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Abstract 

Texture analysis is an extremely active and useful area of research. In texture 

analysis the invariance to rotation, scale and translation are the most typical requirements. 

Moreover, gray-scale invariance is another important issue. It arises due to the reason that 

a texture may be subject to different levels of illumination. The purpose of this study is to 

investigate some inexpensive approaches that are rotation and gray scale invariant and to 

large extent translation invariant as well. There are three different types of approaches, 

which have been addressed in this dissertation. 

In the first approach, we have done texture analysis using Radon Transform (RT) 

based Hidden Markov Model (HMM). We have introduced three different ways to extract 

feature vectors using RT. All three give rotation invariant features, while the last one gives 

rotation, as well as, gray scale invariant features. The textures in this case have been taken 

from Brodatz album. Due to the inherent property of the RT, we are able to capture the 

directional features of a certain texture having arbitrary orientation. This set of directional 

features is used for training of an HMM specifically for that particular texture.  Once all 

the HMMs have been trained, the testing is carried out by using any one of these textures 

at random with arbitrary orientation.  

The second approach is somewhat similar to the above one except that the 

modified or Differential Radon Transform (DRT) has been used instead of the ordinary 

RT. Hence, we are able to capture the features which are not only rotation but are also 

gray scale invariant. The reason for the later property is that, unlike the ordinary RT, the 

DRT is based on the differences between adjacent pixels instead of summing up the pixel 

values. These features have been used for training of HMMs, one for each texture, and 

finally testing is carried out. Similar experimentation has been done to extract features 

using both RT and DRT to give low pass and high pass features. The training and testing 

process using HMM has been done in a similar manner as above. 

The third approach is quite different from the above two approaches. In this 

approach, some principal direction of a texture is defined. Once this direction is estimated, 

discrete wavelet transform is applied in that particular direction to extract features. These 

features are then used for classification by k-nearest neighbor classifier. There are two 

definitions of principal direction, which have been proposed in the dissertation. In case of 



  vi 
 

the first definition, Principal Component Analysis (PCA) has been used to estimate this 

principal direction. In the case of second definition, the direction has been found out by 

using DRT. This scheme is computationally lighter compared to the previous one. 

However, the third approach is limited to anisotrpic textures only unlike the previous 

method 

Considering the percentage of correct classification as figure of merit, we have 

carried out the performance evaluation of the above three approaches. The average result 

has been found to be 95% approximately and the best result has been close to 100%. 
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Chapter 1  

Introduction 

1.1 Problem Statement 

Texture is an intuitive concept that describes properties like smoothness, coarseness 

and regularity of a region [1]. It is a source of information about the natural scene and adds 

richness to a design for designers. It is attractive for computer scientists and is an important 

component in image analysis for solving a wide range of applied recognition, segmentation 

and synthesis problems. It also provides a key for understanding the basic mechanisms that 

underlie human visual perception. Texture plays an important role in the composition of 

natural images. Most of the natural surfaces exhibit texture, therefore, a successful vision 

system must be able to deal with the texture world. 

Texture analysis is an important and a useful area of study in machine vision, and its 

classification plays an important role in a variety of image processing applications such as 

robot vision, remote sensing, crop classification, content-based access to image databases, 

automatic tissue recognition in medical imaging, etc. Some examples of textures are shown 

in Fig. 1.1. These textures include recording of several kinds of wood, stone, soil, etc. If you 

are asked to label these pictures and for example, you are shown the picture of another part  
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Fig. 1.1  Images form the Vis Tex-database: from top to bottom and left to right: 

Bark0,Bark4, Bark6, Bark8, Bark9, Brick1, Brick4, Brick5, Fabric0, 
Fabric4, Fabric7, Fabric9, Fabric11, Fabric13, Fabric16, Fabric17, 
Fabric18, Food0, Food2, Food5, Food8, Grass1, Sand0, Stone4, Tile1, 
Tile3, Tile7, Water6, Wood1, Wood2. 

of the same tree as Bark0, you will be able to recognize it. If you make some errors initially, 

you may need some more training to become an expert in discriminating the different 

textures. However, if someone asks “how you recognized it?”, you will probably use 

arguments such as: “it looks more striped than the other", and “this one is more blurry and 

rough” etc to describe the textures. This example demonstrates that there is no real 

definition for texture [2][3] and definitely not an obvious quantitative measure to 

characterize it. Characterizing a real-world view or an image into different texture classes is 

often a trivial task for the human visual system, but is one of the most challenging problems 

in the field of computer vision and image processing. Accurate results have been achieved 

traditionally through various schemes, but only working under certain assumptions or 
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limitations. With the increasing popularity of digital libraries, image and multimedia 

databases, the texture analysis has become a focus area of research since image regions can 

be described by their textural properties.   

Texture analysis is a difficult problem due to diversity and complexity of natural 

textures. Over the years, it has received considerable attention in terms of both methodology 

and application. This has led to an ever-increasing interest in investigating the theoretical, as 

well as, the practical issues regarding texture feature extraction and classification. 

Translation, rotation, and scale invariant texture analysis methods have been areas of 

particular interest [4]. In these methods the rotation invariant texture analysis remains to be 

a challenge. A number of methods for rotation invariant texture classification have been 

proposed [5]. 

Apart from the requirements of rotation, scale and translation invariance for textures, 

the gray-scale invariance is another important issue. It arises due to the fact that a texture 

may be subject to different levels of illumination. The prime objective of this dissertation is 

to find out some new and novel techniques which shall give rotation, translation and gray-

scale invariant texture analysis.  

1.2 Contributions of the Dissertation 

This dissertation contains three main contributions in the field of texture analysis, by 

which the rotation, gray-scale and to a large extent the translation invariant texture analysis 

has been investigated. The first contribution is the extraction of rotation invariant features 

using Radon Transform (RT) and training the Hidden Markov Model (HMM) on these 

features to use them for testing and classification. We have proposed three schemes to 
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extract the feature using RT. In the first scheme we suppress the offset of RT to zero. This 

implies the projection of image along lines passing through the centre at different angles. 

However, these features are only rotation invariant. In the second scheme, we do not 

suppress the offset and find out the RT of the image. The different samples of different 

projections are used as feature vectors, which are translation as well as rotation invariant. 

The third scheme uses the variances of the different samples of different projections of RT 

and formulates the feature vectors for training the HMM. These feature vectors are rotation, 

translation and gray-scale invariant. A separate HMM is trained for each texture using the 

extracted set of directional features. Once all the HMMs have been trained, the testing is 

carried out by choosing any one of these textures at random with arbitrary orientation.  

The second major contribution is the rotation and gray-scale invariant texture 

analysis by using a newly proposed version of RT, which we named as “Differential Radon 

Transform” (DRT). The DRT gives absolute difference of the gray scale value of every two 

consecutive pixels along a line and then, all these differences are summed up. This process 

makes the features as rotation, as well as, gray-scale invariant. In the first case, pure DRT 

feature vectors are used to train the HMM for their arbitrary orientations. Testing and 

classification is then carried out by picking any one of these textures with arbitrary 

orientation. In the second case, we have used both RT, as well as, DRT features by keeping 

offsets equal to zero. This gave us somewhat low pass, as well as, high passes features. 

After training the HMM and carrying out the testing and classification, the results were even 

better than the previous case.  In the third case, we keep the offset of RT and DRT as non-

zero. A similar procedure was followed as in the above case. This gave us the best results 

among all the three cases. 
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The third contribution of this research work is the extraction of rotation and gray-

scale invariant features by considering some definition of principal direction (PD) of the 

texture. Two schemes have been proposed on the basis of different definitions of PD. In the 

first scheme, a rotation invariant texture analysis technique has been developed by using the 

Principal Components Analysis (PCA) to find out the PD. In this scheme PD is defined as 

the direction of eigenvector belonging to the maximum eigenvalue. Once PD is estimated, 

the Discrete Wavelet Transform (DWT) is used to extract features in that principal 

direction, which are rotation invariant. k-nearest neighbor (k-nn) is used subsequently for 

the classification purpose. In the second scheme, the PD is defined as the direction along 

which there is maximum activity. This maximum activity can be found by using DRT. Then 

DWT is applied in the principal direction to extract the features which are rotation as well 

as gray-scale invariant. These features are also classified using the k-nn classifier. In third 

contribution the proposed schemes are suitable for anisotropic textures only. 

The final contribution of the dissertation is towards the feature extraction of hand 

written characters and their classification through artificial neural networks. Since it is not 

in line with the rest of the dissertation, it has been given as appendix in the same form as it 

has been published in the Journal of Information Science and Engineering. 

1.3 Organization of the Dissertation 

Chapter 2 provides an overview of the techniques for texture analysis. It includes the 

definition and role of texture analysis in the machine vision. It also reviews the rotation, 

translation, scale and gray-scale invariant texture analysis methods. 



  6 
 

Chapter 3 describes the mathematical tools used for texture analysis in this 

dissertation. These include the PCA, RT, DWT, HMM and some classifiers.  

Chapter 4 is dedicated to rotation and gray-scale invariant texture analysis technique 

that uses RT to extract the features of different textures at different orientations which are 

used to train one dimensional HMM.  

In Chapter 5, the concept and motivation of DRT has been given. Features are 

extracted using DRT to train the HMM. This technique provides the features of the textures 

which are rotation as well as gray-scale invariant. Testing is carried out for variety of 

textures at different orientations by using the trained HMMs. It has also been verified that 

combined behavior of RT and DRT features improves the results.  

Chapter 6 deals with the rotation as well as gray-scale invariant texture analysis 

technique based on pre-defined PD.  In the first scheme DRT has been used to find out PD. 

DWT is then used to extract the features. In the second scheme, definition of PD is different 

and it is found using PCA. Both the schemes are suitable to handle the anisotropic textures 

only.  

Chapter 7 summarizes the work and gives suggestions for the future research. 

Appendix presents the paper on feature extraction of handwritten characters and 

their training on Artificial Neural Networks (ANNs) 
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Chapter 2  

Texture Analysis and its Background 

2.1 Introduction 

There are a number of things which can describe the texture. Examples are the 

physical roughness of a material, the spatial structure and self-similarity present in materials 

and the local spatial interactions to make up the whole. Texture is therefore, a very broad 

field and convincingly covers a wide range of concepts. 

Texture analysis is an important issue with applications ranging from remote sensing 

and crop classification to object-based image coding and tissue recognition in medical 

images. The primary objective of different methods presented is the rotation and gray-scale 

invariant texture analysis. This chapter reviews the efforts relevant to this aspiration. 

Essential basics of image texture and surface texture are summarized and some important 

texture analysis techniques are appraised. 

2.2 Definition of Texture 

Despite the importance of texture analysis, there exists no precise definition of the 

texture. Its definition remains unclear in the literature [6][7][8]. The main reason is that 

natural textures often display different, yet contradicting properties, such as regularity 

versus randomness, uniformity versus distortion, which can hardly be described in a unified 
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manner. Texture is easily perceived by human and is believed to be a rich source of visual 

information about the nature and three-dimensional shapes of physical objects. Generally 

speaking, textures are complex visual patterns composed of entities, or sub-patterns that 

have characteristic such as brightness, color, slope, size, etc. Thus texture can be regarded 

as a similarity grouping in an image [9]. The local sub-pattern properties give rise to the 

perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, 

directionality, coarseness, randomness, fineness, smoothness, granulation, etc., of the 

texture as a whole [10].  However, different texture definitions have also been proposed by 

Coggins [11]. These different definitions usually lead to different computational approaches 

for texture analysis. Few of these are given below: 

“We may regard texture as what constitutes a macroscopic region. Its 

structure is simply attributed to the repetitive patterns in which 

elements or primitives are arranged according to a placement rule” 

[12]. 

“A region in an image has a constant texture if a set of local 

statistics or other local properties of the picture function are 

constant, slowly varying, or approximately periodic” [13]. 

 “An attribute representing the spatial arrangement of the grey 

levels of the pixels in a region” [14]. 
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2.3 Texture Analysis 

Major goals of texture research in computer vision are to understand, model and 

process texture. A typical computer vision system can be divided into the components 

which are given in the Fig. 2.1. Texture analysis might be applied to various stages of the 

process. At the preprocessing stage, images could be segmented into contiguous regions 

based on texture properties of each region. At the feature extraction and the classification 

stages, texture features could provide cues for classifying patterns or identifying objects.  

As a fundamental basis for all other texture-related applications, texture analysis 

seeks to derive a general, efficient and compact quantitative description of the textures so 

Fig. 2.1 Components of Computer Vision System 

Input 

Classification 

Pre-Processing 

Feature Extraction 

Image Acquisition 

Post-Processing 

Decision 
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that various mathematical operations can be used to alter, compare and transform them. 

Most available texture analysis algorithms involve extracting the features and deriving an 

image coding scheme for representing the selected features. These algorithms may differ in 

the choice of features and the way of their representation. For example, a statistical 

approach describes a texture through image signal statistics which reflect the 

nondeterministic properties of spatial distribution of image signals. A spectral method 

extracts texture features from the spectral domain. A structural approach considers a texture 

as a hierarchy of spatial arrangements of well defined texture primitives. A probability 

model describes the underlying stochastic process that generates the textures. Following are 

the four major application domains relevant to the texture analysis [15]:  

Feature extraction: To compute a characteristic of a digital image which may numerically 

describe its texture properties. 

Texture classification: To determine to which of a finite number of physically defined 

classes (such as normal and abnormal tissue) a homogeneous texture region belongs. 

Texture discrimination: To partition a textured image into regions, each region 

corresponding to a perceptually homogeneous texture (leads to image segmentation). 

Shape from texture: To reconstruct 3D surface geometry from texture information. 

2.4 Texture Feature extraction 

Texture analysis has two major phases. The first phase is feature extraction in which 

the image information is reduced to a small set of descriptive features. The second phase 

deals with classification the features obtained from the texture. Various methods for texture 

feature extraction have been proposed during the last decades [16] [17] [18], but the texture 

analysis problem remains difficult and is still a subject of intensive research. 



  11 
 

A wide variety of methods for describing the texture features have been proposed. 

Tuceryan and Jain [19] divided texture analysis methods into four major categories which 

are statistical, geometrical, model-based and signal processing based. The following 

discussion provides brief introduction to each of the four categories.  

• Statistical methods  

Statistical methods analyze the spatial distribution of grey values, by computing 

local features at each point in the image, and deriving a set of statistics from the 

distributions of these features. With this method, the textures are described by statistical 

measures. Depending on the number of pixels defining the local feature, the statistical 

methods can be further classified into first-order (one pixel), second-order (two pixels) and 

higher-order (three or more pixels) statistics. The performance of these methods has been 

evaluated by Conner and Harlow [20].  

• Geometrical methods  

The geometrical methods of texture are based on the view that textures are made up 

of primitives with geometrical properties. In these methods, it is common either to compute 

statistical features, or to identify the placement rules that describe the texture. In these 

methods the textures comprise of the primitives that appear in certain patterns with some 

placement rules [21]. In general, it is difficult to extract these elements from real textures. 

Structural methods may also be used for texture synthesis.  

• Model-base methods  

Model-based texture methods try to capture the process that has generated the 

texture. In model-based features, some image model is assumed and its parameters are 

estimated for subimages. These model parameters are used as features. There are currently 
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three major model-based methods, which are, Markov Random Fields by Dubes and Jain 

[22], fractals by Pentland [23], and the multi-resolution autoregressive features introduced 

by Mao and Jain [24]. The detailed discussions of image models can be found in [25] by 

Kashyap, and [26] by Chellappa et al.  

• Signal processing(Transform) methods 

Signal processing methods perform frequency analysis of the textures. It can be 

achieved by using spatial filters or through filtering in the frequency domain. Randen et al 

[27] presented a comparative study of filtering for texture classification. Some well known 

signal processing method are based on Law’s Filter [28], Gabor filters [29][30], and pseudo-

Wigner distribution [31].  

