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ABSTRACT 

 
3D face recognition has made considerable progress during the last decade as an 

emerging biometric modality. In order to ensure reliable 3D face recognition, novel 

3D alignment and recognition algorithms are proposed in this research work. The 

principal objective of this dissertation is to investigate and introduce novel techniques 

to construct a fully automatic 3D facial recognition system. 

The first study presents a novel, pose and expression invariant approach for 3D face 

alignment based on intrinsic coordinate system (ICS) characterized by nose tip, 

horizontal nose plane and vertical symmetry plane of the face. It is observed that 

distance of nose tip from 3D scanner is reduced after pose correction which is 

presented as a quantifying heuristic for the proposed alignment scheme. In addition, 

motivated by the fact that a single classifier cannot be generally efficient against all 

face regions, a two tier ensemble classifier based 3D face recognition approach is 

presented which employs Principal Component Analysis (PCA) for feature extraction. 

The individual regions are classified using Mahalanobis Cosine (MahCos) distance, 

Euclidean distance, Mahalanobis (Mah) distance, and Manhattan distance in separate 

experiments. The resulting matching scores are combined using weighted Borda 

Count (WBC) based combination and a re-ranking stage. The performance of the 

proposed approach is corroborated by extensive experiments performed on two 

databases, namely, FRGC v2.0 and GavabDB, confirming effectiveness of fusion 

strategies to improve performance. 

In the second study, a novel and fully automatic pose and expression invariant 3D 

face recognition algorithm is proposed using two-pass 3D face alignment based on 

minimum distance and two-pass 3D face alignment based on classification approach. 

The proposed alignment approaches are capable of aligning neutral and expressive 3D 

faces acquired at frontal and non-frontal poses whereas the former is capable of 

aligning profile face images as well. For the face recognition framework, multi-view 

3D faces are synthesized to exploit real 3D facial information. The matching scores 

are computed between multi-view face images using Mahalanobis Cosine (MahCos) 
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distance, Euclidean distance, Mahalanobis (Mah) distance and Manhattan distance in 

separate experiments. Inspired by the effectiveness of fusion approaches, Support 

Vector Machine (SVM) is employed using scores obtained from multi-view face pairs 

for face verification. In addition, a three stage unified classifier based face 

identification algorithm is employed which combines results from seven base 

classifiers at first stage, two parallel face recognition algorithms at second stage and 

an exponential rank combiner at third stage in a hierarchical manner.  

For profile face images, the face identification algorithm combines results using four 

base classifiers, two parallel face recognition algorithms and the rank combiner stage. 

The performance of the proposed methodology is demonstrated by extensive 

experiments performed on two databases: FRGC v2.0 and GavabDB. The results 

show that the proposed methodology can be efficiently used to construct a pose and 

expression invariant facial recognition system. 
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Chapter 1 

INTRODUCTION 

1.1 Overview 

Biometrics refer to physiological and behavioral attributes of human beings which are 

used for their automatic recognition. Over the last few decades, systems based on 

biometric modalities like face, iris, gait, fingerprint, and palmprint have been 

extensively industrialized. Among these, human face is widely employed as a 

biometric modality of choice because of its contactless acquisition, social acceptance 

and applicability to non-cooperative scenarios.  

In the past decades, machine based face recognition has received substantial attention 

in the biometric, pattern recognition, and computer vision research community. This 

common interest among researchers is motivated not only by fundamental and 

challenging problems in this domain, but also its practical applications such as 

financial, forensic, access control, and video surveillance etc. Many commercial face 

recognition systems are already available and able to meet special requirements and 

contribute to the society.  

The general term “face recognition” refers to two main scenarios, namely, verification 

or authentication, and recognition or identification. Face recognition in terms of 

verification task means that a person’s biometric template is matched against the 

claimed identity only, whereas in identification task it is matched with every template 

enrolled in the gallery. The results for verification experiments are evaluated in terms 

of Receiver Operating Characteristic (ROC) Curve and it depicts Verification or True 

Acceptance Rate (TAR) as a trade-off against the False Acceptance Rate (FAR). 

Verification Rate represents percentage of a set of probe face images that is correctly 

accepted and FAR represents the percentage that is falsely accepted. The Verification 

Rate (TAR) of 0.1% is the most commonly stated single number from ROC curve. 

The performance of face recognition experiments is evaluated using Cumulative 

Match Characteristic (CMC) curve and it summarizes the percentage of a set of probe 

images that is considered to be correctly matched as a function of the match rank that 
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is counted as a right match. Rank-1 recognition rate is the most commonly stated 

single number from the CMC curve. 

Numerous applications of face recognition include access control, smart cards, 

surveillance systems, public security and criminal investigations. 

1.2 Face Recognition Challenges  

Over the past three decades, numerous approaches have been proposed and a great 

deal of efforts has been devoted to intensity based face recognition. The performances 

of these approaches have achieved a satisfactory level in controlled environment. 

However, face recognition in an unconstrained daily life environment without the 

user’s cooperation is currently a far from solved problem and a very challenging task 

[1]. There are still many challenging issues (e.g. pose, illumination and expression 

variations) to be addressed [2] [3]. Generally, a 3D face recognition system is 

expected to be robust to the variations of pose, illumination, facial expression and 

occlusions. In this section, some main challenges of face recognition are summarized. 

(i) Pose variations: Pose variations convey rich and interpersonal information. 

Unfortunately, different head poses result in distinct changes in facial appearances in 

face recognition degrading system performance dramatically. Head pose has three 

degrees of freedom: roll, yaw, and pitch, which can be either in-plane or out-plane. In-

plane rotation (i.e. along roll) is a pure 2D problem which can be resolved trivially. 

On the other hand it is a very challenging task to handle large, out-plane rotations (i.e. 

along pitch or yaw) in 2D. Using multiple multi-view facial images for training might 

be a feasible strategy to handle this problem [4]. 

(ii) Illumination variations: Facial illumination is another most challenging issue in 

2D face recognition. Illumination variations have extremely complex effects on the 

image of a face appearance, because varying illumination directions, leads to shifts in 

the shape and location of shadows, changes in highlights, and reversal of contrast 

gradients. In general, 3D face recognition is independent of illumination variations. 

(iii) Facial expression variations: Facial expressions are caused by movement of 

facial muscles in response to a person’s internal emotion states, intentions, or social 

communications [1]. Intuitively, facial expression variations can change both the 
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topology structure of the whole facial appearance and the geometry positions of some 

local facial features such as eyes, lips, etc. Because severe movements of facial 

muscles influence the face appearance, facial expression is an adverse factor to face 

recognition and expression based recognition is a challenging task.  

(iv) Occlusions: Occlusions represent another challenge into face recognition, 

because in this case only partial faces are available as the input for classification. 

System accuracies are likely to deteriorate when the percentage of occluded facial part 

becomes larger. Common occlusions can be caused by hair, beard, glasses, hands, 

hats, scarfs, or even cosmetics.  

1.3 Motivation 

Over the past two decades, numerous attempts have been made to address the problem 

of face recognition and a voluminous literature has been produced. Current face 

recognition systems perform very well in controlled acquisition scenarios using face 

images captured under frontal pose with strict constraints as defined in related face 

recognition literature. However, in unconstrained circumstances where a face may be 

acquired under large pose variations, these systems fail to work. Although efforts 

have been made to address the pose problem in 3D, but existing techniques possess 

many drawbacks. Nonetheless, due to the very demanding nature of the problem, 

there is a need to overcome such constraints to reliably recognize face images 

captured under unconstrained scenarios of large pose variation including profile face 

images. This dissertation presents a fully automatic face recognition system that is 

able to recognize faces under large pose variations including profile images.  

1.4 Disadvantages of the Existing Approaches 

The main algorithms evolved for face recognition are based on holistic and local 

features of the face images. The holistic face recognition approaches utilize global 

facial features and preserve configural (inter relations between facial parts) 

information of the face. These approaches capture the most prominent features of the 

face images. The main disadvantages of holistic approaches are  

 Their recognition performance could be significantly affected by a probe set 
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deviating from the average face of a gallery set because of lighting, orientation 

and scale.  

 They are sensitive to face alignment and there performance can be impaired 

due to outliers and occlusions [5].  

 In order to reliably learn the facial subspace, they require a large number of 

training images of several subjects under diverse imaging conditions [6]. 

On the other hand, local feature based face recognition approaches employ local 

descriptive features and compare them in a certain feature space (e.g. original 

coordinates, distances, angles and areas etc.). These approaches represent face images 

by a set of low dimensional local feature vectors at low computational cost and 

memory requirements. The disadvantages of the local feature based approaches are 

given as under. 

 They require an additional step of locating features manually or automatically 

and the results are reliant on accuracy of feature localization. 

 They are not capable of face recognition where images are noisy and two 

different subjects possess identical facial features [7].  

 They are sensitive to changes in facial expressions because changes in facial 

expressions introduce local motion and change local shape of the face.  

 They are less effective for age based face recognition [8]. 

1.5 Aims and Objectives 

This dissertation aims to design 3D face alignment and recognition algorithms. 

Following are the objectives of the proposed research work. 

 To develop accurate and computationally inexpensive 3D face alignment 

approaches to handle 

o frontal faces 

o profile faces 

o neutral and non-neutral faces 

 To develop automatic 3D face recognition approaches based on 
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o regional segments of depth images 

o multi-view depth images 

1.6 Hypothesis 

(i) The world and intrinsic coordinate systems become concurrent by minimizing the 

three angles between them whereas each of the three angles gives estimation of face 

rotation around x, y and z-axis respectively. The two coordinate systems can be 

defined for 3D face scans which are aligned at a position where the angles between 

the two coordinate systems attain their minimal.  

(ii) For a frontal face image, the nose-tip scanner distance is the minimum. By 

rotating a non-frontal face and finding the minimum nose-tip scanner distance, it is 

aligned to a frontal position. 

(iii) The variance of a frontal face is the maximum and nose-tip scanner distance is 

the minimum. Based on classification of the maximum variance and minimum nose-

tip scanner distance, the 3D face scans are aligned. 

(iv) Regional segments of depth images are capable of handling facial hair, artifacts, 

wrinkles and local shape deformations caused by facial expression variations. The 

region based face recognition results are fused for improved performance using 

ensemble classifier.  

(v) Employing more input facial information results into improved face recognition 

accuracy. The 3D facial information obtained from multi-view synthesized depth 

images increases the classification accuracy using ensemble classifier. 

1.7 List of Specific Contributions 

The main contributions of this dissertation are summarized as follows. 

 A 3D face alignment approach is proposed based on Intrinsic Coordinate 

System (ICS) characterized by nose tip, slope of the nose bridge and vertical 

symmetry plane of the face and is capable to align frontal and non-frontal face 

images [9] [10]. 

 A two-Pass 3D face alignment algorithm is proposed based on minimum 

distance capable of aligning frontal and non-frontal face images including 
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profile face images [11]. 

 A two-pass 3D face alignment algorithm is proposed based on classification 

approach capable of aligning frontal and non-frontal face images. 

  A distance reduction measure is proposed as a quantifying heuristic for the 

proposed alignment approaches, based on the fact that distance of nose tip 

from 3D scanner is reduced after pose correction [9].  

 A pose invariant 3D face recognition approach is proposed using Intrinsic 

Coordinate System based alignment. The proposed approach employs a two-

tier ensemble classifier that combines results from multiple face regions [9]. 

 An automatic, pose and expression invariant face verification method is 

proposed employing multi-view synthesized face images and Support Vector 

Machine (SVM) along with two-pass 3D face alignment based on minimum 

distance and two-pass 3D face alignment based on classification approach in 

separate experiments [11]. 

 An automatic, pose and expression invariant face identification method is 

proposed based on multi-view synthesized face images and three stage, 

hierarchical unified classifier using the two aforementioned alignment 

approaches [11].  

 An automatic, 3D face identification approach is proposed to handle 

classification of profile face images using two-pass 3D face alignment based 

on minimum distance [11]. 

 All face recognition experiments are conducted using Mahalanobis Cosine 

(MahCos) distance, Euclidean distance, Mahalanobis (Mah) distance and 

Manhattan distance based classifiers separately. 

 A comparative analysis is performed with state-of-the-art methods in terms of 

ROC curves and rank-1 recognition rates for face verification and 

identification scenarios respectively, along with computational complexity 

analysis. 

1.8 Dissertation Organization 

The dissertation is organized as follows:  
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In chapter 2, first of all 3D face alignment approaches are reviewed. Then a 

comprehensive review of holistic and local feature based 3D face recognition 

approaches is given. 

Chapter 3 explains limitations of existing 3D face alignment approaches. The 

proposed 3D face alignment algorithms are also presented in this chapter. The 

performance evaluation of the proposed alignment algorithms is presented using 

FRGC v2.0 and GavabDB databases along with computational complexity analysis. 

Chapter 4 presents a novel 3D face recognition algorithm based on regional segments 

of depth images and a two stage ensemble classification approach. The performance 

of the proposed algorithm is evaluated using FRGC v2.0 and GavabDB databases 

along with computational complexity analysis. 

Chapter 5 describes the proposed 3D face verification and identification algorithms 

based on multi-view depth images. The face verification is realized using Support 

Vector Machine based classification approach and face identification is performed 

using a three stage unified classifier. The performance of the proposed methodology 

is evaluated on FRGC v2.0 and GavabDB databases along with computational 

complexity analysis. 

The findings of the proposed methodology are reported in Chapter 6. 

Chapter 7 concludes this dissertation and suggests the related future work. 
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Chapter 2 

LITERATURE REVIEW 

For the past few decades, face recognition has been one of the most dynamic research 

areas in pattern recognition, computer vision, and biometrics communities, and a great 

deal of progress has been made for its development. The past years have witnessed 

the research attention on face recognition from 2D intensity images to 3D shape 

models. In this chapter, the insight into the 3D face alignment and recognition 

approaches is highlighted. Similar to the taxonomy of 2D face recognition, 3D face 

recognition approaches can be broadly classified into two categories, namely, holistic 

approaches and local feature based approaches. A detailed review of representative 

holistic and local feature based approaches is presented. 

2.1 3D Image Alignment Approaches 

Alignment is the process of establishing correspondence between images for their 

reliable comparison. Establishment of one-to-one correspondence between facial 

feature points is a very significant and compulsory step for classification of faces. The 

famous approaches existing in literature for alignment of 3D facial data are based on 

Iterative Closest Point (ICP) [12] [13], Simulated Annealing (SA) [14], Average Face 

Model (AFM) [15], and Intrinsic Coordinate System (ICS) [16].  

2.1.1 Iterative Closest Point based Alignment 

The aim of Iterative Closest Point [12] [13] based alignment approach is to determine 

rotation and translation parameters iteratively in order to transform one point cloud 

such that it lies as close as possible to the other point cloud (please see Fig. 2.1). For 

this purpose, a distance metric must be defined between two point clouds such as the 

Mean Squared Error which gets minimal when the two point clouds are aligned. The 

distance between the point clouds is minimized by rotating and translating one of the 

point clouds relative to the other and is determined by finding distance from each 

point of the first point cloud to the second one and then averaging all distances. A 
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significant drawback of the Iterative Closest Point based alignment approach is that it 

needs initial course alignment for convergence. Another disadvantage of this 

approach is that it is computationally expensive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Simulated Annealing based Alignment 

Simulated Annealing [14] is a stochastic process based algorithm that is used for local 

search. The difference between Simulated Annealing and other local search methods 

such as Hill Climbing is that Simulated Annealing may admit a worse solution 

compared to current possible in the iteration process. Because of this fact Simulated 

Annealing does not remain “tied” to the local minima. Therefore, it has higher 

probability to find a solution which is close to the global one. 

Simulated Annealing algorithm needs six parameters (three for each of rotation and 

translation with reference to a 3D coordinate system) to define a transformation 

Probe 

Rotate and 
translate one point 
cloud relative to 

the other 

Adjust parameters 
 

Calculate Distance 
 

Aligned 
point 
cloud 

Fig. 2.1 Steps involved in aligning one point cloud to the 

other using Iterative Closest Point based alignment 

approach 
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matrix for alignment of two 3D faces. The Simulated Annealing approach aligns two 

face images in three steps (i) alignment at initial level (ii) alignment at coarse level 

and (iii) alignment at fine level. Initially centers of the masses of two faces are 

aligned. Then a course alignment is accomplished with a searching method based on 

Simulated Annealing. This method works to reduce an estimation measure which uses 

M-estimator SAmple Consensus (MSAC) along with Mean Squared Error of 

corresponding points of two faces to be compared. After that, a precise alignment is 

achieved by a searching algorithm based on Simulated Annealing which uses Surface 

Interpenetration Measure (SIM) as estimation criterion. 

The drawback of Simulated Annealing based alignment is its excessive computational 

time which is comparable to Iterative Closest Point based alignment. Alignment of 3D 

face images based on Simulated Annealing algorithm was presented in the study 

Queirolo et al. [17] where it was reported by the authors that they performed an 

experiment with a dataset from FRGC v2.0 database for evaluation of time used in 

Simulated Annealing based alignment. The calculated average time for comparing 

two facial regions was 1.3s for nose, 2.0s for upper head region, and 3.1s for the 

entire face region, which is comparable to Iterative Closest Point based alignment. 

2.1.3 Average Face Model based Alignment 

In Average Face Model [15] based alignment, first of all landmarks are located on the 

face either manually or automatically. Subsequently, average of landmark coordinates 

is calculated followed by the Procrustes analysis [18]. The transformed landmark 

points are averaged again to obtain an Average Face Model [19]. An Average Face 

Model and corresponding landmark points are shown in Fig. 2.2 [19]. In this approach 

the probe face image is aligned to the Average Face Model using Iterative Closest 

Point based alignment. A considerable weakness of the Average Face Model based 

alignment is its low accuracy rates because some of the spatial information is lost 

while creating the Average Face Model. 

2.1.4 Intrinsic Coordinate System based Alignment 

The Intrinsic Coordinate System based alignment requires the accurate localization of 

facial landmarks on face image. These landmarks are then mapped on corresponding 
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points in the Intrinsic Coordinate System to find transformation parameters which are 

then used to transform whole point cloud to obtain the required facial alignment 

(please see Fig. 2.3). A problem with Intrinsic Coordinate System based alignment is 

that 3D landmarks are not stable under facial expression variations and/or can be 

occluded by hair or other facial parts. Some detail of landmark based alignment 

procedure is given in the study Papatheodorou and Rueckert [16].  

 

 

 

 

 

 

 

 

 

Point cloud 

Find Landmarks 

Rotate and 
Translate 

Calculate 
Parameters 

 

Aligned Point 
cloud 

Fig. 2.3 Steps involved in aligning the point cloud using Intrinsic Coordinate 

System based Alignment 

 

Fig. 2.2 An example Average Face Model used in the Average Face 

Model based alignment  
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2.2 Face Recognition Approaches 

With the development of 3D scanning and capturing techniques, the task of 

recognizing 3D face scans has been discussed in many ways, leading to numerous 

face recognition approaches. In this section, the representative and most successful 

approaches for 3D face recognition are reviewed. Similar to the taxonomy of 2D face 

recognition, 3D face recognition approaches can be generally classified into two 

categories: holistic and local feature-based.  

2.2.1 Holistic Approaches 

Holistic approaches directly operate on 3D face data to compute similarity scores. The 

leading algorithms in this category include subspace based methods i.e. Principal 

Component Analysis, Linear Discriminant Analysis, Independent Component 

Analysis, Locality Preserving Projections; and Iterative Closest Point based matching.  

(i) Principal Component Analysis 

Principal Component Analysis (PCA) [20] is a standard dimensionality reduction 

technique that approximates the original high-dimensional data to lower-dimensional 

feature vectors. Principal Component Analysis relies on a set of basis vectors 

corresponding to maximum variance direction of the image data.  

Suppose there are N number of images, each of size m × n where m and n represent 

rows and columns of an image respectively. Each of the N images is reshaped into a 

vector of size mn ×1. These vectors are then combined in a matrix X of dimensions 

mn × N. The image covariance matrix S of the size N × N is computed as under. 

� = (�� − µ)�(�� − µ) (2.1) 

where xi is the ith column vector of matrix X representing ith image and µ is the 

average image vector computed from column vectors of X. Solving for Eigen values 

of S produces a matrix with N × N Eigen vectors. Then images are multiplied with 

these Eigen vectors to produce a matrix B of basis vectors as given below. 

� = � � (�) (2.2) 
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where f (·) is a function that computes Eigen vectors of S. These basis vectors of size 

m × n are then normalized. After that d vectors out of N from B are selected against d 

largest Eigen values. These selected vectors which are known as Eigen faces, form 

mn × d dimensional projection matrix P. In the projection phase, the required M 

number of image vectors e, are projected using the projection matrix P to obtain a 

matrix of templates Tm which has the size d × M as given below. 

�� = �� � (2.3) 

Principal Component Analysis is the most descriptive representation in terms of the 

least square reconstruction error. Moreover, it operates efficiently and is easy to 

implement. 

(ii) Independent Component Analysis 

Independent Component Analysis (ICA) [21] is quite similar to Principal Component 

Analysis and the only difference between them lies in that the distribution of the 

components is designed to be non-Gaussian. In general, minimizing non-Gaussianity 

enhances statistical independence [22]. It was reported in the study Bartlett et al. [21] 

that first and second order statistics retain information only about the amplitude 

spectrum of an image while discard the phase spectrum. Some experiments brought 

out that the human capability to recognize objects is mainly driven by the phase 

spectrum; therefore, Independent Component Analysis was investigated by Bartlett et 

al. [21] as a powerful method for face recognition. They provided two architectures 

based on Independent Component Analysis, namely, statistically independent basis 

images and a factorial code representation, both of which showed similar accuracies. 

