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Abstract

Malware is a growing threat to computer systems and networks around the world.

Ever since the malware construction kits and metamorphic virus generators be-

came easily available, creating and spreading obfuscated malware has become a

simple matter. The cyber-security vendors receive thousands of new malware

samples everyday for analysis. It has become a challenging task for the malware

analysts to identify if a given malware sample is a variant of a known malware

or belongs to a new breed altogether. Since making an accurate decision about

the nature of an unknown malware sample is crucial for updating of signature

databases and propagation of the update to their customers, therefore vendors of

cyber-security products need accurate malware classification techniques for this

purpose.

The research community has been active for providing a solution to the above

problem, and a number of diverse avenues have been explored such as machine

learning, graph theory, finite state machines, etc. Furthermore, many syntactic

and semantic aspects of computer programs have been tried out in search of the

best aspect that could be used to distinguish between harmful and harmless com-

puter programs, and to differentiate malware belonging to different families. All

the proposed approaches have merits and demerits of their own, and the search for

a solution that maximizes the classification accuracy with minimal computational

costs is continued.

This dissertation formulates malware classification as a sequence classification

problem, and evaluates a widely used sequence classification tool, Hidden Markov

Model (HMM), for the task of malware classification. HMM has been a method of

choice for a broad range of sequential pattern matching applications such as speech

analysis, behavior modeling and handwriting recognition to name a few. The dis-

sertation first proposes and evaluates novel methods of malware classification by

combining HMM and malware behavioral features, which are attributes frequently

used to distinguish between normal and malicious programs and to differentiate

x



among malware families. As an another major contribution, the dissertation fills

a significant research gap by studying the role of an important HMM parame-

ter, the number of hidden states, in malware classification applications. Based on

observations from comprehensive experiments conducted on a large and diverse

dataset consisting of malware behavioral reports, the dissertation concludes that

although HMM shows encouraging results when used for malware classification

tasks, its potential from a practical standpoint is fairly limited. The disserta-

tion makes the third contribution by proposing to replace the HMM component of

malware classification method with Markov Chain Model (MCM), and performing

comparative evaluation between the two models. Results of the comparison prove

that classification performance achieved by HMM can be attained much more effi-

ciently by MCM, and therefore MCM should be preferred over HMM for malware

classification applications.

xi



Chapter 1

Introduction

The aim of this research is to enhance the current state-of-the-art in malware

classification using Hidden Markov Model (HMM) with malware behavioral fea-

tures, and evaluate the prospects of such a combination from effectiveness and ef-

ficiency perspectives. This dissertation elaborates various experiments performed

for achieving the goal of this research, that is, to propose and validate a novel

method of malware classification and to study it from different angles in order to

ascertain its feasibility for realistic application.

This chapter paints the background for the presented research by providing a

broad introduction to the field of malware analysis, detection and classification,

followed by a brief overview of literature. Based on observations made from the

literature, a problem statement is formulated and a statement of motivation for

the research follows. Contributions made by the presented research to scientific

knowledge are highlighted next. The chapter concludes with the methodology

adopted for conducting this research.

1.1 What is malware?

The term malware was introduced by Yisrael Radai in 19901. This term is a short-

ened combination of the words malicious and software, and is used to represent

software that is intended to cause harm to the computer systems2. A broader,

more generic definition is provided by Moser et al. who describe malware as the

software that “deliberately fulfills the harmful intent of an attacker” (Moser et al.,

2007). The latter definition captures all the aspects and dimensions of the harm

or damage that can be caused to not only the computer systems and networks,

but also to their users.

1http://www.pcworld.com/article/147698/tech.html
2http://technet.microsoft.com/en-us/library/dd632948.aspx
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As defined above, the most notable property that distinguishes malware from

other software is the intent of its developer; malware is developed to perform

tasks on a computer system against the will of, and without the knowledge of,

the system’s user. Malware is a representative term spanning the words like virus,

worm, spyware etc., which are classified according to the modus operandi of the

ill-intending software, and are discussed in detail shortly. The malicious software

enters a target system through various means, known as the attack vectors, which

will be discussed later.

The first ever malware may have been developed just as an individual act of mis-

chief3 or to prove technical superiority over a competitor (Egele et al., 2012), but

the criminal mind did not take long to anticipate its potential benefits. As the

use of computers quickly grew in all kinds of fields serving a variety of purposes,

malware writers explored ways of illegally accessing and manipulating the com-

puter systems with bad intentions. Gains behind such activities could be financial

(stealing money through counterfeit bank transactions), commercial (accessing

competitors’ business data to gain insight into their policies) or strategic (destroy-

ing a country’s nuclear setup through sending destructive commands to the control

system (Langner, 2011)), to name just a few. The Symantec 2016 Internet Security

Threat Report4 quotes BofA Merrill Lynch Global Research for the annual global

losses caused by malware to be up to $575 billion. The same report estimates the

number of new malware variants created in 2015 to be approximately 430 million,

showing a 36 percent increase over the 2014 figures. This amounts to an average

of more than one million malware samples per day. Malware has become a very

serious problem indeed.

A continuous battle, therefore, has been going on between the malware developers

who are constantly trying to attack the computer systems and networks for their ill

purposes, and the computer security community who are striving to provide the

users of computer systems with the ultimate security solution through research

3http://download.bitdefender.com/resources/files/Main/file/Malware_History.pdf
4www.symantec.com/security-center/threat-report

2
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and development. A review of the techniques and methods addressed at solving

the malware problem is given in Chapter 2.

1.2 Types of malware

A look at the literature related to the malware problem reveals the use of various

terms like virus, worm, Trojan horse etc., by the research community. Although

collectively represented by the word malware, these terms are used to represent

software with different characteristics. A short description of the most common

terms and their distinguishing features is give below.

1.2.1 Virus

A virus is a software that mimics the spreading mechanism of its biological coun-

terpart to replicate itself. The initial infection attaches a copy of the virus to an

executable application, called the host application. Whenever the host application

is executed, the virus also gets executed. Upon execution, the virus creates a copy

of itself and attaches it to another application, thus spreading the infection. The

virus may perform other tasks in addition to the replication, such as destroying

files on the infected system. The infection spreads to other computers through

shared media such as network links or USB devices etc.

1.2.2 Worm

The worm spreads like a virus by making clones of itself, but does not need a

host application for execution. It executes independently and replicates not only

inside the infected system but also sends its copies to other computers through

the network.

1.2.3 Trojan horse

Named after the famous wartime technique used by the Greeks to invade the

city of Troy, this type of malware works by cloaking itself as a legitimate, useful

application. Once the user installs a Trojan on the system, the malware may

destroy system files, replicate itself or harm the system in any other way.

3



1.2.4 Rootkit

Rootkits achieve their malicious objectives by elevating their privilege levels within

the system. This higher level makes them invisible to most security procedures

and allows them to perform the harmful tasks without getting noticed. Using the

elevated privileges, Rootkits can hide system resources from the Operating System

itself. Rootkits are typically not self-replicating.

1.2.5 Spyware

As the name suggests, spyware performs spying on the attacked system by re-

trieving sensitive and private data from the system, and sending it to the spyware

controller through the network. The nature of data collected from the system

depends on the objectives of the spyware; username-password combinations for

websites may be sought for accessing online bank accounts, web browsing history

may be collected for commercial uses, and private data or emails may be retrieved

for any malevolent purposes.

1.2.6 Adware

This kind of malware displays unwanted and unsolicited advertisements to the

users. The advertisements are shown in a new browser window or a pop-up window

which could be difficult to close. While these malware disturb and irritate the

users, they also serve another purpose - market and promote products.

1.2.7 Bot

A Bot, also known as Internet Bot or Web Bot, is software that works in a fashion

similar to the spyware in that it connects to a remote master over the network. The

function of a Bot is not only spying, but also controlling the target system under

the command of the master. A single master can connect to and control a large

number of Bots spread on the network, forming a Botnet, to perform malicious

activity on large scale.

4



1.3 Malware attack vectors

Attack vectors are the methods using which an attacker gains access to, and im-

plants a malware into, the target system. Egele et al. (2012) have identified three

main categories of attack vectors described below.

1.3.1 Use of vulnerabilities

Vulnerabilities are flaws or bugs in software that allow an attacker to invade the

system. Software vendors keep on searching for vulnerabilities in their software

(system software as well as applications), and so do hackers. If the former find a

vulnerability first, then a patch is issued to fix the flaw. On the other hand if the

hackers discover the flaw before the others, then they use it as an attack vector to

dispatch their malware to the systems running the vulnerable software.

1.3.2 Drive-by downloads

Users may be tempted by spam emails to visit some specific websites which have a

mechanism to execute or download malicious code on the users’ system through a

loophole in the web browser. The user is not aware of the code being downloaded

or executed, and as a result the attacker is able to infect the system with their

malware.

1.3.3 Social engineering

Social engineering refers to the process of gaining someone’s confidence in order

to use them for malevolent activities. For example, an attacker may use a false

identity, such as that of a bank’s representative, to request a user to validate

his/her online accounts through an email. In a similar fashion, users may be

provoked to visit certain websites which contain harmful content.

1.4 Combating malware: Malware analysis

The initial techniques to counter the threat posed by malware were based on

simple strategies, such as looking for a specific code pattern in a suspicious file.

5



Another way to prevent malware from replicating itself on a system was to make

the malware believe that the system is already infected, by placing certain files

in the system which were typically created by the malware. With the passage

of time the malware became more advanced, and the above mentioned simple

methods were unable to cope with the challenge. Therefore, the computer security

community has been analyzing the malware deeply from various angles, in order

to provide countermeasures against the malware.

The primary objective of malware analysis is to identify a property, or a set of

properties, that distinguish the malware from normal, legitimate programs. Using

such properties, detection techniques can be developed for identifying potential

threats on a computer. Malware analysis has been performed using three ap-

proaches, namely static, dynamic and hybrid, which are described below.

1.4.1 Static analysis

Static analysis techniques try to identify features pertaining to program code that

can be employed to distinguish malware from normal programs. For example, a

simple static analysis technique may use plain code bytes as feature. The aim of

such a technique will be to find a representative pattern of code bytes specific to a

given malware. The pattern, referred to in literature as signature (Christodorescu

et al., 2005), is then searched for in a given file to determine if the file is malware or

benign. Different features that have been used for static analysis are given below.

• File Information: Information present in the file headers of a portable ex-

ecutable (PE) binary, such as a list of the library functions used by the

program, is investigated by Schultz et al. (2001).

• Code Bytes: Raw bytes read from the binary file have been used as features

by many researchers. Nataraj et al. (2011) have displayed the bytes as

pixels, while n-grams of bytes (Santos et al., 2009), and byte sequences

(Schultz et al., 2001) have also been exploited.

6



• opcodes: Short for operation codes, these are hexadecimal representation of

the operation being performed in an instruction. opcodes are not readily

accessible in a program binary, rather a tool like IDAPro5 is used to disas-

semble the binary in order to get the opcodes. Research activities have used

individual opcodes (Austin et al., 2013) as well as their sequences (Attaluri

et al., 2009) and sequence frequencies (Santos et al., 2013).

• Instructions: Machine instructions obtained from disassembled programs

have been used in terms of their sequences, frequencies (Ye et al., 2010)

and counts (Hu et al., 2009) for malware detection.

• Functions: Some researchers have highlighted the importance of functions as

representative features for malware detection. Programs can have functions

of their own or can call external library functions. Relationship between

calling and called functions has been used as a feature in malware detection

(Kinable and Kostakis, 2011; Agrawal et al., 2012). Another approach is to

use the length of functions in terms of number of bytes as feature (Islam

et al., 2013).

• Basic Blocks: A basic block is a section of code which does not have any

jumps or subroutine calls. In other words, instructions in a basic block are

always executed in a sequence. In a disassembled program, basic blocks can

be roughly described as code sections between two jumps or subroutine calls.

• Printable Strings: Programs generally have hard-coded ASCII strings in

their code. A typical use of such strings is to store messages for the user, etc.

Islam et al. (2013) and Schultz et al. (2001) have explored the possibility of

using strings found within the binaries for the purpose of malware detection.

• DLL Information: DLLs are dynamically linked libraries containing func-

tions to be used by application programs. Schultz et al. (2001) have used

the DLL related information present in headers of PE files as features. The

features included the DLLs accessed by the malware sample being analyzed,

5https://www.hex-rays.com/products/ida/
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the function calls made to DLLs, and the total number of functions exported

by the DLLs.

The major benefit of static analysis is its effectiveness in detecting known malware,

while the obvious drawback is its requirement for frequent signature updates, and

hence the inadequacy for detecting zero-day threats. Static analysis is particu-

larly vulnerable to code obfuscation techniques (Moser et al., 2007). To deceive

the malware detectors based on static features such as bytes or opcodes, the mal-

ware developers use techniques to change the code of the program binary without

changing its function. Another objective of code obfuscation is to make the task

of reverse engineering a program binary difficult.

One of the obfuscation techniques is code packing (You and Yim, 2010) which

refers to the process of compressing or encrypting the harmful code as data, and

attaching with it an unpacking or decrypting engine. When the program executes,

the unpacking engine decompresses the compressed malware code and executes it.

This kind of packing is detectable because although the encryption of the malware

code is made to look different by using different encryption keys, the decrypting

engine usually stays the same.

In order to counter the detection of common decryptor, it is mutated between

generations of the same malware. This polymorphic decrypting engine performs

the same action as before, but looks different because of techniques such as dead

code insertion, register renaming, subroutine re-ordering, instruction substitution,

etc. Such malware can be detected by analyzing its execution; after decrypting

the malicious code, the executing code can be traced in memory.

A more advanced obfuscation technique, termed as metamorphic transformation,

mutates the whole program instead of just the decrypting part, using code obfus-

cation methods of dead code insertion etc. This type of malware is most difficult

to detect because it looks different not only when encrypted, but also when it is

decrypted and is being executed. Detection of metamorphic malware is an active

area of research in cyber security domain (Agrawal et al., 2012; Wong and Stamp,
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2006). In summary, use of static analysis alone may not be enough to counter the

malware threat, as maintained by Moser et al. (Moser et al., 2007), who advocate

the need for dynamic analysis.

1.4.2 Dynamic analysis

The term dynamic analysis represents all those techniques which analyze a pro-

gram by executing it. Another term which commonly replaces the dynamic anal-

ysis is behavior analysis, truly representing the objective of this kind of analysis

which tries to capture the behavior of a program. In contrast with static analysis

approaches which use the syntactic representation of files, dynamic analysis fo-

cuses on semantics of a program. Another way of expressing the difference is that

the static analysis attempts to find what malware looks like, while the dynamic

analysis tries to discover what the malware does.

In order to create a behavioral profile or representation, the malware is executed in

a sandbox, which is an environment that allows controlled execution of programs

by limiting access to system resources. A virtual machine is an example of a

sandbox, in addition to many other tools specifically built for analysis of malware

behavior such as CWSandbox (Willems et al., 2007), ANUBIS6, etc.

Some common features explored by dynamic analysis methods are given below.

• Instructions: While machine instructions are also observed in static analysis,

their use in dynamic analysis is slightly different. Here the instruction traces

executed during a sample’s execution are recorded in order to use them as

features (Anderson et al., 2012; Rieck et al., 2011).

• System Calls: In order to perform a privileged, system level operation, an

application makes a request to the operating system through a system call.

System calls have been actively explored as an effective means of identifying

a program’s behavior. Different techniques have been proposed which use

6http://anubis.seclab.tuwien.ac.at
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system calls aimed at different categories of operations. Some examples are

given below.

– File operations (Chandramohan et al., 2012; Saxe et al., 2012; Huang

et al., 2014, 2011; Stopel et al., 2006)

– Registry operations (Chandramohan et al., 2012; Saxe et al., 2012;

Huang et al., 2010, 2011)

– Process operations (Chandramohan et al., 2012)

– Network operations (Bayer et al., 2009; Chandramohan et al., 2012;

Saxe et al., 2012; Huang et al., 2010, 2011; Stopel et al., 2006)

– Processor features (Stopel et al., 2006)

• API Calls: Application Programming Interface (API) is a mechanism which

offers a simple interface to applications developers for accessing system re-

sources. For example, the network API includes functions to open and close

sockets, and to send and receive data using opened sockets. Like system

calls, API calls made by a program can also be used to observe a program’s

behavior. Research efforts depending on API calls for analyzing malware

behavior include (Islam et al., 2013; Rieck et al., 2008; Trinius et al., 2009).

• Strings in Memory: Use of ASCII strings in static analysis is limited to

those strings that are found in program binaries. In case of compressed or

encrypted code, static analysis will not be able to reveal any such strings.

However, malware may reveal some strings during execution which can be

detected by inspecting program memory. This hypothesis has been tested in

analysis methods proposed in (Karampatziakis et al., 2013) and (Dahl et al.,

2013).

• Memory Writes: The partial and full results of calculations and computa-

tions, performed by a program during execution, also have the potential of

depicting a program’s behavior, as demonstrated in (Grégio et al., 2013).
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One obvious edge that dynamic analysis has over the static approach is that it

can handle the case of obfuscated malware, since the obfuscation only results

in code that looks different; the functioning of code does not change. For this

reason, dynamic analysis is believed to be able to capture the higher level program

behavior (Rieck et al., 2011), and therefore is much more effective for malware

detection and classification purposes.

Although the dynamic approach overcomes the limitations of static analysis, it

has its own share of shortcomings. A major issue is that each malware sample

must be executed long enough so that a substantial number of activities can be

recorded, enabling a reasonable representation of the sample’s behavior. But there

is a limit to how long each sample can be run because there may be thousands of

samples to be analyzed, and a short execution may not allow complete behavioral

capture. Even if a sample is executed under no such time constraints, there is

no guarantee that the malware will reveal its true behavior. The malware may

be dependent on some particular event for its malicious activity, or may become

active on a specific moment in time, or may halt its operation until commanded

from a remote system. In other words, the malware may not follow its complete

execution path, therefore rendering the analysis incomplete (Egele et al., 2012).

To make matters more complicated, the malware developers make the code sense

the execution environment; if the execution is being done within a virtual machine

or with an automated analysis tool, the malware may behave innocently (Egele

et al., 2012).

Yet another approach taken by malware developers for evading dynamic analysis

is to use stalling code (Kolbitsch et al., 2011). This strategy exploits the limitation

of time for which the malware sample is executed. The purpose of stalling code

is to delay the execution of malicious portion of the malware code long enough so

that the behavioral monitoring system is not able to record anything of significance

during the (typically) short analysis.
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1.4.3 Hybrid analysis

Keeping in view the insufficiency of static and dynamic analysis approaches, hybrid

techniques have been proposed which make use of both types of analyses. In hybrid

approach, first the static features are identified and then the malware is executed

for capturing its dynamic behavior. Hybrid techniques can be applied in different

ways. Static and dynamic feature vectors can be stored and analyzed separately,

and then the results may be aggregated (Anderson et al., 2012; Hu and Shin,

2013). Another approach is to combine the static and dynamic features into one

vector to perform a composite analysis (Islam et al., 2013).

1.5 Combating malware: Malware detection and classifi-

cation

Identification of important static or dynamic features pertaining to programs is

just the first step towards the solving the malware problem. In the next step, the

identified feature (or the set of features) is used in some process for separating

malware from benign programs. Such processes are generally considered to be

performing malware detection. With the number of new malware variants being

reported everyday reaching close to a million, the task of malware classification

has become a challenge for the anti-malware industry. An evidence of this fact

is the Microsoft malware classification challenge 20157, inviting the researchers to

brainstorm and suggest the best possible mechanism of classifying among malware

families.

A vast number of new malware are obfuscated variants of existing malware (Elhadi

et al., 2014), and show similar behavior traits despite having different code. Such

variants developed from the same base are said to belong to the same malware

family. The developers of anti-malware products, thus, need to identify families of

malware so that signatures can be efficiently generated on family basis. Another

important benefit of classifying malware is that trend of malware spread can be

anticipated and corresponding measures may be taken in advance.

7https://www.kaggle.com/c/malware-classification
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Research efforts have been made in various dimensions for performing malware

detection and classification. Although Chapter 2 discusses in detail these research

activities, a brief account of the reviewed literature is provided here to paint an

overall picture. Machine learning has been quite effectively employed for per-

forming malware classification. Researchers have used both the supervised and

unsupervised types of machine learning techniques in order to identify and clas-

sify malware. Among the supervised category, classification (Schultz et al., 2001;

Rieck et al., 2008; Santos et al., 2013; Islam et al., 2013; Karampatziakis et al.,

2013), Artificial Neural Networks (Stopel et al., 2006; Dahl et al., 2013), and Hid-

den Markov Models (Wong and Stamp, 2006; Austin et al., 2013; Annachhatre

et al., 2014) are dominant, whereas the unsupervised learning method of cluster-

ing (Bayer et al., 2009; Ye et al., 2010; Rieck et al., 2011; Hu and Shin, 2013) has

also been used with good results.

Some researchers have taken the graph theoretic approach to detect malware (Hu

et al., 2009; Agrawal et al., 2012; Park et al., 2013). Genetic Algorithms are an

efficient tool for optimization problems, and have been applied to the malware

classification domain as well (Mehdi et al., 2009; Kim and Moon, 2010).