A number of methods, mostly based on the above approaches, for describing texture 

features have been proposed. Each one has its own definition of the features which is used 

in the classification. Statistical approaches do not attempt to understand explicitly the 

hierarchical structure of the texture. Instead, they deal with the texture indirectly through the 

non-deterministic properties that govern the distributions and relationships between the grey 

levels of an image. Methods based on second-order statistics (i.e. statistics given by the 

pairs of pixels) have been shown to achieve higher discrimination rates as compared to the 

transform-based and structural methods [32]. Human texture discrimination in terms of 

texture statistical properties is investigated in [33]. Accordingly, the textures in grey-level 

images are discriminated spontaneously only if they differ in second order moments. Equal 

second order moments, but different third-order moments require deliberate cognitive effort. 

This may be an indication that for automatic processing, the statistics up to the second order 

may be the most important [34]. The most popular second-order statistical features for 



  13 
 

texture analysis are derived from the so-called co-occurrence matrix [16]. These features 

have a potential for effective texture discrimination in biomedical-images [35][36]. The 

approach based on multidimensional co-occurrence matrices was developed to outperform 

wavelet packets (a transform-based technique) when applied to texture classification [37]. 

Also some works are based on the analysis of some of the second order statistical properties 

of the texture [38] such as the co-occurrence matrix [39].  

Several stochastic models have also been proposed for texture modelling and 

classification. They include Gaussian Markov random fields models [40][41], Moving 

Average (MA), Autoregressive (AR), and Autoregressive Moving Average (ARMA) 

models [42][43]. A fractal model has been presented in [44][45], in which the statistical and 

harmonic features have been combined. Signal processing techniques are mainly based on 

texture filtering followed by energy evaluation. A review of major filtering approaches and 

a comparative study has been performed in [46]. Multi-channel texture analysis systems, 

which use a filter bank instead of a single filter, have been described in [47][48]. In 

particular, Gabor filtering has been extensively studied in [49][50]. 

A challenging problem in image classification is to extract rotation-invariant texture 

features. A Markov Random Field (MRF) [51] is a powerful tool to model the probability of 

spatial interactions in an image and has been extensively applied to extract texture features 

for image classification. As features based on MRF models are generally rotation-variant 

[52], hence application of MRF models for classifying rotated images is strictly limited.  

Cohen et al. [52] modelled the texture as Gaussian Markov Random Field (GMRF) and 

used the maximum likelihood techniques to estimate the rotation angle and scale 
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parameters. The problem with this method is that the likelihood function is highly nonlinear 

and local minima could also be there. Chen and Kundu [53] have used multi-channel sub-

band decomposition along with an HMM to solve the problem. They have used a quadrature 

mirror filter for decomposition of the image into sub-bands, and then modelled the features 

of these sub-bands by an HMM. In that method, the textures with different orientations are 

assumed to be in the same class. Since textures with different orientations create different 

signal components for each subband, this increases the variations in the feature space. 

Hence, as the number of classes increases, the performance may deteriorate. 

The GMRF model has been shown to be a powerful method of texture analysis and 

classification [41]. The GMRF parameters and noise source variance of a given model can 

be estimated for a texture using the least squares approach, which are often successfully 

employed as features for texture classification.  However, the traditional GMRF models are 

not rotation invariant due to the structure of their neighbour sets. 

Kashyap and Khotanzad [25] constructed an Isotropic Circular GMRF (ICGMRF) 

model to extract rotation-invariant features. The ICGMRF model is defined in a circular 

neighbourhood system. The values of the neighbours which are not located on the image 

grid are bilinearly interpolated. The values of all equiradius pixels are used to generate only 

one feature. The ICGMRF model, therefore, discards the directional information in the 

possibly anisotropic textures [52]. To capture directional information, the ICGMRF model 

was extended into a novel Anisotropic Circular GMRF (ACGMRF) model given in [54]. 

In the past decade, wavelet theory has been widely used for texture classification 

purposes [55][56][57][58][59][60]. In [61], the local spectral histograms, consisting of 



  15 
 

marginal distributions of responses from a bank of filters, have been considered as the 

feature statistics. Although, many of the aforementioned methods have good classification 

performances, but they exhibit a high misclassification rate when the texture is rotated. 

Rotation invariant texture classification using wavelets are presented in [62] and [63]. Haley 

and Manjunath [63] employed a complete space-frequency model using Gabor wavelets to 

achieve a rotation-invariant texture classification. However, this method is also 

computationally complex. In [64], the authors present a rotation invariant model based 

texture classification method. In this work the texture is modelled as the output of a linear 

system driven by a binary image. The texture feature extraction is constituted of two steps. 

The first one consists of estimating the binary excitation, which is assumed to be the 

efficient presentation of the texture for classification purposes, by means of some blind 

deconvolution procedure. In the second step, a basis of moment invariants is employed to 

characterize the Autocorrelation Function (ACF) of the binary excitation. This technique is 

applied to 15 classes and Percentage of Correct Classification (PCC) is considered as the 

figure of merit which has been reported as 88.3%. 

Wu and Wei [65] created one-dimensional (1-D) signals by sampling the images 

along a spiral path and used a quadrature mirror filter bank to decompose the signals into 

subbands and calculated several features for each subband. In this method, uniform 

fluctuations along the radial direction do not correspond to the uniform fluctuations in the 

1-D  signals which is due to the increasing radius of the spiral path. Therefore, the 

variational information in the radial direction is deteriorated. Do and Vetterli [66] used a 

steerable Wavelet-Domain HMM (WD-HMM) and a Maximum Likelihood (ML) estimator 

to find the model parameters. However, the rotation-invariant property of the estimated 



  16 
 

model relies on the assumption that the ML solution of WD-HMM is unique and the 

training algorithm is able to find it. They examined the rotation invariance property of their 

method for 13 texture images from Brodatz album. 

There are different techniques in literature to estimate the orientation of the image. 

These include the methods based on image gradients [67], angular distribution of signal 

power in the Fourier domain [68][69] and signal autocorrelation structure [67]. RT has been 

widely used in image analysis. Magli, et al. [70] used RT and 1-D continuous WT to detect 

linear patterns in the aerial images. Warrick and Delaney [71] used a localized RT with a 

wavelet filter to accentuate the linear and chirp-like features in synthetic aperture radar 

(SAR) images. Leavers [72] used RT to generate the taxonomy of shape for characterization 

of abrasive powder particles. Do and Vetterli [73] use ridgelet transform, which is a 

combination of finite RT and 1-D discrete wavelet transform, to approximate and denoise 

the images with straight edges. Ridgelet transform is also used to implement curvelet 

decomposition, which is used for image denoising [74].  

Due to the inherent properties of RT, it is a useful tool to capture the directional 

information of the images. Khouzani and Zadeh [60] utilized RT to convert the rotation to 

translation and then apply a translation-invariant WT to the result to extract the texture 

features. Optimal numbers of projections for RT are proposed in this method. The extracted 

features generate an efficient orthogonal feature space.  As a result of summing pixel values 

to generate projections in RT, this technique is robust to additive white noise.   Although the 

polar concept has been previously used in the literature to achieve the rotation invariance, 

but the proposed method is different to the previous ones. Instead of using the polar 
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coordinate system, this method uses the projections of the image in different orientations. In 

each projection, the variations of the pixel intensities are preserved even if the pixels are far 

from the origin. Therefore, the method does not measures the intensity variations based on 

the location in the image. Furthermore this method captures global information about the 

texture orientation, therefore, it preserves the directional information. This method is 

computationally complex. In the first step, the RT of the texture is calculated and then in the 

second step, a translation-invariant wavelet transform is used to calculate the frequency 

components and to extract the corresponding features. 

Khouzani and Zadeh [75], also employed the RT to capture the directional 

information and to adjust the orientation of the texture for feature extraction. This is similar 

to the manual texture analysis in which, an unknown texture is rotated so that it could match 

with some known one. Analyzing the textures along their principal directions allows the 

creation of features with smaller intra-class variability, thus allowing higher separability. In 

this technique, the principal direction of the texture is estimated using RT and then the 

image is rotated to place the principal direction at zero degrees. DWT is then employed as a 

next step, to extract the features. The method for estimation of the principal direction is 

robust to additive white noise and illumination variations. Though the proposed method for 

principal direction estimation is well suited to most of the ordinary textures, however, 

complex textures may need complex techniques. For example, some textures may have 

straight lines along several directions. This may create an ambiguity for the direction 

estimation. In this situation, more complex techniques may be employed to estimate the 

principal direction. 
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Chapter 3  

 Computing Tools 

3.1 Introduction 

In this chapter we shall present some basic essentials of the computing tools used in 

this dissertation. These include Principal Component Analysis (PCA), Radon Transform 

(RT), Wavelet Transform (WT), Classifiers and Hidden Markov Model (HMM). In 

describing these essential tools, we have limited ourselves to the discussion relevant to this 

dissertation. 

3.2 Principal Component Analysis 

Principal component analysis (PCA) is a frequently used statistical technique, 

widely known as Karhunen-Loeve (KL) transformation, for optimal lossy compression of 

data under least square sense. It involves a mathematical procedure that transforms a larger 

number of correlated variables into a smaller number of uncorrelated variables called 

principal components. It is a way of identifying patterns in data, and expressing the data in 

such a way as to highlight their similarities and differences [76]. Since patterns in data can 

be difficult to find out especially in case of the data of high dimensions, where the luxury of 

graphical representation is unavailable, PCA is a powerful tool for analysis of such data.  
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Fig. 3.1 PCA Transformation (a) Eigenvector of an object (b) Object along eigen-axis 

PCA provides an orthogonal basis vector-space which is also known as eigen-space, for 

presentation of the original data. The eigen-space is a subspace of the image-space spanned 

by a set of eigenvectors of the covariance matrix of the trained images. The covariance 

matrix is constructed by performing PCA, which rotates the dataset to its primary axes that 

lie along the eigenvectors with the highest modes of variation as given in Fig. 3.1. 

Eigenvectors with the highest associated eigen-values represent the highest modes of 

variation in the dataset of images, whereas, the eigen-vectors with the lowest eigen-values 

represent the lowest modes of variation. In order to find out the principal components the 

covariance matrix, eigenvalues and eigenvectors are needed. Following is the mathematical 

explanation of PCA. 

Consider a random vector population x given as:   

 ( )1 2, , , .nx x x=x   (3.2.1) 

The mean of this population will be 

 { }x Eµ = x   (3.2.2) 

and the n×n covariance matrix will be  
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 {( )( ) }T
x xE µ µ= − −C x x   (3.2.3) 

With zero mean the covariance matrix becomes  

 {( )( ) }TE=C x x   (3.2.4) 

For an n×n matrix C, there are n scalars, , 1,2, ,  i i nλ = , such that 

 0i Iλ− =C   (3.2.5) 

The iλ  are called eigen-values of the matrix. The set of n vectors ie  such that 

       1,2, ,i i i i nλ= =Ce e   (3.2.6) 

are called the eigenvectors of C. They are n×1, and each corresponds to one of the 

eigenvalue.  The data set which has the most significant amount of energy corresponds to 

the vector ie  with maximum eigenvalue, maxλ . The direction of this eigenvector is the 

principal direction of the image. We are using PCA method for this very purpose which is to 

find out the direction of the eigenvector corresponding to the largest eigenvalue. 

3.3 Radon Transform 

The Radon transform (RT) is a mathematical technique that maps events in an image 

or in a data set with different characteristics, e.g. curvatures or slopes, into different 

locations of a new space, called the Radon space. It has got popularity in seismic data 

processing, image processing, tomography, etc. The RT of a function ( ),f x y  is defined as 

the integral along a straight line at a distance s  from the origin and at angle of inclination 

θ  from y-axis. Its mathematical expression can be written as 

 ( , ) ( , ) ( cos sin )g s f x y x y s dxdyθ δ θ θ
∞ ∞

−∞ −∞

+ −∫ ∫  (3.3.1) 
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where s−∞ ≤ < ∞  and 0 θ π≤ < . The delta function defines integration only over this 

line. The new rotated coordinate system ( ),s u  is given as cos sins x yθ θ= +  and 

sin cosu x yθ θ= − + . Similarly the inverse coordinates are given as  cos sinx s uθ θ= −  

and sin cosy s uθ θ= + . In terms of ( ),s u , Eq. (3.3.1) can be written as   

 ( , ) ( cos sin , sin cos )g s f s u s u duθ θ θ θ θ
∞

−∞

= − +∫  (3.3.2)     

( ),g s θ  is a summation of ( ),f x y  along a line at an angle θ from y-axis and distance s 

from the origin as shown in Fig. 3.2. ( ),f x y  is the given function and ( ),R s θ indicates its 

RT. The RT maps the spatial domain ( ),x y  to the projection domain ( ),s θ , in which each 

point corresponds to a straight line in the spatial domain. 

 

Fig. 3.2 Radon Transform 
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3.4 Properties of Radon Transform 

The RT has several useful properties, which can be summarized as follows: 

1. Linearity: If RT of 1( , )f x y  is given by 1( , )g s θ  and RT of 2 ( , )f x y is given 

by 2( , )g s θ , then RT of linear combination 1 1 2 2( , ) ( , )a f x y a f x y+  will be given 

by ( ) ( )1 1 2 2, ,a g s a g sθ θ+ . 

2. Space limitedness: If ( , ) 0,  for ,  
2 2
D Df x y x y= ≥ ≥  then 

( , ) 0,  for s
2

Dg s θ = >  

3. Symmetry in ( ),s θ  domain : RT of  ( , )f x y  i.e. ( , )g s θ  has the following property 

( , ) ( , )g s g sθ θ π= − ±  

4. Periodicity  in ( ),s θ  domain: RT of  ( , )f x y  i.e. ( , )g s θ  has the periodicity 

property given as 

( , ) ( , 2 )g s g s kθ θ π= +       

where  k  is an integer. 

5. Shift: If ( , )f x y goes through a translation i.e. 0 0( , )f x x y y− − , then its RT 

becomes 0 0( cos sin , )g s x yθ θ θ− − . 

6. Rotation by 0θ : If  ( ),g s θ  is RT of ( ), ( , )pf r f x yφ = , then RT of   ( )0,pf r φ θ+  

is ( )0,g s θ θ+ . 

7. Scaling: If ( , )f x y  is scaled by a factor ‘a’, then RT of ( , )f ax ay  is given as  

( )1 , ,  a 0g as
a

θ ≠ . 
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8. Mass Conservation: This is like Parsval’s theorem i.e.  

( ) ( ), , ,   f x y dxdy g s dsθ θ
+∞ +∞ +∞

−∞ −∞ −∞

= ∀∫ ∫ ∫  

9. One-dimension Fourier Transform of RT: One-dimensional Fourier transform of RT 

at constant θ is two-dimensional Fourier transform of ( , )f x y  at constant θ. The one 

dimensional Fourier Transform of ( ),g r θ  is given as 

 
( ) ( )

( )

2

2

, ,

             = cos sin , sin cos

j s

j s

G g s e ds

f s u s u due ds

πζ

πζ

ζ θ θ

θ θ θ θ

−

+∞ +∞
−

−∞ −∞

− +

∫

∫ ∫
 (3.3.3) 

Perform the co-ordinate transformation from s,u to x,y the above equation becomes 

  where 1duds dxdy J J= =   (3.3.4) 

 

( ) ( )

( ) ( )

( )

2

2 cos sin

, ,

             = ,

             = cos , sin

j s

j x y

G g s e ds

f x y e dxdy

F

πζ

πζ θ θ

ζ θ θ

ζ θ ζ θ

−

+∞ +∞
− +

−∞ −∞

∫

∫ ∫  (3.3.5) 

where ( )cos , sinF ζ θ ζ θ is the two dimensional Fourier Transform of ( ),f x y . 
 
