interactions between the objects in a collaboration diagram are represented by

messages, which represent both data and control flow of the operation. Abdurazik and

Offutt’s strategy uses the flow information for static checking of the source code.

To identify data flow paths in a collaboration diagram, they categorize the links between

the objects in a collaboration diagram into six types, i.e. variable definition link, variable

usage link, object definition link, object usage link, object creation link, and object

52

destruction link. Based on these types of links, they identify four types of pairs of links

for testing, i.e. variable def-use link pair, object def-use link pair, object creation-use link

pair, and object usage-destruction link pair. To identify control flow paths in a

collaboration diagram, all possible message sequences, starting from the external

message up to the last message, are considered.

A major limitation of this technique is that it only performs static checking while the

issue of generating tests from the UML model is not addressed.

4.2 Basanieri & Bertolino, 2000

Basanieri and Bertolino [BB00] proposed an integration testing technique called Use

Interaction Testing (UIT) based on use cases, sequence diagrams and class diagram.

Their technique performs bottom-up integration testing by conducting a dependency

analysis of the use cases to identify the least dependent use cases. For such use cases, test

cases are generated by combining the information present in the use cases with

corresponding sequence diagrams. Similarly, in the next iteration, the least dependent use

cases for the next level are identified and the process of test generation is repeated.

A limitation of this approach is that some activities such as identification of dependencies

between the use cases require human judgment and thus cannot be automated.

4.3 Basanieri, Bertolino and Marchetti, 2001

The Basanieri et al.’s work is based on the Basanieri and Bertolino’s work [BB00]

described above, i.e. Use Interaction Testing (UIT). The authors propose a technique

53

called Cost Weighted Testing (COWTest) to prioritize and select test cases from the test

suite generated by UIT method. Tests are prioritized and selected on the basis of two

criteria, i.e. a fixed level of coverage, or a fixed allowed cost. The technique is supported

by a tool called COW Suite that implements the UIT testing technique described earlier

and COWTest method. The tool can be used to generate an optimized set of test cases

under a specified criterion. However, the tool does not fully automate the test generation

process, expert judgment and human intervention are still required in some sub-tasks.

4.4 Pilskalns, Andrews, France & Ghosh, 2003

The technique developed by Pilskalns et al. [PAFG03] is based on the category partition

approach [OB88]. It merges behavioral and structural UML models to generate a new test

model called Object Method Execution Table (OMET), which captures test sequences

and corresponding data values. It is produced by combining UML class and sequence

diagrams. Sequence diagrams are used to produce another data structure called Object

Method Directed Acyclic Graph (OMDAG) which captures control flow paths for all

message sequences through the sequence diagram. Then, class diagram is used to

generate the partitions for the attributes and parameters values of the methods of classes

involved in the message sequences. The authors also give an algorithm to generate

OMETs for each path of the OMDAG. Paths are generated from the OMDAG by graph

traversal algorithms. This testing technique can be automated, however, it requires the

attribute and parameter domains to be specified in OCL in the class diagram. At the

present, however, there is no tool support for this technique.

54

4.5 Fraikin & Leonhardt, 2002

Fraikin and Lenhardt’s testing technique [FL02] is based on the sequence diagrams and is

supported by a tool called SeDiTec. The approach is based on model execution that

executes a sequence diagram and collects some testing information which is further used

to generate an output sequence diagram. The input and output sequence diagrams are then

compared for consistency. The sequence diagrams are represented as XMI files in the

tool. The tool also supports generation of stubs for methods that have not yet been

implemented. This allows the tester to start testing at an early stage. The tool also

supports inheritance relationships among the classes. However, the tool is language

dependent and only supports Java implementations.

4.6 Wittevrongel & Maurer, 2001

Wittevrongel and Maurer [WM01] propose a testing technique based on the sequence

diagrams for scenario-based test case generation. Their basic idea is based on identifying

the frequently exercised scenarios from the sequence diagram and generating test cases

for each scenario. The actual test inputs and expected outputs are provided by the user.

The technique is also supported by a tool which reads the sequence diagrams in XMI

format. The tool also generates the test driver and supports automated execution of test

cases, however, the tool does not automatically generate test input values and expected

outputs.

55

4.7 Wu, Chen & Offut, 2003

Wu, Chen & Offut [WCO03] propose a test generation approach for component-based

systems that is based on UML models. The proposed technique exercises component

interfaces with all possible scenarios. Each interface is further exercised by all possible

events that invoke the interface. This allows for more thorough testing of the components

without a corresponding increase in complexity. The technique allows for testing of

context-dependent relationships by exercising the scenarios of UML interaction

diagrams. The technique is effective for testing of Commercial-Off-The-Shelf (COTS)

components for which source code is not available but UML interaction models can be

constructed. However, there is no tool to support this technique.

4.8 Pelliccione, Muccini, Bucchiarone, & Facchini, 2004

Pelliccione et al. present a technique called TEst Sequence generaTOR (TESTOR) that

uses UML state-charts and collaboration diagrams to generate test sequences [PMBF04].

TESTOR generates a set of sequence diagrams from these two models, and finally

generates test sequences as scenarios from the sequence diagrams. The algorithm used in

TESTOR to select test sequences selects only a finite number of output sequences and

avoids the state explosion problem.

4.9 Gallagher, Offutt & Cincotta, 2006

In a recent work, Gallagher et. al. [GOC06] extend the idea of class state machines

(CSMs) to generate integration tests for multiple classes. The idea of a CSM for class

testing was originally proposed by Hong et al. [HKC95], which was based on

56

constructing a state machine for a single class that modeled the behavior of the class. The

CSM was transformed into a data flow graph that explicitly identified the definitions and

uses of each state variable of the class, and then applied conventional data flow testing to

produce test case specifications that could be used to test the class. The integration testing

technique proposed by Gallagher et al. extends this idea to interaction testing of classes.

In this technique, CSMs are combined to form data sets according to a defined relational

database schema. Database queries are used to extract def-use relationships among the

classes, and a component flow graph is then constructed from the transitions related to

the components identified for testing. Test paths are generated from the component flow

graph by applying various testing criteria. Finally, the feasible test paths are identified,

and converted into executable test cases. The proposed technique is automated and the

empirical results have also been shown.

4.10 Ali, Briand, Rehman, Asghar, Zafar & Nadeem, 2006

Ali et. al. [ABRAZN06] propose a test generation technique based on UML state-charts

and collaboration diagrams. The state-chart for each modal class is flattened and

combined with the collaboration diagram to create a test model called State

COllaboration TEst Model (SCOTEM). Test paths are generated by traversing the

SCOTEM model. The authors also define various coverage criteria on the test model to

allow generation of an effective set of test cases without increasing the cost too much.

The technique is also supported by a tool called SCOOTER which reads the UML

diagrams in XMI format and generates test paths under the specified coverage criterion.

A major limitation of the tool is that it requires the test data to be manually generated.

57

4.11 Conclusion

In summary, there are several integration testing techniques that make use UML

interaction diagrams to derive dynamic interactions among the objects. However, to our

knowledge, there is no existing work that combines a formal specification language and

UML models to comprehensively test class interactions in all possible states. Our

integration testing approach (chapter 6) is based on combining the VDM++ formal

specification with UML communication diagrams. It is based on the idea presented in Ali

et al.’s appraoch [ABRAZN06] described above. However, since we use the VDM++

formal specification to construct the state invariants instead of the UML state-charts, our

approach is more flexible and allows construction of state invariants under various

strategies. It combines both the UML artifacts and the formal specification to generate

test paths for comprehensive integration testing of classes in all possible combinations of

their states.

58

Chapter 5

The SpecTGS Framework

This chapter together with the next chapter, presents the proposed test generation

framework SpecTGS. The framework consists of two main parts (Figure 5.1), for unit and

integration level test generation. The framework uses an implicit VDM++ specification

and a corresponding implementation in C++ to generate test cases for unit level testing.

The C++ implementation is required only to generate concrete (executable) test cases.

For integration testing, the framework generates test paths from the UML communication

diagrams and the VDM++ specification of the classes involved in collaborations. This

chapter gives an overview of the framework, and the unit testing component of the

framework; at the end of this chapter, we discuss how the generated test cases may also

be used for inheritance and polymorphic testing; the next chapter covers integration

testing component of the SpecTGS framework.

59

VDM++

Specification

Integration
Test Paths

Test
Model

Generated
Code

UML Comm.
Diagram

State
Invariants

Unit
Test Cases

Message
Sequences

Msg Sequence
Generator

 Predicate
Parser

Test
Data

Test Case
Generator

Test Path
Generator

Integration
Testing

Unit
Testing

Test Model
Generator

Test Data
Generator

C++
Implementation

 Configuration
Matcher

Config.
File

Test
Sequences

Symbol
Tables

Test
Shells

 Test Shell
Generator

 Trace Structure
Analyzer

 Partition
Analyzer

Coverage
Criteria

Figure 5.1. Architecture of the SpecTGS

5.1 Class Testing

In object-oriented paradigm, the class is considered as a basic program unit. The

framework supports unit testing by generating test cases for a class. The unit testing

component of the SpecTGS framework consists of the following sub-components,

a) configuration matcher

b) trace structure analyzer

c) predicate parser

d) test shell generator

60

e) test data generator, and

f) the test case generator

The framework requires a VDM++ specification, and a corresponding C++

implementation. The implementation is required to derive specification-to-code mappings

to construct executable test cases. To begin with, the user may choose to generate test

cases for an individual method of the class, or for all allowable method sequences of the

class. In VDM++, the allowable method sequences for a class can be defined using

synchronization constraints. The synchronization constraints may be specified as trace

structures using a notation that is based on regular expressions. For the purpose of test

generation, we assume that the synchronization constraints for a class are specified as

trace structures in the VDM++ specification of the class under test. The trace structure

analyzer uses these trace structures to generate test sequences. Each test sequence is an

allowed sequence of method calls of the class on an object. The actual number of test

sequences for a class can be infinite, but our algorithm limits the test sequences to a finite

set. The following is a brief description of the framework components:

1. Configuration matcher is responsible for mapping names of classes, instance

variables, methods, etc., used in the specification with those of the

implementation. This process is automated, however the user is allowed to modify

or manually create the mappings file.

2. Trace structure analyzer constructs valid sequences of the operations of a class

from the trace structure specified in VDM++ specification of the class. The trace

61

structure is defined in the synchronization constraints section of a VDM++ class,

and defines valid operation sequences in a notation based on regular expressions.

3. Predicate parser constructs a method entry predicate and a method exit predicate

for each method in the class. The method entry predicate for a method is formed

by the conjunction of the method pre-condition and the class invariant predicates.

Similarly, the method exit predicate for a method is the conjunction of the method

post-condition and the class invariant predicates. The parser then generates C++

code for both the method entry and the method exit predicates of each method. At

the time of invocation of a method, the class invariant and the method

precondition must evaluate to true. The correct behavior of the method under test

critically depends on correctness of these predicates. Thus, we can use the method

entry predicate to generate input data for a method. Similarly, the correct

implementation of a method must result in the post condition being true while the

class invariant must remain true after execution of the method. Therefore, the

generated code for method entry predicate is used to filter the input data for a

method, while the generated code for the method exit predicate is used as an

oracle to evaluate the results of method execution for a test case. The parser also

creates a symbol table for the method entry predicate, which records variable

names and their boundary and typical values.

4. Test shell generator combines configuration information with the test sequences

to generate test shells. It generates empty test shells from the test specification,

and the configuration file, which are then filled with test data. A test shell is a

sequence of operation invocations, where each operation invocation is a method

62

call with dummy parameters representing types of the parameters. These dummy

parameters are replaced with the test data later, when test shells are converted into

concrete test cases.

5. Test data generator evaluates the method entry predicate for each method with

the data in the symbol tables. The test data are generated from the symbol table

created by the parser, and filtered by the method entry predicate.

6. Test case generator is responsible for filling the test data in empty test shells. For

each input parameter of a method, the test data generator produces multiple test

values using boundary value analysis. A test set is defined as a set of values of

input parameters for a method. The test sets for a method are formed by taking a

cross product of test values for the input parameters. The generated test sets are

then filtered by executing them on the code for the method entry predicate.

The test driver is generated as a child wrapper class, a subclass of the CUT (class under

test), and includes the generated code as public methods in this class. The test driver

executes the test cases on the implementation by instantiating the child wrapper, and

evaluates results by executing code for the method exit predicate. The rest of this chapter

describes the working of each component in greater detail with a running example.

To demonstrate how unit tests are generated, we use a VDM++ specification for a class

NNcomplex (a simple abstraction of the non-negative complex numbers) and its

corresponding C++ implementation as a running example. The VDM++ specification for

63

NNcomplex class and an implementation in C++ are given in Figure 5.2 and Figure 5.3

respectively.

 class NNcomplex
 instance variables
 re : real;
 im : real;

 inv (re>=0) & (im>=0);

 operations
 init()
 ext wr re: real
 wr im: real
 post (re=0) and (im=0);

 add(num: int) sum: NNComplex
 ext wr re: real
 rd im: real
 pre num >= -re;
 post (re = re~+num) and (sum=self);

 subtract(num: int) diff: NNComplex
 ext wr re: real
 rd im: real
 pre num <= re;
 post re = re~-num and (diff=self);

 multiply(num: int) prod: NNComplex
 ext wr re: real
 wr im: real
 pre num >= 0;
 post re = (re~*num) and (im = im~*num)
 and (prod=self);

 divide(num: int) quotient: NNComplex
 ext wr re: real
 wr im: real
 pre num > 0;
 post re = (re~/num) and (im = im~/num)
 and (quotient=self);

 sync
 general T = <(init ; (add* ; subtract* ;
 multiply* ; divide*)*),
 {init, add, subtract, multiply, divide}>;

end NNcomplex

Figure 5.2. VDM++ Specification for NNcomplex class

The class invariant (re>=0) & (im>=0) specifies that both real and imaginary

components of the complex number must be non-negative. Four methods called add,

subtract, multiply, and divide have been defined for the NNcomplex class, to perform the

basic arithmetic operations on an NNcomplex object with an integer value.

64

The precondition for each method ensures that the result of operation will be a complex

object with both real and imaginary components as non-negative. Precondition for the

divide operation also prevents division of the complex object by zero.

class Complex {
 private:
 float re;
 float im;

 public:
 void init() {
 re = im = 0;
 }

 Complex add(int x) {
 re += x;
 return this;
 }

 Complex subtract(int x) {
 re -= x;
 return this;
 }

 Complex multiply(int x) {
 re *= x;
 im *= x;
 return this;
 }

 Complex divide(int x) {
 re /= x;
 im /= x;
 return this;
 }
}

Figure 5.3. Implementation of the NNcomplex class in C++

5.1.1 Configuration Matching

In order to generate valid test cases for a class implementation, not only types of its

attributes and method signatures are required but also names of attributes and methods

must be known. As the names used in the implementation may be different from those

used in the formal specification, the test generator must maintain mappings between the

two to allow test generation from the formal specification. The configuration matcher

65

component of the SpecTGS is responsible for mapping names used in the specification

with those of the implementation. This process is automated, however the user is allowed

to modify or manually create the mappings file.

The configuration matcher first matches class names, by comparing number and types of

attributes and method signatures. For instance, class A in specification matches with class

B in the implementation if both A and B have the same number and types of attributes, as

well as the same number of methods with matching signatures.

Class attributes are matched by their types. Likewise, method names are matched by their

signatures (i.e., number and types of parameters). The table in Figure 5.4 below shows

how configuration matcher matches VDM++ types with those of C++. Currently, the

SpecTGS supports only the VDM++ types shown in Figure 5.4. In the matching process,

C++ type qualifiers (long, short, signed, unsigned) are ignored if type name is specified,

otherwise the type name is assumed to be int (the default type in C++).

VDM++ Type
Mapped to
(C++ Type)

bool bool
int int
nat int
nat1 int
real float, double
rat float, double
char char

quote type enum type
seq and seq1 types array type

map type array of struct
object reference

type
object reference

type

Figure 5.4. Mappings of VDM++ types to C++ types

66

The strategy of matching specification with implementation using types of attributes and

method signatures works well in most cases. However, it may fail if two or more

attributes in a class have the same type and scope, or two or more methods have the same

signature and access specifier. For this reason, the SpecTGS prompts the user to confirm

each mapping before it is saved to the mappings file. Moreover, the mappings file is

saved in the text format, and the user can modify its contents later. Figure 5.5 shows

mappings file generated by the configuration matcher for the NNcomplex class.

Figure 5.5. Mappings identified by the configuration matcher

5.1.2 Trace Structure Analysis

As the correct behavior of a class method may depend not only on the current state of the

class object, but also on the correct sequence of messages passed to the object [Bin99], it

is necessary to specify the allowable sequences of method calls for the class under test.

However, if the correct behavior of a class is not dependent on its message sequences –

as is the case in non-modal, or quasi-modal classes [Bin99] – then such a specification

may be omitted.

class NNcomplex -> Complex

 attributes
 re -> re
 im -> im

 methods
 init() -> init()
 add(int) -> add(int)
 subtract(int) -> subtract(int)
 multiply(int) -> multiply(int)
 divide(int) -> divide(int)

67

In VDM++, the set of all valid sequences of operations is specified in synchronization

constraints in a class specification. The synchronization constraints are usually defined as

trace structures. A trace structure defines valid sequences of method invocations of a

class for a particular object of the class.

Trace structures are specified using a language based on the notation of regular

expressions, together with special trace structure operators, i.e.,

(i) ; (semi-colon) denotes sequential execution. This is used to enforce the order of

execution of operations or operation traces.

(ii) * (asterisk) denotes zero or more times repetition of an operation or an operation

trace.

(iii) + (plus sign) denotes one or more times repetition of an operation or an operation

trace.

(iv) ** (double asterisk) denotes the projection operator, and is used to restrict a trace

of operations to a subset of the operation alphabet.

(v) w_ (w underscore) denotes the weave operator, and is used to perform

synchronized interleaving of two operation traces.

An implementation of a class with a trace structure specification is correct only if it

guarantees that only the specified sequence of invocations can occur. The trace

synchronization defines one general trace structure and an arbitrary number of subtrace

structures. This scheme allows decomposition of the behavior of an object, in which the

general trace structure is built from the subtrace structures.

68

Since our framework supports only positive testing, it only tests the operation sequences

that should be allowed by a correct class implementation. Invalid operation sequences

that are not derivable from the trace structure expression are not tested. Thus, the

SpecTGS framework does not guarantee that the class implementation will not allow

incorrect operation sequences to be executed. In Figure 5.6, we give an algorithm to

generate a set of valid operation sequences for a given trace structure. Input to the

algorithm is a trace structure expression, and the output is the corresponding set of

operation sequences. The following is a brief explanation of the algorithm:

- if an empty expression ε is given as input, the output is the set containing an

empty operation sequence.

- if the input expression consists of a single operation op, the output is the set

containing op only, i.e., [op].

- if the input expression R is of the form R1+, then the number of operation

sequences formed would be infinite. However, the algorithm generates only a

finite number of sequences for up to three iterations of R1, i.e., R1, R1;R1, and

R1;R1;R1.

- if the input expression R is of the form R1*, then the number of operation

sequences formed would be infinite. However, the algorithm generates only a

finite number of sequences for up to three iterations of R1, i.e., ε, R1, R1;R1, and

R1;R1;R1.