Nevertheless, it was concluded in the study Baek et al. [23] that Principal Component 

Analysis outperforms Independent Component Analysis in a face recognition task.  

(iii) Linear Discriminant Analysis 

Principal Component Analysis and Independent Component Analysis are 

unsupervised techniques since they do not use the face class information to construct 

the face space. Unlike them, Linear Discriminant Analysis (LDA) [24] aims to 

represent the face vector in such a way that maximizes the discrimination between 
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various classes. The recognition performance can be improved by exploring class 

information [24]. Linear Discriminant Analysis directly discriminates the classes by 

finding a base of vectors, attempting to maximize the between class differences and 

minimize the within class differences. It seeks a transformation such that the 

projection matrix is chosen to maximize the ratio of the determinant of the between-

class scatter matrix of the projected samples to the determinant of the within-class 

scatter matrix of the projected samples. 

Unfortunately, Linear Discriminant Analysis is affected by “small sample size 

problem” specifically common in face recognition due to small number of available 

training samples compared to the dimensionality of the sample space. Another 

limitation of Linear Discriminant Analysis algorithm is that in cases where 

insufficient training data is available, the algorithm can overfit the solution to the data 

which leads to poor generalization on unseen data. Moreover, it was revealed in the 

study Beveridge et al. [25] that Principal Component Analysis algorithm performs 

better than Linear Discriminant Analysis for face recognition. 

(iv) Locality Preserving Projections  

Locality Preserving Projections (LPP) or Laplacianfaces algorithm [26] is a subspace 

method that applies dimensionality reduction while preserving the locality 

information of feature space. Each face image in the image space is mapped to a low 

dimensional face subspace, which is characterized by a set of feature images, called 

Laplacianfaces. The face subspace preserves local structure using a graph based 

approach that is induced from the data points. Locality Preserving Projections 

algorithm finds a projection that employs this graph structure. The advantages of this 

algorithm are that it is a linear method and preserves the local information of the face 

image space. On the other hand, it was reported by Bajwa et al. [27] that the result 

accuracy of Locality Preserving Projections algorithm is lower than Principal 

Component Analysis in a face recognition task. 

(v) Iterative Closest Point 

Another 3D holistic matching algorithm is based on Iterative Closest Point (ICP) [12] 

approach which iteratively attempts to align two 3D surfaces represented as point 
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clouds or meshes. As explained in section 2.1.1, the goal of Iterative Closest Point 

algorithm is to find the transformation parameters, for which the error between the 

transformed query shape points and the closest points of the reference shape achieves 

minimal. 

The downside of Iterative Closest Point approach is that its accuracy and convergence 

speed highly depends on the initial course estimation. Therefore, probe and gallery 

centroids of 3D facial surfaces are frequently aligned before Iterative Closest Point 

algorithm is applied to ensure an accurate final alignment estimate. If the initial 

estimate is not good enough, this algorithm finds a local minima that corresponds to 

an improper alignment resulting into a mismatch. 

2.2.2 Local Feature based Approaches 

Local feature based approaches concentrate on local descriptive features and compare 

them in a certain feature space (e.g. original coordinates, distances, areas, angle, and 

curvatures etc.). Gabor Filters, Log-Gabor Filters, Local Binary Pattern, Scale 

Invariant Feature Transform, Spin Images, Point Signatures, Tensor Based Face 

Representation, and Spherical Face Representation are the representative algorithms 

in this category. 

(i) Gabor Filters 

Gabor filters are commonly cited as sharing many properties with mammalian cortical 

cells [28] and appear a logical choice for the task of frequency partitioning. Gabor 

wavelets demonstrate two desirable characteristics: spatial locality and orientation 

selectivity. Since Gabor filters detect amplitude invariant spatial frequencies of pixel 

gray values, they are known to be robust to illumination variations in 2D. One the 

other hand, for each pixel of a facial image, Gabor filters tend to generate a high 

dimensional feature vector. Moreover, the final feature vector is classified in a, rather 

high dimensional feature space leading to another difficulty in this domain [29]. In 

3D, the depth Gabor images are smoother in comparison with the intensity Gabor 

images due to the fact that the value of the pixels in the depth images changes less 

than the value in the intensity images. Although the smoother depth Gabor images can 

reduce the influence of noise but the facial features cannot be described by them in 
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detail, and the recognition rate is deteriorated. Therefore, the recognition accuracy is 

improved by combining both of depth and intensity information [30], [31], [32]. 

(ii) Log-Gabor Filters 

Log-Gabor filters are defined [33] to perform the DC compensation and overcome the 

bandwidth limitation of a traditional Gabor filter. The Log-Gabor filter has a response 

that is Gaussian when viewed on a logarithmic frequency scale instead of a linear one. 

This allows more information to be captured in the high frequency areas with 

desirable high pass characteristics [34]. A limitation of Log-Gabor filter is its 

dimensionality explosion. Another limitation is that while Log-Gabor coefficients 

provide better overall performance they are equally susceptible to the effects of severe 

expressions [35].  

(iii) Local Binary Pattern 

Local Binary Pattern (LBP) was initially proposed for texture analysis by Ojala et al. 

[36] and has been proved as an effective approach for describing local features of the 

face image. Local features of facial images are described by it efficiently by 

comparing every pixel with its neighbors. The original Local Binary Pattern operator 

encodes the local structure around each pixel by labeling the pixels with decimal 

numbers called Local Binary Pattern codes. Each pixel is compared with its eight 

neighbors in a 3 × 3 patch. The resulting negative values are encoded with 0 and the 

others with 1 to obtain a binary number by concatenating all these binary codes in a 

clockwise direction starting from the top left of the 3 × 3 patch. The resulting decimal 

value is used for labeling.  

A limitation of the basic Local Binary Pattern operator is that its small 3 × 3 

neighborhood cannot capture the dominant features with large scale structures. 

Therefore, the original Local Binary Pattern operator was later generalized to 

extended Local Binary Pattern (eLBP) to incorporate different combinations of 

neighborhoods [37]. A local neighborhood is defined as a set of sampling points 

evenly spaced on a circle which is centered at the pixel to be labeled. The sampling 

points that do not fall within the pixels are interpolated using bilinear interpolation, 

thereby allowing for any radius and any number of sampling points in the 
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neighborhood. Fig. 2.4 [38] shows some examples of the extended Local Binary 

Pattern operator using (8, 1), (16, 2), (24, 3) circular neighborhoods where the 

notation P, R denotes a neighborhood of P sampling points on a circle of radius R. The 

histogram of Local Binary Pattern labels calculated over a region can be exploited as 

a feature descriptor.  

 

 

 

 

 

 

 

 

 

The most important properties of Local Binary Pattern are its tolerance to monotonic 

illumination changes and its low computational cost. Although attempts have been 

made to employ Local Binary Pattern for 3D face recognition but its coding scheme 

has following limitations [39]. (i) The feature vector for 3D Local Binary Pattern 

becomes very large. (ii) The coding principle is very sensitive to the depth variations. 

(iv) Scale Invariant Feature Transform 

Scale Invariant Feature Transform (SIFT) [40] features are extracted as follows: The 

first step computes the locations of potential interest points in the image by detecting 

the maxima and minima of a set of Difference of Gaussian (DoG) filters applied at 

different scales all over the image. Then, points of low contrast are discarded and 

orientation is assigned to each key point based on local image features. Finally, a local 

feature descriptor is computed at each key point based on the local image gradient, 

transformed according to the orientation of the key point to provide orientation 

invariance. Scale Invariant Feature Transform based features are invarint to image 

 

Fig. 2.4 Some examples of the extended Local Binary Pattern operator 

using circular neighborhoods 
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rotation and scaling. On the other hand this algorithm does not perform well with 

noisy images and it is computationally expensive. 

(v) Spin Images 

Spin images [41] are extracted at each oriented point of the surface by converting the 

input images into triangular meshes. An oriented point is defined as a point along with 

its normal. A spin image at an oriented point is a 2D histogram of the cylindrical 

coordinates of its surrounding points which being a 2D histogram of the vertices, is 

not invariant to different mesh resolutions. Therefore, the mesh is optimized to a 

uniform resolution. A triangular mesh with oriented point �  and its normal � is 

shown in Fig. 2.5 [41]. � represents the tangent plane at point � whereas α and β are 

the cylindrical coordinates of the point �. Spin images are built for each vertex of the 

model view by making a 2D histogram of the surrounding points and stored in a spin 

image stack. Spin images are matched using correlation. 

 

 

 

 

 

 

 

 

Spin image matching is accurate and robust for overlapping views. On the other hand 

the limitations of the spin image representation include: (i) The spin image algorithm 

is computationally expensive because it involves the search for neighboring points. 

(ii) Spin image matching is sensitive to noise and variations in the image resolution. 

(iii) The complexity of the spin image matching increases linearly with the size of the 

data sets [41]. 

 

 
Fig. 2.5 Extraction of spin image using triangular mesh 
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(vi) Point Signatures 

Point signature [42] is a representation scheme developed for 3D object recognition. 

A point signature is a one dimensional signature that describes the surface 

surrounding a point. This signature describes the local underlying surface structure in 

the neighborhood of that point and is obtained by plotting the distance profile of a 

circle of points to a plane defined by that circle of points.  

The point signatures algorithm is invariant to rotations and translations but lacks 

accuracy. The limitations of the algorithm include: (i) It is affected by noisy points. 

(ii) It is sensitive to the resolution of the views (iii) Its computational complexity 

increases linearly with the resolution of the views [41]. 

(vii) Tensor Based Face Representation 

Tensor [41] is a local surface descriptor which corresponds to a local representation of 

the surface inside a 3D cubic grid. To compute the tensors from point clouds, the 

point clouds are converted into triangular meshes M� where i =  1, . . . , N by mapping 

the 3D points onto the 2D retinal plane of the sensor and performing a 2D Delaunay 

triangulation over the mapped points. After triangulation, the points are mapped back 

to the 3D space and the triangles with edges longer than a pre specified threshold are 

removed. This process separates surfaces which are falsely connected by the 

Delaunay triangulation. For reasons of efficiency, a mesh reduction algorithm may be 

applied to each mesh M�. Normals are then calculated for each vertex of the reduced 

meshes. Once the normals have been calculated, pairs of vertices along with their 

normals are selected to define local 3D coordinate basis. This 3D basis is used to 

define a 3D grid centered at its origin (Fig. 2.6(a)) [43] using two parameters, namely, 

the number of bins (e.g.10 × 10 × 10) in the 3D grid and the size of each bin. Once the 

3D grid is defined, the surface area of the mesh intersecting each bin of the grid is 

recorded in a third order tensor. Since more than one triangular facet can intersect a 

single bin, the calculated areas of intersection in a bin are added up. This process 

continues until a stage is reached when all the triangular facets are completely 

included. 

Tensor based face representation has following advantages. (i) It is more robust to the 
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resolution of the views compared to the spin images. (ii) Since a tensor is a more local 

representation, it gives better results when used for recognition of occluded images. 

However, on the downside, it is more sensitive to facial expressions [43].  

 

 

 

 

 

 

 

 

(viii) Spherical Face Representation 

Intuitively, Spherical Face Representation (SFR) [43] can be imagined as the 

quantization of the point cloud of a face into spherical bins centered at the nose tip. 

Fig. 2.6 (b) [43] graphically illustrates Spherical Face Representation of three bins. To 

compute an n bin Spherical Face Representation, the distance of all points from the 

origin is calculated. These distances are then quantized into a histogram of � + 1 bins. 

The outer most bin is then discarded since it is prone to errors (for example, due to 

hairs). The similarity between a probe and gallery face is computed by measuring the 

point wise Euclidean distance between their Spherical Face Representations. The 

advantage of Spherical Face Representation is its invariance to facial expressions. On 

the other hand it is sensitive to the probes with a neutral expression [43].  

2.2.3 Region based Approaches 

Local region based approaches are generally proposed to handle artifacts, wrinkles, 

facial hair and local shape deformations caused by facial expression variations. By the 

selection of multiple small regions on the face, any error caused by a single region can 

be compensated by fusing the matching scores from multiple regions, thus making the 

recognition more robust to such factors. This kind of approaches first divides the face 

 

Fig. 2.6 Illustration of (a) tensor based face representation   

(b) spherical face representation 

  
(a) (b) 
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into a number of regions using facial landmarks. Then features from each region are 

extracted using holistic or local feature based approaches. Finally each region is 

classified independently and all the region based results are combined using some 

ensemble classification approach. 

2.3 Discussion 

Referring to section 2.1, the existing alignment approaches (Iterative Closest Point 

based alignment, Simulated Annealing based alignment, Average Face Model based 

alignment and Intrinsic Coordinate System based alignment) have limitations in terms 

of initial course alignment, excessive computational cost or the accuracy. In this 

dissertation, three novel 3D face alignment approaches are proposed to overcome the 

limitations of existing alignment approaches and they exhibit superior alignment 

results. 

For face recognition task, holistic approaches are generally preferred since they 

preserve the configural information (i.e., the interrelations between facial parts) of the 

face, which is very important for preserving the identity of an individual as evidenced 

from psychological [44], neurobiological [45] [46] and computer vision [24] [47] 

communities.  

Because the local feature based approaches concentrate on local facial features, the 

tendency of preserving the spatial arrangement of different facial parts (configural 

information) is largely compromised and limited to the local features based 

information contained in corresponding parts of the two images. These approaches are 

also sensitive to facial expressions and noise. 

Local feature based techniques describe the whole face representation in such a way 

that a large data is characterized by few local features. From a strict general object 

recognition stand point, face is one class of object, and thus discriminating within this 

class requires subtle details of the image that discriminates it among other faces. 

Therefore, information carried by each pixel of an image is considered valuable which 

is inherently available in holistic representation. 

Referring to section 2.2.1, Principal Component Analysis based holistic approach 

results in better recognition rates than Independent Component Analysis, Linear 
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Discriminant Analysis or Locality Preserving Projections; therefore, Principal 

Component Analysis is employed in this dissertation for face recognition. The 

performance of the Principal Component Analysis based holistic approach is 

augmented with (i) a region based fusion strategy as region based approaches are 

capable to handle facial hair, artifacts, wrinkles and local shape deformations caused 

by facial expression variations (ii) multi-view synthesized images to exploit real 3D 

information. 

2.4 Summary 

In this chapter, 3D face alignment techniques, namely, Iterative Closest Point, 

Simulated Annealing, Average Face Model and Intrinsic Coordinate System based 

alignment have been extensively reviewed and their limitations have been analyzed. 

For face recognition, two broad categories of approaches, namely, holistic and local 

feature based were elaborately discussed. For each category, the representative and 

most successful approaches were reviewed and analyzed. Holistic approaches have 

been investigated to be promising as they use configural information of the face. The 

leading holistic approaches included Principal Component analysis, Independent 

Component Analysis, Linear Discriminant Analysis, Locality Preserving Projections 

and Iterative Closest Point. The local feature based approaches have been studied to 

involve, accurate feature localization, and sensitivity to facial expressions or noisy 

face images. These approaches included Gabor Filters, Log-Gabor Filters, Local 

Binary Pattern, Scale Invariant Feature Transform, Spin Images, Point Signatures, 

Tensor Based Face Representation and Spherical Face Representation. Region 

ensemble based approaches were also discussed being capable of improving 

recognition accuries of holistic or local feature based approaches in the presence of 

wrinkles, artifacts, facial hair and local shape deformations caused by facial 

expression variations.  
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Chapter 3 

3D FACE ALIGNMENT FRAMEWORK 

In this chapter, the proposed 3D face alignment algorithms are presented. The 

objective of this chapter is to describe the nose tip detection and facial alignment 

procedure with mathematical validation. Three different alignment algorithms are 

presented, which are capable of aligning neutral and expressive faces acquired at 

frontal and non-frontal poses whereas one of the algorithms is capable of aligning 

profile face images. A distance reduction measure is also proposed as a quantifying 

heuristic for the proposed alignment methods. At the end of the chapter, performance 

evaluation of the proposed algorithm is given using FRGC v2.0 and GavabDB face 

databases.  

3.1 3D Face Alignment 

Facial alignment transforms the facial features in such a way that they can be reliably 

matched. A few algorithms exist in literature [15], [12], [16] for aligning 3D face 

scans which can be broadly classified into three categories: (i) One-to-all alignment 

(ii) Alignment to Average Face Model (AFM) and (iii) Alignment to Intrinsic 

Coordinate System (ICS). 

In one-to-all alignment, 3D point cloud of a probe face image is aligned to every face 

image in the gallery. Iterative Closest Point (ICP) alignment algorithm [12] falls into 

this category. In the ICP algorithm, the point clouds are aligned by minimizing 

distance between them iteratively. The distance between the point clouds is 

minimized by rotating and translating one of the point clouds relative to the other. The 

closest point between the surfaces is determined by finding distance from each point 

of the first point cloud to the second point cloud and averaging all distances. Since, in 

one-to-all alignment a face is aligned to every other face in the gallery, ICP is not 

suitable in face identification (one-to-many matches). On the other hand it is suitable 

in a verification scenario (one-to-one match). A limitation of ICP is that it needs 
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initial course alignment for convergence. Another disadvantage is the fact that it is 

relatively slow. ICP based approaches have been used in many leading research 

papers such as Mahoor and Abdel-Mottaleb [48] and Wang et al. [13].  

Simulated Annealing (SA) is another alignment approach in one-to-all category which 

was implemented in Queirolo et al. [14]. SA is based on stochastic algorithm that is 

used for local search. Initially, centers of the mass of two faces are aligned. Then a 

course alignment is accomplished with an SA based searching approach. For course 

alignment an estimation measure is reduced based on M-estimator SAmple and 

Consensus (MSAC) along with Mean Squared Error of the corresponding points of 

two faces to be compared. After that, a precise alignment is obtained based on a 

searching algorithm which uses Surface Interpenetration Measure (SIM) as the 

evaluation criterion. The drawback of SA based alignment is its computational time 

which is comparable to ICP.  

For alignment to an AFM [15], AFM is constructed by locating landmarks on the 

face. Average of landmark coordinates is calculated followed by the Procrustes 

analysis [18]. Then transformed landmark points are re-averaged for getting an AFM. 

This method is suitable for both of face identification and verification scenarios. A 

considerable disadvantage of the AFM based alignment is its low accuracy rates 

because some of the spatial information is lost while creating AFM and a probe may 

be less accurately aligned to an AFM compared to aligning it directly to a true 

positive.  

The third method, alignment to an ICS requires landmark localization on 3D scans. 

These landmarks are compared with the corresponding 3D points of the ICS. The 

resulting transformation is then applied to whole point cloud. This method greatly 

depends on landmarks which may be less accurately located in case of non-frontal and 

expressive faces. This issue has been discussed in detail in [16]. A study [49] presents 

an alignment method based on ICS by finding vertical symmetry plane of the face, 

slope of the nose bridge and the nose tip. These features can be called the landmark 

structures instead of landmarks, which mark position only. The choice of landmark 

structures is beneficial because they remain stable even under pose variations and 

facial expressions. These landmark structures define an ICS.  
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3.2 Proposed 3D Face Alignment Algorithms 

In this section, three different 3D face alignment algorithms are presented, namely, 

3D Face Alignment based on Intrinsic Coordinate System, Two-Pass 3D Face 

Alignment based on Minimum Distance, and Two-Pass 3D Face Alignment based on 

Classification Approach, as described in the following subsections. 

3.2.1 3D Face Alignment based on Intrinsic Coordinate System  

In this algorithm, face image are aligned using Intrinsic Coordinate System (ICS). For 

3D face alignment, world coordinate system is represented by x, y and z -axis as 

shown in Fig. 3.1 with origin defined at nose tip O. The figure shows a model face 

[50] and ICS defined by a, b and c-axis at the same origin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three angles and an origin are necessary to define an ICS. Origin is the nose tip and 
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Fig. 3.1 World and intrinsic coordinate systems shown with angles α, β 

and γ in yz, xz and xy planes respectively for 3D face alignment 
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three angles defining the ICS are �, � and �. Angle � is inscribed between nasal 

bridge slope represented by b-axis of ICS and y-axis of world coordinate system in yz 

plane. � is the angle between c-axis and z-axis of intrinsic and world coordinate 

systems respectively describing face rotation in xz plane. Similarly � is the angle 

between a-axis and x-axis of intrinsic and world coordinate systems in xy plane. Angle 

� gives estimation of face rotation around x-axis, whereas angles � and � contribute 

towards rotation estimation around y and z-axis respectively. After finding angles �, 

� and �, each point cloud is rotated using these parameters and transformed so that its 

ICS axes become concurrent with the world coordinate system axes. This process 

brings 3D scans in frontal position. Due to stability of landmark structures, the 

proposed algorithm is robust for neutral and expressive 3D face images acquired at 

frontal and non-frontal poses. 

(i) Face Localization and Nose Tip Detection 

Face of an individual is localized and cropped by using nose tip heuristic. In the 

proposed methodology, first of all nose tip of 3D scans is found. Nose tip is the point 

which is nearest to the 3D scanner when scans are captured. While finding nearest 

point there exist a number of problems due to noise scenarios. In many subjects hairs 

on forehead come nearer to the scanner instead of nose. Similarly, in case of female 

subjects, hairs which are spread around neck or ears become nearer to scanner instead 

of nose.  