3.5 Wavelet Transforms 

A considerable interest has arisen in recent years regarding new transform 

techniques that specifically address the problems of image compression, edge and feature 

detection, and texture analysis. The techniques come under the headings of multi-resolution 

analysis, time frequency analysis, pyramid algorithms, and wavelet transforms [77]. 

Wavelets are well-suited for approximating data with sharp discontinuities. The Wavelet 

Transform uses multi-resolution technique by which different frequencies are analyzed with 
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different resolutions. Wavelet transform is an excellent scale analysis and interpreting tool 

[78]. It transforms image into multiresolution representation, which analyzes image 

variations at different scales and provides good energy compaction (high image information 

content) as well as adaptability to human visual system. Wavelet transform offers high 

temporal localization for high frequencies while offering good frequency resolution for low 

frequencies.  

Wavelet coefficients of a signal ( )f x  are the projection of the signal onto the multi-

resolution subspaces  

 { }, ( ),j j kV span x k Zϕ= ∈   (3.4.1) 

and 

 { }, ( ), ,j j kW span x k Z j Zψ= ∈ ∈  (3.4.2) 

 
where the basis functions , ( )j k xϕ and , ( )j k xψ  are constructed by dyadic dilations and 

translations of the mother scaling and mother wavelet functions ( )xϕ  and ( )xψ , 

respectively, given as  

 
/ 2

,

/ 2
,

( ) 2 (2 )

( ) 2 (2 )

j j
j k

j j
j k

x x k

x x k

ϕ ϕ

ψ ψ

⎫= − ⎪
⎬

= − ⎪⎭
  (3.4.3) 

Similarly, the 2-D basis functions which are the products of scaling and wavelet 

functions are given as 
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(a) 
 

(b) 
 
 
 

Fig. 3.3 Block diagram of separable wavelet filter bank in 2-D:  (a) The 
analysis filter bank (b) The synthesis filter bank 
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Fig. 3.4 Two level decomposition of Brodatz texture D1 (a) Original image (b) Organization 

of the detail images within the wavelet transform (c) Decomposed image at level 2 
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  (3.4.4) 

where Hψ  gives horizontal edges, Vψ  gives vertical edges and Dψ  gives variations along 

the diagonal. The wavelet decomposition of a 2-D signal can be achieved by applying the 

wavelet decomposition along the rows and columns of the image separately [79]. After 

decomposition, an original image has been divided into four subimages, where one is the 

low-resolution approximation sub-image and three difference sub-images. Three difference 

sub-images are categorized as horizontal detail image, vertical detail image and diagonal 

detail image.  Fig. 3.3 (a) illustrates the block diagram of the image being decomposed into 

4 wavelet subband images at the first level and Fig. 3.3 (b) describes the reconstruction of 

the image from the decomposed 4 wavelet subband images. Fig. 3.4 describes 2 level 

wavelet decomposition of Brodatz texture D1. In this example, the wavelet ‘db4’ is used for 

decomposition. 

3.6 Classifiers 

A work able definition of Pattern Recognition is given by Vapnik [80]:  

A person (the instructor) observes the occurring situations and 

determines to which of the class, among c classes, each one of them 

belongs. It is required to construct a device (the classifier) which, 

after observing the instructors procedure, will carry out the 

classification approximately in the same manner as the instructor.  

According to Jain et al. [81]: 
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Pattern recognition is a general term to describe a wide range of 

problems like recognition, description, classification, and grouping 

of patterns. These problems are important in a variety of 

engineering and scientific disciplines such as biology, psychology, 

medicine, marketing, artificial intelligence, computer vision and 

remote sensing. 

The design of a pattern recognition system essentially involves the following four 

steps: data acquisition, preprocessing, feature extraction and finally the decision making. A 

well-defined and sufficiently constrained recognition problem will lead to a compact pattern 

representation and a simple decision making strategy. An important and desired attribute, of 

the most pattern recognition system, is learning from set of examples. The four best-known 

approaches for pattern recognition are: template matching, syntactic matching, statistical 

classification and neural networks. The simplest and earliest approach to pattern recognition 

is based on template matching. The pattern to be recognized is matched against the stored 

template taking into account the translation, rotation and scaling. The similarity measure, 

often a correlation, may be optimized based on the available training set. It is 

computationally demanding approach, but the availability of faster processors has now 

made this approach more feasible.  In the syntactic approach [82][83] pattern is viewed as 

being composed of simple sub-patterns which are themselves built from yet simple sub-

patterns. The elementary sub-patterns to be recognized are called primitives. The given 

complex pattern is represented in terms of the interrelationships between these primitives. 

This paradigm has been used in situations where the patterns have a definite structure which 

can be captured in terms of a set of rules, such as EKG waveforms, textured images, and 
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shape analysis of contours. In the statistical approach, the patterns are described as random 

variables, from which class densities can be inferred. Classification is thus based on the 

statistical modeling of data. Neural networks have the ability to learn complex non-linear 

input-output relationships. Sequential training procedures are being used in the networks to 

adapt them according to the data. This approach is strongly related to the statistical method, 

since they can be regarded as parametric models with their own learning schemes. 

Following two could be the reasons of recognition of patterns. As a first reason, it is 

assumed that the input pattern is identified as a member of a predefined class and that use of 

this information is made during classifier design. This type is called supervised 

classification. In case of the reason the task is second task consists of unsupervised 

classification in which the pattern is assigned to a hitherto unknown class.  

A schematic representation of a recognition system is shown in the Fig. 3.5. A 

preprocessing module can be applied to segment the pattern of interest from the 

background, remove noise, normalize the pattern, and any other operation which will 

contribute in defining a compact representation of the pattern. A recognition system can be 

operated in two modes. First one is training and classification. In the training mode the 

feature extraction module finds the appropriate features for representing the input patterns. 

Then, the classifier is trained to partition the feature space. A feedback path allows 

optimizing the pre-processing and feature extraction strategies. In the classification mode, 

the trained classifier assigns the input pattern to one of the pattern classes, based on the 

measured features. The dataset used during construction of the classifier, i.e. training set, is 

different from the one used for evaluation, i.e. the test set. 
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Fig. 3.5 The Recognition Process 

It can be summarized that a classifier is a formula, algorithm or technique that 

outputs a class label for any feature vector, x, applied to its input. Classifying patterns is 

then equivalent to assigning a class to a particular feature vector. Designing a classifier, 

means finding the decision rule i.e. the rule by which, given feature vector x is assigns it to 

class mi. It can be seen that the decision rule partitions the feature space into separate 

regions. If a feature vector is located inside a particular region, it will be assigned to the 

class associated with that region. Following are the different types of the classifier.  

3.6.1 The Bayes Classifier 

The fundamental idea used in statistical pattern recognition is Bayes decision theory 

[84]. The c classes, mi (i = 1,2,…,c), are treated as random entities that occur with a proiri 
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probabilities p(mi), i = 1,2, …, c. The a posteriori probability of being in class mi for an 

observed feature vector x is calculated using Bayes rule 

 
( ) ( )

( )
( )

i i
i

p m p m
p m

p
=

x
x

x
  (3.5.1) 

where ( )ip mx  is the class-conditional probability density function of x, given the class im  

and ( )p x  is the normalization term calculated by law of total probabilities 

 
1

( ) ( ) ( )
c

i i
i

p p m p m
=

= ∑x x   (3.5.2) 

so that the posteriori probabilities sum to 1 

 
1

( ) 1
c

i
i

p m
=

=∑ x   (3.5.3) 

( )p x  is the unconditional probability density governing the distribution of all x irrespective 

of their class membership. 

A number of well known decision rules, including the Bayes rule, the maximum 

likelihood rule and Neyman-Pearson rule are available to define the decision boundary. The 

Bayes rule is based on finding the class that gives the maximal posterior probability taking 

into account the loss. Define the loss, ( ), 1i j ijl m m δ= − , as the penalty of wrongly 

classifying a pattern in mi when it should have been classified in class mj [85]. The optimal 

Bayes decision rule for minimizing the risk can be stated as: the function ( )ˆ im m=x , i.e. the 

function that assigns a class label to input feature vector for which the conditional risk 

 ( ) ( ) ( )
1

,
i

c

m i j j
j

R l m m p m
=

= ∑x x   (3.5.4) 

is minimized. The loss function as defined above can be written as  
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 ( ) 1,  
, 1

0,    i j ij

i j
l m m

i j
δ

≠⎧
= − = ⎨ =⎩

  (3.5.5) 

so that conditional risk becomes the conditional probability of misclassification. 0 loss is 

assigned to correct classification and 1 loss to any misclassification. For this choice of loss 

function, the Bayes decision rule also called the maximum posteriori (MAP) rule, which 

assign the input feature vector to class mi if  

 ( ) ( ) , for all i jp m p m j i> ≠x x   (3.5.6) 

Employing Bayes formula (3.5.1) gives the equivalent rule in terms of the class like-lihoods 

 ( ) ( ) ( ) ( ) ( ) if , for all i i i j jm m p m p m p m p m j= ≥x x x  (3.5.7) 

since the estimation of the class a priori probabilities ( )ip m is usually not a big problem. 

The design of the Bayes classifier is based on the class conditional likelihoods given in eq. 

(3.5.7) or on the a posteriori probability densities as in eq. (3.5.6) which is optimal. Even 

when the Bayes classifier is optimal, still some misclassification errors can occur. This is 

due to the nature of the feature space in which the class likelihoods overlap so that vectors 

of class mi may fall outside region Ri. The Bayes error ε  defined as 

 ( ) ( )
j

j i

i i
R

p m p m d
U

ε

≠

= ∑∫ ∫ x x   (3.5.8) 

is the expectation of finding feature vectors into wrong decision regions. Since the Bayes 

classifier is optimal, no other classifier exists which leads to a lower misclassification error. 

To reduce the misclassification error there is a need to construct other features so that less 

overlap exists between the class likelihoods.  

Some practical limitations on constructing the Bayes classifier is that it requires perfect 

knowledge of the relevant probability densities which is not available in practice and must 
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be inferred from the available data. One approach is to assume a certain parametric form 

(like a Gaussian) for the class conditional likelihoods and estimate the parameters governing 

this distribution called parametric classifier. Another one is to estimate the class conditional 

likelihoods directly from the data in local neighborhood in feature space called non-

parametric classifiers.  

3.6.2 Neural Network Classifiers 

The foundations of neural networks can be traced back to the single layer perceptron 

[86] which was capable of implementing linear decision boundaries in feature space. A 

variety of nets exist which are capable of modeling more complex decision boundaries. 

Some good textbooks covering the topic are [87] [88] [89] [90]. 

A typical example of a neural network is the feedforward multilayer perceptron 

depicted in Fig. 3.6. It consists of several neurons grouped in several layers. Neurons 

between different layers are interconnected. In this feed-forward architecture the features 

are received in the input layer and propagated through the hidden layers to the output layer. 

Each neuron processes the signal it receives and sends the output to the following layer. The 

jth  output of the neuron, uj,  of any layer is the weighted sum of all the inputs, i.e. 

 
1

[ ] [ ]

0

sn
s s

j ij i
i

u w x
−

=

= ∑   (3.5.9) 

where [ ]s
ijw  represents the synaptic weights of the jth neuron which are multiplied by 

the inputs [ ] [ 1]s s
i ix o −=  to obtain outputs [ ]s

io , sn  is the number of neurons in the sth layer 

where 
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Fig. 3.6 Multilayer perceptron with an input layer (d neurons), a hidden layer (Nh 

neurons) and an output layer (c neurons) 

 

1,2,3s = . ( )juψ  is the activation function used for each unit. The output of the jth  unit in 

the sth   layer can be written as  
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where 1 [ 1]s s
j iy o− −= . 

The activation functions of the output layer are often the Heavyside step function  

( ( ) 1xψ =  if x > 0 and 0 otherwise), so that the output of the neural network is a 

configuration of 0's and 1's. With each such configuration, a pattern class is associated. 

Designing the classifier, often called the training of the net, is done by assigning the weights 

an initial value, often random, and then by adjusting their values. The values are adjusted in 
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such a way that if a feature vector is fed at the input of the network, the output layer reflects 

the corresponding class. This is usually performed by iteratively feeding the samples of the 

design set at the input of the network and observing the output error which is used for 

adjusting g the weights. The number of times a sample is drawn from the design set to 

update the weights is called the learning time and the rule to update them is called the 

learning rule. An important rule is the back-propagation rule [91] which made it possible to 

train multilayer perceptrons. A popular error function used to derive this rule is the sum of 

the squares of the difference of the output of the network and the desired output. This error 

function can be differentiated with respect to the network weights and these derivatives can 

than be used to find weight values which minimize the error. Placing this scheme into the 

same picture as before, it can be seen that neural networks also partition the feature space in 

several decision regions. The eq. (3.5.10) assigns a feature vector x to a particular class via 

the output yk. The possible forms that the decision boundaries can assume are specified by 

the architecture of the net. Architecture of the net means the number of nodes, their 

connectivity and activation functions. The exact form of the decision boundary is 

determined by the weights which are adapted during training. 

The reason for calling this scheme a “neural network" is that it bears some 

resemblance with the structure of the brain. In a very simplified form the brain consists of 

neurons which are connected by dendrites through which signals (in the form of electrical 

and chemical impulses) propagate. Making this comparison could give neural networks 

more credit than they deserve: it makes them look like if they are easily capable of 

mimicking human intelligence. However, if we look at (3.5.10) it is obvious that they 

represent nothing more than a complex function depending on the weights and activation 
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functions, which will assign each point in feature space to a particular class, i.e. the network 

is a model for the decision boundary. 

3.6.3 Parametric Classifiers 

Parametric classifiers assume that the class conditional likelihoods have a known 

functional form which depends on a few parameters. The classifier is designed by 

estimating the distribution parameters from the design set. The pattern recognition problem 

can be seen as an optimization problem: given a features extraction scheme and a loss 

matrix, one desires to construct the classifier which minimizes the risk. This classifier is 

called the Bayes classifier. For the Bayes classifier, the decision rule is given by 

 ( ) ( ) ( )ˆ  if i i jm m R m R m= ≤x x x   (3.5.11) 

The above decision rule is employed to classify the network. Alternatively, the decision 

boundary between class im  and jm contains all points which satisfy  

 i jd ( ) = d ( )x x   (3.5.12) 

where ( ) ( ) ( )id i ip m p m=x x . A vector is then classified according to the decision region 

to which it belongs. Many parametric classifiers can be designed using different forms or 

mixtures of parametric distributions. If we consider a Gaussian classifiers, which assumes 

that the class conditional probabilities are Gaussian, i.e. 

 ( )
( )

( ) ( )11
21

2

T
i i i

i N
i

p m e
π

−− − −
=

x µ Σ x µ
x

Σ
 (3.5.13) 

N is dimensionality of the feature space and  

 [ ]E=iµ x   (3.5.14) 

is the mean of the distribution and  
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 ( ) ( )T
i E ⎡ ⎤Σ = ⎣ ⎦i ix - µ x - µ   (3.5.15) 

is the covariance matrix and is symmetric by definition. Its diagonal element jjΣ is the 

variance of the xj of class mi; the off diagonal element jkΣ is the covariance of xj and xk of 

class mi. This distribution thus depends on ( )1 / 2N N N+ − parameters. Estimators of these 

parameters are easily obtained by the maximum likelihood method (or by Bayesian 

inference theory) and can be found in any standard work on statistics or statistical pattern 

recognition. 