69

The trace structure in VDM++ specification of the class NNComplex in Figure 5.2 is

specified as,

general T = <(init ; (add* ; subtract* ; multiply* ; divide*)*),

{init, add, subtract, multiply, divide };

This states that every valid sequence of operations must start with the init operation,

which can be invoked exactly once. After the init operation, the other operations (add,

subtract, multiply, divide) can be invoked any number of times in any order. For instance,

some operation sequences derived from this specification are as below,

init

init ; add

init ; subtract ; add

init ; add ; subtract ; divide

init ; multiply ; add

etc.

 function genOpSeqs(R : RegExpr): set of OpSeq
{ OSset : set of OpSeq;
 OSset := [];
 if (R is ε) then OSset := [ε];
 else if (R is of the form op) then OSset := [op];
 else if (R is of the form R1 ** S) then
 OSset := restrict(genOpSeqs(R1), S);
 else if (R is of the form R1 w_ R2) then
 OSset := weave(genOpSeqs(R1), genOpSeqs(R2));
 else if (R is of the form R1 ; R2) then
 OSset := product(genOpSeqs(R1), genOpSeqs(R2));
 else if (R is of the form R1+) then
 OSset := union(genOpSeqs(R1),
 genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1));
 else if (R is of the form R1*) then
 OSset := union([ε], genOpSeqs(R1),
 genOpSeqs(R1 R1), genOpSeqs(R1 R1 R1));
 return OSset;
}

Figure 5.6. Algorithm for generating operation sequences

70

5.1.3 Predicate Parsing

A formal specification in VDM++ contains pre and post conditions for each method of

the class under test (CUT). The predicate parser constructs method entry and exit

predicates for each method by forming a conjunction of method pre and post condition

predicates with the class invariant predicate, as shown below:

 method_entry_predicate = method_precondition ∧ class_invariant

 method_exit_predicate = method_postcondition ∧ class_invariant

In addition to the method precondition and class invariant, a method entry predicate also

includes type constraints. For instance, if an input parameter of the method, or an

instance variable is of type nat, then it is implicitly implied that its value cannot be

negative. The method predicates are parsed into parse trees using a context free grammar

for VDM++ expressions. The SpecTGS implements a simple LR parser to parse the

predicate expressions.

5.1.4 Generating Code for Method Predicates

From the parse tree, the parser generates C++ code to evaluate each method predicate.

The idea of converting a predicate expression into a parse tree and generating C code

from the tree, has been described in [NR04]. Mikk also provides a technique to convert Z

predicates to C expressions for evaluation of test results [Mik95]. The parser produces

boolean-valued C++ functions named classname_methodname_pre() and

classname_methodname_post() for each method in the CUT. Code generated for the

NNComplex class is shown in Figure 5.7 below. This code for method entry predicate is

71

used by the test generator to filter the generated input data and discard the unsatisfiable

test cases, while the code for method exit predicate is used by the test driver to evaluate

the execution results of the test cases.

bool Complex_init_pre(float re, float im) {
 bool result = true;
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_init_post (float re, float im) {
 bool result = true;
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_add_pre(float re, float im, int x) {
 bool result = true;
 result = result && (x >= -re);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_add_post (float re, float re_old, float im, int x) {
 bool result = true;
 result = result && (re == re_old+x);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_subtract_pre(float re, float im, int x) {
 bool result = true;
 result = result && (x >= re);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_subtract_post (float re, float re_old, float im, int x) {
 bool result = true;
 result = result && (re == re_old-x);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_multiply_pre(float re, float im, int x) {
 bool result = true;
 result = result && (x >= 0);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_multiply_post (float re, float re_old, float im, float im_old, int x) {
 bool result = true;
 result = result && ((re == re_old*x) && (im == im_old*x));
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

bool Complex_divide_pre(float re, float im, int x) {
 bool result = true;
 result = result && (x > 0);
 result = result && ((re >= 0) && (im >= 0));
 return result;
}

Figure 5.7. Code Generated by Predicate Parser

A predicate in VDM++ is a well-formed logical expression that is constructed from

clauses and logical connectives. A clause may be a relational sub-expression, or a set

membership sub-expression. Also, a clause may be a quantified sub-expression involving

universal and existential quantifiers. The conversion of simple relational expressions, and

72

the expressions involving finite sets, sequences, and maps to C++ is automated in

SpecTGS. For instance, consider the following set membership expression with a

universal quantifier,

forall x in set S & (x<y)

If S is a finite set of elements s1, s2, s3, ……, sn, then the above expression can be

evaluated as,

(s1<y) and (s2<y) and (s3<y) and …… and (sn<y)

Similarly, an expression with an existential quantifier can be evaluated as,

(s1<y) or (s2<y) or (s3<y) or …… or (sn<y)

The table in Figure 5.8 shows C++ expressions generated by SpecTGS for various types

of predicates.

VDM++ Predicate C++ Expression
a=b a==b
a<b a<b
a>b a>b
a<=b a<=b
a>=b a>=b
a<>b a!=b
not a !a
a and b a && b
a or b a || b
a=>b !a || b
a<=>b a==b

a in set S (a==s1) || (a==s2) || (a==s3) ...
where s1, s2, s3, ... are elements of S

a not in set S (a!=s1) && (a!=s2) && (a!=s3) ...
where s1, s2, s3, ... are elements of S

Figure 5.8. C++ boolean expressions for VDM++ predicates

73

5.1.5 Constructing the Symbol Tables

For each method in the CUT, a symbol table is constructed that stores instance variables,

method arguments and their boundary values. The boundary values are determined from

method entry predicates. The test generator uses symbol tables to generate test inputs for

the methods. For example, for the add method of the Complex class, the SpecTGS

generates the symbol table shown in Figure 5.9 below.

Var Type Rel. Op. Boundary

Value
re float >= 0

im float >= 0

x int >= -re

Figure 5.9. Symbol Table for add() method

As the boundary value of the variable x in Figure 5.9 is dependent on the value of the

variable re, so the test generator must first generate test values for the variable re. A

variable may have multiple boundaries if it appears in more than one clauses of the

predicate expression. For instance, in the predicate expression (a>10) & (a<20), the

variable a has two boundary values, i.e., 10 and 20. For such variables, there are multiple

rows in the symbol table.

5.1.6 Generating Test Shells

The test shell generator combines the test sequences (generated by the trace structure

analyzer) with the configuration information to construct test shells. A test shell is a

sequence of test templates, where a test template consists of a method name followed by

its parameter types. The test shell generator uses mappings from the configuration file to

determine method names in the CUT, and saves the generated test shells in a file. For

74

instance, the following three test shells are constructed from the message sequences

generated for the NNComplex class.

 BEGIN TEST 1
 init <>
 add <int>
 END TEST

 BEGIN TEST 2
 init <>
 add <int>
 subtract <int>
 END TEST

 BEGIN TEST 3
 init <>
 subtract <int>
 multiply <int>
 add <int>
 add <int>
 END TEST

5.1.7 Generating Test Data

The test data generator determines method inputs for each method in the CUT. Method

inputs consist of parameters of the method, including the implicit this parameter. It uses

the symbol table (section 5.1.5) to generate test values for method inputs, and the code

for method entry predicate to filter the test values. Using the boundary value analysis

strategy, the SpecTGS generates the test values for the add method as given in Figure

5.10.

For instance, for the variable re, the boundary value is 0, therefore the generated test

values are 0, 1, and 5. While the values 0 and 1 are at the boundary, the value 5 is

randomly generated from the space re > 1. Similarly, test values are generated for the

75

variables im and x. A total of 27 sets of test values are thus formed (Figure 5.10) for the

add method. Each of the generated test sets is then executed on the method entry

predicate Complex_add_pre() to test if it satisfies method entry predicate or not. The

unsatisfiable test sets are eliminated. In our example, all 27 test sets are satisfiable.

Unsatisfiable test sets may result if there are variables with multiple boundary values. For

variables with multiple boundaries, all boundaries are used to generate test data.

However, a test set contains only a single value for each variable. The generated test data

are used by the test case generator to construct the concrete test cases.

5.1.8 Generating Test Cases

The test case generator is responsible for filling the test data in empty test shells. For each

input parameter of a method, the test data generator produces multiple test values using

boundary value analysis. A test set is defined as a set of values of input parameters for a

method. The test sets for a method are formed by taking a cross product of test values for

the input parameters. The generated test sets are then filtered by executing them on the

code for the method entry predicate.

For each method in a test shell, the generator generates valid test sets. The empty test

shells are then filled in with all possible combinations of test sets for its methods, to form

the concrete test cases.

76

 1: re = 0, im = 0, x = 0
2: re = 0, im = 0, x = 1
3: re = 0, im = 0, x = 9
4: re = 0, im = 1, x = 0
5: re = 0, im = 1, x = 1
6: re = 0, im = 1, x = 9
7: re = 0, im = 8, x = 0
8: re = 0, im = 8, x = 1
9: re = 0, im = 8, x = 9
10: re = 1, im = 0, x = -1
11: re = 1, im = 0, x = -1
12: re = 1, im = 0, x = -1
13: re = 1, im = 1, x = 0
14: re = 1, im = 1, x = 0
15: re = 1, im = 1, x = 0
16: re = 1, im = 8, x = 12
17: re = 1, im = 8, x = 12
18: re = 1, im = 8, x = 12
19: re = 5, im = 0, x = -5
20: re = 5, im = 0, x = -5
21: re = 5, im = 0, x = -5
22: re = 5, im = 1, x = -4
23: re = 5, im = 1, x = -4
24: re = 5, im = 1, x = -4
25: re = 5, im = 8, x = 6
26: re = 5, im = 8, x = 6
27: re = 5, im = 8, x = 6

Figure 5.10. Test values generated for add() method

5.2 Setting the Object State

As mentioned earlier, the inputs to a method are not only its explicit parameters, but also

the implicit this parameter, which represents state of the current object. When testing a

method, the current object’s state may also have to be set by setting values of its instance

variables. By the principle of encapsulation, the instance variables of a class are kept

private, so we must add getter and setter methods to the class under test to access and

modify values of its instance variables.

77

Setting values of instance variables is required only when testing an individual method –

the object must be in a correct state to accept the message. For example, the add message

can be accepted only when the real and imaginary components of Complex object have

defined values, and are non-negative. However, when testing a message sequence, the

instance variables are not required to be set. For instance, a valid message sequence

requires add message to be preceded by init message, which will ensure correct object

state.

The SpecTGS framework supports both individual method testing, and a message

sequence testing.

Testing an individual method

When testing an individual method, the values of instance variables re and im are set via

setter methods. For instance, to test the add method of Complex class, using test values of

Figure 5.10, the following test cases are generated:

 BEGIN TEST add.1
 set_re <0>
 set_im <0>
 add <0>
 END TEST

 BEGIN TEST add.2
 set_re <0>
 set_im <0>
 add <1>
 END TEST

78

 BEGIN TEST add.3
 set_re <0>
 set_im <0>
 add <9>
 END TEST

 etc.

A complete set of test cases for the add method appears in Appendix-I. It may be noticed

that the number of test cases increases exponentially if there are methods with multiple

parameters, because, in such a case, all possible combinations of values of parameters are

used to generate the test cases.

Testing a message sequence

When testing a message sequence, the object state is not required to be explicitly set – the

correct state of the object for each method in the sequence is ensured by its preceding

messages. For the example Complex class, using test values from Figure 5.10, and test

shell 1, the following test cases are generated:

 BEGIN TEST 1.1
 init <>
 add <0>
 END TEST

 BEGIN TEST 1.2
 init <>
 add <1>
 END TEST

 BEGIN TEST 1.3
 init <>
 add <9>
 END TEST

79

5.3 Test Driver

For the purpose of testing, a test class can be derived from the CUT as suggested in

[TR93]. The derived class is called a child wrapper. It inherits all the attributes and

methods from the CUT. The extra routines required for testing are added to the child

wrapper class, rather than patching an existing class of the system. The test driver

instantiates the child wrapper, and invokes its methods to be tested.

The SpecTGS implements the strategy described above, i.e., it creates a child class of the

CUT and adds its testing methods. Under this mechanism, the class that actually gets

tested is the child wrapper rather than the CUT. However, the methods under test are

actually implemented in the CUT, so they get tested. This strategy relies heavily on the

programming language’s inheritance mechanism.

The child wrapper class contains the following additional methods, used for testing:

load(TestCase tc) – used to load a test case from the file; tc is the test case number.
execute() – used to execute a loaded test case.

The test driver instantiates the child wrapper to create a test object, and then executes

each test case with the test object. The execute() method of child wrapper invokes each

method in a test case in sequence. For instance, for the test case 1.3 of section 3.3.3, the

actual method calls made by execute() are:

 init()
 Complex_init_post()
 add(9)
 Complex_add_post()

80

After execution of each method, the method’s exit predicate is evaluated, and the results

are logged in a file. For failed test cases, the execute() method also logs values of

variables for which exit predicate failed.

5.4 Inheritance and Polymorphic Testing

Inheritance and polymorphism are powerful features in object-oriented paradigm that

support reusability and dynamic binding, but at the same time, the use of these features in

an object-oriented program presents new kinds of challenges to the testers – certain new

kinds of faults can arise due to inheritance and polymorphism. Inheritance is a

mechanism by which a new class, called the derived class, inherits the attributes and

operations of a parent class. The derived class may override some of the functionality of

the parent class, by redefining some of the inherited operations. Also, the derived class

may add its own methods to implement new functionality. Polymorphism is a mechanism

by which functionality of the appropriate derived class is invoked based on the dynamic

binding of a derived class object to a parent class variable. Despite the importance of

inheritance and polymorphic testing, research on formal specification based testing has

largely ignored this area.

A technique for testing inheritance relationships based on flattening of the derived

VDM++ specification class has been presented in [NL06]. However, in this section we

only discuss how test cases generated by the SpecTGS framework can also be used for

inheritance and polymorphic testing [NML06]. We use the Offutt et al.’s fault model for

subtype inheritance and polymorphism [OAWXH01], which defines nine types of faults

due to inheritance and polymorphic interactions.

81

5.4.1 Specifying Inheritance and Polymorphism in VDM++

In VDM++, the top-level system specification consists of a collection of related classes.

The body of each class contains the following optional elements,

- type definitions

- value definitions

- instance variable definitions

- operation definitions

- function definitions

- synchronization definitions

- thread definitions

For each class, the header specifies class name and optional super class name(s) using is

subclass of clause with the class name. For example,

 class A is subclass of B

 …

 …

 end A

When a class is defined as a subclass of an already existing class, the subclass definition

introduces an extended class, which is composed of the definitions of the superclass, and

the definitions of the newly defined subclass. The interface to the objects of the subclass

is the same as the interface to its superclass extended with the new definitions within the

82

subclass. A subclass inherits from the superclass all of its value and type definitions,

instance variables, operation and function definitions, and synchronization definitions.

A class may inherit from more than one superclasses. However, a name conflict occurs

when two constructs with the same name and of the same kind are inherited from

different superclasses. Name conflicts must be explicitly resolved through name

qualification, i.e. prefixing the construct with the name of the superclass and a `-sign

(back-quote).

Polymorphic behavior cannot be explicitly specified in VDM++. However, a variable v

of the superclass can be assigned an object of a subclass which allows overriding

methods of the subclass to be invoked through v. Moreover, in a superclass, it is possible

to delegate the responsibility to define an operation to the subclass(es) by using the is

subclass responsibility clause, e.g.,

class A

 …

 operations

 op1() is subclass responsibility

end A

The operation op1() is defined by a subclass B derived from class A. A superclass

containing one or more abstract operations acts as an abstract base class.

83

5.4.2 Offutt et al.’s Fault Model

Offutt et al. present a fault model [OAWXH01] for subtype inheritance and

polymorphism in which they identify nine types of faults due to inheritance and

polymorphism. However, only the following four of these fault types can be covered by

test cases generated from a VDM++ formal specification, since the specification lacks the

detailed information present at the implementation level:

i) State Definition Anomaly (SDA): This type of fault can occur if:

a. an inherited method m1 of the superclass defines a state variable v,

b. a method m2 of the subclass that overrides m1, but does not define the

inherited state variable v consistently with the overridden method m1, and

c. an object o of the subclass is assigned to a variable s of superclass type,

and method s.m2 is invoked

ii) State Defined Incorrectly (SDI): This type of fault can occur if:

a. an overriding method of the subclass incorrectly defines an inherited state

variable, i.e. the computation performed by overriding method is not

semantically equivalent to the overridden method, and

b. an object o of the subclass is assigned to a variable s of superclass type,

and method s.m2 is invoked

iii) Incomplete (failed) Construction (IC): This type of fault can occur if:

a. the constructor does not define (or incorrectly defines) a state variable v,

b. a method m of the class uses the undefined state variable v, and

c. an object o of the class invokes method o.m

iv) State Visibility Anomaly (SVA): This type of fault can occur if:

84

a. a state variable v in the superclass has private access specifier, and

b. an overriding method m of a sub-subclass cannot define the inherited state

variable of super-superclass due to private access specifier.

5.4.3 The Testing Strategy

The strategy used by the SpecTGS for unit level test case generation may also be used to

generate test cases for inheritance and polymorphic testing, as follows:

i) For SDA and SDI faults, only those operation sequences of the subclass are

derived from the trace structure which include one or more occurrences of an

overriding method. The subclass is then instantiated and the object is assigned

to a variable of the superclass type. Each operation of the operation sequences

is then invoked with the superclass variable. Examining the state variables

after each call to an overriding method would expose any SDA or SDI faults.

ii) The IC fault defined in Offutt et al.’s fault model is not really an inheritance

or polymorphism fault, and can be easily exposed by operation sequences that

involve a call to the constructor followed by a call to a method that uses a

state variable.

iii) The SVA fault can occur if the class inheritance hierarchy is at least two level

deep. This type of fault can be exposed by executed an operation sequence of

the sub-subclass that involves at least one operation that is supposed to define

an inherited state variable of the super-superclass.

85

5.4.4 An Example

As an example, consider the inheritance hierarchy in the UML class diagram for a bank

account class, in Figure 5.11. The parent class Account is an abstraction of a bank

account with the basic attributes and operations common to all types of accounts. The

derived classes SavingsAccount and CheckingAccount model two common types of bank

accounts. Figure 5.12a and Figure 5.12b present VDM++ specification for the Account

and SavingsAccount classes, respectively.

Figure 5.11. Class diagram for Bank Account hierarchy

In an inheritance hierarchy, if synchronization constraints are specified as trace structure

expressions in both the subclass and the superclass, the effective trace structure for the

subclass is obtained by synchronized weave of the superclass and the subclass trace

structures [CSK05].

