
An Automated Approach to Model Based

Testing of Multi-agent Systems

By

Shafiq Ur Rehman

PC103005

A Thesis submitted to the

Department of Computer Sciences

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Faculty of Computing

Capital University of Science and Technology

Islamabad

March, 2017

II

An Automated Approach to Model Based

Testing of Multi-agent Systems

By

Shafiq Ur Rehman

PC103005

Dr. Jin Song Dong
School of Computing

National University of Singapore, Singapore

Foreign Evaluator

Dr. Jianjun Zhao
Kyushu University

Fukuoka, Japan

Foreign Evaluator

Dr. Aamer Nadeem

Associate Professor, HOD BI & BS

Faculty of Computing

Capital University of Science and Technology, Islamabad

Thesis Supervisor

Dr. Nayyer Masood

PROFESSOR / HOD Computer Science

Dr. Abdul Qadir
(Professor / Dean Faculty of Computing)

Faculty of Computing

Capital University of Science and Technology

Islamabad

March, 2017

III

Copyright© 2017 by Mr. Shafiq Ur Rehman

All rights are reserved. No part of the material protected by this copy right notice may be

reproduced or utilized in any form or any means, electronic or mechanical, including

photocopying, recording or by any information storage and retrieval system, without the

permission from the author.

IV

To my Mother, Siblings, My Wife and Loving Memory of My Father

VIII

Acknowledgements

First of all praise be to Allah, The most gracious, Who blessed me with the opportunity,

capability and resources to pursue the doctoral program, and it’s all due to His grace that I saw it

through.

One of the most notable of Allah’s blessings upon me was in the form of my supervisor. I would

like to thank my supervisors, Associate Professor/HOD BI & BS, Head of Center for Software

Dependability research group Dr. Aamer Nadeem for the support and guidance he have given me

throughout my candidature. I don’t have words to thank you, Dr. Aamer Nadeem, for the

motivation, guidance, support and encouragement that you provided to me on constant basis. I

am also grateful to Dr. Muddassar Azam Sindhu, Assistant Professor QAU, who had reviewed

my thesis write up. His reviews help me a lot to improve thesis write up. I feel very lucky to be

part of Center for Software Dependability research group members whose discussion and

constructive criticism maintained an environment that was conducive for research. More over

without recreational activities of our CSD research group I may have gone insane over the last

few years.

I would like to thank my family specially my wife Tehreem Jahangir, who always played a very

supportive role, boost me up whenever I feel down. I have profound gratitude for her who had to

face my educational stress. May Allah reward you for your sacrifice and selflessness. I am

thankful to my brothers, who were always there for me since my childhood. There is one person

who had set the base of my educational career that is my uncle Ch. Mehmood Akhtar, without

his motivation I would not be able to achieve such an excellence in education.

I am very thankful to my friends, especially Bilal Bashir, who was always there to take me out of

stress and motivated me many times. He had more confidence in me than I had in myself. There

are so many other well wishers including friends, colleagues and relations who remembered me

in their prayers. Allah bless you all. In the end I must mention that the being who cares more

about me than I do for myself, my mother. I always felt her prayers by my side in the time of

despair and frustration, and this feeling gave me energy to put myself together.

IX

Credits

Research work appeared in the following publications:

[1]. Shafiq Ur Rehman and Aamer Nadeem, “Interaction Testing of Multi-agent Systems

Using Design Models”, Under Revision.

[2]. Shafiq Ur Rehman, Aamer Nadeem, M. A. Sindhu, “Towards Automated Testing of

Multi-agent Systems using Prometheus Design Models”, The International Arab Journal

of Information Technology, Accepted in September 2016.

[3]. Shafiq Ur Rehman and Aamer Nadeem, “An Approach to Model Based Testing of

Multiagent Systems”, Special issue on Research and Development of Advanced

Computing Technologies, 925206, 2014, The Scientific World Journal, Hindawi

Publishing Corporation.

[4]. Rehman, S.U.; Nadeem, A, “Testing of Autonomous Agents: A Critical Analysis”,

IEEE Electronics, Communications and Photonics Conference (SIECPC), 2013 Saudi

International , vol. 1, no. 5, pp. 27-30 April 2013, doi:10.1109/SIECPC.2013.6550990.

[5]. SU Rehman, A Nadeem, “AgentSpeak (L) bases testing of autonomous agents”, T.-h.

Kim et al. (Eds.): ASEA/DRBC/EL 2011, CCIS 257, pp. 11–20, 2011. © Springer-

Verlag Berlin Heidelberg 2011.

X

Table of Contents

CHAPTER 1: INTRODUCTION ... 1

1.1. Prometheus Methodology ... 3

1.2. Research Aims and Objectives ... 4

1.3. Research Questions... 4

1.4. Problem Statement .. 5

1.5. Research Contributions... 6

1.6. Thesis Outline ... 8

CHAPTER 2: BACKGROUND ... 9

2.1 Agents ... 9

2.2 Belief Desire Intension (BDI) Architecture .. 10

2.3 Agent Unified Modeling Languages (AUML) ... 11

2.4 Agent Oriented Software Engineering Methodologies ... 11

2.4.1 GAIA Methodology .. 12

2.4.2 MaSE Methodology ... 12

2.4.3 MESSAGE Methodology .. 12

2.4.4 CoMoMAS and SODA Methodologies ... 12

2.4.5 DESIRE Methodology .. 13

2.4.6 Tropos Methodology ... 13

2.4.7 Prometheus Methodology .. 13

2.5 Software Testing ... 15

2.5.1 Test Automation ... 16

2.6 Model Based Testing .. 17

2.6.1 Derivation of Test Cases from a Test Model ... 18

2.7 Levels of MAS Testing ... 18

CHAPTER 3: LITERATURE SURVEY AND ANALYSIS20

3.1 Multi-agent System Testing .. 20

3.2 Analysis... 29

3.2.1. Evaluation Criteria ... 29

3.3 Summary ... 32

XI

CHAPTER 4: A FAULT MODEL FOR MULTI-AGENT SYSTEMS34

4.1 Fault Model ... 34

4.1.1 Fault Types: Interaction Faults .. 35

4.1.2 Faults Types: Goals, Sub-goals and Plans Faults ... 38

CHAPTER 5: MULTI-AGENT SYSTEM TESTING FRAMEWORK43

5.1 Multi-agent System Testing Framework .. 43

5.2 MAS Integration Testing: Interaction Testing .. 44

5.2.1 PROTOCOL GRAPH GENERATION .. 46

5.2.2 TEST COVERAGE CRITERIA ... 50

5.2.3 TEST PATHS GENERATION ... 53

5.2.4 TEST CASE GENERATION ... 54

5.2.5 TEST RESULT EVALUATION: INTEGRATION TESTING .. 55

5.3 System Level MAS Testing Framework and Process: Goal and Plans Faults Identification

& Coverage: .. 55

5.3.1 TEST MODEL GENERATION .. 57

5.3.2 COVERAGE CRITERIA .. 62

5.3.3 TEST PATHS GENERATION ... 64

5.3.4 TEST CASE GENERATION AND EXECUTION .. 66

5.3.5 TEST RESULT EVALUATION: GOAL-PLAN COVERAGE .. 68

CHAPTER 6: MAS TESTING FRAMEWORK IMPLEMENTATION70

6.1 Interaction Testing .. 70

6.1.1 ATL Transformation Rules PD meta-model to PG meta-model 71

6.1.2 Protocol Graph Test Paths Generator ... 72

6.1.3 Interaction Test Paths Generator Tool.. 73

6.2 System Testing: Goal-Plan Graph Generator ... 76

6.3 Goal-Plan Graph Test Paths Generator ... 77

6.3.1 Goal-Plan Graph Test Paths Generator Tool ... 78

6.4 Test Case Execution .. 83

CHAPTER 7: EVALUATION: RESULTS AND DISCUSSION......................86

7.1 Evaluation: Case Study ... 86

7.1.1 DESIGN ARTIFACTS ... 86

XII

7.2 Faults Seeded in MAS implementation .. 93

7.2.1 FAULT TYPE SEEDED: INTERACTION FAULTS .. 93

7.2.2 FAULT TYPE SEEDED: GOAL, SUB-GOAL AND PLAN FAULTS ... 94

7.3 Test Model Generation from design artifacts ... 95

7.4 Test Cases Generation And Execution (Coverage Criteria Based) 97

7.4.1 INTERACTION TEST PATHS GENERATION .. 97

7.4.2 GOALS AND PLANS TEST PATHS GENERATION ... 98

7.4.3 TEST CASE GENERATION AND EXECUTION .. 101

7.5 Fault Identification By Test Cases .. 105

CHAPTER 8: CONCLUSIONS AND FUTURE WORK112

APPENDIX -A ..114

A-1: Code for Tests Path Generation Tool: Goal-Plan Paths ... 114

APPENDIX-B ...118

Test Cases Execution Log ... 118

Sample Interaction Testing Log: ... 118

Sample Goal-Plan Coverage Log: .. 120

REFERENCES ...123

XIII

LIST OF FIGURES

2.1 Phases and artifacts of The Prometheus Methodology…………………………….. 14

2.2 Fault, Error and Failure Relation…………………………………………………… 16

2.3 Model Based Testing Application Fields ………………………………………….. 17

4.1 MAS Working and Flow of Information ………………………………………....... 35

4.2 Protocol Diagram in PDT with Interactions ……………………………………….. 36

4.3 Warnings Protocol of Meteorological Alerting System …………………………… 37

4.4 Goal Plan Relationship in PDT ……………………………………………………. 39

4.5 A Plan Descriptor in PDT …………………………………………………………. 40

5.1 MAS Testing Framework ………………………………………………………….. 44

5.2 Testing Framework for Interaction Testing ……………………………………… 45

5.3 Data Retrieval Protocol Diagram ………………………………………………… 47

5.4 Meta-model of Protocol Diagram ………………….……………………………... 48

5.5 Meta-model of Protocol Graph ……………………………………………………. 49

5.6 Protocol Graph for Data Retrieval Protocol Diagram ……………………………. 50

5.7 Test Coverage Criteria Hierarchy. . ………….…………………………………... 53

5.8 Overview of Testing Process for Goal and Plans Coverage ………………………. 56

5.9 Testing Framework for Goal, Sub-Goals and Plans Coverage ……………………. 57

5.10 Example of Scenario and Goal overview diagram (Obtain Data Scenario)……....... 58

5.11 Goal Overview Diagram of Meteorological Alerting System …………………….. 59

5.12 MAS Notations Used in Prometheus Design Diagrams …………………………… 59

5.13 Agent overview diagram (AirPort Agent)………………………………………….. 60

5.14 Goal-Plan Graph (Test Model) of MAS …………………………………………… 61

5.15 Test Case Generation Process for MAS …………………………………………… 67

6.1 Protocol Graph and Test Path Generator Tool Architecture ………………………. 70

6.2 Code of Finding Paths from Protocol Graph ………………………………………. 72

6.3 Test Path Generator Tool Process …………………………………………………. 73

6.4 Test Path Generator Tool Input File ……………………………………………….. 73

XIV

6.5 Test path Generation Tool (Coverage Criteria) ……………………………………. 74

6.6 Test path Generation Tool (Action Coverage) …………………………………….. 74

6.7 Test path Generation Tool (Percept Coverage) ……………………………………. 75

6.8 Test path Generation Tool (Message Action Coverage) …………………………... 75

6.9 Test path Generation Tool (Percept Message Coverage) ………………………….. 75

6.10 GPG (Test Model) Test Paths Generation Tool Input ……………………………... 79

6.11 Automatic Test Path Generation Architecture using GPG ………………………… 79

6.12 GPG Test Paths Generator (Scenario Coverage Criteria) …………………………. 80

6.13 GPG Test Paths Generator (Plan Coverage Criteria) ……………………………… 80

6.14 GPG Test Paths Generator (Loop Coverage Criteria) ……………………………... 81

6.15 GPG Test Paths Generator (Goal-Plan Coverage) ………………………………… 81

6.16 GPG Test Paths Generator (All Goals Coverage) …………………………………. 82

6.17 GPG Test Paths Generator (Capability Coverage) ………………………………… 82

6.18 GPG Test Paths Generator (Agent Coverage) ……………………………………... 83

7.1 Scenario Diagram of Multi Currency Banking MAS. .…………………………… 87

7.2 Goal Overview Diagram of MAS …………………………………………………. 88

7.3 System Overview Diagram of Multi-agent System ……………………………….. 88

7.4 AUML Description of Account Operation Protocol ………………………………. 89

7.5 Account Operation Protocol Diagram ……………………………………………... 90

7.6 BankAccount Agent overview diagram of MAS ………………………………….. 91

7.7 DebitAccountCap and CreditAccountCap Capability overview diagram of MAS ... 91

7.8 CurrencyExchange Agent, Communicator Agent and ComputeRate Capability

Overview diagrams ………………………………………………………………... 92

7.9 Protocol Graph (Test Model) for Account Operation Protocol Diagram ………….. 95

7.10 Goal-Plan Graph (Test Model) for Multi Currency MAS system ………………… 96

7.11 Test Path Generator Tool Input File ……………………………………………….. 95

7.12 Chart with Test Cases and Coverage Criteria Detecting Types of Faults …………. 109

7.13 Chart of Test Cases and Coverage Criteria Detecting Goal-Plan Faults …………... 111

XV

LIST OF TABLES

Table-1 Comparison of Technique Based on Parameters…………………………….. 31

Table-2 Test Paths for Data Retrieval Protocol Graph ………………………………. 53

Table-3 Test Paths for Each Coverage Criteria Applied on GPG ……………………. 65

Table-4 Node Description Table for Paths Nodes …………………………………… 66

Table-5 Injected Faults for Interaction Testing……………………………………….. 93

Table-6 Injected Faults in Multi-Currency Banking MAS…………………………… 94

Table-7 Test Paths for Account Operation Protocol Diagram ……………………….. 97

Table-8 Structures of the Goal-Plan Graphs used as Input to Tool ………………….. 98

Table-9 Test Paths for Goal-Plan Graph ……………………………………………... 99

Table-10 Node Description Table Interaction Test Paths Nodes ……………………… 101

Table-11 Node Description Table for Goal-Plan Test Paths Nodes …………………... 102

Table-12 Test Cases for MAS testing …………………………………………………. 107

Table-13 Interaction Fault Types Vs Coverage Criteria ………………………………. 108

Table-14 Goal-Plan Fault Types Vs Coverage Criteria ……………………………… 108

Table-15 Detected Interaction Faults by Coverage Criteria and Minimum Test Cases .. 109

Table-16 Detected Faults by Coverage Criteria and Minimum Test Cases Required … 110

XVI

LIST OF ABBREVIATIONS

AOSE Agent Oriented Software Engineering

PDT Prometheus Design Tool

AUML Agent Unified Modeling Language

MBT Model Based Testing

SUT System under Test

MAS Multi-agent Systems

XVII

ABSTRACT

Multi-agent systems (MAS) have been used progressively more for complicated and dynamic

environments. Complex environments require MAS applications to work efficiently.MAS are

used in dynamic and complex environments like e-commerce, banking, air traffic control,

information management due to agents’ unique features like autonomy to make their own

decisions, reactivity upon environmental changes, social ability and pro-activeness in goal-

directed behaviors to select feasible plans based on current situation.

Software testing plays a vital role in ensuring multi-agent systems’ quality and acts as a major

phase in their development life cycle. There is a need to have a good testing technique in order to

ensure MAS quality. Testing based on extracting test requirements from system models is useful

for revealing faults in MAS testing because testing can start early, we do not need to wait for

complete system to develop. In literature, some work has been done on testing only a few

features of MAS using model based testing (MBT), i.e., testing MAS units using system models

and testing only one type of interaction between agents in MAS. There is a lack of a

comprehensive testing technique which assures aspects ranging from system specification level

to detailed plans execution covering integration and system level testing. Existing model based

testing techniques for multi-agent systems do not cover all aspects of MAS, e.g., dependencies

between interactions and goal plan coverage. Goals and plans related existing testing techniques

only cover part of plans and goals in a specific design artifact. Greater coverage of design

artifacts ensures higher fault detection capability.

Prometheus is a well-developed MAS designing methodology based on Agent Unified Modeling

Language (AUML) notation. Interactions between agents in Prometheus methodology have

actions, percepts and message interactions between agents; but only message interactions have

been covered in existing techniques which is not enough for fault free MAS because action and

percept interactions are also equally important. Dependency fault occurs in case of missing

percept as percepts are required for events. Actions are used to update output of agent to

environment. Messages usually depend on the correct sequential execution of related actions and

percepts involved in an interaction.

Goals and plans are the key premise to achieve MAS targets. Different types of faults can occur

if certain plans, goals, sub-goals or their order of execution is incorrect. Literature covers faults

like incorrect belief and incorrect context etc., but there are certain aspects of MAS that are still

XVIII

missing and can cause MAS to behave unexpectedly, like inaccurate goal achievement, plan

failure, internal agent fault, missing functionality and scenario related faults. Such faults can be

minimized by ensuring maximum coverage of goals and plan using design artifacts.

We have developed an approach using Prometheus design artifacts for integration and system

level testing of MAS. AUML interaction protocol is used for interaction between agents and

environment which is further elaborated in process diagrams corresponding to each agent. Fault

models for interaction coverage and goal-plan coverage have been presented in which different

integration and system level fault types are discussed. In this novel approach different

interactions are considered like percept, action and message between the agents which can be

modeled in a test model, i.e., protocol graph. Different coverage criteria for interaction coverage

have been devised and applied to generate test paths for interactions between agents. For system

level testing, we have also created test model, i.e., Goal-Plan Graph (GPG) for goals, sub-goals

and plans using Prometheus design artifacts, i.e., goal overview diagram, scenario overview,

agent and capability overview diagrams. We have defined coverage criteria for system level

testing and applied on Goal-Plan Graph for test paths generation. Test cases have been generated

using test model paths and its relevant implementation in agent development environment. Test

paths are generated automatically with the help of tool from protocol graph and Goal-Plan

Graph. We executed test cases on MAS implementation and compared expected results with the

actual results to evaluate test cases. Failed test cases are further investigated to identify which

type of fault was detected. We seeded faults in MAS and applied interaction and system level

test cases. Expected results were gathered manually for evaluation purpose.

1

CHAPTER 1: INTRODUCTION

Multi Agent Systems (MAS) have been adopted widely in complex systems due to agents’

unique features like reactivity, proactivity, autonomy and social ability (Padgham & Winikoff,

2004). MAS are composed of software agents which are software components that have

autonomous actions to achieve assigned goals in a specified environment (Wooldridge, 2002).

Agent refers to a computer program that is situated in an environment where it can perceive

input, do some processing and perform actions according to the assigned goals. Agents are able

to interact with each other in order to perform certain tasks (Padgham & Winikoff, 2004).

Autonomy is the agent’s ability to operate independently as they make their own decisions,

without the need for human guidance or intervention (Winikoff & Cranefield, 2010). Agents are

robust and have the capability to operate even if the environment changes. Agents are

programmed to perform their steps automatically in order to achieve certain goals. All of their

activities converge towards achieving their defined goals in any possible way (Wooldridge,

2002). Agents have the potential to deal with complex and dynamic environments. All these

features of agents and MAS pose challenges that must be handled and tested before MAS goes

into operation.

Applications of multi-agent systems are in many domains like e-commerce, banking, air traffic

control, information management. There are certain commercial agents’ applications presented in

(Munroe et al., 2006) which show the sensitivity of agent applications as they are meant to solve

real life problems in almost every domain. Multi agent systems should have confidence of

performing and achieving assigned goals. To gain confidence to rely on a multi-agent system, it

must be properly tested. Testing of MAS is an important and complex task as agents possess

dynamic, goal directed and proactive behavior by choosing plans based on current situation

(Padgham & Winikoff, 2004, Wooldridge, 2002). Padgham and Winikoff show that MAS

provide great flexibility, with over a million ways to achieve a given goal using only a relatively

small hierarchy of goals and plans (2004). Because agents are autonomous and flexible, MAS

can be difficult to test. Real-time response and dynamism make testing of such applications very

difficult. Performance and accuracy of results must be checked and this can be achieved with the

effective testing of MAS applications.

Software testing is an important and critical part of software development life cycle (SDLC). It

consumes a major portion of development life cycle (Taipale et al., 2005) i.e., time, money and

2

effort etc. Testing is aimed at finding inconsistencies between the system’s expected output and

actual output (IEEE, 1998). We need to have a good testing technique in order to ensure MAS

quality. Software testing aims to identify bugs in SUT to raise its quality and to ensure its

correctness and usefulness. MAS testing can be performed at unit, integration and system level.

In MAS testing, unit test includes testing of block of code or testing of individual agents. Unit

testing of individual agents has been performed by (Zhang, Thangarajah & Padgham, 2007 &

2011). Integration and system levels are important as agents have to interact with each other and

achieve MAS assigned goals. Integration testing of MAS includes testing the agent interaction

and communication described in protocol diagram. We use term interaction testing to test MAS

interactions defined in protocol diagram. There is some work done on integration testing by

(Miller, Padgham & Thangarajah, 2010) but there are certain aspects, e.g., percept and action

interactions were not covered or tested. Percepts environmental information required for events,

used to trigger plans. Actions are used to update output of agent to environment. Messages are

communication medium between agents. System testing includes testing the system as a whole.

Testing the goals specified in system analysis phase and their relevant plans defined in detailed

design phase.

Model based testing (MBT) uses system models to generate tests for system under test (SUT).

Model represents an abstraction of the actual system. Design artifacts exhibit rich information of

a multi agent system and its internal working. Testing based on extracting test requirements from

system models are useful for revealing faults in MAS. Model based testing is a testing strategy in

which model of the system are used to derive test cases for the SUT. Models are used to test

multi agent systems by constructing test models of the actual working system. MBT has several

advantages like test model can depict system functionality and it helps to show any deficiencies

in MAS implementation from its design, test creation process can start early. No need to wait for

complete system implementation. Test paths are identified from test model. One design diagram

can be chosen to transform into a test model or a test model may be created from multiple

diagrams. Coverage criteria forces the execution of certain path(s) based upon the criteria.

Coverage criteria are often created on test model and model based testing can be applied to all

levels from unit to system testing. Coverage criteria can be defined on the test model ensuring

complete coverage of interactions, goals and plans for MAS. Coverage has a significant

3

relationship with fault detection. More coverage ensures more fault detection. Coverage criteria

ensure certain types of faults detection and identification within a system (Tian, 2001).

1.1. Prometheus Methodology

There are many agent development methodologies in which agent based systems can be

modeled, one of the detailed methodologies is Prometheus (Padgham & Winikoff, 2003) that is

extensively in use since more than a decade. Prometheus agent oriented software engineering

methodology has a well developed process from system specification to architectural design and

then detailed design leading easily to code. Prometheus methodology has three views (1)

dynamics (2) graphical overview and (3) structural forms (Padgham, Thangarajah & Winikoff,

2014). Prometheus methodology has three phases: system specification, architectural design and

detailed design. System specification phase identifies environment, external actors, goals and

scenarios with details of actions and percepts associated with them. Architectural design phase

defines agent and interaction protocol involved in system overview. Detailed design phase has

plans and capabilities for goals defined in system specification phase (Padgham & Winikoff,

2003). Artifacts in all three phases are linked together and propagated to next level, i.e., system

specification artifacts appear in architectural design and architectural phase artifacts propagates

in detailed design phases where more details can be added as required. One can model the MAS

using the Prometheus methodology starting from system specification to detailed design. Each

agent has its own defined goals to achieve and together they work to achieve main goal.

Accordingly different plans are associated with different goals (Padgham, Thangarajah &

Winikoff, 2006). Prometheus also supports the design phase via tool named Prometheus Design

Tool (PDT) (Thangarajah, Padgham & Winikoff, 2005) in which design activities can be

modeled. Based on the richness of Prometheus methodology, we have used Prometheus design

artifacts for test model generation. Agent UML (AUML) extends the UML for designing agents

in MAS. AUML notations are used to design agents and their functionality in Prometheus

methodology. PDT generates skeleton code for JACK (Winikoff, 2005), a fine reputable agent

development environment that has been used for large commercial and complex applications

development. There is a need to address quality assurance issues in multi-agent systems designed

in Prometheus methodology.

4

1.2. Research Aims and Objectives

Our first aim is to perform integration testing of MAS covering all interactions like action,

percept and messages. Interaction protocol in Prometheus methodology is used for interaction

between the agents and actors. Interaction protocol in architectural design is captured by

interaction pattern/sequence between the agents in a certain scenario. These interactions occur

between agents and actors in the form of messages, actions and percepts. For a multi-agent

system to perform correctly; these interactions must be tested and their occurrence in protocol

must be verified with test cases. Leaving some interactions untested can cause many faults to

occur like dependency, operational and synchronization between activities.

Another aim is to test goals, sub-goal and plans coverage to satisfy system testing of MAS.

Correct and ordered execution and achievement of goals and plans in MAS can assure its

correctness. Goal deliberation and goals completeness work has been done by (Thangarajah et

al., 2014), (Thangarajah, Sardina & Padgham, 2012) and (Duff, Thangarajah & Harland, 2014)

but goal-plan coverage and their coverage criteria definition work has not been performed by

existing techniques. Although some work has been done in (Thangarajah, Jayatilleke &

Padgham, 2011) covering only single scenario, but no system level testing has been performed.

Our system level testing approach using MBT will utilize most of the design artifacts in MAS

testing. Each design diagram of MAS, i.e., interaction protocol, goal, scenario, process and agent

overview, contains features that must be covered for reliability. We can capture the relationship

between goals and plans of an agent by a goal-plan diagram. Non coverage and non execution of

any goal and plan can cause problems in MAS to achieve its objectives.