The disciplines of information visualization and ontologies may seem to be unre-

lated to the problem of malware analysis and detection, yet the literature includes

research efforts being carried out in this regard. Visualization-based methods are

suggested by (Yoo, 2004; Trinius et al., 2009; Nataraj et al., 2011; Saxe et al.,

2012) while the use of ontologies is demonstrated in (Huang et al., 2011, 2014).

1.6 Observations from the literature

Critical observations from the literature survey can be summarized as:

1. Despite high accuracy figures being reported by the current state-of-the-art

in malware research, malware is spreading with a threatening pace and con-

sequently hundreds of thousands of new malware are reported everyday. It

13



poses research challenges to comprehensively investigate the issues in mal-

ware classification.

2. Literature suggests that malware classification techniques based on dynamic

analysis may perform better than those based on static approach for classifi-

cation of unknown malware (Bayer et al., 2010; Egele et al., 2012; Damodaran

et al., 2015). Furthermore, the schemes which use machine learning are gen-

erally more accurate on detecting and classifying unknown malware. Based

on these two observations, it seems likely that a malware classification scheme

based on a combination of machine learning and behavioral analysis ap-

proaches may be able to enhance the current state-of-the-art.

3. Since the behavior of a computer program can be expressed as a sequence

(of instructions, system calls, etc.), therefore malware classification can be

represented as a sequence classification problem. For classifying sequences,

an effective and widely used machine learning technique is Hidden Markov

Model (HMM) which has proven its capabilities in application areas such as

speech recognition, human behavior modeling, and protein sequencing etc.

4. While the above observations suggest that using HMM with sequential rep-

resentation of malware’s dynamic behavior could prove to be effective for

classification of malware, only a few research efforts have been reported in

the literature which make use of such a combination. Most of the previ-

ously proposed malware classification schemes based on HMM rely on static

malware features.

5. The previously proposed HMM based malware classification schemes are

generally evaluated on small datasets.

6. No analysis is performed on the role of hidden HMM states for malware

classification applications, which is a key parameter in HMM modeling.

7. Previously proposed malware detection and classification techniques based

on HMM only focus on accuracy, and the computational costs are usually

ignored.
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1.7 Problem statement

The observations from the literature noted above can be summarized in the form

of a problem statement as:

• To evaluate Hidden Markov Model for the task of malware classification using

malware’s behavioral features from effectiveness, analytical and efficiency

aspects.

The following research questions have been identified and addressed in this disser-

tation in order to accomplish the task described in the problem statement.

1. How can HMM be used to classify malware on the basis of their behavior?

2. What is the role of number of hidden states when using HMM for malware

classification?

3. How efficient is HMM based malware classification to be used in practical

situations?

The first research question is discussed in Chapter 3 of this dissertation which

proposes and evaluates an HMM-based sequence classification method for classi-

fication of malware. Chapter 3 performs a comparative analysis of the proposed

classification method with other methods including the state-of-the-art. Chapter

4 extends the evaluation by comparing the similarity-based classification method

with another sequence classification technique commonly used in the literature,

the feature-based classification. Chapter 5 provides details of experiments carried

out in an attempt to answer the second and third research questions.

1.8 Motivation

The motivations behind the proposed research are manifold. We first discuss the

motivating factors behind conducting research in malware analysis and classifica-

tion in general, and then elaborate our reasons for investigating Hidden Markov

Model within this domain.

15



1.8.1 Why malware analysis?

A security report issued by Symantec Corporation states the number of new mal-

ware threats found in 2015 to be around 430 million, at the alarming rate of more

than one million per day. This fact illustrates that the currently available solutions

are not able to stop the malware tsunami. That is why the research community

is striving to find an ultimate solution to the malware problem. This research is

an attempt to contribute in the search for the perfect anti-malware solution.

The worldwide cyber-security industry is reported to be worth 122 billion US

Dollars in 20158. These figures are expected to escalate even more due to the rise

in malware threats and the global losses caused by the malware. It can therefore

be inferred that there will be a worldwide demand of cyber-security professionals

and experts in the future. There is a need to promote the understanding of and

research on malware so that expertise is developed in order to meet the demand.

1.8.2 Why Hidden Markov Model?

Among the scientific disciplines explored for malware detection and classification

tasks, machine learning has been of particular interest among the researchers. The

reason for this focus on machine learning is that the majority of new malware is

variant of existing malware, and similarity in malware behaviors can be effectively

utilized to detect even previously unknown malware which is a key requirement

in today’s world where millions of new malware are reported every day. This is a

prime advantage of machine learning based methods over conventional methods of

malware detection and classification, which are only able to detect known malware.

As discussed earlier, previous research suggests that dynamic malware features

may be able to represent a malware’s behavior more accurately than static fea-

tures, and therefore can be used more effectively to differentiate among different

malware families. Some dynamic features, such as system calls or API calls gener-

ated by a malware while execution, represent the malware’s behavior in the form

of a sequence. This sequential nature of dynamic features motivates us to treat the

8http://www.marketsandmarkets.com/PressReleases/cyber-security.asp
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malware classification problem as a sequential classification problem. Classifica-

tion of sequences is a well-studied and well-researched problem in many sequential

pattern matching application areas such as speech processing, handwriting recog-

nition and behavior modeling, etc., and a variety of solutions based on machine

learning have been proposed in the literature to address this problem. This re-

search investigates if and how a machine learning based solution from sequence

classification paradigm can be effectively and efficiently used to classify malware.

Xing et al. (2010) have classified sequence classification methods into three broad

categories, namely feature based, distance based and model based classification.

The feature based classification involves selecting some features from the given

sequences in the form of a fixed length feature vector and then applying conven-

tional classification methods on the feature vectors. Feature vectors formed by

counting presence or frequencies of unique elements in the sequence, or of short

subsequences (k -grams) are most commonly used in such methods. In the distance

based classification methods, a distance metric is computed to measure similarity

between two given sequences and this distance metric is then used in classifiers

like Support Vector Machine (SVM) and k -NN for classification of sequences. Eu-

clidean distance and Dynamic Time Warping distance are two examples of such

metrics. The third category of sequence classification methods is the model based

classification, in which the sequences are assumed to be generated by a proba-

bilistic model. Such a model is first estimated from given sequences and then

probability of a given sequence being generated by a given model determines the

classification decision. Hidden Markov Model is a prominent example of such

classification methods.

While the success and effectiveness of feature based and distance based methods

relies on selection of suitable features and distance metric respectively, the model

based approach treats the sequence as a whole and does not depend on any modi-

fied or reduced representation thereof. Furthermore, a survey of previous research

in aforementioned sequential pattern matching applications reveals that Hidden

Markov Model is one of the most widely used techniques for such applications.
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Inspired by the above observations and research gaps identified through a compre-

hensive survey of literature, this dissertation focuses on use of HMM for malware

behavioral classification, and tries to investigate its feasibility from various angles.

1.9 Contribution of research

This dissertation makes the following contributions to scientific knowledge:

• The dissertation proposes and evaluates a novel method of malware clas-

sification by combining HMM and malware behavioral features using real

malware data.

• The dissertation fills a significant research gap by studying the role of an im-

portant HMM parameter, the number of hidden states, in malware classifi-

cation applications. Based on observations from comprehensive experiments

conducted on a large and diverse dataset consisting of malware behavioral

reports, the dissertation forms an opinion that although HMM shows en-

couraging results when used for malware classification tasks, its potential

from a practical standpoint is fairly limited.

• The dissertation proposes an alternative, yet novel, malware classification

method based on Markov Chain Model (MCM), and performs comparative

evaluation between HMM based and MCM based methods from effectiveness

and efficiency aspects. The dissertation concludes that MCM is a better

method to model malware behavioral than HMM from efficiency perspective,

and therefore former is more practical for malware classification applications.

1.10 Research Methodology

From the application point of view, the research presented in this thesis can

be termed as applied research: Solution to an immediate problem is proposed

and evaluated. From the objectives perspective, this research belongs to the ex-

ploratory category, since the objective of this research is to explore the why (or
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why not) of using HMMs for malware classification. In order to find answers to

research questions, the methods used in this research are mostly quantitative; ex-

periments are performed and results are analyzed to derive conclusions and form

opinions. Qualitative analysis is also performed in order to find the rationale be-

hind specifying the number of hidden states when modeling hidden Markov models

for the malware classification task.

In conducting this research, the three-phase, eight-step model has been followed

as proposed by Kumar (2011) with slight modifications as per the requirements

of this research. The activities carried out during the course of this research are

described below, and a mapping between these activities and Kumar’s model is

also highlighted in Figure 1.1

Phase I - Deciding what to research

Step 1: Formulating a research problem: This step consisted of three tasks:

1. Literature review

2. Definition of criteria for evaluation of HMM based malware classification

methods

3. Identification of research gap

Step 2: Writing a research proposal : In the original model proposed by Kumar,

this step is listed as Step 5 in Phase-II. During the course of this research,

however, the proposal for devising and evaluating a novel HMM-based malware

classification method was formulated as the next step after identifying the research

problem.

Phase II - Planing the research study

Step 3: Conceptualizing a research design: The research design for conducting

this research was formulated in the form of the three research questions discussed
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earlier. The methodology for addressing the questions is discussed in the corre-

sponding Chapters. Keeping in view the research questions, the study design can

be termed as quantitative; for research question 2, however, the study takes a

qualitative approach.

Step 4: Constructing an instrument for data collection: Instead of creating a new

dataset, a freely available large and comprehensive dataset was acquired which

has also been used in previous research. For this reason, Step 6 (data collection)

in Phase-III of the original model has been skipped.

Step 5: Selecting a sample: Some of the malware families in the acquired dataset

had very few samples. On the other hand, a few malware families had considerably

large number of samples. Therefore a careful selection of malware families was

performed in order to have a balanced dataset for conducting the experiments.

This process is described in detail in Chapter 3.

PHASE III - Conducing the research study Step 6: Processing and display-

ing data: This step encompasses all the experiments performed for evaluating the

proposed method against other methods (Chapter 3), for studying the impact of

hidden HMM states (Chapter 4), and for analyzing the efficiency of the method

(Chapter 5).

Step 7: Writing a research report : This dissertation is the output of this last step,

in which activities of all the previous steps are described and their outcome is

analyzed.

1.11 Dissertation organization

This dissertation is structured as follows. Chapter 2 sheds light on research efforts

carried out in the domain of malware analysis and critically reviews the classic as

well as state-of-the-art techniques proposed in the literature. Chapter 3 focuses

on Hidden Markov Model and proposes a method of malware classification based

on HMMs. Chapter 4 treats HMM as a feature extraction method and reports the
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results of experiments for comparing HMM against various commonly used meth-

ods of extracting features from sequences. Having ascertained the effectiveness of

HMM for malware classification, results of a study on the effect of hidden HMM

states on malware classification performance are reported in Chapter 5 which also

discusses the time requirements for HMM modeling and testing, especially with

respect to the number of hidden HMM states. Based on results drawn from the

study, the dissertation proposes to use Markov Chain Model (MCM) in place of

Hidden Markov Model and compares the two approaches with an aim to determine

if MCM can be a better alternative than HMM for malware behavioral classifica-

tion. Chapter 6 summarizes and concludes the dissertation.
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Chapter 2

Literature Review

In this chapter various approaches for performing malware analysis and detection

proposed in the literature are discussed. The main objective of the literature

survey presented here is to get a broad overview of the efforts being made in this

domain. The proposed techniques have been classified into different categories

according to the particular area of scientific research from which these techniques

have been inspired.

2.1 Clustering

Clustering is an unsupervised machine learning technique used to identify struc-

ture, or classes, within data (Han et al., 2006). As the name suggests, the tech-

nique aims at dividing the input data into clusters in such a way that similar data

items are assigned to the same cluster. The main use of clustering in malware

analysis and detection domain is to group known malware samples into classes,

usually called families. Representative samples from each cluster, or family, are

then analyzed to create signatures for detection of unknown malware.

A scalable, clustering-based malware behavior analysis system has been proposed

by Bayer et al. (2009). They create behavioral profiles for known malware us-

ing ANUBIS. These profiles are generated on the basis of invoked system calls,

their inter-dependencies and network activities, and represent behavior in terms

of OS objects and operations. These profiles are then input to the single-linkage

hierarchical clustering algorithm which groups malware binaries according to the

exhibited behavior. To make the clustering scalable, the authors have used the

Locality Sensitive Hashing which provides an approximate but efficient solution.

The proposed system was able to cluster around 75,000 malware samples in 2

hours and a quarter. The accuracy of the proposed clustering method has been

expressed in terms of quality which is defined to be a product of precision and
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recall, and is reported to be 0.959. Despite showing good results in evaluation, the

proposed technique may be vulnerable to common evasion methods adopted by

malware developers against behavioral analysis systems, as previously discussed.

Ye et al. used an “ensemble” of different clustering algorithms for achieving a

better clustering of malware samples (Ye et al., 2010). They opted for static

analysis of malware binaries, and selected instruction frequencies and instruction

sequences within individual functions as the features for clustering. The proposed

system combines hierarchical and k -medoids clustering algorithms, and uses a

weighted-subspace k -medoids clustering on instruction frequencies and instruction

sequences respectively. A target, consensus partition is obtained by combining

the generated clusterings, termed as partitions. The precision values of all the

clusterings used in the ensemble are averaged to get precision of final clustering,

and is reported to be 0.9369. The results are achieved by incorporating sample-

level constraints which require involvement of human experts, and this may limit

the scalability of the proposed solution.

Rieck et al. (2011) combine supervised and unsupervised machine learning tech-

niques for malware analysis. The dataset consists of malware behavioral reports,

generated through executing malware binaries in CWSandbox (Willems et al.,

2007) and converted to MIST (Trinius et al., 2009) format. The authors have

proposed and tested a scheme which employs an approximation strategy using

prototypes. After prototypes have been extracted from the behavioral reports,

the next step assembles the prototypes into clusters using complete linkage hi-

erarchical clustering, and then classifies the unknown binaries according to the

identified clusters using what they term as the nearest prototype classifier. After

obtaining an initial clustering, the classification and clustering steps are performed

in an interleaved manner in order to perform incremental analysis. The authors

maintain that the approximation approach makes their technique scalable without

compromising accuracy. They tested the proposed solution on a reference dataset

containing around 3000 malware binaries and reported an F-measure of 0.95 for

clustering, and 0.981 and 0.997 for classification of known and unknown malware
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classes respectively. It is interesting to note that the results of their method for

the larger dataset of more than 30,000 malware samples have not been reported.

Since Rieck et al’.s method makes use of both the clustering and classification

paradigms, therefore it has been included twice in the literature review summary

provided in Table 2.1.

Chandramohan et al. address the scalability problem in the context of behavior-

based malware clustering (Chandramohan et al., 2012). Such clustering techniques

have to cater for an enormous feature space, thanks to the tens of thousands of new

malware variants being created every day. The authors suggest limiting the feature

vector size by first focusing on four types of system resources, and then abstracting

individual operations on these resources into higher level operation types. In this

way, the feature space becomes independent of the number of malware samples.

The extracted features are represented as bit vectors. To achieve scalability from

another perspective, the authors have used prototype-based clustering as proposed

by Rieck et al. (2011). The behavioral reports used by Chandramohan et al. are

generated through ANUBIS. The proposed system’s performance in terms of F-

measure has been reported to be 0.948 against a reference labeling of Ikarus1

anti-virus. The method of feature encoding employed by the proposed scheme

converts the given system call sequence into a fixed width feature vector containing

binary values, representing the presence or absence of individual system calls in the

sequence. This scheme loses the sequence information from the behavior reports

which may render the dynamic analysis ineffective for some cases.

Hu et al. (2013) have proposed a hybrid approach using both static and dynamic

features for performing malware clustering. The frequencies of opcode n-grams

extracted from the disassembled and unpacked binaries are used as static features,

and clustering is performed on the basis of these frequencies. The prototype-based

clustering method is adopted from Rieck et al. (2011). For obtaining behavioral

features, the malware is executed inside a VMWare2 virtual machine and system

1http://www.ikarussecurity.com/
2http://www.vmware.com
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calls are recorded. The n-grams of these system calls are then represented as fixed-

length bit vectors for performing prototype-based clustering. The two clusterings

are then combined into an ensemble using four different methods, and the results

are compared against individual clustering schemes. The authors have reported

a marked increase in malware coverage although the precision of the ensemble

approach remains comparable to individual clustering algorithms.

Another attempt at employing clustering for malware classification has been pre-

sented in (Qiao et al., 2014). The proposed system, called CBM, transforms the

dynamic traces composed of API calls into a particular byte-based sequential for-

mat (termed as BBIS) and then makes use of modified Malheur (Rieck et al.,

2011) to perform clustering. The modifications in Malheur were required in order

to make it work for data represented in BBIS format. The authors conclude that

with the suggested modifications, the system was able to achieve a F-measure

of 90.9%. Although this figure is less than that reported by Malheur, the au-

thors maintain that it offers a strong and open source alternative to the current

state-of-the-art.

2.2 Classification

Classification is a supervised machine learning technique which is used to predict

a class label for an unlabeled data item (Han et al., 2006). This is a two-step

process: In the training or learning phase, the system is provided with class labels

and data pertaining to respective classes. The system learns and identifies the

features or patterns distinguishing the individual classes. In the testing phase, an

unknown sample is input to the system which tries to classify the sample on the

basis of the learned patterns.

The malware analysis and detection problem lends itself quite naturally to appli-

cation of classification (Willems et al., 2007). In case of binary classification, it

needs to be decided if a given file falls into the malware class or the benign one.

For the scenario of multi-class classification, the task is to identify which family

of malware the unknown sample belongs to. The first step in classification is to
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identify some features which best identify a malicious file from a benign one. A

large feature set can affect the performance of the classifier, therefore feature se-

lection and feature extraction methods are sometimes used prior to training the

classifier.

In one of the pioneering works on application of data mining techniques in malware

analysis and detection, Schultz et al. (2001) describe the efficiency of classification

technique in detection of unseen malware. They tried a number of static attributes

of files such as parameters related to DLL usage, strings embedded within bina-

ries, and binary code sequences, as features using multiple classifiers including

RIPPER, Näıve Bayes and Multi-Näıve Bayes on a dataset containing 4266 files.

According to their experiment, use of byte sequences as features in Multi-Näıve

Bayes classifier achieved a detection rate of 97.76% with a false positive rate of

6.0% and an overall 96.8% accuracy. compared with signature-based detection

rates of less than 50% on the same dataset, this result was a clear indication that

data mining and machine learning techniques had the capability to be used for

malware analysis and detection, and hence opened the avenues for further research

in this field. However, due to use of static features, this technique is susceptible

to obfuscation techniques.

Rieck et al. (2008) use a supervised machine learning technique, the Support Vec-

tor Machine (SVM), to determine the class or family of a given malware. As the

first step of the process, malware samples are “attracted” and collected using hon-

eypots, and then are labeled using an anti-virus software which assigns a malware

class to each sample. Next, runtime behavior of the collected malware, in terms

of API calls, is recorded by executing it in a sandbox and features are extracted

from the stored behavior profiles. Features are embedded into a high-dimensional

vector space and SVMs are trained for each malware family using the assigned

labels. The results of individual classifiers are combined to obtain an overall clas-

sification. The scheme was tested on a corpora of 10,000 samples and was found

to be 88% accurate. The scheme showed a relatively low accuracy, in addition to
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the obvious dependence on behavioral model which may not always represent the

full malware behavior.

Santos et al. proposed to use opcode sequence frequencies, extracted through static

analysis of portable executables (PE), as the representative features in supervised

machine learning for the purpose of malware detection (Santos et al., 2013). The

multi-step process starts with counting the opcodes found in disassembled PE files

contained in separate malware and benign sets. Each opcode is then assigned a

relevance value against both the malware and benign classes using the idea of

mutual information. Next, opcode sequences frequencies are computed for opcode

sequences from each file and are weighted by the relevance value of each opcode in

the sequence. This yields a vector containing pairs of opcode sequences and the

weighted opcode sequence frequencies, which, in turn, is fed as input to various

classifiers. The authors compiled the results of using different classifiers such as

Decision Trees, SVM, k -NN, etc. in WEKA (Garner et al., 1995), and reported an

accuracy of more than 95% in case of SVM with sequence length (n) of 2. As the

number of features increased exponentially with increasing n, experiments were

not attempted for larger values for n. Better results could be achieved for larger

values of n by applying feature reduction and feature selection steps on the feature

set.

Researchers proposing solutions for malware analysis problem have focused on ei-

ther static or dynamic feature extraction from malware samples for representing

malware behavior. Islam et al. (2013) have used a combination of both types

of features. The static features include the lengths of functions, in bytes, and

the count of various printable strings found within the binaries. The only dy-

namic feature used is the frequency of API calls, made by the program during

execution, against a global list of API calls made by all the samples. The vec-

tors corresponding to the three features are then concatenated in order to form a

combined vector which is then used in four different classifiers including Support

Vector Machine (SVM), Decision Trees (DT), instance-based (IB1), and Random

Forest (RF). Evaluation of the proposed system on two different datasets (old and
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new) proved that the combined static and dynamic features better represent the

characteristics of malware binaries, especially when used with RF classifier which

produced an accuracy of 97.055%. In comparison, use of individual features could

reach at most 90%, again in case of using RF classifier on dynamic feature. How-

ever, the accuracy of the system was better on the old dataset than for the newer

one, indicating its inability to effectively detect evolved malware.