86

 class Account
instance variables

accountNumber: nat;
balance: real;
status: <Active> | <Inactive> | <Closed>

invariant balance >= 100;
operations
 open(amount: real)
 ext wr balance: real;
 wr status: <Active> | <Inactive> | <Closed>;
 pre amount >= 100;
 post balance = amount and status = <Active>;
 close()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Closed>;
 activate()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Active>;
 deactivate()
 ext wr status: <Active> | <Inactive> | <Closed>;
 post status = <Inactive>;
 getBalance() bal: real
 ext rd balance: real;
 post bal = balance;
 withdraw(amount: real)
 ext wr balance: real;
 pre balance >= amount;
 post balance = balance~ - amount;
 deposit(amount: real)
 ext wr balance: real;

pre amount > 0;
post balance = balance~ + amount;

sync
subtrace X = <(withdraw* ; deposit* ; getBalance*),

{withdraw, deposit, getBalance}>;
subtrace Y = <(deactivate ; getBalance* ; activate),

{deactivate, getBalance, activate}>;
 general T = <(open ; (X* ; Y*)* ; (deactivate* ; close)),
 {withdraw, deposit, getBalance,
 deactivate, activate, open, close}>;
end Account

Figure 5.12a. VDM++ specification for the Account class

87

 class SavingsAccount is subclass of Account
instance variables

interestRate: real;
minBalance: real;

invariant balance >= minBalance;
operations
 withdraw(amount: real)
 ext wr balance: real;
 pre balance >= minBalance + amount;
 post balance = balance~ - amount;
 postInterest()
 ext wr balance: real;
 post balance = balance~ * (1+interestRate);
sync
 general T = <((withdraw* ; postInterest*)*) ,
 {withdraw, postInterest}>;
end SavingsAccount

Figure 5.12b. VDM++ specification for the SavingsAccount class

For the above example, the effective trace structure of the SavingsAccount class is

computed by a synchronized weave of the trace structures of Account class and

SavingsAccount class, as shown below:

 T = <((open ; ((withdraw* ; deposit* ; getBalance*)* ;

(deactivate ; getBalance* ; activate)*)* ;

(deactivate* ; close)) w_ ((withdraw* ; postInterest*)*)),

 {withdraw, deposit, getBalance, deactivate, activate,

 open, close, postInterest}>;

Since withdraw method of the SavingsAccount class overrides the withdraw method of

the Account class, and also it defines the inherited state variable balance, therefore it

should be tested for SDA and SDI faults. To achieve this, the operation sequences

containing the withdraw operation are derived from the above trace structure and are

tested. For example, some of the operation sequences to be tested include,

88

open ; withdraw ; getBalance ; close

open ; withdraw ; deposit ; getBalance ; deactivate ; close

open ; withdraw ; deposit ; postInterest ; close

open ; withdraw* ; getBalance ; postInterest ; close

etc.

89

Chapter 6

Integration Testing with SpecTGS

This chapter covers the integration testing part of the SpecTGS framework that combines

a UML communication diagram, and the VDM++ formal specification to automatically

generate test paths for integration testing. We use the UML communication diagrams to

generate message sequences, and the formal specification to generate state invariant

predicates for the states in which each a class can receive a message. The message

sequences are combined with the state invariants to construct test models, which are used

to generate the test paths.

Integration testing is an important part of the overall testing process since many new

types of faults can arise due to incorrect interaction of objects even though the individual

classes may have been thoroughly tested. Binder identifies these integration faults as

interface errors, conflicting functions, and missing functions [Bin99]. However, most of

the research on formal specification based testing has focused on unit testing only [Off98]

[OLAA03]. One reason for this lack of research on formal specification based integration

testing is that the commonly used formal notations for object-oriented systems, such as

Object-Z and VDM++, are not adapted to specifying the dynamic behavior of a system –

90

these notations are used to specify only the static structure of a system, i.e. classes, their

attributes and operations, and relationships among classes.

The Unified Modeling Language (UML) [OMG05a] is the de facto industry standard for

specifying the structure as well as behavior of object-oriented systems. Its notation is

based on a set of constructs common to most object-oriented languages. However, the

main difficulty in combining UML with formal methods is that the UML itself does not

have formal semantics [EFLR98]. The semantics of UML have been described informally

using natural language. While the Object Management Group (OMG) was responsible for

standardization of the UML as a notation, the semantics of the UML is still a research

issue [PB00]. Despite this limitation of the UML, the formal methods community

recognizes the role of the UML in decomposing complex problems and in presenting

abstract visual perspectives of the models [AS99] [ELCKAH98] [HCKKTFSMSCM95].

The use of the UML along with a formal specification offers complementary benefits

such as visualization of the models, and providing higher-level structural views of the

system, while the formal notations can fill in the processing details with their precise and

unambiguous syntax [AS99].

The behavior of an object-oriented software system is implemented through interaction of

objects. There are two complementary ways of describing this interaction of objects in

UML. One is to use the UML state-charts which focus on individual objects, and the

other is to use an interaction diagram which considers a collection of cooperating objects.

An interaction diagram is a behavioral specification that clearly defines a sequence of

91

communications among cooperating objects to implement a use case functionality. There

are two kinds of essentially equivalent interaction diagrams in UML, i.e., sequence

diagrams and communication diagrams. In our framework, we use the latter to derive test

sequences.

The collaborating objects interact with each other through message passing to implement

the system behavior. The states of the objects sending and receiving a message at the time

of message passing are crucial to the correct behavior of the system. The functionality

provided by an object critically depends on its state, since the same object can behave

differently upon receiving the same message in different states. Moreover, certain

functionalities may be unavailable in certain object states, for example, the Pop

functionality of a stack is unavailable when it is in the empty state.

6.1 The Proposed Approach

Our approach is based on the idea that interactions between the objects should be tested

for all states of the objects involved in the interactions. We use a UML communication

diagram to generate message sequences, and then use the VDM++ formal specification to

derive the state invariants for the classes receiving the messages. These state invariants

are partitioned using an appropriate partitioning strategy to create invariants for the sub-

states. Each message sequence is then combined with sub-state invariants to construct test

models. Finally, test paths are generated from the test models by under a specified

coverage criterion. It is assumed that the UML model is consistent with the formal

specification. Figure 6.1 gives an architectural diagram for the proposed approach. The

main components of the test generation scheme are:

92

Message sequence generator – is responsible for generating message sequences from a

communication diagram. Each communication diagram is expressed as a message

expression, which represents the set of all valid message sequences for a communication

diagram. The notation of message expressions is based on regular expressions, and is

parsed by the message sequence generator to generate message sequences. Each message

sequence can be represented as a message sequence tree (MST).

Partition analyzer – is responsible for constructing the partition predicates for the input

domains of each operation. This is done using the operation pre-conditions and class

invariants from the formal specification. Each predicate is transformed into a state

invariant that represents an object state in which the message can be received. The

predicates are derived by partitioning the input domains [Vag96] of an operation using its

pre-condition and class invariant.

Test model generator – a test model is formed by combining a message sequence with the

state invariants of the operations involved in the message sequence.

Test path generator – finally, the test path generator generates test paths by traversing the

test model under a specified coverage criterion. A test path consists of all messages in a

message sequence, with a specific sub-state invariant selected for each message.

93

VDM++

Specification

Integration
Test Paths

Test
Model

UML Comm.
Diagram

State
Invariants

Message
Sequences

Msg Sequence
Generator

Test Path
Generator

Test Model
Generator

 Partition
Analyzer

Coverage
Criteria

Figure 6.1. Integration testing part of the SpecTGS framework

In the following sub-sections, we explain how the proposed approach works by

considering the functionality of each of these components.

6.2 Generating Message Sequences

A communication diagram in UML describes how objects collaborate with each other by

message passing to provide some system functionality. A message defines a

communication between a sender and a receiver object, which either causes an operation

to be invoked, or an object to be created or destroyed. A message label is of the form,

[predecessor] sequence-expression message-signature

where message-signature consists of the return-value, message-name, and the argument-

94

list. The order of messages is determined by the sequence-expression, which is a

hierarchical sequence number followed by an optional recurrence expression. The

recurrence expression represents conditional or iterative execution of the message,

depending on the condition specified. In iterative execution, the recurrence expression is

preceded by an asterisk. The optional predecessor is a comma-separated list of sequence

numbers of messages that must execute before the current message. Figure 6.2 shows an

example communication diagram.

Figure 6.2. A communication diagram

A message sequence is a sequence of message invocations that result when a particular

path is followed through a communication diagram. We define a message expression as

an expression over the set of messages, which defines all valid message sequences for a

communication diagram. Based on the notation of regular expressions, we propose a

notation for message expressions that can be used to represent the set of all possible

message sequences defined by a communication diagram. The following is a brief

description of the notation:

• if mi is a message, (mi) denotes invocation of the message mi

• if R1 and R2 are two message sub-expressions, R1R2 denotes sequential

95

execution of all message sequences derivable from R1 followed by those

derivable from R2 at the same nesting level. For instance (m1)(m2) denotes

sequential execution of the messages m1 and m2

• if mi is a message and R is a message expression, (mi R) denotes invocation of

all message sequences derivable from the expression R from message mi. For

instance (m1(m2)) denotes invocation of message m2 from message m1

• ^R denotes conditional execution of message sequences derived from R

• *R denotes iterative execution (zero or more times) of message sequences

derived from R

• (m,n)R denotes iterative execution of message sequences derived from R,

minimum of m times and maximum of n times

• R1+R2 denotes mutually exclusive execution of message sequences derived

from R1 and R2

Using this notation, a message expression for the communication diagram of Figure 6.2

can be written as:

R = (m1 *(m2 ((m3) + (m4)) (m5 (m7) (m10))) (m6 (m8) ^(m9)))

The following are some message sequences derived from the expression R:

(m1 (m6 (m8)))
(m1 (m6 (m8) (m9)))
(m1 (m2 (m3) (m5 (m7))) (m6 (m8) (m9)))
(m1 (m2 (m4) (m5(m7) (m10) (m10))) (m6 (m8) (m9)))
etc.

Each of these message sequences can be represented as a message sequence tree (MST)

as shown in Figure 6.3.

96

 m1

C1

C4

C5

m6

m8

 m1

C1

C4

C5 C5

m6

m9 m8

 m1

C1

C3 C5

C4

C2

C5 C5

m2 m6

m9 m8

m7

m3 m5
C2

m1

C1

C3

C2

C5 C5

m2 m6

m9 m8

m7

m4 m5

C5 C5

m10
m10

C5

C4 C2

Figure 6.3. MSTs for communication diagram of Figure 6.2

In Figure 6.4, we present an algorithm to generate the set of all message sequences for a

given message expression. The input to the algorithm is a message expression, and the

output is the set of message sequences produced by message expression. The following is

a brief explanation of the algorithm:

• if an empty message expression ε is given as input, the output is the set

containing an empty message sequence ε

• if the message expression consists of a single message (m), the output is the set

containing m only, i.e., [(m)]

• if the message expression R is of the form ^R1, then the output set is the union

of empty message sequence ε and the message sequences generated from R1

• if the message expression R is of the form *R1, then the number of message

sequences formed can be infinite depending on whether or not there is a bound

on the number of iterations of such an iterative message. The iterative messages

are repeated in message sequences according to their boundaries, as suggested

by Beizer [Bei90] in the case of loop testing. For instance, if a message can

execute a minimum of m times and a maximum of n times, then for the purpose

97

of testing, it should be executed m times, n times, and a typical value (between

m and n) times. For iterative messages whose bounds are not specified, the

algorithm generates message sequences containing up to three successive

invocations of such messages.

• if a message expression R is of the form R1+R2, the output is the union of sets

of message sequences S1 and S2 generated from the sub-expressions R1 and R2.

The union function is assumed to be predefined.

• if a message expression R is of the form R1R2, where R1 and R2 are sub-

expressions, then the output is the product of sets of message sequences S1 and

S2 generated from R1 and R2 respectively. The product of two sets of message

sequences S1 and S2 is defined as the set of all message sequences formed by

concatenating message sequences of S1 with message sequences of S2

 function genMsgSeqs(R : MsgExpr): set of MsgSeq
{ MSset : set of MsgSeq;
 MSset := [];
 if (R is ε) then MSset := [ε];
 else if (R is of the form (m)) then MSset := [(m)];
 else if (R is of the form ^R1) then

MSset := union([ε], genMsgSeqs(R));
 else if (R is of the form R1 + R2) then
 MSset := union(genMsgSeqs(R1), genMsgSeqs(R2));
 else if (R is of the form R1 R2) then
 MSset := product(genMsgSeqs(R1), genMsgSeqs(R2));
 else if (R is of the form (m R1)) then
 MSset := product([m], genMsgSeqs(R1));
 else if (R is of the form *R1) then
 MSset := union([ε], genMsgSeqs(R1),
 genMsgSeqs(R1 R1), genMsgSeqs(R1 R1 R1));
 return MSset;
}

Figure 6.4. Algorithm to generate message sequences

98

The message sequences generated in this phase are input to the test model generator.

6.3 Constructing State Invariants

Execution of a message sequence results in operation invocations on the receiving objects

in a sequence. The behavior of an operation critically depends on the state of the

receiving object and may also depend on states of other objects in the collaboration.

Model-based formal specification notations such as VDM++, Object-Z, and the B method

use predicate logic to specify class invariants and operation preconditions which

implicitly define the correct state of the object in which an operation can be invoked. In

Object-Z, for example, the predicate part of an operation schema defines the relationship

between state variables before and after the operation. An implicit specification in

VDM++, on the other hand, defines three kinds of predicates: the class invariant, the pre-

condition, and the post-condition predicates. The class invariant is defined in the context

of a class; the pre-condition and post-condition predicates are defined in the context of an

operation.

Although the proposed approach is generic and can be applied to a variety of formal

notations that are based on predicate logic, we choose VDM++ to demonstrate our

approach, as it explicitly defines the pre- and post-condition predicates, as well as class

invariants. In Object-Z, extraction of pre- and post-conditions from an operation schema

can be difficult.

We define the pre-state for a message m, prestate(m) as the state of the receiving object in

which the message m can be received. This state is represented as a set of all allowable

99

values for each state variable (or instance variables) of the receiving object, and is

determined by the data types of state variables, the class invariant, and the pre-condition

of the method m. A state invariant for this state can be derived from the conjunction of

class invariant inv(C) of the receiving object, the pre-condition pre(m) of the message m,

and the implicit type constraints of the state variables, i.e.,

E ≡ inv(C) ∧ pre(m) ∧ type-contraints

The type constraints are based on the declared type of a state variable, and may also arise

from refinement of data types in formal specification to those in the programming

language. For instance, if the VDM++ int type refined to unsigned int, or a set type of

VDM++ is refined to an array in C++, it would lead to additional constraints on the

values or order of elements etc. If VDM++ is used as the specification language, the

predicate prestate(m) is a well-formed VDM++ expression that consists of one or more

clauses joined with the logical connectives (not, and, or), and the constructors (a type of

VDM++ operator used to construct the expressions). A clause is either a relational sub-

expression, or a set membership sub-expression, or a more complex sub-expression

involving operators of the types: combinators, applicators, and evaluators.

The predicate pre(m) in the above expression E may involve both state variables of class

C and input parameters of method m. Thus, non-state variables are required to be

eliminated from the above expression. In the following sub-section we develop a strategy

to eliminate non-state variables and construct a state invariant prestate(m) from the

expression E. After construction of the state invariant prestate(m), our goal is to construct

sub-states of the state defined by prestate(m) which would result in generation of more

100

effective test cases. For this purpose, we first describe two existing strategies that have

been used in partitioning of state predicates and shown to be effective in class testing, i.e.

partition analysis and boundary state coverage. Our strategy is based on combination of

the two strategies and using the sub-state coverage in integration testing.

6.3.1 Partition Analysis

Partition analysis is a commonly used strategy in generating partition predicates from a

Boolean expression. It is based on the idea that the predicates should be tested for all

possible truth assignments of clauses which make the predicate true. For instance, if A

and B are two clauses, the expression (A ∨ B) can be made true by the following truth

assignments,

 A = true B = true

 A = true B = false

 A = false B = true

This is shown with a Venn diagram in Figure 6.5.

A B

U

A∧B A∧¬B ¬A∧B

Figure 6.5: Partition analysis applied to the predicate A∨B

101

A systematic approach to partitioning a predicate is described in [WGS94]. Let k be the

number of clauses in a predicate expression E and let the clauses be c1, c2, c3,, ck.

Then the expression E can be written in Canonical Disjunctive Normal Form (CDNF)

[WGS94], as

E ≡ D1 ∨ D2 ∨ D3 ∨ ………∨ Dn

where each disjunct Di is a conjunction of the form,

Di ≡ C1 ∧ C2 ∧ C3 ∧ ………∧ Ck

and n = 2k is the number of disjuncts. In the above expression, each Ci represents the

clause ci or its negation, i.e.,

 Ci ∈ { ci, ¬ci }

In other words, each disjunct contains exactly one occurrence of each clause. For a

disjunct Di to be true, each of its conjuncts Ci must be true. Thus each disjunct

corresponds to a unique truth assignment to the clauses. The disjuncts which correspond

to the truth assignments which make the original expression false are discarded, and the

remaining disjuncts are tested. It may be noticed that the original expression contained

certain non-state variables arising from the precondition expression, which have to be

eliminated because they do not represent object state. The following strategy is applied to

eliminate non-state variables:

- if a clause contains only non-state variables, it can be assigned the true value,

and thus eliminated from the disjunct.

- if a clause contains both state variables and non-state variables, then boundary

value analysis is applied to assign test values to the non-state variables, and the

102

disjunct is repeated with each test value of the non-state variables.

Each disjunct now represents a sub-state of the original state invariant for class C in

which it can receive the message m.

6.3.2 Boundary State Coverage

Ambert et al. [ABCGLPVU02] introduce the concept of boundary state coverage which

has been applied in BZ-TESTING-TOOLS and demonstrated by Bernard et al.

[BLLP04]. The basic idea is that in a boundary state, at least one state variable has a

boundary value. Kosmatov et al. [KLPU04] introduce the concept of frontiers (edges) of

domains and define five different coverage criteria for boundary state coverage, i.e. One

Boundary (OB) coverage, Multi-Dimensional (MD) coverage, All Edges (AE) coverage,

All Edges Multi-Dimensional (AEMD) coverage, and All Boundaries (AB) coverage.

However, these boundary state coverage criteria have been applied to class level testing

only.

6.3.3 Partitioned Boundary State Coverage

We combine the partition analysis strategy with boundary state coverage to develop a

new partitioning strategy called partitioned boundary state coverage. This leads to a new

set of stronger coverage criteria which we apply to our integration testing approach.

Figures 6.6 and 6.7 illustrate the difference between conventional boundary state

coverage and partitioned boundary state coverage.

In partitioned boundary state coverage, the boundary state coverage criteria are applied to

103

each partition. This ensures a stronger coverage of boundary states. Depending on the

boundary state coverage criterion chosen and the number of state variables, however, the

number of sub-states can become exponentially large. For instance, if in a predicate

expression, there are k clauses, n state variables and each variable has b boundary values,

then,

 Max. number of partitions = 2k

Number of boundary states = bn

Max. number of partitioned boundary states = 2k.bn

S1 S2

S

Figure 6.6: Boundary state coverage

S1 S2

S

Figure 6.7: Partitioned boundary state coverage

104

6.3.4 Coverage Criteria for Partitioned Boundary State Testing

To ensure effective testing while reducing the number of sub-states, one can select from

various coverage criteria. For this purpose, we define five coverage criteria for

partitioned boundary state coverage which correspond to Kosmatov et al.’s coverage

criteria [KLPU04], as follows.

Partitioned One-Boundary Coverage: This is the minimal partitioned boundary coverage

criterion. It only requires that sub-states of each partition must cover at least one

boundary state.

Partitioned Multi-Dimensional Coverage: This coverage criterion requires that the sub-

states of each partition cover some boundary states which involve boundary values of all

state variables.