1.3. Research Questions

Based on MAS testing and aims, we have four research questions which we will cover in our

testing framework.

 Which AUML design artifacts can be used to perform interactions and system testing of

MAS?

This involves illustrating which design artifacts of Prometheus methodology are chosen to be

used to test the different agent interactions like action, percept and messages? Each

interaction is carried out to meet some defined objective. Which design artifact suits best to

5

cover all type of interactions and system level aspects in MAS? Whether the chosen design

artifact is rich enough to be used to test MAS?

 How AUML design artifacts are used to perform interactions and system testing of MAS?

After choosing design artifacts whether we use the design artifact as it is or we need to

convert it into test model? How model is used for testing MAS?

 How can the process of generating tests be guided by coverage criteria and detecting faults?

Whether it is possible to define coverage criteria on system model/test model? Can we define

coverage criteria on system model/test model? How coverage of interaction and system

aspects can enhance fault identification? What coverage criteria will be best for MAS testing

as system possesses dynamic behavior?

 What Types of interaction and system level faults can occur in MAS?

This research question relates to the different types of faults that can occur in MAS

operations and how different types of artifact interactions can cause faults in MAS? How

fault model ensures possible occurrence of faults in MAS? What types of faults remain in

MAS if certain interactions, goals and plans are missed?

 How MBT is effective in MAS fault detection? How models can be used to ensure goal and

plans coverage?

This involves answering the effectiveness of design model in MAS testing? How model

coverage ensures reliability in MAS? How goals and sub goals and plan coverage is vital to

MAS testing? How faults are detected in MAS when goals and plans coverage is performed?

1.4. Problem Statement

Based on research questions and MAS testing challenges, there is a need to ensure integration

and system level testing of MAS. In MAS design artifacts, protocol diagram uses actions,

percepts and messages between agents and actors for interactions. There is a need to test all

interactions occurring between the agent and actor in a protocol covering actions, percepts and

messages. In the available literature, only message coverage has been performed so far which is

not enough to guarantee fault free MAS because several problem can occur when actions and

percepts are missed in test coverage. Dependency faults can be present in the case of missing

percept, as a percept is required to trigger the event that will cause a plan to start in order to

achieve its goal. Missing action can cause operational faults as output of an agent will not be

6

conveyed to its external environment. A message is always dependent on some actions and

percepts for execution before its content is passed between agents. Problem can occur when any

of an action or a percept is not executed, possibly conveying wrong message content to other

agent(s). There is no technique which covers all MAS interactions occurring in an interaction

protocol in the form of action and percept neither any coverage metrics have been defined for

them.

Coverage of goals and sub-goals identified at specification level, used in scenario overview

diagram and their relation with plans, seems missing in literature. To fulfill any goals there are

interactions in MAS followed by capability overview diagram of an agent in Prometheus

methodology. Capability overview diagram contains different plans that are executed to achieve

any goal. Coverage of goal, sub-goals and plans is important for MAS to achieve its system level

objectives. Non coverage of any of goals, sub-goals and plans can cause many faults to prevail in

MAS like in-accurate goal achievement, plan failure, missing functionality and scenario faults

etc. No fault model currently exist which covers goal and plans related faults for MAS that

should be revealed in testing. Test case generation from test paths and test case execution to

identify interaction and goal-plan related faults are also missing in literature for MAS testing.

1.5. Research Contributions

Our research contribution for model based testing of MAS focusing on interaction and system

level is summarized as follows:

 We have conducted comprehensive literature survey of existing approaches for

interactions and system testing of MAS. We have published our survey in (Rehman &

Nadeem, 2013) and details have been presented in chapter 3.

 We have defined fault models for both interaction and system testing. System testing

included goal, sub-goals and plans coverage and testing. Possible faults that could occur

in MAS have been presented in fault models.

 We have identified design artifacts for model based testing of MAS. We have converted

design artifacts into test models via algorithms defined in chapter 6. We have two test

models, i.e., protocol graph and Goal-Plan Graph for interaction and goal plan coverage.

 We have devised coverage criteria on both test models and identify possible test paths

with respect to coverage criteria. Coverage criteria for both types of test models have

7

been devised and test path are calculated automatically with the help of tool. Details are

presented in chapter 5 and 6. We have derived test cases from test path generated from

test models. Test cases structure and details of test case for MAS testing have been

presented in chapter 7.

 We have performed the validation of our testing framework with the case study. We have

seeded faults in MAS implementation in JACK and run our test cases derived from test

model paths. Test result evaluation shows the effectiveness of test case to identify seeded

faults. Failed test cases are further investigated to identify reason of failure, e.g., certain

interaction has not been covered or certain plan has not been triggered causing a fault to

occur in MAS.

Our purpose in this research is to perform interaction testing and system testing of MAS.

Interaction testing uses interaction protocol to perform message, actions and percepts interactions

coverage. Goals and sub goals coverage is vital to MAS system testing. Plans contain the steps to

fulfill goal completeness. Goals are defined and plans are triggered to achieve desired goals.

There are many ways to achieve a certain goal. Goal and plans coverage with respect to their

execution and order is critical for testing adequacy. In this case adequate testing can claim

reliability of MAS. The test model has ability to cover almost maximum aspect of MAS

coverage. Coverage criteria can ensure maximum testing adequacy, which in turn can identify

faults which can remain undetected if certain goals and plans are not executed. JACK

development environment (Busetta, et al, 1998) has been used for MAS implementation, which

is then instrumented to evaluate goal and plans coverage approach to find injected faults.

Faults model have been defined to cover possible faults in MAS relating to interaction occurring

in protocol diagram. Goal, sub-goals, plans execution and interactions related faults have also

been presented in fault model. Fault model describes the faults which remain if some coverage

has not been achieved. We have developed a tool which generates test paths based on specified

coverage criterion that will test the interactions between the agents via some protocol as well as

goal-plan coverage. In order to achieve a goal there can be interactions between the agents and

between agents to actors as well. An agent achieves its goals with the help of plans specified. A

main goal may have some sub-goals contributing their part in achieving the objective. Correct

and ordered execution and achievement of goals and plans in MAS can assure its correctness.

System models or design artifacts possess all the details about the functionality of interactions,

8

goals and plans in MAS and their working. We assume that design models are complete and

specified requirements are properly propagated from specification to design. Since design faults

are detected and handled by (Abushark et al. 2015). Therefore, model based testing (MBT) of

MAS uses system models to generate tests for system under test (SUT). Protocol graph is used as

the test model to test interaction testing of MAS while Goal-Plan Graph is used as a test model to

test behavior of the MAS modeled in scenario, agent and capability diagrams of Prometheus

methodology. Goals are executed by respective plan(s) in-order to achieve assigned goals. Based

on the discussion an approach is necessary that can test an agent system effectively and

efficiently. Subsequent chapters of this research thesis focus on defining testing framework, its

processes and validation of our testing framework for MAS testing.

1.6. Thesis Outline

In the rest of thesis, Chapter 2 describes background and relevant information to this research

including agent oriented software engineering (AOSE) methodology, agents and their role in

multi-agent system, particularly Prometheus methodology (Padgham & Winikoff , 2003) in

details with its benefits. Chapter 3 includes the related work done in testing of MAS. Each of the

techniques for MAS interaction and system testing have been discussed and analyzed. Chapter 4

describes a fault model based on identified problem and short comings in existing work

discussed in the previous chapter 3. Chapter 5 describes testing framework for model based

testing of MAS for integration and system testing. Chapter 6 describes the implementation

details of the testing framework. Chapter 7 describes results and discussion on the testing

framework and validation. Chapter 8 concludes the thesis and provides possible future directions

of research.

9

CHAPTER 2: BACKGROUND

This chapter describes the background and relevant information to this research including agents

and their role in multi-agent system, Agent Unified Modeling Language (AUML), Agent

Oriented Software Engineering (AOSE) methodologies, particularly focusing on Prometheus

Methodology (Padgham & Winikoff, 2003) in detail with its potential benefits. This chapter also

describes software testing and model based testing. Section 2.1 starts with a brief introduction to

agents, their characteristics, behaviors and AOSE. Section 2.2 elaborates Belief Desire Intension

(BDI) Architecture. Section 2.3 provides a brief introduction to AUML and how it is used?

Section 2.4 describes AOSE methodologies, along with other relevant methodologies with

potential benefits of choosing Prometheus methodology. Section 2.5 provides a brief

introduction to software testing, test paths and test cases. Finally, model based testing and how a

design model can be used for testing is discussed in Section 2.6.

2.1 Agents

An agent refers to a computer program that is situated in an environment where it can perceive

input, do some processing and can perform actions according to the assigned goals (Padgham &

Winikoff, 2004). Autonomy is the agent’s ability to operate independently, without the need for

human guidance or intervention (Alonso et al., 2009). Wooldridge and other researchers further

distinguish autonomous agent’s characteristics (2002). They describe that an autonomous agent

must be:

 Pro-active: agents have goal-directed behavior, is able to pursue its own goals even when

the environment has changed.

 Autonomous: agents are independent and make their own decisions, without any direct

intervention.

 Reactive: Agents have the ability to act upon environmental changes where they are

situated.

 Social: agents interact with other agents and actors via some kind of communication

protocol like protocol diagram in Prometheus methodology.

10

Rao and Georgeff (1995) further describe the agent’s abilities as robust, flexible and situated.

Agents should recover from failure due to environmental changes. Agents are situated in a

certain environment to perform their designed goals.

2.2 Belief Desire Intension (BDI) Architecture

Agent architecture models the behavior of agents, one of which is Belief Desire Intension (BDI)

architecture (Bratman 1987; Rao and Georgeff 1991). BDI agents have certain goals to achieve.

Belief-Desire-Intention properties are used to program intelligent agents. BDI agents have been

widely used since last the two decades and various researchers have explored their behavior. We

discuss and use BDI agents in our research. We consider multi-agent systems developed by using

Prometheus methodology. Padgham and Winikoff (2003) present Prometheus as an agent

oriented methodology based on BDI agents. Two concepts that make the relationship between

environment and agent are percepts and action. Percepts are information or state of environment

an agent can receive and actions are performed by the agent to affect the environment.

BDI agents are elaborated in (Rao & Georgeff, 1995) in which agents have three states; beliefs,

desires and intentions. Belief is the information the agent has about the environment and itself.

Desires are the states or goals which an agent wants to achieve. Intentions are steps taken to

achieve the desires or goals. We can say that intentions are plans which describe the steps of how

to achieve the goals. There are many agent implementation platforms based on the BDI model,

such as PRS (Ingrand, Georgeff & Rao, 1992), dMARS (D’Inverno et al., 1998), JAM (Huber,

1999), JACK (Winikoff 2005; Jack intelligent agents 2014), JADEX (Pokahr, Braubach &

Lamersdorf , 2003) and JASON (Bordini, Wooldridge & Hubner, 2007). Agent oriented software

engineering (AOSE) is the term used for systems developed by using autonomous agents; such

systems are called multi-agent systems.

Intentions are represented as plans while goals are presented as events which are used to trigger

the relevant plan to achieve certain goal (Rao & Georgeff, 1995). A plan depicts the steps to

achieve a certain goal. Agent invokes the relevant plan upon a triggering event from a set of

available plans.

11

2.3 Agent Unified Modeling Languages (AUML)

Agent’s designs are represented in graphical form by using Agent Unified Modeling Language

(AUML) (Winikoff, 2005). AUML is based on UML 2.0 (OMG, 2003) and it is rich enough to

provide an elegant graphical representation of agents using modeling notations for this purpose.

UML 2.0 is extended to represent agent models. AUML is used to represent agent, their behavior

and interaction among them. UML class diagrams can be used to represent the static view of

agents. AUML is used to express Prometheus methodology design diagrams or artifacts. In

AUML there is an interaction protocol; Interaction protocols can be specified in more detail (i.e.,

leveled or nested) using a combination of diagrams. Level I represents the overall protocol; level

II represents interaction among agents; level III represents internal agent processing (Odell,

Parunak & Bauer, 2000) .Interaction protocol which is commonly presented in protocol diagram

is used for interaction between agents and between agent and actor. Environment and actor both

terms are used interchangeably. Protocol diagram is similar to UML sequence diagram. Means of

communication between agents is message passing. Different notations are used to show

different behaviors like alt, opt, loop, parallel etc. Lifeline shows the presence of participating

agent in a certain activity like message passing etc. An extension of activity diagram is used for

detail elaboration of protocol diagram. Each protocol diagram can have multiple process diagram

represented by extended activity diagram. A Collaboration diagram is also used to depict

interactions between agents responsible for different roles. State charts can be used to model

individual agent behavior. Textual representation of AUML can also be made which shows all

the details depicted in graphical representation (Winikoff, 2005).

2.4 Agent Oriented Software Engineering Methodologies

A methodology is a collection of activities used to develop the system. Additionally, a

methodology can also be supported by a tool. There are several agent agent-oriented software

engineering methodologies, e.g., Gaia (Generic Architecture for Information Availability)

(Wooldridge, Jennings & Kinny, 2000), Multi-agent Systems Engineering (MaSE) (DeLoach,

Wood & Sparkman 2001; DeLoach 1999), MESSAGE (Caire et al. 2001), Prometheus

(Padgham & Winikoff , 2003), Tropos (Bresciani et al. 2002), CoMoMAS (Glaser, 1996),

SODA (Societies in Open and Distributed Agent spaces) (Omicini, 2001), DESIRE (Brazier et

al., 1997) and MAS-CommonKADS (Iglesias et al., 1998).

12

2.4.1 GAIA Methodology

Requirements are assumed to be known in Gaia (Wooldridge, Jennings & Kinny, 2000)

methodology which forms the basis of analysis and design phases. GAIA is a methodology

which distinguishes between analysis and design phases. It has Role Model and Interaction

Model in analysis phase, and Agent Model, Services Model, and Acquaintance Model in design

phase. Gaia does not address implementation of MAS using its models and hence is no tool

support for it.

2.4.2 MaSE Methodology

MaSE (DeLoach 1999) is an extension of the object-oriented approach and has two phases’

analysis & design. MaSe does not have the view that agents should be autonomous instead it

assumes agents only as software which interacts with other software i.e. agents. Analysis

contains three steps i.e. Capturing Goals, Applying Use Cases, and Refining Roles and design

contains four steps i.e. Creating Agent Classes, Constructing Conversations, Assembling Agent

Classes, and System Design (DeLoach, Wood & Sparkman, 2001). MaSE has limitation in terms

of agent characteristic modeling criteria (Juneidi and Vouros, 2010).

2.4.3 MESSAGE Methodology

MESSAGE (Caire et al. 2001) adopts the life-cycle model of the Rational Unified Process (RUP)

and is limited to analysis and design activities only. It uses UML as modeling language. It has

five different views e.g. Organization view, Goal/Task view, Agent/Role view, Interaction view

and Domain view (Caire et al. 2001). MESSAGE is weak in expressiveness and completeness

(Dam, 2003).

2.4.4 CoMoMAS and SODA Methodologies

CoMoMAS (Glaser, 1996) focuses on knowledge engineering problem that arises in multi-agent

systems and provides extension in Cooperation Modeling Language for agents. SODA (Omicini

2001) focuses on the social inter-agent aspects of agent systems and employs the concept of

coordination models (Juneid & Vouros 201). Both do not have comprehensive tool support

available.

13

2.4.5 DESIRE Methodology

DESIRE contains expertise model and agents (Brazier et al., 1997). Once analysis phase has

been done, DESIRE could be used for specifying the design and implementation of MAS.

2.4.6 Tropos Methodology

Tropos (Bresciani et al. 2002) is an AOSE methodology whose main distinction is the early

requirements analysis (Dam 2003). Agent related concepts like goals, plans, and tasks are

included in all phases. No detailed information is available for the last process defining agent

types and mapping them to capabilities (Juneidi and Vouros, 2010). The methodology does not

appear to provide heuristics for any phase (Dam, 2003).

2.4.7 Prometheus Methodology

MESSAGE, GAIA, Tropos are not easy to use and have some deficiencies (Dam 2003, Juneidi

& Vouros 2010). MaSE is better than the ones mentioned earlier but it has limitation of agents

modeling characteristic (Juneidi & Vouros, 2010).

The Prometheus methodology is a detailed AOSE methodology, which aims to cover all of the

major activities required in developing multi-agent systems from specification to architectural

design and detailed design (Padgham & Winikoff, 2003). Each of its phases is rich enough to

capture design details of the MAS that lead to code generation. Details of each of its phase along

with artifact details are explained below.

System Specification

As depicted in Figure 2.1, design begins with system specification in which actors are needed to

be defined. Actors are entities external to MAS like environment etc. System specification

contains three diagrams, i.e., analysis Overview, scenario and goal Overview. Analysis overview

presents the interface of the system with its environment in which actors, scenario, percept,

message and actions interaction show an overview of the MAS. Goal are defined and sub goals

along with ‘AND’ and ‘OR’ relationships between goals are defined in goal overview diagram.

Scenario contains actions, percepts and goals used in normal working like use case scenario of

the system. Scenario can have sub scenarios as well. In Prometheus, each scenario has

14

corresponding goal overview diagram. A MAS has more than one functionalities or operations to

perform. Such operations are called roles; each role has associated actions, percepts and goals.

These roles are used in architectural design to form agent roles grouping.

Figure 2.1: Phases and Artifacts of The Prometheus Methodology (Padgham, Thangarajah &

Winikoff, 2014)

Architectural Design

Architectural design captures the agents’ details, their dependencies and associated roles to

perform. Each role/functionality needs to read or write into database and this behavior captures

in data coupling. Dynamic behavior of MAS is modeled in System Overview diagram. System

Overview diagram contains agents communicating through Interaction Protocol(s). Different

message, action and percept interactions in MAS are presented through a protocol diagram. For

communication between agents, messages are used. Action can be performed by agent to affect

environment and environment state can be received through percepts. Messages are used

between the agents.

15

Detailed design

Detailed design defines the internals of agents, capability overview, event, data and plan

descriptors. Each Plan has its triggering event, context (precondition), associated

incoming/outgoing messages, data used, associated goals relevant to a plan and its steps. Steps of

plans trigger sub-goals. Process diagram is also defined in detailed design which is derived from

protocol diagrams (Padgham & Winikoff, 2003). Process diagrams are actually agent overview

and capability overview diagrams. Agent overview diagram captures complete working of an

agent, plans used and data produced/used. Capability overview diagram presents module of an

agent in which more than one plans can be used.

Each phase has its own supported symbols which are used to represent agent’s behavior. Agents

receive percept from the environment and communicate with each other through messages and

actions are the changes that an agent can perform to the environment. All these phases have rich

notation support which is available under Prometheus Design Tool (PDT) (Thangarajah,

Padgham & Winikoff, 2005). One of the main advantages of Prometheus methodology is the

availability of tool support, where consistency checking between various diagrams can be done.

This methodology also has support of JACK (Winikoff 2005; Jack intelligent agents 2014)

development environment where design of multi-agent system can be implemented. JACK is a

Java based development environment used to implement the system.

2.5 Software Testing

Development of system contains several phases like requirements definition, design,

implementation, testing and deployment. Software testing is one of the important phases of

SDLC. We need to have a good testing technique in-order to ensure software quality. Testing can

be very helpful in failure detection and validation of System under Test (SUT). According to a

1998 IEEE definition, software testing can be defined as: “Testing is the process of

analyzing a software item to detect the differences between existing and required

conditions (that is, bugs) and to evaluate the features of the software item”.

We need to distinguish between a few terms with respect to testing e.g. fault, error and failure,

test path, test case, test bed, test data. Fault, error and failure described by (Joe 1983, Joe 1990,

Paul & Offutt , 2008) can be depicted in figure 2.2.

16

 Fault is static defect in a system like code error. It effects the system once it is executed

otherwise it is of no harm to the system

 Error is wrong state of the system exposed during running program.

 If there is an error then failure can occur in the SUT.

Figure 2.2: Fault, Error and Failure Relation

In testing a system, fault linking must be identified and reached with test data. Testing is referred

to as validation and systematic observation of system behavior with given inputs (Paul, Offutt,

2008). Actual and expected behavior is checked in testing for which we need to define test

cases. A test case is the sequence of steps to follow which executes SUT and records the actual

output of the SUT. Test suite is the collection of test cases. Important activities in software test

plan are to define testing strategy, choose system model in case of model based testing, identify

expected behavior (identity test paths), generate test data to execute test paths and run test cases.

Test data generation, test case execution and comparing expected and actual behavior continues

until we achieve our desired goal. In general, we have White Box testing and Black Box testing

techniques. Black Box testing focuses only on input and monitors expected behavior while White

Box testing monitors internal program’s control and data flow. Usually graph of program or

design is generated on which flow of data and control can be monitored. We can define a fault

model, in which possible faults that could occur in SUT are defined. For validation a fault is

injected in the SUT and behavior is observed with test cases whether injected fault can be

reached by our test case or not (Myers et al., 2009).

2.5.1 Test Automation

In test automation all or part of testing activity is done automatically through some program.

Automated software testing is the need of time as complexity of software is growing day by day

and it is becoming difficult to test it with manual approaches. Test automation focuses on

automatic generation of test cases with test data to test the SUT.

17

2.6 Model Based Testing

Model based testing is a testing strategy in which model of the system can be used to define test

cases for the SUT. A model can be of any form that could be used for testing like design

document, AUML diagram specifically protocol diagram for multi-agent system (Zhang,

Thangarajah & Padgham, 2009). Test model is chosen from SUT to generate test cases from it.

Test model is simpler and smaller than the actual system but rich enough to have necessary

details useful for testing of SUT (Zhang, Thangarajah & Padgham, 2009). During the design of

system a series of diagrams are generated, same is the case with Prometheus methodology. One

diagram can be chosen to act like test model or test model can be constructed from more than

one design models. Coverage criteria are often created on test model and model based testing can

be applied to all levels from unit to system testing, Figure 2.3 shows these details in graphical

form (Jan 2004, Utting , Legeard, 2006).

Figure 2.3: Model Based Testing Application Fields (Jan 2004, Utting & Legeard, 2006)

Model based testing plays an important role in such software which uses models in their analysis

and design phases. Model based testing has several advantages to software testing like:

18

 Test model created from design diagram(s) is simple and rich enough to contain the

required details. Test model is easy to understand for tester and it is also easy to maintain

and trace functionality.

 In model based testing, one can start testing process early. No need to wait for complete

system implementation. It will reduce cost as anomalies can be identified early.

Requirements related faults can be identified and corrected early.

 Once test cases are created from test model then each test case has its relevant

requirement traceability by using test model.

 Coverage criteria can be defined on test model ensuring complete coverage of all

functionalities. Furthermore test cases can be created automatically from the test model

with reference to coverage analysis.

This thesis focuses on identifying design diagrams which are used to create test model(s).

Coverage criteria have been defined and applied on these test model(s). Test paths are generated

from test model (s) and test cases are created from test model paths. Comparison of test paths

and actual paths after test case execution has also been performed. Additionally, a fault model

has been defined for MAS testing and seeded faults are successfully identified by test cases.

2.6.1 Derivation of Test Cases from a Test Model

In model based testing approaches test cases are derived automatically or semi-automatically

from test model. Test cases can be generated from test model paths depending upon the details of

information available in the test model.

2.7 Levels of MAS Testing

In this section, we discuss different testing levels of MAS and our focus on levels of testing

considered in this thesis. There are three levels of MAS, i.e., Unit level, Integration level and

System level. Unit testing includes testing of a block of code or individual units for an agent etc.

Unit testing of individual agents has been performed by (Zhang, Thangarajah & Padgham, 2007

& 2011). Integration testing of MAS includes testing the agent interaction and communication

described in the protocol diagram. There is some work done on integration level as well by

(Miller, Padgham & Thangarajah, 2010) but there are certain aspects that were not covered e.g.

19

percept and action interactions. System level testing includes testing the system as a whole, by

testing the expected outcome of the system against the given input. Our focus in this research

thesis is on Integration and system level testing. In Integration testing Prometheus design

artifacts, i.e., a protocol diagram will be used for interaction testing, while analysis phase and

detailed design phase diagrams will be used for system level testing to test goal, sub-goal and

plan coverage. In our testing framework we have generated a test model from design artifacts

and test paths are generated automatically on our test models. Test cases are generated and

executed to find possible faults in MAS.

We have elaborated all related concepts regarding testing of MAS. Literature work done so far in

testing the MAS is elaborated and analyzed in next chapter.

20

CHAPTER 3: LITERATURE SURVEY AND ANALYSIS

The purpose of writing this chapter is to give a brief overview of the existing research carried out

for testing the quality of MAS. Section 3.1 describes literature survey that will focus on the

research being done in the areas of MAS. Our main focus is on Prometheus methodology. In the

previous chapter we have discussed different methodologies and the reason of choosing the

Prometheus methodology design to be used for test model construction. Section 3.2 will provide

the drawbacks of existing techniques mainly focusing to test MAS designed using Prometheus

methodology. We have conducted a survey on existing approaches that address the domain of

testing the multi-agent system and model based testing approaches to multi-agent systems.