 

 

 

 

 

 

 

 

 

(a) (b) (c) 

Fig. 3.2 Example puffy face (a) xy view (b) yz view (c) yz view at angle 15o 

showing nearest point from 3D scanner on lips instead of nose 
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In order to cope with such noise problems due to hair, the algorithm searches nose tip 

in an approximate Region of Interest (ROI). Similarly subjects having expression 

known as “puffy” in literature (as shown in Fig. 3.2(a) for subject 04202d564.abs 

from FRGC v2.0) present another problem. In such subjects the nearest point may lie 

on lips instead of nose as shown in Fig. 3.2(b). To deal with this issue, first of all each 

3D point cloud is rotated around x-axis using rotation matrix given in equation 3.16 

with � = 15o, � = 0o and � = 0o for all scenarios. This process initially brings the 

nose tip nearest to the scanner (see Fig. 3.2(c)).  

(ii) Correction Parameter Determination in xz Plane  

The rotation parameter � is determined using horizontal nose plane of face. For 

finding this plane, x, y and z coordinates of nose tip at origin, O(x, y, z), are 

determined. All values of x are found in xy plane at the nose tip by fixing y- 

coordinate of the 3D point cloud. This process extracts all feature points lying parallel 

to x-axis passing through the nose tip. These feature points constitute horizontal nose 

plane which passes through face region at nose tip horizontally as presented in Fig. 

3.3 for subject 02463d550.abs from FRGC v2.0. 

 

 

 

 

 

 

 

 

 

On the horizontal nose plane, where it touches the face, three points are found at equal 

distances, on both sides of nose. Averages of these points at both sides are taken 

separately to compensate for outliers and are labeled as � and � in Fig. 3.3.  

 

Fig. 3.3 Example range image showing horizontal nose plane 

Horizontal Nose Plane 
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To find angle of rotation � for a 3D face around y-axis, ∠AOB and ∠POQ are 

determined by the algorithm. To describe significance of finding ∠AOB and ∠POQ in 

determining �, following mathematical reasoning is presented.  

In Fig. 3.4, AP ���� defines x-axis while �� ����� defines z-axis. OB ����� and OQ ����� represent the 

lines joining origin and points B and Q which are determined by the proposed 

algorithm. Arc BQ�  is the path along which nose tip can move and point o represents 

center of the arc. BQ ����� is the line joining points B and Q through arc center �.  

The arc BQ� , radius oO ����and angle � are related by the following equation. 

� = �� (3.1) 

Where � is arc length, � is radius of the circle of which the arc is a part and � is the 

angle subtended by end points of the arc. Finding � gives 

� =
�

�
 (3.2) 

 

 

 

 

 

 

 

 

 

 

The algorithm uses the value of � in xz plane to align the nose tip with the point 

� = 0o where � becomes 0o. 

Referring to Fig. 3.4, it can be observed that  

 

Fig. 3.4 Frontal view geometry of a face in xz plane 

http://mathworld.wolfram.com/Circle.html
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AP ����|| BQ ����� (3.3) 

where || shows that AP ���� is parallel to BQ �����.  

OB �����|| ST ���� (3.4) 

where || that OB ����� is parallel to ST ����, Therefore,  

∠AOB = ∠ BoT = ∠ SoQ = β�    (3.5) 

Referring to equation 3.4                                        

OQ �����|| UV ����� (3.6) 

where || shows that OQ ����� is parallel to UV �����. Therefore,                                           

∠POQ = ∠ QoV = ∠UoB = β�     (3.7) 

As ∠BoO and ∠QoO are right angles, therefore, 

∠OoU = 90o  −β� = β�        
(3.8) 

∠OoS = 90o −β� = β�         (3.9) 

Subtracting equation 3.9 from equation 3.8 

∠OoU − ∠OoS = β� − β� = β� − β�             

 

(3.10) 

After measuring angles, ∠AOB and ∠POQ, their difference (hence difference of 

angles β� and β�) is calculated and half of the value of this difference angle is the 

required angle �. The reason of taking half value lies in the fact that decreasing 5o 

from ∠AOB increases 5o in ∠POQ and vice-versa, e.g. if ∠AOB = 45o and ∠POQ =35o 

then half of difference of angles turns out to be 5o. Thus decreasing 5o from ∠AOB 

sets ∠AOB =40o and an increase of 5o in ∠POQ adjusts its value equal to 40o. To give 

the reader a better understanding of angle �, it is drawn in Fig. 3.5 between c-axis and 

z-axis of intrinsic and world coordinate systems respectively, where c-axis represents 

a rotated view and z-axis shows a frontal view. It is notable that minimizing the value 
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of angle β to 0o, folds c-axis of ICS to become concurrent with the z-axis of world 

coordinate system thus correcting the face pose in xz plane. 

 

 

 

 

 

 

 

 

 

 

 

 

(iii) Correction Parameter Determination in yz Plane  

The vertical symmetry plane is significant because it is used to find angle �. Angle � 

brings faces which are leaning forward or backward in a position so that they may be 

treated as frontal. The pivot for finding vertical symmetry plane is nose tip. At the 

nose tip, all points along y-axis are found by fixing �-coordinate of the 3D point 

cloud. This way all the points are found which have a fixed value of � but values of � 

are varying. By finding corresponding �-coordinates against all selected �- 

coordinates, vertical symmetry plane is constructed as shown in Fig. 3.6 for subject 

02463d556.abs from FRGC v2.0. 

To find � for 3D faces, 3D point cloud is plotted in yz plane as shown in Fig. 3.6, 

where yy′ ����� represents y-axis and zz′ ����represents z-axis. From the nose tip a point N is 

determined on Nose Bridge at the vertical symmetry plane. Thus a central angle �, 

measured by the algorithm, is subtended by end points of arc l at the nose tip as 

 

Fig. 3.5 Frontal and rotated view face geometry in xz plane presenting 

a face rotated at angle � 
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shown in Fig. 3.6. 

Radius �, arc � and angle � are related as: 

The algorithm determines value of angle � to adjust the head tilt at 30o because this 

places the face in an upright position, resulting in a frontal view [49].  

 

 

 

 

 

 

 

 

 

(iv) Correction Parameter Determination in xy Plane  

The third angle � rotates the face in xy plane. This angle is measured by localizing 

landmarks on inner eye corners of the face as shown in Fig. 3.7 for subject 

04201d374.abs from FRGC v2.0. A line A'A is drawn to join landmarks and the line 

a'a is drawn parallel to A'A which passes through the determined nose tip. This 

� = �� (3.11) 

where � is arc length, � is radius of the arc and � is the angle inscribed by end points of 

the arc. Solving for � 

� =
�

�
 (3.12) 

 

Fig. 3.6 Example range image in yz plane showing vertical symmetry 

plane to determine angle � 

Vertical Symmetry 
Plane 
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process defines angle � = xOa with x-axis of world coordinate system to be used as 

correction parameter in xy plane.  

 

 

 

 

 

 

 

 

 

The 3D pose of an individual is corrected by substituting values of estimated rotation 

parameters α, β and γ in rotation matrix [51] given in equation 3.16. The process is 

repeated until convergence is reached. i.e. angles α becomes 30o while angles β and γ 

achieve a value equal to zero. 

A= �

 coscos  cossinsinsincos   cossincossinsin 

 sincos  sinsinsincoscos   sinsincoscossin 

sin  cossin  coscos

�     

(3.13) 

The pseudo-code of the alignment approach is given as under. 

 

 

 

 

 

 

 

Fig. 3.7 Example range image in xy plane presenting determination of angle � 

 

Pseudo-code 1: 3D Face Alignment based on Intrinsic Coordinate System 

BEGIN 

I= Image; 

Define Nose tip at ���(�(�, �)); 

FOR xz plane 

REPEAT 

Compute        Q =
��� ��� ��

�
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Compute        B =
��� ��� ��

�
 

Compute     β =
∠AOB−∠POQ

2
 

IF � = 0o 

GOTO END; 

ELSE 

I= Rotate I at �o in xz plane; 

ENDIF 

UNTIL � = 0o; 

END. 

FOR yz plane 

Search point � at Nose Bridge on vertical symmetry plane 

REPEAT 

Compute ∠� = MON; 

IF � = 30o 

GOTO END; 

ELSE 

I=Rotate I at � − 30o in �� plane; 

ENDIF 

UNTIL � = 30o; 

END. 

FOR xy plane 

Detect landmarks on inner eye corners; 

REPEAT 

WRITE line A′A joining landmarks and line a′a || A′A passing through 

the nose tip O; 

Compute ∠� = Xoa; 

IF � = 0o;  

GOTO END; 

ELSE 
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3.2.2 Two-Pass 3D Face Alignment based on Minimum Distance 

In this section a novel two-pass 3D alignment algorithm is presented which is capable 

of aligning frontal and non-frontal face images along with profile images. The two- 

pass alignment algorithm is based on Intrinsic Coordinate System (ICS) and minimum 

nose tip-scanner distance. The ICS is shown by u, v and w-axis and world coordinate 

system is represented by x, y and z-axis in Fig. 3.8 along with a 3D model of subject 

‘cara17_frontal1’ from GavabDB, whereas l shows the minimum nose tip-scanner 

distance.  

(i) Nose Tip Detection 

The nearest point in a capture from 3D scanner is considered as nose tip by the 

alignment algorithm which is used to localize and crop a subject’s face. In this 

section, a novel algorithm is presented to tackle issues related to nose tip detection 

process for 3D faces with profile views because in such faces, the nearest point form 

3D scanner lies on ears or some other facial part as shown in Fig. 3.9 (a) for subject 

cara6_frontal1. 

Referring to Fig. 3.9, the nose tip detection algorithm starts by computing differences           

��  =  ����  − ���� and ��  =  ����  − ���� which define the length (L) and width 

(W) of the face in profile view (Fig. 3.9 (a)) while W and L of the face in frontal view 

(Fig. 3.9 (b)), along x and z-axis respectively. Then a function � =  �� / �� is 

computed which turns out to be a higher numeric value (when compared to an 

Rotate I �o in xy plane;  

ENDIF; 

UNTIL � = 0o; 

END. 

Align image I using determined values of �, � and �; 

END. 
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empirically determined threshold) for profile faces and lower for remaining 3D faces. 

The lower value of denominator in the former case corresponding to width of half 

face is regarded as the reason for higher numeric value returned by function �. Based 

on computed value of function �, the profile faces are separated from rest of the 3D 

faces. In order to determine whether the profile of probe face is right or left, nose 

templates of both right and left orientations are correlated with the profile face. The 

profile face is classified as right or left based on greater value of maximum correlation 

coefficient using Normalized Cross Correlation (NCC). Because right and left profile 

faces are not acquired at exactly +90o or -90o, they are rotated in the range of 0o to -

90o and +90o, respectively, with a step size of 2o to determine the nose tip; and the 

point on the face at a minimum distance from the 3D scanner is marked as nose tip by 

the algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The robustness of nose tip detection process is estimated by measuring two features 

which are depth map variance and highest peak in the histogram of depth image. If the 

face pose is frontal, and the nose tip is correctly detected; the depth map variance is 
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Fig. 3.8 Intrinsic and world coordinate systems along 

with example image 
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minimum and the histogram peak is maximum. The minimum depth map variance 

and maximum peak are determined from nine facial positions separately which are 

obtained by rotating the face along x-axis at 0o, 60o and -60o while fixing the rotation 

along y-axis at 0o, 60o and -60o in respective order for each of the aforementioned 

rotations along x-axis. The face with minimum depth map variance and the maximum 

histogram peak of all nine faces is used to find the facial landmark at a minimum 

distance from the scanner and is declared as the nose tip. The above described 

complete process involves 4 landmarks to classify profile images from rest of the 3D 

faces. 

 

 

 

 

 

 

 

 

The proposed alignment approach employs 4 landmarks to find the rotation 

parameters for 3D faces excluding profile images: nose tip, 2 landmarks in xz plane 

and 1 in yz plane whereas for profile images, the rotation parameters are determined 

by employing 2 landmarks: nose tip along with 1 landmark in yz plane as under.  

(ii) Alignment in xz Plane 

In the first pass, the two-pass alignment algorithm aligns the 3D faces excluding 

profile images in xz plane by finding the correction parameter � using the intrinsic 

coordinate system based alignment algorithm whereas the profile images become in 

frontal view after the nose tip detection process. 

The second pass of the alignment algorithm confirms the alignment accuracy of the 

proposed two-pass alignment algorithm using the approach depicted in Fig. 3.10 for 
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x 

o . 

(a) (b) 

Fig. 3.9 Minimum and maximum nose-tip scanner distances for example 

subject from GavabDB database (a) profile images (b) frontal image 
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subject 02463d550.abs from FRGC v2.0 where it rotates the 3D faces in the range of -

2o to +2o with a step size of 0.1o in xz plane and aligns them at a position where the 

nose tip-scanner distance is the minimum. The rationale behind this strategy is 

discussed as follows. When a subject’s nose tip is not aligned with line joining z-axis 

of 3D scanner and nose tip of 3D face, it has a larger distance measured from scanner 

to the nose tip which is reduced when the subject’s nose tip is aligned with the z-axis 

line. The facial pose correction from non-frontal to frontal view causes an essential 

reduction in the mentioned distance. This statement means that distance � must be 

smaller than �� or  �� in Fig. 3.10. In order to verify this fact, it can be observed from 

Fig. 3.10 that the distance l between the point C(��,��) and the nose tip O(��,��) is a 

perpendicular to the line x'x among all nose tip distances such as �� and  ��. The 

perpendicular distance from a point on a line is always the shortest distance which 

leads to the conclusion that l is smaller than �� or  ��. Using distance formula between 

two points, distance between 3D scanner point C(��,��) and nose tip point O(��,��) 

of an aligned face is given as in equation 3.14. 

� = �(�� − ��)� + (�� − ��)�  (3.14) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10 Example depth image in xz plane showing two-pass alignment algorithm 
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(iii) Alignment in yz Plane 

In the first pass, the two-pass alignment algorithm aligns all the 3D faces in yz plane 

by finding the correction parameter ρ using the intrinsic coordinate system based 

alignment procedure. The second alignment pass confirms the alignment accuracy of 

the proposed algorithm by rotating the 3D faces in yz plane in the range of -2o to +2o 

with a step size of 0.1o and aligns them at a position where the nose tip-scanner 

distance is the minimum as shown in Fig. 3.11 for subject 02463d556.abs from FRGC 

v2.0. 

 

 

 

 

 

 

 

 

 

 

(iv) Alignment in xy Plane 

 After attaining alignment in xz and yz planes, the algorithm utilizes half face in xy 

plane using vertical symmetry plane which was determined in yz plane alignment 

algorithm. The procedure for finding correction parameter � in xy plane for 3D faces 

excluding profile images is given in the following steps.  

1. Rotate right and left halves of face around z-axis in opposite directions up to 

±2o with a step size of ±0.25o. 

2. For each rotation of step 1 above, mirror any of the half faces in xy plane and 

shift along the other half so that both halves are fully overlapped. 

Fig. 3.11 Example depth image in yz plane showing two-pass alignment algorithm 
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3. Find sum of differences, ��(�,�), for pixels at same grid position (�, �) of 

overlapping half faces, considering those values that are less than a threshold 

� (to rule out outliers introduced in z-direction during face scanning process) 

such that  

� = � �
0          ��(�,�) > �      

 ��(�,�)         ���������                   
�,�

 
(3.15) 

4. Select the angle at which the value of S in equation 3.15 becomes minimum 

(representing a good match). This angle is the required correcton parameter � 

in xy plane. 

5. Rotate the face using 3D rotation matrix given in equation 3.13 by substituting 

value of correction parameter � and fixing the values of � and � at 0o. This 

process aligns the 3D faces in xy plane. 

The profile face images, after pose correction in xz and yz planes, are developed into 

half faces in xy plane. For implementation of proposed pose correction procedure for 

these images in xy plane, the other half face of a probe image is synthesized by 

Average Face Model (AFM) using neutral faces of the same identity from the 

database and the procedure outlined above for 3D faces excluding profile images is 

adopted for finding correction parameter �.  

The pseudo-code of the alignment approach is given as below. 

 

 

 

 

 

 

 

 

Pseudo-code 2: Two-Pass 3D Face Alignment based on Minimum Distance  

BEGIN 

I=Image; 

Compute � =
 ����� ����

 ����� ����
 

IF � >  �ℎ���ℎ��� 

Classify profile of I as right or left; 

 Define Nose tip at ���(�(�, �)); 

ELSE  

Define Nose tip at ���(�(�, �)); 

ENDIF 
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3.2.3 Two-Pass 3D Face Alignment based on Classification Approach 

(i) Alignment in xz and yz Planes 

In this alignment algorithm, a novel Support Vector Machine (SVM) based 

classification approach is employed to align the facial images in xz and yz planes 

where SVM classifier exhibited best experimental results. In order to reduce 

computational complexity of the algorithm, first of all an initial coarse alignment is 

obtained by using Intrinsic Coordinate System based alignment approach explained in 

section 3.2.1. Subsequently SVM classifier is used to classify the best alignment 

position of the face image as given below.   

FOR xz and yz planes 

Coarsely align image I using algorithm 1; 

END. 

Rotate the image I in the range -2o to 2o with step size of 0.1o  

FOR each rotation 

Compute ���(�(�, �)); 

END. 

Align image I at ���(�(�, �)); 

FOR xy plane 

IF � < �ℎ���ℎ��� 

Extract half faces 

REPEAT 

MARK: Rotate half faces in opposite directions up to � =±2o with a 

step size of ±0.25o; 

Find S by subtracting pixel values of first half face from 

mirror image of the second one; 

UNTIL S becomes minimum; 

Write �; 

ELSE 

WRITE missing Average Face Model (AFM); 

GOTO MARK; 

ENDIF 

Align image I at determined value of �; 

END. 

END. 
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SVM Classifier 

Intuitively, an SVM model is a representation of classes as points in a higher 

dimensional space, mapped so that their separation could be easier. The SVM 

classifier defines a decision surface to maximize the distance to the closest points 

named as support vectors in the training phase. For a binary classification problem, a 

hyper plane �� + � = 0 having maximum margins, termed as optimal separating 

hyper plane (OSH) separates training vectors of two classes (��, ��), … , (��, ��) where 

�� � �� and �� � {1, −1}. The objective function of the form given in equation 5.1 is 

minimized to obtain the OSH with constraints ��[(�. ��) + �] ≥ 1 − ��, �� ≥ 0 for 

� = 1, … , �. 

∅(w, ξ) =
1

2
||w||� + C � ξ�

�

���

 
(3.16) 

where �� are slack variables introduced to penalize errors if the data are not linearly 

separable and C is the regularization constant. Now sign of following OSH decision 

surface function can be used to classify a test point. 

f(x) = � y�a�K(x, x�) + b

�

���

 
 

(3.17) 

where a� ≥ 0 are corresponding support vectors Lagrangian multipliers, b is 

determined by above mentioned optimization problem, K is the kernel trick used to 

transform non separable data onto a higher dimensional space where it becomes 

linearly separable by an hyper plane, x� is the ith training sample and x is test sample. 

Radial basis function (RBF) kernel is employed in this study which is of the form as 

given below. 

K(x, y) = exp �
−||x − y||�

σ�
� 

(3.18) 

where  ��  is spread of RBF.  

The proposed alignment algorithm is employed using a set of four features. Among 
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these, two features are minimum distance from the nose tip to the 3D scanner in xz 

and yz planes separately, while the other two are maximum variance of the face image 

in xz and yz planes, separately. After attaining the initial coarse alignment, face 

images are rotated in xz and yz planes with a step size of 0.1o and minimum distance 

from nose tip to 3D scanner and maximum variance of the face images are computed 

for each rotated position. This entire process results into availability of 4 training 

vectors which are used to train the SVM classifier in a 4 dimensional space, 

comprised of genuine and imposter scores. It is worth mentioning to note that genuine 

scores represent aligned face images, while imposter scores represent misaligned face 

images. 

For a probe face image, similar procedure is adopted to calculate feature vector and 

the resulting feature vector is used to classify (align) the probe image. The rotated 

face image corresponding to genuine score is thus regarded as the aligned face image. 

(ii) Alignment in xy Plane 

In xy plane face image is aligned using the variance of x feature of the 3D data which 

is maximum when the face is in frontal position. In this method, the face image is 

rotated in the range of ±2o with a step size of 0.1o and variance of the x feature for 

each of right and left half face is determined. The face image is aligned at a point 

where the variances of left and right half faces become equal.   

The pseudo-code of the alignment approach is given as under. 

 

 

 

 

 

 

 

 

Pseudo-code 3: Two-Pass 3D Face Alignment based on Classification 

Approach  

BEGIN 

I=Image; 

FOR xz and yz planes 

Coarsely align image I using algorithm 1; ��  =  ����  −  ����  

END. 

Rotate the image I in the range -2o to 2o with step size of 0.1o  

FOR each rotation 

Compute ���(�(�, �)); 
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3.3 Experiments and Results 

Referring to section A.1 and A.2 where characteristics of FRGC v2.0 and GavabDB 

databases are described, experiments were performed to evaluate the performance of 

proposed alignment algorithms using both databases. Three alignment experiments 

were conducted in total using the proposed algorithms, namely, 3D face alignment 

based on intrinsic coordinate system, two-pass 3D face alignment based on minimum 

distance and two-pass 3D face alignment based on classification approach. For 

performance evaluation of the proposed alignment algorithms, a novel method is 

presented to verify accuracy of the alignment, as described below. 

Referring to Fig. 3.10 and 3.11 when a subject’s nose tip is not aligned with the line 

joining z-axis of 3D scanner and nose of 3D face scan, it has a larger distance 

measured from the scanner to the nose tip. On the other hand when the subject’s nose 

tip is aligned with the z-axis line, its distance from the scanner is reduced. In other 

words, when pose of a face is corrected from non-frontal to frontal position, its nose 

tip distance from the scanner is essentially reduced. Based on distance reduction 

measure, the proposed algorithms achieved 99.95% and 99.77% alignment accuracy 

using FRGC v2.0 and GavabDB databases respectively. The nose tip was not 

detectable for two subjects in the FRGC v2.0 database and one subject in GavabDB 

database else the obtained alignment accuracy would have been 100%. The subjects 

in the face databases carry almost all types of facial variations like non frontal pose, 

Compute ���(��������); 

END. 