Karampatziakis et al. employ file relationships for identifying unknown malware

(Karampatziakis et al., 2013). They specifically target file archives and proceed in

three steps. First a baseline logistic regression classifier is trained on labeled mal-

ware and benign files, and individual unknown files are assigned probabilities of

being malware or otherwise. Features used by this classifier are extracted through

dynamic analysis of executables, and include system calls along with parameters

passed, tri-grams of system call sequences, null-terminated patterns in process’

memory, and a bit vector representing some trivial metadata. Next, the archives

containing the individual files are assigned probabilities through a container clas-

sifier. Finally, a relationship classifier improves the classification accuracy of each

file using the file’s previously computed baseline probability, and the container

probabilities of all the archives which this file belongs to. The proposed system

performed the classification on a dataset of 3.4 million files in a mere 16 minutes.

Using the relationship-based classifier, the FNR was 15.2 % as compared to 42.1%

achieved by the baseline classifier, while keeping the FPR to 0.2% in both cases.

The proposed technique is based on the assumption that the probability of a be-

nign file being classified as malware would be higher if it is contained in an archive

which has one or more malicious files. This assumption may result in a high FP

rate, depending on the ratio of malign and benign files in a given archive.

2.3 Graph theory

Graph theory has been applied to a diverse range of areas, including computer

networks, route planning, electronic circuit design, to name just a few. Any prob-

lem that can be modeled in terms of data items (vertices) inter-connected through
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some kind of links (edges) can be converted into a graph problem, and therefore

can be solved by applying principles from the graph theory. The following tech-

niques for malware detection represent programs in the form of graphs, and then

make use of graph theory to determine if a given program is malware or benign.

Hu et al. use call graphs to perform static malware detection at a higher-level of

abstraction, instead of byte or instruction-level matching (Hu et al., 2009). By

identifying function boundaries in disassembled program binaries, each program

is represented as a graph depicting the call and callee relationships between func-

tions, so that the functions are expressed as vertices and a directed edge goes

from the called function to the callee. A given program’s call graph is compared

with those of known malware to determine its nature through performing nearest-

neighbor search. The authors introduce an approximate edit-distance similarity

metric, based on optimized Hungarian algorithm, to perform efficient comparison

between graphs. Searching is made scalable by introducing a hierarchical indexing

of graphs. At the higher level, graphs are indexed into a B+ Tree where each leaf

node groups similar graphs according to code attributes like the instruction count

and function count, etc. The second level indexes graphs within a leaf node of the

B+ Tree in the form of a Vantage Point Tree, using the approximate edit distance

metric. This combination of multi-level indexing and approximate distance metric

allows for pruning of search space at higher level on the basis of easily computed

attributes, and an efficient search for nearest neighbors within the graph database.

Performance of the proposed indexing scheme has been reported using various pa-

rameters; the average response time for a query on the database of 100000 graphs

was 21 seconds, and more than 90% of the queries successfully identify the query

graph as representative of a malware. Being a static analysis approach, it may

fail against sophisticated obfuscation methods, as well as novel code packing tech-

niques, being used by malware developers. Also, since the technique depends on

neighboring nodes to make a decision about a particular file’s nature, it may lead

to high FP rate.
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Park et al. (2010) proposed a graph-theoretical solution to the problem of behavior-

based malware detection. The technique involves creating a behavioral profile for

a program on the basis of system calls and their arguments, and representing the

profile in the form of a directed graph. The nodes of the graph depict system

calls, and the edges signify dependence between system calls. Two system calls

are considered to be interdependent if the output parameter of one is the input

argument for the other. The authors used a metric based on the maximal common

subgraph distance for representing dissimilarity between two graphs. This metric

is then employed by the proposed classification algorithm that tries to group the

graphs into malware families. Evaluation of the proposed solution on six fami-

lies of malware produced promising results for most families; the less satisfactory

classification in some malware families is attributed to the inherent behavior spe-

cific to those families, as identified by earlier research (Kolbitsch et al., 2009).

The dataset used for the experiment is rather small (only 300 files belonging to 6

families) and a more exhaustive evaluation is therefore needed.

Another attempt to use graph theory for performing malware detection was made

by Kinable et al. (2011). Similar to the method proposed by Hu et al. (2009),

Kinable et al. used the function calls and their inter-relationship within a program

binary to populate a graph representing the behavior of the program. A graph edit

distance metric was introduced which computes the similarity between two given

graphs on the basis of certain cost functions. This metric was used, with an ap-

proximation technique based on Simulated Annealing method of graph matching,

as the distance function for application of two clustering algorithms, k -medoids

and DBSCAN, on the graph dataset to identify malware families. On the basis of

these experiments, the authors opined that k -means clustering is not suitable for

malware analysis because of the need to find an optimal k. The performance of

DBSCAN clustering was, however, claimed to be promising but no accuracy pa-

rameters were provided to support these results. Moreover, system performance

in terms of time was not reported. The dataset used for evaluating the proposed

technique was relatively small, and further investigations on larger dataset should
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make the research more authentic.

Agrawal et al. (2012) take a semantic approach to detect metamorphic variants

of known malware families. High-level abstract signatures, in the form of graphs,

are generated for known malware by performing static control flow analysis of the

program binaries. For a given binary, super-block dominator graphs are gener-

ated for each function defined in the binary, and then a compound super-block

dominator graph is produced by combining graphs of all functions. The resulting

tree represents a semantic summary of the respective program binary. In order to

test an unknown binary, its semantic signature graph is generated and compared

with known signatures using normalized metric edit distances. The authors report

to have achieved 86% accuracy in detecting unknown variants of known malware

families. The authors are hopeful to achieve a higher accuracy by incorporating

data flow analysis in generating the semantic signatures. The approach is specific

for classifying unknown polymorphic or metamorphic variants of known malware

families, and cannot be used to detect a malware belonging to a totally new family.

The solution proposed by Park et al. (2013) makes use of dynamic analysis to

perform graph-based malware clustering. The system monitors system calls and

arguments, and records a behavioral profile for each binary in terms of accessed

kernel objects like processes, files, sockets, etc. The extracted profile is transformed

into a directed graph, called the Kernel Object Behavior Graph (KOBG), in which

nodes represent kernel objects and edges depict their inter-dependence through

handles. The set of graphs for known malware is then clustered to identify malware

families and a Weighted Common Behavior Graph (WCBG) is generated for each

family which represents the behavior demonstrated by most members of the family.

Then a unique subgraph is computed within WCBG, called the hotpath, which

comprises the path exhibited by all members of the class. To check the nature

of an unknown binary, its KOBG is compared with WCBG and hotpath graphs

for each malware family. The unknown sample belongs to a specific malware

family if its KOBG not only includes the family’s hotpath graph but there also

exists a particular level of similarity between its KOBG and the family’s WCBG.
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Evaluation of the system performance was performed on two different datasets

containing 563 and 520 malware binaries respectively, belonging to 7 different

families. WCBGs and hotpaths for each family were generated using the binaries

in the training sets. Next, KOBG for each binary in the test set was matched

against WCBGs and hotpaths of each family using the described algorithm. The

detection rates for the first set peaked at 92% while those for the second data set

reached 88%. The authors also tested the system for false positives, and used 100

executables from the Windows operating system for this purpose. The proposed

algorithm showed 8% false positive rate for only one malware family while there

were no false positives for the rest of the malware families. The paper does not

state the time required by the system to produce the results, therefore system

performance in terms of efficiency cannot be determined.

Tamersoy et al. (2014) have suggested the use of file relationships for labeling

unknown files as benign or malware. The proposed solution is based on the as-

sumption that, on a given machine, malware’s relationship with other malware

will be stronger than its links with benign files. The algorithm works on a dataset

including benign and malware programs represented in terms of the files’ location

(machines). This representation is then used to infer co-occurrence strength be-

tween files using MinHashing. Next, the dataset is clustered into groups of files,

called buckets, using Locality Sensitive Hashing on MinHash values. The files in

a bucket have strong co-occurrence among each other. Files and buckets are then

represented as nodes of a bi-partite graph and unknown files are labeled using Be-

lief Propagation algorithm. Although the authors have reported a True Positive

Rate of 0.996, the scheme has the pitfall of being dependent on data gathered from

the community regarding the files’ locations.

2.4 Visualization

Information visualization has been used in many domains of scientific research for

presenting data to a human analyst in a concise and effective manner. Research

in information visualization focuses on devising novel ways of representing and
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displaying complex data in an easily comprehensible graphical format. Applica-

tion of information visualization techniques to the field of malware analysis and

detection has several facets, as discussed below.

Yoo (2004) has proposed to use Self-Organizing Maps (SOMs) for visualizing

viruses in Windows executable files. SOM is an Artificial Neural Network approach

using unsupervised learning to map high dimensional data to a low dimensional

space, suitable for visualization. The author postulates that training and visualiz-

ing an SOM on an infected executable file can show patterns, called virus masks,

which are common to a whole virus family, not just representing an individual

virus. The author proves the theory by testing various executables infected with

viruses using an SOM library in Matlab. The vectors used as training input to

the SOM consist of 4-byte values read directly from the binary file. The output is

a 2-D unified distance matrix, which is displayed as a map consisting of hexagons.

The hexagons represent input elements and are drawn in different colors, where a

darker color represents a smaller distance (greater closeness) between neighboring

elements. The results show that the executables infected with viruses of the same

family exhibit similar patterns in visualization. However, the suggested technique

is only used to find patterns, which is the training phase of the SOM. This work

could be extended to actually classify unknown executables on the basis of trained

data.

Trinius et al. employ different visualization techniques to present the behavior of a

process, captured through a sandbox, to the malware analyst in a meaningful way

(Trinius et al., 2009). Their approach uses treemaps for displaying the distribution

of the operations performed by the program, and shows the order of operations

through a thread graph. The original API call trace data obtained from the

sandbox is very large so it is scaled down into categories or sections for easy visual

comprehension. A treemap shows the sections of API calls as tiled rectangles,

and the width of a rectangle depicts the number of API calls belonging to the

particular section. Thread graphs represent the sequence of system calls made by

all the threads of an application, and can be viewed in four levels of abstractions,
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level 4 being the most detailed. Combination of these two techniques provides an

analyst with a clear view of a program’s behavior in terms of the kind of operations

it performs, as well as the frequency and order of operations. Furthermore, the

authors extend the application of their technique to data files, postulating that a

data file’s behavior can be defined in terms of the operations performed by the

application that processes the file. Put another way, when an infected data file is

opened by an application, the tasks performed by the application will be different

than in case of a benign or clean data file. The authors verified their approach

on malware executables as well as infected data files with promising results. The

ability to perform image-based clustering would definitely add value to the system.

A novel approach towards malware classification has been proposed by Nataraj et

al. (2011). They treated malware binaries as images by simply plotting the bytes

from the binary as pixels. Different malware programs belonging to the same fam-

ily showed similar patterns, called textures in the image processing terms, when

converted to images using the above method. Using this observation, the authors

trained image processing based classifiers to identify unknown malware. Features

from malware images were obtained using Gabor filtering technique, and k -NN

classification with Euclidean distance was employed to perform the classification

of malware images. When compared with the state of the art in malware classi-

fication techniques, the proposed approach not only showed accuracy comparable

to the best reported accuracy, but also exhibited a marked increase in processing

efficiency. Moreover, the authors claim that their method is robust against most

obfuscation and packing techniques used by the malware developers for changing

the malware binaries in order to hinder reverse-engineering and analysis attempts.

However, the technique could fail if hackers modify their code significantly between

malware families or use multiple packers or decryptors for obfuscation.

Saxe et al. (2012) describe a system for comparing malware samples to find be-

havioral similarities based on system calls. First the malware is executed in a

virtual environment, and trace logs are generated for system calls made by the
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program related to file operations, system registry access and network communi-

cation. Next the trace log is partitioned into blocks, termed as semantic subse-

quences, using a boundary criterion based on the similarity of contiguous system

calls. These two steps are performed for a number of available malware binaries,

and the similarities between the semantic subsequences are determined pairwise

on the basis of Jaccard Index, resulting in a similarity matrix. For validating their

technique for finding similarity between malware samples, the authors performed

graph-theoretic clustering of the trace log using the semantic subsequences as the

features, and compared the results against Kaspersky3 classification of the mal-

ware samples. For high values of the similarity threshold used in the clustering

algorithm, the precision matched that of Kasperksy classification but recall de-

creased, while for lower similarity threshold, precision degraded in favor of recall.

The authors did not report an optimal threshold value to keep both precision and

recall within acceptable limits.

The proposed system offers a visualization-based interface with multiple views: the

sequence visualization area displays semantic sequences in unique colors. Many

such sequences are drawn for multiple programs, for efficient identification of sim-

ilarities in actions performed by different programs. The sample similarity map is

a 2-D grid, where each node in the map represents a unique sample. The position

and color of each node is determined by applying Principal Component Analysis

on the similarity matrix computed earlier. Similar nodes are drawn in same colors.

Furthermore, programs which have a common semantic sequence in their traces are

shown in clusters. Using the interface, an unknown sample can be visually linked

to known malware, according to similarities in sequences and/or the objects (files,

registry entries, network ports) accessed.

2.5 Ontology

An ontology describes concepts within a given domain, and asserts the relation-

ships between these concepts through the notion of properties. Properties not only

3http://www.kaspersky.com
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represent relationships, but are also used to indicate characteristics of concepts.

Ontologies are expressed using a formalism which allows definition of concept and

relationship hierarchies as well as facilitates to perform reasoning on the data such

that implicit knowledge can be derived from the explicit information. Moreover,

describing concepts, their properties, and relationships in a formal way allows

knowledge to be shared among applications, and facilitates building a common

vocabulary for the community (Gruber, 1995).

The use of ontology in the domain of information security was first suggested by

Raskin and Nirenburg (2001). The authors emphasized the need for making use

of natural language data sources to the domain of information security. They

maintained that by capturing the common knowledge of terms used in the domain

and the taxonomy by which these terms are related, the information security com-

munity can reap benefit of efficient sharing of knowledge about attack incidents.

Furthermore, by formally and methodologically storing attack data in an ontology,

prevention from and prediction of attacks could also be made possible. Although

the proposal was at an abstract level yet it built the foundation for the use of

ontologies in malware detection.

Similar thoughts were shared by Donner (2003), who also highlighted that the

expanding field of information security needed an ontology which could facilitate

efficient and effective exchange of information. In his article are mentioned not

only sample concepts but also the relationships between these concepts. Contrary

to Raskin et al., Donner focused only on the vocabulary aspects of the ontology,

and did not propose its use in detection or prevention of malware attacks.

The work presented in (Fenz and Ekelhart, 2009; McIntire and Mundie, 2013) is

representative of the efforts made by the research community towards the goal

envisioned by Raskin and Donner as far as the sharing of malware knowledge,

and making available a common vocabulary, is concerned. A review of security

ontologies developed for the said purpose can be found in (Blanco et al., 2008); the

research attempts involving use of ontologies for detection of malware are discussed

here.
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Undercoffer et al. list the reasoning power of ontology representation as one of

the main reasons for using an ontology for their Intrusion Detection System (Un-

dercoffer et al., 2003). In the proposed system, the ontology is represented using

DAML+OIL, and the reasoning system employed for the system is DAMLJessKB.

The concepts, properties and relationships are extracted from data pertaining to

4,000 attacks. Once the knowledge-base has been populated using concepts like

Host, Attack, and Consequence, and relationships such as Host-VictimOf-Attack

and Attack-ResultsIn-Consequence, DAMLJessKB extracts additional rules from

the “chain of implication” of the original data. Queries can be formulated using

both the concepts and the properties, and are executed by DAMLJessKB to re-

trieve any matching data. The queries can be made at different granularities i.e.

levels of details about the incidents, and can identify a specific attack or all attacks

belonging to a specific class, etc. Although this dissertation focuses on malware

detection aspect of the cyber-security domain, but an example from the intrusion

detection discipline points out that a similar ontology-based approach can also be

adopted for malware detection.

Huang et al. presented an ontology-based malware behavioral detection system

called TWMAN (Huang et al., 2010). The proposed system is claimed to be able

to block Trojans and other unknown malware attacks. TWMAN executes known

malware in a sandbox environment and captures changes in registry values, net-

work connections, and file system observed during execution. These parameters

serve as properties of the malware, and are stored in an ontology using Protégé,

along with the malware hierarchy as concepts. An unknown sample can be classi-

fied by executing it in the sandbox and monitoring its behavior in terms of changes

it makes to the parameters mentioned above. The ontology is updated with the

observed properties of the unknown malware, and rule-based inference is then

used to identify the malware class, if any, the malware sample belongs to. The

presented work is just an initial proposal and does not report any performance

metrics of the suggested system.

Huang et al. extended their work by incorporating fuzzy set theory with TWMAN
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(Huang et al., 2011). While making minor changes to the process of behavioral

model generation, the authors made use of Fuzzy Markup Language (FML) to

create a fuzzy ontology for representing the behavior model. Instead of using the

SWRL rules in Protégé, the authors incorporated fuzzy inference for performing

reasoning. The fuzzy output Similarity (SI) was calculated on the basis of three

fuzzy variables namely FileHash (FH), ConnectIP (CI) and FileChange (FC), using

fuzzy rules built by human experts. The system performance was tested on 30

samples, for which the values of the fuzzy output SI were tabulated against the

desired values. A graph of accuracy, precision and recall values is also given

which plots these values as percentages against some threshold values, for which

no reference could be found in the text. The system was able to score an accuracy

of 82%, according to the reported graph.

The most recent update on the project makes a transition to the paradigm of soft

computing through the use of type-2 fuzzy sets (T2FS) (Huang et al., 2014). The

rationale behind using a soft computing mechanism is its ability to represent the

inaccuracy, uncertainty and vagueness of the knowledge in the domain of malware

detection. The system, called MiT, was evaluated by populating the ontology

with 1360 known malware samples and then testing for 70 unknown samples. The

authors report the accuracy of the system to be in the range 70%-80%. There is no

evidence of the system’s performance with respect to processing time, therefore it

cannot be concluded if the proposed solution is scalable on a large dataset or not.

The relatively low accuracy is suggestive of refinement of the inference mechanism,

and selection of better features to be used as properties in the ontology.

2.6 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired from the working of the nervous

system (Rojas, 1996). Just like the way the neurons are inter-connected in the

brain, the ANN consists of a network of processing elements (also called neurons),

organized in layers in such a way that outputs of neurons in one layers are con-

nected to inputs to the next layer neurons. The outputs may be weighted so that
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only the outputs of maximum weights inputs can activate, or fire, the next layer

neurons. The ANN can be used in supervised as well as unsupervised learning

scenarios for performing classification and clustering respectively. Due to its abil-

ity of performing pattern recognition, the ANN has been experimented with in

the domain of malware detection. Some of the ANN based malware detection

techniques proposed in the literature are discussed below.

The first attempt to practically apply principles borrowed from biological domain

to the field of computer security can be attributed to Kephart et al. (1995). More

specifically, two concepts were adopted from the biological area: neural networks

and immune system. The former was used to implement a generic virus detector for

known viruses, while the latter was adopted to develop an adaptive immune system

for detecting unknown viruses. Three-byte long sequences from boot sectors were

used in the prototype system as feature for training the classifier, and the prototype

was evaluated over 5000 artificial boot sectors. The authors reported a detection

rate of 90% with a low false positive rate of only 0.02%. The proposed system

worked well for a class of viruses of that time but further evaluation would be

needed to see the dynamic analysis techniques introduced later.

Stopel et al. used dynamic features with ANN for real-time worm detection (Stopel

et al., 2006). Activities related to network usage, and processor and object prop-

erties were tracked and as a result 68 dynamic features were used in the proposed

solution. Seven known worms were injected into computer systems and the activ-

ity on the systems was separately monitored for each worm monitored to obtain

behavioral data pertaining to the aforementioned aspects. The authors report an

average classification accuracy of 99.96%, 99.89% and 99.66% for the ANN, Deci-

sion Tree and k -NN respectively, for classifying known worms. The ANN was also

tested for its ability to perform detection of unknown worms, and its detection rate

was found to be 95%. ANN also performed faster in classification step, although

it was slower in the training phase. Considering the small number of worms used

in the experiment, therefore for more authentic results there is need for validating
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the proposed scheme on a larger dataset, containing multiple types and families

of malware.

Dahl et al. (2013) have applied neural networks for large scale malware detection.

Their scheme used dynamic features including strings found in memory region

occupied by the program, tri-grams of API calls, and unique combinations of API

calls and their parameters. First feature selection and dimensionality reduction

steps were performed on the feature vector, and then a neural network classifier

was trained on a dataset containing 2.6 million samples. Neural networks with

different number of layers were trained, the single-layer neural network showing

best performance with an average two-class misclassification error rate of 0.49%,

at 0.83% false positive and 0.35% false negative rate. According to (Kephart et al.,

1995), it is critical to keep the false positives low in security applications. In the

scheme proposed by Dahl et al., the best single neural network achieved a false

positive rate of 0.01% but with a false negative rate of 25%.