3.1 Multi-agent System Testing

To gain confidence in the working of MAS, it must be properly tested. Testing of a software

agent is an important and critical task as agents possess dynamic behavior. Agents have a run

time response and adaptability. Basic agent-oriented concepts, e.g., autonomy, social ability, pro-

activeness etc have been covered in previous chapter but there are several exceptions. Tropos

was not perceived as being easy to use whilst MESSAGE and GAIA were both ranked weakly

on adequacy and expressiveness. MaSE does not provide detailed design. Prometheus

methodology is rich enough to provide detailed design and tool support as well for developers

(Dam, 2003). There is a need to address quality assurance issues in multi-agent systems designed

with Prometheus methodology. Proper coverage and testing of design artifacts can enhance

quality. Coverage criteria for testing can be applied to both code and model (Spillner, 1995).

Code base testing technique test that all code are covered in term of statements etc. while model

based coverage requires the different interaction from different states of the system, represented

in specific model (Utting & Legeard, 2007).

C.K. Low, TY. Chen, R. Ronnquist (1999)

Low et al. (1999) consider test coverage criteria for BDI agents (Low, Chen & Ronnquist, 1999).

They derive two types of control-flow graphs: one with nodes, nodes representing plans for BDI

agent and arcs representing messages or other events which initiate a certain plan. Several

coverage criteria are defined, based on node, arc, and path coverage, as well as some based on

the success or failure of executing statements and plans (Low, Chen & Ronnquist, 1999).

21

Different interactions between the modeling artifacts are not presented. Instead this approach is

not considering interactions between agents.

J. Thangarajah, L. Padgham, and M.Winikoff (2003)

Thangarajah et al. (2003) presented the phenomenon of goals interactions between agents,

specifically negative goal interaction in which one goal can cause another goal’s unsuccessful

execution. They have maintained summary information about requirements for goal to execute

and scheduling which protects unordered execution of goals and plan steps (Thangarajah,

Padgham & Winikoff, 2003). Their work does not target faults identification and complete

coverage of goals and plans. No design model is considered for tracking the dependency between

goals and plan, neither agent interaction is considered.

M. Nunez, I. Rodriguez, F. Rubio (2005)

Autonomous agents are specified and tested by using generic formal framework. Individual

agents are tested and their behavior in multi agent system is also observed (Nunez, Rodriguez &

Rubio, 2005). Main theme is to observe the behavior of the agent against the given input and

validate its conformance with the specification. The authors present the idea of Utility state

Machine (USM) in order to specify and test the autonomous agents (Nunez, Rodriguez & Rubio,

2005). The idea of USM is inspired by finite state machines representing states with predicate at

each state that must be met, and set of transitions, start state, amortization time and maximal

investment that the machine can afford (Nunez, Rodriguez & Rubio, 2005). User has different

preferences represented by its utility functions at each state. Each USM has its configuration

containing the pair of profit owned (either –ve or +ve) and its expiry time. Clear profit is the

amount in hand after compensating all negative transactions or loss. Evolution may be a change

of state, time passing or a transaction, where a valid trace refers to the traces that a USM may

perform from a start state to its target or final state (Nunez, Rodriguez & Rubio, 2005).

Each test will test set of states of USM (Nunez, Rodriguez & Rubio, 2005). Each test has the

resources to reach the IUT to final state and perform testing. Resources can be allocated, de-

allocated and modify their amount respectively. USM also maintains the reserve of resources to

be used to reach the final state (Nunez, Rodriguez & Rubio, 2005).

22

J. Thangarajah, J. Harland, and N. Yorke-Smith (2007)

Thangarajah et al. (2007) defined several criteria for agent consideration or discussion e.g. time

varying utilization, deadline, resource requirement, dependencies, communication with other

goals etc. Main consideration in their work is goal deliberation but faults that may occur in MAS

are not identified. How AND, OR constrains between goals and plans coverage are not

discussed.

Z. Zhang, J. Thangarajah, L. Padgham (2007)

Zhang et al. (2007) have presented an approach to perform unit testing of autonomous agents.

Plan has been tested containing different items. Different possibilities of plans have been

exercised. Different plan cycles have been tested by (Zhang, Thangarajah & Padgham, 2007).

Main theme is to test the small units of autonomous agents. Plans are tested in an ordered way

mostly using bottom up approach in plans hierarchy. Each variable is checked against its

equivalent class which has five fields against each variable (Zhang, Thangarajah & Padgham,

2007). Plans are tested considering their cycle to achieve the goals. Technique presented does not

possess the evolution capability. Code based testing approach has been used and individual plans

are covered. No tool support is provided with this approach.

P. Shaw, B. Farwer, and R. H. Bordini (2008)

Shaw et al. (2008) presented theoretical and practical results of agent consideration by using goal

plan tree. Main focus is to reason about both reusable and consumable resources using Petri-nets

which also contains summary details of resources. Best plan is selected based on demanded

resources (Shaw, Farwer & Bordini, 2008). Faults model along with coverage metrics for goal

and plans is still missing.

Y. Zhou, L. van der Torre, and Y. Zhang (2008)

Zhou et al. (2008) presented an approach to study partial goal achievement. They have used

propositional logic e.g. disjunctive proposition to show whether a goal is achieved or not. They

introduced strong and weak partial implications and studied their semantics. Authors have

considered the case where goal has been modified due to change in belief set (Zhou, Torre &

23

Zhang, 2008). They have not discussed the fault model. Action and impact of goal modification

have not been analyzed.

D. Nguyen, A. Perini and P. Tonella (2008)

Nguyen et al. (2008) presented testing framework for the Tropos testing methodology. Goal

oriented testing methodology represents internal and external level of testing. Authors mainly

focus on internal level of testing including unit, integration and system testing. Test cases are

derived from the requirements goal analysis. Goals are of different types including own goals

and delegated goals (Nguyen, Perini & Tonella, 2008). Goals have elementary and intermediate

relationships between themselves which enable towards achieving a particular goal. Sub-goals

must be achieved first before going to achieve the root goal, which is composed into different

sub goals (Nguyen, Perini & Tonella, 2008). Test suites are derived by looking at relationships

between the goals. Test suite is presented by BNF style notations (Nguyen, Perini & Tonella,

2008). Nguyen etc al also presented an example of BibFinder MAS system used to retrieve

bibliographic information. An agent acts as the tester agent which tests the search function of

system under test having multiple sequences (Nguyen, Perini & Tonella, 2008).

Only goals are considered in this approach of testing. Other important dependencies like resource

and plan are not considered. Internal structure of the plan is not exploited. Bibfinder case study

has been presented. This technique is automatable as test structure is presented in OCL. Different

types of relationships with each goal are used to generate test cases.

Z. Zhang, J. Thangarajah, and L. Padgham (2008)

Zhang et al. (2008) presented an approach for Model based testing for agent system. Testing

framework caters the different sequence of agent program execution. Fault directed testing

approach is used by first Identifying appropriate units of the agent and test the unit with the

defined mechanism. It considers the plan as a single unit then it is checked whether the plan is

triggered by the appropriate event or not, checks its precondition, cycles in plan and plan

completeness etc. Event testing is performed for numbers of applicable plans for the event. An

electronic bookstore system has been used as the sample system; testing framework will execute

test units in a sequence (Zhang, Thangarajah & Padgham, 2008). No coverage measures have

24

been taken while considering interactions between agent and external agent or stub. We are

considering interactions between multi-agent systems through coverage measures.

M. B. van Riemsdijk and N. Yorke-Smith (2010)

Riemsdijk and York-Smith (2010) presented an approach about partially-complete goal in belief

desire, intention like agents. A metric has been used to capture progress for partial goal

achievement. They have used a minimum completed value to declare that goal is completely

achieved or not. Authors discussed agent demonstration, but no thorough computational means

are not discussed (Riemsdijk & Yorke-Smith, 2010). No such detail has been discussed to show

whether goal will be satisfied or not instead only progress is considered with reference to goal

achievement. No fault model is presented if certain goals are not achieved or plans for the goals

are not triggered.

T. Miller, L. Padgham , J. Thangarajah (2010)

Miller, Padgham & Thangarajah (2010) state that the interaction between the agents possesses

complex behavior and therefore testing of interactions is important. They defined two sets of test

coverage criteria for multi-agent interaction testing. The first uses only the protocol specification,

while the second considers the plans that generate and receive the messages in the protocol

(Miller, Padgham & Thangarajah, 2010). Authors did not consider percepts and actions in

capturing the interactions. Neither test data generation has been neither done nor automatic test

case generation for path coverage.

M. Winikoff, S. Cranefield (2010)

Winikoff and Cranefield (2010) have analyzed the size of behavior space for BDI agent and

found that failure handling has larger impact on size of behavior space than expected (Winikoff

& Cranefield, 2010). They have identified different factors that influence the size of behavioral

space. Goal plan tree has been discussed which has been modeled by goals and plans in the form

of tree. Failure handling has been introduced in context of agent’s behavioral space (Winikoff &

Cranefield, 2010). Goal-plan tree has also number of successful and unsuccessful execution

paths or traces in both failure handling and without failure handling cases. Probability of failure

is checked in a particular trace.

25

Behavioral space is very large in which failure handling makes significant difference.

Comparison with an industrial application has also been made to check the effectiveness of the

technique. No tool support is discussed with the approach. The author generally discusses

different testing aspects for the BDI agents instead of providing one concrete testing approach.

Goal-plan tree has been used to present goals and technique does not have the evolution

capability. Both techniques above do not consider interactions between agents neither any

coverage measures have been taken even in unit testing.

J. Thangarajah and L. Padgham (2011)

Thangarajah and Padgham (2011) discussed both positive and negative goal interactions.

Negative interactions are basically conflicts between goals. They have defined resource

requirements of a goal by considering all of its plans. Authors have defined an algorithm for

Goal Plan Tree construction, annotated with resource requirements of goal. At run time resource

summary is updated in Goal Plan Tree. Focus of their work is on defining goal plan tree

annotated with resources both at start and run time (Thangarajah & Padgham, 2011). Faults that

may occur if a certain interaction or missing coverage; are not discussed. No coverage metrics

has been defined neither design diagrams used for tree construction are specifically elaborated.

J. Thangarajah, G. Jayatilleke, and L. Padgham (2011)

Thangarajah et al. (2011) used scenarios of Prometheus methodology and add a structure in

scenario which is then used at later stage of design for traceability, testing and analysis. Scenario

is extended with three steps; first add sequence of percept and actions to be executed in scenario,

second add test descriptor with the scenario and third modification is to add traceability link

between different entities. Propagate the design after scenario modification to other design

artifacts (Thangarajah, Jayatilleke & Padgham, 2011). Limitation is that only single scenario is

tested in isolation, no system level traceability is performed. MAS’ execution and faults are not

considered in this approach.

P. Shaw and R. H. Bordini (2011)

Shaw and Bordini (2011) presented an alternative approach for goal plan tree analysis. For goal

plan tree modeling 5 tuples prolog function node is used. This approach is then compared with

another approach that used Petri-nets instead of goal plan tree for goals reasoning, negative and

26

positive interaction (Shaw & Bordini, 2011). Fault model has not been presented instead only

Petri-net and goal plan tree models have been compared. No coverage metrics have been defined.

Z. Zhang, J. Thangarajah, and L. Padgham (2011)

Zhang et al. (2012) presented an approach for automated testing of multi agent system for units.

The system under test is evaluated with respect to system design model. Authors have devised a

framework for testing individual plan. Orders of events, plans have developed and test cases are

executed with proper test data. Equivalence class partitioning is used for test data generation

against variables e.g. simple, complex and belief variables (Zhang, Thangarajah & Padgham,

2011). Only unit testing is performed, no faults identification model and coverage metrics for

faults with respect to goals and plans have been discussed.

J. Thangarajah, S. Sardina, L. Padgham (2012)

Thangarajah et al. (2012) presented a technique to measure plans coverage by using numeric

measures and their overlap for agents. Agents have multiple plans and they are executed to

achieve certain goal(s). Sub goals are actually intensions from a plan and agent has to choose

which intention to execute. Coverage is measured by number of models or area a plan is

applicable and exclusive coverage equation is used for coverage measure. Overlap means that

two or more plans are applicable for a certain situation and exclusive overlap equation is used to

distribute overlap (Thangarajah, Sardina & Padgham, 2012). No implementation and validation

have been done neither any fault model along with coverage criteria is specifically defined for

goals and plans.

 L. Padgham, Z. Zhang, J. Thangarajah and T. Miller (2013)

Padgham et al. (2013) presented model based test oracle creation for unit testing of agents. Fault

model has been created to cover individual units. Prometheus methodology detailed design

artifacts are used. For each agent and unit within an agent, code augmentation is performed for

test harness and test cases for the unit are executed and finally the test report for each unit is

generated. Equivalence class partitioning and boundary value analysis testing techniques have

been applied to test variables for test case generation (Padgham et al., 2013). Event, Plans and

beliefs related faults are considered and results of test cases are evaluated with respect to fault

types and number of occurrences (Padgham et al., 2013). Event plan tree has been developed but

27

goals and their link to plans and sub-goals seems missing. System specification level design

diagrams are not used and adequate coverage criteria for coverage of maximum functionality of

MAS using Prometheus design artifacts are also missing. Goal and goal-plan related faults are

also missing in the presented fault model.

J. Harland, D. N. Morley, J. Thangarajah, N. Yorke-Smith (2014)

Harland et al. (2014) discussed operational semantics of goal life cycle in BDI agent. Authors

have included both achievement and maintenance goals along with detailed description of goal

state; whether suspended or not. Difference goals operations i.e. drop, abort, suspend and

resume; are practiced. Authors present these semantics in agent language CAN (Harland et al.,

2014). Major contributions are focusing on rich and accomplishment goals, specification for

abort and suspended in all goal types, and considering plans execution in case sub goals are

triggered dynamically (Harland et al., 2014). Authors in this paper, worked in line with proactive

behavior in goals presented by (Duff, Thangarajah & Harland, 2014). Goals semantics are

presented using CAN agent based language, but fault model has not been addressed in case any

mandatory or optional goal is not executed. Furthermore, only single agent’s goals are

considered by (Harland et al., 2014), integration and system level aspects of MAS are not

considered.

S. Duff, J. Thangarajah, and J. Harland (2014)

Duff et al. (2014) presented a technique in which maintenance goals are experimented to work in

proactive mode. Maintenance goals are type of goals in which a condition has to be satisfied.

Proactive mode is to act before a condition is violated e.g. fuel level in mars rover agent (Duff,

Thangarajah & Harland, 2014). Only the goal condition is discussed in their technique. Other

factor like relevant plan/sub goals achievement and faults that could occur if certain coverage is

missed is not discussed in by Duff et al.

J. Thangarajah, J. Harland, D. N. Morley, and N. Yorke-Smith (2014)

Thangarajah et al. (2014) devised a mechanism for level of completeness of goal in BDI style

agents. They used resource consumption and effects after completing a goal to measure goals

completeness (Thangarajah et al. 2014). This approach has the overhead that an agent needs to

track number of resources consumed so far for goals. Effects are used to quantify completeness

28

while achieving the goals. Possible faults that may occur while achieving desired goals can cause

MAS to produce undesirable outcomes. Faults identification with respect to coverage measures

are not addressed by this approach.

J. Thangarajah, J. Harland, D. N. Morley and N. Yorke-Smith (2014)

Thangarajah et al. (2014) presented an approach to quantify the goals completeness in BDI agent

system. Completeness has been measured by considering resources consumed by a goal and

measure the effect of goal in terms of desired outcomes achieved. Efforts, accomplishments, no

of actions performed by agent and time taken for the action; are factors that have been

considered to quantify goals completeness (Thangarajah et al. 2014). Authors have taken the

idea of a goal-plan tree, in which goals with relevant plans have been annotated to form a tree.

Authors have implemented the approach using prolog based agent language using Mars rover

agent case study (Thangarajah et al. 2014). Goals and plans coverage criteria were not defined

neither relationship of goal-plan tree with respect to scenarios and protocol diagram was done.

Faults identification was not covered.

Y. Abushark, J. Thangarajah, T. Miller, J. Harland (2014)

Abushark et al. (2014) has presented an approach for early phase detection of design faults by

comparing traces from detailed design. Authors have transformed agent design like interaction

diagram into Petri-Nets. A plan graph for all plans along with events related to the plans has

been constructed and possible traces from plan graph have been extracted. Finally they compare

the traces with Petri-Nets representation of protocol and violation of message interactions were

recorded and presented in the form of report. They verified that messages occurred in detail

design in same order as described in protocol. Authors have built a tool for automating the said

process (Abushark et al., 2014). Multi-agents systems interactions have not been covered neither

percepts and actions are recorded.

Y. Abushark, J. Thangarajah, T. Miller, J. Harland, M. Winikoff (2015)

Abushark et al. (2015) devised an approach to detect design faults in agent designs. Plan

structure was checked against requirements specifications. Abushark et al., used Prometheus

design files e.g. goal overview and scenario diagram and converted these design models into

29

Petri-net. Authors constructed a plan graph using agent role grouping and agent design. Plans

traces were extracted from plan graph and checked traces with Petri-net. A comparison report

was also generated. They generated 21 plan graphs for validation. The approach however, is

applicable only at design time and identifies only design faults. Implementations or working of

MAS has not been tested with respect to MAS design. Defects that were injected at time of

implementation were completely missed in this approach.

3.2 Analysis

In this section we present an analysis in a table, our analysis is done based on some parameters.

Following are parameters on which above described techniques are analyzed. These parameters

are selected based on the MAS testing requirements and literature, i.e., (Rehman and Nadeem,

2013).

3.2.1. Evaluation Criteria

This section presents the evaluation criteria for the analysis and evaluation of the covered

techniques. The analysis is based on parameters whether a given technique supports the selected

parameter or not. Following are the some selected parameters along with possible values:

a) Modeling Methodology

There are different agents modeling methodologies used for designing a multi-agent system. This

parameter is used to identify which modeling methodology is used in a testing approach.

Approaches using Prometheus methodology design are of more interest here in this research as

Prometheus methodology is very rich to capture all design phases information and has its design

tool as well.

b) Testing Basis (Code based/Model Based)

This parameter is used to identify a testing technique on the basis of specification, model or code

as its input artifact for performing the testing. We are looking for model based testing

approaches; while some code based technique targeting plans in the implementation are also

important for our research in this thesis.

30

c) Level of Testing

This parameter is used to check whether a technique is testing the individual agent behavior or it

is testing the MAS by combination of multiple agents working in an environment. Whether test

cases are generated according to the testing requirements? Integration or system level testing

techniques are of consideration in our research. Based on the level of testing, further details like

agents interaction and flow of information between different design artifacts is considered.

d) Input Artifact

This parameter is used to present input artifacts used in approach. Input artifact coverage shows

the behavior covered in testing approach. Different modeling methodologies have different

design artifacts. Prometheus methodology has different design artifacts that contain different

type of MAS information. The richer artifacts a technique uses, the more effective test of MAS is

performed.

e) Test Data Generation

Test data is used to run test cases. Test cases derived from test model have to execute on MAS

implementation. A testing approach can use generate and use test data. This parameter is used to

identify whether testing technique is generating automated test data or not.

f) Artifact Coverage

This parameter is used to identify level of coverage achieved by the testing approach with

respect to a certain input artifact or design diagram. Artifact coverage can be numbers showing

the scale of coverage achieved for different type of interactions or activities involved in a certain

artifact. For example 3 for high, 2 for medium and 1 for low.

g) Tool Support

This parameter is used to check whether the testing approach is supported with some tool or not.

Tools are a measure to validate the testing approach results that depict whether the testing

processes working or not.

31

Table1: Comparison of Technique Based on Parameters

Parameters
Modeling

Methodology

Testing Basis

(Code

based/Model

Based)

Level of

testing

Input

Artifact

Test Data

Generation

Artifact

Coverage

Tool

support

Low et al., 1999

No specific

methodology

(all following

BDI

architecture)

Code Based
Unit

Testing

Plans and

Nodes as

statements

Yes 2 Yes

Thangarajah et

al. 2003

No specific

methodology

(BDI

architecture)

Model based
Unit

Testing
Goals No 2 No

Nunez et al.,

2005
Not specified Model based

Unit

Testing

Utility State

Machine
No 2 No

Zhang et al.,

2007
Prometheus Model based

Unit

Testing
Plans

Yes

Manually

2, as only

plans are

covered.

No

Shaw et al. 2008

No specific

methodology

(BDI

architecture)

Model based
Integration

Testing

Goals and

Plans
No 2 No

Zhang et al.,

2008
Prometheus Model based

Unit

Testing
Plans

Yes

Manually
3 No

Miller et al.,

2010
Prometheus Model based

Integration

Testing

Protocol

Diagram
No 1 No

Shaw &

Bordini, 2011

No specific

methodology

(BDI

architecture)

Model based
Integration

Testing

Goals and

Plans
No 2 No

Thangarajah et

al. 2011

Prometheus

Methodology
Model based

Unit

Testing

Scenario

Diagram
Yes 3 No

Zhang et al.,

2011

Prometheus

Methodology
Model based

Unit

Testing

Goals and

Plans
Yes 2 Yes

Thangarajah et

al. 2012

No specific

methodology

(BDI

architecture)

Code based
Integration

Testing

Goals and

Plans
No 2 No

Padgham et al.,

2013

Prometheus

Methodology
Model based

Unit

Testing

Agent and

Capability

Diagrams

Yes 2

No,
Automated

Framework

Presented

Harland et al.,

2014

No specific

methodology

(BDI

architecture)

Model & Code

based

Unit

Testing
Goals No 2 No

32

Duff et al, 2014

No specific

methodology

(BDI

architecture)

Code based
Unit

Testing
-- No 1 No

Thangarajah et

al. 2014

(level of

completeness of

goal)

No specific

methodology

(BDI

architecture)

Code based
Unit

Testing
Goals No 2 No

Thangarajah, et

al., 2014

(Quantifying

completeness of

goals)

No specific

methodology

(BDI

architecture)

Model & Code

based

Unit

Testing
Goals No 2 No

Abushark et al.,

2014

Prometheus

Methodology
Model based

Integration

Testing

Protocol

Diagram
No 1 Yes

Abushark et al.

2015

Prometheus

Methodology
Model based

Integration

testing

Scenario,

Role, Agent

and goal

diagrams

No 2 Yes

Based on the comparison performed in Table 1, existing model based testing techniques for

multi-agent systems do not cover every aspect of multi-agent systems, i.e., goal-plan coverage,

dependencies and interactions. Goals coverage with respect to plan using design artifacts has not

been done. We propose and implement automated testing approach for multi-agent systems using

design artifacts like goal overview diagram, scenario overview, protocol diagrams and process

diagrams, i.e., agent and capability overview diagrams. We will include goals coverage derived

from goal overview diagram and Scenario diagram to capability overview diagrams by using

Goal-Plan Graph.

3.3 Summary

Dynamic view of Prometheus methodology contains scenarios along with a goal hierarchy.

Scenarios are converted to relevant protocols which are further elaborated in process overview.

A process can be elaborated with the help of agent and capability overview diagrams in detailed

design. Goals are defined at specification level in Prometheus methodology while a scenario

captures the sequence of action, percepts and goals in scenario overview diagram. Scenarios are

more specifically refined and elaborated in interaction diagram and protocols; each scenario has

its own interaction diagram which follows the same sequence as described in scenario. Each

interaction protocol can have multiple agents communicating with each other. Communication

33

between agents and environment in a multi-agent system is designed using Prometheus

methodology through protocol diagram. Protocol diagram is used as the design model to test

multi-agent system. Miller, Padgham & Thangarajah (2010) state that the interaction between the

agents possesses complex behavior and therefore testing of interactions is important. They

proposed testing strategy which uses protocol diagram and considered only message interaction

between agents involved in a communication protocol. In Prometheus methodology, actions and

percepts are also part of protocol diagram with messages, which are not covered in (Miller,

Padgham & Thangarajah, 2010). However only message interactions are covered in existing

techniques which are not enough to guarantee fault free MAS. Dependency fault occurs in case

of missing percept as percepts are required for events. Actions are used to update output of agent

to environment. Messages usually dependent on the correct sequential execution of related

actions and percepts involved in an interaction. In a protocol, percepts and actions interactions

have their importance and therefore their coverage is necessary for effective testing.

Goals and plans are key elements of any multi-agent system. Proper and ordered execution of

goals and plans is necessary for fault free MAS. Process diagrams include agent and capability

overview diagrams that contain the plan(s) for goals defined in system analysis phase of

Prometheus methodology. In the literature no fault model is presented if certain goals are not

achieved or plans for the goal are not triggered. The idea of goal-plan diagram has been

previously presented in (Rehman & Nadeem 2011; Thangarajah & Padgham 2011; Shaw, Farwer

& Bordini 2008) for BDI agents; but for Prometheus this work has not been done so far. We are

not considering unit testing, but only focus on integration and system testing of MAS. Current

work in the literature does not target faults identification and complete coverage of goals and

plans.

34

CHAPTER 4: A FAULT MODEL FOR MULTI-AGENT SYSTEMS

Fault model for MAS is presented in this chapter. Based on the literature and our research

questions, our research concentrates on two aspects of multi-agent system testing. One aspect is

interaction testing using protocol diagrams which targets interaction faults and another aspect is

goal and plans faults identification & coverage which are related to goal and plans within a

MAS. Our aim is to test the interactions of agents using their model specified in terms of

interaction protocol and goal, sub goals and plans execution from system specification to detailed

design. Protocol diagram is used as a mean of interaction in architecture design of Prometheus

Methodology. Goals Specified at system specification level are achieved by one or more plans in

detailed design phase. An agent executes plans for the goals that may trigger sub-goals or plans

to execute. A main goal may have some sub-goals contributing their part in achieving the

objective. A relationship of goals and plans along with all of relevant details like agent, scenario

and capability will be used to test goals and sub goals achievement along with proper plans

execution.

