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ABSTRACT 

Automotive industry has added the self-diagnostic features in vehicles to 

improve the reliability of vehicle. Research is being carried out to predict the faults 

that are going to occur in near future by the analysis of current values of vehicle 

variables. The presented work stressed on the application of Markov chains for the 

early detection of misfire fault in spark ignition engines. To define the states of 

Markov chains a novel hybrid model is presented to represent SI engine under steady 

state conditions.  

A survey of existing mathematical models of SI engine is provided. The 

hybrid model of SI engine was not widely studied area in the past. The proposed 

hybrid model with both continuous and discrete states is described in details. The 

basic assumption of modeling is that the cylinder contributing engine power is the 

basic active sub-component that provides power for useful work as well as to other 

cylinders that need power for compression, suction or exhaust. The cylinder providing 

power is considered as the active cylinder. The active cylinder is switched 

periodically in a cyclic manner. 

The continuous states of hybrid model are defined by considering each 

cylinder of SI engine as the sub-systems of hybrid model. The switching of active 

cylinder is considered as discrete state of hybrid model. The model is simulated to 

study the crankshaft speed fluctuations observed in SI engine. The simulation results 

are then verified experimentally on 1300 cc engine of a production vehicle from 

Honda by acquiring data using Data Acquisition Cards of National Instrument Inc. 

The properties of presented model are then studied and some results are established 

for onward stochastic analysis. 

The crankshaft speed fluctuation signal is analyzed using the properties of the 

proposed model and it is established that the peak values of observed speed during an 

ignition cycle is Gaussian and Markov. The peak value of crankshaft speed observed 

in each ignition cycle is associated with one of the cylinders or sub-systems. In this 

way four possible states are identified where i
th

 state correspond to the peak value of 

crankshaft speed associated with i
th

 sub-system of hybrid model. It is assumed that all 

states are equally probable when engine is healthy and that the fault would bias one of 

the states. The proposed novel fault detection algorithm identifies the biasing of a 

state by the calculation of Limiting State Probability of Markov Chains to indicate the 

fault. 

The data for both healthy and faulty engine condition is generated using 

hybrid model and analyzed using proposed fault detection method. The algorithm is 

finally verified experimentally by acquiring data from SI engine both under no fault 

condition and faulty condition and analyzing it for the existence of fault. 

The correctness of fault predicted by algorithm is mathematically analyzed 

using analysis similar to ROC analysis. In error analysis the fault is predicted using 

proposed algorithm and compared with the data observed experimentally to study the 

false positive events. The plot of analysis demonstrates the affectivity of algorithm. 

 

 



 

viii 

 

TABLE OF CONTENTS  

Acknowledgment ..................................................................................................... v 

Declaration .............................................................................................................. vi 

Abstract. ................................................................................................................. vii 

Table of Contents ..................................................................................................viii 

List of Figures .......................................................................................................xiii 

List of Tables ......................................................................................................... xv 

List of Acronyms/Abbreviations........................................................................... xvi 

 

Chapter 1 

Introduction ..............................................................................................................1 

1.1 Overview ...................................................................................................... 1 

1.2 Introduction to SI Engine ............................................................................. 4 

1.3 Major Components of an EFI SI Engine System ......................................... 8 

1.4 Fault Scenarios in SI Engine ...................................................................... 10 

1.4.1      Ignition Fault ................................................................................ 11 

1.4.2      Injection Fault .............................................................................. 11 

1.4.3      Air Leakage Fault ........................................................................ 11 

1.5 Misfire Fault............................................................................................... 12 

1.6 Statement of Problem ................................................................................. 12 

1.6.1      Hybrid Model ............................................................................... 13 

1.7 Proposed Solution to the Problem.............................................................. 14 

1.7.1      Work Breakup .............................................................................. 14 

1.8 Philosophy of Novel Fault Diagnostic Algorithm ..................................... 15 

1.9 Major Issues in SI engine Fault Diagnosis ................................................ 16 

1.10 Purpose of the research .............................................................................. 17 

1.11 Applications of the research....................................................................... 18 

1.12 Theoretical basis and Organization ............................................................ 19 

1.13 List of Publications .................................................................................... 20 

1.14 Summary .................................................................................................... 21 

 

Chapter 2 

Fault Diagnostic Terminology ...............................................................................22 

2.1 Basic Terminology ..................................................................................... 22 



 

ix 

 

2.1.1      Fault ......................................................................................................... 22 

2.1.2      Failure .......................................................................................... 23 

2.1.3      Fault Detection, Isolation and Identification (FDII) .................... 23 

2.1.4      Early Fault Detection ................................................................... 23 

2.1.5      Fault Prognosis............................................................................. 23 

2.2      Fault Classification Based on Time ............................................................23 

2.2.1      Abrupt Fault ................................................................................. 24 

2.2.2      Incipient Fault .............................................................................. 24 

2.2.3      Intermittent Fault ......................................................................... 24 

2.3      Fault Classification Based on Fault Location .............................................24 

2.3.1 Sensor Fault ............................................................................. 25 

2.3.2 Actuator Fault .......................................................................... 26 

2.3.3 System Component Fault ......................................................... 27 

2.4    Fault Detectability ......................................................................................... 28 

2.5    Fault Diagnostic Methodology ..................................................................... 29 

2.5.1 Residual Generation ................................................................. 30 

2.5.2 Nonlinear Residual Generation ................................................ 32 

2.5.3 Residual Evaluation ................................................................. 32 

2.5.4 Adaptive Threshold Method .................................................... 33 

2.5.5 Residual Evaluation for Fault Isolation ................................... 34 

2.5.6 Errors in a Fault Detection Method ......................................... 37 

2.6       Qualitative Methods ................................................................................... 37 

2.7       Fault Diagnosis in Hybrid Systems............................................................ 38 

2.8       Summary .................................................................................................. 39 

 

Chapter 3 

Misfire Fault Detection Methods …………. .........................................................40 

3.1 Fault Diagnostic Communities .................................................................. 40 

3.1.1 FDI Community ....................................................................... 40 

3.1.2 DX Community ........................................................................ 41 

3.2 Model Based Method ................................................................................. 42 

3.2.1 Methods Based on Torque Modeling ....................................... 42 

3.2.2 Methods Based on Pressure Modeling ..................................... 45 

3.2.3 Methods Based on Acceleration Modeling .............................. 49 



 

x 

 

3.3       Signal Based Method ................................................................................. 52 

3.3.1 Methods Based on Moving Average (MA) Model .................. 53 

3.3.2 Methods Based on Correlation Analysis.................................. 55 

3.3.3 Methods Based Wavelet Based Analysis  ................................ 56 

3.3.4 Methods Based on Signal Behavior ......................................... 57 

3.4       Data Based Method .................................................................................... 58 

3.4.1 Methods Based on Adaptive Classification ............................. 58 

3.4.2 Methods Based on Likelihood estimation................................ 61 

3.5       Comparison of Different Misfire Detection Methods     .......................... 65 

3.5.1 Merits and De-merits of Model Based Techniques ................. 65 

3.5.2 Merits and De-merits of Signal and Data Based Techniques .. 67 

3.6       Comparison of Methods on the Basis of Sensors ...................................... 68 

3.7       Current Status of Misfire Detection Problem ............................................ 69 

3.8       Application of Hybrid and Markov Models............................................... 69 

3.9       Emerging Trends of Fault Diagnosis Applications .................................... 70 

3.10     Summary .................................................................................................... 71 

 

Chapter 4 

Spark Ignition Engine Models ............................................................................... 72 

4.1       Mean Value Engine Model ........................................................................ 72 

4.1.1 Merits and De-merits of MVM ................................................ 76 

4.2       Discrete Event Model ................................................................................ 76 

4.3       Kinematic model ........................................................................................ 78 

4.4       Data Based Model ...................................................................................... 84 

4.5       Hybrid Model ............................................................................................. 86 

4.6 Summary .................................................................................................... 89 

 

Chapter 5 

Hybrid Model For SI Engine ................................................................................. 91 

5.1       Hybrid Systems .......................................................................................... 96 

5.1.1 Switched Linear System .......................................................... 97 

5.1.2 Properties of Switched Linear System ..................................... 98 

5.2       Hybrid Model of SI Engine........................................................................ 99 

5.2.1 Framework of Hybrid Model ................................................. 100 



 

xi 

 

5.2.2 Modeling of Sub-system ........................................................ 101 

5.2.3 Model Properties .................................................................... 107 

5.2.4 Model Input Estimation ......................................................... 110 

5.2.5 Model Parameter Estimation.................................................. 112 

5.2.6 Generation of Reference Signal for Fault Detection.............. 113 

5.2.7 Results from Hybrid Model ................................................... 114 

5.3 Statistical Analysis of Input to Hybrid System ...................... 114 

5.3.1 Determination of PDF of Peak Values of Crankshaft Speed . 115 

5.4 Summary .................................................................................................. 120 

 

Chapter 6 

Fault Diagnostic Methodology  ........................................................................... 121 

6.1       Markov Chain .......................................................................................... 122 

6.1.1 Properties of Markov Chains ................................................. 122 

6.2       Fault Diagnostic Method.......................................................................... 124 

6.2.1 Selection of Random Variable ............................................... 125 

6.2.2 Selection of Event .................................................................. 125 

6.2.3 Residual Generation ............................................................... 125 

6.2.4 Residual Evaluation ............................................................... 127 

6.2.5 Threshold Definition .............................................................. 131 

6.2.6 Comparison of Method with Approach of Rizzoni................ 131 

6.2.7 Data Based Approach ............................................................ 133 

6.3 Summary .................................................................................................. 136 

 

Chapter 7 

Results And Discussions  ..................................................................................... 137 

7.1 Experimental Setup .................................................................................. 137 

7.2 Model Validation ..................................................................................... 139 

7.3 Fault Detection Algorithm Validation  .................................................... 142 

7.3.1 Fault Detection Method ......................................................... 142 

7.4 Dependency of Error Rate on Number of Transitions ............................. 151 

7.4.1 Properties of ROC Analysis ................................................... 151 

7.4.2 Error Analysis Of Fault Diagnostic Algorithm ...................... 152 

7.5 Extension of Results ................................................................................ 154 



 

xii 

 

7.5.1 Detection of Random Misfire Condition ............................... 154 

7.5.2 Detection of Multiple Misfire Events .................................... 159 

7.5.3 Early Warning ........................................................................ 160 

7.5.4 Misfire Detection as Reliability Problem .............................. 162 

7.6 Comparison Of Method ........................................................................... 163 

7.6.1 Memory Load......................................................................... 164 

7.6.2 CPU Load............................................................................... 165 

7.7 Summary .................................................................................................. 165 

 

Chapter 8 

Conclusions And Future Work  ........................................................................... 168 

8.1      Main Contributions ................................................................................... 168 

8.1.1 Hybrid Modeling of SI Engine .............................................. 168 

8.1.2 Early detection of misfire fault in SI engine .......................... 169 

8.2       Future Work ............................................................................................. 170 

8.3       Social Contribution of Research .............................................................. 171 

 

References ................................................................................................ 172 

 

Appendices ................................................................................................ 181 

Appendices - A ................................................................................................ 181 

Appendices - B ................................................................................................ 184 

 

 

 



 

xiii 

 

LIST OF FIGURES  

Figure 1.1 : Line Diagram of Cylinder of SI Engine ............................................... 5 

Figure 1.2 : PV Diagram of Otto Cycle ................................................................... 6 

Figure 1.3 : Complete Ignition Cycle of SI Engine ................................................. 7 

Figure 1.4 : Engine Cylinder with intake and exhaust manifold and sensors .......... 8 

Figure 1.5 : Crankshaft Speed Sensor  + Signal ...................................................... 9      

Figure 2.1 : Abrupt Fault, Incipient Fault, Intermittent Fault ................................ 24 

Figure 2.2 : Actuator Fault, Component Fault, Sensor Fault ................................. 25 

Figure 2.3 : Additive Fault,  Multiplicative Fault .................................................. 26 

Figure 2.4 : System with Sensor, Actuator and System Faults .............................. 28 

Figure 2.5 : Model Based Fault Diagnosis System ................................................ 30 

Figure 2.6 : Redundancy Signal Structure of a Residual Generator ...................... 31 

Figure 2.7 : General Structure of a Residual.......................................................... 31 

Figure 2.8 : Adaptive Threshold Selection ............................................................ 34 

Figure 2.9 : Adaptive Residual Selection .............................................................. 34 

Figure 2.10 : Structure Residual Sets ..................................................................... 35 

Figure 2.11 : Structured Residual Generator (Generalized Observer Scheme)  .... 36 

Figure 2.12 : Directional Residual Set ................................................................... 36 

Figure 3.1 : Classification of Diagnostic Systems ................................................. 41 

Figure 3.2 : Block Diagram of PI feed forward indicated torque observer ........... 44 

Figure 3.3 : Templates of Engine Speed Patterns .................................................. 56 

Figure 3.4 : Signal Features Associated with Systems .......................................... 57 

Figure 3.5 : State Transition Diagram.................................................................... 59 

Figure 3.6 : Instantaneous Crankshaft Speed Signal ............................................. 62 

Figure 3.7 :Probability Density of Crankshaft Speed Signal ................................. 65 

Figure 4.1 : Line Diagram of Crankshaft ............................................................... 81 

Figure 4.2 : LOLIMOT net with external dynamics .............................................. 86 

Figure 4.3 : Engine Automaton with four States ................................................... 88 

Figure 5.1: Switching of Sub-systems ................................................................. 102 

Figure 5.2 : Spark Ignition Engine representation as Mass-Spring damper ........ 102 

Figure 5.3 : Cylinder Pressure variation Curve ................................................... 112 

Figure 5.4 : Block Diagram of simple Hybrid Model of SI Engine .................... 113 

Figure 6.1 :  Residual Generator with model running in Parallel ........................ 126 



 

xiv 

 

Figure 6.2 :  Simplified Residual Generator with off-line reference estimation . 127 

Figure 6.3 :  Data Based Algorithm of Misfire Detection   ................................. 134 

Figure 7.1 : Simulation Results: Engine Speed Waveforms ................................ 140 

Figure 7.2 : Proposed Experimental Setup .......................................................... 141 

Figure 7.3 : Experimental Results Engine Speed Waveforms ............................. 141 

Figure 7.4 : Distribution of Crankshaft Speed Waveforms ................................. 143 

Figure 7.5 : Surface plot of Crankshaft Speed Waveforms ................................. 144 

Figure 7.6 :Zoomed view of  Surface plot of Crankshaft Speed Waveforms ...... 145 

Figure 7.7 :Convergence plot of Limiting Probability......................................... 150 

Figure 7.8 :Error Analysis of results of Fault Diagnostic Algorithm .................. 153 

Figure 7.9 :Detection probability of random Misfire ........................................... 156 

Figure 7.10 :Block Diagram of Experiment of Random Misfire Simulation ...... 159 

Figure A.1 :Picture of Experimental Setup 1 ....................................................... 181 

Figure A.2 :Picture of Experimental Setup 2 ....................................................... 181 

Figure A.3 :Picture of Data Acquisition results during Experimental ................. 182 

Figure A.4 :Picture of Connections with Engine Sensors .................................... 182 

Figure A.5 :Introduction of Air Fault .................................................................. 183 

Figure A.6 :Introduction of  Spark Fault ............................................................. 183 



 

xv 

 

LIST OF TABLES  
Table-4.1 Spark Position of different strokes an ignition cycle ................ 77 

Table-7.1 Parameter values used in simulation ....................................... 139 

Table-7.2 Leakage in cylinder ................................................................. 149 

Table-7.3 Simulation results of random misfire ...................................... 159 

Table-7.4 Simulation results of of multiple misfire fault ........................ 160 

Table-7.5 Simulation results of gradual rise in fault ............................... 161 

 

file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158
file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158
file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158
file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158
file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158
file:///C:/Users/Mudassir%20Rizvi/AppData/Local/Temp/Local%20Settings/Shuja/FYP%20Thesis%20Format%20(EE).doc%23_Toc38085158%23_Toc38085158


 

xvi 

 

LIST OF ACRONYMS 

 

SI  .............................................................................. Spark Ignition 

MIL  ...................................................... Malfunction Indication Lamp 

OBD  ................................................................. On Board Diagnostics 

CAN  ................................................................. Control Area Network 

FDI  ...................................................... Fault Detection and Isolation 

FDII  ............................... Fault Detection, Isolation and Identification 

MVM  ...................................................................... Mean Value Model 

PDF  ...................................................... Probability Density Function 

TDC  ......................................................................... Top Dead Center 

BDC  .................................................................... Bottom Dead Center 

PV Diagram ........................................................ Pressure Volume Diagram 

MAP  ........................................................ Manifold Absolute Pressure 

MAF  ............................................................. Manifold Absolute Flow 

IFAC  .................. International Federation of Automation and Control 

CBM  ....................................................... Condition Based Monitoring 

LMI  ............................................................. Linear Matrix Inequality 

FDF  ................................................................. Fault Detection Filters 

ARMA  ....................................... Auto Regressive and Moving Average 

PCA  .................................................... Principal Component Analysis 

ANN  ........................................................... Artificial Neural Network 

NN  ........................................................................... Neural Network 

HMM  ................................................................ Hidden Markov Model 

DEM  .................................................................. Discrete Event Model 

ODE  ................................................... Ordinary Differential Equation



 

1 

 

Chapter 1 

INTRODUCTION 

1.1 Overview 

The development of efficient algorithms for ―Fault Detection and Isolation (FDI) in 

Spark Ignition (SI) Engine‖ is a major research area in the field of automotive 

research. This research proposal is oriented towards ―Detection of Misfire Fault in SI 

Engine using a novel Hybrid Model to represent SI engine‖. In this thesis the study 

contains following two novelties: 

 A novel hybrid model of SI engine 

 A novel misfire fault detection technique on the basis of Markov Chains 

in this research proposal Misfire Fault is defined as per definition of California 

Environmental protection agency, Air Resources Board (CARB) (2009, pp: 117) i.e. 

“lack of combustion in the cylinder due to absence of spark, poor fuel metering, poor 

compression, or any other cause. Lack of combustion events in non-active cylinders 

due to default fuel shut-off or cylinder deactivation strategies are however not 

considered as misfire event.‖ 

 This research field originated with the awareness of pollution hazard caused by the 

accumulation of exhaust emission of billions of vehicles running on roads around the 

world. Engine faults not only aggravate the emission problems but also result in fuel 

wastage and passenger discomfort due to non-smooth vehicle movement and even 

vehicle failure. Considering the environmental hazards on account of large number of 

vehicles on road, the permissible limits were legally defined for exhaust emissions in 

a number of countries. As an example, CARB originally adopted the light and 

medium duty vehicle OBD regulation (OBD-II) in 1989 for vehicles of 1996 and later 

models. The vehicle manufacturers invested in the development of Electronic Fuel 

Injection (EFI) and electronic controllers to ensure the optimal burning of fuel and 

minimize the exhaust emissions in SI engine through optimal design of engine 

controller. As per H. Holzmann etal, (1999, pp. 1014-1019), the basic objectives 

considered in EFI engine design include: 
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 Vehicles with better fuel efficiency 

 Vehicles with less exhaust emissions 

 Vehicles with better safety aspects 

 Better availability of vehicle 

 Passenger comfort 

The engine controllers are designed to work under the designed conditions. The 

occurrence of certain engine faults however change the engine system in such a 

manner that even electronic controller cannot ensure the achievement of desired 

performance objectives. Research interest is therefore developed in the timely 

detection and identification of engine faults. The interest in the field of ―Fault 

Detection, Isolation and Identification in SI engine‖ is further augmented due to the 

depleting energy resources and increasing fuel prices. 

To meet the major challenges of twenty first century, the computational power of 

microprocessors and microcontrollers is utilized in automotives to achieve the 

performance objectives. The decreasing prices of electronics equipment makes it 

possible to install sensors in vehicles that measure the quantity of air sucked in engine 

cylinder and spray desired amount of fuel in it that would be burnt completely by the 

sucked air. Similarly sensors and actuators are installed in exhaust system to control 

the exhaust emission. The control signals are provided to the actuator through an 

Electronic Control Unit (ECU). The ECU is a microcontroller based electronic 

circuit that controls the quantity of fuel injected in the cylinder and the spark position. 

The EFI control resulted in improved vehicle performance. 

Even in the presence of all these sensors and actuators, the performance of vehicle 

would become sub-optimal when a fault occurs in some vehicle system. To ensure the 

desired performance of vehicle, the life of different components of vehicle is defined 

and it is recommended that the component be replaced after the end of that life. To 

achieve the objective of maintaining optimal performance of vehicle, it is necessary to 

observe the preventive maintenance schedule of vehicle e.g. to change the spark 

plugs after the vehicle travel some specified distance. The vehicle manufacturers 

suggest fairly pessimistic estimates of life different components and if the 

components are not replaced they may continue to work properly.  This resulted in 

increase in maintenance cost of vehicle. 
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In order to optimize the maintenance cost of vehicles, it is necessary to shift the 

maintenance strategy of vehicle from Preventive Maintenance (PM) to Condition 

Base Maintenance (CBM). In CBM, the performance of a component is analyzed by 

analyzing the system output. The component is changed only when the performance 

of system is significantly deteriorated due to its fault. The average lifetime of the 

components is therefore increased by CBM. For implementing strategies based on 

CBM it is necessary to develop fault detection techniques capable of detecting the 

incipient faults. The basic philosophy of fault detection methods proposed for 

automotive industry was adopted from the methods being used in Safety Critical 

Systems like aircraft. These methods were then tailored for application in automotive 

area. The algorithm can be executed in a microcontroller of vehicle ECU.  

As a first step, all the major faults that may affect the vehicle performance are 

monitored by ECU. The objective of detection and annunciation of fault is achieved 

by continuous monitoring of different sensors to detect the faults present in systems 

and indicates the fault through a Malfunction Indication Lamp (MIL) in the vehicle 

that provides a visual indication of fault to the driver. Appropriate fault codes are 

generated corresponding to each fault. These fault codes can be observed by 

connecting a diagnostic tester with the On Board Diagnostic (OBD) jack provided in 

a vehicle. The diagnostic tester communicates with the vehicle through standard 

communication protocols like ISO-9141-2 or Control Area Network (CAN) protocol 

[Protocol Document ISO 9141-2,  2000,  Protocol Document SAE J-1979, 2002].  

Some basic shortcomings observed in these approaches include: 

 A malfunction is indicated in vehicle only when the fault is increased to such 

an extent that failure of component could be detected. Before the fault become 

apparent, the system however continues to operate in sub-optimal mode.  

 The suboptimal operation of vehicle before MIL indication comes, result in 

decrease in fuel economy and excessive impermissible exhaust emissions. 

During the last decades of twentieth century, research was initiated on the fault 

detection and isolation in vehicular systems with special emphasis on early detection 

of faults. The development of efficient algorithms for ―Fault Detection and Isolation 

in Spark Ignition (SI) engine‖ is still a major research area in the field of 

automotives.  
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The research interest in this field was further grown when the concept of autonomous 

vehicles was introduced to enhance the safety features in the new generation vehicles. 

These vehicles ensure lane discipline by automatic steering and safe distance from 

other vehicles and objects by automatic braking. To ensure automatic steering and 

automatic braking, actuators (DC motors) were placed in vehicles which receive 

signals through a controller implemented in a microcontroller in ECU. The 

philosophy was in general termed as Drive By Wire (DBW). The two major 

components of DBW philosophy are Brake By Wire (BBW) and Steer By Wire 

(SBW). Both these subsystems are safety critical systems for which Fault Tolerant 

Control (FTC) is needed. BBW was first introduced in Mercedes Benz SL series in 

2001-02. Under manual control, the system received input from the pressing of paddle 

from driver and a controller implemented in a microcontroller unit actuates the 

braking system of vehicle. The controller may however itself actuate the brakes after 

sensing some hazardous condition. The system was however removed after a few 

years due to problems [Huaqun G., 2009, pp: 13]. To ensure a high reliability for 

these systems, automatic fault detection and fault tolerance capability is needed.  

Only a few features of modern vehicle that are implemented through a microcontroller 

are described above. However the implementation of these features is difficult in a 

single microcontroller. To implement all the features presented in a modern vehicle, 

the higher end vehicles use as many as 70 different microcontrollers. The vehicles of 

modern generation therefore represent a network of computer systems in which a 

number of microcontrollers share their data with each other and implement a number 

of control loops, communication protocols and diagnostic services etc. In these 

vehicles fault detection can be carried out on a microcontroller. 

To clearly define the problem and discusses the solution to the problem, the basic 

terminology of SI engine would be required. It is appropriate to provide a brief 

overview of mechanical construction of SI engine and discuss the basic 

thermodynamics principles working behind an SI engine. 

1.2 Introduction to SI Engine 

The most common application of a spark ignition (SI) engine is in an automotive. The 

automotive engines consist of three, four or six cylinders. Each cylinder is equipped 
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with two ports one connected to the input manifold and other port is connected to the 

output manifold. A piston moves inside the cylinder which is connected to shaft 

through a crankshaft mechanism. Figure 1.1 indicates a single engine cylinder 

indicating Top Dead Center (TDC) and Bottom Dead Center (BDC). In a four 

cylinder SI engine, four cylinders are coupled on a common shaft in such a way that 

power produced by each of the cylinders sum up to produce the total power.  

SI engines are four stroke engines that work on the basis of Otto cycle. An Otto Cycle 

is completed in four independent strokes of piston called: 

 Suction stroke 

 Compression stroke 

 Power stroke 

 Exhaust stroke.  

Suction Stroke starts with the piston at Top Dead Center (TDC) and is characterized 

as a constant-pressure process. The inlet port of engine is opened and air is sucked 

from the intake manifold in the cylinder as the piston moves from TDC to Bottom 

Dead Center (BDC). 

Compression stroke is an isentropic compression and is started when the piston is at 

BDC and ends when piston reaches TDC. The temperature within the cylinder is 

increased substantially due to compressive heating. 

 
 

Figure 1.1: Line Diagram of Cylinder of SI Engine  
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The addition of heat energy is assumed to be a constant-volume heat input process at 

TDC. In real engine this occurs at close to constant-volume conditions as heat input is 

started when piston is slightly before TDC and ends with piston slightly after TDC. 

During this process a large amount of energy is added to the air within the cylinder. 

This energy raises the temperature of the air to very high values. 

The ignition of air fuel mixture results in the generation of very high pressure and 

enthalpy values within the system at TDC. This high pressure inside the cylinder 

results in a power stroke.  During power stroke some of the energy is converted to 

work causing the piston to move from TDC to BDC. Due to the rise of temperature in 

cylinder some energy is transferred to cooling system through engine cooling ducts. 

The rest of the energy remains in the cylinder in the form of hot gases. 

Exhaust stroke occurs when piston is at BDC. The exhaust port opens and as the 

piston moves from BDC to TDC, the hot gases are pushed out of the cylinder to the 

atmosphere through engine exhaust. A complete ideal Otto Cycle is represented by a 

closed curve on a PV diagram shown in Figure 1.2. 

 
 

Figure 1.2 : PV Diagram of Otto Cycle 
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During each stroke the crankshaft is rotated by 180˚. The ignition cycle of an SI 

engine is therefore completed during an angular movement of 720˚ or two complete 

rotations of crankshaft. The four cylinders of an engine are 180˚ out of phase from 

each other and the nature of stroke in all the cylinders is different at any particular 

instant e.g. if one cylinder is sucking air, some other cylinder would be compressing 

the air sucked by it in the previous cycle and one of the cylinder would be generating 

the power and the remaining cylinder would be exhausting the burnt gases. This 

arrangement of cylinder ensures that one of the cylinders would be generating power 

at any instant. The relative piston position of four cylinders is shown in Figure 1.3.  

Initially main focus of research in the field of SI engine was the improvement of 

―Fuel Efficiency‖. That was increased from 4% for engines built in early 1900 to 32% 

for engines built in 2000. With increasing number of vehicles, the problem of 

pollution on account of vehicles was aggravated so much that research stress is 

broadened to ―Reduced Exhaust Emission”. To increase the fuel economy and control 

exhaust emission, the amount of fuel sprayed is controlled electronically. In 

Electronic Fuel Injection (EFI) vehicles the amount of fuel sprayed in engine is 

determined by the amount of air sucked in engine cylinder which is estimated by the 

position of throttle valve. The volume between the throttle plate and the intake valve 

of the cylinder is called intake manifold. 

 

 
 

Figure 1.3 : Complete Ignition Cycle of SI Engine  
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1.3 Major Components of an EFI SI Engine System 

An EFI based SI engine is a complex system fabricated by an assembly of a large 

number of simpler components. Some of these components are listed below: 

 Engine Cylinders 

 Intake and Exhaust Manifolds 

 Intake Ports and Exhaust Ports 

 Fuel Injectors 

 Igniter 

 Electronic Control Unit 

The optimal working of engine is ensured by a number of control loops present in 

engine. These control loops operate on the basis of information provided by a number 

of sensors present in engine systems. During suction stroke of an engine, the intake 

port opens and as the piston moves from TDC to BDC, air is sucked in the cylinder. 

The quantity of air sucked in engine cylinder is estimated using a Manifold Air Flow 

(MAF) sensor or Manifold Air Pressure (MAP) sensor installed in vehicles. The 

 
 

 

Figure 1.4 : Engine Cylinder connected with intake and exhaust manifold and sensors (adopted from . Cook J. 

A.  etal, (2007, pp. 334 -335) 
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position of MAP sensor is shown in Figure 1.4. Crankshaft position sensor is also 

installed in all EFI vehicles. These sensors could be magnetic or optical sensors. A 

gear with known number of teeth is normally installed on crankshaft when magnetic 

sensors are used. When a tooth come close to the sensor, a magnetic coupling is 

established and a pulse is observed by the sensor. The gear assembly and position of 

crankshaft position sensor is shown in Figure 1.5. The internal structure of sensor and 

shape of its signal given by Stone R. et al (2002, pp: 135) are shown in Figure 1.5. 

The information of number of teeth present on the gear assembly and the time taken 

by engine to traverse those teeth once can be used to estimate the engine speed. Figure 

1.5 also indicates that most of the received pulses have same width but the width of 

one pulse is larger. This is due to a missing tooth on the gear assembly. This missing 

tooth is used to establish a reference point to identify the cylinder. In some engines, 

instead of a missing tooth the gear assembly contains a double tooth to establish the 

reference. In this case the observed signal would contain two narrow pulses instead of 

a single wide pulse. A throttle position sensor is installed in EFI engines. When the 

speed of vehicle is varied by changing the position of throttle, the sensor senses the 

new throttle position. 

The estimate of throttle position, engine speed and air sucked in engine cylinder is 

passed on to the ECU. The ECU uses an internal lookup table to decide the amount of 

fuel to be sprayed in the cylinder. Under steady state conditions, the amount of fuel 

sprayed in engine cylinder is proportional to the amount of air sucked in it.  

 
 

Figure 1.5 : (Left) Crankshaft Speed Sensor near gear teeth          (Right) Sensor Signal 
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After the appropriate amount of fuel is sprayed in engine cylinder, the air fuel mixture 

is compressed. Under ideal conditions the compression is completed when the piston 

reaches the TDC and air fuel mixture would be ignited. In SI engine however it takes 

finite time for the burning of air fuel mixture and the pressure of burnt gasses is 

established after a finite delay with respect to the spark signal. A spark advance is 

maintained and spark signal is provided before the piston reaches TDC to ensure that 

piston would be at TDC when peak pressure of burnt gases is established in engine 

cylinder. The spark advance is also controlled electronically by ECU. On the basis of 

information from crankshaft position sensor, ECU decides about the ignition position. 

After the completion of power stroke, the exhaust port opens and the burnt gases are 

pushed out of the cylinder. In the exhaust manifold, oxygen sensor is present to 

monitor the traces of remaining air and fuel in exhaust gases. 

On account of analysis, the complex engine system is usually divided into six simpler 

subsystems: 

 Air Intake Subsystem consisting of Throttle Valve and Intake Manifold 

 Fuel Subsystem consisting of Injectors 

 Engine Cylinders and Moving Assembly  

 Engine Exhaust Subsystem  

 Lubrication System  

 Coolant System  

Appropriate sensors and actuators required for correct working of each engine 

subsystem are present in engine. The actuator operation of EFI based SI engine is 

defined by the engine controller that provide control input on the basis of data 

provided by sensors. The introduction of faults in engine sensors, actuators or in 

engine systems may mislead the controller. Some fault scenario associated with 

engine system and the hazardous affects caused by those faults are given below: 

1.4 Fault Scenarios in SI Engine 

 The major faults observed in an SI engine include: 

 Ignition Fault 

 Injection Faults 



 

11 

 

 Air leakage Faults 

These faults can occur in only one of the engine cylinder or can occur in more than 

one cylinder simultaneously. To explain the effects of fault scenario, it is assumed 

that fault is present in only one engine cylinder and the other cylinders are providing 

sufficient power to ensure engine operation. 

1.4.1 Ignition Fault 

Ignition fault means that igniter signal is either not provided to a cylinder or the signal 

could not initiate a spark in cylinder when air fuel mixture was present in it. A direct 

consequence of problem is that ignition would not occur in cylinder and engine would 

not produce power in that cycle. The un-burnt fuel would be pushed to exhaust 

manifold in the next stroke of ignition cycle. The un-burnt fuel would be burned in 

catalytic converter of vehicle. An excessive heat generated in catalytic converter 

would damage it. If the fuel could not be burnt in catalytic converter, it would be 

exhausted to the atmosphere and cause pollution. 

1.4.2 Injection Fault 

Injection fault means either less/ no fuel was injected in cylinder (lean mixture 

formation) or excessive fuel is injected in cylinder (rich mixture formation). In case of 

formation of lean mixture engine would deliver less power. In the absence of fuel no 

ignition would occur and power would not be produced.  

When a rich mixture is formed, engine would deliver normal power but some un-

burnt fuel would escape to the exhaust system. This un-burnt fuel would be burnt in 

catalytic converter of exhaust circuit and gradually damaging it.  

1.4.3 Air Leakage Fault 

Air leakage fault has two different scenarios. 

 Air leakage in manifold due to formation of some hole in manifold 

 Air leakage from cylinders due to broken or lose piston rings 

A negative air pressure is maintained in manifold. If a hole appears in manifold, more 

air would flow inside the manifold through hole and manifold pressure would 

increase. More air would be sucked in cylinder during suction stroke and engine 
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would generate more power during the power stroke of the cylinder. This fault would 

affect the entire four cylinders equally in common manifold configuration.  

When air is leaked from cylinders due to broken piston rings, the air-fuel mixture 

would leak out of the cylinder when the mixture is being compressed. This leakage 

would result in loss of power generation in ignition stroke of cylinder. 

Misfire fault is one of the possible engine faults that result in loss of power. The faults 

like manifold air leakage fault, formation of rich mixture in cylinders etc. do not come 

in the domain of misfire fault. The misfire fault is therefore formally defined before 

defining the main problem. 

1.5 Misfire Fault 

The basic fault considered in this thesis is the Misfire Fault that represents the 

absence of formation of spark in engine cylinder as defined in the CARB report 

(2009, pp: 117). The main problems that result in engine misfire problem include: 

1. Absence of formation of spark (fault in igniters or spark plugs) 

2. Fault in air circuit (air leak from cylinders) 

3. Fault in fuel circuit (Fuel pump or injectors inject less fuel in cylinder) 

4. Any other fault that result in absence of formation of spark 

Lee M. et al (2006, pp: 637-644) classified misfire into two major groups: 

 Random Misfire 

 Continuous Misfire 

Random misfire occurs intermittently due to engine operation and road conditions and 

continuous misfire is due to fault in igniters, spark plugs, injectors and intake / 

exhaust problems.  

Lee M. et al (2006, pp: 637-644) described the effectiveness of fault detection method 

as well as cost of fault diagnostic method as the two major points of consideration. 