2.7 Genetic Algorithms

Genetic Algorithm (GA) is another computing technique based on a biological

phenomenon (Mitchell, 1998). GA’s mimic the natural selection process observed

in biological evolution, and are used to solve optimization problems. Another

major application of GA’s is to find an optimal solution in a solution space where

exhaustive search is infeasible. In such scenarios, GA’s create a set of random

solutions, called a population, and make use of a fitness function to evaluate

them; a new population of candidate solutions is created as a result of mutation

and crossover operations on the best solutions in the previous population. The

process continues until an acceptable solution is reached. Following are a few

research activities employing GA in the domain of malware detection.

Mehdi et al. have used Genetic Algorithm in their endeavor, called IMAD, to

detect in-execution malware (Mehdi et al., 2009). The detection is performed

by a classifier which uses n-grams of system calls made by the malware during

execution; the GA is used for tuning of certain parameters involved in the detection

41



process. The individual n-grams are assigned “goodness values” depending on the

nature of the program which created them; n-grams observed during execution of

benign programs are assigned the goodness of +1, those specific to malware are

given -1, and the neutral group of n-grams (appearing during execution of both

malware and benign programs) are assigned dynamically by the GA. When an

unknown program is under observation, it is evaluated in terms of an “impression

coefficient” which is calculated on the basis of the goodness values of the n-grams

of generated system calls. If the coefficient rises above an upper threshold then

the sample is declared benign; it is labeled as malware if the coefficient drops

below a lower threshold. In the third case the program is allowed to execute

further. The values of the impression coefficient, and the upper and lower bounds

are also calculated by the genetic optimizer which uses a fitness function based on

several parameters such as false positives and false negatives observed so far, etc.

The efficiency of IMAD on a dataset of 100 samples was evaluated against SVM,

C4.5, RIPPER and Näıve Bayes classifiers on the same dataset using WEKA. The

authors report IMAD to have performed equal to RIPPER in case of 6-grams,

surpassing all other classifiers, with a detection accuracy of 77% with zero false

alarms. However the proposed system is only evaluated for a small dataset, and is

susceptible to dynamic evasion techniques employed by malware developers such

as detection of virtual environment. Furthermore, a revision of features may result

in better accuracy.

Another research effort involving the use of GA is presented by Kim et al. (2010).

Aimed at detecting polymorphic script viruses, the proposed technique first con-

verts the code (script) into a code containing only unit statements. This seman-

tically equivalent code is then represented as a dependency graph, followed by

graph reduction to remove any redundant vertices. To check an unknown script,

its reduced dependency graph is heuristically matched against all the precom-

puted graphs for known scripts. If a match is found within a specific threshold,

then the script is considered to be a virus or a polymorphic variant of a virus. If

the heuristics do not find a match then sub-graph isomorphism is applied in order
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to find graph similarity, and this is where GA comes into play. For comparing two

graphs for isomorphism, one of the graphs is kept fixed and the other is mutated

by rearranging its vertices and corresponding edges. Each such arrangement is a

chromosome (potential solution). A combination of random and sequential solu-

tions is generated for each population, and a fitness function is used to evaluate

the solution. The GA stops if the difference between the generated solution and

the target graph is below a certain threshold, or a maximum number of popula-

tions have been created without a match. The proposed technique is compared

with 41 anti-virus engines in terms of detection accuracy and computation time.

Although GA performs slower than the anti-virus software, its detection rates are

encouraging because it captured more polymorphic variants of the 5 script viruses

than the anti-virus software. However, the proposed system has been designed

with a focus towards polymorphic script viruses only; an extension to make the

work applicable to a wider variety of malware is therefore required.

2.8 Hidden Markov Models

A Markov model represents a non-deterministic system, comprising of different

states such that there is a probability associated with transitions between states.

At any given state, the next state is decided on the basis of these transition

probabilities. A Hidden Markov Model (HMM) is a variation of the basic model in

which the states are hidden; only the symbols that are associated with each state

are visible. As in the case of state transitions, symbol probabilities determine

which symbol is more likely to be output by a given state. Out of the three

problems associated with the HMMs (Rabiner and Juang, 1986), problems 1 and

3 can be readily applied to the domain of malware detection. The first problem

determines, given an HMM and an observation sequence, the probability that

the sequence is generated by the HMM. In case of malware detection, one needs

to find the probability that a given behavioral pattern is generated by an HMM

representing the malware behavior. Problem 3 aims at determining the parameters

(state transition and symbol probabilities) of an HMM. This step is analogous to
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the learning phase in machine learning paradigm, and is performed to train the

HMM using observation sequences for known malware behaviors.

Probably the first use of HMM in the cyber-security domain was suggested by

Warrender et al. (1999), who presented a comparison of HMM’s performance

with three other models for intrusion detection. The models were created using

system call logs for certain benign programs, and represented “normal” system

behavior. The authors reported that HMM was better than the other models in

terms of accuracy, but with high computational cost.

In the malware detection domain, Wong and Stamp used HMM for detecting

metamorphic viruses. In this static approach, HMMs were trained using opcode

sequences from disassembled metamorphic programs, which were created from

a virus construction kit. For each sample in a test dataset, which consisted of

malware created from the same construction kit in addition to other malware and

benign programs, a log likelihood score was computed against the trained HMM.

The metamorphic variants of the same viruses obtained a high likelihood score as

compared to other variants. This result proved that HMM could be effective for

metamorphic malware detection. The authors used a relatively small number of

hidden states for their experiments (2-6), as opposed to Warrender et al. (1999)

who suggested that the number of states in an HMM for malware detection may be

roughly equal to the number of distinct system calls. Following Warrender et al.’s

guidelines and modeling the system with the number of states equal to the number

of distinct opcodes may reveal interesting results. Furthermore, the authors have

conducted the tests on a very small scale and their methodology involves human

involvement in setting the thresholds.

Borrowing the idea of sequence alignment from the bioinformatics domain, Attaluri

et al. have applied the Profile HMM (PHMM) to detect metamorphic viruses

(Attaluri et al., 2009). PHMMs are a special kind of HMMs which take into

account the relative position of symbols within the observation sequences while

scoring an unknown sample. As the first step, multiple observation sequences

(opcode sequences) for different metamorphic variants are combined into a multiple
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sequence alignment (MSA) structure which forms a general representation of all

the constituent sequences. The MSA is used to generate a PHMM with additional

Insert and Delete states, and associated transition and symbol probabilities. An

unknown opcode sequence can then be scored against the PHMM for determining

its likelihood of being malware or benign. The authors performed tests on three

groups of programs, but the performance figures for only two successful tests are

reported. The unsatisfactory results for the third group call for fine tuning of the

proposed scheme.

In another PHMM-based approach proposed by Ravi et al. (2013), system calls

have been used as observation sequences. Randomly selected malware samples

from each family are used to create a multiple sequence alignment structure which,

in turn, is used to train a PHMM representing that particular malware family. Be-

havioral reports for unknown malware samples (after being converted into sequence

files) are scored against PHMMs for all malware families, and the normalized score

vectors are used for clustering similar malware together. In order to use a sequence

alignment tool which was specifically made for bioinformatics domain, the authors

had to significantly downsize the number of system calls. This factor could ad-

versely affect the performance of the proposed method.

Austin et al. experimented with HMMs in order to gain an insight into the seman-

tics of hidden states (Austin et al., 2013). The proposed technique uses opcodes as

features. By varying the number of hidden states in the HMMs, the authors iden-

tified the most significant opcodes and the associated probabilities. Termed by the

authors as “dueling HMM strategy”, the proposed technique can perform malware

detection using two sets of HMMs. The first set is trained over features of benign

programs compiled through different compilers, and the second set is modeled for

known malware families. Given an observation sequence for an unknown sample,

the HMM which yields the greatest probability of generating the given observation

determines the nature of the sample. Testing the theory on metamorphic viruses

and on code generated through virus construction kits revealed 87% detection rate

which is good but still has room for improvement.
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In a recent technique, Annachhatre et al. (2014) have used HMM for the purpose

of malware clustering. They train the HMM using opcode sequences of programs

generated by various compilers and virus generators. Opcode sequences of un-

known malware are scored against the trained models, and these scores are used

as distance metric in k-means clustering algorithm. The authors claim that their

method results in a satisfactory clustering of malware samples. However, they

suggest that results can be improved if their technique is extended to include mal-

ware specific HMMs. The malware dataset used for the experiment is unbalanced

in the sense that bulk of the samples belongs to just three families out of 18, and

this fact could have an effect on the results.

Damodaran et al. (2015) have presented a comparison of using static, dynamic

and hybrid features for distinguishing malware from benign programs using HMM.

In their experiments, the authors used four possible combinations of static and

dynamic features for training and scoring HMMs, such as training on static/scoring

on static, training on dynamic/scoring on dynamic features etc. Two sets of

such experiments were performed using API calls and opcodes as features, and

two different metrics (area under ROC and Precision-Recall curves) were used

to compare the results. The experiments showed that the Dynamic/Dynamic

combination performed better than the other three combinations for both types

of features, especially in case of API calls. The size of the dataset used for this

experiment was rather small (less than 800 malware and benign samples combined)

and therefore a more exhaustive investigation using a larger dataset will be more

beneficial for the malware research community. Furthermore, the experiments

were performed with an aim to compare different types of features using HMMs

and hence a malware classification scheme was not proposed as such.

The following criteria have been inferred through an analysis of reviewed liter-

ature for evaluating the previously proposed HMM-based malware analysis and

classification methods:
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1. Feature used: Dynamic features have been generally considered to be more

discriminative as compared to static features

2. Performance: The performance figure depicts the effectiveness of the pro-

posed approach.

3. Dataset size: Large dataset enhances the authenticity of the results.

4. Comparison: Has the proposed scheme been compared with other such

methods? Effectiveness of the proposed scheme cannot be ascertained unless

it has been evaluated against some other benchmark method.

5. States analysis: Has the proposed research analyzed the hidden HMM

states in any way, especially with respect to their impact on performance?

6. Efficiency analysis: Has the proposed method been evaluated for effi-

ciency? Is it scalable?

An evaluation of the HMM-based approaches reviewed herein shows that there is

a dearth of research efforts with a reasonable score against the criteria described

above. While use of both static and dynamic kinds of features has been inves-

tigated by most of the previously proposed solutions, the malware classification

techniques based on Hidden Markov Models have mostly relied on static features.

Most of the previous HMM-based malware analysis research has exploited se-

quences of opcodes for training the models, but use of system calls has also been

observed in schemes based on Profile HMMs. It is therefore an open research area

to further evaluate Hidden Markov Models on dynamic features.

Use of small datasets and lack of comparison of proposed malware classification

methods with existing method(s) has also been observed, and this also emphasizes

the need for further research in the area of HMM-based malware classification.

Another major research gap that has been identified in HMM based malware re-

search is that a crucial HMM parameter, the number of hidden states, has not

been used with due consideration. Literature (Cave and Neuwirth, 1980; Rabiner,
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1989; Levinson, 1987) suggests that this parameter corresponds to some intrinsic,

hidden structure within the data being modeled, and therefore should be set after

considering the properties of data. Instead, when modeling HMMs for malware

analysis, researchers have opted for a trial and error approach, trying out different

values for this parameter and adhering to one which results in the best perfor-

mance. There is, therefore, a need for a study on the impact of this important

HMM parameter on performance of HMM based malware classification schemes.

Consequently, it is a requirement that HMM based malware classification pro-

cess may be critically analyzed in order to find the optimum number of hidden

HMM states for the malware classification problem. Furthermore, it is generally

accepted that training an HMM is a computationally costly process but this factor

has not been studied from practical perspectives. Performing an efficiency analysis

of HMM based malware classification with an aim to evaluate its feasibility for

realistic application is therefore in order.

2.9 Summary

Considerable research work has been done in the field of malware analysis and

detection in the last two decades, and the survey presented here has only touched

the representative few of the approaches found in the literature. The aim has

been to include a variety of recently proposed solutions, based on ideas from a

diverse range of scientific knowledge. The strengths and weaknesses of the surveyed

techniques have been identified individually; a comprehensive summary is provided

here as a ready reference.

Arguably the most notable observation from the reviewed literature is the high

performance being reported for the proposed methods in terms of accuracy and ef-

fectiveness. The statistics show that malware is spreading with a threatening pace

and consequently damage of billions of dollars is being faced by the world’s econ-

omy, despite all the highly accurate malware detection and classification schemes

seen in the literature. This situation not only opens the doors for further research
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in the domain of malware analysis, but also raises questions pertaining to evalua-

tion of the proposed malware detection and classification methods. It can be seen

that the proposed methods have been evaluated on specific, separate data and

therefore their effectiveness against competing schemes can not be usually ascer-

tained. Furthermore, other issues such as using small sized datasets and ignoring

the efficiency aspects are also noticed.

Another key observation that can be made from the survey is that bulk of the

efforts in malware analysis field has its roots in machine learning. Use of super-

vised learning paradigms of classification, ANN and HMM, and the unsupervised

clustering mechanism have shown to be quite effective in identifying malware from

benign programs and from other malware. The techniques proposed in these cat-

egories have shown by far the best results, and the accuracy figures convey the

efficacy of the machine learning techniques.

Probably one of the main issues with machine learning techniques is the selec-

tion of useful features from a large feature set. For this reason, dimensionality

reduction and feature extraction methods may be required prior to application

of a machine learning algorithm. This causes additional computational overhead

for such techniques. Furthermore, these schemes generally use fixed length fea-

ture vectors. For sequences of varying length (as in case of features extracted

from behavioral reports) one needs to formulate a method to create a fixed length

vector from the sequence. This transformation, if not done properly, may result

in loss of valuable behavioral characteristics. Other, more general problems with

machine learning based techniques discussed above include the computational cost

of learning, high false positive rates, use of small dataset for evaluation, human

involvement in selection of parameters used in the algorithms, and mostly reliance

on static features.

Study of the solutions coming from visualization and ontology domains reveals the

scale of knowledge diffusion in the malware analysis field. Although the volume of

knowledge diffusion is not very significant, yet it is a clear indication of the fact

that the scientific community is putting a great effort in finding an efficient solution
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for the malware problem by borrowing ideas from the vast scientific knowledge.

The proposed techniques from the ontology domain do not show high accuracies,

and visualization-based methods are primarily for manual inspection of malware,

hence unsuitable for large scale classification.

Application of concepts from mathematics, such as graph theory, has also shown

promising results. Both static and dynamic types of features have been investi-

gated by researchers but there seems to be lack of efforts utilizing a hybrid set

of features for representing a program as a graph. Furthermore, solutions based

on graph isomorphism and graph matching are computationally expensive there-

fore approximation strategies have been applied in order to use these concepts for

malware classification. The overall performance figures are not at par with other

techniques.

A general problem observed in the reviewed research is that the research commu-

nity generally does not adhere to a common metric for reporting the performance

of their proposed methods and multiple parameters such as precision, recall, cov-

erage, accuracy, quality (defined as the product of precision and recall) have been

used by different researchers. This makes the task of evaluation and comparison

among the research efforts difficult.

Table 2.1 summarizes the reviewed literature. A comparison of previously pro-

posed HMM-based techniques for malware analysis and classification against the

criteria described above is provided in Table 2.2.
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Table 2.1: Summary of reviewed literature

S.No Reference Data source Methodology Metric Value

CLUSTERING
1 (Bayer et al., 2009) Dynamic - System calls Locality Sensitive Hashing Prec * Rec 0.959

2 (Rieck et al., 2011) Dynamic - Instructions q-grams
Prototype-based, complete linkage,
hierarchical

F-measure 0.95

3 (Ye et al., 2010) Static - Instruction (sequences, frequencies) Hierarchical + k -medoids Precision 0.9569

4 (Chandramohan et al., 2012) Dynamic - System calls
Prototype-based, complete linkage,
hierarchical

F-measure 0.948

5 (Hu and Shin, 2013)
Hybrid - frequencies of opcode n-grams,
n-grams of system calls

Ensemble of prototype-based clusters
Precision↑,
Coverage↑ 15.5%, 46.5%

6 (Qiao et al., 2014) Dynamic - API calls
Prototype-based, complete linkage,
hierarchical

F-measure 90.9%

CLASSIFICATION

7 (Schultz et al., 2001) Static - Bytes, GNU strings, DLL
Näıve Bayes, Multi-Näıve Bayes,
RIPPER

Accuracy 97.1%

8 (Rieck et al., 2008) Dynamic - API calls SVM Accuracy 88.0%
(Rieck et al., 2011) Dynamic - Instructions q-grams Prototype-based F-measure 0.989

9 (Santos et al., 2013) Static - opcode sequence frequency DT, SVM, k -NN Accuracy 95.9%

10 (Islam et al., 2013)
Hybrid - Function length,
string count, API call frequency

SVM, IB1, DT, RF Accuracy 97.06%

11 (Karampatziakis et al., 2013)
Hybrid - File features,
System calls (parameters, trigrams),
strings in memory

Logistic regression FPR, FNR 0.2%, 15.2%

GRAPH THEORY
12 (Hu et al., 2009) Static - Function calls Two-level indexing Detection rate 90.0%
13 (Park et al., 2010) Dynamic - System calls dependence graph Feedback clustering Dissimilarity -
14 (Kinable and Kostakis, 2011) Static - Function calls k -medoids, DBSCAN clustering Not reported -
15 (Agrawal et al., 2012) Static - Control-flow Normalized edit distance Detection rate 86.0%
16 (Park et al., 2013) Dynamic - System calls Graph-based clustering, graph matching Detection rate 92.0%
17 (Tamersoy et al., 2014) Static - File relationships LSH, Bi-partite graph mining TP rate 0.9961
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Table 2.1 Continued...
S.No Reference Data source Methodology Metric Value

VISUALIZATION
18 (Yoo, 2004) Static - 4-byte sequences SOM Not reported -
19 (Trinius et al., 2009) Dynamic - API calls Treemaps, thread graphs Not reported -
20 (Nataraj et al., 2011) Static - Code bytes Gabor filter, k -NN Accuracy 98.0%
21 (Saxe et al., 2012) Dynamic - System calls Graph-based clustering Prec, Rec 0.9, 0.7

ONTOLOGY
22 (Undercoffer et al., 2003) Dynamic DAML+OIL Not reported -

23 (Huang et al., 2010)
Dynamic - Changes in registry, files,
network connections made

Protege, SWRL Not reported -

24 (Huang et al., 2011)
Hybrid - Malware hash,
changes in files, network connections made

Protege, FML, Fuzzy Inference Accuracy 82.0%

25 (Huang et al., 2014)
Hybrid - Malware hash,
changes in registry, files, connections made

Soft computing Accuracy 70%-80%

ARTIFICIAL NEURAL NETWORKS
26 (Kephart et al., 1995) Static - Byte sequences Single layer Detection rate 90.0%

27 (Stopel et al., 2006)
Dynamic - Network usage,
processor and object properties

Levenberg- Marquardt Detection rate 99.96%

28 (Dahl et al., 2013)
Dynamic - Strings in memory,
API calls (trigrams, parameters)

Single layer FPR, FNR 0.01%, 25%

GENETIC ALGORITHMS
29 (Mehdi et al., 2009) Dynamic - n-grams of system calls - Accuracy 77.0%

30 (Kim and Moon, 2010) Static - Script (code)
Dependency graph,
sub-graph isomorphism

Accuracy 88.9%
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Table 2.2: Comparison of HMM-based malware classification methods

S.No. Reference Method Feature
Performance
(metric)

Dataset size Comparison
States
analysis

Efficiency
analysis

1 (Warrender et al., 1999) Intrusion detection Dynamic (Sys call) 96.9% (TPR) 92,000 X
2 (Wong & Stamp, 2006) Thresholding Static (opcode) Not reported 200
3 (Attaluri et al., 2009) Profile HMMs Static (opcode) ˜67% (Det. Rate) 280

4 (Ravi et al., 2013)
Profile HMMs,
clustering

Dynamic (Sys call) 0.964 (Acc.) 19,000

5 (Austin et al., 2013) Max. likelihood Static (opcode) 87% (Det. Rate) 60 X
6 (Annachhatre et al., 2014) Clustering Static (opcode) 0.94 (AU-ROC) 8,119

7 (Damodaran et al., 2015)
Comparison of
likelihood scores

Static, dynamic, hybrid N/A 785
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Chapter 3

Malware behavioral classification using HMM

This chapter aims at answering the question: How can HMM be used to classify

malware on the basis of their behavior. Consequently, this chapter describes in de-

tail the methodology to use Hidden Markov Model for behavioral classification of

malware. First a brief introduction to Hidden Markov Models is provided, which

is followed by a description of the data used in the experiments. A method of

using HMM for malware classification is proposed and evaluated using the behav-

ioral data. The chapter concludes with a comparative analysis of the proposed

classification method as well as a comparison of the proposed method with the

state-of-the-art.