To find the decision boundaries we evaluate the di using eq (3.5.12). Because of the 

exponential form it is convenient to take the logarithm of the di 
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( ) ( ) ( )1
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x x

x µ x µ
 (3.5.16) 

Dropping the constant term the above express becomes 

 ( ) ( ) ( ) ( )11 1ln ln ln
2 2

T
i i i id p m −== − Σ − − Σ −i ix x µ x µ  (3.5.17) 

The decision boundary for two class problem is given as  

 ln ( ) ln ( )i jd d=x x  (3.5.18) 

or 
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 (3.5.19) 

Since this equation does not contain terms higher than the second order statistics in 

x, hence this decision region is hyperquadric. A Gaussian classifier thus places a second 
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order decision surface between each pair of the pattern classes. If the class likelihoods are 

indeed Gaussian, no more complex boundaries are required to minimize the loss. 

3.6.4 Non-Parametric Classifier 

In contrast to the parametric classifier, this section deals with the classifiers which 

do not assume an a priori known parametric form for the class likelihoods 1( )p mx , but 

estimates them directly from the design samples. A parametric classifier is designed by 

estimating the required density parameters. After design, all relevant densities are known in 

the feature space and a sample is classified using the Bayes decision rule. All parametric 

classifiers operate somewhat similar manner. If a given sample is to be classified, only the 

densities around that sample are estimated from the design set. Thus non-parametric 

classifiers implement the decision rule locally and the likelihoods need to be estimated for 

each sample ordered to the classifier. Suppose L design samples are available and we need 

to estimate the probability density around x  in feature space. We could construct a region 

ℜ around x and then count the number of samples that belong to this region. Then an 

estimate of the density will be given as  

 ( ) kp
LV

x   (3.5.20) 

where k is the number of samples in the region ℜ  and V is the volume of the regionℜ .  

This estimate depends on L and the regionℜ . Since the first is given and fixed, we 

can only control the latter. The larger the region ℜ , the more the samples k  it contains and 

the better will be the estimate. However, eq. (3.5.20)  implicitly assumes that ( )p x remains 

constant over ℜ and this assumption will become less valid for the largeℜ . It follows that 
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the choice for ℜ  is not trivial and should depend on the given design set for optimum 

classifier design. Given the design set and a sample to be classified, there are two different 

approaches to evaluate (3.5.20): 

1. Parzen windows approach: Fix the region ℜ  and count k . 

2. k-nn Classifier: Fix count k  and determine the volume V. 

Both approaches are well documented in the literature. Since the latter has been frequently 

used in this dissertation, it will be explained in the following section. 

3.6.4.1 k-nn Classifier 

The k Nearest Neighbor (k-nn) classifier relies on eq (3.5.20) in which k is fixed. To 

estimate the density around x, its k nearest neighbors from the design set are sought. By 

doing this one assumes that the feature space is a metric space, i.e. there exist some function 

( ),d x y which expresses the distance between two points x and y in feature space. A 

frequently used one is the Mahalanobis distance given as: 

 ( ) ( ) ( )1

1

,
N

T

i

d −

=

= − Σ −∑x y x y x y   (3.5.21) 

where Σ  is the covariance matrix estimated from the design set. If Σ  is the identity, we 

obtain the Euclidian distance 

 ( ) ( )2

1

,
N

i

d
=

= −∑x y x y   (3.5.22) 

If we use the Mahalanobis distance, the region ℜ  is a hyperellipsoid in feature 

space, whereas, in the Euclidean case it is a hypersphere. When the Euclidean distance 

measure is used, some features (the ones with the largest variance across the design set) 
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tend to dominate this measure. It is therefore useful to normalize the features. If we denote 

the ith feature from the jth pattern by j
ix  then normalization is performed by 

 
j

j i i
i

i

x xx
σ
−′ =   (3.5.23) 

where ix  is the mean and 2
iσ is the variance of the ith feature defined as  
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= =

= = −∑ ∑   (3.5.24) 

This normalization is unaffected by outliers. These are points in feature space which, 

due to uncontrollable causes, deviate from the underlying probability density and deteriorate 

the estimates of 2and  i ix σ . A solution is to replace ix by the median ( )imed x  of  j
ix  and 

2
iσ by  

 ( )( )22

1

1  
L

j
i i i

j

x med x
L

σ
=

= −∑   (3.5.25) 

This normalization will be less effected by outliers. 

It is now clear that how the k-nn approach can be employed to estimate probability 

densities. Let us do so for a classification problem again having L design samples in c 

classes and with Li samples in class mi. To classify x, we find the k samples closest to it and 

determine the volume V in which these samples reside. Suppose that there are ki samples of 

class mi among that k nearest neighbors. The class likelihoods, the unconditional density 

and the class priors can be estimated as follows: 

 ( ) , ( ) , ( )i i
i i

i

k k Lp m p p m
LV LV L

x x  (3.5.26) 

Using the Bayes rule as define in eq. (3.5.7) becomes 
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= ≥ ∀

⇒ > ∀

x x x
 (3.5.27) 

This leads to a very simple classification procedure, i.e. the sample x should be assigned to 

that class to which most of its k nearest neighbors belong. Since this rule is derived from the 

Bayes rule, it is optimal in the sense that it minimizes the conditional risk. However, this 

last statement has to be relaxed. The loss is minimized according to the quality of the 

estimates of the class likelihoods and priors and we may expect a slightly higher error rate 

for the k-nn classifier due to inaccuracies of the estimates in eq (3.5.26). In fact, an 

asymptotic analysis shows that the k-nn classifier converges to the Bayes classifier, i.e. the 

one designed with the true densities and thus having minimal error, as L → ∞  while /k L  

remains finite.  

A question is the choice of k for a given design set. Fukunaga [92] studied this 

problem and found that the optimal k depends heavily on the form of the class likelihoods. 

Trial and error is often the only way to find out a suitable k for a given problem. The 

number of the nearest neighbors i.e. k should be odd in order to avoid ties, and it should be 

kept small, since its large value tends to create misclassifications unless the individual 

classes are well-separated. The performance of a k-nn classifier is always at least half of the 

best possible classifier for a given problem. One of the major drawbacks of k-nn classifiers 

is that it needs all available data. This may lead to considerable overhead, if the training 

data set is large.  
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3.6.5 Error Estimation 

The design of a classifier is based on the performance of the classifier. A good 

classifier should accurately classify all the possible patterns for which it is designed. To 

evaluate the performance the sampled used should be different to the used for design 

purpose. This is the way of training the generalization ability of the classifier. It seems 

appropriate to quantify classifier performance by the Bayes error rule given in eq.(3.5.8) , 

which expresses the expected value of misclassification. However, the evaluation of the 

integrals in eq. (3.5.8) is mostly difficult if not impossible to perform. Furthermore, using 

this quantity assumes that the Bayes decision rule has been implemented based on the 

accurate probability densities. Direct computation of eq. (3.5.8)  as a measure for classifier 

performance thus doesn't seem to be feasible in practice. In analogy to the Bayes error, let 

us define the true error rate ΕC as the probability of misclassification associated with the 

classifier C. Estimation of this quantity is usually performed by error counting. In this case, 

a collection of data samples not used for training (the test set) is presented to the classifier 

and the percentage of samples classified falsely is determined. Suppose that there are St test 

samples and i  be a variable which takes the value 0 if the ith test sample is classified 

correctly and 1 otherwise. The classification performance of the classifier is then estimated 

by the (observed) error rate: 

 
1

1ˆ
tS

C i
it

E
S =

= ∑   (3.5.28) 

CE depends on the test set and is therefore itself a random variable. Therefore this estimate 

should be accompanied by a confidence interval which reflects it accuracy. For a large 

enough test set (St >30) a 95% confidence interval is given by [93]: 
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 ( ) ( )  C C C C CE f E E E f E− ≤ ≤ +   (3.5.29) 

with 

 ( ) ( )1
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E E
f E

S
−

=   (3.5.30) 

In practice, only a finite number L of data samples is available. Using all samples for 

designing and afterwards for testing the classifier (the re-substitution method) gives a 

negative bias to the error rate since test and design set are not independent. Subdividing the 

available data into a design set (containing Ld samples) and a test set (Lt samples, Ld + Lt = 

L) and estimating the error rate as above is called the holdout method. 

The holdout method is not very economical since part of the data is not used for 

classifier design. This problem is solved by the leave-k-out method. In this case the k 

samples are used as a test set, while the remaining (L – K) samples are used for design. 

Next, the K test samples are added to the design set from which K other samples are now 

used for testing. This procedure is repeated until each available sample is exactly used once 

for testing. It is clear that in this manner a large design set and at the same time an 

independent test set is available. The drawback is that the classifier needs to be designed 

several times (L=K times). 

3.6.6 Dimensionality Reduction in Classifier 

It may seem logical that using more features extracted from the patterns always 

leads to a better characterization and thus a better classifier with a lower error rate. 

However, in practice, the contrary is observed. For a given problem the error rate initially 

drops with increasing number of features, but at certain point the error rate saturates or even 
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rises with the use of additional features. This phenomenon is called the curse of 

dimensionality. The origin of this phenomenon is the fact that classifier design relies on the 

inference of statistical properties.  

Reducing the dimensionality to enhance the performance of the underlying 

technique is a popular solution to the curse of dimensionality [94][95][96]. There are two 

main reasons to keep the dimensionality of the pattern representation to as small as possible: 

measurement cost and classification accuracy. A limited yet salient feature set simplifies 

both the pattern representation and the classifiers that are built on the selected 

representation. Consequently, the resulting classifier will be faster and will use less 

memory. Moreover, a small number of features can alleviate the curse of dimensionality 

when the number of training samples is limited. On the other hand, a reduction in the 

number of features may lead to a loss in the discrimination power and thereby lower the 

accuracy of the resulting recognition system. It is important to make a distinction between 

feature selection and feature extraction. The term feature selection refers to algorithms that 

select the best subset of the input feature set. Methods that create new features based on 

transformation or combination of the original feature set are called feature extraction 

algorithms. 

The main issue in dimensionality reduction is the choice of a criterion function. A 

commonly used criterion is the classification error of a feature subset. One has to be careful, 

since the classification error itself cannot be reliably estimated when the ratio of sample size 

to the number of features is small. In addition to the choice of a criterion function, we also 

need to determine the appropriate dimensionality of the reduced feature space.  
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3.6.7 Choice of a Classifier 

Once a feature selection or classification procedure is decided properly, the choice 

of a classifier is a difficult problem to tackle with, for the recognition of a particular pattern. 

This is by no means a trivial problem and cannot be answered straightforward. An 

interesting study on this subject is described in [97], which contains the results of an 

experiment in which several classifiers are used on different types of problems (images, 

financial and biological data, etc.). The main conclusion is that  

1) Performances of different classifiers on same data set may differ significantly. 

2) If one classifier performs well on one data set, it can perform rather badly on 

another.  

The choice of a classifier is thus data-dependent and there is no such thing as “the best 

classifier". 

In [97] the comparison of the classifiers on the image data set is given. A striking 

conclusion made by the researchers is that “k-nn is best for images”. This statement is 

supported by the fact that (on average) the k-nn classifier yields lowest error rates. 

Furthermore, the k-nn classifier requires no training. However, it requires lot of memory 

since all design patterns must be stored which can also slow down the classification. The 

LVQ network gave comparable results to the k-nn classifier (somewhat higher error rates) 

but requires less memory. On the average over all data sets, it was observed that neural nets 

were slightly better. However, the marginal improvement in results they provide over other 

classifiers goes at the expense of a much more laborious designing stage. The number of 

layers, neurons with their activation functions and connectivity must be specified. A 
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learning rule and a training time must also be specified. Because of these arguments, we 

have found that the k-nn classifier was a convenient classifier which will be used several 

times in this thesis for the comparison of feature sets. 

However, all considerations made in this chapter departed from an already 

constructed set of features extracted by some means from the available patterns. Given this 

feature set, the lowest error one can achieve is the Bayes error given in eq (3.5.8), which 

depends on the class likelihoods. To improve the classification (i.e. to lower the error), it is 

necessary to construct other features so that the likelihoods overlap less and consequently 

lead to a lower Bayes error down. This leads to the following conjecture: If a good feature 

set is available, then any classifier will do the job, otherwise, even the most sophisticated 

classifiers will fail to solve a pattern recognition problem. 

3.7 Hidden Markov Model (HMM) 

An HMM is a doubly stochastic process, In this case the with an underlying 

stochastic process is not observable, but can only be observed through another set of 

stochastic processes that produce the sequence of observed symbols. HMMs are a set of 

statistical models used to characterize the statistical properties of a signal. It is a statistical 

method that uses probability measures to model sequential data represented by sequence of 

observation vectors.  

In other words, HMM is a finite set of states, each of which is being associated with 

its respective probability distribution. Transitions among the states are governed by a set of 

probabilities called transition probabilities. In a particular state an observation can be 

generated with the probability given by the associated probability distribution.  
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An HMM is characterized by the following parameters. 

1. The number of observation symbols in the alphabet is finite for the discrete alphabet 

size and is denoted by O. The observation symbols correspond to the physical output 

of the system being modeled. If the observations are continuous then O is infinite. 

2. The set of state transition probabilities, { }ijA a= where  

 { }1 , 1 ,ij t ta p q j q i i j N+= = = ≤ ≤  (3.6.1) 

where  tq  denotes the stat at time t and N is the total number of available states of the 

model.  

Transition probabilities follow the general stochastic constraints given as 

 0, 1 ,ija i j N≥ ≤ ≤   (3.6.2) 

and 

 
1

1, 1
N

ij
j

a i N
=

= ≤ ≤∑   (3.6.3) 

3. The probability of observing some specific symbol from a specific state,  

( ){ }jB b k=  such that 

 ( ) { }, 1 , 1j k tb k p v q j j N k O= = = ≤ ≤ ≤ ≤to  (3.6.4) 

where vk denotes the kth observation symbol in the alphabet and ot is the vector of 

outputs up to time t.  

Following are the stochastic constraints which must be satisfied  

 ( ) 0, 1 , 1jb k j N j O≥ ≤ ≤ ≤ ≤   (3.6.5) 

and  
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1

1, 1
N

j
j

b k j N
=

= ≤ ≤∑   (3.6.6) 

4. The initial state distribution is given by the vector, { }iπ=π  where  

 { }0 ,1i p q i i Nπ = = ≤ ≤   (3.6.7) 

which is the probability of starting the process from a specific state. 

A complete specification of an HMM requires specification of the three probability 

measures A, B andπ .  Therefore, the compact notation ( ) λ = A, B,π  is used to denote the 

complete parameter set of HMM with discrete probability distributions.  

3.7.1 Assumptions in the Theory of HMMs 

Following are the assumptions made in the theory of HMMs for the sake of 

mathematical convenience and to avoid the computational complexity: 

Markov assumption: As given by the definition of HMMs transition probabilities are 

defined as 

 { }1ij t ta p q j q i+= = =    (3.6.8) 

In other word it is assumed that the next state is dependent only upon the current state. This 

is called the Markov assumption and due to this one step memory the resulting model 

becomes a first order HMM. 

Stationarity assumption: It is assumed that state transition probabilities are independent of 

the time i.e. transition probabilities do not change with time. It can be expressed as  

 { } { }1 1 2 21 1t t t tp q j q i p q j q i+ += = = = =  (3.6.9) 

for any  1t  and 2t . 
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Independence outputs assumption: Under this assumption, the current observed output to  is 

statistically independent of the previously observed, 1to − . We can formulate this 

assumption mathematically, considering a sequence of observations, 1 2 TO = o ,o , ,o . 

Then according to the assumption for an HMM λ,  

 { } ( )1 2
1

, , , ,
T

T t
t

p q q q p q λ
=

= ∏ tO o  (3.6.10) 

3.7.2 Three Basic Problems of HMMs 

Once we have generated an HMM, there are three basic problems of interest, 

evaluation problem, learning problem and decoding problem. Since only the first two 

problems are being exploited in this dissertation therefore, their statements along with their 

solutions are being mentioned below.  