Train SVM classifier using minimum distances and maximum variances; 

Classify (align) the probe image using classification approach; 

FOR xy plane 

Compute variance of x dimension for each of half face; 

Align the image at equal values of variances; 

END. 

END. 
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several types of facial expressions, varying distance of subjects from the scanner and 

occlusions.  

The plots of normalized distances before and after applying the proposed alignment 

algorithms for first 20 scans from FRGC v2.0 (subjects 02463d546.abs to 

02463d672.abs) and GavabDB database (subjects cara1_abajo to cara3_arriba) are 

shown in Fig. 3.12 and Fig. 3.13 respectively. Please note in Fig. 3.13 that subject 3, 

7, 12 and 16 are profile face images aligned using ‘two-pass 3D face alignment based 

on minimum distance’ algorithm only. It can be observed from the plots that ‘two-

pass 3D face alignment based on classification approach’ achieved best alignment 

accuracy i.e. the maximum reduction of distance of nose tip from the scanner is 

achieved whereas ‘two-pass 3D face alignment based on minimum distance’ and ‘3D 

face alignment based on intrinsic coordinate system’ obtained relatively lower 

alignment accuracies respectively. Original as well as pose corrected range images of 

the subjects 04343d427.abs, 04385d435.abs, cara4_abajo and cara9_arriba aligned 

using ‘3D face alignment based on intrinsic coordinate system’ are given in Fig. 3.14 

from left to right. Similarly original as well as pose corrected range images of the 

subjects 04217d399.abs, 04233d396.abs, 04221d553.abs, 04482d418.abs                

and   04387d322.abs   from   FRGC v2.0   and  images  cara1_abajo,  cara1_arriba,  
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Fig. 3.12 Distance of nose tip from scanner for first 20 scans from FRGC v2.0  
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cara1_frontal1, cara1_frontal2, cara1_derecha, cara1_izquierda, cara1_gesto, 

cara1_risa and cara1_sonrisa from GavabDB are given in Fig. 3.15 (a) and (b) 

respectively from top left to right, aligned using ‘two-pass 3D face alignment based 

on minimum distance’. Fig. 3.16 shows original as well as pose corrected range 

images of the subjects 04595d149.abs, 04724d146.abs, cara13_frontal1 and 

cara36_frontal2 from left to right aligned using ‘two-pass 3D face alignment based on 

classification approach’. 
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Fig. 3.13 Distance of nose tip from scanner for first 20 scans from GavabDB 

   

   

 Fig. 3.14 Example 3D scans aligned using 3D face alignment based on 

intrinsic coordinate system:  original (top row) and pose corrected (bottom 

row) from (a) FRGC v2.0 (b) GavabDB 

(a) 

 

(b) 
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 Fig. 3.15 Example 3D scans aligned using two-pass 3D face alignment 

based on minimum distance: original (row 1, 3, 5) and pose corrected 

(row 2, 4, 6) from  (a) FRGC v2.0 (b) GavabDB 

(b) 
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3.3.1 Computational Complexity Analysis  

Computational complexity analysis of the proposed algorithms considering 

computationally intensive operations is given in Table 3.1 for point cloud of size 

M = 300000 points. In order to rotate a single 3D point, 9 multiplication operations 

and 6 addition operations are involved. The multiplication factor of 82 in the table 

accounts for 82 rotations in the range of -2o to +2o (with a step size of 0.1o) in xz and 

yz planes whereas multiplication factor of 46 accounts for 46 rotations in the range of 

0o to +90o or -90o (with a step size of 2o) in xz plane. The multiplication factor of 147 

accounts for 147 support vectors whereas that of 4 and 7 represents multiplication and 

addition operations for 4 dimensional feature vectors respectively. In terms of big � 

notation, the computational complexity is of the order of �(�), where � represents 

total number of points in the point cloud. 

 

 Fig. 3.16 Example 3D scans aligned using two-pass 3D face alignment 

based on classification approach: original (top row) and pose corrected 

(bottom row) from  (a) FRGC v2.0 (b) GavabDB 

(a) 

 
(b) 
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3.4 Summary 

In this chapter, three novel 3D alignment algorithms have been proposed to align 

neutral and expressive faces acquired at frontal and non-frontal poses. ‘3D face 

alignment based on intrinsic coordinate system’ was based on intrinsic coordinate 

Table 3.1 Computational complexity analysis of the proposed algorithms 

O
p

er
a

ti
o

n
 

Alignment 
Steps 

3D Face 
Alignment 
based On 
Intrinsic 

Coordinate 
System 

Two-Pass 3D Face 
Alignment based On 
Minimum Distance 

Two-Pass 3D 
Face Alignment 

based On 
Classification 

Approach 
Frontal and 
Non-Frontal 
Face Images 

Profile Face 
Images 

 Nose tip 
Detection 

  M × (46 × 9)  

M
u

lt
ip

li
ca

ti
o

n
s 

Puffy face M × 9 M × 9  M × 9 

Alignment 

M × 9 M × 9  M × 9 

 M × (82 × 9) M × (82 × 9) M × (82 × 9) 

   147 × 4 

Total =5400000 =226800000 =345600000 =226800588 

A
d

d
it

io
n

s 

Nose tip 
Detection 

M × 1 M × 1 M × (46 × 6) M × 1 

Puffy face M × 6 M × 6  M × 6 

Alignment 

M × 6 M × 6  M × 6 

 M × (82 × 6) M × (82 × 6) M × (82 × 6) 

   147 × 7 

 Total =3900000 =151500000 =230400000 =151501029 
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system which employed nose tip, vertical symmetry plane and the slope of the nose 

bridge in the alignment process. The ‘two-pass 3D face alignment based on minimum 

distance’ aligned the face images using two alignment passes. The first pass coarsely 

aligned the face images including profile images to reduce computational cost and 

second pass finely aligned them using a minimum distance algorithm. The ‘two-pass 

3D face alignment based on classification approach’ also employed a coarse to fine 

approach where first pass coarsely aligned face images to reduce computational cost 

and second pass aligned them finely using a classification based approach. The 

proposed algorithms successfully aligned neutral and expressive faces acquired at 

frontal and non-frontal poses whereas ‘two-pass 3D face alignment based on 

minimum distance’ also aligned profile faces successfully. For performance 

evaluation of the proposed algorithms, experiments were conducted using FRGC v2.0 

and GavabDB databases. Based on a distance reduction measure, ‘two-pass 3D face 

alignment based on classification approach’ obtained the best alignment accuracy than 

‘two-pass 3D face alignment based on minimum distance’ and ‘3D face alignment 

based on intrinsic coordinate system’ in the respective order. On the other hand ‘3D 

face alignment based on intrinsic coordinate system’ was computationally 

inexpensive than ‘two-pass 3D face alignment based on minimum distance’ and ‘two-

pass 3D face alignment based on classification approach’. 
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Chapter 4 

RECOGNITION BASED ON REGIONAL 

SEGMENTS OF DEPTH IMAGES 

The goal of this chapter is to present 3D face recognition methodology using intrinsic 

coordinate system based alignment to deal with varying poses between probe and 

gallery images. In the beginning, properties of the proposed approach are pointed out. 

Subsequently, the details of the proposed face recognition algorithm are presented 

which employs a region based methodology using two-tier ensemble classification 

approach based on weighted Borda Count method and re-ranking strategy. The 

performance of the proposed algorithm is evaluated using FRGC v2.0 and GavabDB 

databases in terms of recognition rates and computational complexity analysis. 

4.1 3D Face Recognition 

The main algorithms evolved for 3D face recognition employ holistic and local 

feature based approaches. In general, the advantages and limitations of these 

approaches are discussed in section 1.4. In order to overcome the limitations of the 

existing approaches, the proposed region based face recognition algorithm, which is 

robust to artifacts, wrinkles, facial hair or expression variations [25], employs a two-

tier ensemble classification approach because ensemble approaches greatly improve 

the performance of individual classifiers [52]. The proposed approach employs 

Principal Component Analysis (PCA) (given in section 2.2.1) for feature extraction 

and Mahalanobis Cosine (MahCos) distance, Euclidean distance, Mahalanobis (Mah) 

distance and Manhattan distance for classification of facial regions in different 

experiments. PCA is a subspace method which provides dimensionality reduction 

while relying on a set of basis vectors which correspond to maximum variance 

direction of the image data [27]. The use of PCA is beneficial because it is easy to 

implement and produces excellent results along with MahCos distance metric [27].  

The studies Alyüz et al. [53], Spreeuwers [49] and Wang et al. [13] achieved good 



 
 
 
 

51 
 

performance in 3D face recognition by using a region based fusion approach 

considering 40, 60 and 6 face regions respectively. The proposed ensemble classifier 

based approach takes into account 15 overlapping regions composed of three sets of 

five regions each and it targets to explore contribution of overlapping regions towards 

providing complementary information using fusion. It is observed that combining 

results of multiple overlapping regions using an ensemble classifier produces 

excellent recognition results.  

For performance evaluation of the proposed face alignment and recognition method 

FRGC v2.0 database [54] comprising of 4007 images from 466 subjects and 

GavabDB database [50] consisting of 549 images from 61 subjects; both with pose 

and expression variations are utilized which are the most commonly used databases of 

3D face images employed for face recognition. The recognition results of the 

proposed method are comparable to the best reported results of state-of-the-art studies 

[55], [48], [13], [56], whereas it is computationally inexpensive. 

4.2. Proposed 3D Face Recognition Algorithm 

The framework of the proposed 3D face recognition algorithm is presented in Fig. 4.1. 

The intrinsic coordinate system based alignment step for the 3D images is explained 

in detail in the previous chapter and aligned range images are used in the face 

recognition process.  

The range images have some artifacts like noise and gaps as shown in Fig. 4.2 for 

subjects 04217d461.abs and 02463d654.abs from FRGC v2.0, so they are 

preprocessed before their classification. First of all median filter is applied for 

removal of sharp spikes which occur during the scanning process. The median filter is 

a simple nonlinear smoothing filter that can suppress noise while retaining sharp 

sustained changes (edges) in signal values. It is particularly effective in reducing 

impulsive-type noise. The output of median filter at a point is the median value of the 

input data inside the window centered at the point. If {x(k)|1 ≤ k ≥ L} and {y(k)|1 ≤

k ≥ L} respectively represent the input and output of the 1D median filter of window 

size 2N + 1, then 



 
 
 
 

52 
 

 

In order to account for start up and end effect, x(1) and x(L) are repeated N times at 

the beginning and at the end of the input respectively. After median filtering, 

interpolation is employed to fill the holes on the face. Interpolation is the estimation 

of a value of an unknown function � within two points where value of � is known in a 

sequence of values. For two points �(x�, y�) and �(x�, y�), an unknown value �(x, y) 

can be estimated as. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y(k) = med{x(k − N), … , x(k − 1), x(k), x(k + 1), … , x(k + N)} (4.1) 

�(x, y) =
x� − x

x� − x�
�(x�, y�)  +

x − x�

x� − x�
�(x�, y� ) (4.2) 
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Fig. 4.1 Block diagram of the proposed 3D face recognition algorithm 
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4.2.1 Region Creation 

By the selection of multiple small regions on the face, any error caused by a single 

region can be compensated by fusing the matching scores from multiple regions, thus 

making the recognition more robust to artifacts, wrinkles, facial hair or expression 

variations [57]. Similar methodology has been employed by Spreeuwers [49] and 

Alyüz [15]. It has been deduced in this study that small sized regions produce low 

recognition rates and large sized overlapping regions yield high recognition rates. 

Large and overlapping regions have also been used in Spreeuwers [49]; therefore, 

fusion of many relatively large overlapping regions was explored. The regions were 

selected in such a way that they would allow stable features to compare different 

types of local variations. Such regions are cropped by leaving out left or right side of 

the face, which are less visible under large rotations around the y-axis. Other cropped 

regions leave out upper or lower part of the face because of variations in caps, hair, or 

mouth expressions etc. The face regions used in this study are shown in Fig. 4.3 

where the five regions in first row are defined as set S1 while five regions in second 

and third row are defined as set S2 and S3 respectively. White areas show the facial 

regions that are included in the experiments. The region assemblage densely covers 

the whole face.  

4.2.2 Regional Classifiers  

The cropped face regions shown in Fig. 4.3 are classified by using the following four 

distance metrics. 

        (a)    (b) 

 

  

Fig. 4.2 3D scan showing (a) spikes (b) holes 
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 (i) Mahalanobis Cosine Distance 

MahCos distance is the Cosine distance computed in the Mahalanobis space. MahCos 

distance between two vectors u and v of image space is explained by equations 4.3 & 

4.4 as described in Bajwa et al. [27]. 

 

where �� is standard deviation of ith dimension. In this case higher similarity means 

higher score. Thus, the actual distance is calculated by formula given in equation 4.4. 
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 (4.3) 

�������(�, �) = 1 − S������(�, �) (4.4) 

Fig. 4.3 Region creation for fusing the results. White areas show the 

selected face regions used in recognition experiments 
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(ii) Euclidean Distance  

The Euclidean distance between two vectors u and v in image space is calculated by 

formula given in equation 4.5 [27]. 

 

(iii) Mahalanobis Distance  

The Mahalanobis distance between two vectors u and v in image space is calculated 

by formula given in equation 4.6 [27]. 

 

(iv) Manhattan Distance 

The Manhattan distance between two vectors u and v in image space is calculated as. 

 

The above explained distance based classifiers are used to classify the individual 

regions in separate experiments. It was described that this research work presents a 

two-tier fusion methodology. At the first step, the outputs from 5 regional classifiers 

in a row (please see Fig. 4.3) are fused with a combination classifier that uses the 

proposed Weighted Borda Count method. Then results of combination classifiers for 

all three region sets are fused at second stage with a re-ranking approach into a single 

D���(u, v) = ��(�� − ��)�

�

���

 (4.5) 

D���(u, v) = ��
1

��
�

(�� − ��)�

�

���

 (4.6) 

D���������(u, v) = �|�� − ��|

�

���

 (4.7) 
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decision. Weighted Borda Count method and re-ranking approach are explained in the 

following section. 

4.2.3 Fusion Techniques  

There are many ways to fuse the results of a pool of classifiers. Several approaches 

are given in the studies Spreeuwers [49] and Bajwa et al. [52] e.g. Dempster-Shafer 

Theory of Evidence, weighted majority voting and selection of the best combination 

of classifiers etc. In the study Spreeuwers [49], five levels of fusion are explained as 

following: 

Sensor level fusion: Sensor level fusion fuses raw data from different sensors prior to 

feature extraction. 

 Feature level fusion: Extracted features of a subject are combined in this 

technique. 

 Rank level fusion: It is fusion of results at rank level. e. g. Borda Count 

method. 

 Decision level fusion: It is the fusion of decisions of the different 

classifiers producing class labels. e.g. majority voting. 

 Score level fusion: In this method scores produced by individual 

classifiers are fused. e.g. sum and product rule. 

The Borda Count method [52] is based on the summation of ranks assigned to each of 

the regions by respective regional classifiers. The image with the lowest rank sum is 

declared a match. A limitation of the Borda Count method is that, it can be strongly 

affected by regions which give poor quality contribution towards final result. For 

example, if each of four regions reports a rank-1 match for a person and fifth region 

reports a 300th rank due to noise or occlusions, then total rank sums to 304 which will 

probably result in a mismatch.  

To overcome this drawback of Borda Count method, Weighted Borda Count fusion 

method is proposed (as the first tier of ensemble classifier based matching) which 

considers only the top ranked matches. For this purpose a generalization of the rank-

sum method is presented to transform a set of ranks ℛ into the set �(ℛ) using a 

function � which may be any nonlinear monotonically decreasing function such that: 
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ℛ = {r, r + 1, r + 2, r + 3, … , R}  (4.8) 

where r and R represents rank 1 and rank N results respectively, and 

�(ℛ) = {�(r), �(r + 1), �(r + 2), �(r + 3), … , �(R)}  (4.9) 

In this study, the function  �(r)is proposed as  

�(r) = (s − r)�  (4.10) 

where s = 6 and w = 2. Based on experimental evidences, the values of s and w have 

been chosen empirically because maximum performance was achieved with this 

selection. The motivation to use such a function � is to penalize the classes at the 

bottom of a ranked list. Also, higher weight assignments to top ranked classes 

returned experimentally higher results than the traditional Borda Count method [52]. 

When a new probe image is to be classified, the regional classifiers contribute a rank 

towards the ranked list against each of gallery images. The combination classifiers 

compute the corresponding ranks using the proposed Weighted Borda Count method 

for regions shown in Fig. 4.3. Thus, sums of ranked lists against each of gallery 

images are calculated and rank-1 is assigned to maximum value among all of the 

sums, rank-2 to next lower value of sum and so on. Re-ranking approach is employed 

at second ensemble stage, to fuse results produced by combination classifiers for all 

three region sets. In the re-ranking approach, outputs of combination classifiers are 

fused by assigning an empirically calculated weight to the combination classifiers and 

a weight to the output rank of the combination classifier. Finally these ranks are re-

ordered to produce a ranked list where each ranked label represents a unique fused 

result. The mathematical description for such re-ranking [52] is expressed below. 

W�� = � W��
. W���

�

���

 (4.11) 

where c is the number of combination classifiers, W��
 is empirically calculated weight 

for a combination classifier determined by dividing recognition accuracy of classifier 

K by the total recognition accuracies of both of the classifiers implementing parallel 

face recognition algorithms, x is the probe image and W�� is total weight calculated 
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against the probe image x. W���
 is the weight assigned to a rank from the output of a 

combination classifier for the probe image x given as: 

W���
=

1

e��
  (4.12) 

Where Rx is the rank of the corresponding matched label. Hence, the farther the 

matched label is in rank, lesser is its rank weight towards final weight calculation. 

Final re-ordered ranks are determined using total weights contributed by each of the 

combination classifiers computed for each of gallery images against a probe image. 

4.3 Experiments and Results 

Recognition is a task where the facial recognition system (FRS) is presented a probe 

image to attempt to match it with a reference image in the gallery. Two closed set face 

recognition experiments have been performed on each of the FRGC v2.0 and 

GavabDB databases using PCA based features and MahCos distance, Euclidean 

distance, Mah distance and Manhattan distance based nearest neighbor classifiers, 

separately. The dimension of original PCA based feature space is 500×500 = 250000 

and that of reduced feature space is ‘g’ where ‘g’ is the size of the gallery employed 

in an experiment. In closed set recognition, it is guaranteed that for every probe image 

there is a guaranteed match present in the gallery. The performance of proposed 

methodology was investigated using the neutral 3D face images. The poses of all 

subjects were corrected by using the intrinsic coordinate system based alignment 

algorithm presented in this study.  

4.3.1 Experiments on FRGC v2.0 Database 

The FRGC v2.0 database [54] (described in section A.1) contains 466 subjects and 

almost 2410 point clouds with neutral expression. For some of the subjects, more than 

two neutral images are captured with a time lapse of one week between them. In the 

first experiment using FRGC v2.0 database, 466 images (one image per subject) were 

included in the gallery and 1944 were considered as probe. This strategy for splitting 

gallery and probe sets had been previously employed in the study Al-Osaimi et al. 

[56]. The experimental results for region sets S1, S2, S3 and re-ranking stage (fused) 

are given by Cumulative Match Characteristic (CMC) plots shown in Fig. 4.4, 4.5, 4.6 
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and 4.7 using MahCos distance, Euclidean distance, Mah distance and Manhattan 

distance based classifiers respectively. It is clear from the plots that the experiments 

using MahCos distance metric obtained best performance whereas the experiments 

using Euclidean distance, Mah distance and Manhattan distance achieved relatively 

low performance respectively for region sets S1, S2 and S3 as well as for fused results 

at re-ranking stage. 
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Fig. 4.4 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and MahCos distance (first 

experiment) 
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Fig. 4.5 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Euclidean distance (first 

experiment) 
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Fig. 4.6 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Mah distance (first 

experiment) 
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Fig. 4.7 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Manhattan distance (first 

experiment) 
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In the second experiment, experimental protocol of Wang et al. [13] was considered 

where 943 scans from FRGC v1 were used in the training phase. In this experiment, 

results produced by combination classifiers for region sets S1, S2, S3; and re-ranking 

stage were significantly improved. The improved classification accuracy (in case of 

GavabDB database as well) comes from the enrollment of multiple training images of 

known class labels in the gallery as the performance substantially degrades if one 

gallery image per subject is used in training phase [58]. The CMC plots for region sets 

S1, S2, S3, and re-ranking stage (fused) of the second experiment are given in Fig. 4.8, 

4.9, 4.10 and 4.11 for MahCos distance, Euclidean distance, Mah distance and 

Manhattan distance respectively to depict the behavior of the considered classifiers. 