1.6 Statement of Problem 

The proposed research work emphasizes on the ―Development of Novel Algorithm 

for Misfire Fault Detection in EFI based SI Engine using a novel Hybrid Model‖. 

The fault isolation to attribute the fault to spark circuit, air circuit or fuel circuit is 
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however not considered in this work and can be considered as the future extension to 

this work.  

The basic assumption is that fault would be due to missing spark only and SI engine is 

operating in steady state conditions. 

1.6.1 Hybrid Model 

A Hybrid Dynamic System is characterized by the interaction of continuous and 

discrete inputs (Discrete Event) to the system. In these systems, the development of 

states variables of system for any given discrete event represents a Mode. The 

occurrence of discrete event therefore forces the system to change its mode and hence 

cause a jump in the values of state variables Messai N et al (2005, pp: 103-109). The 

basic challenge of working with hybrid systems is the measurement/ estimation of not 

only the continuous state of system but also identify the active mode Arogeti S. A. et 

al (2010, pp: 1452-1467). In case of hybrid systems a fault can be identified by the 

occurrence of an impermissible mode. The sequence of occurrence of events (modes) 

can therefore be analyzed to identify the fault.  In case the mode switching events are 

well defined for a system FDI is easy Yu M. et al (2010, pp: 3000-3012). This is due 

to the fact that for deterministic and well known information of development of 

system modes, it is easy to estimate the system state variables and hence identify the 

faults. Arogeti S. A. et al (2010, pp: 1452-1467) mentioned that for accurate fault 

detection, fault parameter estimation requires information of system mode history. 

Messai N et al (2005, pp: 103-109) indicated that the identification of modes is a very 

hard problem in hybrid systems. A number of techniques like adaptive hybrid particle 

swarm optimization and bond graph approached are quoted in literature for the 

identification of mode switching and fault parameters estimation in hybrid system.  

SI engine consists of four cylinders that can be modeled with continuous dynamics 

and a firing sequence of these four cylinders controlled by engine ECU represents a 

discrete dynamics. If firing event of SI engine is considered as a mode and crankshaft 

speed / acceleration are considered as the continuous state variables, then response of 

SI engine is defined by the interaction of both discrete firing event and the continuous 

dynamics of engine cylinders. The events of misfire can be considered as occurrence 

of an impermissible mode. Since firing sequence of an SI engine is deterministic, FDI 

for detecting misfire events could become simpler in the light of comments from Yu 
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M. et al (2010, pp: 3000-3012). The hybrid modeling is therefore a suitable option to 

represent SI engine for the detection of misfire fault. The problem would then be 

divided into the following steps: 

 Mathematical modeling of engine cylinders (Modes) 

 Mathematical modeling of ignition events (Events) 

Using the observation of continuous data of engine speed, Mode of hybrid model can 

be estimated using stochastic techniques. The mode can finally be used to detect and 

identify the misfire fault of SI engine. 

1.7 Proposed Solution to the Problem 

A simplified hybrid model for SI engine would be developed on the basis of basic 

laws of physics. The input to the model would be considered to have some small 

randomly varying components like random fluctuations in fuel spray, burn time 

mentioned by Pulkrabek W. W. (1997, pp: 208-240) and amount of air sucked in 

engine etc. A stochastic analysis would also be carried out to study the effects of these 

random inputs in SI engine. The necessary data required for stochastic model would 

be obtained by studying the properties of hybrid model. Fault diagnostic algorithm 

would be developed using stochastic analysis of data. The scope of work of this thesis 

includes: 

 Development of a novel Hybrid Model for SI engine and to study its 

properties.   

 Stochastic analysis to study the effects of random variations of input on the 

output of model.  

 Development of a novel fault diagnostic algorithm using Markov Chains 

 Experimental validation Hybrid Model of SI Engine 

 Experimental validation of Fault Diagnosis Algorithm 

 Relative Operating Characteristic (ROC) analysis of fault diagnosis algorithm 

1.7.1 Work Breakup 

The work was initiated as a research oriented work. To validate the results of 

research, the arrangement of funds resulted in some additional commitments of some 
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development work also. The study was therefore divided into two major areas i.e. 

research work and development work: 

 The problem of research work of this study is defined in Section 1.6  

 The development work is the Implementation of communication protocols of 

vehicles including ISO-9141-2 and CAN to develop a diagnostic toolkit for  

most vehicles being used in Pakistan.  

1.8 Philosophy of Novel Fault Diagnostic Algorithm 

Conventionally, in engineering systems, fault diagnosis is mostly carried out by 

forming a mathematical model and using the tools of control engineering for fault 

diagnosis. According to Biswas G. et al 2004 pp: 2159-2162, the community engaged 

in the development of fault diagnosis methods based on mathematical model and 

control engineering tools is named as Fault Diagnostics and Isolation (FDI) 

community. The community of computer science also needs fault detection in a 

number of their applications like in computer networks.  This community is mainly 

using statistical techniques for fault detection and is named as DX community. Both 

the fault detection methods have their own advantages and suffer with some 

shortcomings also. An increasing trend is observed in the application of tools of DX 

community by FDI community and vice versa in their applications.  

Jianhui L. et al (2009, pp:1-16) mentioned that neither model based nor data based 

methods can accurately solve the FDI problem and proposed an integrated approach 

based on parity equations, non-linear observer and State Vector Machine (SVM) for 

fault diagnosis in Antilock Braking System (ABS). The reference of simultaneous 

application of tools of both communities for fault diagnosis is however not widely 

available in literature.  

The basic philosophy of this work is using simultaneous analysis of mathematical 

model and statistical properties of engine system to develop a computationally 

efficient misfire detection method. In this integration of model based and data based 

method; the properties of mathematical model provide heuristic guideline for the 

statistical method like data de-multiplexing, independence of states and enable us to 

prove that the selected random process is both Gaussian and Markov.  
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1.9 Major Issues in SI engine Fault Diagnosis 

Fault is not the only source of error in a system but a completely healthy system may 

also exhibit error due to some unwanted inputs present in system. Some of these 

unwanted signals include input perturbation, disturbance and noise.  Perturbation 

represents the slight change in input resulting in temporary departure of system from 

current state. Disturbance represents an unknown (and uncontrolled) input of limited 

frequency range acting on the system. Disturbance, being a physical signal is usually 

considered to be restricted to low frequency range. Noise is considered as unwanted 

input affecting the system response. The error on account of these signals result in 

some differences between actual system response and the model response.  

SI engine with electronic fuel injection always operate in closed loop. The slight 

faults occurring in engine system are considered to be the disturbances by the engine 

controller. The controller generates the signals to counteract those disturbances. Wu, 

N. E. et al (1992, pp: 44-49) and Jacobson, C. A. (1991, pp: 22-29) discussed the role 

of controller in the design of diagnostic system in a closed loop. When an average 

behavior of engine is observed the effects of faults would not be observed due to the 

controller action. The engine Mean Value Model (MVM) can detect the fault only 

when the intensity of fault is increased to such an extent that engine ECU cannot 

handle it. The problem of detection of incipient fault in SI engine using MVM is 

therefore very difficult. The problem of detection of small abrupt faults using MVM is 

also a very challenging problem. The effects of disturbances like slight variation of air 

or fuel, statistical effects of forces acting on piston, formation of fuel film etc. from 

one ignition to other ignition are not important in MVM due to averaging nature of 

model. Any signal variation appearing on the sensor side is considered as noise and 

are frequently removed using additional filters in loop. The signal variation may 

however be actually due to some fault in engine system. 

The main problem associated with the detection of misfire event is however the 

condition that the model must be capable of detecting and analyzing the events 

occurring within an ignition cycle. As misfire fault is associated with specific 

cylinders, the selection of hybrid model with independent subsystem corresponding to 

each cylinder would reduce the problem to study the response of individual 

subsystems.  
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1.10 Purpose of the research 

The problem of fault detection in automotive systems is being studied since last two 

decades. The problem is still alive in the research community due to its complexity. 

The basic motivation for selection of proposed research has its roots in the lack of 

core knowledge of people affiliated with automotive industry in Pakistan. Although a 

number of vehicle manufacturing plants are present in Pakistan, the automotive 

research is a neglected area on part of both industry and academia. Also the 

automotive mechanics working in a large number of workshops in Pakistan lack even 

the basic knowledge of current trends of fault diagnosis in this field and still work on 

the basis of trial and error methods. Control and signal Processing Group (CASPR) 

was started in order to develop the research and development culture in Pakistan. The 

basic research interests of this group are modeling, control and diagnostics in 

automotive, fuel cell, aircraft, three tank system, robotics and radars.  

The automotive group of CASPR was working on Mean Value Modeling of SI 

engine, parameter estimation and fault diagnosis in SI engine. Misfire fault was 

chosen due to its adverse affect on account of power and fuel losses in vehicle, 

environmental pollution and wear and tear of equipment due to jerky movement and 

burning of fuel in catalytic converter causing it to heat up and get damages. The 

effects of fault are so significant on account of the exhaust emission that after the 

resolutions about permissible exhaust emission were passed, the problem of detection 

of misfire fault was taken seriously and many vehicle manufacturing industries has 

funded the universities to identify its solution. The failure of igniter was included in 

OBD-II fault codes also. The spark plugs in modern vehicles are kept redundant to 

ensure that if one plug fails, the complete misfire would not occur. A simple solution 

that can easily be implemented in hardware is yet a problem and research community 

is still studying the problem. Most of the work is carried out either on the basis of 

mathematical models like MVM or DEM or on the basis of some signal based 

techniques. Since MVM is based on the average values of variables, it does not suit 

misfire detection applications. Also the complexity of DEM on ground of solving 

many nonlinear differential equations to define the response of a single ignition cycle 

make it inappropriate for integrating random input component with it to define the 

statistical properties of engine variables. A new simplified mathematical model for 
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representation of power stroke of SI engine was therefore developed for study of 

statistical properties of engine variables and finally the results of statistical analysis 

were used in the development of a novel algorithm to detect the misfire fault. The 

chapters on modeling and fault diagnosis would provide a comprehensive survey of 

previous work in this area and development of proposed hybrid model. 

A summary of works carried out during this study include: 

 Development of mathematical model for representing SI engine 

 Development of fault diagnosis algorithms 

 Experimental validation of proposed model and fault diagnosis algorithm 

 Development of strategy for implementation of algorithm on microcontroller 

A part of research work presented in this thesis was published by author in his 

publications provided in section 1.13.  

1.11 Applications of the research 

For the application of research the existing fault diagnostic solutions available in local 

and international market were explored. A survey of automotive mechanics was 

conducted in different areas of Rawalpindi and Islamabad to explore their information 

regarding the engine operation and emerging fault diagnostic methods in the field of 

automotives. It was observed that most of the mechanics are either totally unaware of 

the existence of diagnostic capabilities of vehicles or they have just heard the news of 

some diagnostic devices. Even the workshops using the diagnostic devices bear only 

superficial information about the automotive fault diagnosis. The basic factors that 

restricted the flow of information to our local mechanics were explored and the two 

major factors were identified: 

 Illiteracy of local mechanics who do not even know about the sensors 

 The price of diagnostic equipment is beyond the reach of most of the 

mechanics 

The information acquired during research is then utilized to develop low cost 

diagnostic equipment that the mechanics could purchase.  

The work that has already been carried out on the topic as well as the continuation of 

presented work for future research and development would have a direct effect on the 

technical grooming of our local mechanics that represent a skilled worker community 
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in Pakistan. The adaptation of improved fault detection method by the automotive 

mechanics would then have indirect effect on all the vehicle holders of Pakistan also. 

The work has already contributed to the technical uplift of a small local community of 

automotive mechanics. 

1.12 Theoretical basis and Organization 

The arrangement of thesis includes the definition of problem and identification of 

motivating factors behind the origin of research in the area is identified in chapter 1. 

A basic orientation of SI engine is also provided in first chapter. The research 

problem is formally formulated and the proposed solution is also identified in first 

chapter. Finally the major issues anticipated in research and applications of research 

are discussed. The next three chapters from Chapter 2 to Chapter 4 are dedicated to 

the literature survey. The actual work of author is presented in Chapter 5 to Chapter 8. 

A summary of work presented in different chapters is given below: 

Chapter 2 provides the basic fault diagnosis terminology provided in literature. 

Chapter 3 provides a comprehensive survey of previous work in the area of misfire 

fault detection in SI engines. Different solutions of the proposed based on 

mathematical model as well as on signal and data based methods are discussed 

briefly. The proposed method is compared with some other methods found in 

literature on the basis of analytic simplicity and hardware requirements using 

literature survey. Chapter 4 gives some brief details of existing mathematical models 

of SI engine. In this regard, Mean Value Model (MVM), Discrete Event Model 

(DEM) and Data Based Models representing SI engine as a blackbox formed on the 

basis of Neural Networks.  

Chapter 5 presents the Hybrid model after the development of inspiration for the 

development of model. The basic mathematical approaches found in literature for 

hybrid modeling are discussed. The approach of switched linear model is discussed in 

details and its properties are discussed. The statistically varying variables of model 

are identified and a stochastic analysis of crankshaft speed is performed and it was 

proved that crankshaft speed oscillations are Gaussian and Markov.  

A brief introduction of Markov Chains is provided in Chapter 6 and the tool is then 

used to develop a fault diagnosis algorithm for the detection of misfire in SI engines. 
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To apply the algorithm, a set of states is first defined. These states are then used for 

residual generation for fault detection. It is established that the residuals could be 

analyzed using limiting probability of Markov chains to detect the misfire fault. It was 

finally concluded that the fault can also be identified using an intermediate result and 

a simple data based algorithm is established. 

Chapter 7 provides the results and discussions on the work. In this chapter an 

overview of the data acquisition setup including engine and data acquisition cards is 

presented. The results of a set of four experiments are provided to illustrate the 

effectiveness of algorithm for the detection of misfire. After the establishment of 

affectivity of algorithm, the results were extended to explore the effectiveness of 

method for the detection of random misfire events and multiple misfire events. The 

analysis of true positive and false positive predictions is performed using Relative 

Operating Characteristic (ROC) analysis. The comparison of method with methods 

based on correlation analysis is provided at the end of chapter 7. 

Chapter 8 is dedicated to the contributions and future work in which the basic 

contributions of this research work are discussed and applications of research are 

established.  
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 M. A. Rizvi, A. I. Bhatti, Q. R. Butt ―Misfire Detection in IC Engines using 

Finite State Automata‖, 15th International Conference on Soft Computing 

MENDEL 2009, Brno, Czech Republic, ISSN 1803 1803-3814, pp: 93-100, 

June 24-26, 2009 

 Q. R. Butt, A. I. Bhatti, M. Iqbal, M. A. Rizvi, R. Mufti and I. H. Kazmi, 

―Estimation of Automotive Engine Parameters: Part I: Discharge Coefficient 

of Throttle Body‖, presented in IBCAST 2009, held in January 2009, 

Islamabad Pakistan. 

1.14 Summary 

The importance of Fault Diagnosis and Isolation techniques for SI engine is 

established and basic objectives of automotive research are defined in this chapter. 

After defining the effects of fault on the performance of SI engine the existing 

methods of fault indication in vehicles and their shortcomings are also explored. A 

broad classification of proposed fault diagnosis techniques is defined and major issues 

in fault diagnosis of SI engine are elaborated. With a brief overview of the problem in 

hand, the research problem is defined and the basic philosophy of the proposed 

solution is explained. Finally the importance of research is defined in the light of 

prevalent maintenance culture of vehicles in Pakistan and benefits of research are 

demonstrated. The organization of thesis is provided at the end of this chapter.  
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Chapter 2 

FAULT DIAGNOSTIC TERMINOLOGY 

The developments in the area of fault diagnosis and isolation were started as early as 

in 1970. The terminology used in this field was however inconsistent. In 1991, a 

steering committee called SAFEPROCESS (Fault Detection, Supervision and Safety 

for Technical Process) was formed within IFAC. This committee worked to develop a 

common terminology for the field under the supervision of R. Isermann. The 

proposed terminology is presented in Isermann R. et al (1992, pp. 709-719). The 

terminology presented in this thesis is adopted from the basic work of IFAC steering 

committee and the standard textbooks published on the subject in the next decades. 

This chapter presents the basic terminology of fault diagnosis, classification of faults 

along with its representation in system modeling and the basic structures of FDI 

algorithms. 

2.1 Basic Terminology 

2.1.1 Fault 

Isermann, (2005, pp. 71-85) defined “Fault as an un-permitted deviation of at least 

one characteristic property of a variable from an acceptable behavior or Palade V. et 

al (2006, pp. 15-216)  ―a deviation of system structure or the system parameters from 

the nominal situation‖  

Israel Koren (2007, pp: 2-5) mentioned hardware defect in system components or a 

software bug in the firmware of system as two major sources of faults that would lead 

the system to some undesirable state. The presence of fault does not imply that the 

system has stopped working but it would result in system errors. System errors may 

be considered as manifestation of faults in a system. The fault can even be so 

insignificant that it cannot be detected easily yet it may be affecting the system 

performance. The representation of faults of different nature in a mathematical model 

is presented in section 2.3. 
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2.1.2 Failure 

Mogens B et al (2006, pp: 8) expressed Failure as permanent interruption of a system's 

ability to perform a required function under specified operating conditions. A system 

may run for some time even after the manifestation of fault and before the occurrence 

of failure.  

2.1.3 Fault Detection, Isolation and Identification (FDII) 

Fault Detection means detection of fault in a system. Isolation means to identify the 

faulty component in a system. Identification means to identify the severity of fault in 

system. FDII represents the detection of fault, identification of faulty component and 

estimate the severity of fault in the system. For the case of detection of misfire fault in 

SI engine, the binary decision whether the misfire is present in any of the engine 

cylinder corresponds to fault detection, the identification of faulty cylinder 

corresponds to fault isolation and quantitative estimate of loss of affectivity of the 

defective cylinder corresponds to the fault identification. 

2.1.4 Early Fault Detection 

Early fault detection represents detection of fault at an early stage before the system 

degradation increased to an extent to cause any real damage in system performance. 

In fault diagnostic terminology it corresponds to the detection of incipient faults in 

system with an appropriate threshold defining the allowable system degradation.  

2.1.5  Fault Prognosis 

GeorgeVachtsevanos (2006, pp: 9-10) indicated that in fault prognosis future health of 

system and its components is predicted using currently available system data. Fault 

prognosis can be used to estimate the remaining useful life of a system. Fault 

prognosis is the key to the Condition Based Maintenance (CBM) in which 

maintenance plan is based on the observed machine health. 

A survey of literature indicates that fault is classified on the basis of time or space. 

2.2 Fault Classification Based on Time 

On the basis of time response fault is classified into three basic categories as indicated 

in Ehsan S. (2009, pp:52) and Isermann (2005, pp. 71-85). 
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 Abrupt Faults  

 Incipient Fault 

 Intermittent Fault 

2.2.1 Abrupt Fault 

When the time between appearance and manifestation of fault is very small, the fault 

is said to be an abrupt fault. These faults are relatively easy to detect due to sudden 

large change in values of variables associated with fault. The value of variable can be 

compared with certain threshold value to detect the fault. 

2.2.2 Incipient Fault 

When a fault grows gradually in time, the fault would said to be an incipient fault. 

The effects of incipient faults become visible only after the magnitude of fault is 

increased above a certain threshold limit to cause some hazardous effects in system. 

To avoid the performance loss associated with faulty parameter during the time when 

fault is not manifested, it is necessary to detect the incipient faults well in time.  

2.2.3 Intermittent Fault 

These are the faults that appear and disappear repeatedly in time.  

The time behavior of these three fault types is shown in Figure 2.1. 

 

 

 

 

 

 

 

 

 

2.3 Fault Classification Based on Fault Location 

Any plant can be divided into a number of sub-components. To monitor and control a 

plant sensors and actuators are also installed in the plant. Faults appearing in plant 

component are usually modeled as a change in plant parameters. The faults appearing 

in sensors and actuators are modeled as additive or multiplicative term in model. A 

 
Figure 2.1: (Left) a. Abrupt Fault        b. Incipient Fault         (Right) Intermittent Fault 
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classification of fault on the basis of fault location in a system is provided by Ehsan S. 

(2009, pp 22-24) and Ying H. et al (Technical Report 01-11-01) 

 Sensor Faults  

 Actuator Fault 

 System Component Fault 

 

 

 

 

 

 

The location of these faults in a system is shown in Figure 2.2, where fa represents 

actuator fault, fc represents component fault and fs represents sensor fault. Hoffling et 

al (1996, pp: 1361-1369) and Isermann, (2005, pp: 71-85) described that faults that 

appear in technical systems can often be represented as additive or multiplicative 

faults with respect to the process model. Different faults associated with sensors, 

actuators and system and their representation in model are discussed below: 

2.3.1 Sensor Fault 

Sensor provide information about the internal states of a system to the controller and 

hence sensor fault will affect the decision making process of system which would 

then be reflected in degraded system response. The main faults associated with 

sensors are discussed by Ehsan S. (2009, pp 22-24) and are classified as (a) bias; (b) 

drift; (c) performance degradation (or loss of accuracy); (d) sensor freezing; and (e) 

calibration error. Bias represents a continuous offset in sensor output from the actual 

value. Drift represents that the sensor output changes with time and the error of sensor 

reading go on varying from the actual value. Loss of accuracy represents that sensor 

reading varies sufficiently from the actual value. Freezing represent that the sensor is 

showing a fixed value.  

For model based fault diagnosis applications the fault would be modeled along with 

system and analysis would be performed on the integrated model of system and fault. 

Actuators 
System 

Dynamics 
Sensors 

Actuator Faults 

fa 

Component Faults   

fc 

Sensor Faults 

fs 

Input u(t) Actuation us(t) Output ys(t) 
Measured Output   

y(t) 

Figure 2.2: (Left) Actuator Fault        (Middle) Component Fault          (Right)  Sensor Fault 
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Since output is being measured by a sensor in a system so drift in a sensor will be 

represented as an additive fault on output side. If a feedback is present in system, then 

sensor fault will also result in some additive fault in input side of system. The 

structural representation of additive faults is shown in Figure 2.3. 

 

 

 

 

 

 

If the output of a system observed by a sensor is corrupted by a bias fault represented 

as an additive fault and the system controller passed the additive sensor fault to the 

actuator that also possesses a bias fault represented as an additive fault on input side, 

then the dynamics of system would be represented as:  

_____________________________________________________________________ 

𝑥 = 𝐴𝑥 𝑡 + 𝐵𝑢𝑅(𝑡)                      

 𝑦𝑅 𝑡 =  𝐶 𝑥 𝑡 +  𝐷𝑢𝑅(𝑡) 

Where 

𝑢𝑅 𝑡 = 𝑢 𝑡 + 𝑓𝑎(𝑡) 

𝑦 𝑡 = 𝑦𝑅 𝑡 + 𝑓𝑠(𝑡) 

_____________________________________________________________________________________________ 

Here, the signal  𝑢𝑅(𝑡) is the known input vector and the vector 𝑦(𝑡) is the measured 

output signal. These signals are corrupted by additive fault. The other sensor faults 

like drift and loss of accuracy are more difficult to model. 

2.3.2 Actuator Fault 

Actuators execute the controller command to drive the system. Actuator fault implies 

inability of execution of controller command. This may result in total loss of control. 

Actuator faults depend on the nature of actuator itself. The common actuator faults 

include Bias, Lock-in-place, floating, hardening or loss of effectiveness of actuator. 

 

 

 

 

 

 

 

 
 

Figure 2.3 : (Left) Additive Fault           (Right) Multiplicative Fault 
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The actuator faults like bias may also be represented as an additive fault as can be 

seen from equation 2.1. 

2.3.3 System Component Fault 

Fault in a system component results in change in behavior of the system. This change 

in behavior may be represented as change in system structure, value of system 

parameter, location of system dynamic parameters like poles or zeros etc.  

The change in values of system parameters is represented as multiplicative fault in 

system model. If A, B, C and D are the state space representations of system matrices, 

and due to some fault, the values of these parameters are changed by an amount ΔAf, 

ΔBf, ΔCf and ΔDf, then the resulting system would be given as: 

_____________________________________________________________________ 

𝑥 =  𝐴 + ∆𝐴𝑓 𝑥 +  𝐵 + ∆𝐵𝑓 𝑢 

𝑦 =  𝐶 + ∆𝐶𝑓 𝑥 +  𝐷 + ∆𝐷𝑓 𝑢 

_____________________________________________________________________ 

For fault diagnosis applications based on frequency domain applications, a transfer 

function representation would be more appropriate. Considering u(s) and f(s) as the 

two inputs to the system, where u(s) is a regular input and f(s) is a fault input, the 

system output in the presence of additive fault can be defined using transfer functions 

of system input and fault inputs as: 

_____________________________________________________________________ 

𝐺𝑢 𝑠 = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 

and  𝐺𝑓 𝑠 = 𝐶(𝑠𝐼 − 𝐴)−1𝑅1 + 𝑅2 

then  

𝑦 𝑠 = 𝐺𝑢 𝑠 𝑢 𝑠 + 𝐺𝑓 𝑠 𝑓(𝑠) 

____________________________________________________________________ 

The fault matrices R1 and R2 are usually assumed to be known [Chen J et al , (1999)]. 

Also the system parameters are considered for open loop i.e. the affect of controller is 

neglected in fault diagnosis scheme. In actual systems the accurate information of R1 

and R2 is not available and also the controller cannot be removed from the loop.  

( Eq 2.3) 

( Eq 2.2) 
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 Another problem in practical systems is that the input to the system is not known 

accurately. In the absence of actual input to the system, the reference command r(t) is 

normally used as input in FDI applications. The role of controller cannot be ignored. 

If a robust controller is being used for control applications, the minor faults would be 

treated as disturbance signals and the controller would generate the control signal to 

mask those faults.  

A block diagram indicating system with reference input and a system having additive 

sensor fault at output, additive actuator fault at input and parametric faults in system 

parameters A, B and C is shown in Figure 2.4.  

 

2.4 Fault Detectability 

Nyberg M. (2006, pp. 1995-2000) defined Fault Detectability as the existence of a 

residual generator such that the transfer function from fault to residual is nonzero. 

Consider that the system with system parameters A, B, C and D is excited by the input 

u(t) and an extraneous fault input f(t) is also acting on it. The output of system y(t) 

would be defined by (Eq 2.3). In these equations Gu(s) and Gf(s) represent transfer 

function for system inputs and fault inputs. The system faults are said to be detectable 

if Gf(s) is not zero. If the fault transfer function is zero the effect of fault would not be 

visible in system output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4 : System with Sensor, Actuator and System Faults 
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2.5 Fault Diagnostic Methodology 

A general survey of different fault diagnosis methods is provided by Patton R. J. et al 

(2000, pp: 298-311).  The basic method is to compare the faulty system with a healthy 

system connected in parallel and operating under the same conditions, receiving the 

same input. Although this approach is feasible but it would not only result in 

additional cost but the approach is not always feasible due to system constraints like 

space limitations or process requirements. An alternate approach is to use Analytic 

Redundancy in system [Chow E.Y et al (1984, pp: 603-614)].  

A system is said to be Analytic Redundant if there exists a functional relation between 

a measurement taken on the system and a variable representing that measurement in 

the diagnostic module of the system.  

 Most of the fault detection methods use some form of analytic redundancy 

relationships. The analytic redundancy can be expressed as dynamic mathematical 

model [Isermann R. (2005, pp: 71-85)], a data based model like an artificial neural 

network (ANN) [Ehsan S. (2009, pp: 22-24)] or the reference signals etc. Although 

the model of analytic redundancy varies, however the structure of all the fault 

diagnosis methods contains three major parts:  

 Residual Generation 

 Residual Evaluation 

 Threshold Definition 

Research work was carried out in all the three areas. A general block diagram 

representing basic structure of complete fault diagnosis methodology is shown in 

Figure 2.5. The Process Model block represents analytic redundancy. The input and 

output of actual system is provided as input to the Residual Generator. The residual 

generator calculates the difference of response of actual system and the model 

response. This difference acts as fault symptoms and is called Residual. The residual 

is then given as input to the residual evaluation block. The residual evaluations block 

analyzes the residuals in the light of some decision logic to detect the fault.  

 

 



 

30 

 

2.5.1 Residual Generation 

Gertler J (2002, pp. 1-2) mentioned that the output of residual generator block is 

sensitive to faults. Under no fault condition the output of residual generator should 

ideally be zero. .In practice due to noise in measurement system and other factors, the 

residual is not zero. This makes the residual evaluation and robust fault detection a 

sufficiently challenging problem. The residual is required to have the following 

properties: 

 Disturbance Decoupling 

 Isolation Enhancement 

 Resilience to noise 

Disturbance decoupling means the generated residual should be insensitive to input 

disturbance but remains sensitive to faults. Isolation Enhancement means the residual 

should be generated in a way to provide features that can help in isolating the faults. 

Resilience to noise means residual should be robust enough to ensure the detection 

and isolation of faults even under noisy conditions. The output of residual generator 

does not depend on the operating point. 

A simple residual generation method proposed by Gertler, J. et al (1988, pp.3-11) and 

Basseville (1988, pp. 309-326) is shown in Figure 2.6. In this approach [Hu(s)  Hy(s)] 

 
Figure 2.5 : Model Based Fault Diagnosis System 
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 is made identical to the actual system, so that the signal z is the output of the 

simulated system. The difference between the output of the system and the simulator 

acts as residual.  In this case however the stability of simulator cannot be guaranteed 

when the system in hand is unstable. 

Patton proposed an alternate structure for residual generation shown in Figure 2.7, 

which represents a generalized residual generator.  

For a general residual structure shown in Figure 2.7, the residual output can be 

expressed mathematically as: 

_____________________________________________________________________ 

𝑟 𝑠 =  𝐻𝑢 𝑠      𝐻𝑦(𝑠)  
𝑢(𝑠)

𝑦(𝑠)
 = 𝐻𝑢 𝑠 𝑢 𝑠 + 𝐻𝑦 𝑠 𝑦(𝑠) 

𝑟(𝑠)

𝑢(𝑠)
= 𝐻𝑢 𝑠 + 𝐻𝑦 𝑠 𝐺(𝑠) 

_____________________________________________________________________ 

Under no fault condition, the residual must be zero, and hence the condition for ideal 

residual generator is 

 

 
 

Figure 2.7 : General Structure of a Residual 

( Eq 2.4) 

System 

[Hu(s)  Hy(s)] Hy(s) 

 

 

Input  u(t) Output y(t) 

z(t) Residual  r(t) 

Figure 2.6 : Redundancy Signal Structure of a Residual Generator 
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____________________________________________________________________________________________ 

0 = 𝐻𝑢 𝑠 + 𝐻𝑦 𝑠 𝐺(𝑠) 

____________________________________________________________________________________________ 

Patton, R.J. (1991, pp. 127-136) presented the problem of residual design as the 

selection of transfer matrices Hu(s) and Hy(s) that need to be realized using stable 

linear systems. 

2.5.2 Nonlinear Residual Generation  

The methods of residual generation discussed so far are valid for linear model of 

system. In practice, most of the systems show nonlinear response. For fault detection, 

a linear model is initially formed at the operating point and residual is generated using 

the methods discussed.  

The method would however be applicable in a small range near the operating point. If 

the system operates in a wide dynamic range, the system could not be represented by 

the linearized model and the results may not be correct.  

A number of alternate approaches for fault detection using nonlinear model are found 

in literature. These include introduction of neural networks for fault detection 

[Narendra, K.S. et al , 1990, pp: 4-27, Dexter, A.L. et al 1997, pp: 673-682] used 

Fuzzy logic integrated in model based FDI to overcome the problem of precision and 

accuracy of the models. The parameter estimation techniques using nonlinear model 

and sliding mode observer is providing more robust fault detection for non-linear 

systems. A new approach applicable to certain class of nonlinear system is to 

represent them as a hybrid model working as a piecewise linear switched systems 

Rizvi et al (2009, pp:130-135).  

2.5.3 Residual Evaluation 

The simplest technique for residual evaluation is based on defining some threshold 

limits for detecting the fault. For fault detection simple thresholds may be defined as: 

_____________________________________________________________________ 

𝑦 < 𝑦𝑚𝑖𝑛  𝑜𝑟 𝑦 > 𝑦𝑚𝑎𝑥 ⇒ 𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑦𝑚𝑖𝑛 ≤  𝑦 ≤  𝑦𝑚𝑎𝑥 ⇒ 𝑁𝑜 𝐹𝑎𝑢𝑙𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 

_____________________________________________________________________ 

( Eq 2.6) 

( Eq 2.5) 
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The residual signals are normally corrupted by the disturbances in the real system and 

uncertainties in system model. The robust residual evaluation techniques based on 

norms were therefore widely used for residual evaluation technique. The tools of 

robust control like ℋ2 norm and ℋ∞  norms were hence used for residual evaluation.  

The residual evaluation problem is defined as selecting suitable limits to encounter the 

effects of disturbances and model uncertainties. In this regard, the problem of 

threshold definition needs a clear definition maximum bound of exogenous inputs to 

system that affect the output. The bound of model uncertainties is also needed. If J 

represents some norm, Jth represents the largest possible value of J in the presence of 

disturbances d and model uncertainties Δ when no fault is present. The design of Jth 

that ensure the detection of fault in the presence of disturbances and model 

uncertainties can therefore be considered as an optimization problem: 

_____________________________________________________________________ 

𝐽𝑡 =   𝐽 𝑓=0,𝑑 ,Δ
𝑠𝑢𝑝

 

_____________________________________________________________________ 

The problem of optimal selection of threshold values under the constraints of 

maximum disturbance or model uncertainty can be casted as an LMI problem to 

optimize certain norm. The description of  threshold definition and inequalities used 

in the formulation of problem are discussed by Ding (2008, pp: 289-307) 

Literature review indicates that threshold values based on techniques like fuzzy logic 

were also used instead of defining some crisp values. 

2.5.4 Adaptive Threshold Method  

For fault detection the residual would finally be compared with some threshold values 

developed on the basis of some criteria that are defined under same operating 

conditions and allowable disturbances. Hoffling and Isermann (1996. pp: 1361-1369), 

proposed that due to uncertainties in systems the residual always deviate from zero.  

The basic reason behind the proposed argument is that it is very difficult to ensure 

that all the conditions of allowable disturbance are considered while calculating the 

residual. The comparison with the predefined thresholds may therefore result in some 

erroneous results.  

( Eq 2.7) 
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In order to increase robustness in such cases, an adaptive threshold was proposed by 

Clark, R.N. et al (1989, pp. 231-233). The proposed methodology was later used in a 

number of applications. Pisu P, (2006, pp: 428-435) used this approach in diagnostic 

applications for ―Steer by Wire‖, Witczak M. (2006, pp: 85-99) applied it in diagnosis 

of control valve input. Figure 2.8 indicates the error on account of fixed threshold 

used for fault detection and how adaptive threshold selection can avoid this problem.  

Figure 2.9 shows a block diagram of adaptive threshold selection. [ Emani-Naeini 

(1988, pp: 1106-1115)] 

 

2.5.5 Residual Evaluation for Fault Isolation 

When a number of faults need to be identified and isolated, it is difficult to find a 

single residual with distinct multiple threshold values corresponding to each fault. The 

problem of fault isolation is therefore a very challenging problem. A review of 

literature indicates that the problem is handled by defining multiple residuals each 

sensitive to one or multiple faults and defining a structure to isolate the fault. Ehsan S. 

 
 

Figure 2.9 Adaptive Residual Selection 

 
 

Figure 2.8 : Adaptive Threshold Selection 
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(2009, pp 31-32) described some residual evaluation structures for fault isolation that 

are described below: 

2.5.5.1 Dedicated Observer Scheme (DOS)  

In this structure a bank of residuals is defined with each residual sensitive to one 

particular fault and insensitive to all the other faults. The structure is proposed by 

Wünnenberg in 1990 (Ph.D. Thesis, Duisberg) and is shown in Figure 2.10. The fault 

isolation is therefore reduced to comparing each residual signal with the threshold 

value for the specific fault and identifying the fault using a Boolean decision table.  