Based on the details of MAS and Prometheus methodology design artifacts, we use the key

design artifacts that play their role in model based interaction and goal/plan testing of MAS.

Such artifact includes protocol diagram, goal overview diagram, scenario diagram and process

diagrams.

4.1 Fault Model

In this section we will elaborate our identified fault model for MAS testing. To identify faults in

MAS there is a need to define a fault model that defines possible faults that could occur in MAS.

In order to successfully find faults, understanding of fault is helpful for its identification and

understanding. Fault model elaborates details of possible faults in MAS and to describe faults

which remain if some coverage has not been achieved. Fault directed approach to test MAS will

effectively contribute towards fault free MAS. Actual output of the implementation is compared

with expected output to check seeded faults identification. We are assuming that design of MAS

is fault free because we utilize design artifacts for MAS testing. Faults that could occur in SUT’s

implementations will be successfully revealed and reported. Based on the literature and gap in

35

existing work we focus two branches of MAS testing in this research, i.e., interaction testing and

goal plan coverage based testing, i.e., system testing of MAS. For each branch we have defined

separate fault model. For interaction testing no fault model is available in literature. For system

testing, i.e., goal, sub-goal and plan related faults some faults like incorrect belief, incorrect

context etc are presented by (Padgham et al, 2013), but there are certain aspects of MAS that are

still missing and can cause MAS to behave unexpectedly. Figure 4.1 shows MAS working in

general along with percept, massages and actions interactions. Figure also shows how plans and

goals have a relationship in MAS execution. Percepts are the information received from

environment that creates an event. Event can trigger plan of an agent. Plans are executed to

achieve a certain goal. Messages are the flow of information between agents. Actions are the

output of the agent working in MAS which could change state of the environment by updating its

beliefs.

Figure-4.1: MAS Working and Flow of Information

By looking at MAS working and literature analysis we propose two types of faults for our testing

approach in this research thesis. Following is the details of two types of our fault model.

4.1.1 Fault Types: Interaction Faults

We intend to identify possible faults that can occur if coverage of any interaction has not been

done. In multi-agent system different faults can occur during interaction between agents and

environment in a protocol diagram.

36

 In analysis overview diagram, necessary percepts and actions are presented that are propagated

further its sub-sequential levels of design like architectural and detailed design phase. Figure 4.2

shows propagation of percepts and actions along with messages from analysis overview to

system overview. Details of protocol diagram is used to model the graphical representation of

protocol, in which sequence of actions, percepts and messages along with required AUML

notation e.g. loop, option etc are listed.

Figure-4.2: Protocol Diagram in PDT with Interactions

To detect faults, coverage of possible interactions should be achieved. Figure 4.3 describes

Warnings Protocol of Meteorological Alerting System (Mathieson et al. 2004). Warnings

protocol contains four actions namely subscribeAWSSourceAgent, subscribeTAFSourceAgent,

Request Data & Show Warning; three percepts Subscription from User, AWS DataE & TAF

dataE and three messages SubscriptionE, ForecastE & WarningE. Protocol involves three agents

37

GUIAgent, AirportAgent, & ForecasterAgent and three actors User, Airport sensor and

Forecaster. Actors can be environment including people, external system etc which interact with

multi-agent system and send percepts to system. System output will be in the form of actions.

Figure-4.3: Warnings Protocol of Meteorological Alerting System

Currently only message interaction has been done while testing multi-agent system by (Miller,

Padgham & Thangarajah, 2010). Percepts and actions play a vital role in any interaction if they

are involved, so missing their coverage can contain following faults in MAS. A plan is triggered

by an event which is invoked by percept. Event can be message or percept or internal event.

Internal events are subtask within an agent in Prometheus methodology. Following are the

possible faults that could occur in MAS if complete coverage of all possible interactions has not

been achieved.

Problem 1:

Dependency fault: Missing environment information or percept; MAS cannot get updated

information about environment or expected inputs. This may cause wrong plan to trigger or even

no plan triggered if no event has been generated.

38

Problem 2:

Operational Fault: Unable to update actors/environment in case of action not executed; MAS

may not update/inform user or external environment if action event has not been tested. Specific

outgoing event may not ever be posted.

Problem 3:

Synchronization fault: Wrong message content can be conveyed to other agent if all necessary

information is not available. This could only be possible if expected percepts or action do not

take place on which message content is dependent. Improper sequence of execution is also

problematic. Both action and percept coverage with defined sequence is required.

For example, if Subscribe AWS source action is not covered then proceeding AWSDataE percept

may not occur and consequently wrong WarningE message will be sent.

We will use multi-agent system design to test it against its implementation focusing on identified

problems that lies in existing work. Our approach will uncover the interaction faults described

above that would lie between agents and actors. Our testing approach for multi-agent system will

test interaction faults using design artifacts like protocol diagram. We convert protocol diagram

into Protocol graph in our testing framework and perform all possible interactions testing.

4.1.2 Faults Types: Goals, Sub-goals and Plans Faults

MAS have many features, if a feature that should be present is not exhibited or not specified

feature is present then there is fault in MAS. A fault can also be an undesired event or action in

MAS, e.g., a triggering event may not have been triggered or an action may not have been posted

or system reacts undesirably upon receiving a triggering event etc. Goals and plans in MAS are

used to achieve desired functionality so their correct and ordered execution is necessary for MAS

reliability. Different types of faults can occur in MAS some of them are discussed by (Padgham

et al, 2013) like incorrect belief, incorrect context etc, but there are certain aspects of MAS that

are still missing and can cause MAS to behave unexpectedly. As depicted in Figure 4.1, goal and

plans do have a relationship between them in order to achieve MAS functionality. Goals and

plans have a relationship as plans need to execute for a specific goal to achieve, plans can have

sub-goals as well. Some goals have more than one applicable plans, all of which must be

39

executed in order to consider the goal as achieved while some goals are achieved if any of

applicable plans is executed. Same is the case with plans and its sub-goals. Such type of

relationships are represented by ‘AND’ and ‘OR’ between goals in goal overview and Goal-Plan

Diagram.

Figure 4.4: Goal Plan Relationship in PDT

In Prometheus Methodology, goals have been defined in goal overview diagram at system

analysis phase. Each goal is part of system analysis and Scenario description of the MAS.

Detailed design of Prometheus using PDT, plans do certainly have sub-goals. Goals defined in

system analysis phase have assigned relevant plans in detailed designed phase. Detailed design

contains applicable agents, applicable capability and plan(s) for specific goal and sub-goals of

specific plans. Every plan has exactly one triggering goal and multiple sub-goals (steps) in the

plan. Satisfaction of all sub-goals in a plan means the plan is satisfied, and therefore its

triggering (sub) goal is achieved. Figure 4.4 captures such a relationship between goals and plan

from system analysis phase to detailed design phase, where part of Multi-currency banking MAS

design is shown.

Goal triggers a plan which generates some events or triggers other sub-goals. Each of which is

executed to satisfy top level goal and plan. In Prometheus, plan descriptor shows goal(s) for

which plan(s) will be triggered. Figure 4.5 shows plan descriptor providing details relevant to a

40

plan i.e. goal to satisfy, sub-goals, incoming and outgoing messages and triggers. In Figure 4.5

plan descriptor of Perform ExchangeP Plan is presented.

Figure 4.5: A Plan Descriptor in PDT

From Prometheus design artifacts we have following details for goal, sub-goal and plan

relationships. For instance we consider account opening goal for multi-currency banking system.

Goal Applicable Plan(s) Applicable agent, Scenario

Account

Open

Create AccountP, Account

InfoP

Bank Account Agent, Obtain Information Scenario

These applicable plans can have ‘AND’ relationship with goal, both plans must be executed in

order to declare account open goal as achieved.

41

Plan Sub-Goals Applicable Agent, Scenario

DebitAccountP Debit Account, Debit Account

Error, Debit Account Exchange

Bank Account Agent, Debit Account

Scenario

Above plan have three sub-goal having OR relationship with them. Satisfaction or execution of

any goal can satisfy the plan but some functionality may be left unchecked.

Goal plan relationship should also capture the agent which is executing a certain plan. The goal

which is satisfied may also be part of certain scenario, plan may be included in any capability

included under an agent. Testing artifacts for goals, sub-goals and plans related faults include

goal overview, scenario overview, protocol diagram, agent and capability diagrams for

Prometheus. Considering these testing artifacts and relationship between goals and plan we have

defined goal, sub-goal and plan faults which cover possible faults in such interactions and

coverage.

In our fault model we have also captured such relationship discussed above along with other

possible faults that may occur when a MAS is running. Following are our defined fault types and

their description covering possible faults occurrence in MAS:

a) Inaccurate goal achievement: If more than one plan are required to execute in order to

fulfill a certain goal then missing any of the plan can cause inaccurate goal achievement fault

in MAS. This could occur when a certain goal has an AND relationship with all of its plans.

b) Plan Failure: Certain plans have more than one sub-goals to achieve; sub-goals have an

AND relationship with the plan. Missing any of such sub-goals can cause a plan not to

produce desired output.

c) Internal Agent fault: Such faults can occur if a certain agent or its capability has not been

executed. Non execution of a certain capability cannot reveal its agent’s operations and

contribution to meet system goals.

d) Missing functionality: Such type of faults can occur if a goal has more than one alternative

plans. These plans have an OR relationship with the goal; so non-coverage or non-execution

of all of OR plan branched/arcs can cause missing functionality faults.

42

e) Scenario Fault: Scenario contains sequence of steps to perform in MAS in the form of goal,

action and percepts. If a scenario is not covered properly then there could occur a scenario

fault in MAS.

f) Deliberate Fault: Desired output of the MAS can be obtained only by correct execution

order of the plans and sub-goals. If an agent triggers the incorrect plan which should not be

executed as required then deliberate faults can occur. Correct communication within and

between agents is required.

We have defined a fault model with two types of faults for MAS interaction testing and goal,

sub-goals and plans based testing. We have elaborated scope and details of design artifacts

involved in our MAS testing research. In the subsequent chapter testing framework for testing of

MAS is presented in detail.

43

CHAPTER 5: MULTI-AGENT SYSTEM TESTING FRAMEWORK

This chapter presents the proposed testing framework for testing of MAS. We provide testing

framework for both interaction and system testing aspects of MAS. Testing artifacts are the

Prometheus design artifacts of MAS that are used in testing framework. Fault model have also

been described in previous chapter 4 depicting possible faults that could occur in multi-agent

system. The Extent of level of MAS testing is then discussed according to the considered testing

level; our proposed testing frameworks are presented in the following sections.

Our focus in this research thesis is on Integration and system level testing. In Integration testing,

Prometheus design artifacts, i.e., protocol diagram is used for interaction testing, while analysis

phase and detailed design phase diagrams are used for system level testing to test goal, sub-goal

and plan coverage. In our testing framework, test model have been generated from design

artifacts and test paths are generated automatically on our test models. Test cases are generated

and executed to find possible faults in MAS.

5.1 Multi-agent System Testing Framework

In this section, we present our testing framework for MAS testing. Our focus is on integration

and system level testing of MAS. Figure 5.1 shows testing framework for MAS in which

Prometheus design artifacts are used as input to the testing framework. Test model is generated

by using system design model and test path are then generated from test model for integration

and system level testing. Integration testing is done by testing different MAS interactions.

Prometheus methodology design diagrams like goal overview, scenario overview, protocol

diagram, agent overview and capability overview diagram contains working knowledge of MAS.

All these diagrams are required for testing MAS due to their information containment. For

interaction testing the protocol diagram of Prometheus methodology is used and further test

model is created from it. System testing requires protocol, goal, scenario and process diagrams

for goal, sub-goals and plans coverage.

We generate test paths from test model. Integration and system test paths are used to generate

test cases. For each testing level, test cases are generated and executed on actual implementation

of MAS. Test result evaluation shows whether a test case is a fail or a pass after comparing with

expected output. We will elaborate integration testing framework for interaction testing in

section 5.2 and system level testing for goal, plan testing in section 5.3.

44

Figure 5.1: MAS Testing Framework

5.2 MAS Integration Testing: Interaction Testing

In this section, we discuss our testing framework for interaction testing of multi-agent systems

using the Prometheus design artifact. Protocol diagram contains all possible interactions between

agents working in MAS. Our testing framework for interaction testing is shown in figure 5.2.

We take design diagram information as input and verify that system conforms to the design or

not. Interaction protocols presented in protocol diagram will be used to build a test model which

covers messages, actions and percepts in order to achieve certain goals. Coverage criteria have

been defined on protocol graph, covering every possible interaction between agents. A tool has

been developed which uses identified coverage criteria, keeping in mind the messages and

percepts, interaction protocol and generates the test paths accordingly.

Figure 5.2 describes the testing framework for interaction testing approach. Testing framework

technique has four main processes namely protocol graph (test model) generator and test path

generator, test case generation and test result evaluation. Protocol graph generator uses

45

Prometheus interaction protocol presented in protocol diagram as input and produces protocol

graph, i.e., test model for interaction testing as the output.

Figure 5.2: Testing Framework for Interaction Testing

Test model i.e. protocol graph will be used to generate test paths according to defined coverage

criteria. Different coverage criteria are defined focusing on percepts and actions along with

messages and are used as input to test path generator. Coverage criteria have been defined to

cover all possible interactions occurring in a protocol graph. Test path generator uses our test

model, i.e., protocol graph and applies different defined coverage criteria to generate test paths.

These test paths cater for interactions like messages, actions and percepts in order to achieve

certain goal. The test case generation process is used to generate test cases manually. We execute

test cases to identify faults which reside in MAS. We have presented fault model for interaction

testing in section 4.1.1. Test result evaluation compares expected results with observed results

and identifies any faults presented in MAS. For verification we will seed faults in MAS. In

subsections we will discuss details and working of all defined processes of our testing framework

for interaction testing of MAS.

46

5.2.1 PROTOCOL GRAPH GENERATION

In interaction testing framework, interaction protocol or protocol diagram is used as the design

artifact which is transformed into a protocol graph. Protocol diagram contains messages, actions

and percepts interactions between agents and actors. Messages are passed only between the

agents while actions and percepts interaction are performed between agents and actors. We

convert the protocol diagram into protocol graph. Protocol graph has been introduced by (Miller,

Padgham & Thangarajah, 2010). They defined two sets of test coverage criteria for multi-agent

interaction testing. The first uses only the protocol specification, while the second considers also

the plans that generate and receive the messages in the protocol. Miller, Padgham & Thangarajah

do not cover the actions and percepts during the interaction (2010). We extend protocol graph

because actions and percepts are also major interactions that occur in MAS. Many faults may

remain in MAS if any of its interactions are left uncovered.

Figure 5.3 shows a Data Retrieval protocol diagram of Meteorological Alerting System.

Prometheus interaction protocol presented in protocol diagram of a Meteorological Alerting

System (Mathieson et al. 2004) is used as an example. Meteorological Alerting System is used to

monitor real time terminals for forecasting in Australia. Data Retrieval protocol contains three

actions namely Subscribe AWS Source, Subscribe TAF source & Request Data; two percepts

AWS Readings, TAF Data and one message ForecastE. Protocol involves two agents Airport

Agent, Forecast Agent and two actors Airport sensor and Forecaster. Actors can be environment

including people and external systems which interact with multi-agent system and send percepts

to system. System output is in the form of actions. A protocol diagram has been converted into

protocol graph by considering AUML interactions occurring in it. Generated protocol graph is

our test model for interaction testing of MAS. Our test model i.e. protocol graph contains

complete representation of all messages, percepts and actions performed between the agents and

actors in a specific protocol diagram.

AUML Protocol diagram can be represented in description as shown below.

start Data retrieval

actor A Airport Sensor

agent B AirportAgent

actor C Forecaster

agent D ForecasterAgent

47

action B A subscribeAWSSourceAgent

action D C subscribeTAFSourceAgent

box loop

box opt

action B A AWSRequest

end opt

percept A B AWS DataE

percept C D TAF dataE

message D B ForecastE

end loop

finish

Figure-5.3: Data Retrieval Protocol Diagram (Mathieson et al. 2004)

Dam presented meta-model of protocol diagram which has two or more agents is shown in figure

5.4. (2008). Protocol can contain Pelements which can be a Message, a Go-to, a Label, a Box, a

Region or even a Sub-Protocol. A Pelements is contained in a Protocol and a Region. A Box can

be divided into a number of Regions, containing Pelements. There are different categories of Box

such as Alternative, Option, Parallel, Loop, which are specified in the type attribute. Each region

can contain Pelements and has a guard condition on that region being selected. Labels and

Goto’s represent incoming and outgoing continuations respectively. A Sub-Protocol represents a

reference to another protocol (Dam, 2008).

48

Figure-5.4: Meta-model of Protocol Diagram (Dam, 2008)

We have converted a protocol diagram meta-model into a protocol graph meta-model including

messages, actions and percepts interactions as they are very important part of interaction

protocol. There are following transformation rules used for protocol diagram meta-model into a

protocol graph meta-model transformation.

Rule 1: Create a AUML Protocol instance from Meta-model of Protocol diagram with name as

Protocol Graph

Rule II:

Create Graph Components class and Node class

Create an association of type composition between Component class and Protocol Graph

Create an association of type generalization between Node to Components

For each Pelement in Protocol Diagram

 If Pelement is message

 Create new Message bound element

 Else If Pelement is GoTo

 Create new Action bound element

 Else Create new Percept bound element

49

 End If

 End If

Create associations of type generalization from bound element to Node class

End ForEach.

Rule III:

Create Graph Edge class

Create association of between Edge class and Node class

Atlas Transformation Language (ATL) rules for Protocol diagram Meta-model to Protocol Graph

meta-model has been presented in implementation chapter 6 Section 6.1.1.

 Figure 5.5 is the resultant meta-model of applying transformation rules on a protocol diagram

meta-model.

Figure-5.5: Meta-model of Protocol Graph

For each interaction, i.e., action, message and percept, relevant node is created in protocol graph.

Protocol diagram meta-model, represents all AUML notations like loop, optional, parallel and

alternative in BOX label. Transformation from meta-model to graph is automatic, details of

implementations are discussed in chapter 6. Each node in the protocol graph has some data to

receive, or send to other agents or environment. Figure 5.6 is the protocol graph of data retrieval

protocol diagram. The protocol graph is our test model for interaction testing of MAS which is

used to generate test paths that will lead to generation of test cases for MAS. Variables that cause

this flow of information are extracted and their values are assigned as the test data. Protocol

graph represents interaction protocol of MAS in terms of nodes and vertices form on which

50

different coverage criteria have been applied. Faults could occur in MAS if certain percept or

action coverage or testing has not been done. For test paths generation different coverage criteria

have been defined in the following section. We have test paths from model add data with

variables included in test path test case is generated from test path.

Figure-5.6: Protocol Graph for Data Retrieval Protocol Diagram

5.2.2 TEST COVERAGE CRITERIA

Miller, Padgham & Thangarajah have proposed some coverage criteria on protocol graph like

message coverage and pair wise message coverage which are used in our proposed approach as

well (2010). Additional coverage criteria for protocol graph including actions and percepts have

51

been defined in our testing technique. We have defined different coverage criteria that will cover

all possible aspects of interactions between agents and actors in the form of message, action and

percept. We have defined the following coverage criteria that will cover all possible aspects of

interactions between agents and actors in the form of message, action, and percept.

Test Path: A test path is a complete path in a protocol graph G that starts at initial node i and

end at final node f.

i. Message Coverage

A set of Test Paths (TP) is said to satisfy message coverage criterion for a protocol graph G if

each message node m of graph G is included in at least one path P є TP.

This coverage criterion ensures that every message node in the protocol has been traversed at

least once. There exists a path from the start to traversing all messages in it.

ii. Action Coverage

A set of Test Paths (TP) is said to satisfy action coverage criterion for a protocol graph G if each

action node ‘a’ of graph G is included in at least one path P є TP.

In this coverage criterion every action node in the protocol graph must be covered by at least one

test path for action coverage criterion.

iii. Percept Coverage

A set of Test Paths (TP) is said to satisfy percept coverage criterion for a protocol graph G if

each percept node p of graph G is included in at least one path P є TP.

In this coverage criterion every percept node in the protocol graph must be covered by at least

one test path for percept coverage criterion.

iv. Message Action Coverage

A set of Test Paths (TP) is said to satisfy message-action coverage for protocol graph G if for

each message m є M and each action a є A; if edge (m, a) is in G, then (m, a) is a sub path of at

least one path P є TP.

Messages are passed between the agents and actions are passed between the agent and actor.

Agent sends a message to an agent and agents send the action to actor, this sort of interaction

must also be covered ensuring the message action coverage criterion.

52

v. Action Percept Coverage

A set of Test Paths (TP) is said to satisfy action-percept coverage for protocol graph G if for

each action a є A and each percept p є P; if edge (a, p) is in G, then (a, p) is a sub path of at

least one path P є TP.

Agents send an action to an actor in multi-agent system demanding some task to be completed,

in return actor sends the percept containing the required information or data, and this sort of

communication is covered in action percept coverage criterion.

vi. Percept Message Coverage

A set of Test Paths (TP) is said to satisfy percept-message coverage for protocol graph G if for

each percept p є P and each message m є M; if edge (p, m) is in G, then (p, m) is a sub path of

at least one path P є TP.

While receiving the percept from the actor, agents send a message to agent with necessary

information, this sort of communication is covered in percept message coverage criterion.

vii. Pair wise Message Coverage

A set of Test Paths (TP) is said to satisfy pair wise-message coverage for protocol graph G if for

each message m є M and each message n; if edge (m, n) is in G, then (m, n) is a sub path of at

least one path P є TP.

In protocol graph, all cases in one message can be followed by another message are covered in

pair wise message coverage. Addition of pair wise message coverage ensures arc coverage which

is left uncovered in message coverage criterion.

viii. All Round Trip Paths

A set of Test Paths (TP) is said to satisfy all-round-trip-paths coverage criterion for a protocol

graph G if it loop back on same state in graph G in at least one test path P є TP.

Interaction protocol describes the protocol in AUML protocol diagram which contain loops as

well depending upon the protocol requirements. All round trip paths coverage criterion in

protocol diagram traverses all loops at least once and include those paths which loops back on

same state in generated test paths. Figure 5.7 shows hierarchy of test coverage criteria used in

interaction testing of multi-agent system.

53

Figure-5.7: Test Coverage Criteria Hierarchy

5.2.3 TEST PATHS GENERATION

Once we have successfully converted protocol diagram into protocol graph, we need to generate

test paths from protocol graph. In this subsection we describe second process of our testing

approach named test path generation. Test path generation take protocol diagram and coverage

criteria as input and generates test paths for a protocol. Algorithm-II presented in implementation

chapter 6 is used to generate test paths from protocol graph. It takes Coverage Criteria (A set of

defined coverage criteria) and protocol graph (Set of nodes and edges). Edge and node list is

used to generate test paths according to defined coverage criteria. Details are explained in section

6.1.1. We have automated the test paths generation with the help of tool which is elaborated in

6.1.3. Table-2 shows generated paths by applying algorithm-II along with defined coverage

criteria. Pair wise message criterion is not applicable in the example here; we will show this

criterion path in our results and discussion chapter.

Table-2: Test Paths for Data Retrieval Protocol Graph

S. # Coverage Criteria Test Paths

1 Message Coverage 123567(Message)8

2 Action Coverage 12(Action)3(Action)4(Action)5678

3 Percept Coverage 1235(Percept)6(Percept)78

Message

Coverage

Action

Coverage

Percept

Coverage

Message-Action
Coverage

Action-Percept
Coverage

Percept-Message
Coverage

Pairwise-Message
Coverage

All-Round Trip
Paths

All- Paths Coverage

54

4
Message Action

Coverage
 123567(Message)4(Action) 5678

5
Action Percept

Coverage

 123(Action)5(Precept)678

 1234(Action)5(Precept)678

6
Percept Message

Coverage
 12356(Percept)7(Message)8

7
All round trip

paths

 1235674 5678

 1235675678

9 All Paths coverage Infinite # of Paths

5.2.4 TEST CASE GENERATION

Test case generation process of our testing framework for MAS interaction testing is manual. We

use test paths generated from our test model, i.e., protocol graph. Test path contains nodes type,

i.e., message, action and percept depending upon the applied coverage criterion. For each node

we extract its triggering event and we provide data to trigger that event with the aim to

traverse/test our target interaction. For example a test path against ‘action percept’ coverage

criterion: 123(Action)5(Precept)678 is used to test action interaction from an

agent to environment and that should be proceeded by a percept from actor/environment to an

agent. Our test case should target to generate test case that leads to the execution of MAS on

action and then percept. But if there is some error in MAS implementation that could not traverse

such an interaction in the desired order indicating a fault in MAS. We will generate test case for

each coverage criteria so that all possible interaction have been tested.

Test path: 123(Action)5(Precept)678

Action = Sub TAF Source

Percept = AWS Readings

Triggering event could be a calling function with some variable data values. Node Description

Table (NDT) for each path contains all variable information or function required to traverse the

path. Details of test case are presented with case study in results and discussion chapter 7.

55

5.2.5 TEST RESULT EVALUATION: INTEGRATION TESTING

Test Result evaluation process of MAS interaction testing consists of manual identification and

calculation of expected results. For MAS to work correctly, all of its actions, percepts and

messages should occur as defined in system design, i.e., protocol diagram. For each triggering

event and function call, expected output is calculated manually and after executing test case

observed output of MAS is compared with expected result. In case of same output there is no

fault and test case is considered as a pass. A failed test case is further diagnosed to identify

which type of fault has occurred. Type of fault identification depends on the type of node not

traversed or not triggered. Chapter 7 presents expected results with actual result of test cases for

evaluation purpose.