Evaluation Problem: Given an HMM λ and a sequence of observations 

1 2 T= o ,o , ,o ,O what is the probability that the observations are generated by the model, 

i.e. what is { }p λO ?  

Some details about the solution of this problem are given as follow. First of the all, we 

define a forward variable, ( )t iα  which is the probability of the partial observation sequence 

1 2 to ,o , ,o  when the process terminates at the state i, i.e. 

 ( ) ( ),t 1 2 t ti p o ,o , ,o q iα λ= =   (3.6.11) 

The following recursion relationship holds for this forward variable 

 ( ) ( ) ( )1 1
1

N

t j t t ij
i

j b o i aα α+ +
=

= ∑   (3.6.12) 



  50 
 

where  1 j N≤ ≤  and 1 1t T≤ ≤ − . Using the above relationship we can find out 

( ) ,1T i i Nα ≤ ≤ . Then the required probability ( )p O λ  is given as: 

 ( ) { } ( )
1 1

,
T

N N

T
i i

p p q i iλ λ α
= =

= = =∑ ∑O O  (3.6.13) 

The above probability can also be solved by defining backward variable ( )t iβ  

which is the probability of the partial observation sequence t 1 t 2 To ,o , ,o+ + , given that the 

current state is i. It is written mathematically as follow 

 ( ) ( )1 1, , , ,t t t T ti p o o o q iβ λ+ += =   (3.6.14) 

Then ( )p O λ  is calculated in terms of forward and backward variables as follow 

 ( ) { } ( ) ( )
1 1

,
T

N N

t t
i i

p O p O q i i iλ λ α β
= =

= = =∑ ∑  (3.6.15) 

The learning Problem: Given an initial model λ and a set of observation sequences 

,L1 2O = o ,o , , o how can we re-estimate the model parameters { }A,B,π so as to increase 

the likelihood of generating this set of sequences, where L is the total number of observation 

sequences. 

There are typically two methods to solve the learning problem. One is the Baum 

Welch algorithm and the other is the gradient based algorithm. Since Baum Welch 

algorithm has been used in this dissertation, hence, some of its details are being presented. 

First of all two variables are defined. The first variable is ( ),t i jξ  which is the probability of 

being in state i at time = t and in state j at time = t+1 
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 (3.6.16) 

The second variable is ( )t iγ  which is the posterior probability is given as  

 

( ) ( ) ( )
( )

( )
( )

( ) ( )

( ) ( )
1 1

,
,

,
        =

,

t t

t t
N N

t t
i i

p qt i O
i p q i O

p O

p qt i O i i

p qt i O i i

λ
γ λ

λ

λ α β

λ α β
= =

=
= = =

=
=

=∑ ∑

 (3.6.17) 

According to the Baum Welch algorithm given an initial model ( )λ = A,B,π . Then 

forward and back variables sα and sβ are calculated. Then calculate sξ  and sγ  using 

(3.6.16) and (3.6.17). Finally the HMM parameters are updated according to the following 

equations 

 ( )1 ,  1i i Nπ γ= ≤ ≤   (3.6.18) 

 
( )

( )

1

1
1

1

,
,   1 ,   1

T

t
t

ij T

t
t

i j
a i N j N

i

ξ

γ

−

=
−

=

= ≤ ≤ ≤ ≤
∑

∑
 (3.6.19) 
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1

1

,   1 ,   1t k
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j T
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Chapter 4  

Texture Analysis using Radon Transform and Hidden 

Markov Models 

4.1 Introduction 

This chapter covers three proposed schemes to extract features of the textures using 

RT. All these schemes carried out training of HMM, one for each texture. Then, finally 

extensive testing is carried out using the evaluation problem of HMM. Simulations and 

results are given with each scheme.  

4.2 Background of Invariant Texture Analysis 

One usually looks for texture analysis methods that are translation, rotation and scale 

invariant [4]. Wavelet transform (WT) and wavelet packets have played an important role in 

texture description and analysis [98]. Wavelets provide the appealing property of 

representing texture compactly both, in frequency and time domain. However, ordinary WT, 

which had been used for texture analysis [55][78], are not rotation–invariant 

[55][99][78][100]. Some attempts have been made towards rotation invariant texture 

analysis using WT [101][102][63]. The reason is that, textures have different frequency  
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(a) 

 

 (b)  

 
(c) 

 
(d) 

Fig. 4.1 (a) Anisotropic texture (D53), (b) Anisotropic texture (D53) rotated at 45o, (c) 

Fourier Transform of  (a), (d) Fourier Transform of (b) 

components along different directions. Ordinary WT captures variation only along vertical, 

horizontal, and diagonal directions. This happens because of the separability of the basis 

functions. Fig. 4.1 (a) and (b) show a directional (anisotropic) texture sample from Brodatz 

album (D53) in two different orientations, and their Fourier transforms (FT) in Fig. 4.1 (c) 

and (d), respectively. The FT rotates as the image is rotated, as shown in the Fig. 4.1 (c) and 

(d) it changes significantly when the image is rotated. However, some textures have no 

specific direction, which are called isotropic textures. This means that the frequency 

components of the texture do not change significantly at different orientations. In other 

words, its Fourier transform is almost circularly symmetric. Therefore, the wavelet features  
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are approximately invariant to rotation. Fig. 4.2 (a) and (b) are two different orientations of 

the same texture (D101) and (c) and (d) are their FTs, respectively. It means that the FT 

does not change significantly when the image is rotated. 

Mao and Jain [103] have used rotation–invariant symmetric autoregressive random 

field model in which neighborhood points of a pixel are defined on several circles around it. 

This approach, however, overlooks the global information of the texture. Some approaches 

have used HMM [104][53][66]. Chen and Kundu [53] decomposed the image into subbands 

using quadrature mirror filter, and then modeled these subbands by an HMM. 

Unfortunately, as the number of classes (textures) increases, the performance deteriorates. 

Do and Vitterli [66] have used a steerable wavelet domain HMM along with a maximum 

(a)   (b) 

 
 (c)  

 
(d) 

Fig. 4.2 (a) Isotropic texture (D101), (b) ) Isotropic texture (D101) rotated at 45o, (c) 

Fourier Transform of   (a), (d) Fourier Transform of (b) 
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likelihood solution for model parameters, but they have experimented on a limited scale and 

used only thirteen images from Brodatz album. Khouzani and Zadeh [60] have also 

proposed preprocessing step to make the analysis invariant to rotation. They utilize the RT 

to convert the rotation into translation and then apply translation invariant WT to create 

rotation invariant features. 

In this chapter, we have presented a new technique which uses RT for feature 

extraction and one-dimensional (1-D) HMM, which is trained on these features and hence 

used for classification. RT is suitable for extracting the rotation invariant features for 

ordinary texture as well as for complex texture. Due to the directional properties of RT, we 

have proposed to use it to capture the directional information of each texture with different 

orientations. The RT has two components. First component is the angle of line with y-axis 

and it is denoted as θ . The second component is the perpendicular offset, s . Here, we will 

discuss two cases for feature extraction of texture images. In the first case (s = 0), the 

former component of the RT is considered to be varying, while the later component is 

suppressed. We shall call this RT as modified RT (MRT). In the second case (s ≠ 0), both 

components, s and θ , are taken as varying. For second case there are again two subcases. In 

the first one we take the values of RT as features of the texture, while in the second subcase 

we take the variances of the different projections of RT and consider them as feature 

vectors. These feature vectors, attained by any scheme, are considered as observation 

vectors in order to train 1-D HMM to give us representation of this texture. Compared to 

[104][53][66], we have used only 1-D HMM instead of 2-D HMM. For testing purpose, we 

picked up any one of these textures with an arbitrary orientation. We then found out its 

observation vector using RT and calculated the best match between this observation vector 
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and HMM. We have given comparison of the percentage of the correct classification (PCC) 

with some other schemes in the literature. 

4.3 Texture Analysis using RT for Case s = 0 

An important area of research within pattern recognition is to explore the techniques 

which are employed to extract rotation-invariant features of the texture images. The 

application of RT has potential to use it for this purpose. The RT of 2-D function ( , )f x y  is 

defined as  

 ( , ) [ ( , )] ( , ) ( cos sin )g s R f x y f x y x y s dxdyθ δ θ θ
∞ ∞

−∞ −∞

= + −∫ ∫  (4.3.1) 

where θ  is the angle formed by the line along which the integral is calculated, and s  is the 

perpendicular distance (offset) of this line from the origin as shown in  Fig. 4.3. Thus 

( , )g s θ  is simply 1-D projection of ( , )f x y  at an angle θ  with distance s  from the origin. 

RT is always applied on a disk shape area selected at the centre of the image. 

 

 Fig. 4.3 Radon Transform 

 

            θ   
       θ       s  

x 

y 
f(x,y) 

For this line s = 0 

A line at distance s  
from origin 
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4.3.1 Feature Extraction using Radon Transform  

When, we take s = 0, it means suppressing the offset. Thus, the RT of the texture, for 

any orientation, is projection of lines at different angles passing through the centre of the 

disk shape texture. It means that only θ  varies from 0o to 180o, with discrete steps of θ∆ . 

Almost each line contains the same number of pixels. Hence, there is no need to average out 

each projection. This gives the feature vector of length L depending upon the discrete step 

θ∆ . Each arbitrary orientation of a texture gives a corresponding vector. Obviously if we 

take L arbitrary orientations we will get L vectors given as 

 1[ ]T= 2 LO o o o   (4.3.2) 

This formulates an observation sequence for one HMM. This way of extracting features of 

the texture image has the following disadvantages: 

• There is no possibility of inverting the transformation to obtain something 

approximating the original texture.  

• The suppression of s is potentially serious for more generalized classification. This is 

due to the choice of texture centre, which have a great effect on the features extracted. 

Thus this problem loses the translational invariance. 

The selection of θ∆  may affect the dimensions of the feature vector but it is not an 

obstacle to classification. On the basis of compromising to fix the choice of texture centre 

and avoiding the inverse transformation, the extracted features of the texture have following 

advantages: 

• Robust from classification point of view, if the translational invariance is not an issue.  

• Process is computationally less demanding. 
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4.3.2 Training using Hidden Markov Model  

One HMM can be trained on feature vectors obtained from RT. We have an 

observation sequence of L  vectors given as 1[ ]T= 2 LO o o o , where is the L  number of 

orientations of a texture. Each io  is a column vector representing feature vector of ith 

orientation. T  stands for the transpose of a matrix. This sequence of observations is 

modeled by a unique HMM whose salient features [105] are discussed in section 3.7.  

Each texture with different orientations is represented by a separate model which is usually 

denoted by ( , , ) 1,2, ,i i i i i Mλ = =A B π   where M is the number of Brodatz textures. 

This model is trained for the separate texture independently. Therefore, we have M HMM 

models for M number of textures. We choose ( , , )λ = A B π  such that ( )p λO  is locally 

maximized using an iterative procedure such as Baum–Welch algorithm. For this purpose 

re-estimation of HMM parameters is required. Two variables ( ),t i jξ  and ( )t iγ , defined in 

section 3.7, are used for the re-estimation of HMM parameters. A set of reasonable re-

estimation formulas for , and π A B is given by eqs. (3.6.18), (3.6.19) and (3.6.20). If we 

define the current model as ( )λ = A,B,π  then the re-estimation model will be defined as 

( )λ = A,B,π , which is determined by the above re-estimation formulas. It was proved in  

the Baum-Welch algorithm that either the initial model λ  defines a critical point of the 

likelihood function, in which case λ λ= , or model λ  is more likely than model λ  in the 

sense that   ( ) ( )p pλ λ>O O . In other words, we have found a new model λ  from which 

the observation sequence is more likely to have been produced. Based on this procedure, if 

we iteratively use λ  instead of  λ  and repeat the re-estimation calculation, we can improve 
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the probability of observation sequence, O, being observed from the model until some 

limiting point is reached. 

The training is performed off line and only once. For each new texture, a new class 

is considered, and a new model is trained. Fig. 4.4 (a) is a schematic diagram giving all the 

steps for training phase of each texture with different orientations. There is no need to 

retrain the others. A particular tolerance factor is given to ensure the proper training and 

convergence of the HMM. 

4.3.3 Testing and Classification 

Once all the HMM’s have been trained, the classification stage is straightforward. 

The preprocessing and feature extraction are repeated in the testing and classification phase 

as shown in the Fig. 4.4 (b). In the testing, we do not need to find out the complete 

observation matrix 1[ ]T= 2 LO o o o . Any arbitrary orientation of any texture can be taken 

and its relevant feature vector, oi, can be found using RT. We have used the evaluation 

problem of HMM for testing and classification purpose. The evaluation problem can be 

enunciated as follows: “given a model and a feature vector, how do we compute the 

probability that the feature vector was produced by the model?[105]”  

We can also view the problem as one of scoring how well a given model matches a 

given observation vector. The latter viewpoint is extremely useful. If we consider the case 

in which we are trying to choose among several competing models, the solution to 

evaluation problem allows us to choose the model which best matches with the 

observations.  
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Fig. 4.4 (a) Block diagram for the training phase and (b) Block diagram for the testing phase of the 

proposed model 
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We have developed one HMM model for each type of texture. Therefore, we will 

have M kinds of models denoted by 1 2, , , Mλ λ λ .  First we find out the feature vector io  

for an unknown texture and then carry out the evaluation problem in HMM i.e. ( )i mP λo  

for 1,2, ,m M= . The class of the texture can be found from ( )i mP λo , as given below 

 * arg{max ( )}i mm
m P λ= o   (4.3.3) 

This unknown texture belongs to class *m .  

4.3.4  Simulation and Results 

We have taken first 60 textures from Brodatz album (D01-D112), as shown in Fig. 

6.9, for the evaluation of the proposed algorithm. Each texture is treated as a class. The 

performance of algorithms have been evaluated using Percentage of Correct Classification 

(PCC) as a figure of merit and is defined as 

 100s s

s

T MPCC
T

⎛ ⎞−
= ×⎜ ⎟

⎝ ⎠
  (4.3.4)  

where Ts is total number of samples and Ms is number of misclassified samples. 

After selection of any texture, its RT is taken at constant discrete steps of 20 from 0o 

to 180o. Length of each feature vector is thus 90 and is kept same throughout the 

simulations. Number of orientations for each texture is taken as L, which is also the number 

of feature vectors to train an HMM model. These different orientations are taken at random 

angles. In simulations L = 20, 40, 60, 80 and 100 have been tried. The number of states has 
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been given as N. In simulations the number of hidden states has been taken as  N = 3, 4, 6, 8 

and 10 has been tried to see their effect on PCC. 

We have used all 60 textures at 20 arbitrary orientations which make up test set as 

60×20 (1200 in number) for testing purpose. We observe that as the number of feature 

vectors L increases, on which the HMM has been trained, the model is more robust and 

gives better value for PCC. The states in HMM do not have any explicit physical meaning. 

One cannot say that increase or decrease of states would result in a better model in terms of 

PCC. However, the Table 4.1 shows that N = 5 seems to be the best choice in terms of PCC 

for larger values of L (60, 80, and 100). Although, one may increase the number of training 

feature vectors in order to get a better HMM for any texture but it becomes computationally 

cumbersome. The best value of PCC achieved is 98.25% using the proposed algorithm as 

shown in Table 4.1. The results proposed by Chen and Kundu [53] are also shown in Table 

4.2. The results of Khouzani and Zadeh [60] are given in Table 4.3. The comparison of the 

results shows that the best result of Chen and Kundu [53] is 93.33%,  Ojala et. al. [106] is 

95.8% and Khouzani et. al. [60] is 97.9%. Therefore, the results of proposed method, i.e. 

98.25%, show better performance of the method in terms of PCC.  This technique, for s = 0, 

is computationally light especially while extracting the features of a texture. Moreover, it is 

has been tested on 60 textures while the schemes compared with have tested on 25 textures. 