Partitioned All-Edges Coverage: In Partitioned All-Edges Coverage, the sub-states of

each partition must cover all edges (an edge is formed by a set of values of the state

variables where at least one of the state variables has a boundary value).

Partitioned All-Edges Multi-Dimensional Coverage: In this coverage criterion, the sub-

states of each partition must not only cover all edges, but also the boundary states which

involve boundary values of all state variables.

Partitioned All-Boundaries Coverage: This is the strongest partitioned boundary

105

coverage criterion. It requires that sub-states of each partition cover all boundary states.

The subsumption relationships among these coverage criteria are similar to those among

Kosmatov et al.’s criteria, except that these criteria are stronger and subsume partition

analysis coverage as well.

6.3.5 An Example

As an example, consider a Stack class with the class invariant,

inv(Stack) : (top >= -1) ∧ (top < MAX)

and pre-condition for the pop operation,

pre(pop) : (top >= 0)

No type constraint is required if top is defined as of integer type in the formal

specification, and is refined to the same type in the implementation. Now,

E ≡ (top >= -1) ∧ (top < MAX) ∧ (top >= 0)

This expression does not involve any clauses with non-state variables and is already in

DNF with only one disjunct since there are only conjunction operators in the expression.

The three conjuncts in the expression can be partitioned using boundary value analysis, as

below,

⎟
⎠
⎞⎜

⎝
⎛

=
>×⎟

⎠
⎞⎜

⎝
⎛

−=
−<×⎟

⎠
⎞⎜

⎝
⎛

−=
−>

0
0

1
1

1
1

top
top

MAXtop
MAXtop

top
top

A cross product of these three sets of partitions results in 8 combinations, i.e.,

106

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=∧−=∧−=
>∧−=∧−=
=∧−<∧−=
>∧−<∧−=
=∧−=∧−>
>∧−=∧−>
=∧−<∧−>
>∧−<∧−>

011
011
011
011
011
011
011
011

topMAXtoptop
topMAXtoptop
topMAXtoptop
topMAXtoptop
topMAXtoptop
topMAXtoptop
topMAXtoptop
topMAXtoptop

However, only 3 of these combinations are satisfiable (assuming MAX>1), i.e.,

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

>∧−=∧−>
=∧−<∧−>
>∧−<∧−>

011
011
011

topMAXtoptop
topMAXtoptop
topMAXtoptop

These three predicates correspond to the states s1, s2, and s3 in which the Stack object can

receive the message pop. Thus, if the message pop is sent to the Stack class in a

collaboration of objects, then it must be tested for each of the above states of the Stack

class. We denote this set of predicates with S(pop Stack). Thus,

S(pop Stack) ≡ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

>∧−=∧−>
=∧−<∧−>
>∧−<∧−>

011
011
011

topMAXtoptop
topMAXtoptop
topMAXtoptop

This procedure is applied to each message in a message sequence, to construct the state

invariants for the receiving class objects.

The partitioning of simple relational expressions, and the expressions involving finite

sets, sequences, and maps is automated in SpecTGS. For instance, consider the following

set membership expression with a universal quantifier,

forall x in set S & (x<y)

If S is a finite set of elements s1, s2, s3, ……, sn, then the above expression can be

107

evaluated as,

(s1<y) and (s2<y) and (s3<y) and …… and (sn<y)

Similarly, an expression with an existential quantifier can be evaluated as,

(s1<y) or (s2<y) or (s3<y) or …… or (sn<y)

Expressions which invoke a VDM++ function can also be partitioned automatically,

provided that they do not refer to an infinite collection. This limitation is often acceptable

for test generation purposes since it is common to replace an unbounded set by a small

finite set of enumerated values before testing commences [LPU02a].

6.4 Constructing the Test Model

The test model is a tree structure that represents a collection of message sequences which

differ only by the states of receiving objects. The messages and their order are the same

in each message sequence represented by the test model. The nodes of the test model are

shown as rectangular boxes that denote classes such that each class box has one or more

sub-nodes, shown as bubbles, that represent states of the class corresponding to the

predicates in S(m C) where m is the message received by class C.

The test model is constructed from a message sequence tree (MST) and the state

invariants for the classes involved. Consider, for example, the three states in which the

Stack class can receive the pop message. The corresponding part of the test model would

appear as shown in Figure 6.8.

108

s2 s2 s1

pop

Stack

Figure 6.8. The states in which the pop message can be received

As a concrete example, consider the message sequence

(m1 (m2 (m3) (m5 (m7))) (m6 (m8) (m9)))

whose MST is given in Figure 6.3. Assume that sijk denotes state k of class Ci in which the

message mj can be received, where

k = 1, 2, 3, ……, nij

and nij = the number of predicates in the set S(mj Ci)

then test model for the above message sequence would look like as shown in Figure 6.9.

6.5 Generating Test Paths

The test paths are derived by a pre-order traversal of the test model, such that exactly one

state is selected from each class box. Thus, the number of test paths that can be derived

from a test model is the product of the number of states in each class box. For instance,

the number of test paths for the test model of Figure 6.9 is 1296 (i.e. 3x3x2x2x3x2x3x2).

The following are some of the test paths generated from the test model of Figure 6.6,

T1: m1 C1:s111, m2 C2:s221, m3 C3:s331, m5 C5:s551, m7 C2:s271,

m6 C4:s461, m8 C5:s581, m9 C5:s591

T2: m1 C1:s112, m2 C2:s221, m3 C3:s331, m5 C5:s551, m7 C2:s271,

m6 C4:s461, m8 C5:s581, m9 C5:s591

109

T3: m1 C1:s113, m2 C2:s221, m3 C3:s331, m5 C5:s551, m7 C2:s271,
m6 C4:s461, m8 C5:s581, m9 C5:s591

etc.

 m1

m2 m6

m9 m8

m7

m3 m5

s113 s112 s111

C1

s223 s222 s221

C2

s593 s592 s591

C5

s553 s552 s551

C5

s272 s271

C2

s462 s461

C4

s332 s331

C3

s582 s581

C5

Figure 6.9. A test model for the message sequence (m1 (m2 (m3) (m5 (m7))) (m6 (m8) (m9)))

In the above test paths, the message mi Cj:sjik denotes execution of message mi of class

Cj in state sjik.

The external message in a communication diagram (without a sequence number)

represents a system-level operation call, and is the first message in each test path. Once

this message is invoked with appropriate input data, the rest of the messages in the test

110

path are automatically triggered.

6.6 Test Coverage Criteria

Since the number of test paths grows exponentially with the number of states, exhaustive

coverage of all test paths can be very expensive. In this sub-section, we define various

coverage criteria for the test paths.

6.6.1 Message Coverage

We define the message coverage criterion as follows: For each message m in the

communication diagram, there must be at least one test case t such that when the

software is executed using t, the message m is executed at least once. This is the minimal

coverage criterion, and can be satisfied without partitioning the states. It simply requires

that conditional and iterative messages be executed at least once. This can be achieved

without executing all message sequences. For example, if a larger message sequence

contains all messages of the communication diagram, then only one test path would be

sufficient to meet message coverage.

6.6.2 Message Sequence Coverage

This coverage criterion is defined as follows: For each message sequence s derived from

a communication diagram, there must be at least one test case t such that when the

software is executed using t, all messages in s are executed in the order specified by s.

This criterion requires that each message sequence be executed at least once. The number

of distinct message sequences depends on the conditional and iterative messages in the

communication diagram. In case of an iterative message, each message sequence contains

111

a distinct number of iterations, thus the number of message sequences can become quite

large. In [Bei90], it is suggested that the loops should be tested at the boundaries. For

instance, if an iterative message can execute a maximum of n times, then it should be

tested by executing it 0, 1, n-1, and n times. This strategy can significantly reduce the

number of test paths for iterative messages.

6.6.3 Message/State Coverage

This coverage criterion is defined as follows: For each message m sent to class C, and

for each state st ∈ S(m C), there must be at least one test case t such that when the

software is executed using t, the class C receives the message m in state st. This criterion

is similar to the message coverage, but it caters for each state of the message receiving

class. The number of test paths in this criterion, critically depends on the number of states

of recipient classes.

6.6.4 Message Sequence/State Coverage

This coverage criterion is defined as follows: For each message sequence s derived from

a communication diagram, and for each state st of a class C receiving a message m, there

must be at least one test case t such that when the software is executed using t, the

message sequence s is executed and the message m is received by class C in state st.

Again, this criterion is similar to the message sequence coverage, but also requires

coverage of the states of classes receiving the messages. The number of generated test

paths depends not only on conditional and iterative messages, but also on the number of

states of each class.

112

6.6.5 All-Path Coverage

This is the most exhaustive coverage criterion. It requires generation of test paths with all

possible combinations of states of classes involved in a message sequence. It allows

testing of the methods whose functionality depends not only on the state of their own

classes, but also on the states of other classes in the collaboration.

Subsumption relationships among the above-defined coverage criteria are shown in

Figure 6.10.

All-Path
Coverage

Msg Seq/State
Coverage

Msg Seq
Coverage

Msg/State
Coverage

Message
Coverage

Figure 6.10. Subsumption relationships among coverage criteria

These are similar to the subsumption relationships among data flow based test criteria

[FW88]. It can be seen from the figure that the message sequence/state coverage

subsumes all other criteria except the all-path coverage, but as we shall see it produces a

significantly lower number of test paths as compared to the all-path coverage. Thus

message sequence/state coverage is an effective test coverage criterion which is also cost-

effective.

113

As an example, let us assume that in the communication diagram of Figure 6.2, each class

can receive a message in exactly k states, i.e.,

cardinality(S(mi Cj)) = k, for all messages mi and classes Cj

Then, message coverage criterion requires only two test paths to be executed

corresponding to the two message sequences, i.e.,

 (m1 (m2 ((m3)) (m5 (m7) (m10))) (m6 (m8) (m9)))

(m1 (m2 ((m4)) (m5 (m7) (m10))) (m6 (m8)))

A minimum of two message sequences are required to be tested since no single message

sequence covers all messages of the communication diagram due to mutual exclusiveness

of the messages m3 and m4. It may also be noticed that the messages in above sequences

may be received by the recipient classes in any states since the coverage criterion only

requires the messages to be covered.

Similarly, the message/state coverage criterion requires that only that each message and

each state be covered by the test paths. This criterion can be satisfied by 2k test paths by

generating k test paths from each of the above two sequences. Since each test path can

cover the ith state (i varies from 1 to k) of each recipient class in the message sequence,

therefore only k test paths can cover all states of the classes involved in each message

sequence. Table 6.1 gives the number of test paths required to be generated for each

coverage criterion applied to the example. It is obvious that the number of test paths for

all-path coverage is much larger than those for other criteria.

114

Each of the above criteria requires that the data values be generated so that the coverage

criterion is met. Data values are required to be generated only for the system level

operation call, whose execution will automatically trigger a particular message sequence,

depending on the input values and the system state. Implementation of the proposed

technique also requires the code to be instrumented for setting and getting object states.

TABLE 6.1. NUMBER OF TEST PATHS AGAINST THE COVERAGE CRITERIA
Coverage Criterion Number of Test

Paths
Message Coverage 2
Msg/State Coverage 2k
Msg Seq Coverage* 2n+1+2n+6
Msg Seq/State Coverage* (2n+1+2n+6)k
All-Path Coverage*† ≈ k5n+4

*n is the maximum number of times that iterative messages are repeated
†Actual number of test paths = k5n+4+k5n+3+k5n-1+k5n-2+k9+k8+k4+k3

6.7 Discussion

Our integration testing approach is based on testing all message sequences resulting from

collaboration of objects in a UML communication diagram. To allow more effective

testing, we construct sub-states from the state invariant for each message receiving class

in the collaboration. For this purpose, we combine the traditional partition analysis

strategy, commonly used in formal specification based class testing, with boundary state

coverage strategy which has been successfully applied in the context of class testing. The

complete coverage of a predicate is similar to path coverage of the code which results in

combinatorial explosion. To control this combinatorial explosion, the sub-state predicates

are constructed based on the well-known testing heuristics of equivalence class

115

partitioning and boundary value analysis. The testing literature shows that testing at

boundary values is more likely to reveal bugs due incorrect implementation of conditions.

Thus, our new strategy results in stronger coverage of the state predicates which leads to

more effective testing. Also, it has been empirically shown in [ABRAZN06], that

integration testing strategy based on states of classes involved in a collaboration results in

more effective test cases which are able to detect faults occurring due to invalid states of

objects. In particular, the authors used mutation operators WIS (Wrong Initial State),

TSSS (Target State as Source State), and WCS (Wrong Calling State) to seed state-

dependent faults which were caught by the state based integration testing strategy.

We have also defined various coverage criteria for partitioned boundary state coverage

based on Kosmatov et al.’s coverage criteria, and new coverage criteria for test path

generation. These coverage criteria can be used to measure adequacy of an existing set of

test cases, or to control the process of test generation. The SpecTGS uses these criteria for

the latter purpose – the tester can choose the appropriate criteria to generate test cases.

116

Chapter 7

SpecTGS Implementation and
Evaluation

This chapter covers a brief description of the prototype tool that implements our proposed

framework, and a detailed case study that demonstrates the proposed integration testing

approach. The case study is a railway Control Speed Limitation and Monitoring

(CSLaM) system adapted from [FLMP05].

7.1 Implementation

A proof-of-concept, prototype tool for the proposed framework SpecTGS has been

implemented in Java language [MMA06]. The prototype tool consists of two main

components, i.e., for unit testing and integration testing. A high-level architectural

diagram of the tool is shown in Figure 7.1.

The unit testing component of the tool accepts as its input a text file containing VDM++

specification of the class to be tested, and another text file containing a C++

implementation of the class. The user selects from single operation testing and operation

117

sequences testing. In the case of single operation testing, the tool constructs method

predicate for the selected operation, partitions it using canonical DNF form, eliminates

unsatisfiable partitions, generates test data using boundary value analysis, and constructs

concrete executable test cases as output. If operation sequence testing is selected by the

user, the tool parses the trace structure of the class specification and generates valid

operation sequences, then for each method in an operation sequence, it constructs the

method predicate, converts it to the canonical DNF and generates test data using

boundary value analysis on each partition.

Unit Test
Generator

Integration Test
Generator

VDM++ Spec.

C++ Impl.
Operation level tests

Operation seq. tests

VDM++ Spec.

Integration test pathsXMI for UML Comm. Diagram

Coverage Criterion

User selection

SpecTGS Tool

Figure 7.1. Architecture of the SpecTGS Tool

The integration testing component of the tool requires a VDM++ specification and a

UML communication diagram to generate test paths. The tool accepts UML

communication diagram in XMI (XML Metadata Interchange) format. XMI is an OMG

standard [OMG05b] for defining, interchanging, and manipulating UML artifacts using

XML format. The common UML diagramming tools such as the Borland’s Together and

Rational Rose allow UML diagrams to be exported in XMI format. The tool accepts the

118

VDM++ specification as a text file. It is assumed that the VDM++ specification is

consistent with the UML communication diagram. The tool does not perform any

consistency analysis between the two inputs. A message expression is then constructed

for the communication diagram, as described in chapter 6, and message sequences are

generated from the expression. State invariants for the states in which a class can receive

a message are constructed from the VDM++ specification using partition analysis, and a

test model is constructed for each message sequence. Finally, test paths are generated

according to the coverage criterion specified by the user. We have tested the SpecTGS

tool on several examples, and the results show that it effectively generates test cases

under the specified criteria.

7.2 Case Study

In this section, we present a railway Control Speed Limitation and Monitoring (CSLaM)

system, adapted from [FLMPV05], as a case study to demonstrate the proposed testing

strategy. The purpose of the CSLaM system is to continuously monitor the train speed,

and activate the emergency brake if the train’s speed is above a threshold value. The

threshold value is computed as the sum of the maximum permitted speed a small constant

such as 5 or 10. The system is intended to be used in situations where speed of the train is

required to be controlled in certain areas, e.g., when repairs are taking place along a

section of the track. The speed restrictions are signaled by different types of beacons

placed along side the track. The maximum permitted speed is determined as the minimum

of the maximum speed of which the train is capable (e.g. 180 km/h), and the speed limit

imposed by speed restriction beacons. Obviously, this is a safety-critical system, because

failure of the system could lead to an accident which, in turn, could result in loss of

119

human lives.

The CSLaM system consists of an on-board control speed limitation (CSL) subsystem and

the trackside beacons. The CSL subsystem is further composed of an on-board computer,

a cab display, and an emergency brake. The cab display contains three lighting indicators

– an alarm indicator, an emergency brake indicator, and a ground fault indicator. The

alarm indicator is turned on when train speed exceeds the alarm speed and the other two

indicators are off. Alarm speed is obtained by adding a constant (e.g. 5 km/h) to the

maximum permitted speed. The emergency brake indicator turns on when the train speed

exceeds emergency brake speed. The emergency brake speed is obtained by adding

another constant (e.g. 10 km/h) to the maximum permitted speed, such that emergency

brake speed is greater than the alarm speed. The on-board computer is responsible for

checking if the speed of the train is within the allowed limit, or has exceeded the alarm

speed, or has exceeded the emergency brake speed. The emergency brake can be set by

the CSL subsystem if train speed exceeds the emergency brake speed.

There are four types of beacons that can be encountered by the train alongside the track,
i.e.,

• An Announcement Beacon announces the arrival of a Limitation Beacon. The

information provided by an announcement beacon is a speed limit which must

be respected when a limitation beacon is reached.

• A Limitation Beacon enforces the speed restriction as soon as head of the train

meets it. The speed restriction remains into effect until tail of the train meets an

End Beacon. If a limitation beacon is not preceded by an announcement

120

beacon, a ground fault is raised.

• A Cancel Beacon cancels all announcements made. The cancel beacon is

ignored if no announcement is present.

• An End Beacon marks the end of a speed limitation area. The train returns to its

normal speed when its tail meets an end beacon.

7.2.1 UML Models

A class diagram for the CSLaM system is given in Figure 7.1, and a detailed VDM++

specification for the CSLaM system is given in Appendix-II. The following external

events have been identified, which trigger the corresponding operations in the CSLaM

system:

• HeadMeetsBeacon: This event occurs when head of the train encounters a

beacon. Depending on the type of beacon met, appropriate action is taken by

the system. For instance, when head of the train meets a LimitBeacon, a new

speed restriction comes into force.

• TailMeetsBeacon: This event occurs when tail of the train meets a beacon.

Again appropriate action is taken depending on the type of beacon met.

• NoBeaconMet: This event occurs when an AnnounceBeacon is met, but a

corresponding LimitBeacon is not met after the specified distance. A ground

fault is raised by the system in such a case.

• CheckSpeed: This event occurs automatically at fixed time intervals to allow

for continuous monitoring and control of the train speed.

121

Figure 7.2 shows a UML communication diagram for the HeadMeetsBeacon event.

XMI output generated by Borland’s Together for communication diagram of Figure 7.2 is

given in Appendix-III.