3.1 Hidden Markov Model

This introduction to Hidden Markov Model is adopted from (Rabiner and Juang,

1986). Hidden Markov Model is a statistical analysis method widely used for pat-

tern matching applications such as speech processing (Rabiner, 1989), behavior

modeling (Kuge et al., 2000), protein sequencing (Krogh et al., 1994), and mal-

ware analysis (Wong and Stamp, 2006; Annachhatre et al., 2014), etc. A Markov

Model represents a stochastic system as a non-deterministic state machine, in

which probabilities are associated with transitions. From a given state, the pro-

cess transitions to the next state according to these transition probabilities. A

Hidden Markov Model is an extension of the basic Markov model, in which the

states are hidden and the progress of the process is observed in terms of certain

symbols which the process emits in each state. Similar to state transitions, certain

symbol probabilities are linked with each state, reflecting which symbol is more

likely to be emitted by a process in a given state. In addition, a set of initial

probabilities represents the initial state distribution of the model.
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An HMM having N states and M symbols can be represented by λ = (A, B, π),

where A is the N × N state transition matrix, B is the N × M symbol emission

matrix and π is the 1 × N initial state distribution matrix.

HMMs have associated with them three basic problems:

1. How to calculate the probability that a given observation sequence O is

generated by a given model λ?

2. How to determine the most probable sequence of state transitions that pro-

duced a given observation sequence O?

3. How to estimate the model parameters (A, B, π) from a given observation

sequence O?

These HMM problems can be solved by using well-established algorithms specif-

ically applicable to the HMM. To be able to solve a given problem using HMM,

the problem needs to be expressed in terms of one or more of the above HMM

problems, and then the corresponding algorithm(s) is applied to solve the problem.

For the case of malware classification, HMM problem 2 is less significant because

it does not contribute towards training or testing phases of machine learning;

however, it might be helpful in analyzing the inherent malware behavior in a given

sequence of observations. For malware classification or detection, problems 3 and

1 need to be solved in that order. First the model parameters need to be estimated

(analogous to training a model) using observation sequences, and then this model

is applied to an unknown sequence to determine the probability of the sequence

being generated by the model. For training the HMM an observation sequence O is

required along with initial (usually randomized) π, A and B matrices. HMM model

creation involves use of Baum-Welch algorithm (Rabiner and Juang, 1986) which

iteratively adjusts the probabilities in the three matrices until a predetermined

number of iterations has been performed or the results of successive iterations lie

within a threshold. The resulting model can be thought of as representing the

average of the training sequences.
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The trained HMM model can then be used to test an observation sequence using

what is called the forward-backward algorithm (Rabiner and Juang, 1986) which

returns the probability, or likelihood, of the sequence being generated by the model.

In other words, the observation sequences under test are awarded likelihood scores

against a given model. For efficiency purposes, implementations of the forward-

backward algorithms may return the log of likelihood score, resulting in all scores to

be below zero. An observation sequence closely resembling those used for training

the HMM will have a negative score closer to zero, while a sequence not having any

resemblance with the training sequences may be awarded a score of -∞. Since the

likelihood scores are dependent on the length of the sequence under test, therefore

a score is normalized by dividing it with the length of sequence, i-e, the number

of observation symbols in the sequence.

In the context of the malware classification problem addressed herein, the observa-

tion sequence used for training the HMM is represented by the sequence of system

calls generated by the malware during execution. The hidden states correspond to

some intrinsic structure within the system call sequence which the HMM tries to

model by estimating the transition and symbol emission probabilities. An HMM

trained over system call sequences for samples of a particular family is considered

as representing the behavior of that malware family. The system call sequence of

an unknown sample can be tested against the HMM trained for a specific mal-

ware family to determine if the sample belongs to that family on the basis of the

likelihood score returned by forward-backward algorithm.

3.2 The dataset

For performing experiments conducted during this research, the data has been bor-

rowed from the dataset1 used in Malheur project (Rieck et al., 2011). The dataset

includes system call logs for numerous malware recorded through CWSandbox

(Willems et al., 2007). The malware samples were allowed to execute for 5-7

seconds, but the actual execution time depended on the malware being analyzed.

1https://www.sec.cs.tu-bs.de/data/malheur/
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That is the reason that lengths of behavioral traces are inconsistent. While record-

ing malware’s behavior, only a single execution path was monitored. However, all

the processes and threads were analyzed and their behavior was recorded.

The system call logs are provided in various formats but for the sake of this

research, MIST format (Trinius et al., 2009) has been used. The MIST format

represents system calls in multiple degrees of detail using a simple text layout,

and therefore allows easy extraction of system call logs for a specific granularity.

A representation of the load dll system call is shown in Figure 3.1.

Figure 3.1: MIST representation of the load dll system call
(Trinius et al., 2009)

The MIST format categorizes the 120 monitored system calls into 20 categories

according to the higher level operation being performed. System calls are repre-

sented by category ID, followed by the operation ID and arguments, if any. For the

sake of this research, the system call arguments are ignored and only the higher

level category and the individual function call are focused, corresponding to level

1 detail as named by Rieck et al. Furthermore, to simplify the representation of

the (category, call) pairs as an observation sequence, each system call is repre-

sented as a number from 1 to 120. This is done by using the information provided

in (Trinius et al., 2009) about the number of system calls in each category. The

observation sequence, thus, becomes a sequence of numbers in the range from 1

to 120. These observations sequences representing malware behavior in terms of

system calls are used for training the HMMs.

The full Malheur dataset contains system call logs for over 32,000 samples be-

longing to more than 400 malware families. For the presented work only those

malware families have been selected which have more than 100 samples. This
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criterion was set in order to meet the requirement of sufficient number of sam-

ples for training the HMMs. Thirty seven such families were found (including the

benign samples) which fulfilled this criterion, with the total number of samples

being in excess of 29,000. Some of the malware families had too many samples

therefore only 400 samples from each of those families were taken in order to make

the dataset balanced. After the data reduction process there were 8,828 malware

samples left. In addition, 300 benign samples grouped under NOTHINGFOUND

class were also included in the dataset. Details of the selected malware families

are provided in Table 3.1. The table shows, for each malware family, the number

of samples (observation sequences), the minimum, maximum and average number

of observations, and the cumulative length of the observation sequences used in

the experiments.

A short description of these malware families is provided below. This information

is obtained from different online resources such as Microsoft Malware Protection

Center2, ThreatExpert 3 and CNet4.

Adultbrowser: This malware is of Dialer type. The malware of this family con-

nects through a premium-rate telephone number to pornographic websites on the

Internet and opens an HTML interface in the web browser.

Agent : It is a Trojan that connects to a remote website to download unwanted

software. The content downloaded from the website possibly includes additional

downloader Trojans, fake security tools such as anti-viruses, and any other kind

of malicious software.

Allaple: A network worm which is multi-threaded and polymorphic. It spreads to

other computers connected to the network and performs denial-of-service (DoS)

attacks against targeted remote websites.

Autoit : Trojan whose main task is to download and install other malicious soft-

ware, and make changes to the web browser settings.

2www.microsoft.com/security/portal/threat/encyclopedia/search.aspx
3www.threatexpert.com/threats.aspx
4www.cnet.com/forums/discussions/virus-spyware-alerts-april-22-2009-340055/
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Table 3.1: Dataset specifications for comparison between proposed approaches

S. No. Malware Number of Observation sequence length
Family samples Min. Max. Avg. Combined

1 ADULTBROWSER 262 717 1011 739 193,618
2 AGENT 400 16 89,031 2931 1,172,304
3 ALLAPLE 400 15,171 17,848 15,813 6,325,191
4 AUTOIT 400 278 32,098 31,319 12,527,421
5 AUTORUN 172 36 51,147 5147 885,284
6 BIFROSE 152 20 24,859 626 95,152
7 BASUN 400 9044 88,223 56,866 22,746,471
8 BUZUS 142 15 51,697 2819 400,298
9 CASINO 140 296 1900 409 57,260
10 EJIK 168 236 250 242 40,656
11 FRAUDLOAD 133 15 54,882 5202 691,866
12 FRAUDPACK 232 16 30,291 5628 1,305,696
13 HUPIGON 227 36 52,505 956 217,012
14 KRAP 204 15 19,144 7572 1,544,688
15 LIPLER 380 1624 18,513 9639 3,662,820
16 LOOPER 209 3670 8294 5826 1,217,634
17 MAGANIA 201 36 27,931 1550 311,550
18 MAGICCASINO 174 123 132 127 22,098
19 OBFUSCATED 144 37 4218 1400 201,600
20 PATCHED 400 15 50,600 504 201,410
21 PODNUHA 308 18 141 136 41,888
22 POISON 375 36 62,886 531 199,125
23 RBOT 131 36 16,585 1135 148,685
24 REFROSO 178 18 9604 490 87,220
25 ROTATOR 300 1779 46,674 25,858 7,757,400
26 SALITY 173 21 16,708 2776 480,248
27 SMALL 106 17 29,455 3543 375,558
28 SPYGAMES 139 457 1123 558 77,562
29 SWIZZOR 400 268 4311 1745 697,945
30 TDSS 141 21 11,314 952 134,232
31 TEXEL 400 15 43,528 316 126,485
32 UDR 172 425 435 429 73,788
33 VB 400 64 63,626 1370 547,921
34 VIKING DLL 158 334 2289 1972 311,576
35 VIRUT 400 15 42,263 42,263 460,011
36 ZBOT 107 16 12,855 4594 491,558
37 NOTHINGFOUND 300 1 87,462 14,524 4,357,300

Total: 9128 65,833,520
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Autorun: A worm which spreads through removable media storage. It copies au-

torun files into hard disk drives and also injects malicious code into system .dll

files.

Basun: It is a worm that copies itself to other locations and changes Windows

settings. It may download other malware.

Bifrose: This is a backdoor Trojan that connect to a remote IP address. It opens

a network port and allows a remote attacker to access the computer and perform

various actions through the opened ports.

Buzus : A malicious application which uses computer or network resources to com-

pletely replicate and spread itself.

Casino: This is a dangerous virus which may cause damage to the FAT. It has an

additional feature that it asks the user to play a game: if the user wins the game,

then the virus will not harm the FAT.

Ejik : This is an adware – a type of malware that is annoying but mostly harmless.

The aim of this malware is to deliver advertising content to the user without their

consent. It may be combined with spyware or tracking software to steal data.

Fraudload : This is a Trojan with additional downloader capabilities. It works by

downloading unwanted files from a remote server, and then executing them after

installation.

Fraudpack : This is a large family of malware which appear to be security tools

but in fact are malicious programs.

Hupigon: This is a backdoor Trojan that steals personal information, such as user

names and passwords used for online accounts for monitory transactions. They

can also open a port for providing access to a hacker access.

Krap: A Trojan family that contains malware which tries to download other ma-

licious program from websites.

Lipler : This family of malware tracks online users’ habits by monitoring their web

browsing history. This information is used to show pop-up ads.

Looper : This is a Trojan which gets installed when an unsuspecting user executes

an unknown but believed to be safe program.

Magania: This is also a Trojan family which steals passwords and other personal
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and sensitive information. Another possible action by these malware is to install

other unwanted applications.

Magiccasino: This is reported to be adware.

Obfuscated : A typical virus which replicates itself and infects other programs. It

may also slow down the computer by stealing hard disk space and occupying large

space in memory.

Patched : A Trojan that downloads malicious files and executes them locally.

Podnuha: Another Trojan family which contacts websites to download fake anti-

malware tools

Poison: It is a backdoor Trojan which allows remote attackers to get unauthorized

access to infected machines.

Rbot : Another backdoor family of malware which allow a hacker to control in-

fected computers remotely through IRC channels. These backdoors may also steal

information and spread to vulnerable computers.

Refroso: This is a worm family which halts Windows Security Center. It then

spreads to other computers across the network by exploiting an unpatched Win-

dows vulnerability.

Rotator : A typical adware that displays unwanted pop-up advertisements.

Sality : A large malware family which is capable of stopping security applications

from executing on a system, steal information, replicate itself to other computers

on the network, etc.

Small : These are downloader Trojans with the property that they have a very

small footprint (a few kilobytes only). Typical actions include running in the

background and downloading other malicious content to the infected computer.

Spygames : No description found for this malware family

Swizzor : Trojan downloader which also displays backdoor functionality. The re-

mote master can use the backdoor to download and execute malicious files and

adware.

TDSS : Trojans that have the rootkit feature for hiding their presence on the in-

fected system. They also open a backdoor for the remote controller to access and

steal personal information.
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Texel : A family of worms which spread copies of itself though removable media or

network channels.

UDR: A Trojan which adds and changes Web browser cookies, and adds harmful

files to the system directory.

VB : A typical backdoor Trojan that enables the attacker to gain unauthorized

access t the system. It also demonstrates adware functionality.

Viking dll : A virus that runs as a service and effect executable files. It may try

to download other malicious content from the Web.

Virut : A virus that attaches itself with the infected file to execute and replicate

itself. Malicious actions include stealing information, deleting sensitive system

files, and opening a backdoor for remotely controller malicious activity.

Zbot : Commonly reported as a password stealer, this Trojan can also affect secu-

rity settings of a system and turn off security mechanism such as firewalls, etc.

Nothingfound : The set of benign programs.

3.3 Methodology

Figure 3.2 depicts the proposed methodology for HMM-based malware classifica-

tion. The process starts with the behavioral reports of different lengths, repre-

sented by system calls, for n malware samples belonging to m malware families.

It should be noted that these m and n are different from M and N mentioned in

Section 3.1 on HMM, and should not be confused with each other. The malware

samples are input to HMM modeling process on family basis so that an HMM

trained from samples of malware family F1, for example, represents the average

behavior of this particular family.

After m HMMs have been modeled, all the n malware samples are subjected to

evaluation against each of the models, and the result is a set of n score vectors,

each of length m, where a score vector SVk represents the similarity scores of the

kth malware sample against all m HMMs. These score vectors are then used in

different ways to classify a given malware sample, as described in Section 3.3.2.
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Figure 3.2: The HMM-based classification methodology

3.3.1 HMM training and evaluation

HMM model generation and testing was performed in Matlab using a third party

HMM Toolbox5. Although HMM modeling can be performed in Matlab R2013a

using the bundled statistical toolbox, the third-party toolbox was preferred be-

cause of availability of examples and ease of use. To further ascertain the viability

of using the third-party toolbox, a comparative study was carried out between the

built-in and third-party toolboxes using 1,510 malware samples belonging to six

5http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm_download.html
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malware families. The experiment was aimed at deciding which of these toolboxes

is better suited for large scale experiments in terms of classification performance

and time requirements. HMM modeling and evaluation was performed using both

the toolboxes, and classification performance was observed in terms of F-measure.

Matlab tic and toc commands were exploited to measure the time required by

the two toolboxes for HMM modeling and evaluation.

The results of comparative study favored the decision to use the third-party Matlab

toolbox for HMM modeling and evaluation. For the aforementioned small scale

dataset, F-measure for malware classification using third-party toolbox turned

out to be 0.899 as compared to F-measure of 0.883 achieved by using the Matlab’s

built-in toolbox. Similarly, the third-party toolbox was quicker than the Matlab’s

toolbox at performing HMM modeling and evaluation tasks as shown in Figure

3.3.
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Figure 3.3: Time required for HMM modeling and evaluation by Matlab tool-
boxes

For a comprehensive evaluation of the proposed methodology, 5-fold cross vali-

dation was performed in the HMM training phase. For each family, five HMMs

were trained such that for each HMM a different set comprising 80% of the behav-

ioral reports for that family was used. During the testing phase, all the malware

samples were evaluated against the five HMMs of each family. In this way, the

proposed scheme was evaluated for three types of samples: those belonging to the
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same family and used in training (called known family samples), those belong-

ing to the same family but not used in training the HMMS (termed as unknown

family samples), and those belonging to other malware families (referred to as non-

family samples). Furthermore, benign samples were also subjected to evaluation

against the malware HMMs in order to assess the performance of the HMM-based

classification techniques for those samples which are not malware.

For training the HMMs all of the malware families were used except the class

representing benign files (NOTHINGFOUND). For training an HMM for a par-

ticular family, 80% of the observation sequences belonging to that family were

fed sequentially to the Matlab routine which iteratively re-estimated the model

parameters. The maximum number of iterations was set to 100, though in most

cases the training stopped earlier because of successive log likelihood values being

closer than the predefined threshold. The number of hidden states was set to 10 as

a median between too few (2-6 used by (Wong and Stamp, 2006)) and too many

(20, the number of categories of system calls used as observations). The number

of observations was fixed to 120, corresponding to the number of unique system

calls in the data.

In the testing step, each of the 8,828 samples was evaluated against all the trained

HMMs. As discussed earlier, testing a sample sequence against an HMM returns a

likelihood value (also termed as score) which determines how closely the sequence

matches with the sequences that were used to train the HMM. The Matlab routine

used for this experiment returns the log of likelihood values. Thus, testing a single

sample against all the models produced a 36-long score vector of log likelihood

values, and testing all the samples resulted in 8,828 such vectors representing the

scores of all samples against all models. Since the likelihood scores fall in the range

of 0 to 1, therefore the log values in the vectors were all negative, including -∞

for cases where a sample had no resemblance with the modeled malware family.

65



3.3.2 Classifying the malware samples

According to categorization of sequence classification methods reported by Xing

et al. (2010), HMM is representative of the model based sequence classification

methods. However, Bicego et al. (2004) have suggested that HMM can also be

used as a distance based sequence classification technique. They have identified

two ways of using the HMM-generated score vectors to classify generic sequences,

namely maximum likelihood and similarity-based methods which are used for the

purpose of malware classification in this work. While the maximum likelihood

method has been applied for the purpose of malware classification before (Austin

et al., 2013), the use of similarity-based classification method has not been found

in the literature. The two classification methods are described next.

3.3.2.1 Maximum likelihood classification

In this method of classification which belongs to model based sequence classifi-

cation category according to Xing et al.’s categorization, a sample sequence is

assigned a class label against whose model this sample obtains the highest like-

lihood score. In the case of malware classification, an unknown program that

generates a system call log sequence s, is considered as belonging to the ith mal-

ware family if the log likelihood score of s against the model λi∈N is the highest

among all N models. This can be represented as:

F (s) = argmax
i

log(P (s|λi)) (3.1)

3.3.2.2 Similarity-based classification

The similarity-based classification scheme can be thought of as a distance based

sequence classification method, where the ‘distance’ metric is represented by the

log likelihood of a given sequence being generated by a given HMM. This method

treats the set of score vectors obtained by evaluating sequences against HMMs as

a feature space, termed as the similarity space by Bicego et al., which can then be

used for training a discriminative classifier. The so trained classifier would then be
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able to classify an unknown sequence, given its similarity vector (the score vector),

into one of the classes the classifier has been trained on. The rationale behind the

name “similarity-based” is that the likelihood score obtained by evaluating a given

sequence against an HMM represents its similarity (used as the distance metric)

with the sequence(s) used for modeling the HMM.

The basic similarity-based approach for sequence classification trains HMMs for

individual sequences. Since this research trains the HMMs on class basis, therefore

the similarity-based approach could not be applied as such. Instead, a modified

form of this approach was employed, also suggested by Bicego et al., in which

the class-wise likelihood score vectors are used as feature vectors to train the

discriminative classifier. WEKA (Garner et al., 1995) was used to train the various

classifiers including Random Forest, J48 Decision Tree, Support Vector Machine

(SVM), Näıve Bayes and k -NN over the labeled class-wise score vectors. Each of

these classifiers was trained using different values for its key parameter as shown in

Table 3.2. It was observed that the classifiers performed optimally with the default

settings of these parameters in WEKA (shown in italics) with the exception of

Random Forest classifier which showed a marginal improvement in performance

as the number of tress grew. Random Forest proved to be one of the better

classification algorithms, along with J48 Decision Tree and k -NN, for use with the

malware score vectors in the similarity-based classification method as conveyed by

Figure 3.4.