_____________________________________________________________________ 

𝑟𝑖 𝑡 > 𝑇𝑖  ⇒ 𝑓𝑖 𝑡 ≠ 0 

𝑟𝑖 𝑡 ≤ 𝑇𝑖  ⇒ 𝑓𝑖 𝑡 = 0 

_____________________________________________________________________ 

 

The DOS scheme is good enough for the sensor faults. However, it has no robustness 

to unknown inputs like disturbance, uncertainty and noise. 

2.5.5.2 Generalized Observer Scheme (GOS)  

It is difficult to find a residual that is sensitive to a single fault and insensitive to all 

other faults. However one may develop residuals that are sensitive to many faults but 

remains insensitive to some particular fault. This forms the basics of generalized 

observer scheme, where a set of residuals are defined with every residual sensitive to 

all faults except one fault. The scheme is mathematically described by Ehsan S. 
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( Eq 2.8) 

Figure 2.10 Structured Residual Set 
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(2009, pp:35) and is given in (Eq 2.9). Fault isolation can then be performed by 

comparing the residual signals with the threshold values and identifying the fault 

using a fault table. A more detailed discussion about GOS scheme is given by Ehsan 

S. (2009, pp:35).  The structure of GOS scheme for 3 possible faults is shown in 

Figure 2.11 

_____________________________________________________________________ 

 𝑟𝑖 𝑡 ≤ 𝑇𝑖  

𝑟𝑗  𝑡 > 𝑇𝑗    ∀𝑗 ∈  1, … . , 𝑖 − 1, 𝑖 + 1, … , 𝑞 
 ⇒ 𝑓𝑖(𝑡) ≠ 0 

_____________________________________________________________________ 

2.5.5.3 Directional Residual Set Evaluation  

When multiple residuals are formed then residual can be represented in a vector 

space. Fault isolation can be performed by testing the direction of residual in the 

proposed vector space (Ehsan S. (2009, pp: 22-24)).  

 

 

 

 

 

 

 

For fault detection some signature directions are identified corresponding to each 

fault and the direction of residual vector is tested to check how close the residual is to 

the defined signature directions. The Figure 2.12 shows the scheme indicating that f2 

 
 
 

Figure 2.11 : Structured Residual Generator (Generalized Observer Scheme) 
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Figure 2.12 : Directional Residual Set 

 

( Eq 2.9) 
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is the most likely fault as the direction of residual r is very close to it. Other strategies 

of formation of structured residual using partial principal component mode is 

proposed by Gertler J  et al (2004, pp: 1-3) and Gertler J et al DOI 10.1002/aic.00000.  

2.5.6 Errors in a Fault Detection Method 

The output of fault detection methods is a prediction of fault. The accuracy of 

prediction depends not only on the method but also on the conditions under which 

observations are being taken. Fahmida. M. C et al  (2006, pp. 481-490) described that, 

under noisy conditions, a fault diagnosis algorithm may produce erroneous result. The 

detection algorithms may exhibit two types of errors: 

 Misdetection 

 False Alarm 

Misdetection represents inability of algorithm to detect a fault, when fault is actually 

present in the system. False Alarm represents the weakness of algorithm to detect a 

fault condition when no fault is actually present in the system. The selection of 

stringent threshold conditions would result in increased rate of misdetection but 

reduced rate of false alarms and vice versa.  

The problem of development of FDI algorithm can therefore be considered as an 

optimization problem to simultaneously reduce the misdetection and false alarm rate. 

The effectiveness of a fault diagnosis algorithm is therefore tested by the study of its 

prediction error i.e. False Alarm rate or Misdetection.  

2.6 Qualitative Methods 

A qualitative model describes the structured description of system on the basis of 

working principle. However instead of taking precise numerical values, states of 

system at important operating points are considered. Claudia M (1992, pp:1-14) 

applied this method for ―Automated Rocket Engine Diagnosis‖. Qualitative models 

using states of system can be applied for diagnosis of larger systems where it is 

difficult to develop a mathematical modeling of system. Mosterman P. J. et al (2000), 

indicated the superiority of qualitative method on the basis of mitigated complexity issues 

when compared with other numerical diagnosis approaches that need to study the 

transient behaviors in response to faults and convergence problems.  
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2.7 Fault Diagnosis in Hybrid Systems 

As Hybrid Dynamic System is characterized by the interaction of continuous and 

discrete inputs (Discrete Event) to the system, the faults are not only caused by the 

change in system parameters of continuous system but also due to the disturbance/ 

faults in occurrence of discrete event.  

Fault detection using Hybrid System is especially suitable for large, distributed and 

complex systems like process systems with fluid flowing in multiple tanks through 

multiple numbers of valves. The opening and closing of different valves act as system 

events and model of system under the conditions of specific valve openings result in 

development of different modes of system. Mander E. J (2002, pp: 235-240), 

developed a bond graph approach to model the system and use the dynamic 

characteristics of dependency relations between variables as a temporal causal graph. 

For each valve switching during a process cycle, the mode change occurs and system 

model switches. The parity relations for the system can be developed to detect and 

identify the faults using qualitative approach. This approach needs FDI design for 

each operating mode. Also only controlled mode changes using the assumption that 

only one tank can be draining and only one tank can be filling at a time. Yu M. et al 

(2010, pp: 3000-3012) mentioned that such method cannot work with unobservable 

events.    

Arogeti S. A. et al (2010, pp: 1452-1467) indicated that inconsistency detected by 

residuals is not necessarily an indication of fault but may represent a mismatch 

between selected system mode and actual system. Accurate tracking of Mode is 

necessary for health monitoring of hybrid systems. Messai N et al (2005, pp: 103-

109) mentioned that identification of current mode is a hard problem even when all 

nodes are known and discernible. The concept of analytic redundancy relations is 

extended on basis of global ARR (GARR) for application in hybrid systems. Arogeti 

S. A. et al (2010, pp: 1452-1467) used a Global ARR using model of hybrid bond 

graphs (HBG) to describe the behavior of hybrid system under all modes and finally 

used the rule based analysis of ARR to identify the mode. 

The functionality of systems often prohibits the existence of system in some particle 

modes. Knowledge of valid system modes and prohibited system modes can be used 
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to identify the system faults. The sequence of occurrence of modes also provides 

indication of faults. The identification of modes can be carried out using GARR based 

on system model, algorithms of pattern recognition or using data based techniques. 

2.8 Summary 

This chapter provided the basic terminology of the field of fault detection and 

Isolation. The chapter formally defined how fault is defined in an engineering process 

and identified different categories of fault on the basis of appearance of fault in time 

and location. It is also highlighted how different faults appearing in a system are 

represented mathematically for analysis of system. 

A general perspective of a fault diagnostic algorithm is provided. Different 

components of a fault diagnosis algorithm like residual generation, residual analysis 

and threshold definition are identified. A literature survey is provided to identify the 

different structures being used in fault diagnostic algorithms.  

The properties of residuals are defined it was discussed that most residuals are 

sensitive to multiple number of fault. A number of different schemes are identified 

that can process multiple residuals to correctly identify the faults. Literature survey is 

also provided to identify a problem in threshold generation that a fixed value of 

threshold cannot detect fault under all possible conditions of load variations and 

operating conditions and the concept of adaptive threshold condition is elaborated. 

The error terminology of fault diagnostic algorithms like false alarms and mis-

detection is discussed. The chapter was concluded with the discussion of diagnosis of 

faults in Hybrid Systems. 
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Chapter 3 

MISFIRE FAULT DETECTION METHODS 

This chapter presents a brief description of different methods found in literature that 

were applied for misfire fault detection in Spark Ignition (SI) engine.  

The fault diagnostic algorithms were applied in all major engineering disciplines for 

the detection of faults in process equipments. Computer scientists used fault detection 

algorithms to achieve fault tolerance in software, data communication and hardware 

domain. Although the nature of problem was similar, the tools used by engineers and 

computer scientist were however quite different.  

The literature classified the contributors of FDII as two independent fault diagnostic 

communities. The fault diagnostic methods are also classified on the basis of tools 

being used.  

3.1 Fault Diagnostic Communities 

Biswas G. et al (2004, pp: 2159-2162) described that development of Fault 

Diagnostic, Isolation and Identification (FDII) was carried out by two independent 

research streams. The domains of application of both of these communities were 

different and the tools used by them for fault detection were based on their domain of 

application. The literature referred these independent communities who developed the 

fault diagnosis algorithms in their domains as: 

 FDI Community 

 DX Community 

3.1.1 FDI Community 

The members of FDI community used the tools of control engineering for the 

detection and isolation of fault. Their methods are based on forming mathematical 

model of system under investigation. They used the methods of linear system theory 

like observers, fault detection filters, parity equations or parameter estimation to 

detect the faults. The tools of robust control like different norms, Linear Matrix 
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Inequalities (LMI) or non-linear methods like sliding mode technique [Jean J et al, 

1991] were used for fault diagnosis. 

3.1.2 DX Community 

The members of DX community used the tools of computer science for the detection 

and isolation of faults. The DX community used Data Based Techniques and Signal 

Based Techniques. They used tools like statistical analysis, Bayesian networks, 

estimation theory, signal analysis techniques, wavelet analysis and neural network for 

fault detection.  

Due to complexity of fault detection problem, the communal boundaries were 

gradually broken and both communities started applying the methods of other 

community in their applications to achieve simpler solutions. It is hence difficult to 

assign some fault detection methods to any one of these domain. As an example some 

model based method establishes their modeling using some previous knowledge of 

signal rather than developing the model on the basis of physical laws only. Bohn C 

(2005, pp: 239-244) used the information that crankshaft velocity exhibits some 

periodic oscillations and used the velocity harmonics to develop the model.  

A coarse classification of FDI methods in the context of misfire detection problem of 

SI engine is presented in Figure 3.1.  

 

 

 

 

 

 

 

 

 

A brief description of different methods used in misfire detection applications is 

provided in the coming sections of this chapter. The description of methods is 

Misfire Detection Method 

Model Based Method Signal Based Method Data Based Method 

Observer Parameter 

Estimation 
Neural Network Correlation 

Analysis 
Wavelet Analysis Max Likelihood 

Method 

Figure 3.1 : Classification of Diagnostic Systems 
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provided in the context of their application to Misfire Fault Detection problem. A 

critical analysis of comparison of different misfire detection methods based on 

literature survey would be provided at the end of this chapter. 

3.2 Model Based Methods 

In Model Based Fault Diagnosis, an analytic model based on the basic laws of 

physics is first developed for the system under consideration. The analytic model acts 

as an analytic redundancy for detecting difference between the behaviors of the actual 

system from its desired behavior. This difference of behavior between the actual 

system and the predicted model behavior represents a Residual. Kiencke U et al ( 

2005, pp-156) mentioned that performance of diagnosis can be increased by using 

model based diagnosis. Different methods of control engineering like state estimation, 

parameters estimations etc. can then be used to process the residual for necessary fault 

detection. Model-based fault diagnosis was first proposed in the early 1970s by Beard 

(1971, pp: 54-56) and Jones who developed Failure Detection Filters. Ding S. X, 

(2008, pp: 76-78) has given the details of some model based fault detection methods.  

A number of references are found in literature for the misfire detection in SI engine 

using model based methods. These methods used the mathematical model of SI 

engine to represent engine torque, speed or acceleration as model output and input air, 

cylinder pressure etc. as model input. The behavior of SI engine is represented by a 

set of linear or nonlinear differential equations. Fault diagnosis is carried out by 

estimating the model outputs like torque and acceleration or the model inputs like in-

cylinder pressure established during a power stroke. 

The presented literature survey briefly describes the application of mathematical 

model for the detection of misfire fault. In this section, a brief description of 

mathematical model is also provided with the method. 

3.2.1 Methods Based on Torque Modeling 

The basic concept behind the misfire detection used in most of the model based 

method is that the effective torque produced by all the cylinders of an SI engine 

should be sufficiently balanced. Kiencke and Nelson (2005, pp: 183-184) defined 

residue as the relative error of the effective work given by balancing of torque as: 
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____________________________________________________________________ 

𝑅𝑖 =

𝑛

4𝜋
 𝑇𝑖𝑛𝑑 𝑑𝑡    −   

1

4𝜋
 𝑇𝑖𝑛𝑑 𝑑𝑡

4𝜋
𝑡=0

𝜃𝑎
𝜃𝑏

1

4𝜋
 𝑇𝑖𝑛𝑑 𝑑𝑡

4𝜋
𝑡=0

   

𝑤𝑒𝑟𝑒 𝜃𝑎 = 𝜃𝑖 +
2𝜋

𝑛
    𝑎𝑛𝑑  𝜃𝑏 = 𝜃𝑖 −

2𝜋

𝑛
 

_____________________________________________________________________ 

In above expression 𝜃𝑖  represents crank angle on ith cylinder when piston is at the 

middle point between TDC and BDC. Under ideal conditions, all the cylinders are 

perfectly balanced and the residues are zero.  

____________________________________________________________________ 

 𝑅𝑖
𝑛
𝑖=1 = 0 

_____________________________________________________________________ 

When a specific cylinder generates less than average torque, the residue 

corresponding to that cylinder would become negative that indicate some fault 

associated with the cylinder. 

 Minghui and Moskwa (1994,  pp: 2742-2747) estimated the torque generated by each 

cylinder stroke using mathematical model. For torque modeling a nonlinear varying 

inertia model for shaft given in Yaojung S. and Moskwa (1995, pp: 70-78) is 

considered. The detailed derivation of equation governing angular speed and torques 

are described in Yaojung S. and Moskwa (1995, pp: 70-78) and Kiencke and Nelson 

(2005, pp: 186). The governing equations are: 

____________________________________________________________________ 

𝜔 =
1

𝐽 (𝜃)
 −

1

2

𝑑𝐽 (𝜃)

𝑑𝜃
𝜔2 + 𝑇𝑖𝑛𝑑 − 𝑇𝑓𝑟𝑖𝑐 − 𝑇𝑙𝑜𝑎𝑑   

𝑇𝑖𝑛𝑑 =  𝑇𝑖𝑛𝑑 ,𝑖 =  𝑃𝑖𝐴𝑖𝐿𝑡𝑜𝑟 ,𝑖

𝑛

𝑖=1

𝑛

𝑖=1

 

_____________________________________________________________________ 

Where 𝑇𝑖𝑛𝑑  is the total indicated torque of all the four cylinders and could be 

estimated as the sum of torques due to individual cylinders. 𝐿𝑡𝑜𝑟  represents moment 

arm (perpendicular distance of axis of rotation from direction of application of force). 

( Eq 3.1) 

( Eq 3.2) 

( Eq 3.3) 
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For torque estimation, a reference engine speed and load is provided. The nonlinearity 

of the rotating crankshaft dynamics is canceled by providing a combination of 

feedforward control term𝑇  𝑙𝑜𝑎𝑑  𝜔𝑚  𝑎𝑛𝑑  
1

2

𝜕𝐽

𝜕𝜃
 𝜔𝑚

2 s, and feedback 𝑇  𝑓𝑟𝑖𝑐  𝜔𝑚 +

𝑇  𝑖𝑛𝑑  𝑎𝑛𝑑  
1

2

𝜕𝐽

𝜕𝜃
 𝜔𝑚

2  where 𝜔𝑚  is the reference speed. After decoupling of non-

linearity through the mentioned terms, the equation 3.3 is reduced to: 

____________________________________________________________________ 

𝜔 

𝑇  𝑖
=

1

𝑠𝐽 (𝜃)
 

____________________________________________________________________ 

The estimation of indicated torque is then reduced to a tracking problem of reference 

speed and load profile. A PI controller along with the mentioned feedforward and 

feedback terms to decouple nonlinearity is used to track the reference speed and load 

profile.  The complete block diagram of the mentioned scheme is shown in Figure 3.2. 

 

Assuming an ideal decoupling, the characteristic equation of the closed loop system 

with PI controller to ensure the tracking is: 

___________________________________________________________________ 

1 +  𝑘𝑝 +
𝑘𝑖

𝑠
 

1

𝑠 𝐽(𝜃)
= 0 

𝑠2 +
𝑘𝑝

𝐽(𝜃)
𝑠 +

𝑘𝑖

𝐽(𝜃)
= 0 

_____________________________________________________________________ 

 

 

( Eq 3.4) 

( Eq 3.5) 

Figure 3.2 : Block diagram of PI feedforward indicated torque observer 
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1
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𝜕𝐽
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+ 
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𝑇 𝑙𝑜𝑎𝑑  
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The gains of PI controller i.e. 𝑘𝑝  𝑎𝑛𝑑 𝑘𝑖  were derived using pole placement. The 

input indicated torque is then estimated as the sum of nonlinear feedforward terms 

and PI control outputs as shown in Figure 3.2 and described by the equations: 

____________________________________________________________________ 

𝑇𝑖 = 𝑇𝑓  𝜔𝑚 +  𝑇  𝑙𝑜𝑎𝑑 +
1

2

𝜕𝐽

𝜕𝜃
𝜔𝑚

2 + 𝑘𝑝 𝜔𝑚 − 𝜔  + 𝑘𝑖   𝜔𝑚 − 𝜔  𝑑𝑡 

_____________________________________________________________________ 

Minghui and Moskwa (1994,  pp: 2742-2747) also proposed the use of sliding mode 

controller in place of PI controller described earlier to ensure the tracking of reference 

speed and load torque. Walter A et al (2007) also used torque estimation for misfire 

detection. 

Ball J. K et al (2000, pp: 1-24) also used estimated torque for misfire detection by 

measuring angular acceleration of engine block. Willsky A. S. (1976, pp: 601-611) 

mentioned the used of Kalman Filters for estimation using Stochastic models.  

A misfire event in engine cylinder results in decrease in instantaneous torque. The 

direct measurement of torque however requires costly equipment. The methods 

developed for instantaneous torque estimation usually uses crankshaft speed. The 

accuracy of estimate are highly dependent on underlying mathematical model. The 

methods based on the estimation of torque using crankshaft speed are however more 

accurate under low speed and high load condition. Under high speed and low load 

condition, the inertia may mislead the algorithm causing false alarms. The basic 

advantage of using this approach is the availability of physical insight in fault 

detection method on account of underlying mathematical model.   

3.2.2 Methods Based on Pressure Modeling 

Under the assumptions of uniform distribution of temperature and pressure inside the 

cylinder after ignition, cylinder pressure dynamics can be expressed as a first order 

non-linear differential as described by Minghui and Moskwa (1994, pp. 2742-2747): 

____________________________________________________________________ 

𝑃  𝑐𝑦𝑙  𝑖 =
𝛾−1

𝑉
 𝑚  𝑓  𝑏𝑢𝑟𝑛 𝑄𝐿𝐻𝑉 −  𝑄𝑖

  −
𝛾

𝑉
𝑃 𝑐𝑦𝑙  𝑖𝑉           

_____________________________________________________________________ 

( Eq 3.6) 

( Eq 3.7) 



 

46 

 

In the above equation pressure is expressed in terms of rate of fuel burn and Lower 

Heating Value (LHV) of fuel. The equation can be solved analytically to get the 

solution: 

____________________________________________________________________ 

𝑃 𝑐𝑦𝑙  𝑖 = 𝑉−𝛾 𝛾 − 1 𝑉𝑐𝑜𝑚𝑏
𝛾−1

 𝑚𝑓𝑏𝑢𝑟𝑛 𝑄𝐿𝐻𝑉 + 𝑄𝑖 + 𝑉−𝛾𝑃𝐵𝐷𝐶𝑉𝐵𝐷𝐶
𝛾

          

_____________________________________________________________________ 

The solution of cylinder pressure clearly indicates two terms. The second term 

𝑉−𝛾𝑃𝐵𝐷𝐶𝑉𝐵𝐷𝐶
𝛾

 represents polytropic compression of charge inside the cylinder and the 

first term accounts for the burning of fuel and heat transfer losses in the cylinder. The 

equation clearly shows that under misfire conditions, the first term would not be 

present. It is therefore expected that pressure difference between misfiring cylinder 

and healthy cylinder would be significant enough so that it can be used for the 

detection of misfire. 

3.2.2.1 Methods Based on Pressure Estimation 

Yaojung S. and Moskwa J. (1995, pp: 70-78) proposed a sliding mode observer to 

estimate the cylinder pressure due to combustion. The proposed pressure observer had 

two states i.e the instantaneous crankshaft angular speed and the cylinder pressure. 

The crankshaft instantaneous angular speed was measureable but the cylinder pressure 

of firing cylinder was assumed to be non-measurable. The nonlinear models of 

proposed states were: 

____________________________________________________________________ 

𝜔 =
1

𝐽 (𝜃)
 −

1

2

𝑑𝐽 (𝜃)

𝑑𝜃
𝜔2 + 𝑇𝑖𝑛𝑑 − 𝑇𝑓𝑟𝑖𝑐 − 𝑇𝑙𝑜𝑎𝑑    =𝑓1 𝜃, 𝜔, 𝑃1  

𝑃1
 =

𝛾−1

𝑉
 𝑄𝑐

 − 𝑄𝑡
  −

𝛾

𝑉
𝑃1𝑉                               =𝑓2 𝜃, 𝑚𝑓 , 𝑃1  

____________________________________________________________________ 

where 𝑇𝑖𝑛𝑑 is the total indicated torque for all cylinders, 𝑉 is the cylinder volume, 𝑃1 

represent pressure in the firing cylinder, 𝑇𝑓𝑟𝑖𝑐  is the mean friction torque, 𝑄𝑐represent 

the chemical energy of fuel and 𝑄𝑡 is the heat transfer. Combustion heat transfer rate 

was estimated using lower heat value (LHV) and rate of burning of fuel mass. Fuel 

( Eq 3.9) 

( Eq 3.8) 
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burning rate is calculated as the product of injected fuel mass and mass fraction 

burned. Injected fuel mass was estimated from the fuel flow rate and fuel injection 

duration and the mass fraction burned was estimated by a Wiebe function given as: 

____________________________________________________________________ 

𝑑𝑄𝑐

𝑑𝑡
=

𝑑𝑚 𝑏

𝑑𝑡
𝑄𝐿𝐻𝑉  

𝑚𝑏 =  1 − e
 −𝑎 

𝜃−𝜃0
∆𝜃𝑏

 
𝑚 +1

 
 𝑚𝑓  

____________________________________________________________________ 

A sliding mode observer for pressure estimation was defined as: 

________________________________________________________________________________________ 

𝜔    = 𝑓 1 − 𝛼1𝜔 − 𝐾𝜔𝑠𝑎𝑡 𝜔 /𝜂  

𝑃 1   = 𝑓 2 − 𝛼2𝜔 − 𝐾𝑃𝑠𝑎𝑡 𝜔 /𝜂  

________________________________________________________________________________________ 

where 𝑠𝑎𝑡 𝜔 /𝜂  is the saturation function. If Δ𝑓 represents the modeling error 

between the observer model 𝑓  and the true model 𝑓 .The dynamics of estimation error 

was defined as: 

________________________________________________________________________________________ 

𝜔   = Δ𝑓1 − 𝛼1𝜔 − 𝐾𝜔𝑠𝑎𝑡 𝜔   

 𝑃   = Δ𝑓2 − 𝛼2𝜔 − 𝐾𝑃𝑠𝑎𝑡 𝜔   

________________________________________________________________________________________ 

A sliding surface was defined as the difference  𝜔   between measured and estimated 

engine speed. The linear terms with gains 𝛼𝑖  was used as an aid to reach the sliding 

surface. Pressure estimates were obtained by appropriate design of gains 𝐾𝜔  and 𝐾𝑝 . 

During sliding condition 𝑠1 = 𝜔 = 0 and the system dynamics was reduced to: 

________________________________________________________________________________________ 

 𝑃   = −
𝐾𝑝

𝐾𝜔
∆𝑓1 + ∆𝑓2 

________________________________________________________________________________________ 

( Eq 3.10) 

( Eq 3.11) 

( Eq 3.12) 

( Eq 3.13) 
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Using the appropriate choice of gains 𝐾𝑝  𝑎𝑛𝑑 𝐾𝑤  under sliding conditions, the 

cylinder pressure was estimated. The results of pressure estimation using above 

method matched well with the experimental results given by author both under 

healthy conditions and faulty condition. The author successfully identified the misfire 

conditions by defining a threshold value of cylinder pressure to identify the faulty 

cylinder.  

3.2.2.2 Methods Based on Pressure Centroid 

Another model based method based on cylinder pressure model was proposed by 

Minghui and Moskwa (1994, pp. 2742-2747). In this method instead of defining a 

threshold point for cylinder pressure, the authors identified the location of pressure 

centroid in different cylinders of SI engine. Under misfire condition, pressure centroid 

would be close to zero when observed in any crank angle range symmetric about TDC 

(i.e. considering crank angle at TDC as reference zero and estimating pressure in an 

angular range ∓𝜃0). This is because under misfire condition no fuel would be burnt 

inside the cylinder and pressure profile would be more or less symmetric when 

observed in the mentioned crank angle domain. Under no misfire condition, the burnt 

fuel would produce high pressure inside the cylinder after ignition and the pressure 

profile in the range [−𝜃0, 0] would be much lower than that in the range [0, 𝜃0]. The 

centroid of pressure profile would therefore be shifted toward positive side. In this 

context pressure centroid is defined as: 

________________________________________________________________________________________ 

𝐶 =
 𝑃𝜃𝑑𝜃

 𝑃𝑑𝜃
 

________________________________________________________________________________________ 

In the above relation the numerator terms represent the first moment of pressure of 

each individual cylinders in the specified crank angle domain and denominator 

contain the average pressure over that crank angle domain. The sliding pressure 

observer used by Mingui et al (1994, pp. 2742-2747) for pressure estimation is:  

________________________________________________________________________________________ 

 𝜔  =
1

𝐽(𝜃)
  1000𝑃  𝑐𝑦𝑙  𝑖

𝑑𝑉𝑖

𝑑𝜃

𝑛

𝑖=1

− 𝑇  𝑓 − 𝑇  𝑙𝑜𝑎𝑑 −
1

2

𝜕𝐽

𝜕𝜃
𝜔  2 − 𝛼1𝜔 − 𝑘1𝑠𝑔𝑛(𝜔 ) 

( Eq 3.14) 
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 𝑃   𝑐𝑦𝑙  𝑖 =
𝛾−1

𝑉
 𝑚   𝑓𝑏𝑢𝑟𝑛 𝑄𝐿𝐻𝑉 +   𝑄   𝑖 −

𝛾  𝑃   𝑐𝑦𝑙  𝑖

𝑉
𝑉 − 𝛼𝑐𝑦𝑙  𝑖𝜔 − 𝑘𝑐𝑦𝑙  𝑖𝑠𝑔𝑛(𝜔 ) 

____________________________________________________________________ 

The effectiveness of the method was demonstrated by the authors using simulations 

and experimental results.  

The in-cylinder pressure is the best method to identify the engine misfire condition. 

The sensors required for the measurement of in-cylinder pressure are however not 

only costly but their life is also limited due to the harsh environment in which they are 

installed. The estimation of torque also provide promising results but the torque 

estimate depends upon the model accuracy. The major advantage of this method is the 

physical reasoning provided by the method to explain the misfire conditions on the 

basis of underlying mathematical model. The major disadvantage is however the 

complexity of computations required for estimation of in-cylinder pressure. Yaojung 

S. and Moskwa J. (1995, pp: 70-78) on the basis of their work concluded that misfire 

detection based on cylinder pressure is more sensitive and convenient.. 

3.2.3 Methods Based on Acceleration Modeling 

Rizzoni G. and Ribbin W. B (1989, pp: 423-436) stated that the information of both 

the average torque and time varying torque applied on the crankshaft of engine is 

available in the crankshaft acceleration signal.  

________________________________________________________________________________________ 

𝜕

𝜕𝑡
 

1

2
𝐽 𝜃 𝜃 2 =   𝑇 𝜃  

using   𝜃 =
𝜕𝜃 

𝜕𝑡
= 𝜃 

𝜕𝜃 

𝜕𝜃
       and       

𝜕𝐽

𝜕𝑡
= 𝜃 

𝜕𝐽

𝜕𝜃
      we get 

𝜕𝜃 

𝜕𝜃
+

1

2

1

𝐽

𝜕𝐽

𝜕𝜃
𝜃 =

 𝑇

𝐽𝜃 
 

________________________________________________________________________________________ 

Where 𝜃 is the crankshaft angle, 𝜃  is angular speed of crankshaft, 𝐽 𝜃  is the moment 

of inertia as a function of angular position of crankshaft and  𝑇 is the sum of all 

torque contributions. The combustion torque, load torque, friction and pumping losses 

are all lumped in the torque contributions.  

( Eq 3.15) 

( Eq 3.16) 



 

50 

 

The slight fluctuations of crankshaft angular speed results in the formation of periodic 

signal for angular speed. Bohn C.  et al (2005, pp: 239-244) used the periodic nature 

of angular speed and used a Fourier expansion of the signal for modeling of speed and 

acceleration as:  

________________________________________________________________________________________ 

𝜃  𝜃 = 𝑎0 +  𝑎𝑖sin 
1

2
𝑖𝜃 + 𝛼𝑖 

𝑖

 

𝜕𝜃 (𝜃)

𝜕𝜃
= 𝑑 𝜃 =  𝑑𝑖 𝜃 𝑖 =  𝑏𝑖 sin  

1

2
𝑖𝜃 + 𝛽𝑖 𝑖  

________________________________________________________________________________________ 

Only a finite number of harmonics were considered and the individual harmonics 

𝑑𝑖(𝜃) were modeled as a linear second order state space model, where 𝑑𝑖(𝜃) 

represents acceleration. A second order state space model (with angle 𝜃 as time 

variable) was established to model the individual harmonics.  

________________________________________________________________________________________ 

𝜕𝑥𝑑 ,𝑖

𝜕𝜃
= 𝐴𝑑 ,𝑖𝑥𝑑 ,𝑖 

𝑑𝑖 = 𝐶𝑑 ,𝑖𝑥𝑑 ,𝑖 

𝑤𝑒𝑟𝑒 𝐴𝑑 ,𝑖 =  
0 1

−
1

4
𝑖2 0      and     𝐶𝑑 ,𝑖 =  1 0  

________________________________________________________________________________________ 

Representing the state equations of all the harmonics collectively in a matrix as: 

________________________________________________________________________________________ 

𝜕𝑥𝑑

𝜕𝜃
= 𝐴𝑑𝑥𝑑 

𝑑 = 𝐶𝑑𝑥𝑑 

𝑤𝑒𝑟𝑒 

 𝑥𝑑 =  𝑥𝑑 ,1  …   𝑥𝑑 ,𝐿          𝐴𝑑 =  

𝐴𝑑 ,1  0
 ⋱  
0  𝐴𝑑 ,𝐿

        𝑎𝑛𝑑      𝐶𝑑 =  𝐶𝑑 ,1 … 𝐶𝑑 ,𝐿       

________________________________________________________________________________________ 

( Eq 3.19) 

( Eq 3.17) 

( Eq 3.18) 
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The state space model with crankshaft speed as a state variable was formed as: 

________________________________________________________________________________________ 

𝑥1 = 𝜃  𝜃          𝑑 𝜃 =
𝜕𝑥1 𝜃 

𝜕𝜃
 

________________________________________________________________________________________ 

The state space model of engine system was therefore represented as: 

________________________________________________________________________________________ 

𝜕𝑥

𝜕𝜃
= 𝐴𝑥             𝑤𝑒𝑟𝑒   𝑥 =  𝑥1 𝑥𝑑  ′         𝑎𝑛𝑑       𝐴 =  

0 𝐶𝑑

0 𝐴𝑑
  

________________________________________________________________________________________ 

With N is the number of measurement sample per period, the system output was 

represented in discrete domain with index k that is an integral multiple of  
4𝜋

𝑁
 

________________________________________________________________________________________ 

𝑦 𝑘 = 𝐶𝑥 𝑘            𝑤𝑒𝑟𝑒         𝐶 =  1 0    … 0           

________________________________________________________________________________________ 

The complete model representing the engine speed was therefore expressed as: 

____________________________________________________________________ 

𝑥 𝑘 + 1 = 𝐺 𝑥 𝑘  

𝑦 𝑘 = 𝐶𝑥 𝑘            𝑤𝑒𝑟𝑒         𝐶 =  1 0    … 0           

_____________________________________________________________________ 

Using the linearized model of engine angular speed in discrete angle domain, a state 

observer was designed as a Kalman filter. The equations of state estimators were: 

____________________________________________________________________ 

𝑥  𝑘|𝑘 − 1 = 𝐺𝑥  𝑘 − 1 |  𝑘 − 1  

𝑦  𝑘 = 𝐶𝑥  𝑘 | 𝑘 − 1    

𝑒 𝑘 = 𝑦 𝑘 −  𝑦  𝑘    

𝑎𝑛𝑑         𝑥  𝑘 | 𝑘 = 𝑥  𝑘 | 𝑘 − 1 +  𝐾 𝑒 𝑘    

_____________________________________________________________________ 

( Eq 3.20) 

( Eq 3.21) 

( Eq 3.22) 

( Eq 3.23) 

( Eq 3.24) 
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where K is the stationary Kalman filter gain. The experimental results indicated in 

literature matched well with the results of estimator both under healthy and misfire 

conditions. For misfire detection instead of a direct comparison of results it was 

estimated that how much the estimator has to correct the estimated acceleration signal 

at each sampling instant.  

The resulting acceleration correction signals were then plotted against the crank angle 

domain and the analysis of results indicated a negative peak value of correction signal 

when a cylinder misfire, followed by a positive peak when the next cylinder fires 

again. 

The literature survey indicates some other model based techniques also. A cylinder 

pressure was estimated using sliding mode technique was proposed by Monterrubio J. 

M. et al (2007, pp: 620-624). A nonlinear engine model was formulated for 

estimation. The modeling strategy proposed by J.M. Monterrubio is however slightly 

different from that proposed by Moskwa. Another model based technique was 

proposed by Sood A. K. et al (1985, pp: 301-307) in which resultant torque was 

estimated by using a mathematical model based on the forces acting on piston. The 

difference between torques with and without fault was estimated and used for the 

detection of faults in engine.  

The crankshaft position sensor is present in all EFI vehicles. The signal can be 

differentiated once to get an estimate of crankshaft speed. The mechanical 

construction of SI engine act as a low pass filter and the resulting crankshaft speed 

signal is sufficiently smooth. A slight variation in crankshaft speed however results in 

production of sufficiently large acceleration signal. The model for estimation of 

acceleration is most simple in all model based approaches and hence possible errors 

on account of model inaccuracies are very small for estimation of acceleration but due 

to second differentiation, noise enhancement would be significant. 

3.3 Signal Based Method 

Unlike Model Based Fault Detection methods where a system model is established on 

the basis of some basic physical principles to detect the faults, Signal Based Methods 

use the properties of the observed signal to detect fault. The basic assumption of 

signal based methods is that the observed signal would be deterministic with some 
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known features. Some signal properties/ methods used for the development of fault 

detection algorithms are:  

 Defining a signal space to represent signal using sinusoids, wavelets etc. and 

using the frequency domain analysis like FFT, wavelet transform or using 

some estimation techniques based on linear system theory. 

 Signal modeling using Moving Average Model (MA), Auto Regressive Model 

(AR) or Autoregressive Moving Average Models (ARMA) etc. 

 Defining a set of standard patterns of signal for faulty and healthy system and 

comparing the time domain signal with each element of the set to detect the 

fault. 

Signal based methods use prior information of signal of healthy or faulty system 

without exploring the physical justification of signal on the basis of principles of 

physics. A brief description of some misfire detection algorithms based on signal 

analysis is provided in this section. 