Similar to the results obtained in experiment 1, experiments using MahCos distance 

metric, achieved highest classification accuracy, whereas Euclidean distance, Mah 

distance and Manhattan distance classifier based experiments achieved low 

classification accuracy in the respective order for both of region sets S1, S2, S3, and 

fused results at re-ranking stage. 
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Fig. 4.8 Cumulative match characteristic curves of the proposed method for first 

rank-60 results using FRGC v2.0 database and MahCos distance (second 

experiment) 
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Fig. 4.9 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Euclidean distance (second 

experiment) 
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Fig. 4.10 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Mah distance (second 

experiment) 
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4.3.2 Experiments on GavabDB Database 

Referring to section A.2, which explains the characteristics of the GavabDB database 

[50], two face recognition experiments were conducted. Experimental protocol of 

Mahoor and Abdel-Mottaleb [48] was considered for the first experiment where 

second neutral scan of each subject was enrolled in the gallery and first was used as 

probe. For the second experiment, experimental protocol of Zhang et al. [55] was 

employed where three neutral scans of each subject were included in the gallery and 

remaining neutral scan was used as probe. The rank-1 recognition rates for sets S1, S2, 

S3, and re-ranking stage for both experiments are shown in Table 4.1. It can be 

observed from Table 4.1 that MahCos distance based classifier achieved best results 

for all region sets as well as at re-ranking stage for both experiments while Euclidean 

distance, Mah distance and Manhattan distance based classifiers obtained relatively 
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Fig. 4.11 Cumulative match characteristic curves of the proposed method for 

first rank-60 results using FRGC v2.0 database and Manhattan distance 

(second experiment) 
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lower recognition rates respectively for both of region set S1, S2, S3, and fused results 

at re-ranking stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3 Comparison with other Algorithms 

Table 4.1 and 4.2 compare the recognition results of the proposed methodology to 

Table 4.1 Rank-1 recognition rates using GavabDB database (%) 

 

Author, Year 

Gallery 

Size 

Probe 

Size 

Region 

Set S1 

Region 

Set S2 

Region 

Set S3 

Rank-1 

Recognition 

Rate 

Mahoor and 

Abdel-Mottaleb., 

2009 [48] 

61 61 - - - 95 

Zhang et al., 2014 

[55] 
183 61 - - - 100 
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1)
 

MahCos 

Distance 
61 61 90.16 86.89 81.97 95.08 

Euclidean 

Distance 
61 61 86.89 81.97 77.05 90.16 

Mah 

Distance 
61 61 81.97 77.05 73.77 86.89 

Manhattan 

Distance 
61 61 78.69 73.77 70.49 83.61 
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2)
 

MahCos 

Distance 
183 61 96.72 91.80 85.25 100 

Euclidean 

Distance 
183 61 93.44 88.52 81.97 96.72 

Mah 

Distance 
183 61 90.16 85.25 78.69 93.44 

Manhattan 

Distance 
183 61 86.89 81.97 75.41 90.16 
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state-of-the-art previous studies which used the GavabDB and FRGC v2.0 databases 

respectively. Referring to Table 4.1 the algorithm presented in Zhang et al. [55] is 

based on meshSIFT for facial key points detection with sparse representation based 

classification and the study Mahoor and Abdel-Mottaleb [48] presented a 3D face 

recognition approach based on 3D binary ridge images, principal maximum curvature 

and Iterative Closest Point matching technique. The proposed intrinsic coordinate 

system based alignment and ensemble classifier based face recognition approach has 

yielded a recognition rate of 100% using MahCos distance metric. 

Referring to Table 4.2, besides the study Mahoor and Abdel-Mottaleb [48], Al-Osaimi 

et al. [56] integrated local and global geometric cues for 3D face recognition utilizing 

Principal Component Analysis and 2D histograms of tensors with Euclidean distance 

matching while the study Wang et al. [13] employed an approach based on Dual Tree 

Complex Wavelet Transform and Linear Discriminant Analysis with nearest neighbor 

classifier. The proposed algorithm has realized a better performance with rank-1 

recognition result starting at 98.93% using MahCos distance metric.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.4 Computational Complexity Analysis  

The complexity of the proposed algorithm considering computationally intensive 

Table 4.2 Rank-1 recognition rates using FRGC v2.0 database (%) 

Author, Year Gallery Size Probe Size 
Rank-1 

Recognition Rate 

Mahoor and Abdel-

Mottaleb, 2009 [48] 
370 370 93.7 

Osaimi et al., 2007 [56] 466 1944 93.78 

Wang et al., 2014 [13] - - 98.71 

Proposed Methodology 

( first Experiment) 
466 1944 94.15 

Proposed Methodology 

( Second Experiment) 
466 1944 98.93 
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operations is given in Table 4.3. Referring to Table 3.1, Intrinsic Coordinate System  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3 Comparison of the computational complexity of the proposed 

algorithm with Iterative Closest Point (ICP) algorithm  

 Multiplications Additions 

ICP 
(M × N) × (1331 × 3) × 370 

=1.33 × 1017 

(M × N) × (1331 × 6) × 370 

=2.66 ×1017 

ICP (fast) 
M log (N) × (1331 × 3) × 370

=8.06 × 1012 

M log (N) ×(1331 × 6) × 370 

=1.61 × 1013 

ICP (14% 

points) 

(M × N) × (0.14)2 × (1331 

× 3) × 370 

 = 2.61 × 1015 

(M × N) × (0.14)2 × (1331 × 6) × 370

=5.21 × 1015 

ICP (fast 14% 

points) 

0.14M × log ( 0.14 × N) 

 × (1331 × 3) × 370 

 = 9.53 × 1011 

0.14M × log( 0.14 × N) 

 × (1331 × 6) × 370 

=1.91× 1012 

P
ro

p
os

ed
 M

et
h

od
ol

o
gy

 

MahCos 

Distance 

5.40 × 106 + 

(m × n) × 370 × 5 + 

2 × (m × n) × 370 × 5 

=1.39 ×109 

3.90 × 106 + 

( m × n)× 370 × 5 + 

(m × n)× 370 × 5 

=9.29 ×108 

Euclidean 

Distance 

5.40 × 106 + 

(m × n) × 370 × 5 + 

(m × n) × 370 × 5 

=9.30 ×108 

3.90 × 106 + 

( m × n) × 370 × 5 + 

2 × (m × n)× 370 × 5 

=1.39 ×109 

Mah 

Distance 

5.40 × 106 + 

(m × n) × 370 × 5 + 

2 × (m × n) × 370 × 5 

=1.39 ×109 

3.90 × 106 + 

( m × n) × 370 × 5 + 

2 × (m × n) × 370 × 5 

=1.39 ×109 

Manhattan

Distance 

5.40 × 106 + 

(m × n) × 370 × 5 

=4.68 ×108 

3.90 × 106 + 

( m × n) × 370 × 5 + 

2 × (m × n) × 370 × 5 

=1.39 ×109 
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based alignment involves 5.40 ×106 multiplication and 3.90 ×106 addition operations. 

PCA based face recognition algorithm requires (m × n) × 370 ×5 multiplication and 

addition operations each for a gallery of 370 images, whereas the multiplication factor 

of 5 compensates for the overlapping regions (4 half face regions in region set S1 and 

11 quarter face regions in region sets S1, S2 and S3 approximately equal to 5 whole 

face regions) as given in Fig. 4.3. Each of MahCos distance, Euclidean distance, Mah 

distance and Manhattan distance is computed for mn dimensional 370 images and 5 

overlapping regions. Furthermore, Manhattan distance calculation involves 1 load 

operation to determine the absolute value. 

Among the algorithms [55] [48] [13] [56] which are compared in Tables 4.1 and 4.2, 

the only available complexity of the study [48] (neglecting initial course alignment 

complexity) is primarily based on Mean Squared Error (MSE) distance calculation 

which utilizes 3 multiplication and 6 addition operations for each of 

1331 (11 × 11 × 11) rotations at 0o, ±2o, ± 4o, ±6o, ± 8o and ± 10o in x, y and z 

directions assuming that 11 iterations in each of x, y and z directions successfully 

result in the best geometric alignment of the probe image. 

Referring to section 3.1, Iterative Closest Point based approaches align each probe 

image to every gallery image; whereas the proposed algorithm registers a probe image 

to the intrinsic coordinate system only once. The complexity calculations for the 

proposed algorithm and the study Mahoor and Abdel-Mottaleb [48] (considering point 

cloud of size M = N = 300000 points and depth image of size m × n = 500 × 500) are 

given in Table 4.3 which clearly reveals that proposed face alignment and recognition 

algorithm is computationally more efficient than the study Mahoor and Abdel-

Mottaleb [48]. In terms of big � notation, the computational complexity of ICP, ICP 

(fast), ICP (with � =14% points) and ICP (fast (with � =14% points)) is of the order 

of �(��), �(����(�)), ���(��) and �(�����(��)) as given in Mahoor and 

Abdel-Mottaleb [48]. The computational complexity of the proposed methodology (in 

big � notation) is analyzed in terms of face alignment and face recognition. For face 

alignment, it is of the order of �(�), where � represents total number of points in the 

point cloud. For face recognition, it is of the order of �(��), where �� represents 

total number of pixels in the face template. 
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4.4 Summary   

A novel region based 3D face recognition algorithm has been proposed in this chapter 

employing Intrinsic Coordinate System based alignment. The proposed methodology 

employed a region based strategy where the face was segmented into 15 overlapping 

face regions. In order to classify individual face regions, Principal Component 

Analysis based features were used along with MahCos distance, Euclidean distance, 

Mah distance and Manhattan distance based classifiers in separate experiments. The 

region based classification results were combined using a two stage ensemble 

classifier that employed Borda Count based combination and a re-ranking stage. The 

experimentation process was carried out using FRGC v2.0 and GavabDB databases. 

The superior results exhibited by the proposed methodology demonstrated 

effectiveness of the approach and were compared with the state-of-the-art algorithms 

in terms of recognition rates and computational complexity.  
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Chapter 5 

RECOGNITION BASED ON MULTI-VIEW 

DEPTH IMAGES 

In this chapter, an automatic, pose and expression invariant 3D face recognition 

approach is presented which is based on facial information extracted from multi-view 

depth images like other studies [59] [60] [61] [62] [63]. In order to overcome 

limitations of existing approaches discussed in section 1.4, real 3D facial information 

is used in the recognition process using multi-view depth images. The proposed 

approach employs Principal Component Analysis (PCA) (discussed in section 2.2.1) 

for feature extraction and results in improved recognition rates for both of verification 

and identification scenarios.  

For face verification, a multi-view full face region based recognition approach is 

proposed where two sets of 3D facial images are synthesized and classified using 

pairwise scores generated from the synthesized sets. For face identification, a face 

recognition method is designed that employs a three stage unified classifier which 

hierarchically fuses the results generated from seven base classifiers at first stage, two 

parallel face recognition algorithms at the second stage and an exponential rank 

combiner at the third stage to improve the classification accuracy of neutral and 

expressive faces. The depth images are aligned using two-pass 3D face alignment 

based on classification approach and two-pass 3D face alignment based on minimum 

distance in separate experiments. In order to evaluate the performance of the proposed 

system, experiments are conducted on FRGC v2.0 and GavabDB databases using 

Mahalanobis Cosine (MahCos) distance, Euclidean distance, Mahalanobis (Mah) 

distance, and Manhattan distance based classifiers. In addition, computational 

complexity analysis of the proposed methodology is also presented. The results are 

compared with state-of-the-art methods in terms of verification and identification 

rates.  
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5.1 Proposed Methodology 

The proposed face recognition system is comprised of face alignment, verification and 

identification modules. The face alignment module was discussed in Chapter 3 and an  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Block diagram of proposed facial recognition system 
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illustration of the proposed approach is presented in Fig. 5.1. 

For classification of depth images, first of all they are passed through a preprocessing 

step to cope with the artifacts such as noise and gaps. The sharp spikes, which are 

introduced in the depth images during the face scanning, are removed through median 

filtering and the holes on the face images are filled using interpolation as described in 

section 4.2. 

5.1.1 Multi-view Synthesis 

The images which are aligned at 0o are rotated around y-axis at 0o, ±10o, ±20o and 

±30o to synthesize novel views, resulting in two sets of seven depth images. The 

synthesized multi-view face images provide stable features for comparison of various 

local variations and incorporate occluded regions of the face that are less visible if 

frontal views are considered only. An example of synthesized multi-view face images 

employed in this study is shown in Fig. 5.2 (using subject 04203d438.abs from FRGC 

v2.0 and subject cara33_frontal1 from GavabDB) from which complementary 3D 

information can be readily observed. This information helps in coming up with a 

fusion based unified classification approach employed to classify these images for 

increased classification accuracy.  

 

 

 

 

 

 

 

 

   

      

10o 0o 20o 30o -10o -20o -30o 

Fig. 5.2 Synthesized multi-view depth images: example subject from FRGC v2.0 

(top row) and GavabDB (bottom row) 
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5.1.2 Handling Expression Variations 

In order to handle facial expression variations, a special area called Expression 

Invariant Area is employed based on rigid facial regions comprised of eyes-forehead 

and nose. The motivation behind the proposed approach is based on three important 

findings [43]: (i) Rigid facial regions comprised of eyes-forehead and nose, are less 

sensitive to expressions compared to mouth and cheeks. (ii) Upper facial part is more 

significant compared to lower one for face recognition task. (iii) Region based 

matching is beneficial in case of expressive and neutral faces. By using the binary 

mask (Fig. 5.3 (a)) and the nose tip heuristic, the proposed approach automatically 

segments the expression invariant area as shown in Fig. 5.3 (b) for subject 

04221d553.abs. After segmenting the expression invariant area multi-view segmented 

upper faces are synthesized at novel views of 0o, ±10o, ±20o and ±30o. The novel 

views carry 3D discriminating facial information as discussed in section 5.1.1. 

 

 

 

 

 

 

5.1.3 Classifier Fusion 

Classifier fusion is an effective technique which is beneficial in pattern recognition 

problems such as fingerprint, speech, character, and face recognition. Facial data can 

be fused using several methods such as Dempster-Shafer Theory of Evidence, neural 

networks and majority voting principle [52] etc.  

Five distinct levels of fusion are described in the studies Ross et al. [64] [65] namely, 

sensor level fusion (based on raw facial data), feature level fusion, rank level fusion 

  

Fig. 5.3 (a) Binary mask for segmentation of expression invariant area (b) expression 

invariant area of the face for example subject from FRGC v2.0  

(a) (b) 
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(e.g. Borda count), decision level fusion (e.g. majority voting) and matching score 

level fusion (e.g. weighted sum rule). Score level fusion is commonly chosen because 

matching scores contain enough information to make genuine and impostor cases 

separable. Score level fusion methods can be divided into three categories: (i) 

transformation-based (ii) density-based and (iii) classifier based. Examples of these 

methods are weighted sum-rule, likelihood ratio test with Gaussian Mixture Model 

and Support Vector Machine (SVM) based fusion respectively. Referring to section 

3.2.3, the classification in verification set up is realized through SVM classifier in this 

study. 

5.1.4 Face Verification Algorithm 

Referring to section 5.1.1, for face matching in a verification scenario two sets of 

seven depth images (which are synthesized using two neutral frontal images of each 

subject in respective order) are included in the gallery and after Principal Component 

Analysis (PCA) based subspace learning, the algorithm computes MahCos distance, 

Euclidean distance, Mah distance or Manhattan distance (in separate experiments) 

between gallery image pairs for respective angular positions (0o, 0o), (±10o, ±10o), 

(±20o, ±20o) and (±30o, ±30o). In the classification phase, seven synthesized depth 

images of the neutral probe face image and first gallery image are used to compute 

aforementioned scores for above mentioned angular positions preceded by PCA based 

subspace learning of the synthesized probe images. 

Referring to section 5.1.2, in order to classify expressive faces, expression invariant 

area of the neutral images contained in above mentioned gallery and expressive probe 

image are employed to compute aforementioned scores using above mentioned 

procedure. The entire process results into availability of seven training and probe 

vectors of aforementioned scores (in separate experiments). The training vectors are 

used to train the SVM classifier explained in section 3.2.3 and probe vectors are used 

to classify the probe images.  

5.1.5 Face Identification Algorithm 

Face identification algorithm employs a three stage unified classifier based matching 

that implements MahCos distance, Euclidean distance, Mah distance or Manhattan 
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distance metric (explained in section 4.2.2) as base classifier at first stage in separate 

experiments. At the second stage, two parallel face recognition algorithms are 

employed through transformation based score level fusion using weighted sum-rule, 

and decision level fusion. The results of these algorithms are fused at the third stage 

of unified classifier using a rank combiner component.  

In the weighted sum method, an empirically calculated weight for each base classifier 

is multiplied with distances calculated by the same base classifier for each probe 

image against the gallery images. The resulting multiplication results from all the base 

classifiers are added up and arranged in a ranked list. The mathematical description of 

such a scheme is given in equation 5.1. 

d� = � W�. d��

�

���

 (5.1) 

where W� is the weight of classifier i, d�� is the computed score vector obtained from 

base classifier i for probe image x and d� is the sum of weighted distance scores from 

all classifiers for probe image x. W� is determined using the individual recognition 

accuracy achieved by each of the base classifiers as given in equation 5.2. 

 

��=
Recognition accuracy of each base classifier

∑ Recognition accuracies of all base classifiers
 (5.2) 

For score normalization, min-max normalization method is utilized in this study 

which retains original distribution of matching scores except for a scaling factor and 

maps raw matching scores to interval [0, 1]. If maximum and minimum values of the 

raw matching scores are max(X) and min(X) respectively, then normalized score is 

computed as 

x� =
x − min (X)

max(X) − min (X)
 (5.3) 

where x ∈ X and X is the set of raw matching scores obtained from a base classifier 

and x′denotes the normalized score of x.  
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Among the decision-level fusion strategies, majority voting is naïve in nature where 

each base classifier has right of one vote and the class getting more than half of votes 

is declared as a match based on the mathematical description, (n + 1)/2 , if number 

of votes n is odd. In the context of the proposed application, if four or more base 

classifiers yield positive identification, then identification process is considered 

successful. The outputs of parallel face recognition algorithms are fused in a rank 

combiner element by assigning an empirically calculated weight to them and to the 

output rank yielded by them as explained in section 4.2.3.  

5.2 Experiments and Results 

The proposed study targets to develop an efficient, pose and expression invariant; 

facial recognition system which can handle frontal, non-frontal and profile face 

images. The images were aligned using two-pass 3D face alignment based on 

classification approach and two-pass 3D face alignment based on minimum distance 

in separate experiments. Two databases namely, FRGC v2.0 and GavabDB were 

employed in the experimentation process of the proposed study. On each of these 

databases two types of experiments were performed using PCA based features and 

MahCos distance, Euclidean distance, Mah distance and Manhattan distance based 

classifiers. The dimension of original PCA based feature space is 500×500 = 250000 

and that of reduced feature space is ‘g’ where ‘g’ is the size of the gallery employed 

in an experiment.  

The first type of experiment was face verification experiment where performance of 

the facial recognition system is reported as verification rate at a given False 

Acceptance Rate (FAR). The second one was face identification experiment where 

performance is reported as rank-1 identification rate. For both types, four experiments 

were performed in total, namely Neutral vs. Neutral (N vs. N) verification, Neutral vs. 

Non-neutral (represented by N vs. E) verification, N vs. N identification and N vs. E 

identification as explained in the following. 
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5.2.1 Experiments on FRGC v2.0 Database 

(i) Face Verification Experiments 

Referring to section A.1 where characteristics of FRGC v2.0 3D database [54] are 

given, the performance of proposed face verification algorithm was investigated by 

creating N vs. N and N vs. E verification experiments using the FRGC v2.0 database 

which contains 2469 neutral scans and 1538 non-neutral scans [5].  

Since the classifier was trained in the score space, two classes being considered were 

genuine scores and imposter scores. For imposter scores, only one template per 

subject could be used however for genuine scores, at least two templates per subject 

were needed. Therefore, two neutral images per subject were used to calculate 

training scores for SVM classifier, whereas expression invariant area of the same two 

neutral training images was used for training in N vs. E experiments. The FRGC v2.0 

database contains 370 such subjects which possess at least two neutral images [48]. 

Therefore, 740 images (two images per subject) were included in the gallery set and 

in case of subjects that had more than two neutral images; the first two stored neutral 

images were included in the gallery. The remaining neutral and all expressive images 

were used as probe sets for N vs. N and N vs. E experiments respectively. 

The performance metrics of the proposed method using two-pass 3D face alignment 

based on classification approach are depicted in terms of ROC curves at 0.1% False 

Acceptance Rate (FAR) in Fig. 5.4, 5.5, 5.6 and 5.7 for N vs. N experiments using 

MahCos, Euclidean, Mah and Manhattan distances respectively. Similarly Fig. 5.8, 

5.9, 5.10 and 5.11 represent ROC curves at 0.1% FAR for N vs. E experiments using 

aforementioned distances respectively.  

The performance metrics using two-pass 3D face alignment based on minimum 

distance are given in Table 5.1.  