Random Forest classifier belongs to the “ensemble learning” paradigm within the

domain of machine learning, in which results of multiple tree classifiers are ag-

gregated to predict a sample’s class (Liaw and Wiener, 2002). More specifically,

it leverages the concept of bagging which corresponds to the process of creating

tree classifiers on different samples of data, and then taking a majority vote for

reaching a classification decision. The randomness is involved when splitting a

node in a classification tree: Instead of choosing the best variable (predictor) from

the whole set of variables for splitting a given node, the Random Forest classifier

randomly creates a subset of predictors at each node and selects the best predictor
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Table 3.2: Comparison of classifiers performance with respect to parameters

Classifier Parameter Value F-Measure
Random Forest Number of trees 2 0.84

5 0.862
10 0.872
20 0.875
50 0.876

J48 Confidence Factor 0.125 0.856
0.25 0.857
0.5 0.856

SVM Kernel function Sigmoid 0.018
Radial basis 0.808

Näıve Bayes Kernel estimator false 0.478
true 0.458

k -NN k 1 0.872
2 0.857
5 0.836
10 0.823

from the subset. Using this simple strategy, the Random Forest classifier is not

only able to outperform other classification algorithms such as SVMs and Neural

Networks (Liaw and Wiener, 2002), but it also deals effectively with the problem

of overfitting (Breiman, 2001). For these reasons Random Forest was used in the

experiments conducted for this research.
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3.3.3 Classifier validation

WEKA offers multiple choices of validation methods for testing how well a classifier

is modeled on some given data. These validation methods include:

1. Using the same data for training and testing

2. Choosing separate datasets for training and testing

3. Splitting the dataset into training and testing partitions by a specific per-

centage

4. k -fold cross validation

The first method is obviously not desirable because it does not judge how gener-

alized a trained classifier is. Sometimes the classifier memorizes the training set

instead of learning from it, and therefore does not represent a generalization of the

given instances. As a result such a classifier performs well on the data that has

been used for training but does not classify previously unseen samples correctly

(Bascil and Temurtas, 2011). The second method tests the classifier on unseen

data, hence providing a better judgment about classifier performance, but requires

different data files for training and testing. The third method is a simplification

of the second such that it allows splitting the same data file into training and

testing partitions without the need of separate files. The problem with the second

and third evaluation methods is that they evaluate the classifier for just one set

of training and test partitions. In such a case, the distribution of data instances

in the two partitions might affect the classifier performance in a favorable or ad-

verse manner. The k -fold cross validation method solves this problem by dividing

the dataset in k partitions, and performing k classification sessions such that in

every session, or fold, a separate set of k -1 partitions is used for training and the

remaining partition is used for testing the classifier. In this way, each partition

is used k -1 times as training partition and once as test partition, hence reducing

the effects of any bias in the data. The classification results of k folds are then
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averaged to obtain the overall classification performance of the classifier over all

the data. Due to this comprehensive nature of k -fold cross validation method, it

was used to validate the Random Forest classifier in these experiments.

3.3.4 Evaluation parameters

Precision and recall are two widely used parameters for evaluating the performance

of classification methods. Simply put, precision determines how many of the items

labeled as the class C actually belong to C, and recall specifies how many items

of a class C are correctly classified as C. The formulas for the two parameters are

given as:

Precision =
TruePositives

TruePositives+ FalsePositives
(3.2)

Recall =
TruePositives

TruePositives+ FalseNegatives
(3.3)

To simplify the comparison of performance of different classification methods,

precision and recall are usually combined into one parameter, called F-measure,

defined as

F -measure = 2× Precision×Recall
Precision+Recall

(3.4)

An F-measure of 1 for a classification method means that the method was able to

perfectly identify all the samples of each class. A low F-measure value, on the other

hand, is result of either or both of the precision and recall being low, signifying

the fact that certain items were misclassified by the classification method.

The malware classification schemes discussed in this paper were evaluated using

F-measure.

3.3.5 The case of benign programs

Although the primary focus of this research was classification among malware fam-

ilies, the schemes under evaluation were also judged for their capability to handles

benign files, i.e., normal program files known to be clean from any infection. For
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this purpose, the behavioral reports of 300 benign files grouped under NOTH-

INGFOUND family were evaluated against the 36 HMMs. The so obtained score

vectors for benign samples were then subjected to both the maximum likelihood

and similarity-based classification as described next.

Intuition suggests that a benign program’s behavior should not match any of the

malware behaviors. Consequently, the score vector of a benign program should

ideally consist of only -∞ values. The maximum likelihood classification rule can,

then, be modified to accommodate the benign samples as under:

F (s) =


Benign, if ∀i∈1..N log(P (s|λi)) = −∞

argmax
i

log(P (s|λi)), otherwise
(3.5)

In the case of similarity-based classification, the score vectors for benign samples

need to be tested against the classifier trained on the malware samples. It should be

noted that the classifier trained on malware samples will only attempt to classify an

unknown sample into a known malware family. In order to enable the classifier to

identify benign samples, is should be trained on score vector(s) representing benign

samples. As discussed above, the ideal score vector for a benign sample should only

contain -∞. Therefore, the Random Forest classifier was trained on an additional

score vector containing all values of -1000000, labeled NOTHINGFOUND. It may

be noted that Since WEKA does not recognize the symbol -∞ returned by Matlab

routine, therefore all instances of -∞ in the score vectors were replaced by the

number -1000000, representing a very low likelihood, before using the score vectors

in WEKA.

3.4 Results and discussion

3.4.1 Maximum likelihood classification

The maximum likelihood scheme for malware classification did not yield satis-

factory results. Although for more than one third of the malware families the

obtained F-measure was 0.99 or close, yet the overall average was 0.62.
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Figure 3.5: Log Likelihood scores of ALLAPLE samples against ALLAPLE,
EJIK and VIRUT models

One high scoring family was ALLAPLE with an F-measure of 0.996. The scatter

plot in Figure 3.5 shows the log likelihood scores obtained by ALLAPLE samples

against ALLAPLE, EJIK and VIRUT family models. The higher the likelihood

value for a sample against a model the greater the probability that the sample

resembles the model. All values in the top portion of the scatter plot represent

the likelihood scores of ALLAPLE samples against ALLAPLE model. For the

other two models, the likelihood scores fall below, thereby making the classifica-

tion decision clearly in favor of ALLAPLE family. This scatter diagram shows

the likelihood scores of ALLAPLE samples against only three malware families;

against all other models, these samples scored -∞, showing no resemblance with

those families. The clear separation between the three data series is an indication

that ALLAPLE family’s behavior was consistent against all the models.

Some malware families with low F-measure were BIFROSE (0.10), BUZUS (0.11),

PATCHED (0.12), and FRAUDLOAD (0.13). At first glance it looks counter-

intuitive that a sample which has been used to train a particular HMM scores less

than an unknown sample when tested against the model. Upon a closer inspection

of some wrongly classified samples, such as in BIFROSE family, it was found
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that the error in misclassification was actually not indicative of a problem in the

classification process. Instead, sometimes a significant portion of the behavioral

profile of a sample can match that of a malware from another family.

The scatter plot of Figure 3.6 shows the likelihood scores for BIFROSE sam-

ples against BIFROSE and REFROSO family models. From the figure it is clear

that the scores obtained by the BIFROSE samples against the two models fall

within the same range, and therefore a correct classification decision is not pos-

sible on the basis of the maximum likelihood rule. As a result, many samples of

BIFROSE family were classified as REFROSO by the maximum likelihood classifi-

cation method. Interestingly, an online threat analysis report6verifies that different

anti-virus software may identify a malware sample as belonging to BIFROSE or

REFROSO families. This explains one reason for the misclassified samples while

using the maximum likelihood approach on the score vectors.

The maximum likelihood classification rule failed completely when applied to the

benign samples. Out of the 300 benign samples, none was correctly identified

as benign; all these samples were labeled as different malware families. This was

6http://www.threatexpert.com/report.aspx?md5=64a70c1bbc911c504dcfcb5917ece8c8

73

http://www.threatexpert.com/report.aspx?md5=64a70c1bbc911c504dcfcb5917ece8c8


because every benign program showed some behavioral similarity with one or more

of malware families, and no benign sample was able to score -∞ against all the 36

models representing malware families in order to be identified as benign.

3.4.2 Similarity-based classification

The similarity-based classification approach produced much better results as shown

in Figure 3.7 which plots the family-wise F-measure for the two classification meth-

ods. For roughly one-thirds of the malware families the F-measure remained well

above 0.9, while the average F-measure across all the families was 0.87. Particular

attention may be paid to the families BIFROSE, BUZUS and FRAUDLOAD for

which the F-measure for similarity-based classification increased more than five

times as compared to the maximum likelihood method. Other families such as

RBOT and REFROSO also showed remarkable improvement as their F-measure

values almost quadrupled for the similarity-based scheme. The average F-measure

values for the two schemes are provided in Table 3.3.

The confusion matrices for the two classification schemes are shown in Figures

3.8(a) and 3.8(b) respectively. A comparison of the two figures shows the supremacy

of the similarity-based classification method. Quite a few gray boxes, representing
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Figure 3.7: Comparison of F-measure for maximum likelihood and similarity-
based classification
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Table 3.3: Comparison of average F-measure values

Classification F-Measure
method Malware samples Benign samples

Maximum likelihood 0.62 0
Similarity-based 0.87 0.68
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Figure 3.8: Confusion matrices

the mis-classified samples, are seen on either sides of the diagonal in Figure 3.8(a).

The column for REFROSO family is particularly noticeable, signifying the number

of samples from other families classified as REFROSO. In comparison, the matrix

in Figure 3.8(b) is mostly clear, asserting the fact that the Random Forest classi-

fier was able to classify a majority of the samples correctly. The two dark boxes

depict the samples of TEXEL and PATCHED families which the classifier was not

able to label correctly. A malware analysis report7 shows that different anti-virus

scanners may also label a given malware sample as a TEXEL or PATCHED family

malware, confirming the finding by the similarity-based classification that the two

families share some common behavior.

3.4.3 Comparison with the state-of-the-art

Having observed the better performance of similarity-based scheme over the näıve

maximum likelihood approach for malware classification, the next step was to

7https://www.virustotal.com/en/file/6f737b428b0a753e1f542f5f021c1e97dfd0c2646956\

9085753c810e83f8afd0/analysis
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compare it against the state-of-the-art. Since data used for this research had

already been used by Rieck et al. (2011) for evaluating their malware classification

and clustering scheme, therefore it was logical and convenient to compare the

results of HMM-based malware classification method with theirs.

Rieck et al. have employed two different datasets in their work. First is the

smaller dataset, called the reference dataset, which they used for fine tuning cer-

tain parameters, and second is the larger and more comprehensive dataset, termed

as the application dataset, on which they performed detailed experiments. The

authors have stated the classification performance of their scheme for the ref-

erence dataset only. For performing a comparison between the similarity-based

classification method with their method on common grounds, the similarity-based

classification was performed on the reference dataset also. Details of the reference

dataset are provided in Table 3.4.

Rieck et al. have reported an F-measure of 0.981 for their classification method for

known malware and 0.997 for unknown malware. The results for known malware

indicate the performance of their scheme for classifying a known malware into its

family, while for unknown malware the score represents how well the given malware

sample is identified as belonging to any malware family. Since in their experiments

half of the samples used by Rieck et al. were known and half were unknown,

therefore the overall F-measure can be computed as average of the two reported

figures, which turns out to be 0.989. The similarity-based scheme proposed in

this research showed an F-measure of 0.994 for the same dataset. As previously

explained in the methodology section, the similarity-based scheme handles the

case of both known and unknown malware. The score vector for a given sample

represents its similarity with all malware families; the sample is ‘known’ for just

one malware family and it is unknown for all other families. The F-measure for

the proposed scheme is thus comparable to Rieck et al.’s method, and it proves

the point that HMM can be quite effectively used for classification of unknown

malware into known malware families. It is again emphasized that primary focus

of this research is not to highlight HMM as the best malware classification method;
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Table 3.4: Dataset specifications for comparison with the state-of-the-art

S. No. Malware Number of Observation sequence length
Family samples Min. Max. Avg. Combined

1 ADULTBROWSER 262 717 1011 739 193,618
2 ALLAPLE 300 206 17,840 15,580 4,674,000
3 BANCOS 49 14,551 67,588 30,892 1,513,708
4 CASINO 140 296 1900 409 57,260
5 DORFDO 65 175 321 186 12,090
6 EJIK 168 236 250 242 40,656
7 FLYSTUDIO 33 134 29,533 1575 51,975
8 LDPINCH 43 36 226 146 6278
9 LOOPER 209 3670 8294 5826 1,217,634
10 MAGICCASINO 174 123 132 127 22,098
11 PODNUHA 300 82 141 138 41,400
12 POISON 26 36 860 277 7202
13 PORNDIALER 97 1327 3803 1433 139,001
14 RBOT 101 316 4591 375 37,875
15 ROTATOR 300 1779 46,674 25,858 7,757,400
16 SALITY 84 21 8293 2578 216,552
17 SPYGAMEs 139 457 1123 558 77,562
18 SWIZZOR 78 578 4301 4070 317,460
19 VAPSUP 45 1114 1136 1114 50,130
20 VIKING DLL 158 334 2289 1972 311,576
21 VIKING DZ 68 114 25,236 14,415 980,220
22 VIRUT 202 36 5930 376 75,952
23 WOIKOINER 50 9920 10,312 10,144 507,200
24 ZHELATIN 41 211 1849 1694 69,454

Total: 3132 18,378,301

the aim is to evaluate how feasible it is to use HMM-based malware classification

in a practical scenario. The current experiment yields that HMM does have the

ability to classify known and unknown malware, while other aspects of HMM-based

malware classification methods will be addressed in the next chapters.

One advantage of the similarity-based technique over Rieck et al’s scheme is that

HMM estimates the required parameters directly from the given data, while their

technique depends on manual calibration of certain thresholds. The thresholds

optimized for one dataset may not work as well for the new data added during

the incremental analysis. On the other hand, HMMs have a basic drawback in the

form of high computational cost of learning from sequences. The fact that model
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learning is performed much less frequently than model evaluation may favor use

of HMM based methods because HMM model evaluation is a significantly less

computationally intensive task than HMM modeling.
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Chapter 4

Hidden Markov Model as Feature Extraction

Method

Manifold growth of malware in the recent years has resulted in extensive research

being conducted in the domain of malware analysis and detection, and theories

from a wide variety of scientific knowledge domains have been applied to solve

this problem. The algorithms from the machine learning paradigm have been

particularly explored, and many feature extraction methods have been proposed

in the literature for representing malware as feature vectors to be used in machine

learning algorithms. In this chapter the similarity-based malware classification

method, proposed in the previous chapter, is evaluated further by considering it as

a feature based classification method according to Xing at el.’s categorization (Xing

et al., 2010). Such methods of sequence classification represent variable length

sequences as fixed length feature vectors by extracting representative features from

the sequences, and employ conventional classifiers over the feature vectors for

classification of unknown sequences. This chapter, thus, presents a comparison

of HMM-based feature extraction method with several other feature extraction

techniques found in the literature by first applying them on system call logs of

real malware, and then evaluating them using Random Forest classifier.

As discussed above, machine learning based algorithms have gained special atten-

tion of the malware research community. The main reason behind using these

techniques is that they enable detection of a previously unknown threat using

models leaned from known malware. This is a key requirement in today’s cyber

world where millions of new malware are reported every day, and a large number

of the new malware is obfuscated from existing malware (Elhadi et al., 2014).

The machine learning based techniques generally require a feature vector repre-

sentation of malware, where a feature represents a particular malware attribute
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that can play a discriminatory role in the classification process. Extracting dis-

criminatory attributes pertaining to malware and representing them in a way to

be effectively used in a machine learning setting is a major challenge in the domain

of malware analysis and detection. Termed as feature extraction in the machine

learning paradigm, this process is a prerequisite to every malware detection tech-

nique proposed in the literature that employs a machine learning algorithm. When

malware’s behavior is represented as a sequence, use of feature extraction corre-

sponds to a sequence classification technique termed as feature based classification

(Xing et al., 2010).

In this chapter HMM is treated as a feature based classification method, and a

comparison of HMM based classification method with eight other methods of ex-

tracting features from sequences is reported using a comprehensive dataset which

contains system call logs of real malware. Specifically, sequences of system calls

are transformed into fixed length feature vectors by applying different feature ex-

traction methods, and these transformations are evaluated by performing malware

classification using Random Forest classifier on the feature vectors. There is no

gold standard dataset as such for performing a comparative evaluation of malware

classification techniques, and all of the feature extraction techniques have been

tested on different data. The main contribution of this work, therefore, is that it

compares different feature extraction methods on the same data, hence providing

an empirical comparative assessment of these methods. This research also adds

value to the knowledge by evaluating a novel approach of combining the features

extracted through different methods for the purpose of malware classification.

Liu et al. (2005) performed a similar study about ten years ago in which three

feature extraction methods were addressed. Spanning the research of the last

decade and earlier, th presented work covers a broader range of feature extraction

methods. A recent comparison of feature extraction methods can be found in

(Ranveer and Hiray, 2015) but it focuses mainly on a survey of such methods and

falls short of evaluating them on some benchmark data.
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This chapter proceeds as follows. Section 4.1 imparts some necessary background

knowledge on the feature selection methods being compared in this paper, and

provides examples of use for such methods from the literature. The methodology

adopted for the experiments is explained in Section 4.2. Results are presented and

discussed in Section 4.3.

4.1 Feature extraction methods for malware analysis

Machine learning algorithms learn the patterns from fixed length feature vectors,

and therefore feature extraction is the first step before using these algorithms

for malware analysis. For features that are in the form of sequences, such as

sequences of code bytes, operation codes (opcodes), system calls or API calls

etc., the creation of a representative feature vector is a non-trivial problem, and

hence various feature extraction methods have been proposed in the literature

for this task. Here the most widely used feature extraction and representation

techniques applied on sequences are outlined. A finite set S = {s1, s2, . . . , sn}

needs to be defined containing, in a specific order, all the unique symbols si allowed

to make up a sequence. The set S may be considered as a term dictionary in the

information retrieval terminology. Any arbitrary sequence, containing possibly

repetitive occurrences of elements of S in any order, can then be represented as

S = (sk)k∈{1..|S|}.

Let us consider, as an example, the following sequences containing occurrences of

three distinct elements a, b and c:

S1 = (c, a, b, c, b, b, a, c, c, b, a)

S2 = (b, a, c, c, a, a, c, b, a, c, a, c, b, b, c, c, a, b, b, a, c)

S3 = (a, c, a, a, c)

S4 = (b, c, c, b, a, a, b, a, c, c, b, c, c, a, a)

The term dictionary for the example dataset is represented by S = {a, b, c}.
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4.1.1 Binary feature extraction

The baseline method of extracting features from a sequence is to identify all the

distinct elements found in the sequence. The sequence can then be represented as

a binary vector of the same length as the term dictionary S such that each feature

in the vector signifies the presence or absence of the corresponding dictionary

term in the sequence. The resulting feature vector can be represented as VSb =

(bs1, bs2, . . . , bsn), where bsi is 1 if S contains at least one instance of si and 0

otherwise, and n is the size of S.

Using frequency feature extraction method, the given sequences of different lengths

can be represented as fixed length feature vectors in the following way.

VS1b = (1, 1, 1)

VS2b = (1, 1, 1)

VS3b = (1, 0, 1)

VS4b = (1, 1, 1)

It may be noted that the arrangement of features in all the feature vectors must

adhere to some predetermined sequence of distinct elements in the dataset (the

term dictionary) which, in this example, is (a, b, c). The first element of a feature

vector (the first feature) represents the presence or absence of the element a in

the original sequence, the second feature depicts the presence or absence of the

element b, and so on.

Examples from literature

Tian et al. (2010) proposed a binary feature technique for malware detection and

classification using API calls. The authors also experimented with the frequency

based methods on the same data but no improvement was observed over the binary

representation. In a similar approach, Devesa et al. (2010) monitored API calls of

malware and benign programs, and derived rules for extracting actions performed

by the programs from API call logs. The term dictionary therefore consisted of

the performed actions, and a binary feature extraction was performed.
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Schultz et al. (2001) used three kinds of static features extracted from DLL related

information, printable strings and binary code of malicious files. In case of the

code bytes, all the two-byte words found in malware code were combined into

the term dictionary, and binary feature representation was used for each malware

sample. Following their footsteps, Kolter & Maloof (2004) created features using

4-grams of byte codes from executables. Since the feature space grows rapidly with

increasing n, the authors used information gain to select 500 most representative

4-grams, and used them as binary features in various machine learning algorithms.

4.1.2 Frequency feature extraction

In this feature extraction method, the count of occurrence of a dictionary term in

the sequence is used instead of just its presence or absence (Santos et al., 2013).

Mathematically, this vector can be denoted as VSf = (fs1, fs2, . . . , fsn), where fsi

is frequency of the ith element of S in S.

Continuing with the above example, the frequency feature vectors representing the

four sequences can be computed as follows:

VS1f = (3, 4, 4)

VS2f = (7, 6, 8)

VS3f = (3, 0, 2)

VS4f = (5, 4, 6)

Examples from literature

Lee et al. (1997) modeled each 7-gram of system calls observed during execution

of normal and intrusive executions of Unix sendmail program as a binary feature

in their intrusion detection scheme. Alazab et al. (2010) represented the API

sequences with n-grams for values of n from 1 to 5. In order to keep the feature

space to a manageable size, frequencies of all n-grams for a given n were computed

for the whole dataset of malware and benign samples, and 100 most frequent n-

grams were selected to be included in the feature vector. Altaher et al. (2011)

extracted API calls from PE executables, and frequency of each API call was

considered as a potential feature. All the API calls were then ranked according
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to their information gain, and frequencies of top 50 API calls constituted the final

feature vector.

4.1.3 Frequency weight feature extraction

Frequency weighting methods such as term frequency-inverse document frequency

(TF-IDF) have also been employed to generate feature vectors from sequences

(Marian et al., 2012). TF-IDF is a statistic widely used in information retrieval

and text mining domains for calculating frequency based weights for terms in a

document in order to assess their relative significance.