However, the proposed scheme is only rotation invariant, but not translation or gray scale 

invariant. 
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Table 4.1 PCC of 1200 test samples using proposed RT based method (case s = 0) for 
different number of feature vectors L and number of hidden states N 

   N  
L 3 4 5 6 8 10 

20 90.50% 87.50% 84.00% 85.33% 85.33% 85.08% 
40 95.75% 95.50% 95.00% 94.08% 93.41% 94.58% 
60 96.91% 96.41% 96.83% 95.83% 95.50% 95.41% 
80 97.91% 97.33% 97.66% 97.00% 96.83% 96.50% 
100 98.16% 97.83% 98.25% 97.83% 97.66% 97.08% 

       

 

Table 4.2  PCC of 10 textures from Brodatz Album using method proposed by Chen 

and Kundu [53], for both Nonstationary and Stationary Transition HMM. 

Nonstationary Transition HMM Stationary Transition HMM State 
no. 1.0,  0α β= =  0.5,  20α β= =  0.5,  70α β= =  1.0,  0α β= =  0.5,  20α β= =  0.5,  70α β= =  

6 91.67% 91.67% 91.67% 83.33% 83.33% 83.33% 
8 93.33% 91.67% 91.67% 86.67% 86.67% 86.67% 
10 90.00% 90.00% 90.00% 85.00% 86.67% 86.67% 
12 91.67% 91.67% 91.67% 86.67% 86.67% 86.67% 
       

 

Table 4.3  PCC of 25 textures from Brodatz Album using the method proposed by 

Khouzani and Zadeh [60] for different k values of k-nn Classifier. 

k Wavelet 
Bases 1 3 5 7 
db2 96.70% 97.60% 97.90% 97.40% 
db4 97.40% 97.70% 97.90% 97.90% 
db6 96.40% 97.70% 97.60% 97.80% 
db12 96.30% 96.60% 96.90% 96.90% 
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4.4 Texture Analysis using RT for Case s ≠ 0 

Two dimensional RT given in eq (4.3.1) is again utilized for texture analysis for the 

case s ≠ 0. In this case both the components of RT are being considered as varying. Thus the 

texture analysis carried out is rotation and translation invariant. 

4.4.1 Feature Extraction using RT 

The RT of any texture is taken along lines at different orientations θ  and different 

offsets from the origin, s. The angle θ  is varying from 0o to 180o in discrete steps of θ∆ .  

In this case there will be different number of pixels for different values of s for a particular 

angle θ . For small value of s the line is close to centre and so there will be a large number 

of pixels on that line. For large value of s, line is far from the centre and so has less number 

of pixels on it as shown in Fig. 4.5. The total sum of grayscale values of pixels on each line 

is divided by the total number of pixels on that line. This gives us an average of gray scale 

values on a particular line with parameters ( , )s θ . Only one orientation of a texture gives us 

the observation sequence  

 1[ ]T= 2 LO o o o   (4.4.1) 

There is one observation vector for each θ .  L is the number of vectors, not the 

number of orientations as in case of s = 0. In fact L will be equal to the total number of 

discrete values of θ  between 0o and 180o. If we take 2,θ∆ =  then L, the number of 

sequence vectors, will be 90. The length of each vector is equal to the number of discrete 

steps taken for offset s∆ . Now these features are translation invariant which was not true in 

the previous case. However, these features have disadvantage of being computationally 

heavier. The distance s changes in discrete steps of o10s∆ = , which is in fact 10 pixels. For  
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Fig. 4.5 Pixel representation on lines 

 

any fixed value of  θ , there will be projections of the image along different lines at 

different s from the origin. This will formulate one feature vector of the texture. Number of 

extracted feature vectors for a particular texture is denoted by L. For every texture we have 

L number of feature vectors or observation sequence denoted as 1[ ]T= 2 LO o o o .  

4.4.2 Training of HMM 

The observation sequence formulated in the above section is used to train an HMM 

model with the help of Baum-Welch algorithm [105]. The model 

parameters, ( ), ,i i i iλ = A B π , are adjusted in order to maximize the probability of the given 

sequence of observation sequence, ( )ip λO . Here i denotes the number of the texture for 

which HMM is being trained. At the end, the number of HMMs is equal to the number of 

textures, M. 
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4.4.3 Testing and Classification 

We use evaluation problem [105] of HMM for testing and classification purpose. In 

testing, we have found out the observation sequence 1[ ]T= 2 LO o o o by using RT on the 

texture being tested for classification. Then calculated ( )j mp λo  for all 1,2, ,j L=  and 

1,2, , .m M=  Then the class is found by using  

 ( )*

1

arg max
L

j mm j

m P λ
=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑ o   (4.4.2) 

This unknown texture is either texture m* of the Brodatz album, or it is closest to the m* 

texture. 

4.4.4 Simulations and Results 

The proposed method was implemented on sixty textures from Brodatz album (D1-

D60). The performance criterion is PCC which is defined in eq (4.3.4). The algorithm has 

been tested by training HMM for different number of feature vectors (L = 36, 45, 60, 90) 

which are achieved by using discrete steps of as (5o, 4o, 3o, 2o), respectively. Different 

number of states (N = 3, 4, 5, 6, 8, 10) have been used. The main thrust was to find out the 

optimal values of L and N which give the best PCC. For testing we have used 60 textures at 

20 arbitrary orientations to make the test set of 60×20 (1200). Table 4.4 shows that as the 

number of feature vectors, L, increases, the PCC also increases for any specific hidden state. 

The best results of 98.80% have been achieved for L = 90 and N = 6. Results may be further 

improved but it needs heavy computation to train the HMMs for higher values of L at 

different states N. These results are better than that of Chen and Kundu [53] (for 10 

textures), Ojala et. al. [106] (16 textures), and Khouzani and Zadeh [60] (25 selected  



  67 
 

Table 4.4   PCC of 1200 (60×20) test samples using proposed RT based method (case 

s ≠ 0) for different number of feature vectors L and number of hidden 

states N 

         N 
L 3 4 5 6 8 10 

36 86.40% 85.20% 84.90% 83.20% 81.62% 81.45% 
45 90.12% 93.45% 95.60% 93.70% 92.45% 90.16% 
60 96.92% 97.56% 98.20% 97.60% 93.41% 92.50% 
90 97.65% 98.30% 98.50% 98.80% 97.90% 97.56% 
       
       

textures). These algorithms produce PCC of 93.33%, 95.8% and 97.9%, respectively, as 

shown in Table 4.1, Table 4.2 and Table 4.3. 

4.5 Texture Analysis using Variance of RT for Case s≠ 0 

In this case the RT of a texture is carried out for various θ  and s, but we have not 

used the values of RT as feature vectors. Instead we have used variance of RT values. The 

texture analysis shall be rotation, translation and gray scale invariant. 

4.5.1 Feature Extraction using Variance of RT. 

As in the previous case we carry out RT of a texture for θ  varying from 0o to 180o 

in discrete step of θ∆ . For any particular value of θ , the projection of RT gives different 

values for different values of s. We find out the variance ( )2σ θ of these values given by  

 ( ) ( ) ( )( )22 , /
s

g s g Nσ θ θ θ= −∑   (4.4.3) 

where ( ) ( ) ( )2 , /
s

g g s Nθ σ θ θ= = ∑  and N is the number of samples in each projection. 

We find variance of the samples of these projections for all discrete values of θ  to 

formulate a vector given by  
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 ( ) ( ) ( )( )2 2 20 , , 2 ,
T

i σ σ θ σ θ= ∆ ∆o  (4.4.4) 

This will be considered as one feature vector of that texture. Now we shall take L different 

arbitrary orientations of the texture and find out similar feature vectors which we can denote 

by matrix O 

 [ ]= 1 2 LO o o o   (4.4.5) 

This now becomes the observation sequence on which our HMM shall be trained. In a 

similar manner we formulate observation sequences, one for each texture. 

4.5.2 Training of HMM 

Baum-Welch algorithm is used for training purpose. Again we shall train an HMM 

for each texture and model parameters ( ), ,i i i iλ = A B π  will be adjusted to maximize the 

probability ( )ip λO . 

4.5.3 Testing and Classification 

In this case we take the RT of the test sample which is a texture at any arbitrary 

orientation. Formulate the variance vector to . Using evaluation problem [105] of HMM we 

calculate ( )t mp λo  for all 1,2, ,m M= . The decision has been taken as  

 ( ){ }1
* arg max t mm M

m p λ
≤ ≤

= o   (4.4.6)  

The test texture is either texture *m  of the Brodatz album or closest to the *m  texture. 

4.5.4 Simulations and Results 

In this case we have used the first twenty five textures of the Brodatz album. The 

hidden number of states for the HMM has been taken as N = 3, 4, 5, 6, 8 and 10. Since each 
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orientation of a texture gives us only one feature vector, hence we have used L orientations 

of each texture to give us L number of feature vectors in order to train an HMM for each 

texture. We have taken L = 10, 15, 20, 25.  We can see the trend from the Table 4.5 that as L 

increases for a fix number of N, the PCC gets better. For L = 25 and N = 5 we get PCC 

equal to 100%. This scheme seems to be the best among all the three schemes mentioned in 

the chapter. 

Table 4.5 PCC of 500 (25×20) test samples using proposed RT variance based method 

(case s ≠ 0) for different number of feature vectors L and number of hidden 

states N 

N 
L 3 4 5 6 8 10 

10 94.3% 94.0% 94.2% 93.8% 92.6% 92.5% 
15 96.2% 96.3% 96.0% 95.8% 95.0% 95.2% 
20 96.2% 99.0% 98.8% 98.8% 98.4% 98.6% 
25 99.8% 99.8% 100% 99.8% 99.8% 99.5% 

 

Table 4.6 Comparison of the best results of the proposed methods with some of the 

methods from the literature 

Methods from the literature Proposed methods 
Chen and 
Kundu 
(10 textures) 

Khouzani and 
Zadeh 
(25 textures) 

Ojala et. al. 

 (16 textures) 

Case (s = 0) 
RT based 
(60 textures) 

Case (s ≠ 0) 
RT based 
(60 textures) 

Case (s ≠ 0) 
RT variance  
(25 textures) 

93.33% 97.90% 95.80% 98.25% 98.80% 100% 

 

4.6 Summary 

We have presented three schemes for extracting the features. After feature 

extraction, the remaining procedure is common for all the schemes. The first scheme (case s 

= 0) is computationally lighter than the other two. Its results are comparable or better than 
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the other techniques given in [53], [60] and [106]. However, this scheme is rotation 

invariant.  

The second scheme (case s ≠ 0) uses RT for feature extraction. It is computationally 

compareable to the first one. This scheme also gives us better results than the above scheme. 

Moreover, it is translation invariant as well unlike the above scheme.  

The third scheme (case s ≠ 0) uses variance of RT for feature extraction. It is 

computationally heavier compared to the previous two schemes. Its best result is 100%  for 

L = 25 and N = 5. Moreover, the texture analysis is rotation, translation and gray scale 

invariant. It is quite clear from Table 4.6 that all the three proposed schemes have given 

better results than the other schemes from the literature, although our first two schemes have 

been tested over 60 textures. 

In all these techniques we have not tested their robustness against zero mean 

additive white Gaussian noise (AWGN). The reason being that since the RT of the discrete 

image is simply addition of the pixel values, the RT of the noise will turn out to be the mean 

of the noise which is zero. Thus zero mean AWGN has no effect on the RT of the image. 

Hence these techniques are robust against this kind noise.  
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Chapter 5  

Texture Analysis using Differential Radon Transform 

and Hidden Markov Models 

5.1 Introduction 

This chapter presents yet another approach to provide rotation, as well as, gray scale 

invariant texture analysis. For this purpose, we have proposed modified form of Radan 

transform. Ordinary RT is simply the projection of the image along the line ( , )s θ , which 

ends up in adding up the gray scale values of the pixels lying on that line. In the proposed 

modified RT, the absolute differencing between the adjacent pixels is carried out. Thus we 

may call it as “Differential Radon Transform” (DRT). By virtue of its definition, the 

features extracted by using DRT shall be gray scale invariant apart from being rotation 

invariant. 

We proposed three schemes in this approach to extract feature vectors. In the first 

scheme we use only DRT to extract features. In the second one we used RT as well as DRT 

with s = 0 to give us the features which looked more like low pass, as well as, high pass 

features of the texture. In the last scheme, we used RT as well DRT but this time keeping 

the offset s ≠ 0.  
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5.2 Differential Radon Transform 

The Radon transform (RT) is simply a projection of function ( , )f x y on the 

( , )s θ line as we have discussed in section 4.3.1. If we consider ( , )f x y  as a discrete image, 

then the RT is a sum of the gray scale pixels falling on this line inclined at an angle θ  with 

y-axis. This implies that features extracted by using RT are like low pass features of the 

image which involves simply summing or averaging. These features are definitely not gray-

scale-invariant. Thus we propose a modified version of RT. The modified RT of function 

( , )f x y  , denoted as ( , )Dg s θ , can be defined as  

( , ) ( , ) ( , ) ( cos sin )Dg s f x y f x x y y x y s dxdyθ δ θ θ
∞ ∞

−∞ −∞

− + ∆ + ∆ + −∫ ∫  (5.2.1) 

where ( , )f x y  and ( , )f x x y y+ ∆ + ∆ are the gray scale values of the function at ( , )x y  and 

( , )x x y y+ ∆ + ∆  respectively, which are constrained to be on the same line inclined at an 

angle θ  with y-axis and at a distance s from the origin. We have taken the absolute 

differences and integrate them along ( ),s θ  line. In case of discrete images, the integral 

changes into summation. We take absolute difference of the gray scale value of every two 

consecutive pixels along the same line and sum up these differences. Then we may average 

it over the number of pixels on the ( ),s θ  line, according to the situation and the type of the 

problem. The way we take the difference between any two consecutive pixels rather than 

the sum, the name “differential Radon transform” is fairly suggestive. This DRT thus 

provides us gray scale invariance, because it only depends upon the difference between the 

gray scale values and not on the absolute values. We may consider the DRT features more 

like high pass features of the image.  
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5.3 Texture Analysis using Differential Radon Transforms 
and Hidden Markov Model  

The features can be extracted using DRT given in eq (5.2.1). The features thus 

extracted will be called as DRT features. These features were then used to train HMM 

models. Now, we will discuss the procedure to formulate observation sequence for HMM 

based on DRT.  

5.3.1 Feature Extraction using Differential Radon Transform 

The observation sequence is collection of DRT feature vectors of the texture at 

different orientations. The main difference to calculate DRT features from RT features is 

that instead of summing up the pixel values along any line with some orientation, we sum 

up the absolute difference of the consecutive pixel values along that line. Now, we define a 

filter H = [-1,1]. If we convolve H with the line, l, we get the difference of the consecutive 

pixel values along that line. Summing up the absolute of these values we get one value for 

this particular line. The orientation of these lines changes with θ  from 0o to 178o with 

discrete steps of 2 .oθ∆ =  For 2θ∆ = , we get ninety values for one arbitrary orientation of 

texture. This gives one feature vector for a particular orientation of a texture. It is obvious 

that L orientations of a texture will give us L feature vectors, which formulate observation 

sequence for training of HMM. The features extracted through DRT will ultimately give us 

gray-scale invariant features as discussed in section 5.2. We have kept s = 0 in this case.   