3.3.1 Methods Based on Moving Average (MA) Model 

Lee A. et al (2003, pp: 3377-3381) mentioned that crankshaft speed is determined by 

the present speed, firing events (current) and manifold pressure and can be expressed 

as: 

____________________________________________________________________ 

𝑁 𝑘 = 𝑓(𝑁, 𝑃, 𝐼) 

_____________________________________________________________________ 

Where N, P and I are crankshaft speed, average manifold absolute pressure and firing 

event signal vectors of dimension 𝑛 × 1, 𝑚 × 1 𝑎𝑛𝑑 𝑟 × 1. The dimension of these 

vectors is defined by the contribution of past events on the current crankshaft speed. 

An inverse model for firing event is: 

____________________________________________________________________ 

𝐼 𝑘 = 𝑔(𝑁, 𝑃, 𝐼) 

_____________________________________________________________________ 

( Eq 3.25) 

( Eq 3.26) 



 

54 

 

The author acknowledged the difficulties in detailed modeling of nonlinear dynamic 

function G but claimed that for misfire detection the above inverse model can be 

simplified as: 

____________________________________________________________________ 

𝐼 𝑘 = 𝑟 𝑁 𝑞(𝑁, 𝑃) 

𝑤𝑒𝑟𝑒         𝑁 =  𝑁 𝑘 ,𝑁 𝑘 − 1 , … , 𝑁(𝑘 − 𝑛)  

𝑎𝑛𝑑              𝑃 =  𝑃 𝑘 ,𝑃 𝑘 − 1 , … , 𝑃(𝑘 − 𝑚)  

_____________________________________________________________________ 

The function r(N) is termed as ―Engine Firing Event Estimator‖ and the function 

q(N,P) is termed as the ―Load Compensator‖. A misfire detection algorithm is 

proposed by Lee A.  et al  in the form of a moving average model as: 

____________________________________________________________________ 

𝑦 𝑘 = 𝑟(𝑁 𝑘 ,𝑁(𝑘 − 1, … . , 𝑁(𝑘 − 𝑚)) 

          = 𝑏0𝑁 𝑘 + 𝑏1𝑁 𝑘 − 1 + ⋯ + 𝑏𝑚𝑁(𝑘 − 𝑚) 

_____________________________________________________________________ 

Where 𝑏𝑖 , 𝑖 = 0, 1, 2, ……… , 𝑚 are unknow model parameters to be estimated on the 

basis of test data from vehicle. The MA model given in equation 3.28 is written in 

state space form as: 

____________________________________________________________________ 

𝑦 𝑘 = 𝐻 𝑘 𝑥(𝑘) 

______________________________________________________________________________ 

Where x(k) is (m+1) vector and x(0) = b, y(k) is the output and H(k) is a time varying 

measurement matrix. 

Lee A. used a one step prediction Kalman filter for parameter estimation as: 

____________________________________________________________________ 

𝑥  𝑘 + 1 = 𝑥  𝑘 + 𝐾(𝑘) 𝑦 𝑘 − 𝐻 𝑘 𝑥 (𝑘)  

                  =  𝐼𝑚+1 − 𝐾 𝑘 𝐻 𝑘  𝑥  𝑘 + 𝐾 𝑘 𝑦(𝑘) 

( Eq 3.27) 

( Eq 3.28) 

( Eq 3.29) 

( Eq 3.30) 
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𝑤𝑖𝑡  𝑥  0 = 𝑥  0  (𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒) 

𝑎𝑛𝑑  𝐾 𝑘 =
  𝑘 𝐻𝑇 𝑘 

𝐻 𝑘   𝑘 𝐻𝑇 𝑘 + 𝑅 𝑘 
              

𝑤𝑒𝑟𝑒   𝑘 𝑖𝑠  𝑚 + 1 ×  𝑚 + 1  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥   

Σ 𝑘 + 1 = Σ 𝑘 + 𝑄 𝑘 −
  𝑘 𝐻𝑇 𝑘 𝐻(𝑘)  (𝑘)

𝐻 𝑘   𝑘 𝐻𝑇 𝑘 + 𝑅 𝑘 
              

𝑤𝑖𝑡  Σ 0 = Σ0  ≥ 0 

_____________________________________________________________________ 

Q(k) and R(k) are the known covariance matrix of the system noise w(k) and 

measurement noise v(k) respectively. The system equations are hence expressed as: 

____________________________________________________________________ 

𝑥 𝑘 + 1 = 𝐹 𝑘 𝑥 𝑘 + 𝑤(𝑘) 

𝑦 𝑘 = 𝐻 𝑘 𝑥 𝑘 + 𝑣(𝑘) 

_____________________________________________________________________ 

The methodology was tested over a wide range of speed from 700 rpm to 6750 rpm 

under the loading conditions from no load to a wide open throttle and with no misfire 

to 100% random misfires. The results provided in literature indicates 100% success 

rate in the detection of misfire conditions with no false alarm.  

3.3.2 Methods Based on Correlation Analysis 

Rizzoni G. et al (1988, pp: 237-244) proposed a correlation based technique to detect 

and isolate the misfire fault. In this regard a number of data templates were formed by 

measuring the crankshaft speed fluctuations. It was assumed that each set consist of a 

periodic deterministic part with period six. For each fault condition, data was 

averaged over hundred cycles to approximate a deterministic template of fault 

representation. The templates were normalized for zero mean and unit power. A set of 

some templates of engine speed patterns developed under different misfire conditions 

and used by author for fault detection and isolation are provided in Figure 3.3.  

 

 

( Eq 3.31) 
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Assuming a set of five templates, experimental data was then correlated with each of 

the five templates. This resulted in formation of a vector of dimension 5x1. The data 

set is then shifted by one step and a new correlation vector is formed. The process is 

repeated five times and a correlation matrix of dimension 5x6 is formed. The shifting 

is performed to discriminate the phase of the observed signal. The maximum element 

of the matrix provided the indication of fault.  

3.3.3 Methods Based Wavelet Based Analysis 

Matteo Montani et al (2006, pp: 144-148), proposed a wavelet based method to detect 

multiple misfires in SI engine using crankshaft angular speed signal. Speed was 

measured using magnetic sensor near the flywheel having 116 uniformly spaced teeth. 

The pulses of magnetic sensors were used to drive a counter. This signal was then 

analyzed to study the features needed to detect the misfire fault. Haar function was 

used as wavelet basis. The details of analysis filter blocks used for the detection of 

fault were however not mentioned in the paper. 

The events of multiple misfire were detected by defining patterns corresponding to 

different misfire condition and finally analyzing the signal processed through filters 

with the known patterns.  

 

 

 

Figure 3.3 : Templates of engine speed patterns under different misfire conditions 
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3.3.4 Methods Based on Signal Behavior 

Crossman J. A. et al (2003, pp: 1063-1075) analyzed the vehicle faults by relating 

them to signal behaviors. Crossman J. A. indicated that the vehicle responses can be 

expressed as a finite set of states and the signal exhibit different features in different 

states. Some of the features include abnormal magnitudes, rolling (smooth rise or 

fall), significant rise or fall, spikes, flat intervals or oscillations. Figure 3.4 indicates 

some of these signal patterns. Given a signal for larger time duration, the selection of 

appropriate time window for fault detection is called segmentation. Crossman J. A 

used a number of segments of interest and analyzed them for fault detection. 

 

Murphy Y. L. (2003, pp-1076-1098) et al proposed a Distributed Diagnostic Agent 

System (DDAS) for automotive systems using Signal Diagnostic Agents (SDA). Each 

SDA diagnose one particular fault using single or a number of signals. 

Parametric models including autoregressive model (AR) model were used by Rizzoni. 

The AR coefficients obtained using observation vector were used in testing the binary 

hypothesis of presence or absence of fault. The author described that the model order 

needed for correct identification of fault is 12. 

 
 

Figure 3.4 : Signal Features Associated with Systems 
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A comparison of relative advantages and disadvantages of Signal Based Methods with 

Model Based Methods is provided in Section 3.5.2. 

3.4 Data Based Method 

Data based methods neither tries to neither find physical model of system under study 

nor assume a deterministic signal from the system. The output of the system is 

assumed to be a complete black box.  Neural networks and neuro-fuzzy systems are 

the main representatives of such black box models (Holzmann H. et al, 1999, pp: 

1014-1019). Other tools used in Data Based Methods include the basic tools of pattern 

classifications like Hidden Markov Model (HMM), Hybrid Bayesian Networks, 

Maximum Likelihood estimators etc. Details of some Data Based Techniques used for 

engine misfire fault detection are provided below: 

3.4.1 Methods Based on Adaptive Classification 

Feldkamp L. A et al (2000, pp:52-57) proposed an on-line learning system for input 

output data analysis and constructed a sequence of binary classification that work 

even in the absence of class information during training process. In the proposed 

method, the system is assumed to fall in one of the two mutually exclusive classes 

namely ―Normal‖ and ―Healthy‖ represented as 0 and 1 respectively. A set of neural 

networks were trained to model the input output behavior where each network 

modeled the system for one specific fault pattern.  Fault state of the system was 

denoted by s(k). The fault states were defined by m bit patterns that represented 

current status of system and m-1 previous system status e.g. m=3 means system can 

be in one of the 8 possible states say from 0 to 7. Since only current status of system 

can change, the system state can jump to only two possible next states from each state 

as shown in state transition diagram.  

 Assuming that current output of system is a function of input u(k) and state s(k) only.  

_____________________________________________________________________ 

𝑦 𝑘 = (𝑠 𝑘 ,𝑢 𝑘 ) 

_____________________________________________________________________ 

Since the actual state s(k) is not known, it is termed as a hidden state and need to be 

estimated using the available data.  

( Eq 3.32) 
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For p different fault patterns, p different networks were assumed. At each time step k, 

each of the p networks was provided with input vector u(k) and the system response 

𝑦  𝑝(𝑘) was estimated using Extended Kalman Filter (EKF). If 𝜎𝑝
2 is the variance of 

error distribution of each network then the probability that a specific network 

represents the system is given by:  

_____________________________________________________________________ 

𝑑𝑝 𝑘 =
1

 2𝜋𝜎𝑝
2

 𝑒𝑥𝑝  −
 𝑦 𝑘 −𝑦  𝑝 (𝑘) 

2

2𝜎𝑝
2   

_____________________________________________________________________ 

A simple estimate of probability using above distribution may not ensure the 

evolution of states as described in state transition diagram shown in Figure 3.5.  

 

To infer the sequence of p, the forward backward procedure of HMM was used. The 

forward procedure estimated the probability of observing the sequence y(1), 

y(2),…..,y(k) and state p at time k as:  

_____________________________________________________________________ 

𝛼𝑗  𝑘 =
𝑑𝑖 𝑘  𝛼𝑖 𝑘−1 𝑎𝑖𝑗𝑖

 𝑑𝑙 𝑘  𝛼𝑖 𝑘−1 𝑎𝑖𝑙𝑖𝑙
      𝑤𝑒𝑟𝑒     𝛼𝑗  1 = 𝜋𝑗𝑑𝑗  1 ,      𝑗 = 0,1, … 2𝑚 − 1 

_____________________________________________________________________ 

 7 

 3  6 

 5 

 2 

 1  4 

 0 

Figure 3.5 : State Transition Diagram 

 

( Eq 3.33) 

( Eq 3.34) 
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Where 𝜋𝑗  is the prior probability of state j with l in the denominator run for all the 

states and k=2,3,…..T for a sequence of T steps. Here 𝛼𝑗 (𝑘) represent probability of 

occurrence of state p given the past events. 

If 𝛽𝑝 𝑘  is computed in the backward part of the procedure where 𝛽𝑝 𝑘  is the 

probability of occurrence of sequence y(k+1), y(k+2),….,y(T), given that the starting 

state at time k is p. The update recursion for 𝛽𝑗  is given by: 

_____________________________________________________________________ 

𝛽𝑘 𝑘
′ − 1 =

 𝛽𝑖 𝑘
′  𝑑𝑖(𝑘

′ )𝑎𝑗𝑖𝑖

  𝛽𝑖 𝑘
′  𝑑𝑖(𝑘

′ )𝑎𝑙𝑖𝑖𝑙
        𝑤𝑒𝑟𝑒         𝛽𝑗  𝑇 = 1,      𝑗 = 0,1, … . 2𝑚 − 1 

_____________________________________________________________________ 

The probability 𝑃𝑝(𝑘) of being in state p at time k is estimated as: 

_____________________________________________________________________ 

𝑃𝑝 𝑘 =
𝛼𝑝  𝑘 𝛽𝑝 (𝑘)

 𝛼𝑗  𝑘 𝛽𝑗 (𝑘)2𝑚−1
𝑗=0

 

_____________________________________________________________________ 

Network update for state of system is formed by scaling factor in proportion to the 

probabilities 𝑃𝑝(𝑘). The probability of fault is estimated by sum of probabilities of 

states with LSB equal to 1 (i.e. odd states) 

_____________________________________________________________________ 

𝑝𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡  𝑘 =   𝑃𝑝(𝑘)

𝑝=𝑂𝑑𝑑

 

_____________________________________________________________________ 

The variance of each state is updated every 𝑁𝑡  steps (𝑁𝑡 = 2000) as: 

_____________________________________________________________________ 

𝜎𝑝
2 =

  𝑦 𝑘 − 𝑦  𝑝 𝑘  
2

𝑃𝑝 𝑘 𝑘

 𝑃𝑝 𝑘 𝑘
            𝑎𝑛𝑑              𝑝𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡 =

1

𝑁𝑡
 𝑝𝑟𝑜𝑏𝑓𝑎𝑢𝑙𝑡 (𝑘)

𝑘

 

 

_____________________________________________________________________ 

( Eq 3.35) 

( Eq 3.36) 

( Eq 3.37) 

( Eq 3.38) 
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The adaptive classification enabled the system to get trained with the incoming data 

and was used as a training algorithm for neural networks.  

The proposed algorithm development was based on motivation of misfire detection 

problem to train a neural network and identify the fault conditions. Lee M. et al 

(2006, pp: 637-644) also proposed a misfire detection method based on neural 

network. The proposed method handled the problem in three stages: A data 

acquisition stage, signal preprocessing and feature extraction and pattern recognition 

for detecting misfire events using neural network. The preprocessing stage provided a 

correction for the effects of varying inertia on the signal. The measured engine speed 

was combined with nonlinear rotating dynamics to remove the affects of rotating 

inertia and generate the new synthetic variables of velocity and acceleration. These 

synthetic variables were then applied to a neural network for the detection of misfire 

fault. The network was trained using back-propagation method.  

3.4.2 Methods Based on Likelihood estimation 

Rizzoni G. (1987 pp: 450-457) proposed a data based technique for the detection of 

misfire fault in SI engines. The method is discussed in a more detailed manner as it 

provided an initial guidance for the research work carried out during this study.  

The method is based on the concept of measurement of non-uniformity of engine 

torque and angular velocity. For the development of basic philosophy of method, a 

simple mathematical model was used with cylinder pressure as the input to engine. 

The forces generated by combustion process produce indicated torque defined by 

cylinder pressure 𝑃𝑖  as: 

_____________________________________________________________________ 

𝑇𝑖 𝑡 = 𝑃𝑖 𝑡 . 𝑔(𝜃) 

_____________________________________________________________________ 

where 𝑔(𝜃) is a function of engine angular position and depend on engine geometry. 

𝑇𝑖  𝑎𝑛𝑑 𝑃𝑖  are in general function of time. The geometry of engine imposes a 

periodicity with respect to crank angle on 𝑇𝑖  𝑎𝑛𝑑 𝑃𝑖 . The study was carried out on 

steady state of a four stroke engine cycle for an angular range of 0 ≤ 𝜃 ≤ 4𝜋. 

Net torque acting on crankshaft is expressed as: 

( Eq 3.39) 
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_____________________________________________________________________ 

𝑇𝑒 𝜃 = 𝑇𝑖 𝜃 + 𝑇𝑓𝑝  𝜃 + 𝑇𝑟 𝜃           𝑓𝑜𝑟    0 ≤ 𝜃 ≤ 4𝜋 

_____________________________________________________________________ 

where 𝑇𝑒  is net engine torque, 𝑇𝑖  is the indicated torque, 𝑇𝑓𝑝  is the torque lost in 

friction and pumping and 𝑇𝑟  is the inertia torque contributed by the reciprocating 

assembly. Due to fluctuating nature of torque, the torque is completely specified by an 

AC component and a DC component. If 𝑇𝑚𝑒𝑎𝑛  is the mean engine torque then AC 

component of Torque would be estimated by subtracting the mean torque from the 

torque signal. Representing the torque fluctuations by 𝜏, the AC component of torque 

can be expressed as: 

_____________________________________________________________________ 

𝜏𝑒 𝜃 = 𝜏𝑖 𝜃 + 𝜏𝑓𝑝  𝜃 + 𝜏𝑟 𝜃            𝑓𝑜𝑟     0 ≤ 𝜃 ≤ 4𝜋 

_____________________________________________________________________ 

 The relationship between torque and pressure inside the cylinder is expressed in 

terms of analogy between voltage in electrical circuits versus torque in mechanical 

systems and current in electrical circuits with angular velocity of rotating systems. A 

typical velocity waveform observed by measurement of crankshaft angular speed is 

provided and shown in Figure 3.6.  

In his work Rizzoni mentioned that firing in each cylinder is associated with a 

maximum and a minimum in the waveform. He defined a vector of N extrema for k
th

 

ignition cycle is defined as: 

 

 

Time 

Crankshaft 

Speed 

Figure 3.6 : Instantaneous Crankshaft Speed Signal as a function of time 

 

( Eq 3.40) 

( Eq 3.41) 
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_____________________________________________________________________ 

𝜔(𝑘) 𝑇 ≜  𝜔1 𝑘    𝜔1 𝑘    𝜔2 𝑘    𝜔2 𝑘 ………𝜔𝑁 𝑘    𝜔𝑁 𝑘   

_____________________________________________________________________ 

where 𝜔𝑖(𝑘) represent i
th

 maxima of k
th

 ignition cycle and 𝜔𝑖(𝑘) represent i
th

 minima 

of k
th

 ignition cycle. He also defined a reference signal as:  

_____________________________________________________________________ 

𝜔  𝑇 ≜   𝜔 .  1   − 1    1   − 1 ……… 1   − 1  

_____________________________________________________________________ 

with  .   representing 𝐿1 norm and  𝜔  𝑇   represents an ideally balance cylinder. The 

non-uniformity metric of actual cylinder from the ideally balanced cylinder was 

defined as the deviation of actual cylinder with ideally balanced cylinder as:  

_____________________________________________________________________ 

𝑑 𝑘 =  𝜔 𝑘 − 𝜔 (𝑘) 
1
 

_____________________________________________________________________ 

The proposed non-uniformity metric is a scalar quantity that would be zero for an 

engine with ideally balanced cylinders. For actual engines 𝑑(𝑘) is a random variable 

and  𝑑 𝑘 , 𝑘 = 1,2, …… .   is a discrete random process. The value of non-uniformity 

metric was observed during N consecutive engine cycles and a histogram was plotted 

that approximately correspond to the probability density function (PDF) of random 

variable 𝑑 𝑘 . The events 𝐻0 𝑎𝑛𝑑 𝐻1 were defined as:  

_____________________________________________________________________ 

 𝐻 0 = 𝐸𝑛𝑔𝑖𝑛𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 

 𝐻 1 = 𝐸𝑛𝑔𝑖𝑛𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 

_____________________________________________________________________ 

Conditional probability density functions of  𝑑 𝑘  under the two events 𝐻0 𝑎𝑛𝑑 𝐻1 

were defined as 𝑃𝑑(𝑑 𝐻0 ) and 𝑃𝑑(𝑑 𝐻1 ) respectively and are shown in Figure 3.7.  

( Eq 3.42) 

( Eq 3.43) 

( Eq 3.44) 

( Eq 3.45) 
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Knowledge of conditional probability density helped to define a threshold to decide 

between the hypothesis of engine operating under healthy condition or faulty 

condition. Having defined 𝜂 as the threshold, a likelihood ration test (LRT) was 

defined by considering the function Λ, defined as: 

_____________________________________________________________________ 

Λ  ≜    
𝑃𝑑 𝐻1 (𝑑 𝐻1 )

𝑃𝑑 𝐻0 (𝑑 𝐻0 )
 

_____________________________________________________________________ 

i.e. as a ratio of conditional probability density function of 𝑑 under the hypothesis 

𝐻0 𝑎𝑛𝑑 𝐻1 respectively. The fault detection problem was then reduced to determine 

whether Λ is greater than 𝜂 or not.  

The Figure 3.7 also graphically indicates the interpretation of fault detection. The 

curve of probability density function is shifted with the occurrence of fault. The 

shifting of curve can be interpreted physically as the overall speed of engine is 

reduced with occurrence of fault and hence the distance of predefined reference points 

from new speed would become larger.  

A detailed literature survey on the problem of misfire fault detection indicates the 

application of many more different techniques. Tinaut F. V. et al (2007, pp: 1521-

1535) proposed misfire detection scheme based on engine energy model. Ball J. K 

(2000, SAE-2000-01-0560) et al used engine torque model for misfire detection. 

Different filtering and signal processing techniques were adopted for the improvement 

of misfire detection by Aono T. et al (2005, pp: 1218-1221), Stotsky A. A (2007, pp: 

641-649), Naik S. (2004, pp: 181-198). State Observers for periodic signals was used 

for misfire detection by Bohn C et al (2007, pp: 641-649). Different methods based on 

algorithms of Pattern recognition like HMM, Neural networks and Support vector 

machines were developed by Wu Z. J. et al (1998), Lee M. (2006, pp: 637-644), 

Zhinong L. et al (2005, pp: 329-339), Devasenapati S. B et al (2010, pp: 25-29). 

Evolutionary computing control based on genetic algorithms was used for misfire 

detection by Kim D. et al (2007, pp: 3341-3355). 

( Eq 3.46) 
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3.5 Comparison of Different Misfire Detection Methods 

In this section comparison of different methods of misfire fault detection in SI engine 

would be provided using literature survey. The comparison of methods would be 

carried out in the light of different classes of fault diagnostic algorithms presented in 

section 3.3 to 3.5. The merits and demerits of algorithms falling in specific classes 

would be considered. Another classification of the methods would be based on the 

requirement of sensors for the proposed method and a literature review would be 

provided to identify the suitable sensor for the problem in hand. 

3.5.1 Merits and De-merits of Model Based Techniques 

Sood A. K (1985, pp: 301-307) mentioned that model based technique has the 

advantage of physical reasoning to develop the classification rules for fault diagnosis.  

Using model based techniques, fault is detected either using state estimation [ 

Minghui K. et al (1994, pp: 2742-2747), Yaojung S. et al (1995, pp: 70-78) etc.] or 

using parameter estimation [Sood A. K (1985, pp: 301-307)]. Literature review 

indicates that multiple parameters can be estimated using model based techniques 

[Butt. Q. R. et al (2008, pp: 3891-3898), Iqbal M. et al (2010)]. By carefully 

designing a model based techniques to ensure fault decoupling, these methods can be 

extended for the detection of multiple faults in systems. The robustness of fault 

isolation method would however be a real challenge in this scheme. 

Figure 3.7 : Probability Densities of H0 and H1 
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Ehsan S E. (2009, pp: 39) indicated that accuracy of mathematical model directly 

affect the diagnostic performance and reliability. He further mentioned that high 

fidelity mathematical models from physical principles can become very complicated, 

time consuming and even sometime unfeasible. Wong P. K. et al (2009, pp: 55-72) 

worked on automotive engine control problem and commented that SI engine is a 

complex multivariable nonlinear function that is very difficult to be estimated. The 

mathematical models based on physical principles are usually derived on the basis of 

many simplifying assumptions. These assumptions may lead to the structural change 

of model from the actual system resulting in significant modeling errors. As an 

example, Vemuri A. T. (2001, pp: 949-954) mentioned the availability of closed loop 

mathematical model as one of the key assumption that is not a valid assumption in 

practice. For an SI engine mathematical modeling on the basis of physical principles 

is carried out under open loop condition. An EFI automotive engine always operates 

in closed loop configuration with a highly robust controller present in the loop. The 

controller treats the engine faults as disturbances and would generate the control 

action to mask those faults. The detection of faults in closed loop when open loop 

system model is available is therefore a very challenging problem. 

Even when the structure of model and actual system is same the accuracy of models 

depends on the correctness of parameter values [Holzmann H. et al ( 1999, pp: 1014-

1019)]. Results of Butt Q. R. et al (2008, pp: 3891-3898) indicated that the model 

parameters are function of operating conditions of engine. The validity of model 

being used for detection is therefore itself questionable. Sood A. K (1985, pp: 301-

307) also indicated this result and mentioned that this factor increases the complexity 

of fault diagnosis algorithms.  

The methods of state estimation and parameter estimation can predict the status of 

current health of system however they are of limited help in prognosis applications. 

In spite of the rapid development in the hardware when high speed processors and 

large memory blocks are available in small space, the fault diagnostic community still 

agreed that in a limited memory capacity of an ECU for the engine control 

applications, it is impossible to implement a comprehensive observer based residual 

generation scheme [Ding S. X et al (2009, pp:1-16), Jianhui L. et al (2009, pp: 1-16), 

Jianhui L. et al (2007, pp: 1163-1173)] 
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Another major issue in modeling perspective is the presence of discrete events in 

system that was completely ignored in mean value model of SI engine. 

Most of the mentioned merits and demerits of model based techniques are quite 

general in nature and are applicable to most engineering systems. The most popular 

mathematical model of SI engine is referred as the Mean Value Model (MVM). 

Literature indicates that MVM is not suitable for diagnostic applications like misfire 

fault detection for which a Discrete Event Model (DEM) or a Cylinder-by-Cylinder 

model of SI engine would be required. [ Karisson J (1998, pp: 1-8), Guzzella L. 

(2004,  pp: 23)]. The computational complexity of these models is even higher. 

3.5.2 Merits and De-merits of Signal and Data Based Techniques 

The merits and demerits of Signal Based and Data Based Methods share sufficient 

similarity that they can be analyzed together.  

The basic advantage in development of these techniques is that the effort required on 

account of model development would be saved. Some signals/ properties of signals 

may be identified on the basis of domain knowledge or expert opinions. Those signals 

may then be analyzed using fourier analysis Bohn C. et al (2005, pp: 239-244) or 

using algorithms designed on the basis of signal patterns. 

Relatively simpler algorithms can be developed on the basis of Signal Based / Data 

Based Method that can be used for on-board diagnosis [Rizzoni G. (1987, pp: 450-

457),  Yu T. et al (1990, 53-57), Rizvi M. A. (2009, pp: 93-100)].  

Data based techniques like Markov Chains can be used for predicting the future states 

of system given the present system state and hence data based methods are more 

suitable for prognosis applications as used by Morgan I. (2009, pp: 1774-1781). 

Similarly neural networks are considered as universal predictors and Manikandan V et 

al (2007, pp.82-91) has categorically indicated that a trained neural network can be 

used to classify a number of system faults. 

The basic shortcoming of most data based algorithms that work on blackbox approach 

is: 

 A mathematical/ physical link of method is difficult to comprehend and 

method cannot interpret the reason behind the fault. 
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 It is difficult to train the network/ collect classifiers under all possible fault 

scenarios. 

 The fault detection algorithms may be misguided by the noisy data Angeli C 

(2004, pp: 12-30).  

A comprehensive survey of different on line fault detection methods is provided by 

Angeli C (2004, pp: 12-30).  

3.6 Comparison of Methods on the Basis of Sensors 

A literature review of misfire fault detection indicates that a number of different 

sensors were used for fault detection applications. These include crankshaft speed 

sensor, cylinder pressure sensor, exhaust pressure sensor, oxygen sensor [Chung Y et 

al (1999, pp: 585-594)], vibration sensors [Villarino et al (2004, pp: 141-144)] etc. 

The cylinder pressure sensor is not only expensive but its life is also short. The 

cylinder pressure sensor, vibration sensor and exhaust pressure sensor are not 

normally present in production vehicles and need to be installed separately in engine. 

The crankshaft speed sensor is present in all production vehicles and was most widely 

used by the research community of misfire detection [ Rezeka S. F. (1987, SAE Tech 

Paper 870546),  Rizzoni G, (1988, pp: 237-244), Mauer G. F. (1990, pp: 221-226), 

Montani M. (2006, pp: 144-148), Kim D. E (2007, pp: 3341-3355)]. Lee M. et al 

(2006, pp: 637-644) mentioned that misfire fault detection using crankshaft speed 

sensor is difficult in small and medium sized engines because internal rotational 

inertia varies greatly with engine speed. The fault detection based on crankshaft speed 

fluctuations is really difficult and challenging under the low load conditions and high 

speed conditions. Lee M. et al (2006, pp: 637-644) also mentioned that the affects of 

variation of inertia can be removed from the signals by some preprocessing of signals. 

Yaojung S. et al (1995, pp:70-78) worked on the misfire detection method using 

cylinder pressure sensors. They claimed that the method based on cylinder pressure is 

more sensitive and convenient. They however acknowledged that the methods based 

on crankshaft speed fluctuations are simpler, low cost and easy to implement. 

Yaojung also mentioned the problems of installation of cylinder transducers on 

vehicles. These problems include high cost of transducer hardware that prohibits their 

use in most production vehicles. The poor durability of these sensors is another factor 
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that restricted their use in production vehicles in the past. The limitation of space in SI 

engine also restricts the installation of pressure transducer and associated equipment.  

Merkisz J et al (2001, pp: 326-341) provided a brief survey of different methods of 

misfire detection along with their brief operational principle. He mentioned that 

exhaust gas pressure also exhibit oscillations and exhaust gas pressure falls rapidly 

due to the absence of combustion in cylinder. In case of misfire lack of pressure 

would be observed when exhaust port opens due to absence of high pressure in 

cylinders. The pressure sensor is however not present at exhaust in production 

vehicles. Merkisz also indicated some installation details about its installation in 

engine. He also discussed the experiments based on ionization current and optical 

methods. The work is concluded with the discussion of difference of different 

methods of misfire detection in terms of technical difficulties and cost. It was 

concluded that the methods based on crankshaft speed sensor are inexpensive and 

commercially viable but it is vulnerable to disturbances.  

3.7 Current Status of Misfire Detection Problem 

Murphey Y. L. et al (2003, pp:1076-1098) pointed out that automotive engineering 

diagnosis is still considered as the most challenging problem in engineering fault 

diagnostics. Although the comment is almost seven year old, yet a limited literature 

review provided in this thesis contain three papers accepted for publication in year 

2010 on the problem of misfire fault in SI engine in three most reputed journals of 

engineering and automotive technology [ Devasenapati S. B et al (2010, pp: 25-29), 

Malaczynski G. W. et al (2010, pp:1-11), Rizvi M. A. et al (2010,accepted for 

publication)]. This not only indicates that the problem is still under investigation by 

the research community but also indicates the importance and complexity of the 

problem that a satisfactory solution of problem is still being searched even when the 

problem has been studied for last two decades. 

3.8 Application of Hybrid and Markov Models 

Suchomski P. (2001, pp: 669-679) mentioned that in a hybrid system represented by 

the state space and a discrete set of system modes (where each mode correspond to a 

model), the mode jump define the changes in patterns of system dynamics. He 

suggested that finite state Markov Chains taking values in 𝑀 = {1, … , 𝑀} according 
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to a proper transition probabilities is the most suitable representation of those jumps. 

Arogeti S. A et al (2010, pp: 1452-1466) mentioned that in hybrid system, the 

application of model based monitoring techniques is difficult due to unpredicted mode 

changes. Although the hybrid model proposed in this work has a deterministic 

switching of sub-systems, but under the influence of fault this switching pattern may 

change. Smith et al (2004, pp: 649-663) mentioned that there is limited work in 

utilizing Markov chains in fault diagnosis. Markov chains have the potential to predict 

the values of unmonitored dynamic variables and states. Sun S. et al (2004, pp: 437-

441) used Markov chains for short term traffic flow forecasting where the volume of 

traffic flow in the next time interval has strong yet no deterministic relationship to the 

current state. Morgan I et al (2009, pp: 1774-1781) indicated that potential advantage 

of application of Markov Chains is its ability to predict. He applied it to predict the 

future concentration of elements in lubricant analysis of marine engine. The author 

mentioned that the area of application is critical in the sense that when ship is in sea, 

the maintenance is a big problem and early fault indication is therefore essential. The 

other area of applications of Hybrid Markov Models proposed by Yu X. G (2006, pp: 

374-379) include the path prediction in mobile computing and wireless networks. 

3.9 Emerging Trends of Fault Diagnosis Applications 

Considering the difficulties in accurate modeling of complex physical systems and 

limitations of data based approaches, a new trend of using hybrid approach for fault 

detection is being adopted, that combines the computation of data based and model 

based techniques. Hybrid and integrated approaches are currently being studied for 

complex systems where formulation of an accurate and comprehensive mathematical 

model of system is difficult. Jianhui L. et al (2009, pp: 1-16) proposed an integrated 

model based and data driven diagnosis of automotive antilock braking system. Yan L. 

et al (2000, pp: 558-573) proposed method for learning the joint probability mass 

function (pmf) for discrete and mixed discrete/ continuous feature space. Ehsan S. et 

al (2009, pp: 16-17) proposed a hybrid approach to nonlinear fault diagnosis in which 

a priori information of system based on a mathematical model is used to create 

computationally intelligent techniques with adaptive and self learning capabilities. 

A literature survey indicates that more powerful fault diagnosis algorithms are being 

developed by using the potential of data based fault diagnosis methods under the 
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heuristic guideline of a mathematical model. The work of Lee M. et al (2006, pp: 637-

644) used this approach by preprocessing the acquired data to remove the affects of 

varying inertia from the acquired data using an appropriate mathematical model.  

3.10 Summary 

This chapter provided a comprehensive survey of different approaches used for the 

detection of misfire fault. The methods of misfire detection were categorically 

classified on the basis of mathematical tools. The literature review indicated that most 

of the model based methods used estimation of torque or acceleration for the detection 

of misfire fault. The approximation of linear modeling was also mentioned where 

computational tools like Kalman filtering and observer design were used for analysis. 

The signal based method used the data of crankshaft speed and used correlation 

analysis, wavelet analysis, modeling using AR process etc to detect misfire fault. The 

methods of data based analysis were finally discussed in which the tools of pattern 

recognition like Bayesian decision, hidden Markov model and artificial neural 

network were predominantly used. After a comprehensive literature survey, the merits 

and de-merits of different methods were indicated. 

The review of literature also indicated that most of the misfire detection methods are 

using crankshaft speed sensor to measure crankshaft speed and used it for fault 

detection. The major reasons observed in favor of its application were found to be its 

robustness, availability and cost.  
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Chapter 4 

SPARK IGNITION ENGINE MODELS 

A survey of literature on SI engine modeling indicates five different types of engine 

models to study the engine behavior.  

 Mean Value Model (MVM) 

 Discrete Event Model (DEM) 

 Engine Kinematic Model 

 Data Based Models 

 Hybrid Engine Model 

MVM is used most frequently by the research community working on SI engine for 

the development of control strategies and observer design. Data based models work 

on the basis of lookup tables formed and stored in engine ECU to control the engine 

operation. These lookup tables are formed predominantly on the basis of Mean Value 

Model. The hybrid engine model is not well mature model and author has presented a 

novel hybrid modeling approach in his research publications. In this chapter a brief 

description of some hybrid modeling approaches found in literature are discussed that 

are used to model SI engine. However the details of modeling work of author would 

be provided in the forth coming chapters.  