It is clear from Fig. 5.4 to Fig. 5.11 and Table 5.1 that the experiments using MahCos 

distance metric obtained best performance whereas the experiments using Euclidean 

distance, Mah distance and Manhattan distance achieved relatively low performance 

respectively. The two-pass 3D face alignment based on classification approach 
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resulted into better verification rates than two-pass 3D face alignment based on 

minimum distance. 
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Fig. 5.4 Receiver Operating Characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and MahCos distance  
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Fig. 5.5 Receiver Operating Characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Euclidean distance  
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Fig. 5.6 Receiver Operating Characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Mah distance 
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Fig. 5.7 Receiver Operating Characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Manhattan distance  

 



 
 
 
 

79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
False Acceptance Rate 

 

V
er

if
ic

at
io

n 
R

at
e 

 

Fig. 5.8 Receiver Operating Characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and MahCos distance  
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Fig. 5.9 Receiver Operating Characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Euclidean distance 
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Fig. 5.11 Receiver Operating Characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Manhattan distance 

 

 False Acceptance Rate 
 

V
er

if
ic

at
io

n
 R

at
e 

 

Fig. 5.10 Receiver Operating Characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Mah distance 
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(ii) Face Identification Experiments:  

To evaluate the performance of face identification algorithm proposed in this study, 

experimental protocol of Berretti et al. [5] was employed where probe sets were 

created using 2469 neutral scans and 1538 non-neutral scans for N vs. N and N vs. E 

experiments respectively and images from FRGC v1 were enrolled in the gallery in 

compliance with guidelines of this database [5]. The cumulative match characteristic 

(CMC) plots for N vs. N experiments using two-pass 3D face alignment based on 

classification approach are given in Fig. 5.12, 5.13, 5.14 and 5.15 using MahCos, 

Euclidean, Mah and Manhattan distances respectively. Similarly Fig. 5.16, 5.17, 5.18 

and 5.19 depict CMC plots for N vs. E experiments using the aforementioned 

distances respectively. The result accuracies using two-pass 3D face alignment based 

on minimum distance are given in Table 5.1. It is clear from Fig. 5.12 to Fig. 5.19 that 

best performance was obtained for experiments where MahCos distance metric was 

used whereas the experiments using Euclidean distance, Mah distance and Manhattan 

distance obtained relatively low performance respectively. The two-pass 3D face 

alignment based on classification approach produced better recognition rates than 

two-pass 3D face alignment based on minimum distance. 
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Fig. 5.12 Cumulative match characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and MahCos distance  



 
 
 
 

82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Rank 

R
ec

o
g

ni
ti

o
n 

R
at

e 

Fig. 5.13 Cumulative match characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Euclidean distance  
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Fig. 5.14 Cumulative match characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Mah distance  
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Fig. 5.16 Cumulative match characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and MahCos distance  
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Fig. 5.15 Cumulative match characteristic curve of the proposed method for 

N vs. N experiment using FRGC v2.0 database and Manhattan distance  
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Fig. 5.17 Cumulative match characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Euclidean distance  

 

Rank 

R
ec

o
g

ni
ti

on
 R

at
e 

Fig. 5.18 Cumulative match characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Mah distance  
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(iii) Comparison with Existing Algorithms 

The face verification and identification results of the proposed methodology were 

compared to the existing state-of-the-art methods in Table 5.1 for FRGC v2.0 

database. The technique presented in the study Al-Osaimi et al. [56] proposed 

integration of global and local geometric cues employing Principal Component 

Analysis and 2D histograms of tensors using Euclidean distance based classification.  

The study Berretti et al. [5] is focused on a graph based approach in which recognition 

is accomplished by partitioning each face into a fixed number of iso-geodesic stripes 

and measuring displacement for each stripes pair by computing 3D weighted 

walkthroughs between all point pairs of two stripes. The study Chang and Wang [66] 

presents a resolution invariant local feature based 3D face recognition method in 

which scale space extrema on shape index images were detected and matched using 

score level fusion based SVM classifier, while a Dual Tree Complex Wavelet 

Transform, Linear Discriminant Analysis and nearest neighbor based face recognition 

approach is implemented in the study Wang et al. [13]. 
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Fig. 5.19 Cumulative match characteristic curve of the proposed method for 

N vs. E experiment using FRGC v2.0 database and Manhattan distance  
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The proposed SVM classifier based face verification and unified classifier based face 

identification method using two-pass 3D face alignment based on classification 

approach and MahCos distance metric has yielded a better performance than state-of-

the-art studies presented in Table 5.1, with verification rate of 99.57% and 96.57% at 

0.1% FAR and rank-1 identification rate of 98.93% and 94.42% for N vs. N and N vs. 

Table 5.1 Verification and identification rates using two-pass 3D face 

alignment based on minimum distance on FRGC v2.0  

Author, Year 

Verification rates (%)  Rank-1 identification rates (%) 

N vs. 

N(1) 

N vs. 

N 

N vs. 

E(1) 

N vs. 

E 

N vs. 

N(1) 

N vs. 

N 

N vs. 

E(1) 

N vs. 

E 

P
ro

p
os

ed
 m

et
h

o
d

ol
o

g
y

 

MahCos 

Distance 
99.57 99.14 96.57 96.14 98.93 98.50 94.42 93.99 

Euclidean 

Distance 
95.71 95.28 92.70 92.27 94.42 93.99 90.77 90.34 

Mah 

Distance 
91.63 91.20 88.84 88.41 90.77 90.34 86.4) 86.05 

Manhattan 

Distance 
88.84 88.41 85.62 85.19 87.12 86.70 83.69 83.26 

Osaimi et al., 

2007 [56] 
95.37 - 93.78 - 

Berretti et al., 

2010 [5] 
97.7 91.4 96.1 90.77 

G. Zhang and 

Y. Wang., 2011 

[66] 

98.3 89.5 98 89.1 

Wang et al., 

2014 [13] 
99.53 96.25 98.71 94.21 

(1) Results using two-pass 3D face alignment based on classification approach. 
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E experiments respectively. 

5.2.2 Experiments on GavabDB Database 

(i) Face Verification Experiments 

Referring to section A.2 which explains GavabDB [50] database features, same 

protocol as used by Berretti et al. [67], was followed for creation of probe set for the 

verification experiment, In the training phase, the neutral image ‘abajo’ was included 

as second image along with ‘frontal1’ in the gallery for pairwise training score 

calculation, whereas ‘frontal2’ and ‘frontal1’ were used for pairwise test score 

calculation for N vs. N verification experiment. For the N vs. E verification 

experiment, 183 expressive images were used for pairwise test score calculation. The 

performance metrics of the proposed method employing two-pass 3D face alignment 

based on classification approach and two-pass 3D face alignment based on minimum 

distance are given in Table 5.2. 

(ii) Face Identification Experiments 

For the identification experiments, experimental protocol of Berretti et al. [67] was 

considered for the N vs. N and N vs. E experiments where for each of 61 subjects 

from GavabDB database, the image ‘frontal1’ was enrolled in the gallery in 

compliance with the experimental protocol of this database and the image ‘frontal2’ 

was used as probe. For the N vs. E experiment, three expressive images per subject 

(183 images in total) were used as probe set. The rank-1 identification rates for N vs. 

N and N vs. E experiments using two-pass 3D face alignment based on classification 

approach and two-pass 3D face alignment based on minimum distance are given in 

Table 5.2. 

For classification of profile faces, the unified classifier considered four base 

classifiers for faces synthesized at 0o, 10o, 20o, 30o and 0o, -10o,-20o, -30o for right and 

left profiles respectively. The score based parallel face recognition algorithm took into 

account scores from above mentioned base classifiers and decision based parallel face 

recognition algorithm considered three votes to decide for a true positive. The rank-1 

identification rates for left and right profile faces using two-pass 3D face alignment 

based on minimum distance are given in Table 5.2. 
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From Table 5.2 it is revealed that the recognition experiments using MahCos distance 

metric achieved the best performance whereas those using Euclidean distance, Mah 

distance and Manhattan distance exhibited relatively low performance respectively for 

all of the face verification, identification and profile images based experiments. The 

Table 5.2 Verification and identification rates using two-pass 3D face 

alignment based on minimum distance on GavabDB  

Author, 

Year 

Verification rates (%)  Rank-1 identification rates (%) 

N vs. 

N(1) 

N vs. 

N 

N vs. 

E(1) 

N vs. 

E 

N vs. 

N(1) 

N vs. 

N 

N vs. 

E(1) 

N vs. 

E L
ef

t 
P

ro
fi

le
 

R
ig

h
t 

P
ro

fi
le

 

P
ro

p
os

ed
 m

et
h

od
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o
g
y

 

M
ah

C
os

 
D
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ce

 

100 98.36 95.08 93.44 100 98.36 96.72 95.08 95.08 83.61 

E
u

cl
id

ea
n

 
D

is
ta

n
ce

 

96.72 95.08 91.80 90.16 95.08 93.44 93.44 91.80 91.80 80.33 

M
ah

 
D
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ta

n
ce

 

91.80 90.16 86.89 85.25 93.44 91.80 91.80 90.16 86.89 77.05 

M
an

h
at

ta
n

 
D
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n
ce

 

90.16 88.52 83.61 81.97 88.52 86.89 86.89 85.25 83.61 75.41 

L
i 
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l.
, 

20
09

 
[6

8]
 

95.08 93.44 - - - - 

B
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.,
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01
2 

[6
7]

 

- - 100 96.17 93.44 81.97 

Z
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t 
al

.,
 2

01
4 

[5
5]

(2
)  

- - 100 - - - 

H
ar
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et
 

a
l.

, 
20

1
6 

[6
9]

 

  100  83.60 81.96 

(1) Results using two-pass 3D face alignment based on classification approach 

(2)In the study Zhang et al. [55], gallery comprising of 183 subjects is employed. 
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two-pass 3D face alignment based on classification approach produced better 

recognition rates than two-pass 3D face alignment based on minimum distance. 

(iii) Comparison with Existing Algorithms 

The face verification and identification results of the proposed methodology are 

compared with the existing state-of-the-art methods in Table 5.2 for GavabDB 

database. The study Berretti et al. [67] presents a face recognition technique based on 

3D surface description by keypoints extraction and measurement of change in face 

depth along facial curves connecting keypoints pairs, along with sparse comparison 

based similarity evaluation. The study Zhang et al. [55] employs meshSIFT for 

detection of facial key points with sparse representation based classification. The 

study Li et al. [68] presents a sparse representation framework based face recognition 

method using low level geometric features whereas the study Hariri et. al [69] 

employs covariance descriptors and geodesic distance matching. The proposed 

approach has obtained 100% and 95.08% verification rate along with 100% and 

96.72% rank-1 identification accuracy for N vs. N and N vs. E experiments 

respectively. The identification rates yielded by the proposed method using two-pass 

3D face alignment based on classification approach (in case of profile face images 

two-pass 3D face alignment based on minimum distance) and MahCos distance 

metric are better than state-of-the-art studies presented in Table 5.2 for N vs. E, left 

and right profile experiments and equal for N vs. N experiment, whereas verification 

rates are better for both of N vs. N and N vs. E experiments.  

5.2.3 Computational Complexity Analysis 

(i) Analysis using Two-Pass 3D Face Alignment based on Classification 

Approach 

Referring to Table 5.3, the values 226800588 and 151501029  represent multiplication 

and addition operations required to align the point cloud of size M = 300000 points 

using ‘two-pass 3D alignment based on classification approach’. For face 

identification, the terms  M × 9 × 6 and  M × 6 × 6 represent 9 multiplication and 6 

addition operations involved to rotate each point in multi-view synthesis at 6 views 

(whereas seventh view at 0o is obtained in alignment phase) for frontal and non-frontal 
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face images respectively. The term m × n × 370 × 7 represents additions and 

multiplications involved in PCA based subspace projection for a gallery of size 370 

images synthesized at 7 views for  m = n = 500. Each of MahCos distance, Euclidean 

distance, Mah distance and Manhattan distance is computed for mn dimensional 370 

images synthesized at 7 views. In case of SVM classifier based face verification, 

additional multiplications (7), additions (13) and load operations (1) are involved for 

each of 163 support vectors resulting in 1141, 2119 and 163 multiplications, additions 

and load operations respectively. 

(ii) Analysis using Two-Pass 3D Face Alignment based on Minimum 

Distance 

The computational complexity of the proposed face identification methodology using 

two-pass 3D face alignment based on minimum distance is given in Table 5.4. 

Referring to Table 5.4 and section 5.2.3 (i), the values 226800000  and 151500000 

represent multiplication and addition operations required to align the point cloud of 

size M = 300000 points. In case of SVM classifier based face verification, additional 

multiplications (7), additions (13) and load operations (1) are involved for each of 163 

support vectors resulting in 1141, 2119 and 163 multiplications, additions and load 

operations respectively. 

(iii) Analysis for Profile Face Images using Two-Pass 3D Face Alignment 

based on Minimum Distance 

The computational complexity of the proposed face identification methodology using 

two-pass 3D face alignment based on minimum distance is given in Table 5.5. 

Referring to Table 5.5 the values 345600000  and 230400000  represent 

multiplication and addition operations required to align the point cloud of size M = 

300000 points. The terms  M × 9 × 3 and  M × 6 × 3 represent 9 multiplication and 6 

addition operations involved to rotate each point in multi-view synthesis at 3 views 

(whereas fourth view at 0o is obtained in alignment phase) respectively. The term m × 

n × 370 × 4 represents additions and multiplications involved in PCA based subspace 

projection for a gallery of size 370 images synthesized at 4 views 

for  m × n = 500 × 250. Each of MahCos distance, Euclidean distance, Mah distance 
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and Manhattan distance is computed for mn dimensional 370 images synthesized at 4 

views. The computational complexity of the proposed methodology (in big � 

notation) as analyzed in terms of face alignment and face recognition is of the order of 

�(�) and �(��) as discussed in section 4.3.4. Comparing the computational 

complexity of the proposed methodology given in Tables 5.3, 5.4 and 5.5 to the 

complexity of the Iterative Closest Point given in Table 4.3, it is evident that the 

proposed methodology is computationally inexpensive than Iterative Closest Point 

based algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 Computational complexity analysis using two-pass 3D face 

alignment based on classification approach  

 Multiplications Additions 

P
ro

p
os

ed
 M

et
h

od
ol

og
y 

MahCos 

Distance 

 

226800588 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

2 × (m × n) × 370 × 7 

=2185500588 

151501029 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

(m × n) × 370 × 7 

=1457301029 

Euclidean 

Distance 

226800588 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

(m × n) × 370 × 7 

=1538000588 

151501029 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

2 × (m × n) × 370 × 7 

=2104801029 

Mah 

Distance 

226800588 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

2 × (m × n) × 370 × 7 

=2185500588 

151501029 + 

M × 6 × 6 + 

( m × n) × 370 × 7 + 

2 × (m × n) × 370 × 7 

=2104801029 

Manhattan 

Distance 

226800588 + 

(m × n) × 370 × 7 

M × 9 × 6 + 

=890500588 

151501029 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

2 × (m × n) × 370 × 7 

=2104801029 
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Table 5.4 Computational complexity analysis using two-pass 3D face 

alignment based on minimum distance 

 Multiplications Additions 
P

ro
p

os
ed

 M
et

h
od

o
lo

gy
 

MahCos 

Distance 

 

226800000 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

2 × (m × n) × 370 × 7 

=2185500000 

151500000 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

(m × n) × 370 × 7 

=1457300000 

Euclidean 

Distance 

226800000 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

(m × n) × 370 × 7 

=1538000000 

151500000 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

2 ×(m × n) × 370 × 7 

=2104800000 

Mah 

Distance 

226800000 + 

M × 9 × 6 + 

(m × n) × 370 × 7 + 

2 × (m × n) × 370 × 7 

=2185500000 

151500000 + 

M × 6 × 6 + 

( m × n) × 370 ×7 + 

2 × (m × n) × 370 × 7 

=2104800000 

Manhattan 

Distance 

226800000 + 

M × 9 × 6 + 

(m × n) × 370 × 7 

=890500000 

151500000 + 

M × 6 × 6 + 

( m × n) × 370 ×7+ 

2 × (m × n)× 370 × 7 

=2104800000 
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Table 5.5 Computational complexity analysis for profile face images using 

two-pass 3D face alignment based on minimum distance 

 

 Multiplications Additions 

P
ro

p
os

ed
 M

et
h

od
ol

og
y

 

MahCos 

Distance 

 

345600000 + 

M × 9 × 3 + 

(m × n) × 370 × 4 + 

2 × (m × n) × 370 × 4 

=908700000 

230400000 + 

M × 6 × 3 + 

( m × n) × 370 ×4 + 

(m × n) × 370 × 4 

=605800000 

Euclidean 

Distance 

345600000 + 

M × 9 × 3 + 

(m × n) × 370 × 4 + 

(m × n) × 370 × 4 

=723700000 

230400000+ 

M × 6 × 3 + 

( m × n) × 370 × 4 + 

2 × (m × n) × 370 × 4 

=790800000 

Mah 

Distance 

345600000+ 

M × 9 × 3 + 

(m × n) × 370 × 4 + 

2 × (m × n) × 370 × 4 

=908700000 
 

230400000+ 

M × 6 × 3 + 

( m × n) × 370 × 4 + 

2 × (m × n) × 370 × 4 

=790800000 
 

Manhattan 

Distance 

345600000 + 

M × 9 × 3 + 

(m × n) × 370 × 4 

=538700000 

230400000 + 

M × 6 × 3 + 

( m × n) × 370 × 4 + 

2 × (m × n) × 370 × 4 

=790800000 
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5.3 Summary 

In this chapter, an automatic, pose and expression invariant approach for 3D face 

recognition has been presented using multi-view face images synthesized at 0o, ±10o, 

±20o and ±30o. The face images used in the study were aligned using two different 

alignment approaches, namely, two-pass 3D face alignment based on classification 

approach and two-pass 3D face alignment based on minimum distance. The study also 

addressed the face identification problem of profile face images aligned using two-

pass 3D face alignment based on minimum distance. For face verification set-up, 

SVM classifier based fusion was employed using pairwise scores calculated from 

multi-view face images using MahCos, Euclidean, Mah and Manhattan distance 

metrics. In the face identification scenario, a three stage unified classifier based fusion 

approach was presented using aforementioned distance metrics as base classifiers 

along with score and decision based fusion algorithms. The computational complexity 

analysis of the proposed methodology was also given using MahCos distance, 

Euclidean distance, Mah distance and Manhattan distance based classifiers. The 

results obtained from experiments performed on FRGC v2.0 and GavabDB databases 

demonstrated that the proposed approach outperformed other state-of-the-art methods 

[56], [5], [66], [13], [67], [55]. 
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Chapter 6 

DISCUSSION 

In this chapter, properties of the proposed face alignment and recognition approaches, 

their ability to handle disadvantages of existing techniques and their differences from 

the exiting methods are given. The results related discussion and limitations of the 

proposed alignment and face recognition approaches are also presented. 

6.1 Properties of the Proposed Approaches 

The proposed 3D face recognition system is comprised of alignment and recognition 

modules. In order to align the face images three alignment algorithms and two face 

recognition algorithms were proposed in this dissertation.  

6.1.1 Alignment Algorithms 

The first alignment module is based on intrinsic coordinate system and it does not 

register two face images to each other using the conventional registration process, 

rather it transforms each 3D scan to an intrinsic coordinate system using vertical 

symmetry plane of the face, slope of the nose bridge and nose tip which define 

landmark structures instead of landmarks, which mark position only. The choice of 

landmark structures is beneficial because they remain stable even under pose 

variations and facial expressions. The proposed algorithm is able to align neutral and 

expressive faces acquired at frontal and non-frontal poses. 

The second alignment algorithm employs a two-pass alignment approach where first 

pass is based on intrinsic coordinate system to align the face images and greatly 

reduces the computational cost. The second pass uses minimum distance between 

nose tip and the 3D scanner in xz and yz planes to align the face image. Because this 

algorithm uses minimum distance feature along with intrinsic coordinate system, it 

gives further improvement in the quality of the alignment and is capable of aligning 

neutral and expressive faces acquired at frontal and non-frontal poses including 

profile face images. 
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The third two-pass alignment algorithm employs a classification based approach 

where first pass aligns the face image using intrinsic coordinate system and greatly 

reduces the computational cost. The second alignment pass employs Support Vector 

Machine (SVM) classifier to align a face using four features: minimum distance of 

nose tip to the 3D scanner and maximum variance of the face image in xz and yz 

planes. Because the proposed alignment module employs four features along with 

intrinsic coordinate system, it further improves the alignment quality. The proposed 

algorithm is capable of aligning neutral and expressive faces acquired at frontal and 

non-frontal poses. 

6.1.2 Face Recognition Algorithms 

The first region based face recognition algorithm employs a two-tier ensemble 

classification approach, because ensemble classifiers greatly improve the performance 

of individual classifiers [52]. The proposed approach employs Principal Component 

Analysis (PCA) for feature extraction and Mahalanobis Cosine (MahCos) matching 

score for classification of facial regions. The use of Principal Component Analysis is 

beneficial because it is easy to implement and produces superior results along with 

MahCos distance metric [27]. By the selection of multiple small regions on the face, 

any error caused by a single region can be compensated by fusing the matching scores 

from multiple regions, thus making the recognition more robust to artifacts, wrinkles, 

facial hair or expression variations [25]. 

In the second face recognition approach, multi-view faces are synthesized to exploit 

real 3D information. For face verification, the multi-view faces are classified using 

Principal Component Analysis based features with MahCos as distance metric and 

Support Vector Machine as a classifier. Due to use of real 3D information, Principal 

Component Analysis along with MahCos distance metric and Support Vector 

Machine based ensemble classification in the score space; the proposed face 

recognition approach is effective and produces excellent results. The proposed 

approach also performs effectively by combining results from seven multi-view faces 

based on Principal Component Analysis; MahCos distance metric and ensemble 

classifier in an identification scenario and is also capable of recognizing profile face 

images. 
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6.2 Handling Disadvantages of the Existing Techniques 

In order to overcome the disadvantages of existing techniques, the proposed system 

employs three different face alignment algorithms along with two face recognition 

approaches, namely, region based approach and multi-view synthesis based approach.  

In 2D face recognition, face images can be aligned in xy plane only whereas in 3D 

they can be aligned in xz and yz planes as well. A few 3D alignment techniques [12] 

[14] [70] [16] existing in literature are based on Iterative Closest Point (ICP) [12], 

Simulated Annealing (SA) [14], Average Face Model (AFM) [70] and Intrinsic 

Coordinate System (ICS) [16]. 

Iterative Closest Point based procedure aligns two 3D facial surfaces by iteratively 

minimizing distance between them; whereas Simulated Annealing based approach 

employs a local search based stochastic algorithm. Drawbacks of Iterative Closest 

Point include initial course alignment and slow convergence while Simulated 

Annealing’s limitation is that it suffers from excessive time consumption which is 

comparable to Iterative Closest Point.  