5.3 System Level MAS Testing Framework and Process: Goal and Plans Faults

Identification & Coverage:

This section describes our testing framework and testing process of system level testing of MAS.

Our target is to ensure thorough coverage of plans and goals for MAS with reference to faults

that may occur if certain coverage is missed. Goals are defined in System Analysis phase and

their applicable plans are defined in process diagrams. Process diagram proceeded by Agent and

Capability overview diagram will be used to link goals identified in certain scenario to their

respective plans and sub-goals from a plan.

Figure 5.8 shows overall testing process of goals and plans fault identification and coverage, in

which maximum coverage of Prometheus design artifacts for test model construction and faults

identification has been done. For each scenario there exists a goal overview diagram. Each goal

has associated plan(s) or capability in detailed design phase called process diagrams. The test

model is constructed by considering all scenarios, goal diagrams and process diagrams. Identify

coverage criteria and then apply on test model for test paths generation. Coverage criteria which

are applied on test model are also defined in sub-sections to reveal possible faults. Test paths are

generated against each coverage criteria. Test paths will lead to the generation of test cases and

semi-automatic generation of test data.

Fault occurrence can cause the MAS to deliver an unexpected outcome which is evaluated with

reference to goals and plans execution. Fault model was identified in Section 4.1.2, by

considering possible faults that can appear in MAS with reference to goals and plans coverage.

56

Expected output is calculated manually for test results evaluation. Actual executable code of

MAS is managed in JACK development environment. We have instrumented MAS code to get

execution traces when test cases are executed. Our testing process identifies faults that occur

because of wrong or ambiguous implementation of MAS design into code.

Figure-5.8: Overview of Testing Process for Goal and Plan Coverage

Figure 5.9 shows testing framework for goal, sub-goals and plans faults identification and

coverage in MAS having five main processes, i.e. Goal-Plan Graph generation, test paths

generation, test case generation, test case execution and test case evaluation. We have used

design artifacts of Prometheus methodology as it is a rich methodology for MAS designing.

Goal-Plan Graph (test model) will be annotated to show complete trace from scenario to

interaction protocol then process diagram and ending in plans lies under an agent’s capability.

We measure goal coverage against execution of plans for specific goal. Different design artifacts

have been used in our fault identification approach. Sub-sequent sections elaborate each process,

i.e., test model generation, coverage criteria definition, test paths generation, test case generation,

test case execution and test case evaluation for MAS testing with reference to goals and plans.

Start

For Each Scenario, goal overview and Process

diagram in MAS, Construct Test Model for

goals/plans using detail design

Identify Coverage Criteria and Test Paths for test

model

Instrument SUT and execute Test Cases

Evaluate Test Results-Identify Faults in MAS

End

Generate Test Cases, Identify test data semi-

automatically and identify expected output

57

Figure-5.9: Testing Framework for Goal, Sub-Goals and Plans Coverage

Test paths are generated automatically from test model while test cases are generated for MAS

implementation and they are executed to reveal injected faults. Test paths are used for generation

of test cases, elaborated in subsequent sections. Test data are generated semi-automatically for

test case execution. Expected output will be calculated manually for evaluation purpose. When a

test case has correct output as expected then it is considered as pass. Failed test cases have

incorrect output. Failed test cases are further discussed with the reason why test path has

deviated and gave wrong output. Test result evaluation is performed manually.

5.3.1 TEST MODEL GENERATION

Goal and Plans are the factors used to measure the correctness of MAS working. In Prometheus

methodology, goals are defined at system specification level in scenario overview diagram and

further elaborated in goal overview diagram. Every MAS has a goal diagram for each scenario.

Goal Overview

Diagram

Agent Overview

Diagram

Protocol Diagram

Scenario Overview

Diagram

Goal-Plan

Graph

Generator

Goal-Plan

Graph

Coverage Criteria

(Goal-Plan Graph)

Test Paths

Capability

Overview Diagram Test Cases

Implementation

Test Output

Test Path

Generator

Test Case

Generator
Test Case

Executor

Expected

Output

Test Result

Evaluation

Pass/Fail

58

A scenario contains; goal, actions and percepts that can occur specific to scenario. In the

remaining section we will discuss design diagrams that are created using Prometheus Design

Tool (PDT). Our approach use PDT design artifacts in forming test model.

Figure 5.10: Example of Scenario and Goal overview diagram (Obtain Data Scenario)

Figure 5.10 is part of example scenario overview and goal overview diagrams for meteorological

alerting system (Mathieson et al. 2004), a multi-agent system to present diverse form of weather

warnings to users based on forecasts and actual sensor readings received from different airports.

Multiple users can subscribe to one or more airports and receive warnings for specific situations

on specific airports. As depicted in Figure 5.10, scenario can have sub scenarios as well. It shows

how a scenario diagram’s goals are represented in goal overview diagram along with compulsory

and optional operators ‘AND’ and ‘OR’. Figure 5.11 is the goal overview diagram of

meteorological alerting system.

Goals and sub goals which are identified at specification level diagrams have their plans in

detailed design in PDT. Detailed design of Prometheus methodology contains process diagrams

i.e. capability and agent overview diagrams. Plans are defined in process diagrams and each plan

has goals to satisfy. Every plan has exactly one triggering goal and multiple sub-goals (steps) in

the plan. Satisfaction of all sub-goals in a plan means the plan is satisfied, and therefore its

triggering (sub) goal is achieved. Sub-goals are specified in a plan while designing the MAS.

The steps that need to be executed as part of a plan are determined and included as sub-goals.

59

Figure 5.11: Goal Overview Diagram of Meteorological Alerting System (Mathieson et al. 2004)

Notations used in diagram are also shown in figure 5.12 to have insight of each Prometheus

design diagrams.

Figure- 5.12: MAS Notations Used in Prometheus Design Diagrams

Figure 5.13 shows an agent overview diagram of a meteorological alerting system that contains

plans and capabilities. A capability can have multiple plans in it, satisfying a certain goal set. A

percept or message event can be used to trigger a plan or capability. Plan or capability output is

shown in the form of an action that affects the environment. Interaction between agents includes

percepts, actions and messages all of which are modeled in a protocol diagram. Protocol diagram

also contains different loops in it. Protocol diagram is used to get only loops information in order

to add loops in our test model.

60

Figure- 5.13: Agent Overview Diagram (AirPort Agent) (Mathieson et al. 2004)

We have generated a test model which uses Prometheus design artifacts, e.g., scenario overview

diagram, goal overview diagram, protocol diagram (only for loops), agent and capability

overview diagrams. Goal-Plan Graph generator process of testing framework uses artifacts

details to generate test model which is Goal-Plan Graph (GPG) for MAS. These design artifacts

contain rich information from goals identification to assignment of plans for that goal. Algorithm

II presented in implementation chapter 6 Section 6.2 is applied to generate GPG from design

model. Algorithm II takes Prometheus design artifacts as input, extract and process goals and

plans information, and generates a test model which is the GPG. It extracts sub-goals from the

body of plan using process diagrams, i.e., agent and capability diagrams; and adds sub-goal to

GPG as they are listed in goal overview diagram. It generates a list of all goals and plans from

design diagrams. Applicable plans list contains applicable plans for each goal along with related

scenario, agent and capability. Sub-goals list is prepared for each plan containing its sub-goals.

Each scenario has its own goal overview diagram; we build GPG for each scenario and link

different GPGs of the system by looking at their working in agent overview diagram. GPG

consists of nodes and edges where nodes are of two type i.e., goal node and plan node. Each goal

can have more than one applicable plans where all applicable plans can have ‘AND’ or ‘OR’

relationships depicted with arcs. Every plan has exactly one triggering goal and multiple sub-

goals (steps) in the plan. These sub-goals can also have ‘AND’ or ‘OR’ relationships. Loop

61

edges always start from an arrow from a plan node to a goal node somewhere earlier in the

graph. Each node contains metadata which includes scenario, agent and/or capability. Each node

has a relevant scenario, agent and capability associated with it, all of which are also annotated

with the node. GPG shows the complete flow of system from high level goal to detailed sub-

goals and plans execution. Every plan and goal belongs to some scenario and is performed by

some agent and capability belonging to the agent. Such detail of node type is also included in

GPG nodes as metadata of a node.

Figure- 5.14: Goal-Plan Graph (Test Model) of MAS

Figure 5.14 is the generated test model, i.e., Goal-Plan Graph that uses most of the design

artifacts by following Algorithm II. Generated Goal-Plan Graph will be used as test model and

62

test paths will be generated. These generated paths will be used for test case generation. Injected

faults will be identified by applying different coverage criteria discussed in the next section. Test

cases are constructed from test model by extracting variables used in a certain test path node and

assigning possible inputs as the test data that will be executed on the MAS implementation.

5.3.2 COVERAGE CRITERIA

It is possible that some parts of system under test (SUT) remains untested which may cause

problems in the MAS operation. Coverage is of MAS goals and plans essential for reliability.

Once Goal-Plan Graph test model is generated for goals, sub-goals and plans; there is a need to

measure the coverage of executed/traversed nodes in the test model. Coverage is measured by

actual system execution and then traces are checked on test model accordingly. MAS possesses

different characteristics so new coverage criteria have been defined that are different from the

literature. To ensure maximum coverage of all goals and plans in MAS we have defined

following coverage criteria for Goal-Plan Graph.

i. All goals Coverage: A set of Test Paths (TP) is said to satisfy all goals coverage criterion

for Goal-Plan Graph G if each goal node g of graph G is included in at least one path P є TP.

Test path(s) in which all goals from goal-diagram have been covered at least once. Only all AND

condition branches will be covered. As shown in above sketch if OR is the constraint then only

one path coverage is enough, in this case only all goals are traversed.

ii. Scenario Coverage: A set of Test Paths (TP) is said to satisfy scenario coverage criterion

for Goal-Plan Graph G if each Scenario S of graph G (nodes metadata) is included in at least

one path P є TP.

Test path(s) in which every scenario has been covered at least once.

iii. Agent Coverage: A set of Test Paths (TP) is said to satisfy agent coverage criterion for

Goal-Plan Graph G if each agent A of graph G (nodes metadata) is included in at least one

path P є TP.

GoalGoal

Plan

Plan

OR

63

Test path(s) in which every agent has been traversed at least once.

iv. Capability Coverage: A set of Test Paths (TP) is said to satisfy capability coverage criterion

for Goal-Plan Graph G if each Capability C of graph G (nodes metadata) is included in at

least one path P є TP.

Test path(s) in which every capability(s) have been covered at least once.

v. Plan Coverage: A set of Test Paths (TP) is said to satisfy plan coverage criterion for Goal-

Plan Graph G if each plan node p of graph G is included in at least one path P є TP.

Test path(s) in which every Plan has been covered at least once. Only all AND condition

branches will be covered. As shown in below sketch if OR is the constraint then only one path

coverage is enough, in this case only all plans are traversed.

vi. Goal Plan Coverage: A set of Test Paths (TP) is said to satisfy goal plan coverage criterion

for Goal-Plan Graph G if each arc of graph G is included in at least one path P є TP.

Test path(s) in which every goal and its all applicable plans (arcs of GPG) must be covered at

least once. It will cover OR condition branches as well.

vii. Loop Coverage: A set of Test Paths (TP) is said to satisfy loop coverage criterion for a

protocol graph G if it traverses each loop 0, 1 or more than one time in graph G and loop

path(s) included in at least one test path P є TP.

A set of test paths which by-passes every loop and a set of test paths which traverse each loop

exactly once and a set of test paths which traverse each loop more than once.

Loop coverage is necessary to test functionalities in which a goal/plan is called more than once.

To test such functionality loop coverage is required and in literature prime path and loop

coverage 0, 1 or more than once is suggested. In MAS loop coverage 0 time, 1 time and more

than one i.e. 2 is useful to check stability in multiple calls to certain goal.

Goal

Goal

Plan Plan
OR

64

Goal, sub-goal and plan related fault model is presented in Section 4.1.2 which can be identified,

if present in MAS, by applying coverage criteria on test model. Each coverage criteria identify

one or more than one fault types. Coverage criteria ensure certain types of faults detection and

identification within a system (Tian, 2001). Following is the relationship of coverage criteria

with fault types that depicts which coverage criteria can reveal which types of faults in MAS.

Coverage criteria types of faults that could be identified by the coverage criteria.

All goals Coverage Inaccurate goal achievement

Scenario Coverage Scenario Fault

Agent Coverage Missing functionality, Deliberate Fault

Capability Coverage Internal Agent fault

Plan Coverage Plan Failure, Deliberate Fault

Goal Plan Coverage Inaccurate goal achievement, Plan Failure, Missing functionality

Loop Coverage Missing functionality

In results and discussion chapter we will provide results of applying coverage criteria on a case

study to validate their relationship with types of faults identified.

5.3.3 TEST PATHS GENERATION

Test paths are generated from test model, in our case it is Goal-Plan Graph constructed in

Section 5.3.1. Algorithm III presented in implementation section 6.3 is used for automated test

paths generation for each coverage criteria. We have categorized goals and plans as basic nodes

types. Based on coverage criteria; agent, scenario and capability coverage are considered as

meta-data coverage as depicted in GPG figure 5.14. Algorithm also IV makes a list of ‘AND’

and ‘OR’ constraints on edges. We have automated test paths generation process with the help of

a tool that takes a test model as input, apply different coverage criteria and generate test path

against each coverage criteria. Automated test paths generation tool is presented in section 6.3.1.

Following is the structure used for test model input used in test path generation tool:

 {Node Name, Node Metadata, Node type (G/P), Node No, AND/OR constraint}

65

Generated test paths have relevant coverage criteria node name in it. e.g., 1(goal)23

(goal)610(goal)16, one of the paths from all goals coverage criteria of our test model.

Table-3 shows paths generated by our test path generation tool by using GPG of Figure 5.14 as

test model.

Table-3: Test Paths for Each Coverage Criteria Applied on GPG

S. No Coverage

Criteria
Test Paths

1 All goals

Coverage

1(goal)23 (goal)610(goal)16

1(goal)23 (goal)611(goal)17

1(goal)25(goal)712(goal)18

1(goal)25(goal)713(goal)19

1(goal)24(goal)69(goal)1522(goal)26

1(goal)24(goal)69(goal)1523(goal)27

1(goal)24(goal)68(goal)1420(goal)24

1(goal)24(goal)68(goal)1421(goal)25

2 Scenario

Coverage

1(S4)2(S4)5(S4)7(S4)12(S3)18(S3)

1(S4)2(S4)3(S4)6(S4)9(S1)15(S1)23(S1)27(S1)

1(S4)2(S4)3(S4)6(S4)8(S2)14(S2)21(S2)25(S2)

3 Agent

Coverage
1(A2)2(A2)3(A1)6(A1)9(A1)15(A1)22(A3)26(A3)

4 Capability

Coverage
124(C2)6(C2)8(C1)14(C1)21(C1)25(C1)

5 Plan

Coverage

12(Plan)316(Plan)

12(Plan)317(Plan)

12(Plan)57(Plan)1218(Plan)

12(Plan)57(Plan)1319(Plan)

12(Plan)46(Plan)915(Plan))2226(Plan)

12(Plan)46(Plan)915(Plan))2327(Plan)

12(Plan)46(Plan)814(Plan))2024(Plan)

12(Plan)46(Plan)814(Plan))2125(Plan)

6 Goal Plan

Coverage

1(goal)2(Plan)5(goal)7(Plan)12(goal)18(Plan)

1(goal)2(Plan)5(goal)7(Plan)13(goal)19(Plan)

1(goal)2(Plan)3(goal)16(Plan)

1(goal)2(Plan)3(goal)17(Plan)

1(goal)2(Plan)3(Plan)6(Plan)1016(Plan)

1(goal)2(Plan)3(goal)6(Plan)11(goal)17(Plan)

1(goal)2(Plan)3(goal)6(Plan)9(goal)15(Plan)22(goal)26(Plan)

1(goal)2(Plan)3(goal)6(Plan)9(goal)15(Plan)23(goal)27(Plan)

66

1(goal)2(Plan)3(goal)6(Plan)8(goal)14(Plan)20(goal)24(Plan)

1(goal)2(Plan)3(goal)6(Plan)8(goal)14(Plan)21(goal)25(Plan)

1(goal)2(Plan)4(Plan)6(Plan)10(goal)16(Plan)

1(goal)2(Plan)4(goal)6(Plan)11(goal)17(Plan)

1(goal)2(Plan)4(goal)6(Plan)9(goal)15(Plan)22(goal)26(Plan)

1(goal)2(Plan)4(goal)6(Plan)9(goal)15(Plan)23(goal)27(Plan)

1(goal)2(Plan)4(goal)6(Plan)8(goal)14(Plan)20(goal)24(Plan)

1(goal)2(Plan)4(goal)6(Plan)8(goal)14(Plan)21(goal)25(Plan)

7 Loop

Coverage

1(goal)2(Plan)3(Plan)6(Plan)1016(Plan)

1(goal)2(Plan)3(Plan)6(Plan)1(goal)2(Plan)3(goal)6(Plan)11(

goal)17(Plan)

1(goal)2(Plan)3(Plan)6(Plan)1(goal)2(Plan)3(goal)6(Plan)1(g

oal)

2(Plan)4(goal)6(Plan)8(goal)14(Plan)21(goal)25(Plan)

5.3.4 TEST CASE GENERATION AND EXECUTION

Test generation consists of two parts. First one is to identify variables used in test cases and

second part is assigning test data to test case variables. Variables identification step is manual.

Test cases are generated from test paths. Each test path consists of nodes and edges. Each node

has some related information that will be used to generate a test case.

Each NodeInfo (properties) Extract variables associated at each nodeIdentify functions

associated to the variablesAssign test data semi-automatically.

We construct a Node Description Table (NDT) manually for each node and use the variables or

properties associated at each node for test case generation. Properties or triggering

function/variables are used and in system implementation; test cases consist of value

combinations of variables that make a certain path to follow. For example, for the test path

1(goal)2(Plan)3(goal) 6(Plan) 11(goal) 17 (Plan), table-4 is NDT for a test path.

Table-4: Node Description Table for Test Paths Nodes

Node No. Node Type Associated Variables/functions

1
Goal

(display Warnings)

String = warning name

Int = Value

2
Plan

(Alert UserP)

Triggering event = Yes

String = level (Severe/Normal)

67

3
Goal

(Create warnings)
Int = Value > threshhold

6

Plan

(CreateForecast

DiscrepanceP)

String = warning name

Int = value

Fuct. = CreateForecast

11
Goal

(Check Wind)
String = warning (high wind)

17
Plan

(Report Wind Discrepancy)

String = Wind

Int = 60 Mph

GPG nodes associated properties are extracted from its implementation. In result and discussion

chapter we construct test cases and then execute them to validate the technique. Figure 5.15

shows test case generation process for MAS under test.

Figure - 5.15: Test Case Generation Process for MAS

A MAS has many functions that are called or triggered to get a desired output. Test cases are

used to execute the MAS to get the desired output and to check what types of faults are

identified. To assign values to function variables there is a need to first identify function

variables and then generate proper values for the variables. The number of test cases to execute

depends on generated value combinations for each variable and number of generated patterns for

Start

Extract variables for each function in MAS

Assign random value ranges to functional variables

using any testing technique

Decide Number of executions of functions and

generate combinational patterns of variables

Generate combination of values based on

decided number of calls

End

68

variables in the MAS to execute. For each coverage criteria different test cases can be generated

with different value combinations.

The process of test case execution is semi automatic. Once the test cases have been generated

after extracting variables and value ranges for the variables from Node description table, we

jump to the test case execution process. Assigning values to test cases extracted variables is

semi-automatic. Test case execution process requires several variable set up values involved in a

test cases. Our testing framework allows test engineers to access the implementation and assign

range of possible values to be used in test case. Once values have been assigned then

combination of execution is hard coded into MAS implementation, execution trace is the output

of the test case execution. Random numeric values for integer variables are stored in an array and

that are assigned to variables at the time of execution automatically. Result and discussion

chapter elaborates test case execution with real time values assigned to variables.

We further evaluate this approach on a case study in the result and discussion chapter to validate

the correctness of fault identification approach. Types of faults discovered by a coverage criteria

are also discussed in chapter 7.

5.3.5 TEST RESULT EVALUATION: GOAL-PLAN COVERAGE

This section discusses about manual calculation of expected output and test results evaluation.

After executing test cases, we have our test case results which are used for test result evaluation.

We have the expected output against a certain test case. Expected output will also be calculated

manually. Against a certain input, MAS have to produce some output after executing its plans.

Specific path is followed against certain input. Based on the event and plan execution of the

system we calculate expected output for each test case. For example in Metrological Alerting

System presented earlier in this chapter, if wind pressure is normal and fog discrepancy level is

also normal then expected output is normal situation and no alert situation is generated. Expected

outputs are also calculated for our case study in result and discussion chapter 7.

Test result evaluation process is manual. We have calculated expected output of MAS and run

identified test cases. Output of MAS is compared with the expected output. If expected and

actual output is same then we declare the test case as a pass otherwise a fail. A failed test case

69

can be analyzed to trace the fault that caused the wrong output. We identify which node has

caused the fault in MAS. We have identified fault types in our fault model and these faults were

injected in MAS implementation. Test case output will reveal faults identified after executions of

a test case’s set. Even a single test case can identify an injected fault which is clearly compared

with those of expected results. Different coverage criteria paths have different test cases, while

running these test cases reveal certain faults identified earlier in Chapter 4. Detailed test result

evaluations with faults are presented in the results and discussion chapter 7.

70

CHAPTER 6: MAS TESTING FRAMEWORK IMPLEMENTATION

In this chapter, we will explain details of implementation that have been done to automate MAS

testing framework presented in previous chapter. Different algorithms have been designed for

test model generation and test paths generation, we will present algorithms and corresponding

tools architecture in subsequent sections of the chapter. As described in our testing framework,

we have separate algorithms and tools for test protocol graph generation, goal-plan graph

generation and test paths generation for both test models.

6.1 Interaction Testing

Interactions of MAS are presented in protocol diagram. We use protocol diagram AUML

description as input and convert it into protocol graph that is used as test model for interaction

testing of MAS. Figure 6.1 shows the architecture to convert protocol graph into protocol graph.

Figure - 6.1: Protocol Graph and Test Path Generator Tool Architecture

Protocol

Diagram AUML

Description

Protocol Graph Generator

Parser

Node Placer

Test Paths Generator

Test Paths

Node Connector

Protocol Graph

71

After parsing the AUML description of protocol diagram, node placer place identified node of

each type and node connector links the node with each other. ATL tranformation rules presented

in Section 6.1.1 is followed for PD meta-model to PG meta-model generation. Test paths

generator process in explained in detail in section 6.1.2.

6.1.1 ATL Transformation Rules PD meta-model to PG meta-model

To automate the transformation process, we have used Atlas Transformation Language (ATL)

(ATL 2008). ATL is a model transformation language that allows specification of rules to

transform source models, to target models.

Module PD2PG;

Create OUT:PGMM from IN:PDMM;

helper def: getprimitiveTypeMapping : Map(String, String) = Map

{ ('String', 'String'), };

rule Create AUMLProtocolInstance {

from inputModel : ProtocolDiagram!MM

to PGMM : GraphMM!ProtocolGraph (name <-inputModel.name,

Protocol <-inputModel.modelElements)}

rule PelementToNode {

from inputModel : ProtocolDiagram!MM

to PGMMPelement : GraphMM!Nodes

do

(

NodeName <- Pelement.name;

type <-clAttribute.type.name,

)

helper def: getprimitiveTypeMapping : Map(String, String) = Map

('Message', 'Message'); ('Label', 'Percept'); ('GoTo', 'Action');

}

rule CreateAssociation {

from inputModel : ProtocolDiagram!MM

to PGMMassociation : GraphMM!Associations

do (

 name <- 'Association_'+PGMM+'_'+PGMM,

ownedEnd <- Set { new_ownedEnd, new_ownedEnd1 }

)

new_ownedEnd : PGMM!Property(

name <- PDMM.toLower(),

type <- thisModule.classByName.get(PDMM)

72

)

aggregation<- #composite

)

do{ association; }}

6.1.2 Protocol Graph Test Paths Generator

Test path generation takes protocol diagram and coverage criteria as input and generates test

paths for protocol. Algorithm-II is designed for test paths generation.

Algorithm I: Test Path generation from Protocol Graph

Input: Coverage Criteria (A set of defined coverage criteria), Graph (Set of nodes and edges)

Output: Test Paths

Step 1: Build an edge list and node list of graph

Step 2: Categorize node with respect to type

Step 3: if all paths from graph = empty

Step 4: find_paths from graph

Step 5: End if

Step 6: Sort the paths in ascending order of the path length ending

Step 7: if current path = selected coverage criteria

Step 8: append (current path) in result

Step 9: End if

Step 10: Print Result

Figure - 6.2: Code of Finding Paths from Protocol Graph

73

Protocol graph is used as the input and according to coverage criteria test paths according are

generated. We have a test path generation tool for automated test paths generation, tool

architecture is presented in the next sub section. Figure 6.2 shows code of finding paths from

protocol graph used in our tool implementation.

6.1.3 Interaction Test Paths Generator Tool

Our test paths generation tool takes protocol diagram as input and generates test paths. Test Path

Generator tool has two main classes namely Graph Regeneration and Graph Parser.