Figure 7.1: Class diagram for CSLaM system

122

Figure 7.2: Communication diagram for the HeadMeetsBeacon event

7.2.2 Generating Message Sequences

A message expression for the communication diagram of Figure 7.2 is computed as:

(m1((m2(m5(m11)^(m12))) + (m3((m6)(m7)(m8(m13)^(m14)) + (m9(m15)))) +
(m4(m10(m16)^(m17)))))

where, messages have been represented as:

m1 = HeadMeetsBeacon
m2 = AnnounceSpeedRestriction
m3 = AddSpeedRestriction
m4 = DeleteAnnouncements
m5 = DeletePossibleGroundFault
m6 = GetTartgetSpeed
m7 = SetSpeedRestriction
m8 = DeletePossibleGroundFault
m9 = RaiseGroundFault

m10 = DeletePossibleGroundFault
m11 = GetDisplay
m12 = UnsetGroundFault
m13 = GetDisplay
m14 = UnsetGroundFault
m15 = SetGroundFault
m16 = GetDisplay
m17 = UnsetGroundFault

123

Since there are no iterations in the message expression, the number of message sequences

generated would be finite. By applying the algorithm for message sequence generation,

the following seven message sequences can be generated from the above message

expression, i.e.,

s1: (m1(m2(m5(m11))))

s2: (m1(m2(m5(m11)(m12))))

s3: (m1(m3(m6)(m7)(m8(m13))))

s4: (m1(m3(m6)(m7)(m8(m13)(m14))))

s5: (m1(m3(m9(m15))))

s6: (m1(m4(m10(m16))))

s7: (m1(m4(m10(m16)(m17))))

Each of these message sequences can be represented as a message sequence tree (MST)

as shown in Figure 7.3.

7.2.3 Constructing State Invariants

Let us consider the first message sequence s1. It contains four messages, i.e., m1, m2, m5,

and m11. Now, message m1 is received by class CSL, thus prestate for this message m1

CSL, can be determined by conjoining the class invariant of CSL and the precondition of

operation HeadMeetsBeacon, i.e., prestate(m1 CSL) is,

(isofclass(LimitBeacon,b)=>(len announcements>0)) and
(len speedRestrictions<=5)

The above expression in DNF is,

(isofclass(LimitBeacon,b) and (len announcements>0) and
(len speedRestrictions<=5)) or (not isofclass(LimitBeacon,b)
 and (len announcements>0) and (len speedRestrictions<=5)) or
(not isofclass(LimitBeacon,b) and not (len announcements>0) and
(len speedRestrictions<=5))

124

CSL

m11

CSL

m1

m2

CSL

CabDisplay

m5

CSL

m11

CSL

m12

m1

m2

CSL

CabDisplay CabDisplay

m5

CSL

CSL

CSL

m13

m1

AnnounceBeacon LimitBeacon

m7

CabDisplay

m6
m8

m3

CSL

CSL

CSL

m14

m1

AnnounceBeacon LimitBeacon

CabDisplay

m7

CabDisplay

m6

m13

m8

m3

CSL

CSL

m1

CSL

CabDisplay

m15

m9

m3

CSL

CSL

m1

m4

m10

CSL

CabDisplay

m16

CSL

m16

CSL

m1

m4

m10

CSL

m17

CabDisplay CabDisplay

Figure 7.3: MSTs for the HeadMeetsBeacon event

Eliminating the clause (isofclass(LimitBeacon,b)) which involves non-state

variables, and simplifying the expression, we get,

((len announcements>0) and (len speedRestrictions<=5)) or
 (not (len announcements>0) and (len speedRestrictions<=5))

Thus, the class CSL must be in a state defined by the above expression, when the message

HeadMeetsBeacon is received. Applying boundary value analysis on each disjunct, we

get,

125

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<
=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
>

5s)estrictionlen speedR
5s)estrictionlen speedR

1cementslen announ
1cementslen announ

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<
=

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<
=

5s)estrictionlen speedR
5s)estrictionlen speedR

cementslen announ
cementslen announ

0
0

which results in 8 combinations, of which only the following three are satisfiable,

5ictionsspeedRestr1 and len cementslen announ
5ictionsspeedRestr1 and len cementslen announ
5ictionsspeedRestr1 and len cementslen announ

<=
<>
=>

Thus the class CSL can receive the message HeadMeetsBeacon in one of the three states

represented by these state invariants. Let us label the three state invariants as p1, p2, and

p3, i.e.,

p1 ≡ len announcements > 1 and len speedRestrictions = 5
p2 ≡ len announcements > 1 and len speedRestrictions < 5
p3 ≡ len announcements = 1 and len speedRestrictions < 5

Likewise, the state invariants of the receiving classes for other messages can be computed

and labeled. Table 7.1 gives the number of states for each class in the communication

diagram, for each message that it can receive. The states have been computed using the

technique described in chapter 6.

7.2.4 Constructing Test Model

By combining the message sequence and the states of receiving classes, a test model can

be constructed for sequence s1 as shown in Figure 7.4.

126

 m1

m2

m11

m5

p3 p2 p1

CSL

p19

CabDisplay

p13 p12

CSL

p5 p4

CSL

Figure 7.4: Test model for the message sequence (m1(m2(m5(m11))))

7.2.5 Generating Test Paths

The all-path coverage criterion applied to the test model of Figure 7.4 gives a total of

3x2x2x1=12 test paths, i.e.,

T1: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T2: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

T3: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T4: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

T5: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T6: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

127

T7: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T8: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

T9: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T10: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

T11: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T12: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

Similarly, test paths can be computed for all message sequences using the number of

states information given in table 7.1. Table 7.2 gives the total number of test paths for

each message sequence. A total of 120 test paths are generated for the HeadMeetsBeacon

event under the all-path coverage criterion. A complete list of test paths for the

HeadMeetsBeacon event is given in Appendix-IV.

TABLE 7.1: NUMBER OF RECEIVING CLASS STATES FOR EACH MESSAGE IN
COMMUNICATION DIAGRAM FOR HEADMEETSBEACON EVENT

Message Received by
(Class)

No. of
states

State Labels

m1 CSL 3 p1, p2, p3
m2 CSL 2 p4, p5
m3 CSL 4 p6, p7, p8, p9
m4 CSL 2 p10, p11
m5 CSL 2 p12, p13
m6 AnnounceBeacon 1 p14
m7 LimitBeacon 1 p15
m8 CSL 2 p16, p17
m9 CSL 2 p18, p13
m10 CSL 2 p12, p13
m11 CabDisplay 1 p19
m12 CabDisplay 1 p19
m13 CabDisplay 1 p19
m14 CabDisplay 1 p19
m15 CabDisplay 1 p19
m16 CabDisplay 1 p19
m17 CabDisplay 1 p19

128

TABLE 7.2: NUMBER OF TEST PATHS GENERATED FOR EACH MESSAGE SEQUENCE OF
HEADMEETSBEACON EVENT

Message
sequence

No. of test
paths

s1 12
s2 12
s3 24
s4 24
s5 24
s6 12
s7 12

Total 120

Similar results for other coverage criteria and events are presented in Table 7.3.

TABLE 7.3: NUMBER OF TEST PATHS AGAINST COVERAGE CRITERIA FOR THE
HEADMEETSBEACON EVENT

Coverage Criterion Total
Message coverage 4
Message sequence coverage 7
Message/State coverage 14
Message sequence/State coverage 24
All-path coverage 120

As it can be seen from table 7.3, the number of test paths against All-path coverage is

five times the next-to-complete criterion, i.e. Message sequence/State coverage criterion.

Since Message sequence/State coverage criterion provides complete coverage of all

message sequences as well as all states of receiving classes with minimal number of test

paths, we conclude that in cost-constrained situations, this criterion may be used without

losing too much testing effectiveness. In particular, as shown in [ABRAZN06], only the

faults due to incorrect states of calling objects, can escape with this coverage criterion.

129

7.3 Evaluation of the SpecTGS Framework

In this section, the SpecTGS framework is evaluated using the evaluation criteria defined

in Chapter 3. The following is a brief analysis of the SpecTGS:

- Object-orientation: The proposed framework is based on VDM++ formal

specification language and UML communication diagrams, thus it fully supports

the object-oriented paradigm.

- Testing level: The SpecTGS framework generates both unit level (class level) and

integration level test cases. In chapter 5, it was shown that the generated test cases

may also be used for inheritance and polymorphic testing.

- Strategy Flexibility: The framework uses the novel partitioned boundary state

coverage strategy for generation of integration test paths. However, the framework

can be configured to use other black-box testing strategies such as partition

analysis, boundary state coverage and predicate coverage.

- Notation Adaptability: The class testing part of the proposed framework can be

easily adapted to other model-based formal specification languages such as

Object-Z, however, it would require allowable operation sequences for a class to

be formally specified as proposed in [NR05]. The integration testing part of the

framework not only requires the VDM++ specification, but also corresponding

UML communication diagrams for extraction of message sequences. Thus, it

cannot be easily adapted to other formal notations.

- Automation and Tool Support: The proposed technique is highly automatable – the

only limitation is that test data generation for integration test paths is not yet

automated. A prototype tool has also been developed to support much of the test

130

generation process. The tool has been used on some practical examples, including

a case study described in this chapter.

131

Chapter 8

Conclusion and Future Work

The industrial use of formal methods is rapidly growing with the increasing role of

software in safety-critical systems. The application of formal methods in specification

phase eliminates ambiguities and inconsistencies in the specification and leads to fewer

bugs in design and coding phases. However, a formal specification does not eliminate the

need for testing. Specification based testing is done to ensure that the implementation

conforms to the specification. Manual testing is a tedious, error-prone and costly activity.

The formal specification can be used as a basis for automatic generation of test cases. The

next section concludes the work presented in this thesis.

8.1 Conclusion

In existing formal specification based testing techniques, the focus has been on unit-level

(or class-level) testing only. This limitation is due to the fact that the existing formal

notations do not support specification of dynamic system behavior. In object-oriented

systems, the dynamic behavior of the system must be specified in terms of interactions

between the objects in order to support generation of integration-level test cases. UML is

a set of diagramming notations used widely in the industry for specification of behavior

132

of the object-oriented systems. The use of UML along with a formal specification offers

complementary benefits such as visualization of the system behavior while retaining the

precise and unambiguous system specification.

The SpecTGS framework automates the generation of test cases for an object-oriented

system from a VDM++ formal specification and UML communication diagrams. It

generates unit level test cases from the VDM++ specification of the system, while

integration level test cases are generated by combining information from the VDM++

specification and corresponding UML communication diagrams.

The major contribution of this thesis is to combine the VDM++ formal specification with

UML communication diagrams to generate integration level test cases. The UML

communication diagrams are used to construct allowable message sequences, while the

formal specification is used to construct state invariants for the states in which a class can

receive a message. This requires partitioning of the predicate representing the state of the

class when a message is received. We proposed a new strategy for partitioning of the

state predicate, called partitioned boundary state coverage which combines two existing

strategies, i.e., partition analysis and boundary state coverage, and allows more thorough

testing due to more specific state invariants. This strategy was employed in the

integration testing part of the framework. The test model constructed by combining

information from UML communication diagrams and the formal specification is

traversed under a selected coverage criterion to generate integration test paths.

133

It is thus concluded that the SpecTGS framework’s contribution is an improvement upon

the state-of-the-art in formal specification based software testing. Further, it is expected

that the SpecTGS will be beneficial for testing of safety-critical systems.

8.2 Future Directions

The future work for the SpecTGS framework is to evaluate its effectiveness on more large

scale real-life case studies. Another direction for the future work is to automate the

generation of test data for integration testing.

The OMG has not yet defined formal semantics for UML diagrams. Presently, research is

under way on formalization of UML diagrams. When this happens, one of the future

goals would be to exploit the testing information from the formalized UML models.

Another possibility is to extend the formal notation itself to allow the specification of

class interactions.

134

References

[AA92] N. Amla, P. Ammann, “Using Z Specifications in Category Partition
Testing,” Proceedings of the Seventh Annual Conference on Computer
Assurance (COMPASS ’92), June 1992, IEEE Computer Society Press,
1992.

[ABCGLPVU02] F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F.

Peureux, N. Vacelet, M. Utting, “BZ-TT: A Tool-set for Test Generation
from Z and B using Constraint Logic Programming,” Proceedings of the
CONCUR’02 Workshop on Formal Approaches to Testing of Software
(FATES’02), pages 105-120, Brnö, Czech Republic, August 2002.

[ABRAZN06] S. Ali, L.C. Briand, M.J. Rehman, H.B. Asghar, Z. Zafar, A. Nadeem, “A

State Based Approach to Integration Testing for Object-Oriented
Programs,” accepted for publication in the Journal of Information and
Software Technology, Elsevier Science, 2006.

[AO00] A. Abdurazik and J. Offutt, “Using UML collaboration diagrams for static

checking and test generation,” The Third International Conference on the
Unified Modeling Language (UML '00), pp. 383-395, York, UK, October
2000.

[AS99] S. Agerholm and W. Schafer, “Analyzing SAFER using UML and

VDM++,” in J. Fitzgerald, P.G. Larsen, editors, VDM in Practice, pp.139-
141, September 1999.

[Att00] R. Atterer, Automatic Test Data Generation from VDM-SL Specifications,

Diploma dissertation, The Queens University of Belfast, April 2000.

[BB96] M. Blackburn, R. Busser, “TVEC – A tool for developing critical

systems,” Proceedings of the Annual Conference on Computer Assurance
(COMPASS’96), IEEE Computer Society Press, 1996.

135

[BB00] F. Basanieri and A. Bertolino, “A Practical Approach to UML-Based
Derivation of Integration Tests,” Proceedings of Software Quality Week
Europe.

[BBM01] F. Basanieri, A. Bertolino, and E. Marchetti, “COWTest: Cost Weighted

Test Strategy,” Proceedings of ESCOM-SCOPE 2001, London, England.

[Bei90] B. Beizer, “Software Testing Techniques,” 2nd Edition, Van Nastrand

Ranhald, 1990.

[Bei95] B. Beizer, “Black-Box Testing: Techniques for Functional Testing of

Software and Systems,” John Wiley & Sons Inc., 1995, ISBN 0-471-
12094-4.

[BH95] J.P. Bowen and M.G. Hinchey, “Ten Commandments of Formal

Methods,” IEEE Computer, April 1995.

[Bin99] R.V. Binder, “Testing Object-Oriented Systems: Models, Patterns and

Tools,” Addison-Wesley Object Technology Series, 1999.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated Testing

Based on Java Predicates,” ACM ISSTA 2002.

[BLLP04] E. Bernard, B. Legeard, X. Luck, and F. Peureux, “Generation of Test

Sequences from Formal Specifications: GSM 11-11 Standard case study,”
The Journal of Software Practice and Experience, Wiley-InterScience,
2004.

[CMMMS00] D. Carrington, I. MacColl, J. McDonald, L. Murray, and P. Strooper,

“From Object-Z Specifications to Classbench Test Suites,” Journal of
Software Testing, Verification and Reliability, Vol. 10, No. 2, pp. 111-137,
2000.

[CS94] D. Carrington, and P. Stocks, “A Tale of Two Paradigms: Formal Methods

and Software Testing,” ZUM ’94, Z User Workshop, Springer-Verlag, pp.
51-68, 1994.

[CSK05] CSK Corporation, VDMTools, The VDM++ Language, version 6.8.1,

2005, http://www.csk.co.jp/support_e/vdm/index.html.

136

[CW96] E.M. Clarke, J.M. Wing, et. al., “Formal Methods: State of the Art and
Future Directions,” ACM Computing Surveys, Vol. 28, No. 4, December
1996.

[Daw91] J. Dawes, The VDM-SL Reference Guide, Pitman, London, 1991.

[DDH72] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare, “Structured Programming,” APIC

Studies in Data Processing, number 8, Academic Press, 1972.

[DF91] R.K. Doong, P.G. Frankl, “Case Studies on Testing Object-Oriented

Programs,” Proceedings of the Fourth Symposium on Software Testing,
Analysis and Verification, Victoria, British Columbia, Canada, IEEE
Computer Society Press, October 1991.

[DF93] J. Dick, and A. Faivre, “Automating the Generation and Sequencing of

Test Cases from Model-based Specifications,” Proceedings of FME ’93:
Industrial-Strength Formal Methods, Pages 268-284, Odense, Denmark,
1993, Springer-Verlag.

[DK92] Eugène Dürr, Jan van Katwijk, “VDM++, A Formal Specification

Language For Object-Oriented Designs,” IEEE, 1992.

[EFLR98] A. Evans, R. France, K. Lano, and B. Rumpe, “The UML as a Formal

Modeling Notation,” The Unified Modeling Language Workshop (UML
’98) Proceedings, (Jean Bezivin and Pierre-Allaine Muller eds.), Springer-
Verlag, LNCS 1618, 1998.

[ELCKAH98] S. Easterbrook, R.R. Lutz, R. Covington, J.C. Kelly, Y. Ampo, and D.

Hamilton, “Experiences Using Lightweight Formal Methods for
Requirements Modeling,” IEEE Transactions on Software Engineering,
24(1):1-11, January 1998.

[Elm73] W.R. Elmendorf, “Cause-Effect Graphs in Functional Testing,” Technical

Report TR-00.2487, IBM Systems Development Division, Poughkeepsie,
New York, 1973.

[FD96] A. Finkelstein, J. Dowell, “A comedy of errors: the London Ambulance

Service case study,” Proceedings of the 8th International Workshop on
Software Specification and Design, IEEE Computer Society, 1996.

137

[FL02] F. Fraikin and T. Leonhardt, “SeDiTeC — Testing Based on Sequence
Diagrams”, 17th IEEE International Conference on Automated Software
Engineering (ASE'02), pp. 261-266.

[FLMPV05] J. Fitzgerald, P.G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef,

Validated Designs for Object-oriented Systems, Springer-Verlag, 2005,
ISBN 1-85233-881-4.

[FW88] P.G. Frankl and E.J. Weyuker, “An Applicable Family of Data Flow

Testing Criteria,” IEEE Transactions on Software Engineering, 14(10),
October 1988.

[GHW85] J. Guttag, J. Horning, J. Wing, “The Larch Family of Specification

Languages,” IEEE Transactions on Software Engineering, September
1985, pp. 24-36.

[GOC06] L. Gallagher, J. Offutt, and A. Cincotta, “Integration testing of object-

oriented components using finite-state machines,” to appear in the Journal
of Software Testing, Verification, and Reliability, 2006, published online
12 Jan. 2006, DOI 10.1002/stvr.340.

[Hal88] P.A.V. Hall, “Towards Testing with respect to Formal Specification,”

Proceedings of the Second IEE/BCS Conference on Software Engineering,
1988, pp. 159-163, IEE, 1988.

[HCKKTFSMSCM95] D. Hamilton, R. Covington, J. Kelly, C. Kirkwood, M.

Thomas, A.R. Flora-Holmquist, M.G. Staskauskas, S.P. Miller, M. Srivas,
G. Cleland, and D. MacKenzie, “Experiences in Applying Formal
Methods to the Analysis of Software and System Requirements,”
Proceedings of the 1st Workshop on Industrial-Strength Formal
Specification Techniques, pages 30-43, IEEE Computer Society Press,
April 1995.

[Hie97] R.M. Hierons, “Testing from a Z Specification,” Journal of Software

Testing, Verification and Reliability, 1997.

[HKC95] H.S. Hong, Y.R. Kwon, and S.D. Cha, “Testing of Object-Oriented

Programs Based on Finite State Machine,” Proceedings of the Asia-Pacific
Software Engineering Conference, pp. 234-241, 1995.