In Average Face Model based alignment, the Average Face Model is constructed by 

localizing and averaging landmark points on the facial images and probe image is 

aligned to the Average Face Model. A significant weakness of the Average Face 

Model based method is less accurate alignment of a probe image to an Average Face 

Model due to loss of spatial information during averaging process.  

The fourth method, alignment to an Intrinsic Coordinate System; mainly involves 

landmark localization on 3D faces, comparison to corresponding points on Intrinsic 

Coordinate System and a transformation step to finish alignment. The drawback of 

this alignment method is low accuracy of landmark localization process especially in 

case of non-frontal and expressive faces.  

Because the proposed alignment algorithms are 3D and can align face images in xz, yz 

and xy planes, the xy plane alignment limitation of 2D is overcome. Similarly, the 

proposed alignment algorithms neither require initial course alignment step nor 

converge slowly; therefore, disadvantages of Iterative Closest Point and Simulated 

Annealing based alignment approaches are overcome.  
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Like Average Face Model based alignment, the proposed algorithms do not construct 

average face model in the alignment process, therefore, they are more accurate than 

Average Face Model based alignment.  

The Intrinsic Coordinate System based alignment, which employs facial landmarks, 

may be less accurate specially under facial expressions. To overcome the low 

accuracy limitation of Intrinsic Coordinate System based alignment, the proposed 

algorithms align the face images to Intrinsic Coordinate System based landmark 

structures defined by nose tip, vertical symmetry plane of the face and the slope of the 

nose bridge which define stable landmarks even under facial expressions. 

For face recognition, the proposed region based and multi-view synthesis based 

algorithms employ Principal Component Analysis based features along with 

Mahalanobis Cosine (MahCos) distance metric. The use of Principal Component 

Analysis along with MahCos distance metric produces excellent face recognition 

results [27]. Besides improving alignment of face images, the proposed face 

recognition approaches handle the disadvantages of existing techniques [55], [48], 

[56], [13], [5], [66] using an ensemble classifier based approach that combines results 

from several regions or synthesized multi-view face images. 

6.3 Differences from Existing Methods 

The proposed alignment and recognition techniques are different from existing 

methods in various aspects as under. 

 Both of Iterative Closest Point and Simulated Annealing methods align face 

images to every other image. Unlike them, the proposed alignment algorithms 

align the probe face image to an Intrinsic Coordinate System in a single 

alignment event without the need of aligning each face to every other face. 

 The drawbacks of Iterative Closest Point and Simulated Annealing based 

alignment techniques limit their applicability to only verification scenario 

where the probe image is to be aligned to claimed identity only but they are an 

issue in identification scenario where a probe is to be aligned to the whole 

gallery. One the other hand, the proposed alignment algorithms align a face 

image to intrinsic coordinate system only once; therefore, they can be used in 
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identification as well as verification scenarios. 

 Existing methods do not handle alignment of profile face images, whereas the 

proposed two-pass distance based alignment algorithm is capable of aligning 

profile face images.  

 None of the existing systems employs a classification based approach to face 

alignment. In contrast, the proposed two-pass 3D face alignment based on 

classification approach utilizes support vector machine classifier for alignment 

of the face images. 

 The Iterative Closest Point and Simulated Annealing approaches directly 

employ 3D point clouds in alignment and recognition process. Although the 

proposed algorithms align the faces by using 3D point clouds but the matching 

process uses depth images instead of point clouds. 

 The first proposed face recognition algorithm employs a region based 

approach where each region is classified using Principal Component Analysis 

based features and MahCos distance metric using two tier ensemble classifier 

whereas the studies [55] [48] [56] are not region based and use different 

feature extraction and classification approaches.  

 The second proposed face recognition study uses an ensemble classifier based 

approach where multi-view faces are synthesized to exploit real 3D 

information and classified using Principal Component Analysis based features 

and MahCos distance metric whereas the studies [13] [5] [66] do not use a 

multi-view synthesis approach to face recognition and employ different 

approaches for feature extraction and classification. 

6.4 Results Related Discussion 

6.4.1 Alignment Approaches 

The proposed study addresses the alignment problem of 3D face images. The 

important findings of the proposed alignment algorithms are. 

 The algorithms achieved 99.95% and 99.77% alignment accuracy using FRGC 

v2.0 and GavabDB databases respectively. The nose tip was not detectable for two 

images of FRGC v2.0 and one image of GavabDB database; else the accuracy of 
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the proposed algorithms would have been 100%. 

 The algorithms successfully aligned face images having several types of facial 

expressions and acquired at varying distances from the scanner. 

 The ‘3D face alignment based on intrinsic coordinate system’ and ‘two-pass 

3D face alignment based on classification approach’ are capable of aligning 

face images acquired at frontal and non-frontal face images. 

 The ‘two-pass 3D face alignment based on minimum distance’ is capable to 

align face images captured at frontal and non-frontal poses including profile 

images. 

 The algorithms align the face images in a single alignment event; therefore, 

they can be used in verification as well as identification scenarios. 

 ‘Two-pass 3D face alignment based on classification approach’ obtained best 

alignment accuracy in terms of distance reduction measure between nose tip 

and 3D scanner than ‘two-pass 3D face alignment based on minimum 

distance’ and ‘3D face alignment based on intrinsic coordinate system’ 

respectively. 

 ‘3D face alignment based on intrinsic coordinate system’ is computationally 

inexpensive than ‘two-pass 3D face alignment based on minimum distance’ 

and ‘two-pass 3D face alignment based on classification approach' 

respectively. 

Limitations: The proposed alignment approaches have the following limitations. 

 The algorithms are based on nose tip heuristic and are not capable to align face 

images where nose tip is not detectable. 

 The nose tip detection and alignment algorithms are capable to align face 

images captured in the range of ± 45o in xz plane and ± 15o in yz plane.  

 ‘3D face alignment based on intrinsic coordinate system’ is not capable of 

aligning profile face images in xz and xy planes because in such cases either 

right or left half of the face is not available. The ‘two-pass 3D face alignment 

based on classification approach’ is not able to align profile face images as 

well. This algorithm employs maximum variance of the full face as a measure 

of frontal facial position. Because either right or left half face is not available 
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in case of profile face images, therefore, face is not in a frontal position when 

variance is the maximum. As a result maximum variance feature cannot be 

exploited in case of profile face images.  

6.4.2 Recognition based on Regional Segments of Depth Images 

The proposed study addresses the problem of 3D face recognition based on regional 

segments of depth images using two-tier ensemble classifier. The proposed 

methodology employs MahCos distance, Euclidean distance, Mah distance and 

Manhattan distance based classifiers. The findings of the methodology are 

summarized as under.  

 The proposed approach successfully recognized the images acquired at 

varying poses. 

 The experiments using MahCos distance metric obtained best classification 

accuracy for individual face regions, combination classifiers and re-ranking 

stage whereas Euclidean distance, Mah distance and Manhattan distance based 

experiments achieved relatively lower performance in the respective order. 

 Ensemble classifier has clearly outperformed the constituent regional 

classifiers.  

 Fusion methods enhance the performance of regional classifiers using rank 

based approaches.  

 Regions of large size result into better recognition performance than the small 

cropped regions.  

 Increasing the number of regional classifiers might not improve the result 

accuracy of the ensemble classifier. Rather the results of ensemble classifier 

may get worse by increasing the number of constituent regional classifiers. 

 The proposed methodology employing MahCos distance is computationally 

inexpensive than Iterative Closest Point based algorithms.  

 Results produced by the techniques presented in this study are comparable in 

both databases i.e. FRGC v2.0 and GavabDB database. 
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Limitations: The limitations of the proposed methodology are summarized as 

under. 

 The images are sensitive to facial alignment and it is hard to detect useful face 

regions automatically.  

 The performance is dependent on local features and resolution differences.  

 The results of individual regions are to be combined using ensemble 

classification approaches and may not improve more than an extent if region 

or classifier selection is not optimal. 

6.4.3 Recognition based on Multi-View Depth Images 

The proposed study addresses the problem of multi-view pose and expression 

invariant 3D face recognition of frontal, non-frontal, and profile face images. The 

frontal and non-frontal face images are aligned using two-pass 3D face alignment 

based on classification approach and two-pass 3D face alignment based on minimum 

distance separately, whereas profile face images are aligned using two-pass 3D face 

alignment based on minimum distance. The important findings of the methodology 

are summarized as under.  

 The two-pass 3D face alignment based on classification approach resulted in 

better verification and identification rates than the two-pass 3D face alignment 

based on minimum distance. 

 Face images at angular position 0o achieved the best individual face 

recognition accuracy which gradually decreased for synthesized images as the 

facial view is deviated from 0o for both of neutral and expressive faces.  

 The expression invariant area contains the maximum discriminating features 

resulting in improved expression invariant face recognition performance. 

 MahCos distance metric performed best of Euclidean distance, Mah distance 

and Manhattan distance metrics respectively. 

 SVM classifier based face verification method outperformed the best 

individual multi-view classification accuracy achieving a verification rate of 

100% and 95.08% on GavabDB database while 99.57% and 96.57% at 0.1% 

FAR on FRGC v2.0 database for N vs. N and N vs. E experiments 
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respectively. 

 The proposed unified classifier clearly achieved enhanced classification 

accuracy compared to the base classifiers or parallel face recognition 

algorithms whereas score level fusion based parallel face recognition 

algorithm performed better than the decision level based algorithm. The 

proposed approach obtained rank-1 identification rates of 100% and 96.72% 

on the GavabDB database while 98.93% and 94.42% on FRGC v2.0 database 

for N vs. N and N vs. E experiments, whereas identification rate of 95.08% 

and 83.61% was obtained on left and right profile images of GavabDB 

database respectively.  

 The proposed methodology based on MahCos distance is computationally 

inexpensive than Iterative Closest Point based algorithms. 

 The experiments show that face recognition results based on proposed 

methodology are comparable in both databases and that the proposed 

methodology achieved better performance for both of face verification and 

identification experiments than the methods compared in Table 5.1 and 5.2. 

Limitations: The proposed face recognition methodology has following 

limitations. 

 Multi-view synthesis of face images at large rotation angles results in self-

occlusion, and most of the discriminating facial features around nose and eye 

area become occluded leading to deterioration of recognition rates. 

  Multi-view synthesis, PCA based subspace learning and computation of 

MahCos distance, Euclidean distance, Mah distance and Manhattan distance 

of individual views (in separate experiments) increases computational cost of 

the method. 

 A single classifier is not able to classify face images at all synthesized views 

and recognition results of multi-view face images are to be combined using an 

ensemble classification approach which is cumbersome to define. 
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6.5 Summary 

In this chapter, properties of the proposed approaches have been presented. The 

proposed approaches effectively aligned and recognized frontal, profile, neutral and 

non-neutral face images. The proposed methods successfully overcame limitations of 

the existing methods and offered various differences from them in several aspects. 

The key result insights and limitations of the proposed face alignment and recognition 

techniques have also been discussed. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

This dissertation is focused on the topic of 3D face recognition based on pose and 

expression invariant alignment. In chapter 1, face recognition challenges, motivation, 

disadvantages of the existing techniques, aims and objectives, and contributions were 

given. In chapter 2, 3D alignment and face recognition approaches were reviewed. In 

chapter 3, three novel face alignment algorithms were presented to handle 3D face 

images. Chapter 4 was focused on region based face recognition using ensemble 

classification approach. Chapter5 presented face verification and identification 

approaches using multi-view synthesized face images based on ensemble classifier. 

Properties of the proposed approaches, handling of disadvantages of the existing 

techniques, differences from existing methods, results related discussion and 

limitations of the developed algorithms are given in chapter 6. The results of the 

research work reveal that the aims to develop accurate and computationally 

inexpensive 3D face alignment and recognition algorithms were achieved. In this 

chapter, the dissertation is concluded and some suggestions for the future work are 

given. 

7.1 Contributions 

The proposed methodology offered the following contributions: 

 In order to reliably detect the nose tip in face images under large pose 

variations, and acquired in noisy scenarios, several novel preprocessing steps 

were proposed as given in chapter 3.  

 The first alignment algorithm was based on Intrinsic Coordinate System using 

vertical symmetry plane of the face, slope of the nose bridge and nose tip 

defining landmark structures instead of landmarks, which mark position only. 

The choice of landmark structures was beneficial because they remain stable 

even under pose variations and facial expressions. The proposed algorithm 
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successfully aligned neutral and expressive faces acquired at frontal and non-

frontal poses. 

 The second alignment algorithm employed a two-pass approach based on 

minimum distance where first pass used Intrinsic Coordinate System to align 

the face images while greatly reducing the computational cost. The second 

pass utilized minimum distance between nose tip and the 3D scanner in xz and 

yz planes to align the face images. Because this algorithm utilized minimum 

distance feature along with Intrinsic Coordinate System, it resulted into further 

improvement in the quality of the alignment and successfully aligned neutral 

and expressive faces acquired at frontal and non-frontal poses including 

profile face images.  

 The third two-pass alignment algorithm used a classification based approach 

where first pass aligned the face image employing Intrinsic Coordinate System 

which greatly reduced the computational cost. The second alignment pass 

utilized Support Vector Machine (SVM) classifier to align a face using four 

features: minimum distance between the nose tip and the 3D scanner and 

maximum variance of the face image in xz and yz planes. Because the 

proposed alignment approach utilized four features along with Intrinsic 

Coordinate System, it further improved the quality of the alignment. The 

proposed algorithm aligned the neutral and expressive faces acquired at frontal 

and non-frontal poses successfully. 

 A novel approach was proposed to quantify the quality of the alignment results 

based on the fact that when pose of a face is corrected from non-frontal to 

frontal position, its nose tip distance from the 3D scanner is essentially 

reduced. Based on the criterion of distance reduction from nose tip to the 3D 

scanner as a measure of alignment, the proposed algorithms achieved 99.95% 

and 99.77% alignment accuracy using FRGC v2.0 and GavabDB databases 

respectively. The nose tip was not detectable for two subjects in the FRGC 

v2.0 database and one subject in GavabDB database else the alignment 

accuracy of the proposed algorithms would have been 100%.  

 The first face recognition method presented in this dissertation employed a 

region based, two tier ensemble classification approach. Principal Component 
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Analysis (PCA) was employed for feature extraction whereas Mahalanobis 

Cosine (MahCos) distance, Euclidean distance, Mahalanobis (Mah) distance 

and Manhattan distance based matching scores were used for classification of 

individual facial regions in separate experiments. The classification results 

obtained from individual regions were combined using Weighted Borda Count 

(WBC) based combination and a re-ranking stage. The recognition was based 

on 15 regional classifiers, used as 3 sets of 5 classifiers. By employing two 

different fusion techniques, i.e. Weighted Borda Count (WBC) and re-ranking, 

the results of regional classifiers were fused into 3 combination classifiers 

which were then combined into a final score. The performance of the proposed 

approach was corroborated by extensive experiments performed on two 

databases: FRGC v2.0 and GavabDB and 98.93% and 100% rank-1 

recognition rates were obtained using these databases respectively.  

 The second face recognition algorithm presented in this dissertation employed 

a multi-view synthesis based approach to classify 3D faces including profile 

face images. For the face recognition framework, multi-view 3D faces were 

synthesized to exploit real 3D facial information. Inspired by the effectiveness 

of fusion approaches, Support Vector Machine (SVM) was employed using 

scores obtained from multi-view face pairs for face verification.  

 In addition, a three stage unified classifier based face identification algorithm 

was employed which combined results from seven base classifiers at first 

stage, two parallel face recognition algorithms at second stage and an 

exponential rank combiner at third stage in a hierarchical manner.  

For profile face images, the three stage unified classifier based face 

identification algorithm combined results from four base classifiers, two 

parallel face recognition algorithms and an exponential rank combiner in a 

hierarchical manner.  

The performance of the proposed methodology was demonstrated by extensive 

experiments performed on two databases, namely, FRGC v2.0 and GavabDB. 

The results exhibited that the proposed methodology can be efficiently used to 

construct an automatic, pose and expression invariant facial recognition 

system. The SVM classifier based face verification method achieved 99.57% 
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and 96.57% verification rate at 0.1% FAR; whereas unified classifier based 

face identification method obtained 98.93% and 94.42% rank-1 identification 

rates for Neutral vs. Neutral (N vs. N) and Neutral vs. Non-neutral 

(represented by N vs. E) experiments respectively using FRGC v2.0 database. 

Using GavabDB database, the proposed identification and verification 

methods achieved 100% and 96.72% rank-1 identification rates while 100% 

and 95.08% verification rates for N vs. N and N vs. E experiments 

respectively. Similarly identification rate of 95.08% and 83.61% was obtained 

on left and right profile images of GavabDB database respectively.  

7.1.1 Comparison among the Proposed Techniques 

The two-pass alignment algorithm based on classification approach produced better 

alignment results than the two-pass alignment algorithm based on minimum distance 

and Intrinsic Coordinate System based alignment. The comparative advantages and 

disadvantages of the proposed alignment approaches have been given in section 6.4.1. 

The multi-view synthesis based face recognition approach exhibited superior 

recognition rates than the region based face recognition approach. On the other hand, 

the latter approach is computationally inexpensive than the former and is capable to 

handle facial hair, artifacts, wrinkles and local shape deformations caused by facial 

expression variations. Therefore, in case of good quality images multi-view synthesis 

based approach may be used whereas for noisy and relatively poor quality images, 

region based approach should be preferred. The comparative advantages and 

disadvantages of region based and multi-view synthesis based face recognition 

approaches have been enlisted in sections 6.4.2 and 6.4.3 respectively. 

7.2 Future Work 

Facial recognition systems are commonly employed in real life compared to other 

biometric modalities (like finger print and palmprint) due to the fact that face image 

acquisition is non-invasive and the subjects can be captured without their cordial 

cooperation. Because of promising accuracy of facial recognition systems, future 

research may be pursued in this field in following directions: 
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 The proposed alignment approach is based on determining correction 

parameters in xz, yz and xy planes which are then used to correct the 3D pose 

of the probe face. As described in Chapter 3, in xy plane the correction 

parameter γ is determined by using different approaches. The approach 

employing manual detection of landmarks on inner eye corners can be 

improved by devising an automatic landmarks detection algorithm. The 

approach employing Average Face Model (AFM) for missing facial profile 

synthesis can be improved by devising an algorithm which can better estimate 

the missing profile. 

 In the proposed region based 3D face recognition approach, 15 face regions 

have been employed in 3 sets of 5 regions using Principal Component 

Analysis (PCA) based holistic features along with Weighted Borda Count 

(WBC) and re-ranking approach. The proposed approach may be improved 

by using other better performing regions and diverse ensemble classification 

approaches. Another future investigation approach is to study the impact of 

feature based region level classification techniques for fusing their results to 

improve recognition performance. 

 The proposed multi-view depth images based recognition employs Support 

Vector Machine (SVM) classifier for verification scenario and a three stage 

ensemble classifier for identification scenario using images synthesized at 

seven different angles in xz plane and PCA based holistic features. The SVM 

based face verification performance may be improved by synthesizing more 

views in xz and yz planes. In case of face identification, a diverse ensemble 

classifier may further improve the identification rate, whereas local facial 

features can also be modeled for improving the recognition performance. 

 Given the current trend of using deep learning in every possible application, 

Deep Neural Networks (DNNs) [71] have established themselves as a 

dominant technique in machine learning [72]. In contrast to conventional 

methods, feature learning methods learn a feature extractor based on the 

statistics of the training data and have been successfully applied to a variety 

of different domains and modalities. Recently, DNNs have been applied to 

2D face recognition but a downside of DNNs is that they require large 
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amounts of training data, preferably tens of millions of images [72]. DNNs 

based approaches can be extended to 3D face recognition but currently 

available 3D datasets are small and do not contain enough images to exploit 

modern deep architectures. The proposed face recognition approaches can be 

successfully evaluated using DNNs in future with the availability of larger 

datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

111 
 

REFERENCES 

 [1] S. Z. Li and A. K. Jain, “Handbook of face recognition,” Springer-Verlag, 

New York, USA, 2005.  

[2] W. Zhao, "Face recognition: a literature srvey, “ACM computing survey,” 

vol. 35, pp. 399-458, 2003.  

[3] P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss, “The FERET evaluation 

methodology for face-recognition algorithms,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090–1104, 2000.  

[4] H. Zhang, N. M. Nasrabadi, Y. Zhang and T. S. Huang, “Joint dynamic 

sparse representation for multi-view face recognition,” Pattern Recognition, 

vol. 45, no. 4, pp. 1290–1298, 2012.  

[5] S. Berretti, A. Del Bimbo and P.Pala, “3D face recognition using 

isogeodesic stripes,” Pattern Analysis and Machine Intelligence, vol. 32, no. 

12, pp. 2162-2177, 2010.  

[6] S. Gupta, M. K. Markey and A. C. Bovik, “Advances and challenges in 3D 

and 2D+3D human face recognition,” in Pattern Recognition Research 

Horizons, pp. 161-200, Nova Science Publishers, New York, 2007. 

[7] Z. Sun, A. A. Paulino, J. Feng, Z. Chai, T. Tan and A. K. Jain, “A study of 

multi biometric traits of identical twins,” in Proceedings of SPIE, Biometric 

Technology for Human Identification VII, vol. 7667, 2010. 

[8] U. Park, Y. Tong and A. Jain, “Age-invariant face recognition,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 5, 

pp. 947–954, May 2010.  

[9] N. I. Ratyal, I. A. Taj, U. I. Bajwa and M. Sajid, “3D face recognition based 

on pose and expression invariant alignment,” Computers & Electrical 

Engineering, vol. 46, pp. 241-255, 2015.  