The term frequency usually refers to the simple count of occurrences of a given

term, or word, in a document. The inverse document frequency is computed by

taking the logarithm of the total number of documents in the corpus divided by the

number of documents in which the given word appears at least once. These two

computational phenomena, when combined together, form a measure of impor-

tance of a word relative to other terms in the corpus. Given a term t, a document

d and a corpus (collection of documents) D, TF-IDF can be mathematically rep-

resented as:

tfidf(t, d,D) = tf(t, d).idf(t, d,D) (4.1)

where tf(t, d) = ft,d is the count of occurrences of term t in document d, and

idf(t,D) is given by Equation 4.2.

idf(t, d,D) = log
N

|{d ∈ D : t ∈ d}|
(4.2)

where N = |D| is the number of documents in the corpus.

In the above example, the elements of the sequences depict words whereas se-

quences represent documents; the corpus consists of the four sequences. The

TF-IDF for the elements a, b, and c in sequence S1 can be computed as follows:
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tfidf(“a”, S1) = 3.log(4
4
) = 0

tfidf(“b”, S1) = 4.log(4
3
) = 0.50

tfidf(“c”, S1) = 4.log(4
4
) = 0

In a general form, frequency weighting vector for S can be represented as VSfw =

(fws1, fws2, . . . , fwsn), where fwsi represents frequency weight for the ith element

of S as computed over S. For the given example, VS1fw = (0, 0.50, 0). The frequency

feature vectors for S2 and S3 can be computed similarly.

Examples from literature

A feature extraction method in the domain of intrusion detection is found in (Liao

and Vemuri, 2002) in which the authors constructed fixed length feature vectors

from system call sequences by computing TF-IDF as the weight for each unique

system call in the corpus, and using this weight as a feature. Research reported in

(Marian et al., 2012) made use of TF-IDF on frequencies of low-level kernel calls to

represent kernel calls made by a program as a weight vector which was then used

for cosine similarity computation. In recent works, Lin et al. (2015) suggested

computing of TF-IDF within each malware family, instead of on the whole corpus,

for feature selection.

4.1.4 Hidden Markov Model

Another method of extracting features from sequences is based on Hidden Markov

Models (HMMs) (Bicego et al., 2004). Although the authors of the referenced text

do not attribute their technique as a feature selection method, yet the process that

they have adopted performs the exact task of converting a given sequence into a

fixed length vector which can subsequently be used by a discriminative classifier

for the classification of sequences. The same method has been applied in the

similarity-based malware classification scheme presented in Chapter 3.

The technique presented in (Bicego et al., 2004) involves training one HMM for

every class of sequences. Let us suppose the input sequences belong to and are

labeled with m classes. Symbols in this case are represented by the individual

system calls. Let us further assume the total number of sequences to be k. After
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the training of HMMs has been done, there are m HMMs representing different

classes of sequences. The next step is to evaluate all k sequences against the m

HMMs and for each sequence its likelihood score is recorded as a feature. In this

way, a feature space consisting of k feature vectors is produced where each vector

is of length m. In mathematical notation, the feature vector for a sequence S

would be VShmm = (lS,1, lS,2, . . . , lS,m), where lS,i is the likelihood score obtained

by evaluating S against ith HMM.

Examples from literature

One of the few approaches employing Hidden Markov Model as a feature extraction

method was proposed by Annachhatre et al. (2014) who used opcode sequences

extracted from various compilers and virus generators to train HMMs. Opcode

sequences from malware samples were then scored against the HMMs to generate

the feature vectors which were then used for clustering of malware samples. As

discussed earlier, a variation of this method was proposed as a part of this research

which modeled malicious behavior instead of compiler behavior. In the proposed

approach, malware behavior was represented as sequence of system calls which

were used to train separate HMMs for different malware families. Known malware

were evaluated against the malware family HMMs and the resulting score vectors

were used to classify unknown malware using discriminative classifier.

4.2 Experiments

4.2.1 Feature set generation

Nine sets of feature vectors were generated against the system call sequences for

comparative evaluation of the feature extraction methods, as described below.

First, the feature extraction methods based on binary, frequency and frequency

weighting factors were applied on system call unigrams of all the 8,828 sequences

in the dataset. This resulted in three sets of feature vectors, namely unigram

binary, unigram frequency, and unigram frequency weighting sets.
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Since the sequential information in the input data is lost by applying the above

mentioned feature extraction methods on unigrams, therefore use of bigrams is

suggested in the literature to preserve the order of items (system calls in this

case) in the input data. For this reason, three more feature sets were obtained

by applying the binary, frequency, and frequency weighting feature extraction

methods on bigrams of system calls. The term dictionary for the system call

bigrams was populated with 2,745 unique bigrams extracted from the dataset,

and therefore each of the feature vectors for the bigram schemes included 2,745

features.

Some of the reviewed schemes performed feature selection based on Information

Gain. In order for this study to cover the feature selection aspect, feature ranking

on the bigram frequency feature set was performed based on Information Gain

using WEKA. The top 100 highest ranked (most significant) frequencies were

then selected as features in the seventh feature set, which will be referred to as

bigram freq IG set later in the document.

The eighth set of feature vectors was obtained by training 36 HMMs on system

call sequences belonging to the corresponding malware families. Each malware

sample was then scored against each of the HMMs to obtain the feature vector

composed of likelihood scores.

Another experiment was carried out to judge the impact of combining feature

vectors obtained through different feature extraction methods. As a trial, the

HMM based feature vectors were truncated with bigram freq IG feature vectors to

obtain the ninth and final feature set.

4.2.2 Feature set evaluation

For evaluating the nine sets of feature vectors obtained by applying various fea-

ture extraction methods, these sets were subjected to classification using Random

Forest classifier in WEKA version 3.7. Random Forest classifier was selected after
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Figure 4.1: Number of features extracted through different feature extraction
schemes

comparing its performance against various other classification algorithms includ-

ing J48 Decision Tree, k -NN, Näıve Bayes, and Support Vector Machine (SVM)

as described earlier in this document.

4.3 Results and discussion

Figure 4.1 shows the number of features extracted by the nine schemes discussed

above. The HMM based feature extraction method proved to be the most concise

in terms of the feature count with only 36 features representing arbitrarily long

sequences of system calls. On the other extreme, the number of bigram features

exceeded 2,700.

The graph of Figure 4.2 shows the effectiveness of feature extraction methods

on Random Forest classifier in terms of average F-measure across all the families.

Subsequently in this document, the term F-measure represents the averaged value.

To analyze the overall classifier performance for the top feature extraction meth-

ods (bigram binary and HMM methods), two types of comparison graphs are pre-

sented: A chart for the family-wise F-measure values against these two methods is

given in Figure 4.3, while Figure 4.4 shows the confusion matrices for classification

using the two methods respectively.
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Figure 4.2: Comparison of feature extraction methods using Random Forest
classifier

As it can be observed in Figure 4.2, features extracted through Hidden Markov

Model were the best representatives of malware behavior among all the other

individual methods. Classification using HMM features resulted in the highest

F-measure value of 0.87, which was 3.2% more than the next highest F-measure of

0.843 for the bigram binary features. This result, combined with the observations

made from Figure 4.1, signifies the expressiveness of HMM based features since

they were responsible for best classification while being smallest in number among

all other feature extraction methods. It also shows that HMM performs well

as a feature based classification method in comparison with other conventional

sequence classification methods for classification of malware.

A comparison of family-wise F-measures for bigram binary and HMM features is

given in Figure 4.3. Although for most of the malware families the classification

results for features extracted through the two methods are close, significant differ-

ence is observed in a few malware families such as BIFROSE, BUZUS, FRAUD-

LOAD and POISON. For these malware families, the bigram binary features had

scored a relatively low F-measure, but the HMM based features proved to be more

discriminative as depicted by their higher F-measure scores.
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Figure 4.3: Family-wise F-measure for bigram binary and HMM methods

Figures 4.4(a) and 4.4(b) show the confusion matrices for classification using the

bigram binary and HMM-based feature extraction methods respectively. The

vertical axes in these confusion matrices represent the actual malware families,

whereas the horizontal axes depict the predicted families. The shade of the box

at the intersection of ith row and jth column of the matrix represents the ratio of

samples of ith malware family classified as jth family to the total number of ith

family samples. The sidebars show the shades against ratio values: the darker the

shade, the greater the ratio. Consequently, the darker shades along the diagonal
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Figure 4.4: Confusion matrices for classification
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show that most of the samples were correctly classified. On the other hand, dark

colored boxes on either side of the diagonal represent misclassified samples.

The confusion matrices in Figure 4.4 reveal the reason for the difference seen in

F-measures for bigram binary and HMM-based features. The confusion matrices

are mostly similar, hinting that the classifier was able to discriminate between

malware families on the basis of features extracted through the HMM and bigram

binary methods alike. The difference is especially visible for BIFROSE and BUZUS

samples (shown in oval) which were misclassified as belonging to POISON family in

case of bigram binary features, but for HMM based features these misclassifications

were significantly less. This is an indication of supremacy of HMM based features

because the classifier was able to differentiate between closely resembling families

(BIFROSE and POISON, for example) on the basis of these features.

The feature extraction methods using bigrams were only marginally better than

unigram based methods with the exception of binary feature method, in which

case the unigram method showed slight improvement over bigram features. At

first glance this observation may seem to be erroneous, since losing the sequence

information in case of unigram should result in higher false positive rate, thus

making significance difference in the overall classification performance. A plausi-

ble explanation for comparable results is that the system calls for performing a

particular task are usually grouped together, and the sequence of calls within a

short group is generally maintained across all malware families. Therefore, there

do not seem to be many out of sequence system calls present in the dataset which

would lead to false negatives. One could, however, engineer a sequence by inject-

ing dummy or redundant system calls thus making a new malware look different

from the known malware, which would result in a misclassification.

Applying TF-IDF weighting scheme had an insignificant, albeit slightly negative,

effect on classification performance as compared to using absolute (raw) frequen-

cies on both unigram and bigram sets. This result suggests that the patterns of
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individual system call frequencies are quite specific to malware families, there-

fore using the normalized and corpus-wise frequencies did not add any useful and

discriminative information to the feature set.

Binary feature method remained below frequency feature scheme in unigram based

representation but was better using bigrams, although the difference was negligible

in both cases. The fact that binary and frequency methods produced similar results

further strengthens the earlier observation that system calls made by malware

belonging to a specific malware family are distinct from other malware.

The average F-measure for the bigram frequency IG feature set, obtained after

applying feature selection to the bigram frequency set, decreased to 0.833 from

0.841 for the original feature set. In other words, an approximately 1 decrease

in classification performance was observed for a 96.4 decrease in the number of

features. The loss in classification performance is negligible against the reduction

in features, yet these two factors should be weighed before using feature selection

in a given malware analysis scenario.

In case of the combined HMM and bigram frequency IG feature vector, the average

F-measure increased to 0.885, which is a gain of 1.7% as compared to the F-measure

value of 0.87 for the individual HMM feature set, and 5.2% more against the F-

measure of 0.841 for bigram frequency IG feature set. This is an encouraging result

and paves the way for further research on using various combinations of feature

vectors for the task of malware detection and classification.
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Chapter 5

Effect of number of hidden states on

classification performance using HMM

Extensive research is being carried out in the domain of malware analysis and de-

tection to counter the rapidly growing malware threat. Among all these malware

detection methods, statistical and probabilistic schemes have been shown to be

more effective than others. As a consequence, more and more research is being con-

ducted on use of machine learning techniques, which have their roots in statistics

and probability, for analyzing and detecting malware. Recent research in the do-

main of malware analysis has seen growth in use of Hidden Markov Model (HMM)

for tasks such as malware classification and clustering. Researchers have proposed

various ways of exploiting the powerful pattern matching capabilities of HMM for

differentiating malware from cleanware, as well as for classifying among malware

families. In this chapter the current state-of-the-art in HMM-based malware anal-

ysis is extended in two dimensions. First the impact of number of hidden states

on classification performance of the proposed HMM-based malware classification

technique is studied. Led by the observations from this experiment, the HMM

component of the classification method is replaced with a Markov Chain Model

(MCM), and the proposed method is compared with the HMM-based method from

effectiveness and efficiency perspectives.

HMM has been discussed in detail in Chapter 2; to fix ideas a brief overview is

provided here. An HMM is used to model a given sequence as a doubly stochastic

process. If treated as a state machine, HMM represents a process in terms of hidden

states through which the process transits according to a probability distribution

often represented as a state transition matrix (referred to as A matrix in literature).

Progress of the process (the state machine) is observable through symbols which

are emitted by each state following a second probability distribution called the
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B matrix. Given a sequence, the Baum-Welch algorithm (Rabiner, 1989) is used

to estimate the optimal A and B matrices that best fit the given observations

(elements of sequence) into the specified number of hidden states.

The number of hidden states, thus, plays a vital role in the HMM modeling pro-

cess. Unfortunately, there is no fixed rule for determining a globally optimal value

for this parameter; an understanding of the data being modeled is necessary for

specifying the number of states in a given problem. An interesting example con-

cerning application of HMM for modeling text can be found in (Cave and Neuwirth,

1980). The experiment involved modeling a two-state HMM over characters ex-

tracted from a well-known piece of English literary text. After the HMM had been

trained, analysis of B matrix revealed that the two states corresponded to vowels

and consonants of the English language. It can be inferred from this experiment

that HMM states used for modeling the given data should represent some intrinsic

structural unit in the data, and this factor should be reflected in the specified

number of hidden states. Similarly, while using HMM in speech recognition ap-

plications, states could represent the phonemes in case of discrete word analysis

(Rabiner, 1989), or acoustic-phonetic units of the language in case of continuous

speech synthesis (Levinson, 1987).

A survey of literature on application of HMM in malware analysis shows that

the number of HMM states for modeling malware behavior has been usually de-

cided using the trial and error approach by experimenting with different values

and selecting the one which produced the best results. In other words, concrete

reasoning behind using a particular number of hidden states, or an analysis of the

underlying properties of data, has not been generally demonstrated by researchers.

Austin et al. (2013) went a step further and studied the transition and observation

probability matrices against different number of states to find the significance of

these probabilities. They reported their observations on the groupings of symbols

within the hidden states which, although being valid information, may not be

helpful in determining an optimal number of hidden states for their data. Fur-

thermore, there has not been any attempt to study the impact of the number of
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hidden states on performance of any given HMM-based classification method in

terms of classification accuracy or efficiency.

In this chapter first the effect of number of HMM states on classification perfor-

mance is analyzed using the similarity-based malware classification method on two

different datasets containing behavioral reports of real malware in terms of system

call and API call logs. The number of HMM states is varied according to justifiable

criteria, and the outcome is analyzed with an aim to find a relationship between

the number of states and classification performance. Observing that the best per-

formance is obtained in case of the number of states being equal to the number

of unique observation symbols in the data, it is proposed to model the malware

behaviors using MCM in place of HMM and the classification performance as well

as efficiency aspects of the two approaches are compared on a larger and more

diverse system call dataset.

This chapter proceeds as follows. The next section describes the experiments for

observing the effect of number of hidden HMM states on performance of malware

classification and discusses the outcome. Section 5.2 gives a brief overview of

Markov Chain Model and discusses time complexities of training and evaluating

Markov Chain Model and Hidden Markov Model. Section 5.3 reviews some pre-

viously proposed methods for malware classification involving MCM. Comparison

of MCM and HMM is provided in Section 5.4, and results of the comparison are

discussed in Section 5.5.

5.1 Studying the effect of HMM states on classification

performance

For conducting this study the similarity-based malware classification scheme pre-

sented in Chapter 3 was adopted. The proposed technique was used to observe the

impact of number of hidden states on malware classification using two different

datasets consisting of system call and API call logs of real malware samples. For

reference, a brief description of the malware classification method is provided here

which is followed by details of experiments using both the datasets.
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Table 5.1: System call dataset for study of hidden states

S. No. Malware Number of Observation sequence length
Family samples Min. Max. Avg. Combined

1 ADULTBROWSER 262 717 1011 739 193,618
2 AGENT 400 16 89,031 2931 1,172,304
3 BUZUS 142 15 51,697 2819 400,298
4 CASINO 140 296 1900 409 57,260
5 EJIK 168 236 250 242 40,656
6 TEXEL 400 15 43,528 316 126,485

Total: 1512 1,990,621

5.1.1 Malware classification using HMM

The proposed malware classification scheme consists of two steps. In the first

step, malware families are modeled using HMM and then each malware sample is

evaluated against each of the HMMs in order to obtain its similarity score in the

form of a feature vector. In the second step, feature vectors for all the malware

samples are used to train a distinctive classifier which can then classify a malware

sample, given its similarity vector, into one of the malware families.

5.1.2 Using system call dataset

The first dataset that was used for this study is a subset of data employed in the

earlier experiment (described in Chapter 3) which, in turn, was reduced and trans-

formed from (Rieck et al., 2011). The dataset includes system call logs of malware

recorded by executing them in CWSandbox (Willems et al., 2007), and converted

to numerical representation as described in Chapter 3. Based on observations

from the cited work, six malware families were selected including three families

for which the HMM-based malware classification method had performed well and

three families for which the classification results were below average. Table 5.1

provides details about the malware families including the number of samples as

well as the minimum, maximum, average and cumulated number of observations

in each family.
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For the current experiment, a total of six HMMs were trained, each representing

behavior of a particular malware family. Evaluation of malware samples produced

a set of feature vectors including 1,512 instances, each representing a malware

sample’s similarity with all the malware family models.

This experiment was performed in five stages, modeling the HMM with a different

number of states (2, 5, 10, 20 and 120) in each stage. The number of states in the

lower range (2 and 5) were chosen because earlier research (Wong and Stamp, 2006)

had shown promising results with these numbers of states. On the other extreme

120 was the biggest number of states to experiment with, which corresponded to

the total number of unique system calls in the data, as suggested in (Warrender

et al., 1999). Similarly, the number 20 represented the number of system call

categories. The category information is not explicitly present in the data, and the

reason for experimenting with this value was to see if HMM trained with 20 states

can somehow reflect this implicit feature of data. In between the extremes, data

was modeled using 10 states as a median value. Figure 5.1(a) plots the F-measure

of HMM-based classification method against different number of states.

5.1.3 Using API call dataset

In order to ascertain the findings from the first experiment using system call

dataset, the same experiment was performed on another dataset which comprised

of API calls recorded through dynamic analysis of malware samples. API calls are

another effective representation of a program’s actions, and therefore considerable

research in malware analysis is based on such calls (Shankarapani et al., 2011;

Alazab et al., 2011; Elhadi et al., 2014). There are two ways of extracting API

call sequences corresponding to a program: static and dynamic. In static method,

API calls are extracted from the disassembled binary code of the program file,

while dynamic API calls are recorded by executing the program in a sandbox or

virtual machine. Since dynamic API trace captures the actual actions that the

program performed during execution therefore the dynamic API calls were used

in this experiment.
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Table 5.2: API call dataset for study of hidden states

S. No. Malware Number of Observation sequence length
Family samples Min. Max. Avg. Combined

1 AGENT2 244 1 26,980 1359 331,596
2 BIFROSE 225 2 30,841 1753 394,425
3 DELF 230 1 148,490 6784 1,560,320
4 POISON 248 1 80,192 2395 593,960
5 VB 250 85 139,530 5879 1,469,750

Total: 1197 4,350,051

To prepare the API call dataset first 1,197 labeled malware samples belonging

to five malware families were downloaded from VX Heaven1 which is an online

malware repository. The malware samples were then analyzed using an online

dynamic analysis service, malwr2, which generated analysis reports for all samples.

A typical report includes static as well as dynamic analysis but since only the API

call trace was required therefore the sequences of API calls were extracted from all

the reports. A total of 145 unique API calls were identified from the API sequences.

The next task was to replace the system call names with unique identifiers so the

API calls sequences were represented as sequences of arbitrary lengths, containing

numbers in the range from 1 to 145. Table 5.2 provides details about malware

families included in the API call dataset.

The number of hidden states for this experiment on API call dataset were selected

to be 2, 5, 10, 13 and 145, where the values 13 and 145 corresponded to the number

of API call categories and unique API calls present in the data, respectively.

Following the same methodology as that used for the system call data, first a total

of 1,197 feature vectors were generated using the HMM modeling and evaluation

in Matlab, followed by classification of these feature vectors using the Random

Forest classifier in WEKA. Classification results against various number of hidden

states for the API call dataset are shown in Figure 5.1(b).

1http://vxheaven.org/
2https://malwr.com/
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Figure 5.1: Impact of number of HMM states on F-measure

5.1.4 Observations from the study

The graphs of Figure 5.1 show that for both the datasets no linear relationship

exists between the number of hidden states and classification performance. How-

ever, one common finding from the two experiments is that maximum F-measure

is achieved when states are kept equal to the unique observation symbols in the

data. From this observation it is hypothesized that the simple Markov Chain

Model (MCM) should be a better choice of model in this scenario since it also

treats each symbol as a separate state and, therefore, should be at least as effec-

tive as HMM. Furthermore, modeling an MCM is theoretically more efficient than

HMM as discussed earlier. To test this hypothesis experiments were performed

on larger dataset consisting of system call logs of real malware using the same

malware classification method, once modeling the malware behavior using HMM

and then with MCM. These experiments are discussed next.

5.2 Markov Chain Model

Here a review of the Markov Chain Model is provided. The theoretical time

complexities for training and testing phases of MCM and HMM are also discussed.