138

[HNS97] S. Helke, T. Neustupny, and T. Santen, “Automating Test Case Generation
from Z Specifications with Isabelle,” Proceedings of the 10th
International Conference of Z Users, 1997, Springer-Verlag.

[Jon90] C.B. Jones, “Systematic Software Development Using VDM,” Second

Edition, Series in Computer Science, Prentice-Hall, New Jersey, 1990.

[KLPU04] N. Kosmatov, B. Legeard, F. Peureux, M. Utting, “Boundary Coverage

Criteria for Test Generation from Formal Models,” 2004.

[KT98] James D. Kiper, James E. Tomayko, “Techniques for Safety Critical

Software Development,” IEEE, 1998.

[Lay93] G.T. Laycock, “The Theory and Practice of Specification Based Software

Testing,” PhD Thesis, Department of Computer Science, University of
Sheffield, 1993.

[LH85] D.C. Luckham, F.W. von Henke, “An Overview of Anna: A Specification

Language for Ada,” IEEE Software, 2(2), 9-22, March 1985.

[Lio96] J.L. Lions, “Ariane 5, Flight 501 Failure, Report by the Inquiry Board,”

European Space Agency, http://www.esa.it, 1996.

[LMZ02] L. Liu, H. Miao, and X. Zhan, “A Framework for Specification-Based

Class Testing,” Proceedings of the 8th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS’02), 2002.

[LPU02a] B. Legeard, F. Peureux, and M. Utting, “A Comparison of the BTT and

TTF Test-Generation Methods,” LNCS 2272, pp.309-329, Springer-
Verlag, 2002.

[LPU02b] B. Legeard, F. Peureux, and M. Utting, “Automated Boundary Testing

from Z and B,” FME 2002, LNCS 2391, pp.21-40, Springer-Verlag, 2002.

[LS00] B. Littlewood, L. Strigini, “Software Reliability and Dependability: a

Roadmap,” Proceedings of the Conference on the Future of Software
Engineering, ACM Press, 2000.

[LT93] N.G. Leveson, C.S. Turner, “An Investigation of the Therac-25

Accidents,” IEEE Computer, Vol. 26, No. 7, pp. 18-41, 1993.

139

[Meu98] C. Meudec, Automatic Generation of Software Test Cases From Formal

Specifications, Ph.D. dissertation, The Queen’s University of Belfast, May
1998.

[Mik95] E. Mikk, “Compilation of Z Specifications into C for Automatic Test

Result Evaluation,” Proceedings of the 9th International Conference of Z
Users, 1995, Springer-Verlag.

[ML06] H. Miao, L. Liu, “An Approach to Formalizing Specification-Based Class

Testing,” Journal of Shanghai University (English Edition), Vol. 10, No.
1, Feb. 2006.

[MMA06] N. Mahmood, Y. Mahmood, A. Aslam, SpecTGS Implementation, B.S.

Project, Mohammad Ali Jinnah University, Islamabad, Pakistan, Nov.
2006.

[Mye79] G.J. Myers, The Art of Software Testing, John Wiley & Sons, 1979, ISBN

0-471-04328-1.

[NL06] A. Nadeem, M.R. Lyu, “A Framework for Inheritance Testing from

VDM++ Specifications,” to appear in proceedings of the 12th IEEE
International Symposium on Pacific Rim Dependable Computing (PRDC
2006), Dec., 2006, Riverside, California, USA.

[NML06] Aamer Nadeem, Zafar I. Malik, Michael R. Lyu, “An Automated

Approach to Inheritance and Polymorphic Testing using a VDM++
Specification,” proceedings of the Tenth IEEE International Multi-topic
Conference (INMIC’06), December 23-24, 2006, Islamabad, Pakistan.

[NR04] A. Nadeem, M.J. Rehman, “A Framework for Automated Testing from

VDM-SL Specifications,” in proceedings of the 8th IEEE International
Multi-topic Conference (INMIC 2004), Dec. 24-26, 2004, Lahore,
Pakistan.

[NR05] A. Nadeem, M.J. Rehman, “TESTAF: A Test Automation Framework for

Class Testing using Object-oriented Formal Specifications,” Journal of
Universal Computer Science (J.UCS), Vol. 11, No. 6, Springer-Verlag,
2005.

140

[OAWXH01] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, C. Hutchinson, “A Fault Model
for Subtype Inheritance and Polymorphism,” The Twelfth IEEE
Symposium on Software Reliability Engineering, ISSRE ’01, pages 84-95,
Hong Kong, P.R.C., November 2001.

[OB88] T.J. Ostrand, M.J. Balcer, “The category-partition method for specifying

and generating functional tests,” Communications of the ACM, 31(6), pp.
676-686, June 1988.

[Off98] A.J. Offutt, “Software Testing: From Theory to Practice,” IEEE AES

Systems Magazine, March 1998.

[OL99] A. J. Offutt, S. Liu, “Generating Test Data from SOFL Specifications,”

The Journal of Systems and Software, 1999, pp. 49-62.

[OLAA03] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, “Generating Test Data from

state-based Specifications,” Journal of Software Testing, Verification and
Reliability, 2003, pp. 25-53.

[OMG05a] OMG, Unified Modeling Language: Superstructure Specification, version

2.0 (formal/05-07-04). Object Management Group, Inc., August 2005.

[OMG05b] OMG, XML Metadata Interchange (XMI), MOF 2.0/XMI Mapping

Specification, version 2.1, formal/05-09-01, Object Management Group,
Inc., Sep. 2005, retrieved from
http://www.omg.org/technology/documents/formal/xmi.htm.

[PAFG03] O. Pilskalns, A. Andrews, R. France, and S. Ghosh, “Rigorous Testing by

Merging Structural and Behavioral UML Representations,” Sixth
International Conference on the Unified Modeling Language (UML’03),
pp.234-248, 2003.

[PB00] C. Pons and G. Baum, “Formal Foundations of Object-oriented Modeling

Notations,” Proceedings of the 3rd International Conference on Formal
Engineering Methods (ICFEM 2000), September, 2000.

[PKT92] N. Plat, J.V. Katwijk, and H. Toetenel, “Application and Benefits of

Formal Methods in Software Development,” Software Engineering
Journal, September 1992.

141

[PMBF04] P. Pelliccione, H. Muccini, A. Bucchiarone, and F. Facchini, “TESTOR:
Deriving Test Sequences from Model-based Specifications,” 2004.

[RM89] D.J. Richardson, O. O’Malley, “Approaches to Specification-based

Testing,” Software Engineering Notes, 14(8), pp. 86-96, ACM SIGSOFT,
Third Symposium on Software Testing, Analysis and Verification (TAV3),
1989.

[SC93] P. Stocks and D. Carrington, “Test Template Framework: a Specification-

based Testing Case Study,” Software Engineering Notes, ACM SIGSOFT,
18(3), pp. 11-18, 1993.

[SC96] P. Stocks and D. Carrington, “A Framework for Specification-Based

Testing,” IEEE Transactions on Software Engineering, vol. 22, no. 11, pp.
777-793, Nov. 1996.

[SCS97] H. Singh, M. Conrad, S. Sadeghipour, “Test Case Design based on Z and

the Classification Tree Method,” Proceedings of the First International
Conference on Formal Engineering Methods, Hiroshima, Japan, IEEE
Computer Society, 1997.

[Sto93] Philip A. Stocks, Applying Formal Methods to Software Testing, PhD

dissertation, Department of Computer Science, University of Queensland,
December 1993.

[TR93] C.D. Turner, D.J. Robson, “A Suite of Tools for the State-based Testing of

Object-oriented Programs”, TR-14/92, Technical Report, Computer
Science Division, School of Engineering and Computer Science (SECS),
University of Durham, Durham, England, April 1993.

[TVK90] W.T. Tsai, D. Volovik, T.F. Keefe, “Automated Test Case Generation for

Programs specified by Relational Algebra Queries,” IEEE Transactions on
Software Engineering, March 1990.

[Vag96] T. Vagoun, “Input Domain Partitioning in Software Testing,” Proceedings

of the 29th Annual Hawaii International Conference on System Sciences,
IEEE, 1996.

[WCO03] Y. Wu, M. Chen, J. Offutt, “UML-based Integration Testing for

Component-based Software,” Proceedings of the 2nd International

142

Conference on COTS-Based Software Systems (ICCBSS), Ottawa, Canada,
Feb. 2003.

[WGS94] E. Weyuker, T. Goradia, A. Singh, “Automatically Generating Test Data

from a Boolean Specification,” IEEE Transactions on Software
Engineering, May 1994.

[WM01] J. Wittevrongel, F. Maurer, “Using UML to Partially Automate

Generation of Scenario-Based Test Drivers,” Proceedings of the Object-
Oriented Information Systems (OOIS’01), 2001.

143

Appendix-I

Test Cases for the add method of the
NNComplex Class

 BEGIN TEST add.1
 set_re <0>
 set_im <0>
 add <0>
 END TEST

 BEGIN TEST add.2
 set_re <0>
 set_im <0>
 add <1>
 END TEST

 BEGIN TEST add.3
 set_re <0>
 set_im <0>
 add <9>
 END TEST

 BEGIN TEST add.4
 set_re <0>
 set_im <1>
 add <0>
 END TEST

 BEGIN TEST add.5
 set_re <0>
 set_im <1>
 add <1>
 END TEST

144

 BEGIN TEST add.6
 set_re <0>
 set_im <1>
 add <9>
 END TEST

 BEGIN TEST add.7
 set_re <0>
 set_im <8>
 add <0>
 END TEST

 BEGIN TEST add.8
 set_re <0>
 set_im <8>
 add <1>
 END TEST

 BEGIN TEST add.9
 set_re <0>
 set_im <8>
 add <9>
 END TEST

 BEGIN TEST add.10
 set_re <1>
 set_im <0>
 add <-1>
 END TEST

 BEGIN TEST add.11
 set_re <1>
 set_im <1>
 add <0>
 END TEST

 BEGIN TEST add.12
 set_re <1>
 set_im <8>
 add <12>
 END TEST

 BEGIN TEST add.13
 set_re <5>
 set_im <0>
 add <-5>
 END TEST

145

 BEGIN TEST add.14
 set_re <5>
 set_im <1>
 add <-4>
 END TEST

 BEGIN TEST add.15
 set_re <5>
 set_im <8>
 add <6>
 END TEST

146

Appendix-II

VDM++ Specification of CSLaM
Case Study

class CSL

 instance variables
 cabDisplay : CabDisplay;
 emergencyBrake: EmergencyBrake;
 onboardComp : OnBoardComp;
 announcements : seq of AnnounceBeacon;
 speedRestrictions: seq of LimitBeacon;
 firstSpeedRestriction: bool;

 inv
 len speedRestrictions <= 5;

 values
 maxSpeed: real = 180;

 operations
 public HeadMeetsBeacon(b: Beacon)
 pre isofclass(LimitBeacon, b) => len announcements > 0;
 post (isofclass(AnnounceBeacon, b) =>
 AnnounceSpeedRestriction(b))
 and (isofclass(LimitBeacon, b) => AddSpeedRestriction(b))
 and (isofclass(CancelBeacon, b)=> DeleteAnnouncements());

 public TailMeetsBeacon(b: Beacon)
 pre ((isofclass(LimitBeacon, b) and not firstSpeedRestriction)
 or isofclass(EndBeacon, b)) => len speedRestrictions > 0;
 post (isofclass(LimitBeacon, b) => TailMeetsLimitBeacon(b))
 and (isofclass(EndBeacon, b) => TailMeetsEndBeacon());

 public AnnounceSpeedRestriction(b: AnnounceBeacon)
 ext wr cabDisplay: CabDisplay;
 announcements: seq of AnnounceBeacon;
 post announcements = announcements’ ^ [b] and
 not cabDisplay.GetDisplay()(3);

147

 public AddSpeedRestriction(b: LimitBeacon)
 ext wr announcements: seq of AnnounceBeacon;
 speedRestrictions: seq of LimitBeacon;
 cabDisplay: CabDisplay;
 pre len announcements > 0;
 post len speedRestrictions’ < 5 =>
 (b.GetSpeedRestriction = (hd announcements).GetTargetSpeed()
 and (speedRestrictions = speedRestrictions’ ^ [b])
 and (announcements = tl announcements’)
 and not cabDisplay.GetDisplay()(3))
 and not(len speedRestrictions’ < 5) =>
 cabDisplay.GetDisplay()(3);

 public DeleteAnnouncements()
 ext wr announcements: seq of AnnounceBeacon;
 cabDisplay: CabDisplay;
 post announcements = [] and not cabDisplay.GetDisplay()(3);

 public TailMeetsLimitBeacon(b: LimitBeacon)
 ext wr firstSpeedRestriction: bool;
 speedRestrictions: seq of LimitBeacon;
 cabDisplay: CabDisplay;
 pre not firstSpeedRestriction) => len speedRestrictions > 0;
 post (not firstSpeedRestriction’ =>
 speedRestrictions = tl speedRestrictions’
 and not cabDisplay.GetDisplay()(3))
 and (firstSpeedRestriction’ => not firstSpeedRestriction);

 public TailMeetsEndBeacon()
 ext wr firstSpeedRestriction: bool;
 speedRestrictions: seq of LimitBeacon;
 cabDisplay: CabDisplay;
 pre len speedRestrictions > 0;
 post firstSpeedRestriction
 and speedRestrictions = tl speedRestrictions’
 and not cabDisplay.GetDisplay()(3);

 public NoBeaconMet()
 ext wr announcements: seq of AnnounceBeacon;
 cabDisplay: CabDisplay;
 pre len announcements > 0;
 post announcements = tl announcements’
 and cabDisplay.GetDisplay()(3);

 public DeletePossibleGroundFault()
 ext wr cabDisplay: CabDisplay;
 post not cabDisplay.GetDisplay()(3);

 public CheckSpeed(speed)
 ext rd onboardComputer: OnboardComputer;
 wr emergencyBrake: EmergencyBrake;
 wr cabDisplay: CabDisplay;
 post let speedAlarm = onboardComp.CheckSpeed(speed, GetMaxSpeed())
 in ((speedAlarm = <speedOk> and
 not emergencyBrake.GetEmergencyBrake()) =>
 not cabDisplay.GetDisplay()(1))
 and ((speedAlarm = <AlarmSpeed> and

148

 not emergencyBrake.GetEmergencyBrake()) =>
 cabDisplay.GetDisplay()(1))
 and (speedAlarm = <EmergencyBrakeSpeed> =>
 (cabDisplay.GetDisplay()(2) and
 emergencyBrake.GetEmergencyBrake());

 public GetMaxSpeed() mSpeed: real
 post
 (len speedRestrictions > 0 =>
 let speeds = { limit.GetSpeedRestriction()
 | limit in set elems speedRestrictions } in
 let minspeed in set speeds be st forall sp in set speeds &
 minspeed <= sp in
 mSpeed = minspeed) and
 (len speedRestrictions = 0 => mSpeed = maxSpeed;

 public ReleaseEmergencyBrake(sp: real)
 ext wr cabDisplay: CabDisplay;
 emergencyBrake: EmergencyBrake;
 pre cabDisplay.GetGetDisplay()(2) and
 emergencyBrake.GetEmergencyBrake()
 post (sp=0) => (not cabDisplay.GetDisplay()(2)
 and not emergencyBrake.GetEmergencyBrake());

 public GetCabDisplay() cabDisp: CabDisplay
 ext rd cabDisplay: CabDisplay;
 post cabDisp = cabDisplay;

 public GetEmergencyBrake() emBrake: EmergencyBrake
 ext rd emergencyBrake: EmergencyBrake;
 post emBrake = emergencyBrake;

 public GetAnnouncements() ann: seq of AnnounceBeacon
 ext rd announcements: seq of AnnounceBeacon;
 post ann = announcements;

 public GetSpeedRestrictions() rest: seq of LimitBeacon
 ext rd speedRestrictions: seq of LimitBeacon;
 post rest = speedRestrictions;

end CSL

class OnBoardComp

 types
 public AlarmLevel = <SpeedOk> | <AlarmSpeed> |
<EmergencyBrakeSpeed>;

 values
 alarmSpeedAdd = 5;
 emergencySpeedAdd = 10;

 operations
 public CheckSpeed(speed: real, maxSpeed: real) AL: AlarmLevel
 post ((speed<maxSpeed+alarmSpeedAdd)=>(AL=<SpeedOk>) and
 ((speed>=maxSpeed+alarmSpeedAdd) and
 (speed<maxSpeed+emergencySpeedAdd))=>(AL=<AlarmSpeed>) and

149

 (speed>=maxSpeed+emergencySpeedAdd)=>(AL=<EmergencyBrakeSpeed>))

end OnBoardComp

class CabDisplay

 instance variables
 alarm: bool;
 emergencyBrake: bool;
 groundFault: bool;

 operations
 public SetAlarm()
 ext wr alarm: bool
 post alarm;

 public UnsetAlarm()
 ext wr alarm: bool
 post not alarm;

 public SetEmergencyBrake()
 ext wr emergencyBrake: bool
 post emergencyBrake;

 public UnsetEmergencyBrake()
 ext wr emergencyBrake: bool
 post not emergencyBrake;

 public SetGroundFault()
 ext wr groundFault: bool
 post groundFault;

 public UnsetGroundFault()
 ext wr groundFault: bool
 post not groundFault;

 public GetDisplay() disp: seq of bool
 ext rd alarm: bool
 emergencyBrake: bool;
 groundFault: bool;
 post disp=mk_(alarm,emergencyBrake,groundFault);

end CabDisplay

class EmergencyBrake

 instance variables
 emergencyBrake: bool;

 operations
 public SetEmergencyBrake: ()
 ext wr emergencyBrake: bool;
 post emergencyBrake;

 public UnsetEmergencyBrake: () ==> ()
 ext wr emergencyBrake: bool;
 post not emergencyBrake;

150

 public GetEmergencyBrake: () EB: bool;
 ext rd emergencyBrake: bool;
 post EB = emergencyBrake;

end EmergencyBrake

class Beacon

end Beacon

class AnnounceBeacon is subclass of Beacon

 instance variables
 targetspeed: real;

 operations
 public AnnounceBeacon: real ==> AnnounceBeacon
 public AnnounceBeacon(ts: real) AB: AnnounceBeacon
 ext rd self
 wr targetspeed: real
 post (targetspeed = ts) and (AB = self)

public GetTargetSpeed() TS: real
ext rd targetspeed
 post TS = targetspeed
end AnnounceBeacon

class LimitBeacon is subclass of Beacon

 instance variables
 speed: real;

 operations
 public SetSpeedRestriction(s: real)
 ext wr speed: real
 post speed = s

 public GetSpeedRestriction() SR: real
 ext rd speed: real
 post SR = speed

end LimitBeacon

class CancelBeacon is subclass of Beacon

end CancelBeacon

class EndBeacon is subclass of Beacon

end EndBeacon

151

Appendix-III

XMI Output for Communication
Diagram of CSLaM Case Study

This appendix lists the XMI output generated by the Borland’s Together tool for the
Communication diagram of CSLaM case study in chapter 7.