Figure-6.3: Test Path Generator Tool Process

Figure-6.4: Test Path Generator Tool Input File

74

Graph Regeneration reads the input file and makes a graph object according to the file. This

object is used in the program to produce the paths. Graph Parser searches all the possible paths

according to the coverage criteria given to it. Figure 6.3 shows the process of test paths

generation tool. Figure 6.4 shows input file (graph file of protocol graph presented in figure 7.9)

for test path generator tool. Input contains protocol graph details in textual form.

Some screen shots of test path generator tool based on the coverage criteria is shown in Figures

6.5-6.9.

Figure- 6.5: Test Path Generation Tool (Coverage Criteria)

Figure- 6.6: Test Path Generation Tool (Action Coverage)

75

Figure- 6.7: Test Path Generation Tool (Percept Coverage)

Figure- 6.8: Test Path Generation Tool (Message Action Coverage)

Figure- 6.9: Test Path Generation Tool (Percept Message Coverage)

76

6.2 System Testing: Goal-Plan Graph Generator

Goal and Plans are the key artifacts of MAS working. In Prometheus methodology, goals are

defined at system specification level and their relevant plans are defined in process diagrams. We

have used design diagrams to generate test model for goal and plans coverage. Algorithm II is

designed that takes design artifacts defined in testing framework as input, extracts and processes

goals and plans information, and generates a test model which is the GPG. It extracts sub-goals

from the body of plan using process diagrams, i.e., agent and capability diagrams; and adds sub-

goal to GPG as they are listed in goal overview diagram. Step by step GPG will be generated by

following the listed steps in Algorithm II.

Algorithm II: Goal-Plan Graph Generation Algorithm Using Prometheus Design Artifact

Input: Goal-Overview Diagram (GD), Scenario Diagram (SD), Protocol Diagram (PD), Agent

Diagram (AD) and Capability Overview Diagram (CD).

Output: Goal-Plan Graph (GPG) with plans and goals as nodes.

Declare: GPG=empty, SG is the sub-goal, AS=Applicable Scenario, AA=Applicable Agent,

AC=Applicable Capability, AP=Applicable Plan, Each capability will be treated as a plan as

well.

Step 1: Extract goals list from GD: GL GD.goals

Step 2: Extract plans from AD and CD: PL AD.plans CD.plans

Step 3: For each Goal and Plan

Step 4: Add Plan P(G) List of Applicable Plans (G, AP)

Step 5: Add SG (P) List of sub-goals for Plans (P, SG).

Step 6: Add Scenario S(G)/S(P) Scenario for Goal/Plan (G/P, AS)

Step 7: Add Agent A(G)/A(P) Agent for Goal/Plan (G/P, AA)

Step 8: Add Capability C(G)/C(P) Capability containing Goal/Plan (G/P, AC)

Step 9: For each Goal-Diagram against each Scenario

Step 10: Set Root (GPG) GD.root

Step 11: Set Current Goal (CG) Root

Step 12: Add S (G), A (G) and/or C(G)

Step 13: Add Children (CG) AP

Step 14: Add Constraint(G-Node) AND or OR

Step 15: Add S(P), A(P) and/or C(P)

Step 16: For Each Plan (P, CG)

Step 17: do Add Children (P) (SG, P)

Step 18: Add Constraint(P-Node) AND or OR

77

Step 19: Set CG SG

Step 20: While CG ≠ {}

Step 21: Repeat step 11-19

Step 22: End While

Step 23: If Goal-Diagrams > 1 and n = Number of Scenario

Step 24: Add link GPG (Scenario-I) to GPG (Scenario-n) Using Detail Design

Step 25: Extract Loops from PD

Step 26: Add Loop link goal Plan

Step 27: Return GPG

6.3 Goal-Plan Graph Test Paths Generator

GPG is constructed by following Algorithm-III while Algorithm-IV is defined to generate test

paths from GPG for each coverage criteria. Appendix-A contains details of code for

findpathsbytype (), findpathsbymetadata (), findall () and findloop () functions used in test paths

generation.

Algorithm III: Test Path generation Algorithm Using Test Model (Goal-Plan Graph)

Input: Goal-Plan Graph and Coverage Criteria

Output: Test Path for each Coverage Criteria

Let GPG be the Goal-Plan Graph with node type i.e. goal or plan, metadata (Capability, Agent,

Scenario) and AND or OR constraints with edges.

Step 1: Insert metadata (Nodes) in data array

Step 2: Insert Nodes types (goal/Plan) in Array

Step 3: Make list of AND/OR edges

Step 4: If criteria = All Goals coverage/Plans coverage

Step 5: Call findpathsbytype ()

Step 6: End If

Step 7: If criteria = Capability/Agent/Scenario coverage

Step 8: Call findpathsbymetadata ()

Step 9: End If

Step 10: If criteria = Goal Plan coverage

Step 11: Call findall ()

Step 12: End If

Step 13: If criteria = Loop coverage

Step 14: Call findloop ()

Step 15: End If

78

Type coverage method covers all goals coverage; all plans coverage and goal-plan coverage

criteria. Metadata coverage method covers scenario, agent and action coverage criteria. Loop

coverage method covers loop coverage criteria.

Loop Coverage

Function to cover the loop is as follows

 Parse the entire tree

 Create a list of nodes containing the loop edges

 Check for the times of occurrence of the loop nodes in the path

 If it occurs for one time then add it to simple path list and delete the occurred node from

list of loop nodes

 If it occurs two times then add it to 1 loop path list and delete the occurred node from the

list of loop nodes

 If it occurs three times then add it to 2 loop path list and delete the occurred node from

the list of loop nodes

 As soon as all the nodes are covered break the process

Metadata Coverage

Function to cover the node with respect to metadata

 Parse the entire tree

 Create a list of metadata info

 Parse the paths one at a time for the required metadata

 When metadata is found delete it from the list and print the path

 Terminate the process when metadata list is empty

Type Coverage

Function to cover the node with respect to metadata

 Parse the entire tree

 Create a list of type of nodes to be covered

 Parse the paths one at a time for the required node

 When node is found delete it from the list and print the path

 Terminate the process when node list is empty

6.3.1 Goal-Plan Graph Test Paths Generator Tool

Figure 6.11 shows the basic architecture of automatic test paths generation by following

Algorithm III. For loop coverage we created a list of nodes containing the loop edges and check

its zero, one and two occurrences. Test path generation tool takes test model, i.e., GPG as input,

79

details of test model is stored in text file in which metadata details, nodes and edges information

is stored as presented in Figure 6.10 (GPG description of figure 7.10).

Figure-6.10: GPG (Test Model) Test Paths Generation Tool Input

Fig-6.11: Automatic Test Path Generation Architecture Using GPG

80

Screen shots of test paths generated by tool from GPG for each coverage criteria are shown

below.

Figure- 6.12: GPG Test Paths Generator (Scenario Coverage Criteria)

Figure- 6.13: GPG Test Paths Generator (Plan Coverage Criteria)

81

Figure- 6.14: GPG Test Paths Generator (Loop Coverage Criteria)

Figure- 6.15: GPG Test Paths Generator (Goal-Plan Coverage)

82

Figure- 6.16: GPG Test Paths Generator (All Goals Coverage)

Figure- 6.17: GPG Test Paths Generator (Capability Coverage)

83

Figure- 6.18: GPG Test Paths Generator (Agent Coverage)

6.4 Test Case Execution

Test case execution process is semi-automatic. We have used a multi-currency banking MAS for

evaluation of our testing framework. Three variables are used in our Multi-Currency Banking

System i.e. account name, currency and amount. Random data is generated for each variable and

assigned. Test case data will be generated by assigning variable values included in functions as

shown below:

public static String nextName(){

String ary[] = {"Shafiq","Peter","ali"};

 Random rand = new Random();

 return ary[rand.nextInt(ary.length)];

 }

public static String nextCurr(){

 String ary[] = {"USD","AUD","YEN",};

 Random rand = new Random();

 return ary[rand.nextInt(ary.length)];

 }

public static double nextAmount(){

 double ary[] = {40,15,100,500, 10000};

 Random rand = new Random();

84

 return ary[rand.nextInt((ary.length)-1)];

After assigning variables values, there is a need to define number of test cases to execute. We

have instrumented the code to generate a number of test cases to execute on MAS. Only part of

the code added in JACK project is shown below.

int length = ary.length,seq_num , looplen2 = 0;

seq_num = 0 + rand.nextInt(100);

// 100 test cases are generated

int[][]seq = new int[seq_num][];

callCommands(seq[i],communicator,nextName(),nextCurr(),nextAmount());

public class Accounts {

public static LinkedList acclist;

public static String nextName();

public static String nextCurr();

public static double nextAmount();

public static void callCommands(int[] s,Communicator comm,String name, String currency,

double amount) throws Exception {

 for (int i = 0;i < s.length;i++){

 switch (s[i]){

 case 0:

 acclist.insertNode(new

LinkedList(name,createAccount(comm,name,currency,nextAmount())));

 break;

 case 1:

 creditAccount(comm,acclist.findAccNo(name),currency,nextAmount());

 break;

 case 2:

 debitAccount(comm,acclist.findAccNo(name),currency,nextAmount());

 break;

 default:

 break;

85

 }

 }

 }

Details of logs generated after test cases execution is presented in Appendix-B.

86

CHAPTER 7: EVALUATION: RESULTS AND DISCUSSION

In previous chapter we have presented testing framework for MAS interaction testing and goal-

plan based testing. In order to prove effectiveness of testing framework, we have presented a

case study of MAS. We have seeded faults in case study implementation and testing framework

has been applied.

Our objectives for evaluation are finding the faults in MAS with our testing framework, using

test model and test coverage criteria. Generating test data for test cases and executing test cases

on actual implementation. MAS designed by Prometheus methodology are implemented in

JACK programming language. Fault detection is the main objective after executing all processes

of our testing framework. Evaluation process consists of:

a) Fault Injection in MAS implementation

b) Test Model Generation from design artifacts

c) Test case generation and execution (coverage criteria based)

d) Fault identification by test cases

7.1 Evaluation: Case Study

To validate our testing framework, we have taken case study of Multi-Currency bank account

system (Jack intelligent agents, AOSGRP) which maintains bank accounts in nominated

currencies, and performs currency conversions transactions against the accounts in any currency.

It consists of a BankAccount agent, a CurrencyExchange agent and a Communicator agent

which acts as an interface. All steps defined in our testing framework are applied to this case

study and faults are then injected for validation purpose. This case study first generates test

model from Prometheus design artifacts and then coverage criteria is applied to find test paths

automatically with the help of implemented tool. Faults described in Chapter 4 are detected and

which coverage criterion led to their discovery is also discussed.

7.1.1 DESIGN ARTIFACTS

Multi Currency Banking multi-agent system has three agents, e.g., BankAccount agent,

CurrencyExchange agent, and Communicator agent, which work together to create account,

debit account, credit account, debit and credit account with same and different currency and

87

currency conversion. We have designed artifacts of banking MAS which will be used to generate

our test model. Notations used in all design artifacts are standard notations used in Prometheus

Design Tool (PDT) (Thangarajah, Padgham & Winikoff, 2005). We will discuss only those

design artifacts which are involved as input to our testing framework to generate test models.

In Prometheus; system specification level consists of scenario and goal overview diagrams,

architectural design phase consists of protocols and detail design process consists of process

diagram i.e. agent and capability overview diagrams. Figure 7.1 presents scenario overview

diagrams of our case study example.

Figure-7.1: Scenario Diagram of Multi Currency Banking MAS

MAS have three main scenarios which consist of a sequence of goals, actions and percept to

perform. As depicted in Figure 7.1 the operate account scenario has two sub scenarios to handle,

e.g., credit account scenario and debit account scenario. Each scenario has its goal overview

diagram as well and collectively all these goal diagrams participate in MAS functioning.

Goal overview diagram of multi currency MAS is presented in Figure 7.2. Credit account and

debit account scenario has an OR constraint with three sub-goals, any of its sub goal’s successful

execution can lead to positive contribution to its main goal achievement, e.g., debit or credit

account. Currency exchange goal has an AND constraint with its sub goals like set exchange

rate goal and perform exchange goal. Perform exchange goal has a need to achieve compute

rate. Compute rate has an OR constraint with Identify rate and TwoStepExchange goal.

TwoStepExchange goal is triggered if two step currency conversions are required. In goal

88

overview diagram, top level goal showing relevant scenario for the MAS. All relevant goal and

sub-goals will be listed on internal and lead nodes of goal overview diagram.

Figure-7.2: Goal Overview Diagram of MAS

We have designed the system overview diagram of account case study. Figure 7.3 shows system

overview diagram of multi-agent system.

Figure-7.3: System Overview Diagram of Multi-agent system

89

In System overview diagram different agents have interaction with each other via account

operation protocol. Each agent has actions, percepts and messages associated with it. Different

interactions between agents and actors are occurring through account operation protocol as

depicted in figure 7.4 and 7.5. Each protocol includes different interactions between agents and

actors to perform specific tasks, such interactions are modeled in protocol diagram. Content of

protocol diagram includes alternatives, loops and other deviations from a simple sequence are

depicted in AUML using nested boxes. Figure 7.4 shows AUML description of account

operation protocol diagram used in Prometheus Design Tool.

Figure-7.4: AUML Description of Account Operation Protocol

90

Figure-7.5 shows an account operation protocol diagram, which is further converted to protocol

graph for interaction testing by protocol graph convertor process.

Figure-7.5: Account Operation Protocol Diagram

So far design artifacts related to system analysis and architectural design has been presented for

our case study. Now we will discuss how information from these artifacts is used to model

detailed design phases design artifacts of Prometheus methodology e.g. agent and capability

overview diagrams. For each agent there is an agent overview diagram. The BankAccount agent

overview diagram is shown in Figure 7.6; it has two capabilities, i.e., CreditAccountCap and

DebitAccountCap and three plans, e.g., CreateAccountP, AccountInfoP, AccountOperationP

91

which have some goals to achieve. Certain percepts and messages are used as the triggering

events for the plans and capabilities as shown in diagram. An arrow shows the flow of

information from one entity to other.

Figure-7.6: BankAccount Agent Overview Diagram of MAS

Each capability is further elaborated in capability overview diagram as depicted in Figure 7.7.

Figure-7.7: DebitAccountCap and CreditAccountCap Capability Overview Diagram of MAS

92

Each capability has three plans for alternative three goals as depicted in goal overview diagram.

Accounts and Rates are two data stores that contain exchange rates and accounts updated details.

On triggering debit account capability, there are three plans that can be used, e.g.,

DebitAccountP, DebitAccountErrorP, DebitAccountExchangeP. In case of exchange request,

Communicator agent get the message of Transport Request; which generates Exchange Request

message for Currency Exchange agent. Currency Exchange agent and communicator agent

along with ComputeRate capability diagram is shown in Figure 7.8. Currency Exchange agent

have two plans i.e. PerformExchange, SetExchnageRatePlan and one capability ComputeRate.

ComputeRate capability needs to execute two plans and replies with a message containing

exchange amount.

Figure-7.8: CurrencyExchange Agent, Communicator Agent and ComputeRate Capability

Overview Diagrams.

While considering the protocol diagram loop can be on creation of accounts or on debiting or

crediting the account more than one time.

93

7.2 Faults Seeded in MAS implementation

We have defined fault model for interaction testing and goal, sub-goal and plan based testing in

Chapter 4. We have injected interaction faults in implementation of our case study for validation

of our testing framework.

7.2.1 FAULT TYPE SEEDED: INTERACTION FAULTS

We have defined three types of faults in our interaction fault model presented in Section 4.1.1.

Protocol diagram is used for interaction in MAS. Protocol diagram consists of three type of

interaction i.e. action, percept and message. Dependency faults can occur if percept interaction is

missed. Operational faults occur if any action is not executed. Synchronization faults occur if any

action/percept is missed then wrong message content can be conveyed to other agent.

Table-5: Injected Faults for Interaction Testing

Fault ID Fault Type Injected Faults details

F-1
Operational

Faults

Account open action not performed

#uses interface AccountServices creator;

 #modifies data Account accounts; not executed

F-2 Credit account action not executed

F-3

Dependency

Faults

Credit account percept not received

#posted as credit(int accountNumber, String currency, double

amount) not executed

F-4

Exchange Rate percept not received

#posted as conversion(String currency1,String currency2,double

rate) not executed

due to which exchange request reply message will not occur

F-5

Synchronization

faults

TransportRequest message will not execute due to F-1 and F-3

F-6

#complex query conversion(String currency1,String currency2)

 { logical double rate;

 return conversion(currency1,currency2,rate);

 } query conversion not return any value

exchange request reply message will not occur

Wrong account info shown

We have discussed design artifacts of our case study. Table 5 shows injected faults in multi-

currency banking case study implementation developed in JACK.

94

7.2.2 FAULT TYPE SEEDED: GOAL, SUB-GOAL AND PLAN FAULTS

Goals and Plans are the key to MAS execution and any fault relevant to goal and plans makes it

difficult for MAS to execute correctly. We have defined a fault model for goal, sub-goal and

plans in section 4.1.2. Fault types are; inaccurate goal achievement, plan failure, internal agent

fault, missing functionality, scenario fault and deliberate faults. For each fault type at least one

fault is injected in the MAS implementation. Table-6 provides the details of injected faults for

the sake of validation in multi-currency banking MAS. Fault ID is different from interaction

faults. We have deliberately instrumented the JACK code to inject faults e.g., making context

condition of plan to false, prevent plans not to trigger, changing the code so optional goal of a

plan is not triggered, making a particular scenario or a capability not to execute etc.

Table-6: Injected Faults in Multi-Currency Banking MAS

Fault ID Fault Type Injected Faults details

F-11 Plan failure CreditAccountPlan not covered- Making its context false

F-22
Inaccurate goal

achievement

Debit Account goal not triggered – event for debit account not

posted “#posted as” not working

F-33
Scenario fault,

Internal agent fault

#posts event TransportRequest tev; not posted - Agent

functionality missed, currency exchange scenario missed

F-44

Plan failure,

Missing

functionality

Compute rate event handler made false - Capability missed

F-55
Deliberate faults,

Internal agent fault

#reads data Account “accounts” not allowed – database

reading/writing not allowed - Deliberate faults

F-66

Missing

functionality,

Deliberate Fault

Obtain Information event not triggered after Node 6 in test model

etc - loop not executed

After faults injection in MAS, we use Prometheus design artifacts described earlier in this

chapter to create the test model. The test model is used to create test paths and test cases in order

to identify injected faults.

95

7.3 Test Model Generation from design artifacts

We have defined design artifacts in section 7.1.1. For interaction testing we use protocol diagram

and convert it into our test model, i.e., protocol graph by PD meta-model to PG meta-model

ATL transformation rules described in our testing implementation chapter 6. Figure 7.9 is the

protocol graph for Account Operation protocol diagram.

Figure-7.9: Protocol Graph (Test Model) for Account Operation Protocol Diagram

96

We use the details contained in design artifacts for our case study and generate test model for

goals, sub-goals and plans based fault identification. Goal-Plan Graph (GPG) is our test model.

Algorithm-III in chapter 6 provides step by step guidance to generate a test model. Figure 7.10 is

the result of applying Algorithm-III on design artifacts as described in testing framework.

Figure 7.10: Goal-Plan Graph (Test Model) for Multi Currency MAS system

GPG is constructed by using scenario, goal, agent and capability overview diagrams. We also

consider loops information from protocol diagram to add loops to our generated test model.

Goal-Plan Graph contains all plans and goals involved in MAS functioning. The ‘AND’ and

‘OR’ constraints between goals and plans are also considered and presented.

97

7.4 Test Cases Generation And Execution (Coverage Criteria Based)

Test cases are aimed to run on MAS implementation and their results will be compared to those

of identified test paths generated from test models. We have protocol graph and Goal-Plan Graph

(GPG) as the test model for interaction testing and goal plan testing. Defined coverage criteria

presented in Section 5.3.2 and 5.4.2 are applied on test models to generate test paths.

7.4.1 INTERACTION TEST PATHS GENERATION

We have developed a tool to illustrate our testing framework presented in implementation

chapter 6. Protocol diagram converted to protocol graph on which different coverage criteria are

applied to generate paths with respect to them as defined in Section 5.3.2. Test paths generation

tool process is presented in Section 6.1.3.

Table-7 shows test path against each coverage criteria we have defined and applied on our test

model i.e. protocol graph. Screen shots of protocol graph test paths generation tool are shown in

section 6.1.3.

Table-7: Test Paths for Account Operation Protocol Diagram

S.

Coverage

Criteria
Test Paths

1
Message

Coverage
 12346(message)7(message)89(message) 111314

2
Action

Coverage

 123(action)5678910(action)13(action)14

 1235678912(action)14

 123(action)4678911(action)13(action)14

3
Percept

Coverage

 12(percept)35(percept)678(percept)9101314

 12(percept)34(percept)678(percept)9111314

4

Message

Action

Coverage

 12356789 (message)10(action)1314

 12356789 (message)12(action)14

 12346789(message)11(action)1314

5

Action

Percept

Coverage

 123(action)5(percept)6789101314

 123(action)4(percept)6789111314

 1235678912(action)5(Percept)67891214

 123(action)4(percept)678911134678911

98

1314

6

Percept

Message

Coverage

 1235(percept)6(message)78(percept)9(message)

10(action)1314

 1234(percept)6(message)78(percept)9(message)11(action)

1314

7

Pairwise

Message

Coverage

 12356(message)7(message)89 101314

8
All round

trip paths

 1232356789 101351214

 12351113512 5101314

9
All Paths

coverage
 Infinite # of Paths

7.4.2 GOALS AND PLANS TEST PATHS GENERATION

For goals, sub-goals and plans coverage, we have generated Goal-Plan Graph test model of our

case study. Coverage criteria defined in Section 5.3.2 are applied on the Goal-Plan Graph and

automatic test paths are generated. GPG test paths generation process defined in Section 5.3.3

has been followed. The GUI of GPG test path generation tool is shown in 6.3.1, which

implements the process presented in Section 5.3.3. For loop coverage we consider two iterations,

in the case of loop executing more than once. GPG structure or input of GPG used for automatic

test paths generation is presented in Table-8. For understanding purpose only one node structure

has been presented here. Table-9 shows paths generated from GPG by applying our defined

coverage criteria.

Table-8: Structures of the Goal-Plan Graphs used as Input to Tool

Node Name Node

Metadata

Node

type

(G/P)

Node

No

AND/OR

constraint

debitaccountplan [s3,c2,a1] Plan 7 OR, (7,8),(7,9)

Example single node structure: debitaccountplan;[s3,c2,a1];plan;7

99

Table-9: Test Paths for Goal-Plan Graph

S.

No

Coverage

Criteria

Test Paths

1 All goals

Coverage

1(goal)23(goal)6

1(goal)23(goal)5

1(goal)24(goal)78(goal)1015(goal)21

1(goal)24(goal)78(goal)1017(goal)23

1(goal)24(goal)78(goal)1016(goal)2224(goal)2527(goal)

29

1(goal)24(goal)78(goal)1016(goal)2224(goal)2526(goal)

2830(goal)31

1(goal)24(goal)79(goal)1112(goal)18

1(goal)24(goal)79(goal)1114(goal)20

1(goal)24(goal)79(goal)1113(goal)1924(goal)2527(goal)

29

2 Scenario

Coverage

1(S4)2(S4)4(S1)7(S1)8(S2)10(S2)17(S2) 23(S2)

1(S4)2(S4)4(S1)7(S1)9(S3)11(S3)13(S3)19(S3)24(S5)25(S5)

27(S5)29(S5)

3 Agent

Coverage

1(A1)2(A1)4(A1)7(A1)9(A1)11(A1)13(A1)19(A1)24(A3)

25(A3)27(A2)29(A2)

4 Capability

Coverage

12478(C1)10(C1)15(C1) 21(C1)

12479(C2)11(C2)13(C2) 19(C2) 2425262830(C3)

32(C3)

5 Plan

Coverage

12(Plan)35(Plan)

12(Plan)36(Plan)

12(Plan)47(Plan)810(Plan)1723(Plan)

12(Plan)47(Plan)810(Plan)1521(Plan)

12(Plan)47(Plan)810(Plan)1622(Plan)2425(Plan)27

29(Plan)

12(Plan)47(Plan)810(Plan)1622(Plan)2425(Plan)26

28(Plan)3031(Plan)

12(Plan)47(Plan)810(Plan)1622(Plan)2425(Plan)26

28(Plan)3032(Plan)

12(Plan)47(Plan)911(Plan)1218(Plan)

12(Plan)47(Plan)911(Plan)1420(Plan)

100

12(Plan)47(Plan)911(Plan)1319(Plan)2425(Plan)27

29(Plan)

6 Goal Plan

Coverage

1(goal)2(Plan)3(goal)6(Plan)

1(goal)2(Plan)3(goal)5(Plan)

1(goal)2(Plan)4(goal)7(Plan)8(goal)10(Plan)17(goal)23(Plan)

1(goal)2(Plan)4(goal)7(Plan)8(goal)10(Plan)15(goal)21(Plan)

1(goal)2(Plan)4(goal)7(Plan)8(goal)10(Plan)16(goal)22(Plan)24

(goal)25(Plan)27(goal)29(Plan)

1(goal)2(Plan)4(goal)7(Plan)8(goal)10(Plan)16(goal)22(Plan)24

(goal)25(Plan)26(goal)2830(goal)31(Plan)

1(goal)2(Plan)4(goal)78(goal)1016(goal)2224(goal)2526(g

oal)28(Plan)30(goal)32(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)1420(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)1218(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)13(goal)19(Plan)24

(goal)25(Plan)27(goal)29(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)13(goal)19(Plan)24

(goal)25(Plan)26(goal)28(Plan)30(goal)31(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)13(goal)19(Plan)24

(goal)25(Plan)26(goal)28(Plan)30(goal)32(Plan)

7 Loop

Coverage

1(goal)2(Plan)3(goal)6(Plan)

1(goal)2(Plan)3(goal)5(Plan)

1(goal)2(Plan)4(goal)7(Plan)8(goal)10(Plan)15(goal)

21(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)1420(Plan)

1(goal)2(Plan)3(goal)6(Plan) 1(goal)2(Plan)4(goal)7(Plan)

8(goal)10(Plan)4(goal)7(Plan)9(goal)11(Plan)4(goal)

7(Plan)9(goal)

11(Plan)1420(Plan)

1(goal)2(Plan)3(goal)6(Plan) 1(goal)2(Plan) 3(goal)6(Plan)

 1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)4(goal)7(Plan)

9(goal)11(Plan)1420(Plan)

1(goal)2(Plan)4(goal)7(Plan) 8(goal)10(Plan)4(goal)7(Plan)

 8(goal)10(Plan)4(goal)7(Plan)8(goal)10(Plan)17(goal)

Loop 0

time

Loop

1 time

Loop

2

times

101

23(Plan)

1(goal)2(Plan)4(goal)7(Plan)9(goal)11(Plan)4(goal)7(Plan)

9(goal)11(Plan) 4(goal)7(Plan)9(goal)11(Plan) 12(goal)

18(Plan)

7.4.3 TEST CASE GENERATION AND EXECUTION

Once we have created test models by using Prometheus design artifacts and test paths from test

model by applying defined coverage criteria, our next step is to generate and execute test cases.