5.3.2 Training Hidden Markov Model using DRT Features 

We have used the compact notion ( )λ = A, B,π  to represent the HMM. The use of 

DRT gives us one feature vector for each orientation of a texture. We have an observation 
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sequence of L  vectors given as 1[ ]T= 2 LO o o o  for L  number of random orientations of a 

texture. Each io  is a column vector representing feature vector of ith orientation. This 

sequence of observation vectors is used to train an HMM with the help of Baum-Welch 

algorithm [105]. It is an iterative algorithm that uses the forward and backward probabilities 

to solve the problem of training by parameters estimation. The model parameters 

( )mλ = m mA , B ,π  are to be adjusted in order to maximize the probability of that sequence 

of observation vectors, ( )mp λO . This algorithm, which is the implementation of the 

expectation maximization (EM) algorithm [107] in the HMM case, guarantees the model to 

converge to a local maximum of the probability of observation of training set according to 

the maximum likelihood estimation (MLE) criterion. This maximum depends strongly on 

the initial HMM parameters. One model is trained for each texture independently. For M 

textures we have to build M HMM models. If a new class is added, we need to train for that 

class only. The training is done off line and once only. The training procedure is explained 

in Fig. 4.4 (a). A particular tolerance factor is given in order to ensure proper training and 

convergence of the HMM. 

5.3.3 Testing and Classification 

The same procedure will be carried out for testing and classification as discussed in 

section 4.3.3. The difference is based on the features. Here, we are using DRT features 

instead of RT features. Assumed there are M kinds of models denoted by 1 2, , , Mλ λ λ . The 

trained model of each texture is available. First, we find the DRT feature vector io  for any 
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unknown texture. Then, we carry out the simple evaluation problem in HMM, i.e., calculate 

( ) 1, 2, ,mp for m Mλ =o . At last we will find 

 * arg max ( )mm
m P λ= o   (5.3.1) 

This unknown texture belongs to class *m .  

5.3.4 Simulation and Results 

The proposed algorithms have been implemented on sixty textures from Brodatz album 

(D01-D112) included isotropic and anisotropic textures as given in Fig. 6.9. The 

performance of the algorithm has been evaluated by using PCC as figure of merit as defined 

in eq (4.3.4).  

We have obtained DRT of any observation using eq (5.2.1) at constant discrete steps 

of 20 from 0o to 178o. The feature vectors thus obtained are used to train HMM for L = 20, 

40, 60, 80, 100 and N = 3, 4, 6, 8, 10. We have used all 60 textures at 20 arbitrary 

orientations to make the test set of 60×20 (1200) as used in RT base technique. Table 5.1 

shows that as the number of features (L), on which the HMM has been trained, increases the  

Table 5.1 PCC of 1200 (60×20) test samples using proposed DRT based method (case 

0s = ) for different number of feature vectors L and number of hidden states N 

 L          N 3 4 5 6 8 10 

20 79.17% 75.67% 71.42% 69.75% 65.83% 60.33% 
40 90.00% 87.92% 87.17% 85.50% 82.92% 82.92% 
60 91.17% 91.00% 91.00% 90.67% 90.58% 88.25% 
80 91.08% 91.33% 91.50% 89.92% 90.67% 89.00% 
100 93.50% 93.50% 93.67% 94.50% 95.92% 96.33% 
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PCC also increase for a given number of states. On the other hand, the model produces 

similar behavior for different number of hidden states, i.e. N = 3, 4, 6, 8, 10. The best results 

are obtained at L=100 and N=10. Although, one may increase the number of training feature 

vectors to get a better HMM for any texture, but it becomes computationally cumbersome. 

It is observed that the RT based algorithm has performed better as compared to DRT based 

algorithm in terms of PCC. 

 
5.4 Texture analysis using Radon and Differential Radon 

Transform for the Case s = 0 

In this section, we have tried to classify the texture on bases of considering the 

combined behavior of RT and DRT features. In other words, the low pass features of the 

image and high pass features of the image are being combined to analyze the texture. In this 

section the case s = 0 is considered,  which has already been elaborated in section 4.3.  

5.4.1 Feature Extraction using RT and DRT  

RT and DRT features are being extracted by implementing eq (3.3.1) and eq (5.2.1), 

respectively. The procedures for extracting both type of features have already been 

discussed in sections 4.3.1 and 5.3.1.  In both cases s = 0 and a constant discrete step of 

02θ∆ = from 0o to 180o has been taken during the process of feature extraction. Separate 

observation sequences have been formulated for each texture for training the HMM. 

5.4.2 Training using HMM 

Once the observation sequence is formulated for each texture on the basis of RT and 

DRT features, HMMs are trained for each texture, for these observation sequences.  
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Training procedure for RT based HMM and for DRT based HMM is the same as given in 

section 4.3.2. Thus for each texture, there will be two HMM models, one trained on RT and 

the other on DRT features. 

5.4.3 Testing and Classification 

An arbitrary orientation of any texture can be taken and its relevant RT feature 

vector, RTo , and DRT feature vector, DRTo , can be found. We use evaluation problem of 

HMM for testing and classification purpose as discussed in section 4.3.3 and section 5.3.3 

for RT and DRT feature vectors, respectively. 

For RTo , we calculate ( )RT RT mP λo  and for DRTo  ( )DRT DRT mP λo  for 1,2, , .m M=  Then 

we find  

 { }1
* arg max ( ) ( )RT RT m DRT DRT mm M

m P Pλ λ
≤ ≤

= +⎡ ⎤⎣ ⎦o o  (5.3.2) 

The tested texture belongs to class *m . 

5.4.4 Simulations and Results 

For simulation we have taken the first 60 textures of Brodatz album (D1-D60) and 

carried out simulations for varying number of feature vectors (L =20, 40, 60, 80, 100, 120 ) 

and different number of states (N = 3, 4, 5, 6, 8, 10). We have used all the 60 textures at 20 

arbitrary orientations to make the test set of 60×20 (1200) as used in the previous sections.  

Table 5.2 shows that as the number of features, L, on which the HMM has been 

trained, increases, the PCC also increases for any specific hidden state. The best results of  
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Table 5.2 PCC of 1200 (60×20) test samples using proposed combined RT and DRT 
based method (case s = 0) for different number of feature vectors L and number of hidden 
states N 

L            N 3 4 5 6 8 10 

20 91.50% 90.17% 86.00% 86.92% 85.17% 81.42% 
40 95.83% 95.67% 94.17% 95.58% 94.67% 94.75% 
60 95.75% 95.50% 95.50% 95.33% 95.08% 94.75% 
80 95.92% 96.08% 95.58% 95.00% 95.83% 95.25% 
100 96.67% 97.00% 96.17% 96.50% 97.17% 98.08% 
120 97.08% 97.92% 98.00% 97.50% 98.50% 98.75% 

       

98.75% have been achieved for L=120 and N=10. These results are much better than that of 

Chen and Kundu [53], Ojala et. al. [106] and Khouzani and Zadeh [60] although they have 

performed simulation on 25 textures and less and that too have been selected in some cases, 

see Table 4.6.  

5.5 Texture analysis using Radon and Differential Radon 
Transform for the Case s ≠ 0 

In this section, we have also tried to classify the texture on bases of considering the 

combined behavior of RT features and DRT features for the case s ≠ 0. As in the previous 

section we shall train two HMMs for every texture.  

5.5.1 Feature extraction using RT and DRT  

We have discussed the procedure to find the RT features for the case s ≠ 0 in section 

4.4.1. The DRT features for the case s ≠ 0 have been calculated in the similar manner 

keeping the discrete steps s∆  and θ∆  same. If there are a total number of L discrete steps 

of θ , then the observation sequence has L feature vectors. These feature vectors extracted 
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by  RT and DRT, of a texture, formulate the observation sequence for the training of two 

HMMs.  

5.5.2 Training of HMM 

Once the observation sequence is formulated for each texture on the basis of RT 

features and DRT features for the case s ≠ 0, two HMMs are trained for each texture, one on 

RT features (low pass features) and the other on DRT features (high pass features).  

Training is carried out by using Baum-Welch algorithm as given in section 4.3.2.  

5.5.3 Testing and Classification 

In case of testing, we have to find out observation sequence 1[ ]T
RT = 2 LO o o o by 

using RT on the texture being tested for classification. Similarly find the observation 

sequence 1[ ]T
DRT = 2 LO o o o  using DRT.  Then calculate ( )RT

j mP λo  for all 1,2, ,j L=  

and 1,2, , .m M=  Similarly, calculate ( )DRT
j mP λo  for all 1,2, ,j L=  and 

1,2, , .m M=   Then the class is found out by using 

 ( ) ( )*

1 1
arg max

L L
RT DRT
j m j mm j j

m P Pλ λ
= =

⎧ ⎫⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑o o  (5.3.3) 

This unknown texture is either texture m* of the Brodatz album, or it is closest to the m* 

texture. 

5.5.4 Simulations and Results 

The feature vectors thus obtained are used to train HMM for L = 20, 40, 60, 80, 100, 120 

and N = 3, 4, 6, 8, 10. We have used all 60 textures at 20 arbitrary orientations to make the 
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test set of 60×20 (1200) as used in the previous sections. Table 5.3 shows that as the 

number of features (L), on which the HMM has been trained, increases the PCC also 

increase for any specific hidden state. The best results of 99.10% have been found for 

L=120 and N=8. These results, although performed on 60 textures, are more accurate than 

that of Chen and Kundu [53], Ojala et. al. [106] and Khouzani and Zadeh [60], which have 

been performed on 25 textures or even less. 

Table 5.3  PCC of 1200 (60×20) test samples using proposed combined RT and DRT 

based method (case s ≠ 0) for different number of feature vectors L and 

number of hidden states N 

             N 
L 3 4 5 6 8 10 

20 90.50% 90.75% 89.00% 88.92% 85.20% 81.40% 
40 93.60% 95.30% 95.10% 95.00% 94.67% 94.30% 
60 94.60% 96.50% 97.50% 96.33% 95.98% 95.75% 
80 96.92% 97.08% 98.20% 97.90% 97.53% 96.25% 
100 98.20% 98.32% 98.40% 98.50% 98.10% 97.60% 
120 98.38% 98.62% 98.70% 98.88% 99.10% 98.25% 

       

5.6 Summary 

In this chapter, we have introduced the concept of differential Radon transform 

which instead of summing up carries out the absolute differencing between adjacent pixels. 

This results in giving us the high pass features of the texture. We have suggested three 

schemes and tried them on first sixty textures of Brodatz album. In the first scheme we have 

used only DRT for feature extraction by suppressing the offset (s = 0). The results are not 

very promising in this case. In the second scheme we have used RT as well as DRT for 

feature extraction by keeping the offset s = 0.  Two HMMs are trained for each texture, one 

on RT and the other on DRT features and the result does show an improvement. In the third 

scheme, the offset s ≠ 0 and RT and DRT both, are used for feature extraction. Same 
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procedure as in the second scheme has been repeated.  Results have improved but at the cost 

of computation, because s ≠ 0. The best result with PCC 99.10 % have been found for L = 

120 and N = 8. 

 

 

 

 



  82 
 

Chapter 6  

Texture Analysis using its Principal Direction and 

Discrete Wavelet Transform 

6.1 Introduction 

This chapter discusses the issue of feature extraction and classification using a 

different approach. The approach is based on the definition of principal direction (PD), 

finding the orientation of this PD and applying discrete wavelet transform (DWT) along this 

direction to find out the features of the texture. These features are finally used to classify the 

textures with the help of k-nn classifier.  

Applying the wavelet transform on digital images requires a discretization of the 

transform parameters from the Continuous Wavelet Transform (CWT) and leads to DWT. 

Since eighties the DWT has been thoroughly studied [108] in the one-dimensional space. A 

fast and powerful scheme for implementing the 1D-DWT using a filter bank has been 

designed by Mallat in [109]. The two-dimensional extension is obtained by applying this 

filterbank along the rows and columns of an image. Due to the separability of the filters, the 

two-dimensional separable discrete wavelet transform (S-DWT) is strongly oriented in the 
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horizontal and vertical directions, which makes it impractical to extract rotation-invariant 

features from it.  

Greenspan et al. [110] tried to solve this problem by employing 4 angular filters and 

interpolated their responses to obtain the rotation-invariant features. Other researchers have 

tried to incorporate the rotation-invariance in the classification strategy, by e.g. including 

rotated examples in the learning data [53]. Yet another approach consists of a spiral re-

sampling of the data, to obtain a 1-dimensional signal, where rotation-invariance is reflected 

as translation-invariance [65]. Another solution is to implement non-separable filter banks 

using non-separable sub-sampling lattices in the decomposition scheme like the quincunx 

lattice [111][112]. However, a sufficient angular localization is still difficult to obtain in this 

manner. Despite all these efforts, extracting the features from the original data and 

incorporating rotation-invariance clearly will improve the results. 

Among all texture feature extraction methods such as co-occurrence matrix [16], 

Markov random fields (MRF) [113], Gibbs random model, Gabor filters and wavelet 

transform [30][114], the wavelet transform and wavelets packets [98] attracts more and 

more attention due to its powerful ability in texture representation. The problem which 

remains  there is that of translation, rotation, and scale invariant texture analysis.  

In this chapter, two new rotation invariant and gray scale invariant texture analyses 

have been proposed. The first technique uses DRT and ordinary DWT. The DRT is first 

used to calculate the angle of the PD of the texture. Then, the texture is rotated in the 

opposite direction by the same angle as detected by DRT. Finally, DWT is applied to the 

preprocessed texture to extract features which are rotation invariant. The second technique 
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is identical to the first one except that instead of DRT, PCA is used to find the orientation of 

the PD. 

6.2 Methods using Principal Direction 

Methods have been proposed in the literature to find orientation of predefined PD of 

the textures. Once the orientation of the PD is found, wavelet transform is applied in this 

direction. One such method which is of interest and relevance to us has been proposed in 

Khouzani et al [75]. Its details are presented below. The RT is used to detect linear trends in 

texture. Khouzani et. al. defined texture PD as the direction along which there are more 

number of straight lines. The RT along this direction usually has larger variations. 

Therefore, the variance of the projection in this direction is locally maximum. A disk shape 

area from the middle of the image has been selected before calculating the RT.  Fig. 6.1 (a) 

shows an anisotropic (directional) texture (D20) and Fig. 6.1 (b) shows the variance of the 

projections along different orientations. As shown, the variance of the projections has two 

local maxima at 2° and 92°. The local maxima at 2° is narrower compared with the local 

maximum at 92°, because there are more straight lines along 2°. Thus, the derivative of the 

variance changes more rapidly at 2° as shown in  Fig. 6.1 (c). To distinguish between these 

two local maxima, they calculated the second derivative of the variance as follows 

 
2 2

2arg min d
d

θ

θ

σα
θ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (6.2.1) 

where ( )22 1/ ( , )
s

N g sθ θσ θ µ= −∑  is the  variance of the projection at θ , 

1/ ( , )
s

N g sθµ θ= ∑ ,  ( ),g s θ  is the RT of the image at orientation θ  and N is the number  
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 (a) 

  

(b) 

 

 (c) 

 

 (d) 

Fig. 6.1 (a) Anisotropic (directional) texture (D20) (b), variance of the projections along 

different orientations, (c) First order derivative of (b), (d) Second order 

derivative of (b) 

of samples in each projection. The image is then rotated by the angle α−  to adjust the 

orientation of the texture. In particular example α  is calculated as 2°. This is demonstrated 

in Fig. 6.1 (d). Now rotate the image at -2° and calculate the wavelet feature for this texture 

as proposed in chapter 3. In the Fig. 6.2 (a) the texture is rotated with an angle 45°. The 

variance of its projections along different orientations, first and second derivatives of the 

  



  86 
 

 

(a) (b) 

 

(c) 

 

(d) 

Fig. 6.2 (a) Anisotropic (directional) texture (D20) at rotation of 45°  (b), variance of 

the projections along different orientations, (c) First order derivative of 

(b), (d) Second order derivative of (b) 

 

projections are shown in the  Fig. 6.2 (b), (c) and (d), respectively. The minimum for this 

case is at  47°calculated by eq.  (6.2.1). The PD is 47°. After  going through rotation of 

 – 47°, this rotated texture will be at zero orientation. Now we get wavelet features of the 

texture. 
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6.3 Proposed Method using DRT 

The proposed method also defines the PD of a texture but it uses DRT to find the 

orientation of this PD. Before giving our definition for PD of a texture, we give our 

definition of activity. Normally activity around a point or pixel at ( ),i j is defined as  

 ( ) ( ) ( )( )
1 1 2

1 1

, , ,
s r

A i j f i j f i r j s
+ +

=− =−

= − + +∑ ∑  (6.3.1) 

where ( ),f i j  is the  gray scale value of pixel at ( ),i j . Thus activity at ( ),i j  involves eight 

neighbors around it as shown in the Fig. 6.3. Using the above definition people have defined 

the activity of the block by adding up the activity around every pixel in the block. Similarly, 

one can talk of activity on a line by adding the activities of all the pixels lying on that line. 