[10] N. I. Ratyal, I. A. Taj, U. I. Bajwa, M. Sajid, M. J. A. Baig and F. M. Butt, 

“3D face recognition based on region ensemble and hybrid features,” in 



 
 
 
 

112 
 

Proceedings of the IEEE International Conference on Computing, Electronic 

and Electrical Engineering, 2016.  

[11] N. I. Ratyal, I. A. Taj, U. I. Bajwa, M. Sajid, “Automatic multi-view 3D face 

recognition based on two-pass pose and expression invariant alignment,” 

Image and Vision Computing. (Submitted, Under Review) 

[12] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, 

no. 2, pp. 239–256, 1992.  

[13] X. Wang, Q. Ruan, Y. Jin and G. An, “Three-dimensional face recognition 

under expression variation,” EURASIP Journal on Image and Video 

Processing, 2014:51, 2014.  

[14] C. C. Queirolo, L. Silva, O. R. Bellon and M. P. Segundo, “3D face 

recognition using simulated annealing and the surface interpenetration 

measure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 32, no. 2, pp. 206–219, 2010.  

[15] N. Alyüz, B. Gökberk and L. Akarun, “Regional registration for expression 

resistant 3-D face recognition,” IEEE Transactions on Information Forensics 

and Security, vol. 5, no. 3, pp. 425-440, Sep. 2010.  

[16] T. Papatheodorou and D. Rueckert, “3D face recognition,” Vienna: I-Tech 

Education and Publishing, 2007.  

[17] C. C. Queirolo, L. Silva, O. R. P. Bellon and M. P. Segundo, “3D face 

recognition using the surface interpenetration measure: a comparative 

evaluation on the FRGC database,” in Proceedings of International 

Conference on Pattern Recognition, pp. 1-5, 2008.  

[18] C. Goodall, “Procrustes methods in the statistical analysis of shape,” Journal 

of the Royal Statistical Society, Series B (Methodological), pp. 285–339, 

1991.  

[19] B. Gökberk, H. Dutağaci, A. Ulas, L. Akarun and B. Sankur, 

“Representation plurality and fusion for 3-D face recognition,” IEEE 

Transactions on Systems, Man, and Cybernetics, vol. 38, no. 1, pp. 155-173, 



 
 
 
 

113 
 

2008.  

[20] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive 

Neuroscience, vol. 3, no.1, pp. 71-86, 1991. 

[21] M. S. Bartlett, J. R. Movellan and T. J. Sejnowski, “Face recognition by 

independent component analysis,” IEEE Transactions on Neural Networks, 

vol. 13, pp. 1450-1464, 2002.  

[22] A. Hyvarinen and E. Oja, “Independent component analysis: algorithms and 

applications,” Neural Networks, vol. 13, pp. 411-430, May 2000.  

[23] K. Baek, B. Draper, J. R. Beveridge and K. She, “PCA vs. ICA: A 

comparison on the FERET data set,” in Proceedings of International 

Conference on Computer Vision, Pattern Recognition and Image Processing, 

March. 2002.  

[24] P. Belhumeur, J. Hespanha and D. Kriegman,  “Eigenfaces vs. fisherfaces: 

Recognition using class specific linear projection,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 19, pp. 711-720, 1997.  

[25] J. R. Beveridge, K. She, B. A. Draper and G. H. Givens, “A nonparametric 

statistical comparison of principal component and linear discriminant 

subspaces for face recognition,” in Proceedings of IEEE International 

Conference on Computer Vision and Pattern Recognition, 2001.  

[26] X. He, S. Yan, Y. Hu, P. Niyogi and H. J. Zhang,  “Face recognition using 

laplacianfaces, ”IEEE Transactions on Pattern Analysis and Machine 

Inteligence, vol. 27, pp. 328–340, 2005.  

[27] U. I. Bajwa, I. A. Taj, M. W. Anwar and X. Wang, “A multifaceted 

independent performance analysis of facial subspace recognition 

algorithms,” PLOS ONE, vol. 8, no. 2:e56510, 2013.  

[28] J. G. Daugman, “Two-dimensional spectral analysis of cortical receptive 

field plofiles,” Vision Research, vol. 20, no. 10, pp. 847-856, 1980.  

[29] D. Huang, “Robust face recognition based on three dimensional data,” Ph. 

D. Thesis, May, 2012.  

[30] T. S. Lee, “Image representation using 2D Gabor wavelets,” IEEE 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.K.%20She.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20A.%20Draper.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.G.%20H.%20Givens.QT.&newsearch=true


 
 
 
 

114 
 

Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 10, 

pp. 959-971, 1996.  

[31] C. J. Liu and H. Wechsler, “Gabor feature based classification using the 

enhanced Fisher linear discriminant model for face recognition,” IEEE 

Transactions on Image Processing, vol. 11, no. 4, pp. 467-476, 2002.  

[32] D. H. Liu, K. M. Lam and L. S. Shen, “Optimal sampling of Gabor features 

for face recognition,”  Pattern Recognition Letters, vol. 25, pp. 267-276, 

2004.  

[33] D. Fields, “Relations between the statistics of natural imags and the response 

properies of cortical cells,”  Journal of the Optical Society of America, vol. 

4, no. 12, pp. 2379–2394, 1987.  

[34] J. Cook, V. Chandran and S. Sridharan, “Multiscale representation for 3-D 

face recognition,” IEEE Transactions on Information Forensics and Security, 

vol. 2, no. 3, pp. 529-536, Sept. 2007.  

[35] J. A. Cook, “A decompositional investigation of 3D face recognition,” Ph. 

D. Thesis, Dec. 2007.   

[36] T. Ojala, M. Pietikainen and D. Harwood, “A comparative study of texture 

measures with classification based on feature distributions,” Pattern 

Recognition, vol. 29, no. 1, pp. 51-59, Jan. 1996.  

[37] T. Ojala, M. Pietikainen and T. Maenpaa,  “Multiresolution gray-scale and 

rotation invariant texture classification with local binary patterns,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, 

pp. 971-987, 2002.  

[38] T. Ahonen, A. Hadid and M. Pietikainen, “Face description with local binary 

patterns: Application to face recognition,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 28, pp. 2037-2041, 2006.  

[39] A. Aissaoui, J. Martinet, C. Djeraba, “DLBP: A novel descriptor for depth 

image based face recognition,” in Proceedings of IEEE International 

Conference on Image Processing, Oct. 2014.  

[40] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” 



 
 
 
 

115 
 

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.  

[41] A. S. Mian, “Representations and matching techniques for 3D free-form 

object and face recognition,” Ph. D. Thesis, 2006.  

[42] C. S. Chua and R. Jarvis, “Point signatures: A new representation for 3D 

object recognition,”  International Journal of Computer Vision, vol. 25, no. 

1, pp. 63–85, 1997.  

[43] A. S. Mian, M. Bennamoun and R. Owens, “An efficient multimodal 2D-3D 

hybrid approach to automatic face recognition,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1927-1943, 

2007.  

[44] Picozzi Marta, Macchi Cassia Viola and Turati Chiara, “The development of 

configural face processing: The face inversion effect in preschool-aged 

children,” in Annual meeting of the XVth Biennial International Conference 

on Infant Studies, June, 2006.  

[45] A. Schwaninger, C. Wallraven, D. W. Cunningham and S. Chiller-Glaus, 

“Processing of identity and emotion in faces: A psychophysical, 

physiological and computational perspective,” Progress in Brain Research, 

vol. 156, pp. 321-343, 2006.  

[46] W. G. Hayward, G. Rhodes and A. Schwaninger,  “An own-race advantage 

for components as well as configurations in face recognition,” Cognition, 

vol. 106, no. 2, pp. 1017-1027, 2008.  

[47] L-F. Chen, H-Y. Liao, J-C. Lin and C-C. Han, “Why recognition in a 

statistics-based face recognition system should be based on the pure face 

portion: A probabilistic decision-based proof,” Pattern Recognition, vol. 34, 

no. 7, pp. 1393-1403, 2001.  

[48] M. H. Mahoor and M. Abdel-Mottaleb, “Face recognition based on 3D ridge 

images obtained from range data,” Pattern Recognition, vol. 42, no. 3, pp. 

445–451, 2009.  

[49] L. Spreeuwers, “Fast and accurate 3D face recognition using registration to 

an intrinsic coordinate system and fusion of multiple region classifiers,” 



 
 
 
 

116 
 

International Journal of Computer Vision, vol. 93, pp. 389-414, 2011.  

[50] A. B. Moreno and A. Sanchez, “GavabDB: a 3D face database,” in 

Proceedings of Second COST Workshop on Biometrics on the Internet: 

Fundamentals, Advances and Applications, pp. 77-82, 2004.  

[51] G. G. Slabaugh, “Computing Euler angles from a rotation matrix,” Technical 

Report, 1999. Available at: http://www.gregslabaugh.name/publications/ 

euler.pdf. (Date of access: 03-Sept.-2014). 

[52] U. I. Bajwa, I. A. Taj and M. W. Anwar, “A unified classifier for robust face 

recognition based on combining multiple subspace algorithms,” Optics 

Communications, vol. 285, no. 21-22, pp. 4324-4332, Oct. 2012.  

[53] N. Alyüz, B. Gökberk and L. Akarun, “3-D face recognition under occlusion 

using masked projection,” IEEE Transactions on Information Forensics and 

Security, vol. 8, pp. 789–802, 2013.  

[54] P. J. Phillips, P. J. Flynn, T. Scruggs et al., “Overview of the face 

recognition grand challenge,” in Proceedings of IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 947-

954, 2005. 

[55] L. Zhang, Z. Ding, H. Li, Y. Shen and J. Lu, “3D face recognition based on 

multiple keypoint descriptors and sparse representation,” PLOS ONE, vol. 9, 

no. 6: e100120, 2014.  

[56] F. R. Al-Osaimi, M. Bennamoun and A. Mian, “Integration of local and 

global geometrical cues for 3D face recognition,” Pattern Recognition, vol. 

41, no. 3, pp. 1030–1040, 2007.  

[57] T. Faltemier, K. Bowyer and P. Flynn, “A region ensemble for 3-D face 

recognition,” IEEE Transactions on Information Forensics and Security, vol. 

3, no. 1, pp. 62-73, Mar. 2008.  

[58] H. Mohammadzade and D. Hatzinakos, “An expression transformation for 

improving the recognition of expression-variant faces from one sample 

image per person,” in Proceedings of IEEE International Conference on 

Biometrics: Theory Applications and Systems (BTAS), pp. 1-6, Sept. 2010. 



 
 
 
 

117 
 

[59]  K. Niinuma, H. Han and A. K. Jain, “Automatic multi-view face 

recognition via 3D model based pose regularization,” in Proceedings of 

IEEE International Conference on Biometrics: Theory Applications and 

Systems (BTAS), pp. 1-8, Oct. 2013. 

[60] A. Moeini, H. Moeini and K. Faez, “Pose-invariant facial expression 

recognition based on 3D face reconstruction and synthesis from a single 2D 

image,” in Proceedings of IEEE International Conference on Pattern 

Recognition, pp. 1746-1751, Aug. 2014. 

[61] M. Du, A.C. Sankaranarayanan and R. Chellappa, “Robust face recognition 

from multi-view videos,” IEEE Transactions on Image Processing, vol. 23, 

no.3, pp.1105-1117, March 2014. 

[62] Y. Guo, X. Ding and J. Xue, “MiLDA: A graph embedding approach to 

multi-view face recognition,” Neurocomputing, vol. 151, pp. 1255–1261, 

March 2015. 

[63] M. Kan, S. Shan, H. Zhang, S. Lao and X. Chen, “Multi-view discriminant 

analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 38, no. 1, pp. 188-194, 2016. 

[64] A. A. Ross, K. Nandakumar and A. K. Jain, “Levels of fusion in 

biometrics,” Handbook of Multibiometrics, vol. 6, pp. 59-90, Springer US, 

2006. 

[65] A. A. Ross, K. Nandakumar and A. K. Jain, “Score level fusion,” Handbook 

of Multibiometrics, vol. 6, pp. 91-142, Springer US, 2006. 

[66] G. Chang and Y. Wang, “Robust 3D face recognition based on resolution 

invariant features,” Pattern Recognition Letters, vol. 32, no. 7, pp. 1009–

1019, 2011.  

[67] S. Berretti, A. Del Bimbo, P. Pala, “Sparse matching of salient facial curves 

for recognition of 3-D faces with missing parts,” IEEE Transactions on 

Information Forensics and Security, vol. 8, no. 2, pp. 374-389, 2012.  

[68] X. Li, T. Jia and H. Zhang, “Expression-insensitive 3D face recognition 

using sparse representation,” in IEEE Computer Society Conference on 

http://link.springer.com/book/10.1007/0-387-33123-9
http://link.springer.com/book/10.1007/0-387-33123-9
http://link.springer.com/book/10.1007/0-387-33123-9


 
 
 
 

118 
 

Computer Vision and Pattern Recognition, pp. 2575–2582, 2009.  

[69] W. Hariri, H. Tabia, N. Farah and A. Benouareth, “3D Face recognition 

using covariance based descriptors,” Pattern Recognition Letters, 2016. doi: 

10.1016/j.patrec.2016.03.028 

[70] I. A. Kakadiaris, G. Passalis, G. Toderici, M. N. Murtuza, Y. Lu, N. 

Karampatziakis and T. Theoharis, “Three-dimensional face recognition in 

the presence of facial expressions: an annotated deformable model 

approach,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 29, no. 4, pp. 640-649, 2007.  

[71] Y. Taigman, M. Yang, M. A. Ranzato and L. Wolf, “Deepface: Closing the 

gap to human-level performance in face verification,” in Proceedings of 

International Conference on Computer Vision and Pattern Recognition, 

2014.  

[72] S. Balaban, “Deep learning and face recognition: The state of the art,” in 

Proceedings of SPIE International Conference on Biometric and 

Surveillance Technology for Human and Activity Identification XII, vol. 

9457, pp. 94570B–94570B–8, 2015.  

[73] Y. Baocai, S. Yanfeng, W. Chengzhang and G. Yun, “BJUT-3D large scale 

3D face database and information processing,” Journal of Computer 

Research and Development, vol. 46, no. 6, pp. 1009-1018, 2009.  

[74] A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur 

and L. Akarun, “Bosphorus database for 3D face analysis,” Biometrics and 

Identity Management, vol. 5372, pp. 47-56, Springer Berlin Heidelberg, 

2008. 

[75] L. Yin, X. Wei, Y. Sun, J. Wang and M. J. Rosato, “A 3D facial expression 

database for facial behavior research,” in Proceedings of International 

Conference on Automatic Face and Gesture Recognition, pp. 211-216, 2006. 

[76] C. Conde, A. Serrano, L. J. Rodriguez-Aragon and E. Cabello, “An 

automatic 2D, 2.5D & 3D score-based fusion face verification system,” in 

Proceedings of IEEE International Conference on Application-Specific 



 
 
 
 

119 
 

 

 

Systems, Architectures and Processors, pp. 214-219, 2007.  

[77] N. F. Troje and H. H. Bulthoff, “Face recognition under varying poses: the 

role of texture and shape,” Vision Research, vol. 36, no. 12, pp. 1761-1771, 

1996.  

[78] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3D faces,” 

in Proceedings of Annual Conference on Computer Graphics and Interactive 

Techniques, pp. 187-194, 1999. 

[79] K. Messer, J. Kittler, M. Sadeghi et al., “Face verification competition on the 

XM2VTS database,” in Proceedings of International Conference on Audio 

and Video Based Biometric Person Authentication, pp. 964-974, 2003. 

[80] T. Heseltine, “Face recognition: two-dimensional and three-dimensional 

techniques,” thesis (PhD), The University of York, 2005.  

[81] C. Beumier and M. Acheroy, “Face verification from 3D and grey level 

clues,” Pattern Recognition Letters, vol. 22, no. 12, pp. 1321–1329, Oct. 

2001.  

[82] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer and W. Worek, 

“Preliminary face recognition grand challenge results,” in Proceedings of 

International Conference on Automatic Face and Gesture Recognition, pp. 

15-24, 2006. 

[83] K. Bowyer, K. Chang and P. Flynn, “A survey of approaches and challenges 

in 3D and multi-modal 3D+2D face recognition,” Computer Vision and 

Image Understanding, vol. 101, no. 1, pp. 1-15, 2006.  

[84] D. Smeets, J. Keustermans, D. Vandermeulen and P. Suetens, “MeshSIFT: 

local surface features for 3D face recognition under expression variations 

and partial data,” Computer Vision and Image Understanding, vol. 117, no. 

2, pp. 158–169, 2013.  



 
 
 
 

120 
 

Appendix- 3D Face Databases 

Several 3D databases have been acquired and released for research on face 

recognition problems. Examples include BJUT-3D [73], Bosphorus [74], BU-3DFE 

[75], FRAV3D [76], FRGC v2.0 [54], GavabDB [50], MPI [77], USF 3D [78], 

XM2VTS [79], York [80] and 3D_RMA [81] shown in Table A.1 with corresponding 

database characteristics. The labels E, I, O and P are acronyms for expression, 

illumination, occlusion and pose respectively. 

The objective of the studies presented in this dissertation was to propose automatic 

face alignment and recognition algorithms which can tackle neutral and expressive 

faces acquired at frontal and non-frontal poses including profile face images. Keeping 

in view these circumstances, two 3D databases namely, FRCG v2.0 and GavabDB 

were selected to conduct experiments. The selected databases carry 3D images 

acquired with neutral and expressive facial conditions under frontal and non-frontal 

poses. The choice of these databases was also motivated by the fact that most of the 

state-of-the-art face recognition algorithms employ these databases to report the 

performance, therefore, implementation of these databases in this research facilitated 

for a direct comparison of results with the state-of-the-art methods. FRGC v2.0 and 

GavabDB databases are reviewed in the following subsections. 

A.1 FRGC v2.0 Database 

FRGC v2.0 [54] is a publically available license based database which consists of 

50,000 recordings divided into training and validation partitions. It supports 6 

experiments, however, the focus was on experiment 3 in which gallery and probe sets 

consist of both the shape and texture images for each subject. Experiment 3 allows for 

an assessment of the contribution of the shape and textures to the performance of 3D 

facial imagery [82]. 3D scans are provided in form of four matrices of size 480 x 640 

each, out of which three represent x, y and z coordinates of scans, whereas z is the 

distance from the scanner.  
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The fourth matrix denotes binary representation of valid 3D points in x, y and z 

matrices. Both male and female subjects with age 18 years and above are included in 

the database. Facial images of individuals have been acquired with frontal view and 

Table A.1 Introduction of public databases 

Database 
Total 

Subjects 

Images/

Subject 
Texture 

Character-

istics 

Acquisition 

Device 

BJUT-3D 100 - Yes E 
Cyberware 

3030PS 

Bosphorus 105 
Total:46

66 
Yes P,E,O - 

BU-3DFE 100 4 No E 3DMD 

FRAV3D 106 16 Yes P ,E 
Minolta Vivid 

700 

FRGC 

v2.0 
466 

Total:40

07 
Yes I,E,O 

Minolta Vivid 

910 

GavabDB 61 9 No P,E 
Minolta Vivid 

700 

MPI 200 7 - - Cyberware 

USF 3D 100 1 Yes - 
Cyberware 

3030PS 

XM2VTS 295 1 Yes - - 

York 350 15 Yes P,E - 

3D_RMA 120 3 No P,E,O - 
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pose variations. Almost sixty percent of the subjects have neutral expressions, 

whereas others have expressions of happiness, disgust, surprise, sadness and inflated 

cheeks or puffy mouth [83]. Images have been captured at varying lengths from the 

scanner; therefore, resolution of the scans is variable. Example 3D faces 

04217d399.abs, 04233d396.abs, 04221d553.abs, 04482d418.abs, 04343d427.abs, 

04385d435.abs, 04387d322.abs and 04595d149.abs from FRGC v2.0 database are 

shown in Fig. A.1 from top left to right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In FRGC v2.0 database some of the subjects have occlusions such as hair on face but 

none of them is wearing glasses [43]. 2D images are also provided in one-to-one 

correspondence to the 3D scans and the scans have artifacts such as spikes and holes. 

The 3D face scans are separated in three sets, namely, Spring 2003 set (comprised of 

943 scans of 277 subjects) and Fall 2003 + Spring 2004 set (consisting of 4007 scans 

of 466 subjects in total).  

A.2 GavabDB Database 

The GavabDB [50] database is comprised of 427 [48] facial scans from 61 Caucasian 

subjects among which 45 are male and remaining are female. For each subject there 

are nine facial scans even with large pose variations and accentuated expressions. The 

database includes two frontal scans for each subject with neutral expression while 

    

 Fig. A.1 Example 3D faces from FRGC v2.0 database 
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another two scans are captured with neutral facial expression where subjects are 

looking up or down at nearly +35o and -35o respectively. Among the remaining five, 

three scans present smile, laugh or a random expression and two are right and left 

profile scans that are acquired at +90o and -90o rotation respectively. Example 3D 

faces cara1_abajo, cara1_arriba, cara1_frontal1, cara1_frontal2, cara1_derecha, 

cara1_izquierda, cara1_gesto, cara1_risa and cara1_sonrisa from GavabDB database 

are shown in Fig. A.2, from top left to right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    

 Fig. A.2 Example 3D faces from GavabDB database 


	�CERTIFICATE OF APPROVAL 
	ACKNOWLEDGMENT
		
	DECLARATION
	LIST OF PUBLICATIONS
	TABLE OF CONTENTS 
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	LIST OF FIGURES
	LIST OF TABLES