For interaction testing test cases are designed to force program to traverse those execution paths

that reflect actions, message and action events in MAS. Event is generated by executing test case

that causes message and actions interactions. As discussed in Section 5.2.4 test cases are

generated by constructing NDT of each node in test paths. For example a test path against ‘action

percept’ coverage criterion: 123(action)5(percept)6789 101314 has its

relevant NDT shown in Table 10. Node 1 and 14 are the start and end node. Test cases are

constructed by using NDT entries for each path. Our test case should target to generate test path

that leads the execution of MAS on action and then percept. But if there is some error or fault in

MAS implementation then it will not traverse interactions in the desired order. We will generate

test case for each coverage criteria so that all possible interaction have been tested. Test cases are

generated by assigning variable values and forming the variable’s combinations for test cases

execution.

Table-10: Node Description Table Interaction Test Paths Nodes

Node

No.
Node Type Associated Variables/functions

2 Percept (Account Open)

String = Account Title

String = Currency

Integer = Amount

3 Action (Account Created)
Triggering event = account open

Function = Create account

5
Percept (Credit Account

request)

String = Account Title

String = Currency

Integer = Amount

6
Message (Transport

Request)

Triggering event = Percept

Function = Transport Request

7
Message (Exchange

Request)
Function = Exchange Request

8 Percept (Exchange Rate)
String = Currency

Float = currency rate

102

9
Message (Exchange

Request Reply)

String = Currency

Long = Amount converted

10 Action (Amount Credited) Function = Credit account

13 Action (Amount Info)

Triggering event = Action

Integer = Amount

String = Account Title

For goal and plan coverage, test cases are executed to traverse goals and plans in MAS. Plans are

used to satisfy certain goal and sub-goals.

Table-11: Node Description Table for Goal-Plan Test Paths Nodes

Node No. Node Type Associated Variables/functions

1 Goal (Obtain Information)
String = Account Title

Function = Inquire

2 Plan (ObtainInfoP)
Triggering event = Yes

String = Title

4 Goal (Account Operation)
String = Title

Double = amount

7 Plan (Account opP)

Event = yes

String = Title

Double = amount

String = Currency

8 Goal (Credit account) Function = credit account

10 Plan (Credit AccountP)

String = Title

Double = amount

String = Currency

Our test cases traverse possible plans satisfying goal or sub-goals. As discussed in Section 5.3.4

test cases are generated by constructing NDT of each node in test paths. For example the test

path: “1(goal) 2 (Plan) 4(goal) 7(Plan) 8(goal) 10(Plan) 15(goal)21(Plan)”

has NDT presented in Table 11. Only part of NDT has been shown here.

Test data generation for test cases is generated semi-automatically. Test cases are generated by

assigning variable values and forming the variable’s combinations for test cases execution. In our

case study we have three main calling functions from main Java file in JACK code i.e.

createAccount, creditAccount and debitAccount. There are 8 plans for accounts operations

handled by BankAccount agent, one plan for Communicator agent and 5 plans for Currency

Exchange agent. Account name, Currency and Amount are three variables extracted and

combinations of values are assigned for test case generation. Variables values are passed in

functions to generate events. JACK code has been instrumented for automatically assigning

103

variable values for test case generation and test cases are executed by just providing the total

number test cases to execute. Patterns of variables for test case executions are then automatically

formed. The number of test cases to execute depends on generated value combination for each

variable, i.e., (Select number from array of values) and the number of generated patterns (number

of test cases) for variables that make MAS to execute. For each coverage criterion path, different

test cases can be generated with different value combinations. Instrumented code will generate

output showing details of executed or traversed plans in test case execution.

We have provided list of values for all three test parameters, i.e, name, currency and amount.

These values are hard coded in MAS JACK implementation and randomly these values are

called along with function name automatically once we run the implementation. Sample

execution code instrumentation and sample execution log after test cases execution is presented

in implementation chapter section 6.4.

Based on our case study test paths and NDT following is the structure of test case for our MAS

under test is as follows:

Operation. type <name.Value, currency.value, amount.value>

For example:

createAccount(name, currency, amount)

 creditAccount (name, currency, amount)

 debitAccount (name, currency, amount)

We have instrumented the MAS implementation to generate test case execution log for

interaction testing to show which action, percept and message have been executed on a test case

as shown below. Sample log is presented in appendix-B.

createAccount (shafiq, AUD, 100)| credit (shafiq, AUD, 40)

Result:

User to BankAccount agent --> Percept (account open)

BankAccount agent to User --> Action (account created)

Created account 1 for Shafiq in AUD with opening balance 100.0

accountowner to BankAccount agent --> Percept (Credit account request)

104

 BankAccount agent to account owner --> Action (amount credited)

 BankAccount agent to accountowner --> action (Account info)

Credited account 1 with AUD40.0. Balance: 140.0

Executed paths are automatically extracted from test case execution log which can be easily

compared with test paths identified on test model of MAS. Execution path against the above

execution log is shown below.

12(Percept) 3(Action)5(Percept) 10(action)13(action)14

For goals, Sub-goals and plans coverage and testing, implementation has been modified to

execute and log plans for goals and sub-goal, also logging of events is done while executing the

test cases as shown below. Appendix-C contains a log generated for goal, sub-goals and plan

coverage while executing test cases.

createAccount (peter,YEN,40)

Result:

obtain information(goal)

 obtain informationP(Plan)

 Create Account(goal)

 Test CreateAccountPlan

 Create AccountP(Plan)

 Account InfoPlan(Plan)

We have manually calculated expected output of the MAS. For example action (account created)

interaction is expected after percept (account open) in case of interaction testing. For system

testing, an account debit request is made with 50 dollar then expected output shown that 50

dollars debited from given account etc. For each operation request we calculated the expected

output and then compared the expected output with test case results and declared the test case as

a pass or a fail. An output is produced after execution of correct plan triggered for a goal.

Actions, Percepts, Messages, Goals and plans are shown as nodes in our test models.

Expected output and test results evaluation process is manual. Against a certain input, MAS has

to produce some output after executing its plans. A specific path is followed for a given input.

105

Based on the event and plan execution of the system we calculate expected output for each test

case. The effort to evaluate test case results may be estimated as below:

Let t1 = average time required to produce expected result for a test case

 t2 = average time required to compare output of a test case with expected output

 n = number of test cases

Then time required for oracle generation and result evaluation will be t = n (t1 + t2).

7.5 Fault Identification By Test Cases

In this section we discuss faults detected in relation to the fault model. Our testing framework

ensures to identify faults which occur due to non coverage or unordered execution of goals and

plans as defined in design artifacts. We have our test models to identify and capture faults in

MAS. We have defined our fault model which covers possible faults types that could occur in

MAS. For each fault type at least one fault is injected in the MAS implementation. We achieve

effectiveness of our testing approach after finding injected faults in MAS. These faults have been

identified by applying different coverage criteria and test cases that lie within coverage criteria.

Coverage criteria ensure certain types of faults detection and identification with a system (Tian,

2001). Table-5 & 6 summarizes injected faults for interaction testing and goals-plans testing of

Multi-Currency Banking MAS.

We have our defined coverage criteria for interaction testing and goal-plan testing. Coverage

criteria have been discovered to be very effective in identifying injected faults in MAS. We have

applied more than 100 test cases on implementation of multi-currency banking system case

study. These test cases were selected after multiple executions of MAS. For example after

injecting Credit account Plan Fault in MAS.

A test case is considered as a pass if actual result matches with the expected result. Actual results

are according to expected results only if the action, percept and message interaction are executed

according to sequence as defined in interaction protocol. A test case is failed if it does not

traverse the defined path against certain input, which may be due to an injected fault.

106

Interaction testing results are compared with the expected results and a test case is declared as

either pass or fail. A failed test case is further analyzed to know the exact node/interaction type

not covered that cause wrong output to trigger.

Test path = 12(Percept)3(Action)5(Percept)10(action) 13(action) 14

Injected Fault = F2 (Credit account action not executed)

Test cases: createAccount(John,USD,100)|creditAccount(John,USD,40)

Actual output = 12(Percept)3(Action)5(Percept){Not triggered}……

Nodes were not traversed in case there was some fault or deviation in MAS implementation from

design models.

For goal-plan testing, we executed test case:

createAccount (ali,GBD,40) | credit(ali,GBD,500)

and expected MAS output against the test cases may be:

Created account for ali in GBD with opening balance 40:

Path = 1(goal)23(goal)6

Credited account title ali with GBD 500.0. Balance: 540.0:

Path = 1(goal)23(goal)5

Credited account title ali with GBD 500.0. Balance: 540:

 Path = 1(goal)24(goal)78(goal)1015(goal)21

Actual MAS output after executing this test case was:

Created account for ali in GBD with opening balance 40:

Path = 1(goal)23(goal)6

Credited account title ali with GBD 500.0. Balance: 540.0:

Path = 1(goal)23(goal)5

Could not debited

1(goal)24(goal)78(goal)10…….?// Plan is not executed, comparison showed that

injected fault was identified successfully.

107

Table-12 shows minimum number of test cases that are required for MAS interaction and goal,

sub-goal and plan coverage.

Table-12: Test Cases for MAS testing

TC ID Test Case

TC-1 createAccount(John,USD,100)

TC-2 createAccount(Ali, GBD,200) | debit ((Ali, GBD,100))

TC-3 createAccount(Oliver,YEN,150)

TC-4 createAccount(Jack,YEN,50)

TC-5 createAccount(Shafiq,AUD,250)

TC-6 creditAccount (John,USD,50)

TC-7 creditAccount (Ali,YEN,50)

TC-8 creditAccount (John,AUD,200)

TC-9 creditAccount (Ali,AUD,200)

TC-10 debitAccount (John,USD,40)

TC-11 debitAccount (Shafiq,AUD,400)

TC-12 debitAccount (John,AUD,50)

TC-13 debitAccount (Ali,AUD,50)

TC-14 createAccount (Shafiq,YEN,15) | credit (Shafiq,YEN,100)

TC-15 createAccount (ali,GBD,40) | credit(ali,GBD,500)| debit (ali,GBD,15)

We built a test model and applied coverage criteria to get expected execution of interactions and

goals and plans in MAS. Injected faults were successfully identified by applying coverage

criteria. For each coverage criteria we need certain test cases which ensure its coverage. These

coverage criteria proved very useful identification of different types of faults defined and seeded

in MAS. Table-13 summarizes interaction fault types identified by different coverage criteria.

Operational faults occurs due to non-execution of action event; action coverage criterion and

action-percept coverage criterion ensures that all action nodes must be covered so to avoid

operational faults. Percepts are used to input environment information into MAS. Percept and

percept-message coverage criterion ensures coverage of all percept nodes/edges so to avoid

dependency faults. Synchronization faults are avoided by executing message nodes, message-

message edges, action-percept edges and percept-message edges covered by coverage criteria

presented in table 13.

108

Table-13: Interaction Fault Types Vs Coverage Criteria

S. No Interaction Fault Type Coverage Criteria (Interaction

Testing)

1 Operational Faults Action Coverage, Action Percept

Coverage

2 Dependency Faults Percept Coverage, Percept Message

Coverage

3 Synchronization faults Message Coverage, Action Percept

Coverage, Percept Message Coverage,

Pair wise Message Coverage

Table-14 summarizes goal-plan fault types identified by different coverage criteria.

Table-14: Goal-Plan Fault Types Vs Coverage Criteria

S. No Goal-Plan Fault Type Coverage Criteria (Goal-Plan)

1 Inaccurate goal

achievement

All goals Coverage

2 Plan Failure Plan Coverage

3 Internal Agent fault Agent and capability Coverage

4 Missing functionality Goal Plan Coverage, Loop Coverage

5 Scenario Fault Scenario Coverage

6 Deliberate Fault Goal Plan Coverage, Loop Coverage

We have executed test cases on the instrumented JACK implementation of MAS after seeding

interaction faults. Our testing framework detected seeded faults by applying coverage criteria.

Table-15 summarizes faults detected, which were injected in MAS shown in Table-5, by

coverage criteria and minimum required test cases to cover test criterion. It shows the usefulness

of coverage criteria in identifying seeded faults. Different coverage criteria revealed faults of

different nature in MAS as depicted in Table-15. At least 8 test cases are required to cover nodes

and edges coverage in different coverage criteria. All round trip paths coverage criterion is the

strong among other criteria and it also covers all edges, that loops back on the same node, which

have been missed by other criteria. For any coverage criterion, there is a test case to create the

account before starting debit/credit operations test cases’ execution.

109

Table-15: Detected Interaction Faults by Coverage Criteria and Minimum Test Cases

S. No Coverage Criteria Test cases
Faults Detected

(Interaction)

1 Message Coverage 2 Test cases F-5, F-6

2 Percept Coverage 4 Test Cases F-3, F-4

3 Action Coverage 4 Test Cases F-1, F-2

4 Action Percept Coverage 6 Test Cases F-2, F-3

5 Percept Message Coverage 6 Test Cases F-3, F-5

6 Message Action Coverage 5 Test Cases F-2, F-6

7 Pair wise Message Coverage 3 Test Cases F-6

8 All Round Trip Paths 8 Test Cases F-1,F-2, F-3, F-4, F-5, F-6

Figure 7.11 presents graphics for minimum number of test cases required for a coverage criterion

to identify number of interaction faults in MAS.

Figure 7.12: Chart with Test Cases and Coverage Criteria Detecting Types of Faults

0

1

2

3

4

5

6

7

8

9

10

Message

Coverage

Percept

Coverage

Action

Coverage

Action

Percept

Coverage

Percept

Message

Coverage

Message

Action

Coverage

Pair wise

Message

Coverage

All Round

Trip Paths

Detected Faults by Coverage Criteria with Minimum Test Cases

Test cases No of Faults Detected

110

Table-16 shows goal-plan related detected faults by applying coverage criteria which are injected

in MAS shown in Table-6 and minimum number of test cases required to cover a specific test

criterion. These minimum numbers of test cases were chosen after multiple executions and

observing their result with respect to faults identified. It shows effectiveness coverage criteria in

identifying injected faults. Different coverage criteria reveal different faults in MAS. There are

certain overlaps in test cases. Test cases were applied on the instrumented code and it was found

that by applying our coverage criteria injected faults were successfully identified.

Table-16: Detected Faults by Coverage Criteria and Minimum Test Cases Required

S. No Coverage Criteria Test cases Faults Detected (Goal-Plan)

1 All goals Coverage 5 Test cases F-22, F-66

2 Scenario Coverage 6 Test Cases F-33, F-66

3
Agent and capability

Coverage
6 Test Cases F-44, F-55

4 Plan Coverage 8 Test Cases F-11, F-44

5 Goal Plan Coverage 13 Test Cases F-11, F-22, F-33, F-44, F-55

6 Loop Coverage 8 Test Cases F-22, F-66

In Table-16 goal-plan coverage identifies five faults by executing 13 test cases but F-66 is not

identified by goal-plan coverage criterion. Because fault 66 is relevant to missing functionality or

deliberate faults, only loop coverage criterion identifies such types of faults in MAS by

executing test cases which test loop events in system execution.

A test case is failed either due to a plan or a goal which was not triggered thus not executing the

relevant path and producing a wrong output.

Test Path = 1(goal)2(Plan)4(goal)7(Plan)9(goal) 11(Plan)12(goal)28(Plan).

Inject fault = Debit Account goal not triggered – event for debit account not posted “#posted as”

not working.

Test case: createAccount(John,USD,100) | debitAccount (John,USD,40)

Actual output: 1(goal)2(Plan)4(goal)7(Plan)9(goal) 11(Plan){Not triggered}

111

Nodes of the path are not covered in case a fault occurs which restricts coverage/execution of

certain goal and plans.

Figure 7.12 shows graphical representation of number of test cases executed for each coverage

criterion and types of faults identified. The more faults types are detected, the more test cases are

required.

Fig. 7.13: Chart of Test Cases and Coverage Criteria Detecting Goal-Plan Faults

Currently we are testing all possible calls in a single test case; therefore the numbers of test cases

are minimum. Our test case can be broken down into smaller test cases in which only one

function call can be made with one test case. In that case we may need three times more test

cases to uncover all defined faults. Our technique successfully finds the faults that reside on the

MAS implementation through test cases execution.

0

2

4

6

8

10

12

14

All goals

Coverage

Scenario

Coverage

Agent and

capability

Coverage

Plan

Coverage

Goal Plan

Coverage

Loop

Coverage

Detected Faults by Coverage Criteria with Minimum Test Cases

Test cases

No of Faults Detected

112

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

In this research, we have proposed a novel approach to test multi-agent systems based on design

artifacts following Prometheus methodology due to its rich artifacts and availability of its rich

design tool, i.e., PDT. We have used design artifacts of all three phases of Prometheus

methodology, therefore no functionality is missed or remain uncovered. Testing a multi-agent

system is a challenging task due to dynamic behavior of agents. We have focused on interaction

testing and system of MAS.

Integration of MAS components involves interactions between the agents as well as agent and

environment. Interaction protocol diagram contains all sorts of interactions between agents and

between agent-actor actor like message, action and percepts. We have presented a fault model for

MAS interactions and evaluated the proposed testing technique by experiments. We have

proposed a testing framework which Prometheus design model is used to generate test model,

i.e., protocol graph. The previously proposed protocol graph has been extended to include action

and percepts along with messages. Messages are passed between agents and percepts/actions are

used as the interaction mechanism between agents and actors. We have identified different

coverage criteria which includes nodes and arcs of the protocol graph. These coverage criteria

are used to generate test paths. Test cases are generated from coverage criteria’s test paths. Test

cases have been executed on MAS implementation in agent development environment. We have

validated our technique on a MAS case study. We have injected faults in MAS and executed our

test cases. Different coverage criteria have different test cases, from which, different faults are

identified that also validate the usefulness of coverage criteria.

Another important aspect of multi-agent systems is how goals and plan are covered in MAS

execution. Relationship between goals and plans is the key to test them. We have defined a fault

model for testing of MAS with respect to goals, plans and sub goals. For system level testing, a

testing framework is defined which uses scenario overview, goal overview, protocol diagram and

process diagrams to generate test model for the actual system. An algorithm is defined for Goal-

Plan Graph generation. New coverage criteria have been defined and automatic test paths

generation has been done for each coverage criteria. JACK implementation of MAS has been

instrumented to automatically generate and execute test cases. Faults are injected into MAS and

test cases are executed to show identified faults. More than 100 test cases have been generated

113

and executed on our case study for evaluation purpose. All fault categories which have been

identified specially to find goal and plan related faults are very effective in building trust in

MAS. The defined coverage criteria make this very easy to find the root-cause of any identified

fault.

Future Directions:

Although we have applied this approach on design artifacts Prometheus methodology along with

its JACK implementation, but this approach can be applied to other Belief Desire Intension like

agent system with slight modifications. In future work, test result evaluation process can also be

automated. System models checking according to the requirement specification may also be

performed in future before creating test models.

Test oracle is a process by which testers can produce expected output to decide whether the

output of the program under testing is correct or not. In our proposed system, test oracle is a

manual process to validate the system. A possible future direction is to use metamorphic testing

approach (Chen 2015) for oracle, which is based on the simple intuition that although we may

not be able to know the correctness of the computed output for any particular input, we may

know the relationship between relevant inputs and their outputs. Such a relation is referred to as

a Metamorphic Relation (MR). MRs can be used to generate follow-up test cases and verify the

outputs automatically. In future work, Metamorphic Testing technique can be applied to high

level test case generation.

Another possible future direction is to explore how high-level test cases map to code-level test

cases to check whether some code-level test cases are missing for verifying some important high-

level requirement.

114

APPENDIX -A

A-1: Code for Tests Path Generation Tool: Goal-Plan Paths

Algorithm Implementation for Test Path generation Using Test Model (Goal-Plan Graph)

findpathsbytype ()

def findpathsbytype(self,node,start,coveragetype = 'goal',noit = 0, path = ""):

 res = []

 #if self.checknodes(node) == 1:

 # return []

 if self.isleafnode(start):

 if (start['Visited'] == 0):

 start['Visited'] += 1

 path += ',' + start['number']

 return [path]

 else:

 if self.checknodes(node,path) == 1:

 return []

 elif self.checknodes(node,path) == 2:

 path += ',' + start['number']

 for x in path.split(','):

 node[x]['Visited'] = 2

 return [path]

 else:

 return []

 else:

 if path.count(start['number']) <= noit:

 if start['number'] == '1' and start['Visited'] == 0:

 path += start['number']

 start['Visited'] = 1

 else:

 path += ',' + start['number']

 start['Visited'] += 1

 for child in start['andedgh']:

 res += self.findpathsbytype(node,node[child],coveragetype,noit,path)

 for child in start['loopedgh']:

 res += self.findpathsbytype(node,node[child],coveragetype,noit,path)

 if len(start['oredgh']) != 0 :

 if self.checkCommonNodes(start,node) == 1:

115

 child = random.choice(start['oredgh'])

 res += self.findpathsbytype(node,node[child],coveragetype,noit,path)

 else:

 for child in start['oredgh']:

 res += self.findpathsbytype(node,node[child],coveragetype,noit,path)

 return res

findpathsbymetadata ()

def findpathbymatadata(self,nodes,matadata,data,dataini):

 retc = 0

 paths = self.findall(nodes,nodes['1'])

 paths.sort(lambda x,y: cmp(len(y), len(x)))

 goalnodes = []

 for x in nodes:

 if (nodes[x]['metadata'].count(dataini)) == 1:

 goalnodes += [x]

 goalnodes_forprint = goalnodes

 goalnodes = set(goalnodes)

 result = []

 for x in paths:

 if len(goalnodes&set(x)) > 0:

 result.append(x)

 cnt = 1

 skip = 0

 for x in result:

 msg = ''

 pthis = 0

 temp = x.split(',')

 for y in range(len(temp)):

 if temp[y] in goalnodes_forprint:

 z = ((nodes[temp[y]]['metadata'].Split(',')))

 for o in z:

 if o.ToString().count(dataini) >= 1:

 if o.count('[') >= 1:

 z = o.replace('[','')

 elif o.count(']') >= 1:

 z = o.replace(']','')

 else:

 z = o

 if matadata[data].Contains(z):

116

 matadata[data].remove(z)

 pthis = 1

 break

 temp[y] = temp[y]+'('+z+')'

 if pthis == 1:

 self.txtb_output.Text += str(cnt)+':> '

 for y in range(len(temp)-1):

 self.txtb_output.Text += temp[y]+','

 self.txtb_output.Text += temp[-1] + '\n'

 cnt += 1

 pthis = 0

 if 0 == len(matadata[data]):

 break

findall ()

def findall(self,node,start,noit = 0, path = ""):

 res = []

 if len(start['andedgh']) == 0 and len(start['oredgh']) == 0:

 if (start['Visited'] == 0):

 #start['Visited'] = 1

 path += ',' + start['number']

 return [path]

 else:

 return []

 else:

 if path.count(start['number']) <= noit:

 if start['number'] == '1' and start['Visited'] == 0:

 path += start['number']

 start['Visited'] = 1

 else:

 path += ',' + start['number']

 for child in start['andedgh']:

 res += self.findall(node,node[child],noit,path)

 for child in start['loopedgh']:

 res += self.findall(node,node[child],noit,path)

 if len(start['oredgh']) != 0 :

 for child in start['oredgh']:

 res += self.findall(node,node[child],noit,path)

 #child = random.choice(start['oredgh'])

 #res += self.findall(node,node[child],noit,path)

117

 return res

findloop ()

def findloop(self,node,start,noit = 0, path = ""):

 res = []

 if len(start['andedgh']) == 0 and len(start['oredgh']) == 0:

 if (len(start['loopedgh']) == 1):