We modify the definition of activity on a line as follows. Activity on a line is the absolute 

difference between the gray scale values of the consecutive pixels on that line. This is 

exactly the same as DRT. Thus we propose the following definition for PD of a texture.  

“The principal direction of a texture is the direction along which there is maximum 

activity”  

Like Khouzani’s definition of PD, this definition will work more efficiently for directional 

(anisotropic) textures and may fail completely for perfectly isotropic textures. To find out 

the PD with the proposed definition, we use DRT to find projections at different angles,θ . 

The DRT as defined by (5.2.1) is applied to a texture for a particular value of θ  and all the 

samples of the projections in this direction are summed up and averaged over the number of 

samples. This is denoted by ( )DG θ  and defined as 

 ( ) ( ), /D D
s

G g s Nθ θ∑   (6.3.2) 
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where N is the number of samples in a projection. We take projection along angle from 0o to 

180o in discrete steps of θ∆ . We try to find more values of projection near any expected 

peak (i.e. decrease value of θ∆ ) in order to get a sharper maximum.  

Moreover, there may be more than one maxima competing with each other, we will use the 

second derivative of the function in order to find a maximum which is relatively more 

localized. Thus, in this case 

 ( )2

2arg min D
PD

d G
dθ

θ
θ

θ
⎧ ⎫⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

  (6.3.3) 

After finding this orientation of the PD, the image is rotated by – PDθ  before applying DWT 

in order to extract the features. These features will give same classification effect for the 

same texture at any orientation.  

Let us make a comparison of this definition with the one given by Khouzani and 

Zadeh [75]. Firstly, if there is a texture with straight lines, then the PD as defined above will 

be the direction orthogonal to the direction along which there is maximum number of 

straight lines i.e. it will be orthogonal to the PD defined by Khouzani and Zadeh. Secondly, 

this definition is more generalized than that of Khouzani and applicable to all those textures 

which have no straight lines at all. Thirdly, since DRT finds the absolute difference between 

gray scale values of consecutive pixels, this method will also be gray scale invariant. Hence, 

the method is immune to illumination changes across the image. If we further use second 

derivative of DRT, we shall be totally getting rid of low frequency components, thus 

making the method even more robust to illumination changes. 
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Fig. 6.3 Eight neighbors of a pixel 

 

Lastly there is another basic difference between the proposed method and 

Khauzani,s method. In that, one has to calculate the variance of the different projections of 

RT, while we simply take the average of the sum of DRT projections in different 

orientations. This makes our method computationally lighter. 

By applying the DWT to this preprocessed image for different levels a number of 

sub-bands are produced. We have chosen four levels. At each level a texture image is 

decomposed into four subbands, (A,H,V,D), where A represents the approximation image 

and  H, V, D represent the horizontal, vertical and diagonal details of the image, 

respectively. ( , )l
sW i j  represents the wavelet coefficients at the lth level for subbands where 

s can be A,H,V or D. The wavelet decompositions at each stage is done for approximation 

subband, A, of the previous image. Fig. 6.4 shows the four level wavelet decomposition of 

the image  f(x,y). 
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Fig. 6.4 Block Diagram for 4-level Wavelet Decomposition 
 

The energy features of thirteen subbands are calculated from the wavelets 

coefficients produced by four levels of ordinary wavelet decomposition using Daubechies 

wavelet of length 4 (db4). For each subband, we calculate the statistical feature (standard 

deviation of the subband) in the following way  

 ( , ) 2

,

( ( , ) )l s l l
s s

i j

e W i j W= −∑   (6.3.4) 

where 1 ( , )
M N

l l
s s

i j

W W i j
M N

′ ′

=
′ ′ ∑∑ , M ′  and N ′  are the dimensions of each subband, 

where / 2lM M′ =  and / 2lN N′ = . For classification, we use the k-nearest neighbors (k-

nn) classifier. 

6.4 Proposed Method using PCA 

In order to develop the rotation invariant texture features, we have proposed another 

method using PCA to find out PD for each texture and then find out wavelet features along 

that direction. The block diagram of the proposed method is shown in the Fig. 6.5. We 

denote the texture image by f(x,y), where f is the gray level value of the pixel with spatial 
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coordinates ( , ). x y These three elements x, y, and f can be expressed in the form of 3-D 

column vector, x, where 

 
x
y
f

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x   (6.4.1) 

This one vector represents one pixel in the texture. For the texture of size ,M N×  there will 

be a total of MN three dimensional vectors from which we formulate the covariance matrix 

of size 3×3 according to eq.(3.2.3). We find its eigenvalue and corresponding eigenvectors. 

The eigenvector corresponding to the highest eigenvalue is called the principal eigenvector 

and its direction is the PD of the texture with certain estimated angle eθ as shown in the Fig. 

6.6. Now we rotate the image by eθ− to adjust the orientation of the texture.  For different 

orientation of the same texture, the PD will have different values of eθ , but once rotated by 

eθ− , all the orientations of the same image will almost be similar. For example, take D97 

form Brodatz album. Fig. 6.7 (a) and (b) are the original image of the texture and its wavelet 

signature, respectively. The procedure to find the wavelet signature will be discussed later. 

Fig. 6.7 (c) and (d) are the rotated texture of image (a) at principal angle found through PCA 

and its wavelet signature.  

The original image rotated with angle 25 as shown in  Fig. 6.7 (e) and its wavelet 

signature is shown in Fig. 6.7 (f), (g) and (h) are rotated image of texture at principal angle 

which has been found out through PCA and it wavelet signature, respectively. The wavelet 

signature of (d) and (h) are same while the signature of the (a) and (f) are different from 

each other and also different from (d) and (h).  
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Fig. 6.6 Principal direction angle for Principal Eigenvector 

 

 

 

 
 

Fig. 6.5 Block Diagram of Proposed Method 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6.7 Original image of the texture, (b) Wavelet signature of (a), (c) Rotated 

image of (a) with Principal direction angle, (d) Wavelet signature of (c), (e) 

Rotation of (a) with angle 25, (f) Wavelet signature of (e), (g) Rotated 

image of (d) with Principal direction angle 
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After finding this angle, the image is rotated by - eθ  to adjust the orientation of the 

texture. DWT is applied to the rotated image to extract the features. The procedure to 

calculate energy features through DWT is discussed in section 6.3. These features will give 

same classification effect for the same texture at any orientation. 

6.5 Selection of Dataset for Classification 

The famous datasets are CUReT and Brodatz. The CUReT dataset [115] provides a 

challenging dataset to classify as shown in the Fig. 6.8. The database contains images of 61 

texture classes. For each texture class there are 205 images of each texture under different 

illuminations and directional conditions. The CUReT database contains images of a number 

of natural textures from a wide variety of angles and illuminations. However, many of these 

textures do not exhibit patterns that exist in several real world textures and very few are 

synthetic in nature. These features are also important for texture classification and fit in with 

our definition of texture. In order to try and test the classifiers ability to handle both 

synthetic and patterned textures, the Brodatz database [116] considered for experiment is 

shown in Fig. 6.9. This database includes patterned and synthetic textures both at small and 

large scales. It contains 112 different texture classes. Unlike the CUReT dataset this dataset 

consists of a single high resolution image per texture, subsequently there are no variations in 

illumination or rotation within each texture class. This database is a good test for texture 

classification as it includes regularly patterned, highly irregular and many natural textures. 

This dataset, although smaller, does contain significantly more texture classes than in the 

CUReT database (112 compared to 61).  
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Fig. 6.8 The CUReT Dataset 
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Fig. 6.9 One hundred twelve (112) textures from Brodatz album (D01-D112). First row 

D01-D08, second row D09-D16, and so on, and 14th  row D105-D112 
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6.6 Simulations and Results 

Brodatz textures [116] have been used for simulation of these two proposed 

schemes. Original size of the textures is 640×640. Four cases were taken for each Brodatz 

texture, resized as 256×256, 128×128, 64×64, and 32×32 pixels. In the first case we took 

only 25 textures and compared the results of two proposed schemes with that of Khouzani. 

In the second case we took 112 textures and compared the results of these three schemes. 

The texture was rotated from 0 degrees to 180 degrees with a discrete step of 5 degrees thus 

providing 37 different orientations for each texture. Therefore, in case of 112 textures we 

created a total number of 4144 (112×37) samples for each case. To estimate the PD, we 

have calculated the PCA for each rotation. Seven samples of each texture were taken as 

training set. The total number of samples for training was 784 (112×7). Thirty samples of 

each texture were taken as testing set. The total number of samples for testing was 3360 

(112×30). The Table 6.1 compares these two schemes with that of Khouzani and Zadeh [75] 

for 25 textures and Table 6.2 for 112 textures. As we observe the results grow better as the 

pixel size of the texture reduces smaller and smaller. 32×32 has the worst PCC while 

256×256 has the best PCC. Moreover, we also observe that in general k = 1 classifier gives 

the best results. Comparing these three techniques, PCA gives the best results in general but 

the scheme is computationally the heaviest. DRT is computationally the lightest and gives 

results slightly inferior to that of PCA. Moreover, 32×32 image results by Khouzani’s 

method are no match to the results given by DRT or PCA method.  

The noise robustness against zero mean additive white Gaussian noise (AWGN) has 

been checked for the proposed methods. In Fig. 6.10, proposed PCA-DWT and proposed 
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DRT-DWT methods have been compared in presence of zero mean AWGN with log polar-

method and multichannel Gabor filtering as reported in [59]. The method using DRT-DWT 

is less robust to zero mean AWGN as compared to PCA-DWT.  The performance of both 

the proposed methods is better than that of log polar-method and multichannel Gabor 

filtering. Unlike RT, DRT is carrying out absolute differencing between adjacent pixels. 

Hence DRT of this noise is not zero. Due to this property it is fairly less immune to the 

noise as compared to the techniques using RT.  

 

 

0

20

40

60

80

100

0 5 10 15 20 25

Signal to noise ratio (dB)

PC
C

(%
)

Multichannel Gabor Filtering

Log-Polar Method

Proposed PCA-DWT Method

Proposed DRT-DWT Method

 
 
Fig. 6.10 Performance of four different methods in the presence of zero mean AWGN 

different signal to noise ratios 
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6.7 Summary 

The approach in this chapter is different from previous two chapters. In this case PD 

of a texture is defined, which is definitely not unique. Once this PD has been defined, a 

particular method to find out the orientation of this PD is used. Then the DWT is applied in 

the principal direction and its various components at different depths are obtained. These 

components describe the features of the texture, which are used by the k-nn classifier for 

classification.  

The first definition of PD suggested in this chapter is the direction in which there is 

maximum activity. To find out this PD, we have used DRT and its second derivative. The 

second definition of PD is the direction of the eigenvector belonging to the maximum 

eigenvalue. To find out the angle of PD, PCA has been used. The results of the second 

scheme are better than that of the first scheme. However, it is computationally much heavier 

than the first one. Both the schemes show better results than that of Khouzani and Zadeh 

[75] and like them are applicable to anisotropic textures only. Among the two poposed 

schemes the first scheme using DRT is also gray-scale invariant. 
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Chapter 7  

Conclusions 

7.1 Summary of Results 

In the field of texture analysis the recent advances in the use of Radon transform, 

Hidden Markov Models, PCA and Wavelet Transform have been exciting. These techniques 

provide a level of flexibility and adaptability for texture analysis which has not been fully 

exploited so far. Therefore, this dissertation shows that these techniques can be extended to 

handle the case of rotation, translation and gray scale invariant feature extraction for texture 

analysis. Another important factor is that these techniques, except for one, are equally valid 

for both isotropic and anisotropic textures. 

As we know that in the texture analysis, two important issues are always under 

consideration. First is the feature extraction or mapping of image samples to n-dimensional 

points in feature space. Second is the design of classifier that is able to discriminate these 

feature vectors. It turns out even the optimal Bayesian classifier could come up with 

misclassification as can be seen from the Bayesian error. One good solution to this problem 

is to improve upon the methods of feature extraction. This has been the main theme of 

chapters 4 and 5. 
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In chapter 4, we have proposed three different ways to capture the texture features. 

Firstly, we have used the Radon transform but with s = 0.  This method gives us features 

that are rotation invariant but not translation and gray scale invariant. These extracted 

features are used to train one HMM for each texture. This scheme provides us best PCC as 

98.25%. Obviously if we use more number of feature vectors for training of HMM, PCC 

does become better but computationally it becomes very cumbersome. Secondly, we have 

proposed Radon transform with s ≠ 0 for feature extraction. The computational level goes 

higher than the previous case but the features are rotation and translation invariant. Its best 

PCC is 98.80%. Thirdly, we have proposed feature extraction scheme using variance of 

Radon transform. These features are rotation, translation and gray scale invariant. The best 

result has been with PCC as 100%. Comparing it with other existing techniques in the 

literature, we claim our technique to be the best so far.  

 In chapter 5 we have introduced the concept of differential Radon transform (DRT) 

so as to get the feature vectors which are rotation, as well as, gray scale invariant. Again 

three methods were given to extract the feature vectors. First one is by using DRT only. We 

have extracted feature vectors by keeping s = 0. The feature vectors are rotation and gray 

scale invariant and are used to train one HMM for each texture. Its best PCC was found to 

be 96.33%. The second approach used RT and DRT both with s = 0, to capture features that 

are rotation and gray scale invariant. With the same textures as taken before, we get 

improved results than before. The best PCC is 98.75%. The third approach again uses RT 

and DRT but with s ≠ 0. This gives us features that possess translation invariance in 

addition to rotation and gray scale invariance. After training of HMM the testing and 

classification gives as PCC 99.10%, this is slightly better than the previous case. The 
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schemes given in chapter 4 and 5 are equally applicable to isotropic as well as non isotropic 

textures. 

The last scheme, given in chapter 6, is different from the rest. In this part of the 

thesis the main objective was to define a principal direction of the texture and then to devise 

a method to find its orientation. Once this preprocessing step is done effectively, then 

ordinary discrete wavelet transform, which easily provides discriminatory features but is not 

rotationally invariant, can be used along the orientation of the principal direction. We find 

the results for PCA case to be the best, but with very high computational price. However, it 

is applicable to isotropic as well as anisotropic textures. The DRT method is slightly inferior 

to it but is computationally much lighter. It is applicable to anisotropic textures only. 

Definitely both the schemes have been tested on 25 textures give better results than that of 

Khouzani and Zadeh [75].  

7.2 Future Directions 

In future it may be tried to improve the feature extraction techniques which are not 

only robust against rotation, translation and illumination but also scaling. Obviously it will 

be computationally heavier. Therefore, the reduction of the computational cost and 

complexity could be the further area of interest in this direction.  

The robustness of these proposed methods against other types of noises apart from 

zero mean AWGN can also be looked into by the future research.  

One could look into the potential of ridgelets and curvelets for feature extraction 

which have been invariant to rotation, translation and scaling. 
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In our work, we have extracted one dimensional feature vectors and used one 

dimensional HMMs. In future we shall look into extraction of two dimensional features and 

train two dimensional HMM for robustness and even better result. 
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