4.1 Mean Value Engine Model 

A comprehensive Mean Value Model (MVM) is defined by a set of three non linear 

differential equations defining the manifold pressure dynamics, fuel dynamics and 

rotational dynamics [Guzzella L. (2004,  pp: 23), Weeks W. W (1995, pp: 1-15), Kim 

Y. W. (1998, pp: 84-99)], Hendrick E. et al [1990, SAE Technical Paper No. 900616]. 

The engine model with three states is highly complex and difficult to analyze 

mathematically. The computational complexity is simplified by ignoring the fuel 

dynamics with the assumption of stoichiometric air fuel ratio and using an engine 

model with two states only [Butt Q. R (2008, pp: 3891-3898)] 
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The basic manipulation variable of MVM is the engine throttle position and output 

variables are manifold pressure and engine speed. The modeling is based on average 

behavior of system states over multiple ignition cycles. The basic MVM is derived on 

the basis of basic principles of physics. A number of variants of MVM are found in 

literature depending on the basic set of assumptions taken while deriving the model. A 

brief description of basic set of manifold pressure dynamics and rotational dynamics 

of MVM is provided in this section. 

Crankshaft rotational dynamics is expressed as: 

____________________________________________________________________ 

𝐼𝜔𝑒
 = 𝑇𝑖𝑛𝑑 − 𝑇𝑙𝑜𝑎𝑑 − 𝑇𝑓 

____________________________________________________________________ 

Where 𝑇𝑖𝑛𝑑  represents indicated combustion torque, 𝑇𝑙𝑜𝑎𝑑  represents load torque and  

𝑇𝑓  represents frictional and pumping torque, I is the moment of inertia of engine and 

𝜔𝑒  represent engine speed. If 𝐻𝑢  represents fuel energy constant, 𝜂𝑖  is the thermal 

efficiency and 𝑚 𝑓  is the fuel mass flow rate in cylinder, then indicated-torque as given 

by Hendricks and Sorenson, 1990 is: 

____________________________________________________________________ 

𝑇𝑖𝑛𝑑 =
𝐻𝑢𝜂 𝑖𝑚 𝑓

𝜔𝑒
 

____________________________________________________________________ 

The value of indicated torque varies with engine velocity. The frictional and pumping 

losses in engine is approximated as an empirical relation and was expressed as a 

polynomial in engine speed (Hendricks and Sorenson, 1990, Ganguli and Rajmani, 

2004) 

____________________________________________________________________ 

𝑇𝑓 = 𝑎0𝜔𝑒
2 + 𝑎1𝜔𝑒 + 𝑎2 + 𝑏0𝜔𝑒𝑝𝑚𝑎𝑛 + 𝑏1𝑝𝑚𝑎𝑛  

_____________________________________________________________________ 

Where 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1 are parameters dependent on the specific engine. The load 

torque is estimated using mean effective torque provided by the engine. After 

( Eq 4.1) 

( Eq 4.3) 

( Eq 4.2) 
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estimating the values of indicated combustion torque and frictional torques in 

equation (4.1), we come across the crankshaft speed dynamics. 

If 𝑚 𝑎𝑖  represents mass flow rate in the input manifold and 𝑚 𝑎𝑜  represents mass flow 

rate out of the input manifold, then using law of conservation of mass on intake 

manifold, we get: 

____________________________________________________________________ 

𝑚 𝑚𝑎𝑛 = 𝑚 𝑎𝑖 + 𝑚 𝑎𝑜 

_____________________________________________________________________ 

Pressure variations in intake manifold can be calculated using variations in mass flow 

rate using gas equation as: 

____________________________________________________________________ 

𝑝 𝑚𝑎𝑛 =
𝑅𝑇𝑚𝑎𝑛

𝑉𝑚𝑎𝑛
(𝑚 𝑎𝑖 + 𝑚 𝑎𝑜 ) 

_____________________________________________________________________ 

The mass of air swept in the cylinder is defined by engine velocity that define air 

sucked in the cylinder. If 𝑉𝑡𝑑𝑐  and  𝑉𝑏𝑑𝑐  are the volume of air enclosed in cylinder 

when the piston is at TDC and BDC respectively, then the volume of air displaced/ 

sucked by piston would be given as: 

____________________________________________________________________ 

𝑉𝑑 = 𝑉𝑏𝑑𝑐 − 𝑉𝑡𝑑𝑐  

_____________________________________________________________________ 

Mass of displaced air can be calculated using gas equation, however it depend on the 

breathing efficiency of engine cylinders called volumetric efficiency represented as 

𝜂𝑣𝑜𝑙 . The equation of mass flow rate in the cylinders is therefore given as:  

____________________________________________________________________ 

𝑚 𝑎𝑜 = 𝜂𝑣𝑜𝑙

𝜔𝑒

4𝜋
𝑉𝑑

𝑝𝑚𝑎𝑛

𝑅𝑇𝑚𝑎𝑛
 

____________________________________________________________________ 

( Eq 4.4) 

( Eq 4.5) 

( Eq 4.6) 

( Eq 4.7) 
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For mass flow in the intake manifold, standard orifice equation for compressible fluid 

flow is applied [Cho and Hedrick, 1989] . A final equation presented by Ganguli and 

Rajmani, 2004 is: 

____________________________________________________________________

 𝑚 𝑎𝑖 = 𝑀𝐴𝑋. 𝑇𝐶 𝛼 .𝑃𝑅𝐼 

____________________________________________________________________

Where MAX is a constant depending on the size of throttle body and represents 

maximum possible intake airflow rate. 𝑇𝐶(𝛼) is the throttle chacteristic which is the 

projected area of flow as a function of throttle angle 𝛼 and is modeled by Hendricks 

and Sorenson, 1990, Cho and Hedrick, 1989 as: 

____________________________________________________________________ 

𝑇𝐶 𝛼 = 1 − cos(𝛼 + 𝛼′) 

____________________________________________________________________

Where 𝛼′ is the minimum throttle angle seen be the engine when the throttle plate is 

closed against the throttle bore and PRI is ―Pressure Ratio Influence Function‖. In SI 

engines manifold pressure is always less then atmospheric pressure causing the air 

from atmosphere to flow to intake manifold through the orifice (Throttle valve). 

____________________________________________________________________ 

𝑃𝑅𝐼 =   
 1 −  

𝑝𝑟 − 𝑝𝑐

1 − 𝑝𝑐
 

2

                   𝑝𝑟 > 𝑝𝑐              (𝑐𝑜𝑘𝑒𝑑)

           1                                  𝑝𝑟 ≤ 𝑝𝑐                   (𝑠𝑜𝑛𝑖𝑐)

  

_____________________________________________________________________ 

where 𝑝𝑟 =
𝑝𝑚𝑎𝑛

𝑝𝑎𝑚𝑏
 and 𝑝𝑐  is the critical pressure ratio that is approximately 0.5283. 

Therefore the manifold pressure equation becomes: 

____________________________________________________________________ 

𝑝 𝑚𝑎𝑛 =
𝑅𝑇𝑚𝑎𝑛

𝑉𝑚𝑎𝑛
 𝑀𝐴𝑋. 𝑇𝐶 𝛼 . 𝑃𝑅𝐼  

𝑝𝑚𝑎𝑛

𝑝𝑎𝑚𝑏
 −

𝜔𝑒

4𝜋

𝑉𝑑𝜂𝑣𝑜𝑙

𝑅𝑇𝑚𝑎𝑛
𝑝𝑚𝑎𝑛    

_____________________________________________________________________ 

 

( Eq 4.8) 

( Eq 4.9) 

( Eq 4.10) 

( Eq 4.11) 
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4.1.1 Merits and De-merits of MVM  

MVM is suitable for the applications of controller design. The model is however 

applied for fault diagnosis applications by estimating the model parameters and 

comparing it with actual values of those parameters.  

In its simplified form, MVM is ignoring the fuel dnamics. Even in three state model 

the cylinder dynamics is completely ignored in MVM and mean effective torque is 

used. Many phenomenons normally visible in engine are not explained well using 

MVM. One such example is the slight speed fluctuations observed on engine 

crankshaft. Many parameters of MVM are unknown and are determined by forming 

an observer [Iqbal, Butt]. The results of parameter estimation indicates that parameter 

is not constant but is itself a function of engine operating conditions.  

Guzzella L. (2004,  pp: 23) described that in applications like misfire detection, where 

the event is not dependent on the average behavior of engine, MVM is not a suitable 

choice for fault analysis.  

4.2 Discrete Event Model 

A MVM is continuous and represent average behavior of engine. In a DEM all engine 

events correspond to the actual points in the cycle in which they occur. In MVM the 

independent variable is time and position is considered as the independent variable for 

a DEM. An IC engine is a discrete event system due to its reciprocating nature 

[Guezella].  The basic philosophy behind the DEM is to identify a specific crank-

angle for each subsystems at which the actual boundary conditions (manifold 

pressure, air pressure, flow etc.) must be sampled. 

 To consider the basic philosophy of a DEM, consider torque produced by an engine 

is given by the relation: 

____________________________________________________________________ 

𝑇𝑒 =
𝐻𝑙

4𝜋
𝑚𝜑 .𝜂𝑒𝑜  𝑚𝜑 , 𝜔𝑒 .𝜂𝜆 𝜆 .𝜂𝜍 𝜍 .𝜂𝑒𝑔𝑟 (𝑥𝑒𝑔𝑟 ) 

_____________________________________________________________________ 

Therefore engine torque can be influence by the following inputs: 

( Eq 4.12) 
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 Mass of air in cylinder 

 Fuel sprayed in cylinder 

 Spark advance 

 Exhaust gas recirculation rate 

MVM considers the average values of variables but DEM considers the values of all 

parameters at given instant so considering the torque center as a reference point, the 

delay of center point of all the influencing variables are determined with respect to 

torque center to estimate the torque as: 

____________________________________________________________________ 

𝑇𝑒 𝑡 =
𝐻𝑙

4𝜋
𝑚𝜑(𝑡 − 𝜏𝑢𝑖𝑛𝑗 →𝑇𝐶). 𝜂𝑒𝑜  𝑚𝜑  𝑡 − 𝜏𝑢𝑖𝑛𝑗 →𝑇𝐶 , 𝜔𝑒 𝑡  . 𝜂𝜆  

𝑚𝛽  𝑡−𝜏𝐼𝐶→𝑇𝐶  

𝑚𝜑  𝑡−𝜏𝑈𝑖𝑛𝑗 →𝑇𝐶  
.

1

𝜎0
 . 𝜂𝜍  𝜍(𝑡 −

𝜏𝑈𝑖𝑔𝑛 →𝑇𝐶) . 𝜂𝑒𝑔𝑟  𝑥𝑒𝑔𝑟  𝑡 − 𝜏𝑡𝑟𝑎 − 𝜏𝐼𝐶−𝑇𝐶   

_____________________________________________________________________ 

DEM model expressed these delays in terms of crank angle. The main benefit of this 

change in variable is that in time domain time delays would be dependent on engine 

speed but in crank angle domain the time delays would be fairly constants on all 

engine speeds. The basic problem of discrete event model is to find the values of time 

delays. All time delays with respect to torque center are estimated for the calculation 

of torque. For torque estimation, the typical values of delays with respect to ignition 

are given by Guzzella (2004, pp. 141) and presented in Table 4.1.  

TABLE 4.1  SPARK POSITION OF DIFFERENT STROKES OF  IGNITION CYCLE 

Engine Event Position in˚ crankshaft angle after ignition  

Intake Center (IC) 470˚ (110˚ after TDC) 

Torque Center (TC) 80˚ 

Exhaust Center (EC) 250˚ (110˚ before TDC) 

Update Ignition (Uign) Defined in ECU ϕ
update

= ϕ
offset

+ ϕ
seg

. k         

k=0,1,2,3,…. 
Update Injection (Uinj) 

 

( Eq 4.13) 
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For finding the torque at any time instant t, it is necessary to estimate the values of air 

intake, exhaust and injection at their respective timing and map their effect at time t. 

The computation of torque at any instant is therefore an iterative process. DEM is 

used to design controllers that require maximum bandwidth. Due to heavy 

computational load associated with the method, DEM was not used for the 

applications of fault diagnosis and isolation. 

4.3 Kinematic model 

Literature review indicates some engine models that consider the energy produced in 

engine cylinders as a result of ignition. The method is described briefly in this 

document as a part of proposed area of research of author is using some aspects of 

this model. A new simplified kinematic model derived by the author would be used in 

hybrid model proposed by author.  

Maria P. F. et al (2003, pp: 1771-1776) used a model to represent the evolution of 

pressure in combustion chamber of a diesel engine. A similar model can be used to 

determine the force acting on piston.  The model representing evolution of pressure in 

combustion chamber is based on first law of thermodynamics. When energy 𝑄𝑖  is 

added in i
th

 cylinder, then internal energy 𝑈 of cylinder is added and some work 𝑊 

would then be performed using that energy. For notational simplicity, the index of 

cylinder would be neglected. The effect of change in internal energy is described 

mathematically as: 

____________________________________________________________________ 

𝑑𝑈

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
− 𝑝.

𝑑𝑉

𝑑𝑡
+ 𝑚𝑓 𝑖𝑛𝑗  

_____________________________________________________________________ 

Where 𝑚𝑓  represent fuel flow rate and 𝑖𝑛𝑗  represents the fuel enthalpy. By ideal gas 

laws, the internal energy of system is described as: 

____________________________________________________________________ 

𝑑𝑈

𝑑𝑡
= 𝑚𝑐𝑣

𝑑𝑇

𝑑𝑡
 

_____________________________________________________________________ 

( Eq 4.14) 

( Eq 4.15) 
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Assuming constant gas mass, state equations of ideal gas can be written as: 

____________________________________________________________________ 

𝑑𝑇

𝑇
=

𝑑𝑉

𝑉
+

𝑑𝑝

𝑝
 

⇒   
1

𝑇

𝑑𝑇

𝑑𝑡
=

1

𝑉

𝑑𝑉

𝑑𝑡
+

1

𝑝

𝑑𝑝

𝑑𝑡
 

⇒   𝑚𝑐𝑣
𝑑𝑇

𝑑𝑡
= 𝑐𝑣  

𝑇𝑚

𝑉
  
𝑑𝑉

𝑑𝑡
  +   𝑐𝑣  

𝑇𝑚

𝑝
  
𝑑𝑝

𝑑𝑡
 

⇒   
𝑑𝑈

𝑑𝑡
= 𝑐𝑣  

𝑇𝑚

𝑉
  
𝑑𝑉

𝑑𝑡
  +   𝑐𝑣  

𝑇𝑚

𝑝
  
𝑑𝑝

𝑑𝑡
 

𝑢𝑠𝑖𝑛𝑔 𝑝𝑉 = 𝑚𝑅𝑇, 𝑤𝑒 𝑔𝑒𝑡 

⇒   
𝑑𝑈

𝑑𝑡
= 𝑐𝑣  

𝑝

𝑅
  
𝑑𝑉

𝑑𝑡
  +   𝑐𝑣  

𝑉

𝑅
  
𝑑𝑝

𝑑𝑡
 

____________________________________________________________________ 

Substituting (Eq 4.15) and (Eq 4.16) in (Eq 4.14) and neglecting the heat component 

added due to enthalpy component 𝑚𝑓 𝑖𝑛𝑗 , we get: 

____________________________________________________________________ 

𝑙𝑑𝑄

𝑑𝑡
= 𝑝  1 +

𝑐𝑣
𝑅
   

𝑑𝑉

𝑑𝑡
  +    𝑉 

𝑐𝑣
𝑅

𝑑𝑝

𝑑𝑡
 

____________________________________________________________________ 

Using Mayer’s relation 𝑅 = 𝑐𝑝 − 𝑐𝑣  , we get 

____________________________________________________________________ 

𝑑𝑝

𝑑𝑡
= −𝛾 

𝑝

𝑉
  
𝑑𝑉

𝑑𝑡
  +     

𝛾−1

𝑉
 
𝑑𝑄

𝑑𝑡
 

_____________________________________________________________________ 

This is the basic model equation representing the cylinder pressure variations and the 

equations is same as (Eq 3.9) mentioned earlier in context with the work of Yaojung 

S. and Moskwa J. (1995, pp: 70-78) to estimate cylinder pressure variations during an 

ignition cycle. Having an estimation of cylinder pressure, it is possible to find the 

force acting on piston of cylinder as a function of crankshaft angular position as: 

( Eq 4.16) 

( Eq 4.18) 

( Eq 4.17) 

( Eq 4.18) 
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____________________________________________________________________ 

𝐹 𝜃 = 𝑝 𝜃 . 𝐴𝑝 

____________________________________________________________________ 

where 𝐴𝑝  is the piston area; The information of cylinder pressure and piston speed can 

be used to estimate the power being generated by the engine. 

The forces acting on piston, causes it to move and this motion is then transmitted to 

flywheel through a crankshaft connected with piston. The mathematical model 

describing shaft angular velocity as a function of engine parameters and forces acting 

on piston due to burning gases is presented by Arun K. Sood. A simple line diagram 

of piston is shown in Figure 4.1. The force acting on piston can be divided into 

tangential and radial components as shown in Figure 4.1. 

The piston position can be expressed as a function of angular position of shaft as:  

____________________________________________________________________ 

𝑥 𝜃 = 𝑟 + 𝑙 − 𝑟 𝑐𝑜𝑠 𝜃 − 𝑙 𝑐𝑜𝑠 𝜙 

_____________________________________________________________________ 

The velocity and acceleration of piston is given by: 

____________________________________________________________________ 

𝑣 𝜃 =
𝑑𝑥 (𝜃)

𝑑𝑡
  

𝑎 𝜃 =
𝑑2

𝑑𝑡2 𝑥(𝜃)  

____________________________________________________________________ 

From the Figure 4.1, using basic laws of trigonometry, it can be proved that: 

____________________________________________________________________ 

𝑙 sin 𝜙 = 𝑟 sin 𝜃 

____________________________________________________________________ 

Using (Eq 4.20) and (Eq 4.22), we get Eq 4.21 as: 

 

( Eq 4.20) 

( Eq 4.19) 

( Eq 4.21) 

( Eq 4.22) 
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____________________________________________________________________ 

𝑎 𝜃 = 𝑟𝜔 𝑓(𝜃) + 𝑟𝜔2𝑔(𝜃) 

where 𝜔 = 𝜃  and  

𝑓 𝜃 = sin 𝜃 +
𝑟 sin 2𝜃

2𝑙  1 −
𝑟2

𝑙2 𝑠𝑖𝑛2𝜃 

1
2

 

𝑔 𝜃 = cos 𝜃 +
𝑟 cos 2𝜃

𝑙  1 −
𝑟2

𝑙2 𝑠𝑖𝑛2𝜃 

1
2

+
𝑟3 sin2 2𝜃

4𝑙3  1 −
𝑟2

𝑙2 𝑠𝑖𝑛2𝜃 

3
2

 

____________________________________________________________________ 

 

Figure 4.1:  (a) Line Diagram of Crankshaft       (b) Components of forces acting on crankshaft 

 

The forces acting in the reciprocating parts are given as: 

____________________________________________________________________ 

𝐹𝐼𝑁 = 𝑚𝑎 𝜃 = 𝐹𝑔𝑎𝑠 − 𝐹𝑓𝑟 − 𝐹𝑐𝑐𝑜𝑠𝜙 

____________________________________________________________________ 

Where  

𝐹𝑔𝑎𝑠 = Force on piston due to gas pressure 

𝐹𝑓𝑟 = Frictional force of reciprocating part 

( Eq 4.24) 

( Eq 4.23) 

l 

𝜔(𝜃) 

r 
𝜃 

𝜑 

90° 

90° 

𝐹 

𝐹𝑡  

𝐹𝑟  

x(𝜃) 

𝐹𝑔𝑎𝑠 Type equation here. 
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𝐹𝑐 = 𝐹𝑜𝑟𝑐𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑡𝑟𝑜𝑢𝑔 𝑡𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑟𝑜𝑑 

The force acting through the crankshaft can be divided into two components, one 

component in the direction tangential to the direction of motion of crankshaft and 

other in the direction radial to the crankshaft. 

____________________________________________________________________ 

𝐹𝑡 = 𝐹𝑐 sin 𝜃 + 𝜙  

𝐹𝑡 =
1

 1 −
𝑟2

𝑙2 𝑠𝑖𝑛2𝜃 

1
2

.   𝐹𝑔𝑎𝑠 − 𝐹𝑓𝑟  − 𝑚𝑎 𝜃   

_____________________________________________________________________ 

From (Eq 4.25),  

____________________________________________________________________ 

sin 𝜃 + 𝜙 =
𝑟

𝑙
sin 𝜃 cos 𝜃 + sin 𝜃  1 +

𝑟2

𝑙2
 𝑠𝑖𝑛2𝜃 

1
2

 

_____________________________________________________________________ 

The net torque provided by the force 𝐹𝑐  is given by: 

 Torque due to load on engine 

 Inertia of the rotating parts 

 Torque due to friction in the rotating parts and accessories 

Under no load conditions, the torque due to load is zero and torque would be given as: 

____________________________________________________________________ 

𝐼
𝑑𝜔

𝑑𝑡
= 𝐹𝑡𝑟 − 𝑇𝐹𝑅 

_____________________________________________________________________ 

Where I is the moment of inertia. Putting the value of Ft, we get: 

 

____________________________________________________________________ 

( Eq 4.26) 

( Eq 4.27) 

( Eq 4.28) 

( Eq 4.25) 
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𝐼
𝑑𝜔

𝑑𝑡
= 𝑇𝐺 − 𝑇𝑓𝑟 − 𝑇𝐹𝑅 − 𝑚 𝐺 𝜃 𝑎(𝜃) 

_____________________________________________________________________ 

Where 𝑇𝐺  and 𝑇𝑓𝑟  are the torques due to expansion of gas in cylinder and frictional 

torque. If 

____________________________________________________________________ 

𝑇𝐺 = 𝐺(𝜃)𝐹𝑔𝑎𝑠 

where: 

𝐺 𝜃 = 𝑟

 
 
 
 
 

sin 𝜃 +
𝑟

𝑙
.

sin 𝜃 cos 𝜃

 1 −
𝑟2

𝑙2 𝑠𝑖𝑛2𝜃 

1
2

 
 
 
 
 

 

_____________________________________________________________________ 

Therefore we get 

_____________________________________________________________________ 

𝑑𝑤

𝑑𝑡
= −

𝐺 𝜃 𝑔(𝜃)

𝐼
𝑚𝑟 + 𝐺 𝜃 𝑓(𝜃)

𝜔2 +
 𝑇𝐺 − 𝑇𝐹 

𝑚𝑟  
𝐼

𝑚𝑟 + 𝐺 𝜃 𝑓(𝜃) 
 

_____________________________________________________________________ 

Where 𝑇𝐹  is the total frictional torque: 

_____________________________________________________________________ 

𝑇𝐹 = 𝑇𝑓𝑟 + 𝑇𝐹𝑅 

_____________________________________________________________________ 

Since 

____________________________________________________________________ 

𝑑𝜔

𝑑𝑡
=

𝑑𝜔

𝑑𝜃

𝑑𝜃

𝑑𝑡
= 𝜔𝜔  

_____________________________________________________________________ 

Therefore 

( Eq 4.29) 

( Eq 4.30) 

( Eq 4.32) 

( Eq 4.31) 
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_____________________________________________________________________ 

𝜔 = 𝑏 𝜃 𝜔 +
𝑇𝐺−𝑇𝐹

𝑑(𝜃)
𝜔−1 

𝑑(𝜃) = 𝑚𝑟  
𝐼

𝑚𝑟
+ 𝐺 𝜃 .𝑓(𝜃)  

𝑏 𝜃 = −
𝐺 𝜃 𝑔(𝜃)

𝐼
𝑚𝑟 + 𝐺 𝜃 .𝑓(𝜃)

 

_____________________________________________________________________ 

Or the engine model may be written as: 

____________________________________________________________________ 

𝜔 = 𝐹(𝜔, 𝑇𝐺 − 𝑇𝐹 , 𝜃) 

_____________________________________________________________________ 

Which define angular acceleration of shaft at zero load. The angular acceleration 

depends upon the operating point and system parameters. 

4.4 Data Based Model 

For a complex and uncertain system, it is difficult to establish a correct quantitative 

model. Uppal F. J, et al (2002, pp: 501-506) mentioned that when quantitative models 

of system are not readily available, a correctly trained neural network (NN) can be 

used as a non-linear dynamic model of the system. Wong P. K. et al (2009, pp: 55-72) 

characterized SI engine as a complex multivariable nonlinear function that is very 

difficult to determine. Wong also mentioned that a neural network is a universal 

estimator.  

In production vehicles, the model of SI engine is assumed in the form of a number of 

lookup tables. The manipulating variables like intake air and spark position are 

measured and amount of fuel for the next ignition is decided by the entry of lookup 

table. Wong P. K. (2009, pp: 55-72) indicated that ECU of vehicles contain many 

lookup tables/ maps (like fuel map or ignition map). Uppal F. J, et al (2002, pp: 501-

506) also indicated that grid based lookup tables are the most common nonlinear 

static model. 

( Eq 4.34) 

( Eq 4.33) 
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Optimal ECU setup maps are established by using engine models (e.g. MVM, DEM 

etc) and implemented in ECU through appropriate computer aided optimization 

methods. The car is finally required to go through a dynamo test for verification 

[Wong P. K. et al (2009, pp: 55-72)]. The vehicle maps are optimized for the new 

vehicles only. As the vehicle gets older, the model parameters start deviating from the 

reference parameters and the originally designed maps become sub-optimal. To 

maintain the vehicle performance over the entire life of vehicle, black box models 

with neural methods are being proposed.  

Isermann R et al (2001, pp: 566-582) proposed local linear Neural Networks as a 

replacement of engine maps. In this method, he represented each neuron as local 

linear model with its own validity function. The whole neural network was therefore 

represented as a tree called ―Locally Linear Model Tree‖ (LOLIMOT). For the system 

with n inputs 𝑥1, 𝑥2, … , 𝑥𝑛 , a Gaussian validity function Φ𝑖(𝑥) was selected that 

determined the region of input space where each neuron is active. The output of 

model was formed by adding the contribution of all locally linear models as: 

____________________________________________________________________ 

𝑦 =   𝑤𝑖0 + 𝑤𝑖1𝑥1 + ⋯ + 𝑤𝑖𝑛𝑥𝑛 . Φ𝑖(𝑥)

𝑀

𝑖=1

 

____________________________________________________________________ 

where 𝑤𝑖𝑗  are the parameters of i
th

 model. 

LOLIMOT was trained in nested loop structure. Network structure was optimized in 

the outer loop that defined the number of neurons and partitioned the input space. The 

inner loop estimated the structure and parameters of local linear models. An effort 

was made that model remain valid over a wide operating range of one input variables 

and in small operating range of other variables.  

The parameters of local linear model were estimated by a local weighted least square 

technique.  The prediction errors of each model were weighted with the corresponding 

validity function. Each local model was estimated separately and the overlap between 

neighbored models was neglected. For multivariate, nonlinear dynamic processes it 

was assumed that the n inputs of neural network are function of p inputs of system as:  

( Eq 4.35) 
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____________________________________________________________________ 

𝑥 𝑡 =  𝑢1 𝑡 − 1 ,…𝑢1 𝑡 − 𝑚 , … . , 𝑢𝑝 𝑡 − 1 , … , 𝑢𝑝 𝑡 − 𝑚 , 𝑦  𝑡 − 1 …𝑦 (𝑡 − 𝑚) 
𝑇

 

____________________________________________________________________ 

i.e. each input of neural network is a function of inputs and its delayed versions. A 

block diagram of proposed general structure of LOLIMOT is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

Where LLM stands for local linear model and simple delay elements are expressed as 

𝑞−1.  

Wong P. K. et al (2009, pp: 55-72) proposed an engine idle speed system modeling 

and control optimization using artificial intelligence. The proposed method is based 

on training the model using Least Square Support Vector Machine (LS-SVM).  The 

training data was provided by Wong through the actual engine operation.  

4.5 Hybrid Model 

Hybrid system are characterized by the presence of both continuous time states and 

discrete time states in a model. A switched linear system is an important class of 

hybrid dynamical system, where dynamic system consists of a finite number of 

continuous time subsystems and logical rule that orchestrates switching between 

 

Figure 4.2   LOLIMOT net with external dynamics 

( Eq 4.36) 
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them [savskin]. The continuous states of system define the state variables of all of the 

continuous-time sub-systems and the discrete variable is the subsystem index. 

A few references of modeling of SI engine as hybrid models are found in literature. 

Albertoni L et al (2003, pp:140-145) proposed hybrid model with four interacting 

subsystems: throttle valve, intake manifold, cylinders and crankshaft. Deligiannis V. 

F. et al (2006, pp. 2991-2996) represented SI engine as a hyper class of hybrid 

automata. The hyperclass automata are in general represented as a 12 tuple. 

Deligiannis V represnted SI engine by four states where the states were representing 

the suction, compression, power and exhaust strokes of engine. On the basis of 

simplifying assumptions a simple mathematical model was derived for the engine 

strokes. A summary of four states is provided below: 

Induction or Suction Stroke 

Instead of a constant pressure air suction stroke, a more accurate model was taken on 

the basis of literature review. The model of suction stroke taken by author was: 

____________________________________________________________________ 

𝑝 = 𝑓(𝑉2) 

____________________________________________________________________ 

Compression Stroke 

The mathematical model for compression stroke was chosen as: 

____________________________________________________________________ 

𝑝𝑉1.3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

____________________________________________________________________ 

Power Stroke 

It was assumed that combustion is instantaneous and the pressure rises abruptly. The 

governing model of power stroke was assumed as: 

____________________________________________________________________ 

𝑝𝑉1.48 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

____________________________________________________________________ 

Exhaust Stroke 
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An abrupt pressure drop was assumed in exhaust stroke. Instead of assuming exhaust 

at constant pressure, the goverrning model of exhaust stroke was assumed as: 

____________________________________________________________________ 

𝑝 = 𝑓(−𝑉2) 

____________________________________________________________________ 

The switching logic was defined on the basis of volume taking extreme values i.e. 

when 𝑉 = 𝑉𝑚𝑎𝑥  the state transition occur from suction to compression or from power 

stroke to exhaust stroke. Similarly when 𝑉 = 𝑉𝑚𝑖𝑛  the state transition occur from 

exhaust to suction stroke or from compression to power stroke. The transition 

between states was assumed deterministic and cyclic as shown in Figure 5.3. The 

volume of air inside the cylinder defined guard condition for the switching of states. 

 

 

 

 

 

 

 

 

𝑝 = 𝑓(𝑉2) 

 

 

 

 

 

The hybrid models of SI engine proposed in literature are either based on the engine 

system consisting of subsystems like throttle, cylinder, manifold and crankshaft or are 

based on the thermal processes occurring in cylinders i.e. suction, compression, power 

𝑝𝑉1.48 = 𝑐𝑜𝑛𝑠𝑡        
Vin= 0          

Vout =0     

Spark =δ(t) 

𝑝 = 𝑓(𝑉2) 
Vin= 1        

Vout =0    

Spark =0 

𝑝𝑉1.3 = 𝑐𝑜𝑛𝑠𝑡        
Vin= 0        

Vout =0    

Spark =0 

𝑝 = 𝑓(−𝑉2) 
Vin= 0        

Vout =1    

Spark =0 

V=Vmax 

V=Vmin 

Suction Compression 

Power Exhaust 

V=Vmax 

V=Vmin 

Figure 4.3: Engines Automaton with four States      . 
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and exhaust. In both these approaches the continuous dynamics of subsystems is quite 

different from each other. The hybrid model proposed in this research [Rizvi M. A et 

al (2009, pp: 1-6), Rizvi M. A. et al  (2010)] has adopted quite a different strategy by 

considering the four cylinders of engine as four different subsystems of hybrid model. 

The continuous dynamics of subsystem is governed by the movement of piston inside 

the cylinder and switching of subsystems is defined by the position of crankshaft. The 

basic advantage of this strategy is that under ideal conditions, all the four subsystems 

of hybrid model would be identical which simplify the calculations. 

When the engine is operating normally, all the models can be used to study the engine 

behavior in their respective domain. If however the switching sequence of engine gets 

disturbed due to some faults or by mistakenly interchange cylinder ignitor, then MVM 

cannot explain the resulting engine behavior. Hybrid model can however be applied to 

study this behavior also. 

Summary 

This chapter provided a comprehensive survey of different mathematical models 

observed in literature to represent the spark ignition engine. The basic philosophies 

behind the development of those models were discussed. The strong and weak 

features of models were elaborated. It was concluded that MVM is predominantly 

used for the application of controller design due to its accuracy, better physical insight  

and simplicity when compared to DEM model of SI engine. The major weakness of 

MVM is that it operates on the basis of average values of engine variables in a 

complete ignition cycle. It is concluded that the model is not a suitable option for 

detecting the misfire fault, as the fault detection need analysis within an ignition 

cycle. It was also discussed that DEM model is more accurate and provide insight of 

engine operation even within an ignition cycle. The computational load of DEM is 

however sufficiently high. The literature survey also provided a few SI engine models 

based on kinematic behavior of SI engine that analyze the forces acting on engine 

piston, when fuel is burnt inside the chamber. The mentioned kinematic models are 

based on the physical relations between different engine variables and are derived 

using basic laws of physics. 
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Some Data Based Models of SI engine found in literture were also discussed in this 

chapter. LOLIMOT is using artificial neural network to train model parameters to 

approximate the observed engine response. Similarly in another approach, the training 

of model is carried using SVM. 

Finally it was mentioned that hybrid approach to represent the approximate response 

of SI engine is introduced recently in literature where the independent spark events 

are taken as the discrete events and the crankshaft speed is considered as the 

continuous variable. The integration of discrete and continuous variables to represent 

the engine response is used as the basis of hybrid modeling. 
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Chapter 5 

HYBRID MODEL FOR SI ENGINE 

Although model based methods are applicable under all operating conditions, 

however for complex systems like SI engine the chances of development of an 

accurate yet simple model are very little. The available models of SI engine are only 

too complex to become useful for misfire fault detection application. Due to this non-

availability of appropriate model, misfire fault detection in SI engine is predominantly 

carried out using data based technique. Most of the data based methods used some 

heuristic guide line and worked directly on experimental data which is obtained by 

engine operating under specific operating conditions. Although the heuristic guideline 

successfully achieved the requirement of fault detection, however the lack of concrete 

theoretical model behind the method resulted in some severe short comings. Sood A. 

K et al (1985, pp: 301-307) presented both model based technique and pattern 

recognition methods for detecting misfire fault and claimed that it is advantageous to 

use physical reasoning for the development of classification rules. Angeli C (2004, 

pp: 12-30) indicated that heuristic based expert system can guide efficient diagnostic 

procedure but they lack generality. He clearly indicated that rule based approaches 

poorly handles the novel situations and mentioned that the main weakness of rule 

based methods can be eliminated using model based methods that can even handle the 

unexpected cases not covered by the heuristic based methods. In addition to the major 

weaknesses of these methods mentioned above, some other shortcomings of these 

methods include: 

 To validate the fault detection method by simulation, reference data cannot be 

generated even assuming ideal conditions.  

 Inability of method to analytically explore the performance of fault diagnostic 

algorithm against e.g. time delay between initiation and detection of fault and 

percent isolation to one line replacement unit, defined by George V. [2006, pp: 

362-363].  
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 Inability of method to explore the properties of process variables. As an 

example an appropriate model enables us to identify that the variable of 

interest is Markov/ Gaussian. The information about properties of process 

variable provides us sufficient insight to identify some new and stronger 

prediction algorithms to detect fault.  

The data based methods developed under heuristic guideline were based either on the 

basis of black box models like artificial neural network or on the basis of signal shape 

defined by domain experts on the basis of their observations. These methods suffer 

from the following shortcomings: 

 Methods based on artificial neural network lack physical insight of process. 

 It is not possible to study all possible conditions to identify different signal 

shapes for training the network. Also characteristics of systems change over 

their life time, hence the trained neural network, or data based features need to 

be modified. 