<?xml version = '1.0' encoding = 'ASCII' ?>
<XMI xmi.version = '1.1' xmlns:UML = '//org.omg/UML/1.3'>
 <XMI.header>
 <XMI.documentation>
 <XMI.exporter>
 TogetherSoft
 </XMI.exporter>
 <XMI.exporterVersion>
 6.0
 </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name = 'UML' xmi.version = '1.4'/>
 </XMI.header>
 <XMI.content>
 <UML:Model xmi.id = 'S.1' name = 'Project' visibility = 'public'>
 <UML:Namespace.ownedElement>
 <!--From Class EmergencyBrake to Class CSL-->
 <UML:Association xmi.id = 'G.6'
 name = '{EmergencyBrake-CSL}' visibility = 'private' isSpecification
= 'false'
 isAbstract = 'false'>
 <UML:Association.connection>
 <UML:AssociationEnd xmi.id = 'G.10' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.9'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 <UML:AssociationEnd xmi.id = 'G.11' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'

152

 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.10'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 </UML:Association.connection>
 </UML:Association>
 <!--From Class CSL to Class OnboardComputer-->
 <UML:Association xmi.id = 'G.7'
 name = '{CSL-OnboardComputer}' visibility = 'private' isSpecification
= 'false'
 isAbstract = 'false'>
 <UML:Association.connection>
 <UML:AssociationEnd xmi.id = 'G.12' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.10'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 <UML:AssociationEnd xmi.id = 'G.13' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.12'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 </UML:Association.connection>
 </UML:Association>
 <!--From Class CabDisplay to Class CSL-->
 <UML:Association xmi.id = 'G.8'
 name = '{CabDisplay-CSL}' visibility = 'private' isSpecification =
'false'
 isAbstract = 'false'>
 <UML:Association.connection>
 <UML:AssociationEnd xmi.id = 'G.14' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.11'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 <UML:AssociationEnd xmi.id = 'G.15' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>

153

 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.10'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 </UML:Association.connection>
 </UML:Association>
 <!--From Class Beacon to Class CSL-->
 <UML:Association xmi.id = 'G.9'
 name = '{Beacon-CSL}' visibility = 'private' isSpecification =
'false'
 isAbstract = 'false'>
 <UML:Association.connection>
 <UML:AssociationEnd xmi.id = 'G.16' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.13'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 <UML:AssociationEnd xmi.id = 'G.17' visibility = 'public' isSpecification
= 'false'
 isNavigable = 'true' ordering = 'unordered' aggregation = 'none'
 targetScope = 'instance' changeability = 'changeable'>
 <UML:AssociationEnd.multiplicity>
 <UML:Multiplicity/>
 </UML:AssociationEnd.multiplicity>
 <UML:AssociationEnd.participant>
 <UML:Classifier xmi.idref = 'S.10'/>
 </UML:AssociationEnd.participant>
 </UML:AssociationEnd>
 </UML:Association.connection>
 </UML:Association>
 <UML:Class xmi.id = 'S.14'
 name = 'AnnounceBeacon' visibility = 'public' isSpecification =
'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Operation xmi.id = 'S.18'
 name = 'AnnounceBeacon' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.26' name = 'AnnounceBeacon.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.19'
 name = 'GetTargetSpeed' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.27' name = 'GetTargetSpeed.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 </UML:Classifier.feature>

154

 <UML:Namespace.ownedElement>
 <UML:Generalization xmi.id = 'G.19'
 name = '' visibility = 'public' isSpecification = 'false'
 discriminator = ''>
 <UML:Generalization.child>
 <UML:GeneralizableElement xmi.idref = 'S.14'/>
 </UML:Generalization.child>
 <UML:Generalization.parent>
 <UML:GeneralizableElement xmi.idref = 'S.13'/>
 </UML:Generalization.parent>
 </UML:Generalization>
 </UML:Namespace.ownedElement>
 </UML:Class>
 <UML:Class xmi.id = 'S.13'
 name = 'Beacon' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Attribute xmi.id = 'S.20'
 name = 'lnkCSL' visibility = 'private' isSpecification = 'false'
 changeability = 'changeable' ownerScope = 'instance'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Classifier>
 <UML:Namespace.ownedElement>
 <UML:DataType xmi.idref = 'G.20'/>
 </UML:Namespace.ownedElement>
 </UML:Classifier>
 </UML:StructuralFeature.type>
 </UML:Attribute>
 </UML:Classifier.feature>
 </UML:Class>
 <UML:Class xmi.id = 'S.11'
 name = 'CabDisplay' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Attribute xmi.id = 'S.21'
 name = 'lnkCSL' visibility = 'private' isSpecification = 'false'
 changeability = 'changeable' ownerScope = 'instance'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Classifier>
 <UML:Namespace.ownedElement>
 <UML:DataType xmi.idref = 'G.20'/>
 </UML:Namespace.ownedElement>
 </UML:Classifier>
 </UML:StructuralFeature.type>
 </UML:Attribute>
 <UML:Operation xmi.id = 'S.22'
 name = 'SetAlarm' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>

155

 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.28' name = 'SetAlarm.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.23'
 name = 'UnsetAlarm' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.29' name = 'UnsetAlarm.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.24'
 name = 'SetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.30' name = 'SetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.25'
 name = 'UnsetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.31' name = 'UnsetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.26'
 name = 'SetGroundFault' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.32' name = 'SetGroundFault.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.27'
 name = 'UnsetGroundFault' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.33' name = 'UnsetGroundFault.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.28'
 name = 'GetDisplay' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.34' name = 'GetDisplay.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>

156

 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 </UML:Classifier.feature>
 </UML:Class>
 <UML:Class xmi.id = 'S.16'
 name = 'CancelBeacon' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Generalization xmi.id = 'G.21'
 name = '' visibility = 'public' isSpecification = 'false'
 discriminator = ''>
 <UML:Generalization.child>
 <UML:GeneralizableElement xmi.idref = 'S.16'/>
 </UML:Generalization.child>
 <UML:Generalization.parent>
 <UML:GeneralizableElement xmi.idref = 'S.13'/>
 </UML:Generalization.parent>
 </UML:Generalization>
 </UML:Namespace.ownedElement>
 </UML:Class>
 <UML:Class xmi.id = 'S.10'
 name = 'CSL' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Operation xmi.id = 'S.29'
 name = 'HeadMeetsBeacon' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.35' name = 'HeadMeetsBeacon.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.30'
 name = 'TailMeetsBeacon' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.36' name = 'TailMeetsBeacon.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.31'
 name = 'AnnounceSpeedRestriction' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.37' name =
'AnnounceSpeedRestriction.Return' isSpecification = 'false' kind = 'return'
type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.32'
 name = 'AddSpeedRestriction' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.38' name = 'AddSpeedRestriction.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>

157

 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.33'
 name = 'DeleteAnnouncements' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.39' name = 'DeleteAnnouncements.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.34'
 name = 'TailMeetsLimitBeacon' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.40' name = 'TailMeetsLimitBeacon.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.35'
 name = 'TailMeetsEndBeacon' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.41' name = 'TailMeetsEndBeacon.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.36'
 name = 'NoBeaconMet' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.42' name = 'NoBeaconMet.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.37'
 name = 'DeletePossibleGroundFault' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.43' name =
'DeletePossibleGroundFault.Return' isSpecification = 'false' kind = 'return'
type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.38'
 name = 'CheckSpeed' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.44' name = 'CheckSpeed.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>

158

 </UML:Operation>
 <UML:Operation xmi.id = 'S.39'
 name = 'GetMaxSpeed' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.45' name = 'GetMaxSpeed.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.40'
 name = 'ReleaseEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.46' name = 'ReleaseEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.41'
 name = 'RaiseGroungFault' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.47' name = 'RaiseGroungFault.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.42'
 name = 'GetCabDisplay' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.48' name = 'GetCabDisplay.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.43'
 name = 'GetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.49' name = 'GetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.44'
 name = 'GetAnnouncements' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.50' name = 'GetAnnouncements.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.45'
 name = 'GetSpeedRestrictions' visibility = 'public'

159

 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.51' name = 'GetSpeedRestrictions.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Attribute xmi.id = 'S.46'
 name = 'lnkOnboardComputer' visibility = 'private' isSpecification
= 'false'
 changeability = 'changeable' ownerScope = 'instance'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Classifier>
 <UML:Namespace.ownedElement>
 <UML:DataType xmi.idref = 'G.22'/>
 </UML:Namespace.ownedElement>
 </UML:Classifier>
 </UML:StructuralFeature.type>
 </UML:Attribute>
 </UML:Classifier.feature>
 </UML:Class>
 <UML:Class xmi.id = 'S.9'
 name = 'EmergencyBrake' visibility = 'public' isSpecification =
'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Operation xmi.id = 'S.47'
 name = 'UnsetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.52' name = 'UnsetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.48'
 name = 'GetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.53' name = 'GetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.49'
 name = 'SetEmergencyBrake' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.54' name = 'SetEmergencyBrake.Return'
isSpecification = 'false' kind = 'return' type = 'G.23'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>

160

 </UML:Operation>
 <UML:Attribute xmi.id = 'S.50'
 name = 'emergenceyBrake' visibility = 'private' isSpecification =
'false'
 changeability = 'changeable' ownerScope = 'instance'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Classifier>
 <UML:Namespace.ownedElement>
 <UML:DataType xmi.idref = 'G.23'/>
 </UML:Namespace.ownedElement>
 </UML:Classifier>
 </UML:StructuralFeature.type>
 </UML:Attribute>
 <UML:Attribute xmi.id = 'S.51'
 name = 'lnkCSL' visibility = 'private' isSpecification = 'false'
 changeability = 'changeable' ownerScope = 'instance'>
 <UML:StructuralFeature.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:StructuralFeature.multiplicity>
 <UML:StructuralFeature.type>
 <UML:Classifier>
 <UML:Namespace.ownedElement>
 <UML:DataType xmi.idref = 'G.20'/>
 </UML:Namespace.ownedElement>
 </UML:Classifier>
 </UML:StructuralFeature.type>
 </UML:Attribute>
 </UML:Classifier.feature>
 </UML:Class>
 <UML:Class xmi.id = 'S.17'
 name = 'EndBeacon' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Generalization xmi.id = 'G.24'
 name = '' visibility = 'public' isSpecification = 'false'
 discriminator = ''>
 <UML:Generalization.child>
 <UML:GeneralizableElement xmi.idref = 'S.17'/>
 </UML:Generalization.child>
 <UML:Generalization.parent>
 <UML:GeneralizableElement xmi.idref = 'S.13'/>
 </UML:Generalization.parent>
 </UML:Generalization>
 </UML:Namespace.ownedElement>
 </UML:Class>
 <UML:Class xmi.id = 'S.15'
 name = 'LimitBeacon' visibility = 'public' isSpecification = 'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Operation xmi.id = 'S.52'
 name = 'SetSpeedRestriction' visibility = 'public'
 isSpecification = 'false'

161

 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.55' name = 'SetSpeedRestriction.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 <UML:Operation xmi.id = 'S.53'
 name = 'GetSpeedRestriction' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.56' name = 'GetSpeedRestriction.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 </UML:Classifier.feature>
 <UML:Namespace.ownedElement>
 <UML:Generalization xmi.id = 'G.25'
 name = '' visibility = 'public' isSpecification = 'false'
 discriminator = ''>
 <UML:Generalization.child>
 <UML:GeneralizableElement xmi.idref = 'S.15'/>
 </UML:Generalization.child>
 <UML:Generalization.parent>
 <UML:GeneralizableElement xmi.idref = 'S.13'/>
 </UML:Generalization.parent>
 </UML:Generalization>
 </UML:Namespace.ownedElement>
 </UML:Class>
 <UML:Class xmi.id = 'S.12'
 name = 'OnboardComputer' visibility = 'public' isSpecification =
'false'
 isAbstract = 'false' isActive = 'false'>
 <UML:Classifier.feature>
 <UML:Operation xmi.id = 'S.54'
 name = 'CheckSpeed' visibility = 'public'
 isSpecification = 'false'
 isAbstract = 'false' ownerScope = 'instance'>
 <UML:BehavioralFeature.parameter>
 <UML:Parameter xmi.id = 'XX.57' name = 'CheckSpeed.Return'
isSpecification = 'false' kind = 'return' type = 'G.18'>
 </UML:Parameter>
 </UML:BehavioralFeature.parameter>
 </UML:Operation>
 </UML:Classifier.feature>
 </UML:Class>
 <UML:Collaboration xmi.id = 'S.3'
 name = 'Collaboration' visibility = 'public' isSpecification =
'false' isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:ClassifierRole xmi.id = 'G.1'
 name = 'Object2' visibility = 'package' isSpecification = 'false'
 isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:ClassifierRole.multiplicity>
 <UML:ClassifierRole.base>

162

 <UML:Classifier xmi.idref = 'S.14'/>
 </UML:ClassifierRole.base>
 </UML:ClassifierRole>
 <UML:ClassifierRole xmi.id = 'G.2'
 name = 'Object3' visibility = 'package' isSpecification = 'false'
 isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:ClassifierRole.multiplicity>
 <UML:ClassifierRole.base>
 <UML:Classifier xmi.idref = 'S.11'/>
 </UML:ClassifierRole.base>
 </UML:ClassifierRole>
 <UML:ClassifierRole xmi.id = 'G.3'
 name = 'Object4' visibility = 'package' isSpecification = 'false'
 isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:ClassifierRole.multiplicity>
 <UML:ClassifierRole.base>
 <UML:Classifier xmi.idref = 'S.15'/>
 </UML:ClassifierRole.base>
 </UML:ClassifierRole>
 <UML:ClassifierRole xmi.id = 'G.4'
 name = 'Object5' visibility = 'package' isSpecification = 'false'
 isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:ClassifierRole.multiplicity>
 <UML:ClassifierRole.base>
 <UML:Classifier/>
 </UML:ClassifierRole.base>
 </UML:ClassifierRole>
 <UML:ClassifierRole xmi.id = 'G.5'
 name = 'Object1' visibility = 'package' isSpecification = 'false'
 isAbstract = 'false'>
 <UML:ClassifierRole.multiplicity>
 <UML:Multiplicity>
 <UML:Multiplicity.range>
 <UML:MultiplicityRange lower = '1' upper = '1'/>
 </UML:Multiplicity.range>
 </UML:Multiplicity>
 </UML:ClassifierRole.multiplicity>
 <UML:ClassifierRole.base>
 <UML:Classifier xmi.idref = 'S.10'/>
 </UML:ClassifierRole.base>
 </UML:ClassifierRole>
 </UML:Namespace.ownedElement>
 <UML:Collaboration.interaction>
 <UML:Interaction xmi.id = 'G.0'

163

 name = '{Logical View}Collaboration' visibility = 'public'
isSpecification = 'false'>
 <UML:Interaction.message>
 <UML:Message xmi.id = 'G.26'
 name = 'HeadMeetsBeacon' visibility = 'package' isSpecification =
'false' sender = 'G.4' receiver = 'G.5'>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.251'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.27'
 name = 'AnnounceSpeedRestriction' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.26'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.253'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.30'
 name = 'DeletePossibleGroundFault' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.27'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.255'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.31'
 name = 'GetDisplay' visibility = 'package' isSpecification =
'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.30'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.257'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.32'
 name = 'UnsetGroundFault' visibility = 'package' isSpecification
= 'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.31'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.259'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.28'
 name = 'AddSpeedRestriction' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.32'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.261'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.33'
 name = 'GetTargetSpeed' visibility = 'package' isSpecification =
'false' sender = 'G.5' receiver = 'G.1'>

164

 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.28'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.263'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.36'
 name = 'SetSpeedRestriction' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.3'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.33'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.265'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.37'
 name = 'DeletePossibleGroundFault' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.36'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.267'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.38'
 name = 'GetDisplay' visibility = 'package' isSpecification =
'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.37'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.269'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.39'
 name = 'UnsetGroundFault' visibility = 'package' isSpecification
= 'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.38'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.271'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.34'
 name = 'RaiseGroungFault' visibility = 'package' isSpecification
= 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.39'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.273'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.35'
 name = 'SetGroundFault' visibility = 'package' isSpecification =
'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.34'/>
 </UML:Message.predecessor>

165

 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.275'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.29'
 name = 'DeleteAnnouncements' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.35'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.277'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.40'
 name = 'DeletePossibleGroundFault' visibility = 'package'
isSpecification = 'false' sender = 'G.5' receiver = 'G.5'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.29'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.279'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.41'
 name = 'GetDisplay' visibility = 'package' isSpecification =
'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.40'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.281'/>
 </UML:Message.action>
 </UML:Message>
 <UML:Message xmi.id = 'G.42'
 name = 'UnsetGroundFault' visibility = 'package' isSpecification
= 'false' sender = 'G.5' receiver = 'G.2'>
 <UML:Message.predecessor>
 <Behavioral_Elements.Collaborations.Message xmi.idref = 'G.41'/>
 </UML:Message.predecessor>
 <UML:Message.action>
 <UML:Action xmi.idref = 'XX.283'/>
 </UML:Message.action>
 </UML:Message>
 </UML:Interaction.message>
 </UML:Interaction>
 </UML:Collaboration.interaction>
 </UML:Collaboration>
 <UML:CallAction xmi.id = 'XX.251'
 name = 'HeadMeetsBeacon' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>

166

 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.29'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.253'
 name = 'AnnounceSpeedRestriction' visibility = 'public'
isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.31'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.255'
 name = 'DeletePossibleGroundFault' visibility = 'public'
isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.37'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.257'
 name = 'GetDisplay' visibility = 'public' isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.28'/>
 </UML:CallAction.operation>

167

 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.259'
 name = 'UnsetGroundFault' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.27'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.261'
 name = 'AddSpeedRestriction' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.32'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.263'
 name = 'GetTargetSpeed' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.19'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.265'

168

 name = 'SetSpeedRestriction' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.52'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.267'
 name = 'DeletePossibleGroundFault' visibility = 'public'
isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.37'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.269'
 name = 'GetDisplay' visibility = 'public' isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.28'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.271'
 name = 'UnsetGroundFault' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>

169

 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.27'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.273'
 name = 'RaiseGroungFault' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.41'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.275'
 name = 'SetGroundFault' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.26'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.277'
 name = 'DeleteAnnouncements' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>

170

 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.33'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.279'
 name = 'DeletePossibleGroundFault' visibility = 'public'
isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.37'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.281'
 name = 'GetDisplay' visibility = 'public' isSpecification = 'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>
 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.28'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:CallAction xmi.id = 'XX.283'
 name = 'UnsetGroundFault' visibility = 'public' isSpecification =
'false'
 isAsynchronous = 'false'>
 <UML:Action.recurrence>
 <UML:IterationExpression
 language = '' body = ''/>
 </UML:Action.recurrence>
 <UML:Action.target>
 <UML:ObjectSetExpression
 language = '' body = ''/>
 </UML:Action.target>