A Markov chain is a probabilistic process, often represented as a finite state ma-

chine, which undergoes state change according to a set of state transition proba-

bilities denoted by a state transition matrix. The underlying assumption behind

a Markov chain is that the process obeys the Markov property, that is, every state
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is only dependent on previous k states for a k th-order Markov chain. The sim-

plest form of Markov chain is the first-order chain in which the next state can be

predicted on the basis of current state only.

A Markov Chain Model can be used to represent an arbitrarily long sequence whose

elements come from a finite set. In such a model, the sequence is assumed to be a

Markov process such that the states come from a finite state space (usually com-

posed of unique items present in the sequence) while two consecutive items of the

sequence represent a state transition. A given Markov chain x = {x1, x2, x3, ..., xq}

can be modeled by a state transition matrix A, which stores the transition prob-

abilities for all pairs of states i and j as given by Equation 5.1.

Ai,j = P (xt = j|xt−1 = i) (5.1)

To calculate these probabilities, the Maximum Likelihood Estimation procedure

can be adopted using the counts, for all pairs of states i and j, of the number of

transitions from state i to state j and the total number of transitions from state

i, as represented by Equation 5.2.

Ai,j =
Ni,j∑n
k=1Ni,k

(5.2)

Elements of the transition probability matrix are row-stochastic, such that:

n∑
j=1

Ai,j = 1, i = 1, 2, 3, ..., n (5.3)

where n represents the total number of states in the model. It may be noted that

this method of learning the Markov Chain Model is also applicable for modeling a

set of sequences representing processes that share some common properties (such

as behavior reports of different malware of the same family). In such a case,

calculation of Ni,j and Ni,k in Equation 5.2 is performed over all the sequences.

Once a model has been derived for a given sequence (or a set of sequences)

in the form of a state transition matrix, the probability that another sequence
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y = {y1, y2, y3, ..., yr} is generated by the same model can be calculated by using

Equation 5.4 (Durbin et al., 1998).

P (y) = P (yr|yr−1)P (yr−1|yr−2)...P (y2|y1)P (y1) (5.4)

Simplifying Equation 5.4 yields:

P (y) = P (y1)
r∏

i=2

P (yi|yi−1) (5.5)

The transition probabilities can be replaced by values in the transition probability

matrix, resulting in Equation 5.6.

P (y) = P (y1)
r∏

i=2

Ayi−1,yi (5.6)

Since computing the product of probabilities can lead to underflow therefore it is

convenient to use the log of probabilities and sum them up instead. Also, the value

P (y1) represents the probability of the sequence to start from the first symbol, and

is generally ignored for simplicity, further reducing the Equation 5.6 as:

P (y) =
r∑

i=2

log(Ayi−1,yi) (5.7)

5.2.1 Time complexity of Markov Chain Model

Time required to compute the transition matrix of a given sequence (also referred

to as the time for modeling the sequence later in this document) containing n

elements is O(n), because just one pass over the sequence is needed. Similarly,

computing the probability of a given sequence against a model (state transition

matrix) is also linear with respect to the number of elements in the sequence.

5.2.2 Time complexity of Hidden Markov Model

Time complexity of the forward algorithm, which is a key part of both the Baum-

Welch and forward-backward algorithms, is reported as O(N2T ) in the literature
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(Rabiner, 1989), where N represents the number of hidden states and T is length

of the sequence. It may be noted that Baum-Welch is an iterative algorithm which

continues for a predefined number of iterations or unless the estimated parameters

in two consecutive iterations are within a specified threshold. Therefore, the time

complexity for the Baum-Welch algorithm gets multiplied by the number of iter-

ations. Similarly, the forward-backward algorithm for computing similarity score

of a sequence against a given model also uses a backward algorithm in addition to

the forward algorithm (hence the name forward-backward) therefore its time com-

plexity becomes O(2 × N2T ) in reality. Although multiplication with a constant

term is ignored while computing the theoretical time complexity of algorithms,

these multiplicative factors do play a significant role in real applications, as will

be shown and discussed in Section 5.5.

5.3 Markov Chain Model for malware classification

In this section a few representative research efforts in the field of malware detection

and classification are discussed that are based on Markov Chain Model.

In one of the previously proposed malware detection and classification schemes

based on Markov chains, Shafiq et al. (2008) used the byte representations of

different kinds of documents as 1st order Markov chains in which the 256 states

corresponded to all possible byte values. It was shown that malware detection

in documents was possible by using the difference in entropy rate of the state

transition matrices for original (benign) and infected version of the same file.

Andserson et al. (2011) generated Markov graphs from instruction traces of pro-

grams, and used a combination of Gaussian and spectral kernels as the similarity

measure in Support Vector Machine for malware detection as well as classification.

The authors reported that the proposed technique performed better than malware

detection methods based on n-gram and signatures.

In (Colbaugh et al., 2013), Colbaugh et al. represented opcode (operational code)
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sequences of benign and malware programs as Markov chains, and used Kullback-

Leibler divergence to find differences between state transition matrices computed

from these Markov chains. The pair-wise differences of each program with every

other program were concatenated in form of feature vectors, which were then used

for malware detection by performing a binary classification with the help of a

semi-supervised classifier.

In a similar approach, Wang et al. (2013) calculated pair-wise similarity between

two malware samples by computing the probability of each sample against the

state transition matrix of the other, and used the sum of these probabilities as

the distance measure for feature vector generation. Clustering of malware on the

basis of generated feature vectors showed encouraging results.

Storlie et al. (2014) have proposed and implemented a system for malware clas-

sification. The system models dynamic instruction trace as Markov chain and

creates a probability matrix based on transitions between instructions. Using the

logistic spline regression algorithm on the probability matrices, the system per-

forms statistical classification on dynamic traces of malware and benign programs.

To filter the insignificant model parameters from the high number of actual pa-

rameters, the authors have adopted the Relaxed Adaptive Elastic Net estimation

algorithm. The resulting system is able to perform classification between malicious

and benign programs with an accuracy of 97.6%. The authors conclude that other

model-based approaches based on Markov chains may also prove to be effective

for malware classification.

5.4 Comparison of Hidden Markov Model and Markov

Chain Model

To evaluate and compare HMM and MCM the same system call dataset (Table

3.1) was chosen as used in experiments discussed in Chapter 3 with the exception

of BUZUS and ROTATOR families. The reason for omitting these two families

from the current experiment was that the number of observation symbols in these

two families was very large (around 30 million combined) and modeling these

103



families with 120 states was taking a long time. It may be noted that even without

including these two malware families, the size of dataset is comparable to average

dataset size used in experiments previously reported in literature (Table 2.2).

5.4.1 Malware classification using HMM

The two differences between the first study on hidden states and this experiment

lie in the size of dataset and number of hidden states used. In this experiment

the number of malware samples was 8,128 therefore the feature space generated

by the HMM modeling and evaluation stage included 8,128 feature vectors, each

with 34 features corresponding to the similarity scores of malware samples against

the 34 modeled HMMs. Furthermore, HMM modeling was done with 120 hidden

states. As before, the feature vectors were classified using Random Forest classifier

in WEKA.

5.4.2 Malware classification using MCM

For performing malware classification using the Markov Chain Model, the first step

of the aforementioned HMM-based malware classification method was modified

by modeling the malware families using Equation 5.1, and evaluating all malware

samples against all models using Equation 5.7. The equations for sequence mod-

eling and evaluating were implemented in Matlab R2013a. The obtained feature

vectors were subjected to the classification process using Random Forest classifier

in WEKA. 10-fold cross validation was performed for evaluating the classification

performance.

5.4.3 Efficiency aspects

In order to perform a comparative analysis of HMM and MCM methods from

efficiency angle, the sequences representing system call logs of VIKING DLL family

were taken and ten sets of sequences were extracted such that the combined number

of system calls in each set was multiple of 30,000. The idea was to evaluate the

scalability of these two methods by observing time requirements against various

sequence lengths. The HMM- and MCM-based training and testing procedures
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were performed for the ten sets, and the Matlab code for modeling and evaluating

the two methods were enclosed within pairs of tic and toc commands to record

the time consumed by these tasks for each set. For HMM modeling the number of

hidden states was set to 120. Since the classification time in WEKA is the same

for both the methods therefore this factor was excluded from time complexity

comparison.

The experiments were performed on a system with 2.5 GHz Intel R© CoreTM i5

processor and 4 GB RAM.

5.5 Results and discussion

Figure 5.2 shows the comparison of HMM- and MCM-based classification methods

for the system call dataset in terms of F-measure. For certain malware families

such as ALLAPLE, EJIK, CASINO etc., both the methods obtained compara-

ble, high F-measure scores. For most of the malware families, though, F-measure

scores for the two methods were different; in some cases the HMM-based method

performed better while MCM-based method was winner in others. Overall perfor-

mance of the MCM-based classification method in terms of weighted average of

F-measure score over all the malware families was the same as the HMM method.
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Figure 5.2: Comparison of F-measures for HMM- and MCM- based classification
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Figure 5.3: Confusion matrices for classification

It is obvious from Figure 5.2 that both these methods performed differently for

most of the malware families, and therefore no clear advantage of either method

can be ascertained over the other. Apart from the case of TEXEL and PATCHED

family malware, where both the methods misclassified in a similar fashion, the con-

fusion matrices for these methods show gray boxes in different regions as depicted

in Figure 5.3. From this result it was intuited that a combination of HMM and

MCM might improve the results of the individual modeling methods. To evaluate

this idea the feature vectors generated by both the models were concatenated so

that each feature vector represented a malware sample’s similarity with 34 HMMs

and 34 MCMs, resulting in 68 features. Classifying the feature vectors using Ran-

dom Forest classifier in WEKA confirmed the intuition, and the combined HMM

and MCM methods gained almost 1.5% in F-measure over the individual methods

as shown in Table 5.3.

Figure 5.4 plots the training (modeling) and testing (evaluation) times required

by the HMM and MCM methods against sequences of different lengths. It may

be noted that a comparison between the HMM and MCM modeling methods

Table 5.3: Classification results in terms of weighted average F-measure

F-measure Gain
HMM MCM Combined
0.869 0.87 0.883 1.49%
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could not be presented using a graph in linear scale due to the huge difference in

execution time for these two methods, and therefore logarithmic scale has been

used. Slopes of all the curves in the figure may look similar but in fact the HMM

curves are much steeper than MCM curves, signifying that modeling time in case

of HMM increases much faster than its MCM counterpart as the length of sequence

increases. It is further emphasized that the comparison shown in Figure 5.4 was

made on sequence lengths of 30,000 to 300,000 whereas the cumulative length of

all the sequences in the dataset exceeds 35 million. Hence for evaluation of the two

methods on the whole dataset, it took several days for modeling all the malware

families in the dataset using HMM while the MCM learning was completed in a

few seconds.

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10000 

30 60 90 120 150 180 210 240 270 300 

Ti
m

e 
(s

ec
on

ds
) 

No. of observations (thousands) 

HMM Training 

HMM Training per Iteration 

HMM Testing 

MCM Training 

MCM Testing 

Figure 5.4: Time required for training and testing the HMM and MCM

An interesting observation that can be made from Figure 5.4 is that HMM model-

ing time does not always increase with the number of observations in the training

sequence. This is because one important aspect of HMM modeling, which is not

shown in this graph, is the number of iterations took by the HMM modeling al-

gorithm to optimally estimate HMM parameters. When learning the parameters

of an HMM model, i.e. the three probability distribution matrices, these matri-

ces are initialized with random values. Therefore HMM modeling itself becomes

a non-deterministic process such that the number of iterations for obtaining an
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optimal model depends upon the initial probability distributions. That is why

the curve for HMM modeling time shows dips and spikes. To give an idea of the

relationship between modeling time and length of the sequence, Figure 5.4 also

plots the HMM modeling time per iteration against the sequence length. It is clear

from this graph that as the number of observations in the sequences grows, the

HMM modeling time grows steeply and therefore HMM may not be suitable for

any practical application involving large volumes of sequential data pertaining to

malware behavior.

Figure 5.5 shows the number of iterations against number of hidden HMM states

for various sequence lengths. An upward trend is observable in the graph from left

to right, signifying the general rule that for any given sequence length the number

of iterations required to reach satisfactory model parameters increases with the

number of hidden states. That is the cause of increased time requirements with

higher number of hidden states when training an HMM, and therefore training

HMMs with the number of states equal to the number of observations is not

practically viable.
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Figure 5.5: Number of iterations against sequence length for HMM training

Whereas the time required for modeling a sequence using the Markov Chain Model

depends only on the number of items in the sequence, learning the parameters of
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the same sequence for a Hidden Markov Model takes into account two more fac-

tors: the number of hidden states and the number of iterations. These additional

factors heavily effect the computational time required for modeling and evaluating

sequences. In addition, the optimal number of states for the malware classification

scenario depends on the underlying data and there does not exist a fixed formula

for determining this important parameter for HMM modeling. It, therefore, be-

comes a matter of trial and error to find the optimal number of states for modeling

malware behavior. This fact further weakens the case of using HMMs for a realistic

application in malware analysis domain.

Researchers have tried to model malware behaviors using HMM with different,

usually randomly chosen, number of states with a hope to capture some hidden

pattern inside the data. This dissertation argues that HMM may be very effective

for sequential pattern matching and classification tasks in some domains, but its

usefulness for malware analysis cannot be ascertained unless concrete reasons are

established for specifying the state configuration for some given data. It can

thus be concluded that if HMM needs to be applied to the malware classification

problem in a meaningful way, a deep understanding of the data to be modeled is

required so that HMM parameters can be set to justifiable rather than random

values.

The results of comparison conducted in this chapter confirm the hypothesis that

Markov Chain Model performs at least as well as the Hidden Markov Model in a

malware classification application. Furthermore, there is a clear indication that the

MCM-based malware classification scheme is superior to the HMM-based method

from the efficiency standpoint. Although the advantages of using Markov chain

method over Hidden Markov Model have been shown using just one malware

classification scheme, it is postulated that other malware analysis methods which

are based on HMM can also benefit from the observations made in this research.
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Chapter 6

Conclusions

With an ever increasing number of computer devices, including but not limited to

personal computers, servers and mobile phones etc., the playground for malware

developers has becoming vast. Availability of malware creation kits and obfusca-

tion tools has made the task of cyber security professionals hard since new malware

variants can be quickly flooded into the computer networks with little effort.

The huge number of new malware variants reported everyday have to be analyzed

in order to determine the family of known malware they belong to. This informa-

tion is necessary for the developers of ant-malware products and services for an

efficient update and delivery of the respective signature to the client computers

worldwide. Malware classification has thus become an active area of research in

the broader domain of cyber security.

After a careful analysis of the prevailing situation of malware threat and critical

review of literature, this dissertation identified that effective and efficient malware

classification is an open research challenge. The particular focus of research for

this dissertation was the evaluation of a popular and effective sequence classifica-

tion tool, Hidden Markov Model, in combination with dynamic program features,

for malware classification problem. Hidden Markov Models have been widely and

effectively used for sequence classification problems in domains sch as speech anal-

ysis, behavior modeling and handwriting recognition etc., and therefore their use

for malware classification was also in order.

The problem statement for this thesis raised three research questions:

1. How can HMM be used to classify malware on the basis of their behavior?

2. What is the role of number of hidden states when using HMM for malware

classification?
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3. How efficient is HMM based malware classification to be used in practical

situations?

Chapter 3 of this dissertation addressed the first research question by proposing

a method of using Hidden Markov Model to classify malware on the basis of a

sequential representation of malware behavior, and analyzing the effectiveness of

the proposed method on behavioral profiles of real malware in terms of system calls.

The proposed method was compared against other methods including the state-

of-the-art, and it was concluded that HMM can be used for effectively classifying

unknown malware samples into known malware families on the basis of malware’s

dynamic behavior.

The similarity-based method, proposed in this research, can be regarded as a fea-

ture based sequence classification technique, since it transforms variable length

behavioral profiles into fixed width vectors which can be used to train a discrim-

inative classifier. Evaluating the effectiveness of similarity-based malware classi-

fication method with respect to this aspect was an extension of the first research

question, and was discussed in Chapter 4. After a survey of literature on fea-

ture extraction methods used for converting variable length sequences into fixed

length feature vectors in malware analysis domain, various commonly used meth-

ods were implemented and compared against the HMM-based method by using

the obtained feature vectors to train a discriminative classifier. The results of this

experiment revealed that the HMM-extracted features had more representative

power than other methods because they resulted in better classification perfor-

mance with fewer number of features, and hence HMM’s significance as a feature

based malware classification method was ascertained. It was also learned through

experimentation that a combination of HMM-extracted features with other fea-

tures can enhance the effectiveness of feature set.

The second and third research questions were answered in Chapter 5, which fo-

cused on studying the impact of number of hidden states on the classification ac-

curacy of the proposed similarity-based malware classification method. This study
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yielded interesting results about the suitability of HMM for malware classification

task. Based on observations from the study, an alternative method of malware

classification was proposed which made use of the simpler Markov Chain Model

(MCM). Upon comparison with HMM based method, the MCM based malware

classification technique proved to be much more efficient without compromising

the desired accuracy. The study also concluded that in case HMM performs well

in a given scenario, its results can be further improved by using it in combination

with MCM at negligible extra computational cost. One important observation

from this study is that Hidden Markov Model has been used for the task of mal-

ware detection and classification without a deeper understanding of the concept,

and that the properties of data to be modeled are not being thoroughly analyzed.

This leads to a situation where the learned model does not relate to the hidden

semantics of the data, and therefore defeats the very purpose behind using the

Hidden Markov Model.

In summary, this research filled a significant gap in the HMM-based malware

classification domain by identifying and addressing shortcomings in the previously

proposed schemes found in literature. The contributions of this research are:

1. A broad literature survey was conducted covering the classic as well as the

state-of-the-art approaches in malware analysis, detection and classification.

2. Previously proposed HMM-based malware classification methods were criti-

cally analyzed and evaluated against criteria inferred from the literature.

3. A novel method of malware classification were proposed which involved train-

ing of Hidden Markov Models over behavioral profiles of malware.

4. The proposed method was evaluated using comprehensive dataset containing

behavioral reports of real malware

5. Another comparison was performed between the proposed similarity-based

method and various other feature extraction methods to further strengthen

the effectiveness of proposed method.
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6. The effect of number of hidden HMM states on classification performance

was studied and consequently the HMM’s efficiency aspects were analyzed.

7. Identifying the HMM modeling and evaluation stages as the performance

bottlenecks for the proposed malware classification scheme, an enhancement

was proposed and evaluated that replaced HMM with Markov Chain Model.

8. A novel combination of HMM and MCM based methods was proposed and

evaluated for the task of malware classification.

A comparison of the proposed similarity-based method with previous HMM-based

malware classification approaches, in light of the criteria proposed in Chapter 2,

is presented in Table 6.1.
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Table 6.1: Comparison of HMM-based malware classification methods

S.No. Reference Feature
Performance
(metric)

Dataset size Comparison
States
analysis

Efficiency
analysis

1 (Warrender et al., 1999) Dynamic (Sys. calls) 96.9% (TPR) 92,000 X
2 (Wong & Stamp, 2006) Static (opcode) Not reported 200
3 (Attaluri et al., 2009) Static (opcode) ˜67% (Det. Rate) 280
4 (Ravi et al., 2013) Dynamic (Sys. calls) 0.964 (Acc.) 19,000
5 (Austin et al., 2013) Static (opcode) 87% (Det. Rate) 60 X
6 (Annachhatre et al., 2014) Static (opcode) 0.94 (AU-ROC) 8,119
7 (Damodaran et al., 2015) Static, dynamic, hybrid N/A 785
8 Proposed approach Dynamic (Sys. calls) 0.994 (F-measure) 8,182 X X X
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6.1 Limitations

The malware classification method proposed and evaluated in this research in-

volved training probabilistic models on malware’s dynamic behavioral features.

As the literature suggests, dynamic analysis has certain limitations such as time

required for executing the malware samples and recording their behavior, inability

to cover all execution paths and random behaviors, etc. The work presented herein

is thus prone to the same limitations.

6.2 Future work

Some possible directions for future research on the topic addressed in this disser-

tation are described below:

• This work can be extended in the future by using other presentations of

malware behavior such as opcodes or instruction sequences for evaluating

the HMM-based malware classification methods proposed in this disserta-

tion. Similarly, experimenting with hybrid set of features might also be an

interesting extension of the presented work.

• The feature extraction methods used in this research (discussed in Chapter

5) have been evaluated on system calls at a somewhat middle level of gran-

ularity. A higher level, according to MIST format, would be the category

level (file system, registry, communication, etc.) and a lower granularity

would include system call parameters as well. Experimenting with lower

granularity may produce better results for all the schemes but will incur

more computational overheads since the combination of a system call with

different parameters will result in a greater number of distinct elements in

the term dictionary. A possible extension of this study, thus, could include

evaluating the feature extraction methods for different granularities of the

input sequences.

• The effect of number of hidden states has been observed from the perfor-

mance perspective in this research. Analysis could also be performed from
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another angle by studying the A and B matrices for different numbers of hid-

den states in order to get an insight into what the hidden states represent

for malware classification task.
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