 Some of the methods are applicable at the operating point only. The method 

can however be applied at other operating point after necessary changes e.g. 

for fault isolation the method of correlation analysis described in Section 3.3.2 

needs correlation with the waveforms (some of which are shown in Fig. 3.3) 

that correspond to experimental observation under different misfire conditions. 

When the method would be applied at some other operating point, the new 

experimental observations would be needed because the frequency of 

oscillation would change with operating point. Also different results may also 

be observed with the aging of engine or even when experiment is conducted 

on another SI engine of different model or make.  

Some of the mentioned problems can however be avoided if a heuristic affect is 

identified in the system response, that can be used for fault detection purpose under 

all operating conditions. A simplified model could be developed to illustrate that 

effect. For SI engine crankshaft speed fluctuations are a main affect that exist in 

steady state response under all operating conditions but the frequency and amplitude 

of fluctuations vary with the operating point and a simple comparison of waveform 

would not work. This effect is however not explained by MVM. Although DEM can 

explain the speed fluctuations but the computational complexity of DEM is very high 
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and study of statistical variations of peaks of speed fluctuations is very difficult. It is 

therefore desired to develop a new simplistic model that can not only be used to study 

the crankshaft speed fluctuations but could also analyze the statistical variation of 

peaks of speed fluctuation signal.  

The model properties could be studied to identify the affects that are present under all 

operating conditions and could then be explored to identify the properties that can be 

used for fault identification under all operating conditions. This approach can be 

considered as an integrated data and model based approach, where model would be 

used to provide a heuristic guideline for the development of data based algorithm. The 

approach of integration of data and model based methods for the fault diagnostic 

applications is a fairly recent approach.  

Roemer M et al (2006, pp: 707-715) mentioned that an integrated physical and 

stochastic modeling approach suits well for prognosis applications in the presence of 

uncertainties like load variations, parameter variations etc. He indicated that data 

based model like neural network or probabilistic methods can use the results from the 

physics based model. He also mentioned that a combined model based and feature 

based approach provide full prognostic ability over the entire life of the component 

under observation and provide information to properly plan the maintenance of 

component during system overhauling. 

The basic modeling objective can therefore be identified as an aid that provides a 

heuristic guideline for data based approach. In this strategy, the developed model is 

simple so that the statistical properties of model input variations could also be studied.  

For the application in hand, the accuracy of model can therefore be compromised as 

long as the model provides correct heuristic guide line to the fault diagnostic method. 

The statistical properties of model variable would be carried out to identify that peaks 

of crankshaft speed fluctuation signal are Gaussian and Markov. The establishment of 

Markov property would provide us a heuristic guideline to transform the model 

outputs to some discrete states and use Markov chains to predict the future behavior 

of those states to identify the faults. The basic modeling objectives in this research 

study can therefore be summarized as: 

 The model should be simpler so that statistical properties of some model 

variable could be explored to identify that the variable is Markov 
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 Identify some property of model output that remains valid under all engine 

operating conditions.  

 Development of finite number of discrete states from model that can be 

modeled as discrete Markov chains. 

 Validation of model using experimental results. 

 Generate data for simulation under different operating conditions for testing of 

algorithm and study the features of algorithm that could not be verified 

experimentally due to absence of appropriate experimental facility. 

Although the model proposed in this thesis can be used to develop misfire detection 

methods using a number of tools of FDI and DX community, the study in this thesis is 

restricted so that the heuristic guideline provided by the model can be used to apply 

Markov Chains for misfire fault detection.  

The application of Markov Model in the area of fault detection is elaborated in 

Section 3.8. The literature survey clearly indicates that fault diagnosis algorithms 

based on Markov models were used for fault prediction by Morgan I. et al [2009, pp: 

1774-1781], for path prediction by Yu et al [2006, pp: 374-379] and for traffic 

forecasting by Sun S. et al [2004, pp: 437-441]. The prediction/ forecasting of fault in 

a system correspond to early fault detection in system. The works available in 

literature clearly indicate that Markov chain is a suitable technique for early fault 

detection. The application of Markov model in the area of fault diagnosis in SI engine 

is not explored widely. The basic reason of this lack of interest is the unavailability of 

appropriate mathematical models in which the variables of interest could be 

represented as a set of discrete states satisfying the Markov condition.  

Smith F. S et al [2004, pp: 649-663] used a General Diagnostic Engine (GDE) for 

fault detection using belief revision method. In the proposed method, a large system 

was represented by a set of interacting components each with a fixed set of possible 

behaviors that are independent from each other. A variable of interest could however 

be generated by a number of different routes that encounter different model 

fragments. The condition of independence of behaviors was termed mandatory by the 

author. The possible set of behaviors consist of response of component under different 

operating conditions e.g. under no-fault condition, faulty condition etc. He referred 

the behavioral descriptions as model fragments. Each model fragment had a belief 
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attached to it that indicates how close a particular fragment is to the actual behavior of 

component. The diagnostic method model was simulated and the variable of interest 

was analyzed by processing the inputs through various model fragments. The belief of 

a model was updated using ―confirm set‖ or a ―conflict set‖. A confirm set was 

generated for model when two identical values of variable of interest could be 

generated by simulating in two different ways. In case of non-identical values a 

conflict set was generated. The ―confirm/ conflict sets‖ were then used to generate the 

penalizing and rewarding evidences. Markov chain was then used to process these 

evidences after necessary conversion to a Markov matrix.  

Although the scope of proposed method of Smith is different from the method being 

proposed in this thesis, however the conditions imposed on the system by Smith 

before application of Markov chains should be given a due consideration. Some of the 

conditions are:  

 Division of whole system into a set of interacting components exhibiting 

specific behavior 

 The behavior of different components be independent from each other 

 The processing of variable of interest to generate the states like ―confirm / 

conflict” or “rewarding / penalizing” evidences. 

 The study of different modeling approaches of SI engine indicates that MVM is 

based on the physical modeling of engine processes on the basis of modeling of fluid 

flow and torque produced at the output. The geometry/ mechanical design of SI 

engine is however not considered in modeling so the division of system into a number 

of interacting components using MVM is not possible. 

DEM defined the system in states. DEM considered not only each cylinder as 

independent physical entity in model but also considered the thermodynamic cycle of 

each cylinder independently. In this way suction, compression, expansion and exhaust 

strokes are considered separately for each cylinder. The behavior of each stroke is 

studied on the basis of principles of physics. The resulting model is therefore highly 

complex but is capable to detect the misfire fault as described by Guzzella L. (2004, 

pp: 23)]. The complexity of DEM model however restricted its application on wide 

scale and the model was used only by limited research community, mostly for control 

applications only.  
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The proposed hybrid model can be considered as a simplification of DEM in which 

only the power stroke of system is modeled. The simplified model is then validated by 

simulation and experiments. The proposed model was analyzed for the conditions 

proposed by Smith as well as the validity of Markov model before application of 

algorithm based on Markov chain.  

The condition of dividing of system into interacting components is quite natural in SI 

engine where the engine system can be considered as a number of cylinders 

interacting with each other. However all the cylinders are physically coupled with 

each other through a common crankshaft mechanism, the condition of independence 

of interacting components is difficult to establish and needs to be studied. Another 

problem in the application of Markov chain is to establish the Markov condition for 

the variables of interest.  

The difficulties in using the available SI engine models for use in a diagnostic 

algorithm using Markov chain instigated for the development of a new hybrid model 

and study its properties for the application of diagnostic method. As the proposed 

model is hybrid in nature, it is appropriate to study the properties of general hybrid 

system. Section 5.1 provides an orientation of hybrid system and its mathematical 

representation. The hybrid modeling of SI engine is presented in section 5.2 and the 

statistical properties of model are provided in section 5.3 to establish the condition 

that response of components are independent and define the variable of interest in 

model which is Markov. 

5.1 Hybrid Systems 

Lunze J. mentioned that hybrid dynamical system has emerged out to become a major 

research topic in last decade of twentieth century [ Engell S et al (2002, pp: 3) ].  

Many engineering system are represented by hybrid model. Although some hybrid 

models for SI engine are found in literature, the field is not well established. Before 

starting hybrid modeling of SI engine it would however be beneficial to define the 

hybrid system and study its properties. 

 Liberzon D. (2003, pp: 3) defined the hybrid systems as dynamic systems whose 

output is defined by an interaction between continuous and discrete dynamics. Many 

man-made systems could be represented well as a hybrid system. The hybrid nature of 
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model arises either due to the switching of controller in different modes of process 

(e.g. gain scheduling applications) or the dynamics of process is switched while the 

controller remain unchanged. Schutter D. et al , (2003, pp. 8-9) described many 

possible modeling techniques for a hybrid system; some of which are:  

 Timed or hybrid Petri-nets 

 Hybrid automata  

 Mixed logical dynamic models  

 Real-time temporal logics  

 Timed communicating sequential processes  

 Switched bond graphs 

Diverse nature of modeling techniques in development of hybrid system is due to 

different communities applying it in their respective domains. Liberzon mentioned 

that different communities have contributed to the development of hybrid systems 

according to their requirements e.g. researchers in computer science concentrate on 

studying the discrete behavior of system assuming a simpler continuous dynamics. 

The community of control systems on the other hand stressed on the properties of 

continuous system with simpler state switching. Control community referred these 

systems as switched systems. The switching sequence in these systems is defined 

either as a function of states or as a function of time [Liberzon D. (2003, pp: 3), 

Zhendong S. (2005, pp:16-18)]. 

Hybrid modeling approach was used for other automotive applications by many 

researchers like Torrisi F. D et al [2004, pp: 235-249] and Giorgetti N. et al [2006, 

pp: 499-506], Balluchi A [2000, pp: 888-912] etc. The application of hybrid modeling 

for fault detection of SI engine is however not extensively investigated.  

5.1.1 Switched Linear System  

The class of hybrid system where all the subsystems are linear time-invariant systems 

is commonly termed as switched linear systems [Zhendong S. (2005, pp:3)]. Tabuada 

P. (2009, pp: 3-4)  described a notation of a set tuple  < 𝑋, 𝑋0, 𝑢, →, 𝑌, 𝐻 > to 

represent the hybrid systems; where:  

 X represent the state variables of system,  

 X0 is the set of initial states,  
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 u represent the system inputs, 

 → represent transition relations,  

 Y represent system output 

 H is the output map  

Hybrid systems exhibit a number of properties.  

5.1.2 Properties of Switched Linear System 

 A switching system is said to exhibit Zeno Behavior if there exist two states x0 

and x1 such that starting from state x0 the system need infinite number of 

jumps to reach the state x1 in a finite time t. Zeno behavior is not necessarily 

exhibited by all switched systems. 

 A switching path is said to be well defined on  𝑡1, 𝑡2 , if it is defined in  𝑡1, 𝑡2  

and for all 𝑡 ∈  𝑡1, 𝑡2 , both 𝑙𝑖𝑚𝑠↑𝑡𝜃 𝑠    𝑎𝑛𝑑    𝑙𝑖𝑚𝑠↓𝑡𝜃 𝑠   exist, and it has 

only finite jump instants in any finite time interval  𝑡1, 𝑡2 . The possibility of 

well definedness excludes the property of Zeno behavior. 

 Stability of switching system is defined not only by the system dynamics but 

also depend on the switching sequence. Liberzon D. (2003, pp:19) indicates 

that given two stable systems and discrete dynamics to switch the two systems 

to get an output. A switching dynamics can be defined that would result in an 

unstable system. Also a switching sequence can be defined that could stablize 

a switched system with a stable and an unstable sub-systems. The stability of 

switching systems can be determined by finding a common Lyapunov function 

for all the sub-systems. The stability of Switched and hybrid systems were 

studied by Branicky M. S. (1998, pp: 475-482) and are discussed in Schutter 

D. et al , (2003, pp. 67-82) 

 A hybrid/ switching system exhibit some oscillations (similar to chattering) 

about its operating point. 

An SI engine exhibit both continuous and discrete dynamics so it can be represented 

as a hybrid system. The hybrid model proposed in this chapter is developed with the 

basic objective of acting as an aid to misfire fault detection. Since fault detection can 

be carried out in the controlled environment, a simplified steady state model with 

some fixed parameters like fixed throttle position and constant load conditions etc can 
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be considered. Such a steady state model could be used for the development of 

relatively simple fault diagnostic algorithms.  

5.2 Hybrid Model of SI Engine 

Although the representation of SI engine as a hybrid model is already present in 

literature, the main difference of the approach presented in this thesis is the manner in 

which the continuous states of model are being represented. The hybrid model 

presented by Deligiannis V. F et al (2006, pp. 2991-2996) assumed the model of four 

engine processes i.e. suction, compression, power and exhaust as four continuous sub-

systems. Similar continuous systems are also considered in DEM that can also be 

considered as a hybrid model. In this model, each cylinders of engine is considered as 

independent subsystem that takes power generated due to the burning of air fuel 

mixture as input and movement of piston in engine cylinder is considered as the 

output. These sub-systems are represented as linear systems and complete SI engine is 

considered as a collection of subsystems. These subsystems are working coherently to 

produce the net engine output. The proposed hybrid model of SI engine can be 

regarded as a switched linear system. Although an SI engine is a highly nonlinear 

system, for certain control applications a simplified linear model is used. Lee M. et al 

(2006, pp: 637-644) mentioned that modeling assumption of constant polar inertia for 

crankshaft, connecting rod and piston assemblies to develop a linear model is a 

reasonable assumption for a balanced engine having many cylinders. The modeling of 

sub-systems of proposed hybrid model would be performed under steady state 

conditions, when the velocity of system is fairly constant. Also the time in which the 

sub-system give its output is sufficiently small. A linear approximation for modeling 

of sub-system can therefore be justified. Similar assumption of locally linear model is 

made by Isermann R et al (2001, pp: 566-582) in LOLIMOT structure. The 

continuous cylinder dynamics is therefore represented by a second order transfer 

function with crankshaft speed as output and power acting on pistons of cylinder due 

to fuel ignition as input. 

A continuous dynamic model of these sub-systems would be derived in this chapter. 

The timing of signals to fuel injectors, igniters, spark advance and other engine 

components is controlled by Electronic Control Unit (ECU) to ensure the generation 

of power in each cylinder in a deterministic and appropriate order. The formulation of 
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hybrid modeling of sub-systems would be carried under the following set of 

assumptions: 

Modeling Assumptions 

1. Engine is operating under steady state condition at constant load.  

2. Air fuel ratio is stoichiometric. 

3. Air fuel mixture is burnt inside engine cylinder at the beginning of power 

stroke and energy is added instantaneously in cylinder resulting in increase in 

internal energy. This internal energy is changed to work at a constant rate and 

deliver energy to a storage element (flywheel). 

4. At any time instant only one cylinder would receive input to become active 

and exerts force on piston and other cylinders being passive due to suction, 

compression and exhaust processes contribute to engine load torque. 

5. All the four cylinders are identical and are mathematically represented by the 

same model 

The switching logic can be represented as a function of state variables of systems.  

5.2.1 Framework of Hybrid Model  

The framework of Hybrid model for a maximally balanced SI engine with four 

cylinders is represented as a 5-tuple model < 𝜇, 𝑋, Γ, Σ, 𝜙 >. The basic definition of 

model parameters is given below.  

 𝜇 = {𝜇1,𝜇2, 𝜇3, 𝜇4} where each element of set represents active subsystem of 

hybrid model.  

 𝑋 ∈ 𝑅2
 represents the state variable of continuous subsystems, that would be 

defined when model is developed for subsystems, where the vector X consists of 

velocity and acceleration. 

 Γ = { 𝑀 } is a set that contains only a single element for a maximally balanced 

engine. M represents state space model of all subsystems and is assumed to be 

linear, minimum phase and stable. The model equation is derived in the next 

section. The model can be defined in state space as: 

____________________________________________________________________ 

𝑋  𝑡 = 𝐴𝑋 + 𝐵𝑈     ( Eq 5.1) 
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𝑦 𝑡 = 𝐶𝑋 + 𝐷𝑈     

Where 

 𝑈 ∈ 𝑅, 𝐴 ∈ 𝑅2×2 , 𝐵 ∈ 𝑅2×1, 𝐶 ∈ 𝑅1×2, 𝐷 ∈ 𝑅  

____________________________________________________________________ 

 Σ: 𝜇 → 𝜇 represents the generator function that defines the next transition model. 

For an IC engine, the piston position has a one to one correspondence with 

crankshaft position during an ignition cycle. The generator function is therefore 

defined in terms of crankshaft position as: 

_______________________________________________________________________________________________ 

Σ =

 
 
 

 
 𝜇1                   4𝑛𝜋 ≤  𝜃 1𝑑𝑡 < (4𝑛 + 1)𝜋

𝜇2          4𝑛 + 1 𝜋 ≤  𝜃 1𝑑𝑡 < (4𝑛 + 2)𝜋

𝜇3        (4𝑛 + 2)𝜋 ≤   𝜃 1𝑑𝑡 < (4𝑛 + 3)𝜋

𝜇4        (4𝑛 + 3)𝜋 ≤   𝜃 1𝑑𝑡 < (4𝑛 + 4)𝜋

  

_____________________________________________________________________ 

where n=0,1,2,… and 
 
 𝜃 1𝑑𝑡  represents instantaneous shaft position that 

identifies the output of generator function.  

 𝜙: Γ × 𝜇 × 𝑋 × 𝑢 → 𝑋 defines initial condition for  the next subsystem after the 

occurrence of a switching event, where u represents input  to subsystem. Figure 

5.1 shows the subsystems and switching sequence of proposed SI engine hybrid 

model.  

5.2.2 Modeling of Sub-system 

A subsystem/cylinder is active when it contributes power to system i.e. during power 

stroke. When a sub-system is active its output is defined by the dynamic equations of 

system and its output during its inactive period is defined by its storage properties. 

The output of a sub-system provides initial condition to the next sub-system at the 

time of switching. All the subsystems are actuated sequentially during an ignition 

cycle. The cyclic actuation of subsystems is represented as a graph in Figure 5.1. The 

total output delivered by the system during complete ignition cycle would be the 

vector sum of outputs of all subsystems during that ignition cycle.   

( Eq 5.2) 
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If T is the period of ignition cycle and u(t) is the input to system at time t within
 

an ignition cycle and ui(t) is the input of i
th

 subsystems; by assumption 4: 

_____________________________________________________________________ 

𝑢𝑖 𝑡 = 𝑢 𝑡              𝑤𝑒𝑛   
(𝑖−1)𝑇

4
< 𝑡 <

𝑖𝑇

4
  , 𝑖 = 1,2,3,4   

𝑢𝑖 𝑡 = 0                  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒     

__________________________________________________________________

 

5.2.2.1 Modeling of Sub-system 

Franco et al (2008, pp: 338-361) used mass-elastic engine crank assembly model for 

real time brake torque estimation. In this representation of SI engine each cylinder is 

represented by a second order mass spring damper as shown in Figure 5.2.  

Consider δQ amount of energy added in system by burning air fuel mixture. The 

instantaneous burning of fuel increase the internal energy δU in cylinder chamber.  

 
 

Figure 5.1 : Switching of subsystems     (Adopted from Rizvi (2009, pp. 1-6)) 

 

( Eq 5.3) 

 
 

Figure 5.2:  Spark ignition engine representation       (Adopted from Franco et al (2008, pp. 338-361)) 
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____________________________________________________________________ 

𝛿𝑈 = 𝛿𝑄      

____________________________________________________________________ 

At ignition time, energy is added instantaneously in engine. This will increase internal 

energy of system. A part of this internal energy is used to do work and rest of the 

energy is drained in coolant and exhaust system. If internal energy change to work 

with constant efficiency ηt then work δW is given by the energy balance equation as:  

____________________________________________________________________ 

𝛿𝑊 = −𝜂𝑡  𝛿𝑈      

𝑈𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  5.4  𝑤𝑒 𝑔𝑒𝑡 

𝛿𝑊 = −𝜂𝑡  𝛿𝑄      

____________________________________________________________________ 

If p is pressure due to burnt gases then work done during expansion stroke is given 

by:  

____________________________________________________________________ 

𝑊 =  𝑝𝑑𝑉
𝑉2

𝑉1
      

_____________________________________________________________________ 

where V1 and V2 are initial and final volume of cylinder during expansion. For 

adiabatic expansion: 

_____________________________________________________________________ 

𝑝𝑉𝛾 = 𝑘1     
 

_____________________________________________________________________ 

where k1 and γ are constant. Hence Eq 5.6 becomes 

_____________________________________________________________________ 

𝑊 =  𝑘1𝑉
−𝛾𝑑𝑉

𝑉2

𝑉1
     

𝑊 = 𝑘1
𝑉2

−𝛾+1
−𝑉1

−𝛾+1

−𝛾+1
    

 

____________________________________________________________________ 

( Eq 5.4) 

( Eq 5.5) 

( Eq 5.6) 

( Eq 5.7) 

( Eq 5.8) 
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Consider that the closed end of the piston to be origin and x is a continuous variable 

representing the instantaneous piston position with respect to the origin. The piston 

always moves between two extreme positions xt and xb where xt represent piston 

position at Top Dead Center (TDC) and xb represent piston position at Bottom Dead 

Center (BDC). If the surface area of piston is A, and it moves a small distance δx from 

its initial position x, where δx is constant and can be chosen arbitrarily small, then 

using Eq 5.8 work done can be expressed as: 

____________________________________________________________________ 

𝛿𝑊 = 𝑘1
[𝐴 𝑥+𝛿𝑥 ]−𝛾+1−[𝐴𝑥]−𝛾+1

−𝛾+1
    

𝛿𝑊 = 𝑘1
𝐴−𝛾+1

−𝛾+1
 (𝑥 + 𝛿𝑥)−𝛾+1 − 𝑥−𝛾+1   

𝛿𝑊 =
𝑘1𝐴

−𝛾+1

−𝛾+1
 𝑥−𝛾+1  1 +

𝛿𝑥

𝑥
 
−𝛾+1

− 𝑥−𝛾+1   

𝛿𝑊 =
𝑘1𝐴

−𝛾+1𝑥−𝛾+1

−𝛾+1
  1 +

𝛿𝑥

𝑥
 
−𝛾+1

− 1   

 

____________________________________________________________________ 

Expanding using binomial series and neglecting higher powers of δx and simplifying: 

____________________________________________________________________ 

𝛿𝑊 = 𝑘1𝐴
−𝛾+1𝑥−𝛾𝛿𝑥    

Therefore from Eq 5.5 

𝛿𝑄 = −
𝑘1𝐴

−𝛾+1𝑥−𝛾𝛿𝑥

𝜂𝑡
     

____________________________________________________________________ 

In deriving the model for sub-systems, each cylinder of SI engine is treated as a 

second order system as used by Franco et al (2008, pp: 338-361) and shown in  

Figure 5.2. Consider if F is the applied force by the burnt gases, m is the mass of 

engine moving assembly (piston, connecting rod, crankshaft and flywheel), 

coefficient of friction is k2 and coefficient of elasticity is k3, then net force acting on 

piston is given by: 

 

( Eq 5.9) 

( Eq 5.10) 
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____________________________________________________________________ 

𝑚
𝑑2𝑥

𝑑𝑡2 = 𝐹 − 𝑘2
𝑑𝑥

𝑑𝑡
− 𝑘3𝑥   

 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘2

𝑑𝑥

𝑑𝑡
+ 𝑘3𝑥 = 𝐹    

____________________________________________________________________ 

Net work done by the expanding gases against the load, friction and elastic restoring 

forces when piston moves by a small distance δx would be given as: 

____________________________________________________________________ 

 𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑘2
𝑑𝑥

𝑑𝑡
+ 𝑘3𝑥 𝛿𝑥 = 𝛿𝑊   

Using Eq 5.10 above equation becomes 

 𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑘2
𝑑𝑥

𝑑𝑡
+ 𝑘3𝑥 𝛿𝑥 = 𝑘1𝐴

−𝛾+1𝑥−𝛾𝛿𝑥  

____________________________________________________________________ 

The displacement δx can be chosen constant and arbitrarily small. As the piston 

moves, the volume inside the combustion chamber increases resulting in the reduction 

of instantaneous pressure on piston. Instantaneous power is therefore a function of 

piston position. Instantaneous power delivered by the engine would be calculated by 

differentiation as: 

____________________________________________________________________ 

 𝑚
𝑑3𝑥

𝑑𝑡3
+ 𝑘2

𝑑2𝑥

𝑑𝑡2
+ 𝑘3

𝑑𝑥

𝑑𝑡
 𝛿𝑥 = −𝑘1𝛾𝐴

−𝛾+1𝑥−𝛾−1 𝑑𝑥

𝑑𝑡
𝛿𝑥

 

𝑚
𝑑3𝑥

𝑑𝑡3
+ 𝑘2

𝑑2𝑥

𝑑𝑡2
+ 𝑘3

𝑑𝑥

𝑑𝑡
= −𝑘1𝛾𝐴

−𝛾+1𝑥−𝛾−1
𝑑𝑥

𝑑𝑡
 

____________________________________________________________________ 

Writing differential Eq 5.13 in terms of velocity v as: 

____________________________________________________________________ 

𝑚
𝑑2𝑣

𝑑𝑡2 + 𝑘2
𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 = −𝛾𝜂𝑡

𝑘1𝐴
−𝛾+1𝑥−𝛾𝛿𝑥

𝜂𝑡

𝑣

𝑥𝛿𝑥
  

𝑚
𝑑2𝑣

𝑑𝑡2 + 𝑘2
𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 = 𝛾𝜂𝑡𝛿𝑄

𝑣

𝑥𝛿𝑥
   

( Eq 5.11) 

( Eq 5.12) 

( Eq 5.13) 

( Eq 5.14) 
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𝑚
𝑑2𝑣

𝑑𝑡2
+ 𝑘2

𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 =

𝛾𝜂𝑡𝑣

𝑥

𝛿𝑄

𝛿𝑡

𝛿𝑡

𝛿𝑥
   

𝑚
𝑑2𝑣

𝑑𝑡2 + 𝑘2
𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 =

𝛾𝜂𝑡𝑣

𝑥
𝑃(𝑥)

1

𝑣
   

_________________________________________________________________ 

Assuming that crankshaft speed is proportional to the speed of piston inside the 

cylinder, Eq 5.14 represents a model of crankshaft speed when energy is added in one 

of the cylinder of SI engine by the ignition of fuel. The model is however nonlinear 

on account of presence of 𝑥 in the denominator on the right side of differential 

equation. 

5.2.2.2 Model Linearization 

SI engine is a highly nonlinear system. In hybrid modeling, the time of activation of 

subsystems is very small. Also under under steady state conditions, the velocity of 

engine is fairly constant  hence a linear approximation of engine subsystems can be 

justified. The model derived in earlier section is now linearized to form a switched 

linear model. The validity of linear model is only at the operating point. As x can 

never be zero, so the function is smooth and can be linearized at TDC.  If the igniting 

fuel adds the power P(x)  to a cylinder when piston is at position x, the dynamics of 

system at TDC would be described as: 

____________________________________________________________________ 

𝑚
𝑑2𝑣

𝑑𝑡2 + 𝑘2
𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 =

𝛾𝜂𝑡

𝑥
𝑃(𝑥)   

____________________________________________________________________ 

Linearizing the system at TDC (𝑥 = 𝑥𝑡)  under steady state condition, and assuming 

that whole power is added in the cylinder instantaneously when the cylinder is at 

TDC, Eq 5.15 becomes: 

____________________________________________________________________ 

𝑚
𝑑2𝑣

𝑑𝑡2 + 𝑘2
𝑑𝑣

𝑑𝑡
+ 𝑘3𝑣 =

𝛾𝜂𝑡

𝑥𝑡
𝑃(𝑥𝑡)    

____________________________________________________________________ 

( Eq 5.16) 

( Eq 5.15) 
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In simulations, P(x) can be taken as a narrow pulse or a triangular wave, assuming 

that when system receives input, it deliver power at constant high rate for a short 

interval of time and thereafter the delivered power would be negligible. Since shaft 

speed is also constant at the start of each ignition cycle, therefore right hand side of 

Eq 5.16 becomes constant and expression becomes a linear differential equation. 

5.2.3 Model Properties 

This section correlate some general observations of SI engine with the properties of 

hybrid model and some results would be established for further analysis.  

 Even under steady state conditions, SI engine exhibit a slight oscillatory 

component in crankshaft angular speed. These oscillations can be attributed 

due to switching of hybrid system. 

 The number of ignitions in engine cylinders in a finite time is also finite. This 

indicates that SI engine do not exhibit Zeno behavior. 

 To increase the engine speed, the ignition event would have to occur more 

frequently. The system can be steered from any given state at any arbitrary 

time to some other state by changing the switching path in a finite interval of 

time. SI engine can therefore be considered as a well posed system. 

 When all the four cylinders are identical, the transfer function of all cylinders 

is identical and a common Lyapunov function can be found to ensure the 

stability of engine system.  

The mentioned observations correlate well with the properties of hybrid model 

providing some justification of using a hybrid model for SI engine. This section 

would study the properties of engine that can be deducted from hybrid model. The 

properties would be studied in the form of some propositions and Lemmas applicable 

to hybrid model of SI engine. Keeping in mind the basic working and operation and 

working of SI engine, the mentioned properties seems to be trivial; however most of 

the mentioned properties could not be explained on the basic of MVM. These 

properties would be used in next sections for the development of misfire detection 

algorithms for SI engine.  

When same air input is provided to all cylinders and engine is operating under steady 

state conditions, the model exhibits the following properties.  
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5.2.3.1 Proposition 1 

When engine is running with constant speed, input to engine system is a periodic 

impulse train with period T/4 where T is the period of ignition cycle. This is because 

input impulse is given after angular displacement of π and under constant speed 

assumption. The same time would be needed for each displacement.  

5.2.3.2 Lemma 1 

Under no misfire condition the system output exhibits a periodic AC component with 

period T/4 where T represents the period of ignition cycle (two revolutions).  

Proof:   

When all subsystems are identical and represented by a linear model, then a 

periodic input with period T/4 would produce a periodic output with same 

fundamental frequency. 

5.2.3.3 Lemma 2 

When a cylinder misfires, the output of system exhibits a periodic AC component 

with period T.  

Proof:  

Misfire can be considered as the loss of one of every fourth impulse of input 

signal. The input signal is therefore periodic with period T rather than T/4 and 

output also exhibits fundamental frequency T.  

5.2.3.4 Lemma 3 

For a four cylinder engine, with no misfire fault condition, the output contains four 

identical peaks.  

Proof:   

All subsystems are represented by stable, LTI minimum phase second order 

system that exhibits a single peak in output against each impulse input. 

5.2.3.5 Lemma 4 

In steady state conditions with fault in i
th

 event, no peak would be observed due to 

input of i
th

 subsystem.  
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Proof:  

Absence of impulse at ith place in input signal would result in the loss of 

corresponding peak.  

The results of lemma 1, 2, 3 and 4 can be observed from simulation results 

discussed later. 

5.2.3.6 Defintion 1 

The system is said to be in steady state when the net change in system output v(t) in 

one complete ignition cycle is zero.  

____________________________________________________________________ 

𝑣 𝑡 + 𝑇 = 𝑣(𝑡)     

____________________________________________________________________ 

5.2.3.7 Theorem 1 

Under steady state and no fault condition when same input is given to identical 

subsystems (maximally balanced cylinders), the response of each subsystems would 

be independent: 

Proof: If u is the input to a subsystem, v(0) is initial condition and h(t) is the impulse 

response of a subsystem then the output of second subsystem i.e. at time t where 

𝑇
4 < 𝑡 < 2𝑇

4  is given by: 

____________________________________________________________________ 

𝑣 𝑡 = 𝑣 0 +   𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏
𝑇

4
0

+   𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏
𝑡
𝑇

4

  

____________________________________________________________________ 

By Lemma 1 the output signal is periodic with period  
𝑇

4
  therefore

 

____________________________________________________________________ 

 𝑣 𝑇 4  = 𝑣 0       

⇒ 𝑣 0 +   𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏
𝑇

4
0

= 𝑣 0    

And Eq 5.18 becomes: 

( Eq 5.17) 

( Eq 5.18) 

( Eq 5.19) 
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𝑣 𝑡 = 𝑣 𝑇 4  +   𝑡 − 𝜏 𝑢 𝜏 𝑑𝜏
𝑡
𝑇

4

   

____________________________________________________________________ 

Hence during the activation time of second subsystem, system output depends only on 

the input u(t) and impulse response of second subsystem and is independent of 

response of first subsystem. Similarly, it can be proved that under steady state 

conditions, responses of all cylinders are independent.  

5.2.3.8 Proposition 2 

For an EFI engine, air intake in cylinders is measured and fuel proportional to amount 

of air intake is sprayed in it. Therefore power input to system under steady state 

conditions is proportional to the amount of air intake.  

The mentioned model properties can be summarized in the form of four 

corollaries 

5.2.3.9 Corollaries 

 Four peaks would be observed in one ignition cycle of a four cylinder SI 

engine. (Lemma 3) 

 Amplitude of four observed peaks represents four independent events. 

(Theorem I) 

 Crankshaft speed is proportional to input power. (being input and output of 

linear model of subsystems)  

 Crankshaft speed is proportional to amount of intake air. (By Corollary 3 and 

Proposition 2)  

5.2.4 Model Input Estimation 

The input to the model is the power generated inside the cylinder as a result of 

ignition. It is assumed that power operating on piston is coming from two sources i.e. 

by the ignition of fuel and by the power supplied by the engine rotating assembly due 

to inertia. In case of misfire, the power due to inertia of rotating assembly will 

maintain the movement of piston but the Power due to ignition of fuel is absent. 

Power can be defined as the product of force acting on piston of a cylinder and piston 

velocity. If F is the force acting on engine piston and v is the piston velocity, then 

power P acting on piston can be defined as: 
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____________________________________________________________________ 

𝑃 = 𝐹𝑣  

𝑃 = 𝑝. 𝐴. 𝑣 

____________________________________________________________________ 

Where p is the pressure inside the cylinder, A is the surface area of piston which is 

known.  

A typical curve of cylinder pressure signal as a function of crankshaft angular 

position given by Isermann R. (2001, pp: 566-582) is shown in Figure 5.3. Input to 

cylinder is assumed to be a pulse. To arrive on a rough estimate of pulse amplitude, 

cylinder pressure signal is approximated as a pulse starting at TDC and remain for 60˚ 

rotation. The peak of cylinder pressure signal is considered as 25 bars (assumed as a 

typical value). If engine is running at 15 revolutions per second i.e. idle speed, and 

cylinder stroke is 75mm, then average speed of piston can be easily estimated. This 

pulse would be provided once in each ignition cycle i.e. in 720˚. The time to traverse 

the complete stroke is 1/30 seconds or nearly 0.03 seconds. The average power 

provided by the fuel can now be estimated as: 

____________________________________________________________________ 

𝑃𝑜𝑤𝑒𝑟 =  
2500000

12
 × 𝑝𝑖 × .075 × .075/4  × (

.075

.03
 ) 

𝑃𝑜𝑤𝑒𝑟 = 2301 𝑊𝑎𝑡𝑡 = 3.1 𝑝  

____________________________________________________________________ 

The net power contribution of four cylinders would be nearly 12 hp which is quite a 

reasonable power contribution under idle conditions. The plausibility of result 

provided basis to test the approach in simulation. The simulation results are provided 

in chapter 7. 

By (Eq 5.20) the steady state input power is defined by pressure inside the cylinder, 

piston area and piston speed. The only unknown variable is the cylinder pressure that 

can be estimated using observer or an estimator. One such technique of cylinder 

pressure estimation proposed by Yaojung S. and Moskwa J. (1995, pp: 70-78) is 

described briefly in section 3.2.2.1. The proposed method or some similar method that 

takes only crankshaft speed signal as input for pressure estimation can be used.  