171

 <UML:Action.script>
 <UML:ActionExpression
 language = '' body = ''/>
 </UML:Action.script>
 <UML:CallAction.operation>
 <UML:Operation xmi.idref = 'S.27'/>
 </UML:CallAction.operation>
 </UML:CallAction>
 <UML:DataType xmi.id = 'G.18'
 name = 'void' visibility = 'public' isSpecification = 'false'/>
 <UML:DataType xmi.id = 'G.20'
 name = 'CSL' visibility = 'public' isSpecification = 'false'/>
 <UML:DataType xmi.id = 'G.22'
 name = 'OnboardComputer' visibility = 'public' isSpecification =
'false'/>
 <UML:DataType xmi.id = 'G.23'
 name = 'bool' visibility = 'public' isSpecification = 'false'/>
 <!--==================== actor [Stereotype] ====================-->
 <UML:Stereotype xmi.id = 'XX.62'
 name = 'actor' visibility = 'public' isSpecification = 'false' icon =
''>
 <UML:Stereotype.baseClass>
 ClassifierRole
 </UML:Stereotype.baseClass>
 </UML:Stereotype>
 </UML:Namespace.ownedElement>
 </UML:Model>
 <UML:TaggedValue xmi.id = 'XX.0'
 name = 'name'
 modelElement = 'G.1'>
 <UML:TaggedValue.dataValue>
 Object2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.1'
 name = 'name'
 modelElement = 'G.2'>
 <UML:TaggedValue.dataValue>
 Object3
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.2'
 name = 'name'
 modelElement = 'G.3'>
 <UML:TaggedValue.dataValue>
 Object4
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.3'
 name = 'name'
 modelElement = 'G.4'>
 <UML:TaggedValue.dataValue>
 Object5
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.4'
 name = 'name'
 modelElement = 'G.5'>
 <UML:TaggedValue.dataValue>
 Object1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.64'

172

 name = 'sendingInstant'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 115
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.65'
 name = 'processingDuration'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 719
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.66'
 name = 'sequenceNumber'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.67'
 name = 'operation'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#HeadMeetsBeacon#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.68'
 name = 'operationNameAsText'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 'HeadMeetsBeacon():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.69'
 name = 'minProcessingDuration'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 180
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.70'
 name = 'sendingInstant'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 124
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.71'
 name = 'processingDuration'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 151
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.72'
 name = 'sequenceNumber'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.73'

173

 name = 'operation'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#AnnounceSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.74'
 name = 'operationNameAsText'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 'AnnounceSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.75'
 name = 'minProcessingDuration'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 30
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.76'
 name = 'sendingInstant'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 160
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.77'
 name = 'processingDuration'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 105
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.78'
 name = 'sequenceNumber'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 1.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.79'
 name = 'minProcessingDuration'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 42
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.80'
 name = 'operation'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.81'
 name = 'operationNameAsText'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.82'

174

 name = 'sendingInstant'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 210
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.83'
 name = 'processingDuration'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.84'
 name = 'sequenceNumber'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 1.1.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.85'
 name = 'operation'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.86'
 name = 'operationNameAsText'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.87'
 name = 'sendingInstant'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 235
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.88'
 name = 'processingDuration'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.89'
 name = 'sequenceNumber'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 1.1.1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.90'
 name = 'operation'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.91'

175

 name = 'operationNameAsText'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.92'
 name = 'sendingInstant'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 306
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.93'
 name = 'processingDuration'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 334
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.94'
 name = 'sequenceNumber'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.95'
 name = 'operation'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#AddSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.96'
 name = 'operationNameAsText'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 'AddSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.97'
 name = 'minProcessingDuration'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 114
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.98'
 name = 'sendingInstant'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 350
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.99'
 name = 'processingDuration'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.100'

176

 name = 'sequenceNumber'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 1.2.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.101'
 name = 'operation'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#AnnounceBeacon#GetTargetSpeed#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.102'
 name = 'operationNameAsText'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 'GetTargetSpeed():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.103'
 name = 'sendingInstant'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 390
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.104'
 name = 'processingDuration'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.105'
 name = 'sequenceNumber'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 1.2.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.106'
 name = 'operation'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#LimitBeacon#SetSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.107'
 name = 'operationNameAsText'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 'SetSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.108'
 name = 'sendingInstant'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 415
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.109'

177

 name = 'processingDuration'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 100
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.110'
 name = 'sequenceNumber'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 1.2.3
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.111'
 name = 'operation'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.112'
 name = 'operationNameAsText'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.113'
 name = 'minProcessingDuration'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 35
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.114'
 name = 'sendingInstant'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 460
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.115'
 name = 'processingDuration'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.116'
 name = 'sequenceNumber'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 1.2.3.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.117'
 name = 'operation'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.118'

178

 name = 'operationNameAsText'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.119'
 name = 'sendingInstant'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 485
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.120'
 name = 'processingDuration'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.121'
 name = 'sequenceNumber'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 1.2.3.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.122'
 name = 'operation'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.123'
 name = 'operationNameAsText'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.124'
 name = 'sendingInstant'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 555
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.125'
 name = 'processingDuration'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 75
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.126'
 name = 'sequenceNumber'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 1.2.4
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.127'

179

 name = 'operation'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#RaiseGroungFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.128'
 name = 'operationNameAsText'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 'RaiseGroungFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.129'
 name = 'minProcessingDuration'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 75
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.130'
 name = 'sendingInstant'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 600
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.131'
 name = 'processingDuration'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.132'
 name = 'sequenceNumber'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 1.2.4.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.133'
 name = 'operation'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#SetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.134'
 name = 'operationNameAsText'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 'SetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.135'
 name = 'sendingInstant'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 685
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.136'

180

 name = 'processingDuration'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 139
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.137'
 name = 'sequenceNumber'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 1.3
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.138'
 name = 'operation'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeleteAnnouncements#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.139'
 name = 'operationNameAsText'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 'DeleteAnnouncements():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.140'
 name = 'minProcessingDuration'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 45
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.141'
 name = 'sendingInstant'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 713
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.142'
 name = 'processingDuration'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 101
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.143'
 name = 'sequenceNumber'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 1.3.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.144'
 name = 'operation'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.145'

181

 name = 'operationNameAsText'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.146'
 name = 'minProcessingDuration'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 87
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.147'
 name = 'sendingInstant'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 750
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.148'
 name = 'processingDuration'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.149'
 name = 'sequenceNumber'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 1.3.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.150'
 name = 'operation'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.151'
 name = 'operationNameAsText'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.152'
 name = 'sendingInstant'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 784
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.153'
 name = 'processingDuration'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.154'

182

 name = 'sequenceNumber'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 1.3.1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.155'
 name = 'operation'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.156'
 name = 'operationNameAsText'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.157'
 name = 'sendingInstant'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 115
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.158'
 name = 'processingDuration'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 719
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.159'
 name = 'sequenceNumber'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.160'
 name = 'operation'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#HeadMeetsBeacon#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.161'
 name = 'operationNameAsText'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 'HeadMeetsBeacon():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.162'
 name = 'minProcessingDuration'
 modelElement = 'G.26'>
 <UML:TaggedValue.dataValue>
 180
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.163'

183

 name = 'sendingInstant'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 124
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.164'
 name = 'processingDuration'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 151
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.165'
 name = 'sequenceNumber'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.166'
 name = 'operation'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#AnnounceSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.167'
 name = 'operationNameAsText'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 'AnnounceSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.168'
 name = 'minProcessingDuration'
 modelElement = 'G.27'>
 <UML:TaggedValue.dataValue>
 30
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.169'
 name = 'sendingInstant'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 160
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.170'
 name = 'processingDuration'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 105
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.171'
 name = 'sequenceNumber'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 1.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.172'

184

 name = 'minProcessingDuration'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 42
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.173'
 name = 'operation'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.174'
 name = 'operationNameAsText'
 modelElement = 'G.30'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.175'
 name = 'sendingInstant'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 210
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.176'
 name = 'processingDuration'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.177'
 name = 'sequenceNumber'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 1.1.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.178'
 name = 'operation'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.179'
 name = 'operationNameAsText'
 modelElement = 'G.31'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.180'
 name = 'sendingInstant'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 235
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.181'

185

 name = 'processingDuration'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.182'
 name = 'sequenceNumber'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 1.1.1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.183'
 name = 'operation'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.184'
 name = 'operationNameAsText'
 modelElement = 'G.32'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.185'
 name = 'sendingInstant'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 306
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.186'
 name = 'processingDuration'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 334
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.187'
 name = 'sequenceNumber'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.188'
 name = 'operation'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#AddSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.189'
 name = 'operationNameAsText'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 'AddSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.190'

186

 name = 'minProcessingDuration'
 modelElement = 'G.28'>
 <UML:TaggedValue.dataValue>
 114
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.191'
 name = 'sendingInstant'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 350
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.192'
 name = 'processingDuration'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.193'
 name = 'sequenceNumber'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 1.2.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.194'
 name = 'operation'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#AnnounceBeacon#GetTargetSpeed#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.195'
 name = 'operationNameAsText'
 modelElement = 'G.33'>
 <UML:TaggedValue.dataValue>
 'GetTargetSpeed():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.196'
 name = 'sendingInstant'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 390
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.197'
 name = 'processingDuration'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.198'
 name = 'sequenceNumber'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 1.2.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.199'

187

 name = 'operation'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#LimitBeacon#SetSpeedRestriction#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.200'
 name = 'operationNameAsText'
 modelElement = 'G.36'>
 <UML:TaggedValue.dataValue>
 'SetSpeedRestriction():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.201'
 name = 'sendingInstant'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 415
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.202'
 name = 'processingDuration'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 100
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.203'
 name = 'sequenceNumber'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 1.2.3
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.204'
 name = 'operation'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.205'
 name = 'operationNameAsText'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.206'
 name = 'minProcessingDuration'
 modelElement = 'G.37'>
 <UML:TaggedValue.dataValue>
 35
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.207'
 name = 'sendingInstant'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 460
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.208'

188

 name = 'processingDuration'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.209'
 name = 'sequenceNumber'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 1.2.3.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.210'
 name = 'operation'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.211'
 name = 'operationNameAsText'
 modelElement = 'G.38'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.212'
 name = 'sendingInstant'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 485
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.213'
 name = 'processingDuration'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.214'
 name = 'sequenceNumber'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 1.2.3.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.215'
 name = 'operation'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.216'
 name = 'operationNameAsText'
 modelElement = 'G.39'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.217'

189

 name = 'sendingInstant'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 555
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.218'
 name = 'processingDuration'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 75
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.219'
 name = 'sequenceNumber'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 1.2.4
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.220'
 name = 'operation'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#RaiseGroungFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.221'
 name = 'operationNameAsText'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 'RaiseGroungFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.222'
 name = 'minProcessingDuration'
 modelElement = 'G.34'>
 <UML:TaggedValue.dataValue>
 75
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.223'
 name = 'sendingInstant'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 600
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.224'
 name = 'processingDuration'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.225'
 name = 'sequenceNumber'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 1.2.4.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.226'

190

 name = 'operation'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#SetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.227'
 name = 'operationNameAsText'
 modelElement = 'G.35'>
 <UML:TaggedValue.dataValue>
 'SetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.228'
 name = 'sendingInstant'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 685
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.229'
 name = 'processingDuration'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 139
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.230'
 name = 'sequenceNumber'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 1.3
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.231'
 name = 'operation'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeleteAnnouncements#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.232'
 name = 'operationNameAsText'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 'DeleteAnnouncements():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.233'
 name = 'minProcessingDuration'
 modelElement = 'G.29'>
 <UML:TaggedValue.dataValue>
 45
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.234'
 name = 'sendingInstant'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 713
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.235'

191

 name = 'processingDuration'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 101
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.236'
 name = 'sequenceNumber'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 1.3.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.237'
 name = 'operation'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CSL#DeletePossibleGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.238'
 name = 'operationNameAsText'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 'DeletePossibleGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.239'
 name = 'minProcessingDuration'
 modelElement = 'G.40'>
 <UML:TaggedValue.dataValue>
 87
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.240'
 name = 'sendingInstant'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 750
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.241'
 name = 'processingDuration'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.242'
 name = 'sequenceNumber'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 1.3.1.1
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.243'
 name = 'operation'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#GetDisplay#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.244'

192

 name = 'operationNameAsText'
 modelElement = 'G.41'>
 <UML:TaggedValue.dataValue>
 'GetDisplay():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.245'
 name = 'sendingInstant'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 784
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.246'
 name = 'processingDuration'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 20
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.247'
 name = 'sequenceNumber'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 1.3.1.2
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.248'
 name = 'operation'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 <oiref:java#Member#CabDisplay#UnsetGroundFault#(##)#:oiref>
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 <UML:TaggedValue xmi.id = 'XX.249'
 name = 'operationNameAsText'
 modelElement = 'G.42'>
 <UML:TaggedValue.dataValue>
 'UnsetGroundFault():void'
 </UML:TaggedValue.dataValue>
 </UML:TaggedValue>
 </XMI.content>
</XMI>

193

Appendix-IV

Integration Test Paths for the
HeadMeetsBeacon Event

This appendix lists the test paths for the HeadMeetsBeacon event of CSLaM case study
of Chapter 7 under All-Path coverage.

T1: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T2: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

T3: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T4: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

T5: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T6: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

T7: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T8: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

T9: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19))))

T10: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19))))

T11: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19))))

T12: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19))))

T13: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T14: (m1 CSL:p1(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19)

194

(m12 CabDisplay:p19))))

T15: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T16: (m1 CSL:p1(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T17: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T18: (m1 CSL:p2(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T19: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T20: (m1 CSL:p2(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T21: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T22: (m1 CSL:p3(m2 CSL:p4(m5 CSL:p13(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T23: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p12(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T24: (m1 CSL:p3(m2 CSL:p5(m5 CSL:p13(m11 CabDisplay:p19)
(m12 CabDisplay:p19))))

T25: (m1 CSL:p1(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T26: (m1 CSL:p1(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T27: (m1 CSL:p1(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T28: (m1 CSL:p1(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T29: (m1 CSL:p1(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T30: (m1 CSL:p1(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

195

T31: (m1 CSL:p1(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T32: (m1 CSL:p1(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T33: (m1 CSL:p2(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T34: (m1 CSL:p2(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T35: (m1 CSL:p2(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T36: (m1 CSL:p2(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T37: (m1 CSL:p2(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T38: (m1 CSL:p2(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T39: (m1 CSL:p2(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T40: (m1 CSL:p2(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T41: (m1 CSL:p3(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T42: (m1 CSL:p3(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T43: (m1 CSL:p3(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T44: (m1 CSL:p3(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T45: (m1 CSL:p3(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T46: (m1 CSL:p3(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T47: (m1 CSL:p3(m3 CSL:p9(m6 AnnounceBeacon:p14)

196

(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19))))

T48: (m1 CSL:p3(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19))))

T49: (m1 CSL:p1(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T50: (m1 CSL:p1(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T51: (m1 CSL:p1(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T52: (m1 CSL:p1(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T53: (m1 CSL:p1(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T54: (m1 CSL:p1(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T55: (m1 CSL:p1(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T56: (m1 CSL:p1(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T57: (m1 CSL:p2(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T58: (m1 CSL:p2(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T59: (m1 CSL:p2(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

197

T60: (m1 CSL:p2(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T61: (m1 CSL:p2(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T62: (m1 CSL:p2(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T63: (m1 CSL:p2(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T64: (m1 CSL:p2(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T65: (m1 CSL:p3(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T66: (m1 CSL:p3(m3 CSL:p6(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T67: (m1 CSL:p3(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T68: (m1 CSL:p3(m3 CSL:p7(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T69: (m1 CSL:p3(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T70: (m1 CSL:p3(m3 CSL:p8(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T71: (m1 CSL:p3(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p16(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

198

T72: (m1 CSL:p3(m3 CSL:p9(m6 AnnounceBeacon:p14)
(m7 LimitBeacon:p15)(m8 CSL:p17(m13 CabDisplay:p19)
(m14 CabDisplay:p19))))

T73: (m1 CSL:p1(m3 CSL:p6(m9 CSL:p18(m15 CabDisplay:p19))))

T74: (m1 CSL:p1(m3 CSL:p6(m9 CSL:p13(m15 CabDisplay:p19))))

T75: (m1 CSL:p1(m3 CSL:p7(m9 CSL:p18(m15 CabDisplay:p19))))

T76: (m1 CSL:p1(m3 CSL:p7(m9 CSL:p13(m15 CabDisplay:p19))))

T77: (m1 CSL:p1(m3 CSL:p8(m9 CSL:p18(m15 CabDisplay:p19))))

T78: (m1 CSL:p1(m3 CSL:p8(m9 CSL:p13(m15 CabDisplay:p19))))

T79: (m1 CSL:p1(m3 CSL:p9(m9 CSL:p18(m15 CabDisplay:p19))))

T80: (m1 CSL:p1(m3 CSL:p9(m9 CSL:p13(m15 CabDisplay:p19))))

T81: (m1 CSL:p2(m3 CSL:p6(m9 CSL:p18(m15 CabDisplay:p19))))

T82: (m1 CSL:p2(m3 CSL:p6(m9 CSL:p13(m15 CabDisplay:p19))))

T83: (m1 CSL:p2(m3 CSL:p7(m9 CSL:p18(m15 CabDisplay:p19))))

T84: (m1 CSL:p2(m3 CSL:p7(m9 CSL:p13(m15 CabDisplay:p19))))

T85: (m1 CSL:p2(m3 CSL:p8(m9 CSL:p18(m15 CabDisplay:p19))))

T86: (m1 CSL:p2(m3 CSL:p8(m9 CSL:p13(m15 CabDisplay:p19))))

T87: (m1 CSL:p2(m3 CSL:p9(m9 CSL:p18(m15 CabDisplay:p19))))

T88: (m1 CSL:p2(m3 CSL:p9(m9 CSL:p13(m15 CabDisplay:p19))))

T89: (m1 CSL:p3(m3 CSL:p6(m9 CSL:p18(m15 CabDisplay:p19))))

T90: (m1 CSL:p3(m3 CSL:p6(m9 CSL:p13(m15 CabDisplay:p19))))

T91: (m1 CSL:p3(m3 CSL:p7(m9 CSL:p18(m15 CabDisplay:p19))))

T92: (m1 CSL:p3(m3 CSL:p7(m9 CSL:p13(m15 CabDisplay:p19))))

T93: (m1 CSL:p3(m3 CSL:p8(m9 CSL:p18(m15 CabDisplay:p19))))

T94: (m1 CSL:p3(m3 CSL:p8(m9 CSL:p13(m15 CabDisplay:p19))))

T95: (m1 CSL:p3(m3 CSL:p9(m9 CSL:p18(m15 CabDisplay:p19))))

199

T96: (m1 CSL:p3(m3 CSL:p9(m9 CSL:p13(m15 CabDisplay:p19))))

T97: (m1 CSL:p1(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19))))

T98: (m1 CSL:p1(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19))))

T99: (m1 CSL:p1(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19))))

T100: (m1 CSL:p1(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19))))

T101: (m1 CSL:p2(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19))))

T102: (m1 CSL:p2(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19))))

T103: (m1 CSL:p2(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19))))

T104: (m1 CSL:p2(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19))))

T105: (m1 CSL:p3(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19))))

T106: (m1 CSL:p3(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19))))

T107: (m1 CSL:p3(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19))))

T108: (m1 CSL:p3(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19))))

T109: (m1 CSL:p1(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T110: (m1 CSL:p1(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T111: (m1 CSL:p1(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T112: (m1 CSL:p1(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T113: (m1 CSL:p2(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T114: (m1 CSL:p2(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T115: (m1 CSL:p2(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T116: (m1 CSL:p2(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

200

T117: (m1 CSL:p3(m4 CSL:p10(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T118: (m1 CSL:p3(m4 CSL:p10(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T119: (m1 CSL:p3(m4 CSL:p11(m10 CSL:p12(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

T120: (m1 CSL:p3(m4 CSL:p11(m10 CSL:p13(m16 CabDisplay:p19)
(m17 CabDisplay:p19))))