 #start['Visited'] = 1

 path1 = path + ',' + start['number']

 for child in start['loopedgh']:

 res += self.findloop(node,node[child],noit,path1)

 return [path1] + res

 else:

 path += ',' + start['number']

 return [path]

 else:

 if path.count(start['number']) <= noit:

 if start['number'] == '1' and start['Visited'] == 0:

 path += start['number']

 start['Visited'] = 1

 else:

 path += ',' + start['number']

 for child in start['andedgh']:

 res += self.findloop(node,node[child],noit,path)

 for child in start['loopedgh']:

 res += self.findloop(node,node[child],noit,path)

 if len(start['oredgh']) != 0 :

 for child in start['oredgh']:

 res += self.findloop(node,node[child],noit,path)

 #child = random.choice(start['oredgh'])

 #res += self.findloop(node,node[child],noit,path)

 return res

118

APPENDIX-B

Test Cases Execution Log

Sample Interaction Testing Log:

1--> createAccount(Peter, YEN, 15) |

Result:

User to BankAccount agent --> Percept (account open)

BankAccount agent to User --> Action (account created)

Created account 1 for Peter in YEN with opening balance 15.0

2--> createAccount (shafiq, AUD, 100)| credit (shafiq, AUD, 40)

Result:

User to BankAccount agent --> Percept (account open)

BankAccount agent to User --> Action (account created)

Created account 2 for Shafiq in AUD with opening balance 100.0

accountowner to BankAccount agent --> Percept (Credit account request)

 BankAccount agent to account owner --> Action (amount credited)

 BankAccount agent to accountowner --> action (Account info)

Credited account 2 with AUD40.0. Balance: 140.0

3--> createAccount(ali, USD, 40)| credit(ali, USD, 15)| debit(ali, USD, 15) |

Result:

User to BankAccount agent --> Percept (account open)

BankAccount agent to User --> Action (account created)

Created account 3 for ali in USD with opening balance 40.0

accountowner to BankAccount agent --> Percept (Credit account request)

 BankAccount agent to account owner --> Action (amount credited)

 BankAccount agent to accountowner --> action (Account info)

119

 Credited account 3 with USD15.0. Balance: 55.0

accountowner to BankAccount agent --> Percept (Debit account request)

 BankAccount agent to account owner --> Action (amount debited)

 BankAccount agent to accountowner --> action (Account info)

 Debited account 3 with USD40.0. Balance: 15.0

4--> createAccount (ali, YEN, 50) | credit (ali, AUD, 40) | debit (ali, AUD, 40) |

Result:

User to BankAccount agent --> Percept (account open)

BankAccount agent to User --> Action (account created)

Created account 5 for ali in YEN with opening balance 50.0

accountowner to BankAccount agent --> Percept (Credit account request)

 BankAccount agent to Communicator agent --> Message (TransportRequest)

 Communicator agent to CurrencyExchange agent --> Message (ExchangeRequest)

 user to CurrencyExchange agent --> Percept (exchange rates)

 Communicator agent to CurrencyExchange agent --> Message (ExchangeRequest reply)

 CONVERTED 40.0

BankAccount agent to account owner --> Action (amount credited)

 BankAccount agent to accountowner --> action (Account info)

 Credited account 3 with YEN1000.0. Balance: 1050.0

accountowner to BankAccount agent --> Percept (Debit account request)

BankAccount agent to Communicator agent --> Message (TransportRequest)

 Communicator agent to CurrencyExchange agent --> Message (ExchangeRequest)

 user to CurrencyExchange agent --> Percept (exchange rates)

 Communicator agent to CurrencyExchange agent --> Message (ExchangeRequest reply)

 CONVERTED 40.0

BankAccount agent to account owner --> Action (amount debited)

120

 BankAccount agent to accountowner --> action (Account info)

 Debited account 3 with YEN1000.0. Balance: 50.0

Sample Goal-Plan Coverage Log:

1--> createAccount (ali,GBD,40) | credit(ali,GBD,500)| debit (ali,GBD,15) |

Result:

obtain information(goal)

 obtain informationP(Plan)

 Create Account(goal)

 Test CreateAccountPlan

Create AccountP(Plan)

 Account InfoPlan(Plan)

 Created account 1 for ali in GBD with opening balance 40.0

Account Operations(goal)

 Account OperationsP(Plan)

 Credit Account(goal)

 Credit AccountP(Plan)

 CreditAccount (goal)

 CreditAccountPlan (Plan)

 CreditAccountExchange (goal)

 CreditAccountExchangePlan (Plan)

 Credited account 1 with GBD500.0. Balance: 540.0

Account Operations(goal)

 Account OperationsP(Plan)

 Debit Account(goal)

 Debit AccountP(Plan)

 Debit Account(goal)

121

 Debit AccountPlan(Plan)

 DeditAccountExchange (goal)

 DebitAccountExchangePlan (Plan)

 Debited account 1 with GBD15.0. Balance: 525.0

2--> createAccount (peter,YEN,40) |

Result:

obtain information(goal)

 obtain informationP(Plan)

 Create Account(goal)

 Test CreateAccountPlan

 Create AccountP(Plan)

 Account InfoPlan(Plan)

 Created account 2 for Peter in YEN with opening balance 40.0

3--> createAccount (Shafiq,YEN,15) | credit (Shafiq,YEN,100) |

Result:

obtain information(goal)

 obtain informationP(Plan)

 Create Account(goal)

 Test CreateAccountPlan

 Create AccountP(Plan)

 Account InfoPlan(Plan)

 Created account 3 for Shafiq in YEN with opening balance 15.0

Account Operations(goal)

 Account OperationsP(Plan)

 Credit Account(goal)

 Credit AccountP(Plan)

122

 CreditAccount (goal)

 CreditAccountPlan (Plan)

 CreditAccountExchange (goal)

 CreditAccountExchangePlan (Plan)

 Event ExchangeRequest

 CurrencyExchange (goal)

 SendAndWait(Plan)

 SetExchangeRates (Goal)

 SetExchangeRates (Plan)

 PerformExchange (Goal)

 PerformExchange (Plan)

 ComputeRate (goal)

TwoStepRatePlan (Plan)

 CONVERTED 100.0

Credited account 4 with YEN 500.0. Balance: 515.0

123

REFERENCES

Abushark Y., Thangarajah J., Miller T., Harland J., Winikoff M., 2015, “Early Detection of

Design Faults Relative to Requirement Specifications in Agent-Based Models”, Proceedings of

the 14th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2015), Bordini, Elkind, Weiss, Yolum (eds.), May 4–8, Istanbul, Turkey.

Abushark Y., Thangarajah J., Miller T., Harland J., 2014, “Checking Consistency of Agent

Designs Against Interaction Protocols for Early-Phase Defect Location”, Proceedings of the

13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2014), Paris, France.

Alonso F., Fuertes J., Martínez L. and Soza H., 2009, “Towards a set of Measures for

Evaluating Software Agent Autonomy”. Eighth Mexican International Conference on Artificial

Intelligence, 978-0-7695-3933-1/09, DOI 10.1109/MICAI.2009.15.

Busetta, P., R¨onnquist, R., Hodgson, A. & Lucas, A. (1998), JACK Intelligent Agents -

components for intelligent agents in Java, Technical report, Agent Oriented Software Pty. Ltd,

Melbourne, Australia.

Bashir M. B., Nadeem A., 2009, "Fitness Function Design for Evolutionary Testing of Object-

Oriented Programs: A Survey", International Conference on Software, Knowledge and

Information Management and Applications (SKIMA 2009), Fes, Morocco. October 21-23.

Bordini R. H., Wooldridge M., and Hubner J. F., 2007, “ Programming Multi-Agent Systems in

AgentSpeak Using Jason (Wiley Series in Agent Technology)”. John Wiley & Sons, New York,

NY, USA, 2007.

Bratman, M.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge,

MA, 1987.

Brazier M. T., Dunin-Keplicz B. M., Jennings N. R., and Treur J., 1997, “DESIRE: Modelling

multi-agent systems in a compositional formal framework”, International Journal of

Cooperative Information Systems, 1(6):67–94.

124

Bresciani P, Giorgini P, Giunchiglia F, Mylopoulos J, and Perini A., 2002, “Troops: An agent-

oriented software development methodology”, Technical Report DIT-02-0015, University of

Trento, Department of Information and Communication Technology.

Caire G., Leal F., Chainho P., Evans R, Garijo F, Gomez J, Pavon J, Kearney P, Stark J, and

Massonet P., 2001, “Agent oriented analysis using MESSAGE/UML”. In Michael Wooldridge,

Paolo Ciancarini, and Gerhard Weiss, editors, Second International Workshop on Agent-

Oriented Software Engineering (AOSE-2001), pages 101-108.

Chen T. Y., 2015. Metamorphic testing: a simple method for alleviating the test oracle

problem. In Proceedings of the 10th International Workshop on Automation of Software Test

(AST '15). IEEE Press, Piscataway, NJ, USA, 53-54.

Cheon, Y., Kim, M., 2006, "A specification-based fitness function for evolutionary testing of

object-oriented programs", Proceedings of the 8th annual conference on Genetic and

evolutionary computation, Washington, USA.

Duff S., Thangarajah J., and Harland J., 2014, “Maintenance goals in intelligent agents”,

Computational Intelligence, 30(1), 71–114, (2014).

D’Inverno M., Kinny D., Luck M., and Wooldridge M., 1998, “A Formal Specification of

dMARS”. In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents IV Agent

Theories, Architectures, and Languages, volume 1365 of Lecture Notes in Computer Science,

pages 155–176. Springer Berlin / Heidelberg.

Dam K. H., 2003, “Evaluating and Comparing Agent-Oriented Software Engineering

Methodologies”, Master of Applied Science in Information Technology thesis, School of

Computer Science and Information Technology, RMIT University, Australia.

Dam K. H., 2008, “Supporting Software Evolution in Agent Systems”, PhD Thesis, School of

Computer Science and Information Technology, Science, Engineering, and Technology

Portfolio, RMIT University, Melbourne, Victoria, Australia.

Dam K. H., Winikoff M., 2003, “Comparing Agent-Oriented Methodologies”, Fifth

International Bi-Conference Workshop on Agent-Oriented Information Systems, Melbourne,

July (AAMAS03).

125

DeLoach S. A., 1999, “Multiagent systems engineering: A methodology and language for

designing agent systems”. In Agent-Oriented Information Systems '99 (AOIS'99), Seattle WA.

DeLoach S. A., Wood M. F., and Sparkman C. H., 2001, “Multiagent systems engineering.”

International Journal of Software Engineering and Knowledge Engineering, 11(3):231-258.

Glaser N., 1996, “Contribution to knowledge modelling in a multi-agent framework (the

CoMoMAS approach)”, PhD Thesis, L'Universite Henri Poincare.

Harland J., Morley D. N., Thangarajah J., Yorke-Smith N., 2014, “An operational semantics for

the goal life-cycle in BDI agents”, Autonomous Agent Multi-Agent System, 28:682–719, DOI

10.1007/s10458-013-9238-9.

Huber M. J., 1999, “JAM: A BDI-theoretic Mobile Agent Architecture”. In Agents’99:

Proceedings of The 3rd International Conference on Autonomous Agents, pages 236–243, New

York, NY, USA, ACM.

Huget M. P. and Odell J., 2004, “Representing agent interaction protocols with agent UML”. In

Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering

(AOSE).

IEEE, 1998, Standard for Software Test Documentation. IEEE STD 829, 1998. URL

http://standards.ieee.org/findstds/standard/829.html.

Iglesias C., Garijo M., Gonzales J.C., and Velasco J.R.., 1998, “Analysis and design of multi-

agent systems using MAS-CommonKADS”. In M.P. Singh, A. Rao, and M.J. Wooldridge,

editors, Intelli-gent Agents IV. Proceedings of the Fourth International Workshop on Agent

Theories, Architec-tures, and Languages (ATAL-97), Lecture Notes in Artificial Intelligence

Vol. 1365, pages 313-326.Springer-Verlag.

Ingrand F. F., Georgeff M. P., and Rao A. S, 1992, “An Architecture for Real-Time Reasoning

and System Control”. IEEE Expert: Intelligent Systems and Their Applications, 7(6):34–44.

Jack intelligent agents, http://aosgrp.com/products/jack/ accessed on July 2014.

http://aosgrp.com/products/jack/

126

Jan T, 2004, “Model-Based Testing: Property Checking for Real”. Keynote Address at the

International Workshop for Construction and Analysis of Safe Secure and Interoperable Smart

Devices. http://www-sop.inria.fr/everest/events/cassis04.

Joe M. L., 1983, “A Theory of Error-based Testing”. Ph.D. thesis, University of Maryland at

College Park, College Park, MD, USA.

Joe M. L., 1990, “A Theory of Fault-Based Testing”. In: IEEE Transactions on Software

Engineering, volume 16(8):pp. 844– 857, 1990. ISSN 0098-5589. doi:

http://dx.doi.org/10.1109/32. 57623.

Juneidi S.J., and Vouros G.A., 2010, “Survey and Evaluation of Agent-Oriented Software

Engineering Main Approaches”, International Journal of Modeling and Simulation – 2010,

10.2316/Journal.205.2010.1.205-4306.

Low C. K., Chen T. Y., Ronnquist R., 1999, “Automated test case generation for BDI agents”.

Autonomous Agents and Multi-Agent Systems, 2(4), pp. 311-332.

Mathieson I., Dance, S., Padgham, L., Gorman, M., Winikoff, M., 2004, “An open

meteorological alerting system: issues and solutions”. In Estivill-Castro, V., ed.: Proceedings of

the 27th Australasian Computer Science Conference. Volume 26 of Conferences in Research

and Practice in Information Technology, The University of Otago, Dunedin, New Zealand.

Miller T, Padgham L., Thangarajah J, 2010,: “Test Coverage Criteria for Agent Interaction

Testing”, Agent-Oriented Software Engineering (AOSE) Workshop at AAMAS.

Munroe S., Miller T., Belecheanu R. A., Pechoucek M., McBurney P., and Luck M., 2006,

“Crossing the agent technology chasm: Lessons, experiences and challenges in commercial

applications of agents”, The Knowledge Engineering Review, Volume 21 Issue 4, Pages 345-

392, Cambridge University Press New York, NY, USA.

Myers G. J., Sandler C., Badgett T., and Thomas T. M., 2004, The Art of Software Testing,

Second Edition. Wiley.

http://www-sop.inria.fr/everest/events/cassis04

127

Nguyen C. D., Miles S., Perini A., Tonella P., Harman M., and Luck M., 2012 “Evolutionary

Testing of Autonomous Software Agents”. Autonomous Agents and Multi-Agent

Systems, Volume 25, Issue 2, pp 260-283.

Nguyen C. D., Perinirini A., Tonella P., 2007, “Automated continuous testing of multi-agent

systems”, In Proceedings of the Fifth European Workshop on Multi-Agent Systems (EUMAS).

Nguyen C., Perini A., Tonella P., 2008, “eCAT: A tool for automating test case generation and

execution in testing multi-agent systems”. In: Proceedings of AAMAS, Estoril, Portugal, pp.

1669–1670.

Nguyen D., Perini A., and Tonella P., 2008, “A Goal-Oriented Software Testing Methodology”,

Springer Berlin / Heidelberg 10.1007/978-3- 540-79488-2_5,

Nunez M., Rodriguez I., Rubio F., 2005, “Specification and testing of autonomous agents in e-

commerce systems”. Software Testing, Verification and Reliability. Wiley Inter Science,

DOI:10.1002/stvr.323.

Odell J., Parunak H. V. D., Bauer B.,2000, “Extending UML for Agents" , Proc. of the Agent-

Oriented Information Systems Workshop at the 17th National conference on Artificial

Intelligence, Gerd Wagner, Yves Lesperance, and Eric Yu eds., Austin, TX, pp. 3-17accepted

paper, AOIS Worshop at AAAI.

Omicini, 2001, “SODA : Societies and infrastructures in the analysis and design of agent-based

systems”, In P. Ciancarini and M.J. Wooldridge, editors, Agent-oriented software engineering.

Proceedings of the First International Workshop (AOSE-2000), Lecture Notes in Artificial

Intelligence, Vol.1957, pages 185-194.Springer-Verlag.

Object Management Group, UML 2.0 superstructure specification. Object Management

Group, available from www.omg.org, document ptc/03-08-02., 2003.

Padgham L., Zhang Z., Thangarajah J. and Miller T., 2013, “Model-based test oracle generation

for automated unit testing of agent systems”. IEEE Transactions on Software Engineering,

39(9):1230–1244.

Padgham L. and Winikoff M., 2004, “Developing Intelligent Agent Systems: A Practical

Guide”. John Wiley and Sons, New York, NY, USA.

http://link.springer.com/journal/10458/25/2/page/1

128

Padgham L., and Winikoff M., 2003, “Prometheus: A Methodology for Developing Intelligent

Agents”, Agent-Oriented Software Engineering III, Lecture Notes in Computer

Science Volume 2585, pp 174-185.

Padgham L., Thangarajah J. and Winikoff M., 2006, “The Prometheus design tool - a

conference management system case study”. Proceedings of the 8th international conference on

Agent-oriented software engineering VIII, Pages 197-211.

Padgham L., Thangarajah J., and Winikoff M., 2014, “Prometheus Research Directions”,

chapter 8, O. Shehory and A. Sturm (eds.), Agent-Oriented Software Engineering, DOI

10.1007/978-3-642-54432-3__8, Springer-Verlag Berlin Heidelberg.

Paul A. Offutt J., 2008, “Introduction to Software Testing”. Cambridge University Press, New

York, NY, USA, 2008. ISBN 9780521880381.

Pokahr A., Braubach L., and Lamersdorf W., 2003, “JADEX: Implementing A BDI-

Infrastructure for JADE Agents. EXP – In Search of Innovation”, 3(3):76–85, 2003.

Rao A. S. and Georgeff M. P., 1995, “BDI Agents: From Theory to Practice”. In ICMAS-95:

Proceedings of The 1st International Conference of Multi-Agent Systems, pages 312–319,

Menlo Park, CA, USA, 1995. AAAI Press.

Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In: J. Allen, R.

Fikes, E. Sandewall (eds.) Principles of Knowledge Representation and Reasoning, Proceedings

of the Second International Conference, pp. 473–484. Morgan Kaufmann (1991)

Rao, A.S., 1996, : AgentSpeak(L): BDI agents speak out in a logical computable language. In:

Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS (LNAI), vol. 1038, pp. 42–55.

Springer, Heidelberg.

Rehman S U., Nadeem A., 2011, “AgentSpeak (L) bases testing of autonomous agents”, The

2011 International Conference on Advanced Software Engineering & Its Applications (ASEA

2011), Jeju Island, Korea, Science and Engineering Research Support Society, pp. 11–20, ©

Springer-Verlag Berlin Heidelberg.

129

Rehman S. U., Nadeem A., 2013, “Testing of Autonomous Agents: A Critical Analysis”, Saudi

International Electronics, Communications and Photonics Conference (SIECPC-13).

DOI: 10.1109/ SIECPC.2013.6550990, Page(s): 1 – 5

Riemsdijk M. B. van and Yorke-Smith N.,2010, ‘Towards reasoning with partial goal

satisfaction in intelligent agents’, in Proc. of ProMAS’10, pp. 41–59.

RMIT, agent research Group, Australia http://www.cs.rmit.edu.au/agents/pdt/tutorial

/Tutorial.html accessed on July 2014.

Software Testing. http://standards.ieee.org/findstds/standard/29119-1-2013.html. Accessed on

July 2014.

Spillner, 1995, “Test criteria and coverage measures for software integration testing”. Software

Quality Journal 4(4), 275–286.

Shaw P. and Bordini R. H., 2011, “An Alternative Approach for Reasoning about the Goal-

Plan Tree Problem”, Languages, Methodologies, and Development Tools for Multi-Agent

Systems Volume 6822 of the series Lecture Notes in Computer Science pp 115-135.

Shaw P., Farwer B., and Bordini R. H., 2008, “Theoretical and experimental results on the goal-

plan tree problem”, In Proc. 7th Int. Conf. on Autonomous Agents and Multi-agent Systems.

Taipale o, Smolander k, and Kalviainen H, 2005, “Finding and Ranking Research Directions

for Software Testing”, In I. Richardson, P. Abrahamsson, and R. Messnarz, editors, Software

Process Improvement, volume 3792 of Lecture Notes in Computer Science, pages 39–48.

Springer Berlin / Heidelberg.

Tian J, “Quality Assurance Alternatives and Techniques: A Defect Based Survey and

Analysis,” Software Quality Professional, vol. 3, no. 3, pp. 6-18, 2001.

Thangarajah J., Sardina S., Padgham L., 2012, “Measuring Plan Coverage and Overlap for

Agent Reasoning”, Proceedings of the 11th International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek

(eds.), June, 4–8, Valencia, Spain.

http://www.cs.rmit.edu.au/agents/pdt/tutorial%20/Tutorial.html
http://www.cs.rmit.edu.au/agents/pdt/tutorial%20/Tutorial.html
http://standards.ieee.org/findstds/standard/29119-1-2013.html
http://link.springer.com/book/10.1007/978-3-642-22723-3
http://link.springer.com/book/10.1007/978-3-642-22723-3
http://link.springer.com/bookseries/558

130

Thangarajah J. and Padgham L., 2011, “Computationally Effective Reasoning About Goal

Interactions”, Journal of Automated Reasoning (2011) 47:17–56, DOI 10.1007/s10817-010-

9175-0.

Thangarajah J., Jayatilleke G., and Padgham L., 2011, “Scenarios for system requirements

traceability and testing”. In The 10th International Conference on Autonomous Agents and

Multiagent Systems-Volume 1, pages 285–292. International Foundation for Autonomous

Agents and Multiagent Systems.

Thangarajah J., Harland J., Morley D. N., and Yorke-Smith N., 2014, “Quantifying the

Completeness of Goals in BDI Agent Systems”, ECAI , T. Schaub et al. (Eds.).

Thangarajah J., Harland J., Morley D. N. and Yorke-Smith N., 2014,“Towards quantifying the

completeness of BDI goals”. In Proceedings of the 2014 international conference on

Autonomous agents and multi-agent systems (AAMAS '14). International Foundation for

Autonomous Agents and Multiagent Systems, Richland, SC, 1369-1370.

Thangarajah J., Padgham L., and Winikoff M., 2003 ‘Detecting and avoiding interference

between goals in intelligent agents’, in Proc. of IJCAI’03, pp. 721–726.

Thangarajah J., Harland J., and Yorke-Smith N., 2007, ‘A soft COP model for goal deliberation

in a BDI agent’, in Proc. of CP’07 Workshop on Constraint Modeling and Reformulation

(ModRef’07), pp. 61–75.

Thangarajah J., Harland J., Morley D. N. and Yorke-Smith N.,2014, “ Quantifying the

Completeness of Goals in BDI Agent Systems”, ECAI , T. Schaub et al. (Eds.)

Thangarajah J., Padgham L., and Winikoff M., 2005, “Prometheus Design Tool”, Proceedings

of the 4th International Conference on Autonomous Agents and Multi Agent

Systems (AAMAS'05), July 2529, 2005, Utrecht, Netherlands.

Utting M., Legeard B. 2006, “Practical Model-Based Testing: A Tools Approach”. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2006. ISBN 0123725011.

Utting M., Legeard B., 2007, “Practical Model-Based Testing: A Tools Approach”. Morgan-

Kaufmann, San Francisco.

131

Wegener J., Baresel A., Sthamer H.,2001, “Evolutionary test Environment for automatic

structural testing” , Information and software technology, PP 841-854.

Winikoff M, Cranefield S., 2010, “On the testability of BDI agents”, European Workshop on

Multi-Agent Systems .

Winikoff M., 2005, “JACK Intelligent Agents: An Industrial Strength Platform”. In G. Weiss,

R. Bordini, M. Dastani, J. Dix, and A. Fallah Seghrouchni, editors, Multi-Agent Programming,

volume 15, pages 175–193. Springer US.

Winikoff M., 2005, “Towards making agent UML practical: a textual notation and a tool”, Fifth

International Conference on Quality Software, (QSIC 2005). 10.1109/QSIC.2005.69, PP 401 –

406.

Wooldridge M, 2002, An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester,

UK. ISBN 0 47149691X, http://www.csc.liv.ac.uk/mjw/pubs/imas/.

Wooldridge M., Jennings N.R., and Kinny D., 2000, “The Gaia methodology for agent-oriented

analysis and design”. Autonomous Agents and Multi-Agent Systems, 3(3).

Zhang Z., Thangarajah J., and Padgham L., 2009, “Model Based Testing for Agent Systems”.

In J. Filipe, B. Shishkov, M. Helfert, and L. A. Maciaszek, editors, Software and Data

Technologies, Communications in Computer and Information Science, volume 22, pages 399–

413. Springer Berlin Heidelberg,.

Zhang Z., Thangarajah J., and Padgham L., 2011, “Automated testing for intelligent agent

systems”. In Marie-Pierre Gleizes and Jorge Gomez-Sanz, editors, Agent-Oriented Software

Engineering X, volume 6038 of Lecture Notes in Computer Science, pages 66–79. Springer

Berlin / Heidelberg.

Zhang Z., Thangarajah J., Padgham L., 2007, “Automated Unit Testing For Agent Systems”,

Proceedings of the 7th international joint conference on Autonomous agents and multi-agent

systems.

Zheng M., Alagart V. S., 2005, “Conformance Testing of BDI Properties in Agent-based

Software System”, APSEC '05 Proceedings of the 12th Asia-Pacific Software

Engineering Conference, 0-7695-2465-6/05.

132

Zhou Y., Torre L. van der, and Zhang Y., 2008, ‘Partial goal satisfaction and goal change:

Weak and strong partial implication, logical properties, complexity’, in Proc. of AAMAS’08,

pp. 413–420.