( Eq 5.20) 

( Eq 5.21) 
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Guzzella L. (2004,  pp: 165) has provided the plot of cylinder pressure Vs. cylinder 

volume on a log-log scale. Since both adiabatic compression and adiabatic expansion 

during power stroke are polytropic processes, straight lines would be observed for 

both these processes on log-log scale. The selection of two points on these two lines 

when piston is at same position and finding the pressure difference ∆𝑝𝑐 = 𝑝𝑐2 − 𝑝𝑐1. 

Guzzella L. (2004, pp: 167) indicated that this pressure difference varies almost 

linearly with the combustion energy and this pressure difference represent the average 

mechanical work on the piston by the igniting fuel. Using ∆𝑝𝑐 , average piston speed 

and piston area, power acting on piston can be estimated. The estimation of cylinder 

pressure can be carried out using the technique proposed by Yaojung S and Moskwa J 

(1995, pp: 70-78). The estimated pressure can be plotted against volume to find ∆𝑝𝑐 . 

In this work the typical value of cylinder peak pressure is taken and taking crankshaft 

speed as input, acceleration signal is analyzed using observer to validate the input. 

5.2.5 Model Parameter Estimation 

The movement of piston exhibit a periodic behavior with same fundamental 

frequency as that of rotational speed of engine shaft. This provides a heuristic 

guideline to choose the value of k3 (in Eq 5.16) as a function of crankshaft angular 

speed. The empirical choice is validated using simulation and experimental results 

reported later. 

____________________________________________________________________ 

𝑘3 = 𝜔2 = (2𝜋𝑁)2 

_____________________________________________________________________ 

 

Figure 5.3 : Cylinder Pressure variation Curve 

( Eq 5.22) 
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where N is engine speed in revolution per second.  

During experimental verification load is also applied by friction. Most frictional 

models described in literature are based on empirical relations as a polynomial in 

engine speed. A simplified frictional model is chosen with term containing only 

square of engine speed. The constant term representing the load acting on engine is 

also considered as a parameter whose value is defined as a polynomial in crankshaft 

speed as:  

____________________________________________________________________ 

𝑘2 = 𝑏 𝜔2+c 

____________________________________________________________________ 

On the basis of simulation and experimental results it is established that the optimal 

selection of value of b varies between 0.02 and 0.5.  

The value of parameters k1 and k2 depend on the operating point. The block diagram  

of switched linear system is shown in Figure 5.4.  

 

5.2.6 Generation of Reference Signal for Fault Detection 

The input to the model is assumed in the form of pulse. The updated model can be 

defined at any operating point. The linear model can be solved easily to find the 

system response representing the engine speed. This response can be used as a 

reference signal for comparison with the actual engine response to generate the 

residuals for the analysis of faults in system.  

 

 

 

 

 

 

 

 

 

Figure 5.4: Block diagram for simple hybrid model of SI engine 

( Eq 5.23) 

H1 

H2 

H3 

H4 

𝑥 = 𝐴1𝑥 + 𝐵1𝑢 

𝑦 = 𝐶1𝑥 + 𝐷1𝑢 

𝑥 = 𝐴1𝑥 + 𝐵1𝑢 

𝑦 = 𝐶1𝑥 + 𝐷1𝑢 

𝑥 = 𝐴1𝑥 + 𝐵1𝑢 

𝑦 = 𝐶1𝑥 + 𝐷1𝑢 

𝑥 = 𝐴1𝑥 + 𝐵1𝑢 

𝑦 = 𝐶1𝑥 + 𝐷1𝑢 

180˚ Phase Shift 

360˚ Phase Shift 

540˚ Phase Shift 

Periodic Impulse Train 
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5.2.7 Results from Hybrid Model 

An analysis of hybrid model indicates following results which are useful in statistical 

analysis of system.  

1. Four peaks would be observed in one ignition cycle of a four cylinder SI 

engine. (Lemma 3) 

2. Amplitude of four observed peaks represents four independent events. 

(Theorem I) 

3. Crankshaft speed is proportional to input power. (Due to linear model of 

subsystems)  

4. Crankshaft speed is proportional to amount of intake air. (By Corollary 3 and 

Proposition 2)  

Having a good knowledge of system, the results can be also be visualized on heuristic 

grounds. However among the existing SI engine models, MVM can also be used to 

establish the third and fourth results, but cannot deduct the first two results. The 

results and properties of hybrid model will now be used to develop a statistical model 

for SI engine.  

5.3 Statistical Analysis of Input to Hybrid System 

Kami´nski T. et al (2003 ) studied the instabilities of combustions and random cycle to 

cycle variations of torque as nonlinearities and its control using spark advance as 

actuating parameter. Pulkrabek W. W. (1997, pp: 239) indicated that under ideal 

conditions, the combustion should be exactly same in all engine cylinders but this 

does not occur in practice due to variations that occur in the intake system. Even if no 

variations in intake occur, the turbulence within the cylinder would cause the 

statistical variations in engine output. The above studies indicate that randomness of 

the combustion process.  

George V. [2006, pp: 341] mentioned that an integration of physical and stochastic 

modeling techniques, is useful to evaluate useful life as a function of uncertainties on 

account of certain faults. The main objective of statistical analysis is to study the 

statistical properties of peaks observed in the crankshaft speed fluctuation signal. For 

statistical analysis of crankshaft speed fluctuations, the random behavior of intake air 

would be considered first. The analysis would be carried out in the following steps: 
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 Determine probability density function (PDF) of random variable representing 

peak values of velocity observed in an ignition cycle. 

 Formation of a collection of above random variable. 

 Prove that above collection is Gaussian and Markov. 

 Using corollary 4, the results are finally applied to crankshaft speed. 

5.3.1 Determination of PDF of Peak Values of Crankshaft Speed 

Using Result 4 (Section 5.2.7), it can be concluded that PDF of crankshaft velocity 

and air intake in engine cylinders are similar. The problem of finding the PDF of peak 

value of velocity is therefore reduced to find the PDF of intake air.  

The PDF of air intake is estimated by a series of three hypothetical experiments 

representing the suction of air in engine cylinders. Hypothetical experiment is a 

statistical experiment which is not actually conducted but statistical properties of 

events generated by it could be analyzed.  

5.3.1.1 Hypothetical Experiment 1 

Consider a hypothetical experiment of counting the number of molecules sucked 

by cylinder as piston moves by a differential amount 𝛿𝑥 → 0. The sample space for 

this hypothetical experiment would be { 𝑁𝑚𝑖𝑛 , 𝑁𝑚𝑖𝑛 + 1, ……… , 𝑁𝑚𝑎𝑥 }, where 

𝑁𝑚𝑖𝑛  represents minimum number of air molecules that can be sucked during the 

differential movement 𝛿𝑥  and 𝑁𝑚𝑎𝑥  is defined vice versa. Each differential 

movement 𝛿𝑥 of piston, where 𝛿𝑥 → 0 during suction stroke produces an event of this 

experiment. A random variable ψ𝑖  is defined on sample space that assigns some 

probability P(.) to each element of this sample space. The probability density function 

(PDF) for this variable can be approximated as uniform and IID (Independent but 

Identically Distributed) because amount of air sucked in cylinder depends upon the 

pressure difference between cylinders and manifold and under ideal conditions 

suction stroke of SI engine occur at constant pressure.  

5.3.1.2 Hypothetical Experiment 2 

The second hypothetical experiment is defined as counting the total number of 

molecules sucked by cylinder as piston moves from TDC to BDC. Each suction cycle 

would generate an event of this experiment. A random variable for events of this 

experiment can be expressed as a sum of large number of samples of Hypothetical 

Experiment 1: 
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____________________________________________________________________ 

ξk =  ψii       

____________________________________________________________________ 

Using central value theorem, it can be concluded that PDF of this variable is Gaussian 

distribution.  

5.3.1.3 Hypothetical Experiment 3 

This hypothetical experiment is defined as counting the maximum number of 

molecules sucked by any of the four cylinders during an ignition cycle. A random 

variable of this experiment also represent sum of large number of samples of 

Experiment 1 and hence is a Gaussian variable. If 𝑋𝑚 ,𝑖 is a random variable that 

maximum air is sucked in i
th

 cylinder in m
th

 ignition cycle where 𝑖 ∈  1, 2, 3, 4  and 

𝑚 ∈  1, 2, 3, 4, ……  then 𝑋𝑚 ,𝑖  is a Gaussian variable.  

Defining a collection Z of 𝑋𝑚 ,𝑖and ignoring the index i for simplicity: 

Z = {X1, X2, ……………… Xn}    

Where n represents the number of sample and can be very large. The collection Z is 

our variable of interest which is claimed as Gaussian and Markov process.  

Result 2 (Section 5.3.1.4) ensure the independence of events of collection Z. The 

method of proof is adopted from Speyer J. L. (2008, pp: 153-159) and applied to the 

problem at hand. In first step it would be proved that collection is Gaussian and then 

the collection would be proved to be Markov. 

5.3.1.4 Collection is Gaussian 

The characteristic function of collection is:  

____________________________________________________________________ 

ΦZ 𝜔1,𝜔2 … . 𝜔𝑛 = 𝐸[𝑒𝑗𝜔𝑇𝑍]    

____________________________________________________________________ 

where ω is the frequency variable. The exponent can be expanded as: 

___________________________________________________________________ 

ωTZ = ω1X1 + ω2X2 + ⋯… . . +ωnXn   

𝜔𝑇𝑍 = 𝜔𝑛 𝑋𝑛 − 𝑋𝑛−1 +  𝜔𝑛 + 𝜔𝑛−1 (𝑋𝑛−1 − 𝑋𝑛−2) + ⋯ +  𝜔𝑛+. . +𝜔1 𝑋1 

____________________________________________________________________ 

( Eq 5.24) 

( Eq 5.25) 

( Eq 5.26) 
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Here 𝑋𝑖 − 𝑋𝑖−1 = ∆𝑋𝑖 represents the difference between peak values of air sucked 

during two successive ignition cycles. Eq 5.25 therefore becomes: 

____________________________________________________________________ 

ΦZ ω1, ω2 … . ωn = E[ejωn ΔXn ej(ωn +ωn−1)ΔXn−1 …  ej(ωn +ωn−1+⋯+ω1)X1 ]  

ΦZ ω1, ω2 … . ωn = ΦΔXn
 ωn ΦΔXn−1

 ωn + ωn−1 …ΦX1
 ωn + ωn−1+. . +ω1  

____________________________________________________________________ 

The collection would be a Gaussian process if its characteristic function is Gaussian. 

As 𝑋1 is Gaussian, the collection would be a Gaussian if ∆𝑋𝑖 is also Gaussian. 

𝛥𝑋𝑛 = 𝑋𝑛 − 𝑋𝑛−1  

𝑋𝑛 = 𝑋𝑛−1 + 𝛥𝑋𝑛   

𝑋𝑛  and 𝑋𝑛−1 represent maximum air sucked during different strokes of two different 

ignition cycles of engine. Using corollary 2 (Section 5.2.3.9), these strokes are 

independent so 𝑋𝑛  and ∆𝑋𝑛−1 are independent.  The characteristic function of 𝑋𝑛  

becomes: 

____________________________________________________________________ 

ΦXn
= ΦXn−1

ΦΔXn
 

ΦΔXn
=

ΦXn

ΦXn−1

 

____________________________________________________________________ 

But as both 𝑋𝑛  and 𝑋𝑛−1 are Gaussian 

____________________________________________________________________ 

ΦXn
= e−

ω2σn
2

2    and   ΦXn−1
= e−

ω2σn−1
2

2  

Hence 

ΦΔXn
= e−

ω2(σn
2 −σn−1

2 )
2  

____________________________________________________________________ 

Which is the characteristic function of a Gaussian random variable with zero mean 

and variance 𝜎𝑛
2 − 𝜎𝑛−1

2 . This indicates that difference between maximum air sucked 

observed during two consecutive ignition cycles is Gaussian. Consider a collection of 

non-overlapping increment Y. The collection represents difference between maximum 

( Eq 5.27) 

( Eq 5.28) 

( Eq 5.29) 
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air sucked in any of the four cylinder during two successive ignition cycles for n 

ignition cycles 

_____________________________________________________________________ 

𝑌 = { 𝑋1,𝑋2 − 𝑋1,………………𝑋𝑛 − 𝑋𝑛−1}  

𝑌 = { 𝑋1,∆𝑋2,………………∆𝑋𝑛} 

_____________________________________________________________________ 

As per Section 5.2, suction in different cylinders is independent, which ensure that 

events of set Y also form set of independent events. The distribution function of non-

overlapping increment of collection can be written as: 

_____________________________________________________________________ 

fX1 ,..∆Xn
 x1, x2 − x1, … , xn − xn−1 =  

1

σ 2π
e

−(x i−x i−1)2

2σ2n
i=1      

fX1 ,..∆Xn
 x1, x2 − x1, … , xn − xn−1 =  fΔX i

(xi − xi−1)n
i=1       

_____________________________________________________________________ 

where, 𝑥0 is assumed to be 0. This indicates that Y is Gaussian. Using Eq 5.31, it is 

established that collection Z is Gaussian, and independent increment. 

5.3.1.5 Collection is Markov 

Consider by definition: 

_____________________________________________________________________ 

𝐹𝑋𝑛 |𝑋1 ,,𝑋𝑛−1
 𝑥𝑛 |𝑥1, . , 𝑥𝑛−1 = 𝑃(𝑋𝑛 ≤ 𝑥𝑛 |𝑋1 = 𝑥1, . , 𝑋𝑛−1 = 𝑥𝑛−1) 

____________________________________________________________________ 

Given the past sequence, the right hand side of equation can be transformed in terms 

of increments. 

____________________________________________________________________ 

FXn |X1 ,,Xn−1
 xn|x1, . , xn−1 = P(Xn − Xn−1 ≤ xn − xn−1|Xk − Xk−1 = xk − xk−1) 

____________________________________________________________________ 

where k=1,2,….,n-1 

( Eq 5.30) 

( Eq 5.31) 

( Eq 5.32) 

( Eq 5.33) 
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The independent increment property of collection enables us to change the 

conditional probability with unconditional probability. Therefore  

____________________________________________________________________ 

FXn |X1 ,,Xn−1
 xn |x1, . , xn−1 = F∆Xn

(xn − xn−1)  

____________________________________________________________________ 

It has been proved earlier that ∆𝑋𝑖 is also Gaussian  

____________________________________________________________________ 

F∆Xn
 xn − xn−1 =  

1

σ 2π
e

−(η−x n )2

2σ2
xn

−∞
dη 

F∆Xn
 xn − xn−1 =  

1

σ 2π
e

−η2−x n
2 +2η x n

2σ2
xn

−∞
dη  

F∆Xn
 xn − xn−1 =

 
1

σ 2π
e
−η2−2x n

2 +2η x n
2σ2 dη

x n
−∞

e−x n
2

σ 2π

  

F∆Xn
 xn − xn−1 =

 fX n X n−1 (η ,xn−1)
x n
−∞ dη

fX n−1 (xn−1)
  

F∆Xn
 xn − xn−1 = FXn |Xn−1

(xn|xn−1)   

____________________________________________________________________ 

Therefore Eq 5.34 becomes: 

____________________________________________________________________ 

𝐹𝑋𝑛 |𝑋1 ,,𝑋𝑛−1
 𝑥𝑛 |𝑥1, . , 𝑥𝑛−1 = 𝐹𝑋𝑛 |𝑋𝑛−1

(𝑥𝑛 |𝑥𝑛−1)  

____________________________________________________________________ 

The collection Z therefore represents a Markov process. The events of this collection 

are the maximum amount of air sucked in any cylinder during an ignition cycle.  By 

corollary 4, crankshaft speed is proportional to intake air. Hence collection of events 

generated by peaks observed in crankshaft speed is also Gaussian and Markov.  

The basic philosophy of proposed fault diagnostic method is based on the peak 

velocities associated with four identical sub-systems. In a healthy engine, the largest 

peak observed in an ignition cycle can belong to any of the four cylinders with equal 

probability. Under faulty conditions, due to power loss, the smallest peak would 

( Eq 5.34) 

( Eq 5.35) 

( Eq 5.36) 
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correspond to faulty cylinder with highest frequency. The difference between two 

consecutive peaks is therefore taken as a measure of power loss due to faulty cylinder. 

5.4 Summary 

This chapter is aimed to the development of a hybrid model of SI engine. In this 

regard, a general description of hybrid systems is first provided and special emphasis 

is given to the properties of switched linear systems. A switched linear model for SI 

engine was then developed. The power generated inside the cylinders as a result of 

burning of air fuel mixture is considered as model input and crankshaft speed is 

considered as model output. Each of the cylinders is considered as individual sub-

system of engine for which a transfer function is derived on the basis of basic laws of 

physics. The cylinder dynamics is considered as continuous sub-system. A discrete 

rule defining the periodic switching of ignition in different cylinders defined the 

discrete dynamics of engine model. The properties of hybrid model are studied. The 

hybrid model clearly identifies the properties that crankshaft speed would exhibit four 

peaks in one ignition cycle where the amplitude of four peaks depends on the input 

power and it was defined that the amplitude of four peaks represent four independent 

events. 

The study of statistical events was based on the random variation of air sucked in 

each cylinder during an ignition cycle. It is established that the distribution of events 

representing the quantity of air sucked in cylinders during each ignition cycles is 

Gaussian. The properties of hybrid model and distribution of air input to engine 

cylinders is then used to establish that the random process representing random speed 

fluctuations observed on crankshaft in different ignition cycles is Gaussian and 

Markov.  
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Chapter 6 

FAULT DIAGNOSTIC METHODOLOGY 

The literature review indicates that Markov chain is a suitable tool for prediction, 

forecasting and estimation. The fault detection on the basis of Markov model is not 

studied widely for SI engine. This chapter presents the proposed misfire fault 

detection method based on Markov chain where the misfire is defined in Section 1.5. 

Before the development of method it would be appropriate to provide a brief 

overview of Markov processes and Markov chain.  

The proposed methodology is developed under the inspiration of the fault detection 

methodology proposed by Rizzoni G. (1987 pp: 450-457) which has its roots in the 

model defining torque as: 

_____________________________________________________________________ 

𝑇𝑖 𝑡 = 𝑃𝑖 𝑡 . 𝑔(𝜃) 

_____________________________________________________________________ 

The details of method proposed by Rizzoni G. are presented in section 3.4.2. It is 

established that crankshaft speed is depend on the cylinder pressure and all the peaks 

of torque/ speed are processed as scalar quantities in the form of a single array.  

Rizzoni G. (1987 pp: 450-457) used the correlation analysis to isolate the fault. In his 

analysis, Rizzoni G. collected the signal patterns of all possible engine misfire faults 

on the operating engine speed. The observed data is correlated with all those signals 

to identify the similarity of the observed signal with possible fault pattern. The basic 

advantage of the proposed fault diagnostic methodology based on hybrid model over 

the method proposed by Rizzoni G. is that the latter method detects the fault by 

maximum likelihood method and used additional steps of correlation analysis to 

isolate the fault. The proposed method on the other hand can detect and isolate the 

faulty cylinder in a single algorithmic step. 

The proposed method is based on hybrid model, with number of sub-systems equal to 

the number of cylinders in the system. This instigated to de-multiplex the measured 

( Eq 6.1) 
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speed into four streams for a four cylinder engine so that each stream can be 

associated to one of the sub-systems. For data de-multiplexing, SI engine provides 

features that can not only be used to distribute the inputs into four streams but also 

help to synchronize the four streams with the active cylinders. The details of fault 

detection methodology are described in section 6.2. 

6.1 Markov Chain 

Papoulis A. [2006, pp: 695] defined Markov processes as the simplest generalization 

of independent processes in which outcome at any instant depends on the outcome of 

preceding event only i.e. for Markov process past has no influence on the future if 

present is given. A large number of random processes like gambler ruin problem, 

random walk and branching processes etc are being modeled using Markov chains.  

6.1.1 Properties of Markov Chains 

The terminology and properties of Markov chains can be observed in any text book 

on stochastic process. In this section only those properties of Markov chains would be 

highlighted that are pertinent to the work presented in this thesis. 

6.1.1.1 Markov Assumption 

The basic property of Markov process is the Markov assumption i.e. the future 

evolution of states 𝑥(𝑡𝑛), of the process is independent of the past record of process 

states (i.e. before time 𝑡𝑛 ), given a complete description of the current states of 

process at time 𝑡𝑛 . The Markov process can mathematically be described as: 

____________________________________________________________________ 

𝑝 𝑥 𝑡𝑛  ≤ 𝑥𝑛 𝑥 𝑡  , 𝑡 ≤ 𝑡𝑛  = 𝑝 𝑥 𝑡𝑛  ≤ 𝑥𝑛 𝑥 𝑡𝑛−1      

𝑤𝑒𝑟𝑒 𝑡1 < 𝑡2 < ⋯  < 𝑡𝑛  

____________________________________________________________________ 

Where p is the probability.  

6.1.1.2 Definition of States 

A random process X is a Markov chain if it satisfies the Markov assumption given in 

Eq 6.2. where all the possible states 𝑥1 , 𝑥2, …  , 𝑥𝑛  ∈ 𝑆, where S is a countable set. 

 

( Eq 6.2) 
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6.1.1.3 State Transition 

The property of Markov assumption ensures that next state of system can be estimated 

using the information of only current state of system. A state transition matrix defines 

the probabilities of change of system states from one state to any other state. In any 

stochastic process, the state transition matrix can be defined by an analysis of 

probabilities of jump between different states of system.  

In a state transition matrix P, each row represents the probability of jump from that 

state to some other state e.g. 𝑝11 represents the probability of jump from state 1 to 

itself. Similarly 𝑝12 represent probability of jump from state 1 to state 2. The matrix P 

is a stochastic matrix and exhibits the following properties: 

 All the entries of matrix P are non-negative i.e. 𝑝𝑖𝑗  ≥ 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 𝑎𝑛𝑑 𝑗 

 The sum of all entries of each row of matrix P is unity i.e.  𝑝𝑖𝑗 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑗  

Given the current state of system, matrix P can be used to predict the next state of the 

system as: 

____________________________________________________________________ 

𝑝 1 = 𝑝 0 𝑃  

____________________________________________________________________ 

where 𝑝 0  is the initial probability and 𝑝 1  is the predicted probability after single 

steps. The evolution of states is dependent on the occurrence of discrete events. 

6.1.1.4 State Prediction 

Given the initial state of system and state transition matrix, the state of system at any 

instant can be estimated. The n-step transition probabilities can be estimated using 

Chapman-Kolmogorov equation defined as: 

____________________________________________________________________ 

𝑝 𝑛 = 𝑝 0 𝑃𝑛   

____________________________________________________________________ 

where 𝑝 0  is the initial probability and 𝑝 𝑛  is the predicted probability after 𝑛 steps. 

The evaluation of 𝑛𝑡  power of state transition matrix is performed by eigenvalue 

decomposition of matrix P as: 

( Eq 6.3) 

( Eq 6.3) 
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____________________________________________________________________ 

𝑃 = 𝑈Λ𝑈−1  

𝑡𝑒𝑛 

𝑃𝑛 = 𝑈 Λ𝑛𝑈−1 

____________________________________________________________________ 

6.1.1.5 Stationary Distribution 

A probability vector 𝜋 = [𝑥1 𝑥2 …  𝑥𝑛]𝑡  is said to be the stationary distribution of a 

finite Markov chain if  

____________________________________________________________________ 

𝜋 = 𝜋𝑃  

____________________________________________________________________ 

i.e. the probability would not improve any further. In any irreducible Markov chain 

having finite number of states, at least one stationary distribution exists. The 

stationary distribution represents the limiting state probability of the system. 

In any system the states of the system can be classified into a number of 

communicating classes. A communicating class C is a set of states such that if 𝑖 ∈ 𝐶 

then 𝑗 ∈ 𝐶 if and only if 𝑖 𝑎𝑛𝑑 𝑗 communicate.  

The basic problems of developing a diagnostic algorithm based on Markov chain are : 

 To define a stochastic process that can be represented as a collection of state. 

 To ensure that the proposed stochastic process is Markov 

 To ensure that the fault could be detected by the  probabilistic analysis of 

states of system 

Hybrid model presented in chapter 5, however provide sufficient physical insight to 

define the desired stochastic process. 

6.2 Fault Diagnostic Method 

The first step in the development of fault diagnostic methodology is the selection of 

appropriate variable that satisfies the conditions of Markov process. The variable 

would be transformed into a finite set of states. An event would also be defined for 

the evolution of states. The defined states would then be used for residual generation. 

( Eq 6.4) 

( Eq 6.5) 
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The residual signal is evaluated using Markov chain by analyzing the limiting 

probability of states, assuming a healthy current state. A threshold can be selected on 

the components of the limiting probability vector to identify the fault. Each step of 

fault diagnostic methodology is presented in this section. 

6.2.1 Selection of Random Variable 

The proposed fault diagnostic method used the output of hybrid model i.e. crankshaft 

speed for the generation of residual. The hybrid model and its properties are presented 

in chapter 5. Following are the main properties of interest for the development of fault 

diagnostic algorithm.  

 Four peaks are present in the plot of velocity waveform of SI engine during an 

ignition cycle. 

 The four peaks of crankshaft speed can be indexed by observing the cylinder 

number which is active when the peak is observed.  

 The event of observing largest peak during an ignition cycle is a random 

variable. 

 The collection of events representing largest peak form a Markov process.  

On the basis of mentioned model properties, the four peaks observed in the crankshaft 

speed signal is taken as the variable of interest which is Markov. It is assumed that the 

data acquisition rate would be large enough to observe those peaks. 

6.2.2 Selection of Event 

One set of peak values would be taken for each ignition cycle. The ignition cycle is 

therefore considered as the desired index to update the probabilities. 

6.2.3 Residual Generation 

In the proposed fault diagnostic technique, a reference signal would be generated by 

first tuning the model with the actual engine so that the output (crankshaft speed) of 

model matches with the actual engine. The difference between the four peaks 

estimated through model and observed through engine would be used as a residual as 

shown in Figure 6.1. Under ideal conditions, the model would be running run time in 

parallel for the generation of residual.  
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If 𝜔𝑇  represent the vector indicating the four peaks of AC component of crankshaft 

speed signal within an ignition cycle as computed through model (i.e. a reference 

signal) then: 

_____________________________________________________________________ 

𝜔 𝑇 ≜   𝜔1     𝜔2      𝜔3     𝜔4  

_____________________________________________________________________ 

In practice fault diagnosis would be carried out under steady state condition at 

constant engine speed. Lemma 3, given in section 5.2.3.4 indicated the property of 

hybrid model that for a healthy and ideally balanced engine operating at constant 

speed all the four peaks of crankshaft speed fluctuation signal during an ignition 

cycle would be identical. Hence the model based computation would result in four 

identical peaks. Therefore the peak value would become a constant and need not be 

estimated run time but for defined operating conditions, the value can be estimated 

offline by first tuning the model with the healthy engine. The estimated value can then 

be used to generate the reference signal. 

If  𝜔   represent the values of four peaks estimated through model, then the reference 

vector 𝜔 𝑇  will become:  

_____________________________________________________________________ 

𝜔  𝑇 ≜   𝜔 .  1     1      1     1  

_____________________________________________________________________ 

The residual generation scheme is therefore simplified significantly.  

( Eq 6.6) 

( Eq 6.7) 

 

Figure 6.1 : Residual Generator with model running in Parallel 
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In the simplified approach, instead of running the model in parallel, the estimated 

value of vector 𝜔 𝑇  would be fed to the residual generator for on-line calculations. The 

block diagram of new residual generation scheme is shown in Figure 6.3 

 

 

 

 

 

 

 

 

Using reference vector signal 𝜔  𝑇  and the vector 𝜔𝑇   representing the peak values of 

data during an ignition cycle, residual vector can be defined as: 

_____________________________________________________________________ 

𝑟𝑇 𝑘 = 𝜔  𝑇 𝑘 −  𝜔𝑇 𝑘  

_____________________________________________________________________ 

Here each component of residual vector represents the variation of each cylinder from 

a reference behavior.  The proposed residual scheme satisfies the property of residual 

mentioned in Section 2.5.1 that value of residual is zero under no fault condition.  

6.2.4 Residual Evaluation 

In Chapter 5 it was already proved that the process defined by observing the peak 

value of crankshaft speed during an ignition cycle forms a Markov process. It can 

therefore heuristically be concluded to use Markov Chains for Residual Analysis. 

Markov Chains have a potential to identify a small biasing condition by analyzing the 

limiting probability.  

For application of Markov chain it is necessary to define the states. Since residual 

vector is generated once in one complete ignition cycle, the states would also be 

updated once after complete ignition cycle.  

( Eq 6.8) 

+ 
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Figure 6.2: Simplified Residual Generator with off-line reference estimation  
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The state of Markov chain can be defined heuristically with physical significance 

behind it as the index of cylinder showing the maximum non-uniformity or power loss. 

This corresponds to the row number corresponding to the largest value of component 

in the residual vector. In this way a set of four possible states can be defined for 

engine. During engine operation, a state would be assigned for each ignition cycle and 

the states would jump from one state to the other state in successive ignition cycles. 

The set of four states 𝑠𝑖      𝑖 = 1,2,3,4 are therefore defined as: 

_____________________________________________________________________ 

𝑠1: index   𝑑𝑖 ∞ = 1;        

𝑠2: index   𝑑𝑖 ∞ = 2;        

𝑠3: index   𝑑𝑖 ∞ = 3;        

𝑠4: index   𝑑𝑖 ∞ = 4;        

_____________________________________________________________________ 

Where  di ∞  represent the infinity norm of vector di  (i.e. the largest element of 

vector di) and index   di ∞  represents the index of the largest element of vector di . 

The presence of state is the indication, that the particular cylinder is assumed as faulty 

in that specific ignition cycle. The decision of fault would however not be made on 

the basis of single ignition cycle but the data of a large number of ignition cycles 

would be complied to decide about the fault in step of residual evaluation. 

For fault analysis a state transition matrix F is defined representing frequency of 

transition from one state to some other state. The matrix F can be generated by 

observing the peak values of speed in the observed data set. We define a single state 

transition event from state si to sj in m
th

 ignition cycles as a matrix with 1 in j
th

 row 

and i
th

 column and 0 elsewhere e.g. 

_____________________________________________________________________ 

𝐹𝑚 =  

0 0
0 0

0 0
1 0

0 0
0 0

0 0
0 0

  

_____________________________________________________________________ 

( Eq 6.9) 

( Eq 6.10) 
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Represents that in m
th

 ignition cycle maximum power loss is observed in 3
rd

 stroke 

and in (m+1)
th

 ignition cycle maximum power loss is observed in 2
nd

 stroke. 

Again defining a matrix F as: 

_____________________________________________________________________ 

𝐹 =  Fmm  

_____________________________________________________________________ 

The matrix F contains the frequency of occurrence of all state transitions as: 

_____________________________________________________________________ 

𝐹 =  

𝑓11 𝑓12

𝑓21 𝑓22

𝑓13 𝑓14

𝑓23 𝑓24

𝑓31 𝑓32

𝑓41 𝑓42

𝑓33 𝑓34

𝑓43 𝑓44

   

_____________________________________________________________________ 

where, 𝑓𝑖𝑗  represents the frequency of arrival of 𝑖𝑡   state from 𝑗𝑡   state. The total 

number of arrival to 𝑖𝑡   state from any other state is the sum of 𝑖𝑡   row i.e.  

_____________________________________________________________________ 

𝑓𝑖 =  𝑓𝑖𝑗
4
𝑗=1 , 𝑖 = 1,2,3,4    

_____________________________________________________________________ 

Matrix F is then converted to a probability transition matrix P. The elements pij of 

matrix P represent the probability of state transition from i
th

 state to j
th

 state, where i 

and j belong to set {1,2,3,4}. For a four cylinder engine the dimension of matrix P is  

4×4. The matrix F would then be used to calculate the transition probability matrix P 

that satisfies the condition of transition probability matrix of a Markov chain: 

_____________________________________________________________________ 

𝑝𝑖𝑗 ≥ 0;            𝑖 = 1, 2, 3, 4    

 𝑝𝑖𝑗 = 1;   𝑖 = 1, 2, 3, 44
𝑗=1    

_____________________________________________________________________ 

The transition probability matrix P is obtained by dividing all the elements of 𝑖𝑡 row 

of matrix F with the frequency of arrival 𝑖𝑡  state i.e. 

( Eq 6.11) 

( Eq 6.12) 

( Eq 6.13) 

( Eq 6.14) 
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_____________________________________________________________________ 

𝑃 =

 
 
 
 
 
 
 
𝑓11

𝑓1

𝑓12

𝑓1

𝑓21

𝑓2

𝑓22

𝑓2

𝑓13

𝑓1

𝑓14

𝑓1

𝑓23

𝑓2

𝑓24

𝑓2

𝑓31

𝑓3

𝑓32

𝑓3

𝑓41

𝑓4

𝑓42

𝑓4

𝑓33

𝑓3

𝑓34

𝑓3

𝑓43

𝑓4

𝑓44

𝑓4  
 
 
 
 
 
 

   

_____________________________________________________________________ 

When the cylinders of engine are maximally balanced and input to all cylinders is also 

exactly same, the current state may jump to any of the four possible states with equal 

probability and hence the probability of all possible jumps is 0.25. It is therefore 

anticipated that under no fault condition all the entries of matrix P would be close to 

0.25.  

Using transitional probability matrix P and a vector p(0) that define the initial fault 

probability of four cylinders, Fault  probability after n transitions is given by: 

_____________________________________________________________________ 

𝑝 𝑛 = 𝑝 0 𝑃(𝑛)     

_____________________________________________________________________ 

Using eigenvalue decomposition, the above expression can be written as: 

_____________________________________________________________________ 

𝑝 𝑛 = 𝑝 0 𝑉𝐷(𝑛)𝑉−1    

_____________________________________________________________________ 

Where V is a matrix of eigenvectors and D is a diagonal matrix with eigenvalues of 

transition probability matrix on diagonal.  As n→∞, the limiting state probability 

would be calculated. Since matrix D is diagonal, the calculation of arbitrary power of 

matrix is simply a computation of scalar power. 

 The matrix F is formed by checking the peak values of an ignition cycle at run 

time and finding the state transitions. Having a batch of data of 100 or more ignition 

cycles, probability transition matrix is calculated. Assuming initial fault probability 

vector p(0)=[0.25 0.25 0.25 0.25] limiting probability can be found offline.  

( Eq 6.15) 

( Eq 6.16) 

( Eq 6.17) 
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Since the step of evaluation of eigenvalue decomposition of 4 × 4 matrix is not very 

easy step to be programmed in conventional microcontrollers, the method is suitable 

for off- line analysis. 

6.2.5 Threshold Definition 

The elements of vector p represent the probability of fault in each engine cylinder. 

Brotherton T et-al, [2000, pp: 163-171], mentioned that for nominal operation, the 

residuals are represented by white noise with small variance and in the presence of 

fault the variance would be increased. It can therefore be anticipated that when all the 

cylinders are maximally balanced, the components of limiting probability vector 

would remain same and remain close to 0.25. Under faulty condition the value 

component corresponding to the faulty cylinder would become largest but remain less 

than 1. The value of threshold can be chosen between 0.25 and 1. The experimental 

results given in next section indicates that limiting probabilities converge to the 

cylinder exhibiting largest non-uniformity.  

 

6.2.6 Comparison of Method with Approach of Rizzoni 

The presented approach of residual generation is similar to the residual approach 

adopted by Rizzoni G (1987 pp: 450-457). The main difference between the approach 

adopted by Rizzoni and that proposed in this thesis is that Rizzoni used a complete 

data based approach in which the magnitude of the reference signal was defined by 

observing the 𝐿1 norm of the complete data but in this approach, magnitude of 

reference signal is defined by the proposed hybrid model. In the approach of Rizzoni, 

if the amplitude of any specific peak was increased due to some disturbance or noise 

then that peak if represented 𝐿1 norm would be taken as the reference signal although 

it is not representing the actual engine speed. 

The theory developed using hybrid model is however coherent with the Rizzoni 

approach. If we isolate the link of constant value in Figure 6.2 from the model and 

take any arbitrary number (which is larger than the number actually estimated through 

model) to generate the residual then residual analysis would still provide the correct 

fault detection and isolation. 

Rizzoni G. (1988, pp: 237-244) used the crankshaft speed as a scalar and defined the 

residual as non-uniformity in speed. A plot of non-uniformity histograms was 
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provided by Rizzoni which indicates that an increase in non-uniformity of crankshaft 

speed would shift the mean value of histograms from zero to larger values. By 

generating residuals using this method, the misfiring cylinder could however not be 

identified directly. For fault isolation Rizzoni G. used the method of autocorrelation 

described in section 3.3.2, in which the observed signal was compared with signal 

samples taken under different fault conditions.  

In the proposed method histogram can be plotted for each component of residual 

vector, where each component corresponds to a cylinder. The plot of histograms of 

four components of residual vector indicates that the histograms of each component of 

residual vector overlap under no fault condition and the histograms of each individual 

component shift from each other in the event of fault. Using relative shift of each 

vector component, misfiring can be identified directly using the residual. A simulation 

of outputs (Engine speed) of each sub-system both under misfire and no misfire 

condition is provided in chapter 7. 

The shifting of histograms can be used for developing a residual evaluation method 

for detecting the misfire condition. This shifting of histograms depends upon: 

 Non-uniformity between individual cylinders (Misfire conditions) 

 Engine operating speed (Current condition) 

 Load on engine 

The presented method can be considered as simple generalization of method 

presented by Rizzoni. 

The presented method share same limitations as the method proposed by Rizzoni i.e. 

at higher engine speed and smaller load condition, the shifting of histograms would be 

smaller. The value of residual vector depends upon the operating conditions of engine.  

The proposed hybrid model however provides few more simplifications for the 

generation of residual. The properties of hybrid model indicate that the largest speed 

drop is observed when no pressure would be generated inside an engine cylinder i.e. 

when a misfire event occurs in engine cylinder. If residual is generated using this 

approach, even the reference signal would not be required and the algorithm proposed 

on model based analysis could be transformed to a data based algorithm.  
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In this residual generation scheme the variation of peaks observed between two 

consecutive ignition strokes would be observed. This residual scheme has physical 

significance that how much power is dropped between two consecutive power strokes. 

In this case the residual vector can be written as: 

_____________________________________________________________________ 

𝑟(𝑘) =  𝜔1 − 𝜔2 𝜔2 − 𝜔3     𝜔3 − 𝜔4 𝜔4 − 𝜔1  

𝑜𝑟 

𝑟(𝑘) =  𝑑1 𝑑2     𝑑3 𝑑4  

_____________________________________________________________________ 

The proposed residual scheme also satisfies the property of residual mentioned in 

section 2.5.1 that value of residual is zero under no fault condition. For ideally 

balance engine, under no misfire condition, all the peaks of crankshaft velocity would 

be equal and the difference would always be zero.  

6.2.7 Data Based Approach 

The major finding of result is however that the indices of largest diagonal element in 

F matrix is same as that of faulty cylinder, hence fault can also be estimated using F 

matrix only. This not only saves the computational load of formation of matrix P and 

SVD but also enables the algorithm to detect the fault on-line. The simplicity of 

algorithm makes its implementation possible on ordinary microcontrollers.  

The Figure 6.3 presents a general flowchart of the implementation of algorithm on a 

microcontroller. It is known that the gear has 12 regular teeth at an angular 

displacement of 1/12
th

 of a revolution and an additional tooth between two regular 

teeth as a double tooth. During each stroke of an ignition cycle, six teeth would 

appear and in this way instantaneous angular speed of crankshaft can be defined at six 

points during an ignition cycle. 

The basic implementation philosophy is that based on the measurement of time taken 

to traverse an angular displacement of 30̊. Each low to high or high to low transition 

of gear tooth is an indication of completion of this angular displacement except for the 

case of double tooth that must have to be dealt separately. In the algorithm proposed 

in this thesis, we are not interested in the exact value of crankshaft speed but only we 

 

( Eq 6.18) 
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Figure 6.3: A Data based algorithm of Misfire detection for implementation in microcontroller 

> > > 



 

135 

 

want to know whether crankshaft speed become low during ignition cycle of any 

specific cylinder with higher probability. Ignoring the double teeth, we can get six 

readings of instantaneous crankshaft speed during each ignition stroke. If a timing 

signal is generated at sufficiently high rate then timing information between the 

occurrences of two consecutive teeth would be an indication of instantaneous 

crankshaft speed. The largest value of time would imply the smallest crankshaft 

speed. The smallest observed value of time corresponding to the ignition stroke of 

each cylinder is recorded. After the completion of each stroke the observed largest 

peak value of time corresponding to the peak value of crankshaft speed during that 

stroke. These largest time values would be recorded during all four strokes of an 

ignition cycle to define the F matrix. This information can be used to identify the 

misfiring cylinder as the smallest value of crankshaft speed occur during activity of 

misfiring cylinder with highest probability. The identity of cylinder in which power 

stroke is occurring can be obtained by observing the igniter signal . 

The timing information can be generated by starting an interrupt signal. This interrupt 

signal will always increment a counter and hence content of counter is an indirect 

indication of timing. The counter would be incremented by interrupt signal till the 

receipt of edge signal of gear tooth. Larger is the value of counter longer is the 

duration of received pulses and smaller is the crankshaft speed. The identity of 

cylinder is established by the igniter signal and if the recorded time is larger than the 

existing value of observed largest time then new value of time is saved and otherwise 

the value is discarded.  

Therefore during each stroke of cylinder largest value of time taken to sweep the 

given displacement of 30̊ is recorded from among the six possible readings. This 

value would correspond to the smallest instantaneous value of crankshaft speed 

observed during the stroke. This value would be recorded for the ignition stroke of 

each cylinder once during the ignition cycle.  

After the completion of complete ignition cycle, the four peak times (smallest speed) 

would be present in four different variables in microcontroller. These peaks could 

then be used to form F matrix in the memory of microcontroller. After logging the 

data for 400 to 500 ignition cycles, fault could be identified. 
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6.3 Summary 

This chapter is aimed to describe an algorithm to detect misfire fault in SI engine 

using Markov Chains. The chapter first presented the basic properties of Markov 

processes and Markov chains. It is identified that Markov chains can be used to 

predict the probability of its states.  

It is already proved in Chapter 5 that the process representing the crankshaft speed 

fluctuations of an SI engine is a Markov process. In this chapter the process is first 

converted to a discrete state vector. These state vectors represent residuals for fault 

detection method. A method is formed to calculate the state transition probability 

matrix for the Markov Chains. It was claimed that useful information about the engine 

fault can be obtained by finding the limiting probability of different states. To 

evaluate the arbitrary power of state transition matrix, the eigenvalue decomposition 

can be used. 

In the end it is also claimed that the results of fault diagnostic algorithm can also be 

obtained heuristically by the inspection of some intermediate matrices also. When the 

results are finalized on the basis of intermediate matrices, a very simplified data based 

algorithm is formed that can even be implemented in a microcontroller. 
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Chapter 7 

RESULTS AND DISCUSSIONS 

This chapter provides a brief description of development of experimental setup and its 

limitations, software tools used for data acquisition and analysis. The experimental 

setup and results of data analysis are also provided in this chapter. The data analysis is 

divided into two groups: 

 Data analysis using simulated data 

 Data analysis using experimental data 

The experimental validation of presented results can also be divided into two major 

groups. 

 Validation of Model 

 Validation of Fault Detection Method 

The validation of model was carried out by comparing the outputs of model 

simulation with the experimental data. The fault diagnostic algorithm was validated 

by introducing misfire fault in engine and detecting the fault through proposed fault 

diagnostic algorithm using experimental data. The scope of future research using the 

proposed methods is discussed in the end. 

7.1 Experimental Setup 

The experimental setup was also developed during the research work. The funds for 

the development of experimental setup were provided by ICT R&D Funds Pakistan. 

The ICT R&D funds were utilized for the purchase of a half cut car of make Honda. 

The setup was however not research friendly. Some necessary alterations were 

performed in purchased setup to facilitate experimental work. These alterations 

include: 

 Fabrication of frame/ stand for setup  

 Installation of additional sensors in system for necessary data acquisition  
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 Marshalling of signals from all sensors to a junction point to ensure easy 

access of sensor signals 

 Experimental space was provided in setup where a data logging system could 

be placed during experiments 

 Provision of hardware and software for data logging 

The sensor used for the proposed misfire detection algorithm was already present in 

the vehicle. However to extend the application of setup for other research activities, 

some additional sensors were also installed in setup. The pictures of experimental 

setup, introduction of faults in system and signals acquired during experiment are 

provided in appendix A.  

The setup offered two possibilities for data acquisition on computer. 

 The data acquisition cards from National Instrument could directly be 

connected with vehicle sensors. The data could be acquired using ―Labview‖ 

or ―Signal Express‖. This setup is shown in pictures provided in appendix A. 

 OBD-II connecter was also available in the setup so that a fault diagnostic 

toolkit could be connected to the vehicle to read the system variables using a 

PC based OBD-II diagnostic software.  

The basic weaknesses of experimental setup were: 

 Dynamo was not installed in the setup and hence controlled value of load 

could not be applied on engine. The load could however be applied using 

either Head Lights, Air Conditioner or by allowing the wheels to rotate and 

applying brakes but the estimate of applied load was not available. 

 In-cylinder pressure could not be measured due to non-availability of its 

sensor in the setup.  

 During the experiments the throttle position was manually controlled by 

pressing the accelerator and load was applied by the application of brakes. The 

manual adjustment of these parameters also resulted in introduction of errors 

in results. 

In model validation, an approximate value of in-cylinder pressure was chosen based 

on the information available in literature and input was tuned to match the simulation 

results with experimental results. The tuned values were then validated by comparing 
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the response of model and experimental results with misfire fault introduced in system 

and keeping all other conditions unchanged. 

7.2 Model Validation 

The hybrid model proposed in section 5.2 was simulated using Matlab/ Simulink. All 

the sub-systems were receiving input from a periodic pulse train but the input pulses 

of each sub-system was phase shifted from each other. The period of input periodic 

pulse train was defined by the engine speed and the phase delay between inputs to 

different cylinders was equal to the one fourth of period of input pulse train. This 

ensured that all the cylinders were getting input in the cyclic manner defined by the 

hybrid model. Only steady state model was studied. 

Since power generated by the burning gases depends upon the pressure inside the 

cylinder, the amplitude of input pulses was adjusted according to the peak pressure 

developed in cylinder. The gain of cylinder model was adjusted according to the 

formula provided in linear models derived in section 5.2, however the values of gain 

vary slightly.  

To control the misfire events an additional gain element was added with each 

subsystem. This gain of all elements was given a value equal to 1 for no-misfire 

simulation. To simulate the misfire situation, the gain of the corresponding sub-

system was set to zero so that its output did not participate in the net system output. 

The nominal values of model parameters/ constants used in simulation are provided in 

Table 7.1. Under no misfire condition, the model was tuned to match its output with 

the experimental results. 

TABLE 7.1   PARAMETER VALUES USED IN SIMULATION 

Parameter Value Description 

m 
20 Kg Mass of Engine moving assembly 

b 0.2 Friction Coefficient 

k3 10000 Elasticity Coefficient 

γ 1.4 Cp / Cv 

P 10 hp Power generated in cylinder 

η 0.3 Efficiency 

ω 100 rad/s Engine operating speed 
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Using same parameter values, the misfire situation was simulated. The simulation 

results of hybrid model are shown in Figure 7.1. 

 

 

 

 

 

 

 

 

 

The simulation results were then validated by conducting an experiment. In the 

experiment the pulses generated by the magnetic sensor when a gear tooth come close 

to it were logged using a data acquisition card from National Instrument Inc. on an 

analog channel. A conceptual diagram of experimental arrangement of setup is shown 

in Figure 7.2 and actual experimental setup is shown in picture in appendix A.  

The acquired signal was converted to pulses by comparing its signal level with a 

threshold value. The signal was polled at a constant rate using data acquisition cards. 

Following data is applicable to the experiment. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑒𝑡 𝑖𝑛 𝑔𝑒𝑎𝑟 = 13 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 𝑇𝑒𝑒𝑡 = 30° 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑑𝑜𝑢𝑏𝑙𝑒 𝑇𝑒𝑒𝑡 = 15° 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝐷𝑜𝑢𝑏𝑙𝑒 𝑡𝑒𝑒𝑡 

𝐷𝑎𝑡𝑎 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 50000 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/𝑠𝑒𝑐𝑜𝑛𝑑 

The reference was first searched by finding the double teeth. The number of samples 

polled in the time interval of passing of two consecutive gear teeth in front of 

magnetic sensor was observed. The number of samples polled was converted to time 

as: 

 
 

Fig. 7.1 Simulation Results: The waveforms representing fully balanced engine operation (left)  one 

cylinder misfiring (right)  
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𝑇𝑖𝑚𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑜𝑙𝑙𝑒𝑑

𝐷𝑎𝑡𝑎 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒
 

Using angular displacement between two consecutive teeth and time to traverse that 

angular displacement, crankshaft speed was estimated. Crankshaft speed was finally 

plotted as a function of time.  The experiment for the measurement of speed was 

conducted both under no-misfire condition and misfire condition. During experiment 

some load was kept on engine by application of brake. The value of applied load was 

however unknown but an effort was made to keep load similar in both experiments by 

retaining the brake paddle at the same position during both experiments. The 

experimental results are shown in Figure 7.3. 

 

 

Figure 7.3 Experimental Results: The waveforms representing fully balanced engine 

operation (left) one cylinder misfiring (right)  
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Figure 7.2 : Conceptual Diagram of  Experimental Setup 
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During experiments misfire situation was introduced in engine by removing one spark 

circuit. The removed spark circuit is shown in picture in appendix A. A comparison of 

simulation and experimental results, shown in Figure 7.1 and Figure 7.3, indicates 

sufficient similarity to validate the model at the mentioned operating points. 

7.3 Fault Detection Algorithm Validation 

The experimental / simulation results for the proposed method of fault diagnostic are 

discussed in this section: 

7.3.1 Fault Detection Method 

The conventional models use crankshaft speed as a continuous variable for analysis. 

Hybrid model with its property of independence of four sub-systems, however 

provide enough justification to de-multiplex the continuous data stream into four 

independent data streams that can be analyzed independently. Having a data of two 

ignition cycles i.e. angular displacement of 8𝜋, the first data stream would contain 

data from angular displacement of range 0 to 𝜋 and data from 4𝜋 to 5𝜋. Similarly the 

second stream would contain the data from 𝜋 to 2𝜋 and data from 5𝜋 to 6𝜋. The 

splitting of data and then recombining it with another data segment may result in non-

smooth data for which continuous time analysis would become difficult. Under steady 

state engine operation, the problem is however not that significant as apparent in 

experimental data shown in Figure 7.3 (left) in which no significant jump at the 

joining point occurred when first pulse is joined with the fifth pulse. In the proposed 

data based methodology, even the occurrence of such a jump would not significantly 

affect the results. 

Simulation is performed to study the behavior of proposed algorithm with or without 

misfire events. For simulations data was generated using proposed hybrid model. 

Since hybrid model is highly deterministic, noise equal to 10% of the observed AC 

component of signal was added in it to simulate the physical data.  

7.3.1.1 Residual Generation  

To evaluate the effectiveness of residual proposed in section 6.2.3 the engine output 

was simulated using hybrid model. The simulation was performed using fixed time 

interval. The period of input signal was selected according to the selection of engine 
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speed i.e. half of engine speed in revolution per second ( rps ). Using input signal and 

fixed simulation time interval, the output was divided into four streams of data one 

corresponding to each subsystem. The problem of dividing the experimental data into 

four streams is discussed in section of experimental verification. Histograms of all the 

streams were plotted as in Rizvi [2009, pp: 93-100] and are shown in Figure 7.4. 

 

 

 

 

 

 

 

 

Following results can be deducted by analysis of above simulation results: 

 The speed fluctuation is fairly small under no fault condition while the speed 

fluctuations are fairly large under fault conditions. The basic reason for larger 

speed fluctuations are the biasing provided by fault to one of the sub-system 

that resulted in instantaneous drop in engine speed.  

 The states defined in section 6.2.4 will occur with equal probability under no 

misfire condition, however under fault conditions, the probability of 

occurrence of state is defined by the fault intensity.  

 The partial overlap of histograms associated with sub-systems indicates that 

residual alone if used for deciding fault would result in a large number of false 

alarms. It is therefore also necessary to evaluate the fault detection algorithm 

for false alarm rate. The step of residual evaluation is therefore necessary for 

detection of fault. 

7.3.1.2 Experimental Analysis  

For experimental evaluation the crankshaft speed data was acquired and de-

multiplexed into four data streams one corresponding to each cylinder. In actual data 

the de-multiplexing could have been performed by two possible methods.  
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Figure 7.4 : Distribution of crankshaft speed during the activity period of four cylinders 
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 Identify the missing tooth/ double tooth and use it as reference for the next 

coming data 

 Use igniter or injector signal along with speed signal. The signal can be 

observed after every six pulses in picture shown in appendix A. 

 

During experimental verification all the signals were captured but de-multiplexing 

was carried out using first approach only. In experiments of misfire, one of the igniter 

signals was blocked by pulling out its cable connector. The event is shown in picture 

in appendix A. This introduced a strong misfire condition in the system. As the gear 

has 13 teeth, only 6 data points of each sub-system could be observed so resolution of 

plot is one sixth fraction of power stroke. 

To provide some physical insight of proposed residual, the responses of all 

subsystems are plotted as 3D surface shown in Figure 7.5. The 3D plot has crankshaft 

speed along z-axis, Cylinder number along y-axis and power stroke is plotted along x-

axis. The plotted points lie on two edges parallel to axis of ignition cycle and on two 

slightly visible lines in between. A surface is created by joining the corresponding 

points on axis of cylinder number (y-axis). The smooth plot on right side of Figure 

7.5 correspond to the experiment when fault was not introduced in system i.e. igniter 

was not removed and the non-smooth plot on left side represent experiment when 

fault is intentionally introduced in engine by removing an igniter.  

 

 

 
Figure 7.5 : Experimental Results: The surface representing cylinder 3 misfiring (left) no   

misfire (right) cylinder 3 misfiring 
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7.3.1.3 Discussion on Results 

The plots in Figure 7.5 provide useful information regarding fault diagnostic 

methodology.  

 A residual vector corresponds to the change in height of plane from one cylinder 

to the next cylinder in ignition order and is characterized by maximum depth/ 

down-slope of surface during an ignition cycle.  

 State of Markov chain can be identified by observing the cylinder number where 

maximum slope of an ignition strip is observed. 

 Under no fault condition, the surface of 3D plot of hybrid model shown in Figure 

7.5 is very smooth. The surface however lost its smoothness when misfire fault 

occurs as shown in Figure 3.  

A quick result that visual smoothness of curve is an indication of no fault is fairly 

misleading as slight non-smoothness of surface is difficult to detect visually. The 

analysis of data in fact revealed a fault in system which was verified experimentally. 

The non-smoothness present in Figure 7.5 is small enough to become visible but 

could be identified by data analysis. Any apparent non-smoothness of surface always 

indicates a fault.  

Under no fault condition the surface seems sufficiently smooth; however the edge 

parallel to time/cylinder indicates slight ripples. A zoomed view of Figure 7.5 is 

shown in Figure 7.6  where these ripples are more prominent. These ripples represent 

power strokes of cylinders and a complete ripple strip from cylinder 1 to cylinder 4 

represents a complete ignition cycle. 

 
Figure 7.6 : portion of zoomed edge of surface with no misfire 
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Both the representation of data i.e. histograms shown in Figure 7.4 and the 3D plots 

shown in Figure 7.5 are plotted under the major fault condition in which a spark plug 

was removed and no power was generated in one of the cylinder. The fault was so 

significant that it is visually apparent in both the figures. The occurrence of this fault 

was also annunciated by MIL light of vehicle. If the fault is however minor, it would 

not be visible in any of these figures and MIL indication of vehicle could also not 

capture it. 

7.3.1.4 Residual Analysis using Markov Chains  

The residual analysis method using Markov Chains proposed in section 6.2.4 was 

verified experimentally. Following are studied using experimental data: 

 Validity of algorithm 

 Convergence of limiting probability (by plotting probability in each iteration) 

 Study of False Alarm Rate 

 Comparison of method with some other existing misfire detection methods 

After experimental validation of method, the possibility of application of method for 

the detection and identification of multiple misfire faults was studied using 

simulation. 

Experiment 1 

For experimental verification of proposed misfire detection methodology, fault was 

intentionally introduced in system by pulling out the connector of igniter circuit of 

cylinder 3. Data of only 46 ignitions cycles with fault introduced in cylinder 3 was 

captured. The data was analyzed according to the methodology given in section 6.2.4 

by writing a program in Matlab. The results are: 

_____________________________________________________________________ 

F =  

0 0
0 0

0 0
0 0

0 0
0 0

35 1
1 9

  

_____________________________________________________________________ 

The transition probability matrix cannot be formed from the above matrix due to 

division of row 1 and row 2 by zero (i.e. the sum of elements of row). This restriction 

( Eq 7.1) 
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of F matrix is artificially removed by assigning some extra transition to all cylinders 

e.g. take F as a matrix with all ones rather than null matrix as initial value. When a 

large data set would be available for analysis, the error due to addition of these extra 

transitions would not only be quite negligible but also known and hence can be 

considered at the time of decision making.  

Taking F as a matrix with all entries equal to 1 at the start, the resulting matrix after 

the processing of data is: 

_____________________________________________________________________ 

F =  

 1 1
 1 1

 1 1
1 1

 1 1
 1 1

36 2
2 10

  

P =  

0.250 0.250
0.250 0.250

 0.250 0.250
0.250 0.250

0.025 0.025
 0.071 0.071

0.900 0.050
0.142 0.710

  

_____________________________________________________________________ 

The eigenvalue decomposition of probability transition matrix would result in 

eigenvectors and a diagonal matrix as:  

 

_____________________________________________________________________ 

V =  

   0.7071      −0.6787
−0.707      −0.6787

 0.5007         0.4267
0.5007        0.4267

  0.0000        0.0388
  0.0000         0.2781

     0.5043       −0.3346
     0.4944          0.7238    

  

and 

D =  

      0     0
      0  0.3838

0           0
0          0

  0       0
  0       0

         1   0
         0      0.7305    

  

_____________________________________________________________________ 

The limiting probability is then equal to: 

_______________________________________________________________________________________________________ 

P ∞ =  0.0645 0.0645 0.6452 0.2258  

_______________________________________________________________________________________________________ 

( Eq 7.2) 

( Eq 7.3) 

( Eq 7.4) 
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The result clearly indicates that the probability of occurrence of fault is highest in 3
rd

 

cylinder. The step of residual analysis therefore not only identified the fault with 

sufficient clarity but also successfully isolated the fault although a very small data 

sample of only 46 ignition cycles was used for analysis. 

Experiment 2 

The experiment was then repeated by reconnecting the igniter plug and hence 

removing the misfire condition. A data of 592 ignition cycles was logged on computer 

and analyzed.  The F matrix observed as a result of analysis is: 

_____________________________________________________________________ 

F =  

294 10
11 76

 6   3
 9   5

 5    12
 2    4

105 4
6 40

  

_____________________________________________________________________ 

The eigenvalue decomposition of probability transition matrix is performed and 

diagonal matrix is shown: 

___________________________________________________________________ 

D =  

  1     0
  0  0.88

   0           0
  0          0

0     0
0     0

      0.68   0
       0      0.72    

  

_____________________________________________________________________ 

Assuming initially all the cylinders are faulty with equal probability 

_____________________________________________________________________ 

P 0 =  0.25 0.25 0.25 0.25  

_____________________________________________________________________ 

Limiting state probability is estimated to be: 

_____________________________________________________________________ 

P ∞ =  0.5167 0.1777 0.2163 0.0893  

_____________________________________________________________________ 

( Eq 7.5) 

( Eq 7.6) 

( Eq 7.7) 

( Eq 7.8) 
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A misfire condition in cylinder 1 is detected even when no misfire was intentionally 

introduced in system. The result seemed to be a false alarm condition. The results of 

experiment 3 however revealed that the result of experiment 2 is correct. 

Experiment 3 

The validity of result of experiment 2 was explored by conducting another experiment 

to study the air leakage from cylinders. In this experiment, all the four spark plugs 

were removed and pressure gauge was installed in their position. The gauges were set 

to retain the peak value of observed air pressure. The pistons were moved by using 

the starter motor. Maximum pressure created in cylinders during compression stroke 

was retained by pressure gauge. The observed values of cylinder pressure are given in 

Table 7.2. The results of this experiment indicate that slight pressure loss (misfire) 

was observed due to air leakage in first cylinder.  

The result is promising as fault is detected when no perceptible symptoms of fault 

were present in engine operation. In this case the proposed algorithm has provided 

and early warning of fault that is likely to become severe in future. ECU was also not 

telling any fault and even the simple visual inspection of graphs in Figure 7.5 do not 

provide any indication of fault.  

 

TABLE 7.2 LEAKAGE IN CYLINDERS 

Cylinder 1 2 3 4 

Pressure (bar) ≈ 8.75 ≈ 10 ≈ 10 ≈ 10 

 

The analysis of F matrice (Eq 7.2 and Eq 7.5) indicates that the algorithm has finally 

indicated the fault in the cylinder with largest diagonal element in F matrices. The 

result is again heuristic as the fault would always bias the system in a way that it will 

be indicated in that state. 

7.3.1.5 No Misfire Condition  

To study the validity of algorithm under balanced condition, the air leakage fault was 

removed and the experiment was again repeated.  
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Experiment 4 

The data was acquired with all the igniter signals connected and no misfire condition 

present in system. The program was modified and the limiting probability vector was 

calculated whenever the F matrix is changed. The components of limiting probability 

vector were plotted with data acquisition index. The resulting plot is shown in Figure 

7.7. The analysis of plot indicates the following results: 

 The slightly high value of limiting probability of one engine cylinder indicates 

little misfire/ unbalanced condition, however the engine is operating in 

sufficiently balanced condition. 

 The convergence of method is very fast and hence the faulty cylinder could be 

identified in a few ignition cycles. 

The results presented in the earlier section are now being extended using analytic and 

simulation methods to explore the behavior or algorithm under other conditions that 

were not analyzed experimentally. The detail of analysis is presented in section 7.4. 

The experimental analysis presented in section 7.3.1.5 also clearly indicates the 

convergence of limiting probabilities. 

Although, the results provided in section 7.3 indicate the effectiveness of proposed 

hybrid model and misfire detection technique. An error analysis similar to ROC 

analysis is however carried out to study the accuracy of proposed technique. 

 

 

 

Figure 7.7 : Convergence of limiting probability with time index 



 

151 

 

7.4 Dependency of Error Rate on Number of Transitions  

The error rate of the proposed algorithm is studied using an analysis similar to ROC 

analysis. In this analysis the predictions of algorithm for different values of ―n” are 

compared with the experimental observations to identify the ―True Positive‖ and 

―False Positive‖ predictions of algorithm. The experiment is repeated 10 times and a 

single point is drawn on a curve with axes identified as ―True Positive Rate‖ and 

―False Positive Rate‖. The above plot resembles ROC curve as ROC curve is also 

plotted between ―True Positive Rate‖ and ―False Positive Rate‖. The accuracy of 

algorithm is estimated using the location of points on the curve. In this regard the 

properties of ROC analysis can be used.  

7.4.1 Properties of ROC Analysis 

The ROC analysis is a tool of signal detection theory to depict the tradeoff between 

hit rates and false alarm rate of classifiers. The properties of ROC analysis are 

provided in detail by Fawcett T [2006, pp: 861-874]. Swet et al [1988, pp: 1285–

1293] mentioned that scope of ROC analysis is extended and it can be used to analyze 

the behavior of diagnostic systems.  

When the points are plotted in ROC space, following conclusions can be drawn on the 

basis of appearance of points in ROC curve. 

 If a point is to the north-west side of the other point in ROC space i.e. True 

positive rate is higher and the false positive rate is lower than it would 

represent a better classified point than the other point. 

 The points on the left side of ROC curve close to X-axis are considered as 

conservative that make positive classification only with strong evidence. 

These points also make less false positive error. However these classifiers also 

exhibit less true positive rates. 

 The points on the right side of ROC curve close to upper right side of curve 

are considered as liberal that make positive classification with weak evidence. 

These points classify all positive instances correctly but at the cost of very 

high false alarm rate. 
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 The diagonal line y=x represent random guessing and is known as ―Chance 

Line‖. The random guessing will result in classification of points that 

repeatedly cross the Chance Line.  

 A classifier is potentially optimal if and only if it lies on the convex hull of the 

points in ROC space.  

7.4.2 Error Analysis Of Fault Diagnostic Algorithm 

For error analysis, predictions were made by algorithm. The observed data set was 

considered as the observed instances and the algorithm was considered as the 

classifier to make the predictions. 

A binary classification  𝑝𝑓, 𝑛𝑓  was assumed where  

 pf represents the presence of fault in 3rd cylinder  

 nf represents that no fault is present in 3rd cylinder  

The classification was made by running the algorithm on the observed data and 

predicting the fault probability vector using Chapman-Kolmogorov equation: 

____________________________________________________________________ 

𝑝 𝑛 = 𝑝 0 𝑃𝑛   

____________________________________________________________________ 

Probability transition matrix was estimated by analyzing data of large number of 

ignition cycles. To study the affectivity of algorithm, n was varied from 0 to some 

higher values to estimate the fault probability. Using the fault probability vector 

estimated by the algorithm predictions were made about the fault for different values 

of n and these predictions were compared with the experimentally observed results to 

identify the ―True Positive‖ and ―False Positive‖ events. The different values of n 

used in the above experiment correspond to the following cases. 

 n=0 means the algorithm is completely bypassed and probability vector is not 

updated by the processing of the available data. 

 n=2 is a better approximation of proposed algorithm where probability vector 

is updated by the processing of the available data. 

 n=10 is even better approximation of proposed algorithm as compare to the 

case of n=2.  

( Eq 7.16) 
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It was observed that as n is increased to even larger values, the results of proposed 

algorithm become more accurate. The proposed analysis was carried out for n=0, n=2 

and n=10 only. The results were then used to analyze the performance of proposed 

fault diagnostic algorithm. 

Initially probability matrix was estimated by analysis of data set of 50 ignition 

cycles with fault in 3
rd

 cylinder. The fault probability vector was estimated using n=0, 

n=2 and n=10 in Chapman-Kolmogorov equation. Using the fault probability vector, 

a new data set was generated to represent the fault estimates. The fault estimates were 

then compared with the original data to identify the ―True Positive‖ and ―False 

Positive‖ cases.  

The experiment was then repeated with data from a maximally balance cylinder 

with no misfire to calculate the probability transition matrix and the fault probability 

was estimated using proposed algorithm. Again this fault probability was used to 

predict the data and compared with the experimental data to identify the ―True 

Positive‖ and ―False Positive‖ results.  

Using analysis of experimental results and predictions, a point was plotted in 

space with ―False Positive Rate‖ along X-axis and ―True Positive Rate‖ along Y-axis. 

Ten predicted data instances that were generated corresponding to each value of n are 

plotted. The plot is shown in Figure 7.8. The convex hull and a chance line (Major 

diagonal) are also plotted on the curve for analysis. The analysis of Figure 7.8 

indicates the following results: 

 

 
Figure 7.8 : Error Analysis of results of proposed Fault Diagnostic Algorithm 



 

154 

 

 When n=0 in Eq 7.16, i.e. when the fault diagnosis algorithm is completely 

bypassed, all points are close to chance line and continuously crossing it 

indicating a confusion state. In this case the diagnosis occurs purely on the 

basis of initial probabilities.  

 For n=2, the cluster of points is shifted to north-west side of plot, indicating 

better accuracy of diagnosis algorithm.  

 For n=10, the cluster of points is shifted further toward north west side and 

close to the convex hull, indicating even better accuracy.  

An observation of results clearly indicates that the proposed algorithm is neither 

conservative nor liberal. Also the accuracy of fault diagnosis would improve 

significantly with increase in values of n. With increase in value of n, the number of 

false alarm would also decrease significantly. Also higher is the value of n more 

points would lie on the convex hull indicating more optimal behavior of algorithm. 

The choice of limiting probability in proposed fault diagnostic algorithm would 

therefore result in better detection with small false alarm rate.  

7.5 Extension of Results 

After experimental verification of proposed misfire detection method, some more 

misfire conditions were analyzed using theoretical analysis and simulation techniques. 

The two cases of interest are being presented: 

 Response of Algorithm under Random misfire condition 

 Response of Algorithm under multiple misfire condition 

To study the behavior of proposed algorithm based on Markov chain, under random 

misfire conditions, the problem of fault detection is studied analytically. The 

experimental setup however needs more alterations in its electrical circuits to verify 

the results of random misfire mode. The experimental verification of random misfire 

mode is therefore not carried out.  

The case of multiple misfire conditions is also explored using simulations.  

7.5.1 Detection of Random Misfire Condition 

Lee A. et al [2003, pp: 3377-3381] mentioned that random misfire mode is the most 

difficult fault detection problem and can be considered as a ―benchmark‖ for misfire 
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detection methodology. Lee A used a Kalman filtering based approach to detect the 

random misfire conditions. The approach was validated experimentally. A theoretical 

justification based on concrete mathematical ground was however not presented for 

the method, to justify the claim of fault detection in random misfire mode. In this 

section a theoretical justification based on mathematical ground is being provided to 

prove that the proposed algorithm can successfully detect the misfire fault even under 

random misfire mode. 

The analysis for the detection of random misfire was carried out in the same manner 

as the propagation of bits in a binary communication channel which is modeled as 

probability of observing a bit 1 at the output of channel is 𝛼 when the bit send on 

input to the channel is 0 and the probability of observing bit 0 at the output of channel 

is 𝛽 when 1 is transmitted at the input. 

It is already stated that under no fault condition, all the states are occurring with equal 

probability. However the occurrence of fault would provide an extra bias to the faulty 

state so that the probability of occurrence of that state would increase. The analysis 

also assumed that fault if present in system would be in 3
rd

 cylinder of SI engine and 

the probability of fault and no fault condition at the input is same.  

For random misfire analysis, the four state model of Markov chain was transformed 

into two state model with states 𝐺1 and 𝐺2. The state 𝐺1 represents that fault is 

detected in 3
rd

 cylinder and the state 𝐺2 represents that fault is not detected in cylinder 

3. When all the cylinders are healthy state 𝐺1 occur due to false alarm. When fault is 

actually present in cylinder 3, the state may occur due to correct detection. Similarly 

when a fault is present in cylinder 3, the occurrence of state 𝐺1 is a hit and occurrence 

of state 𝐺2 is a false alarm. Since the state 𝐺2 represents the no fault condition of 

cylinders 3, probability of occurrence of states would be  0.25 0.75  

If under no fault condition, the probability of occurrence of fault state is 𝑝 then 

 Probability of occurrence of state 𝐺1 (False Alarm probability) is 𝑝 

 Probability of non-occurrence of state 𝐺1 (Hit Rate probability) is 1 − 𝑝 

Similarly, if under fault condition, the probability of occurrence of state 𝐺2  is 𝑞 

where 𝑞 > 𝑝. It is also assumed that then 
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 Probability of occurrence of group 𝐺2 (False Alarm probability) is 𝑞 

 Probability of occurrence of group 𝐺1  (Hit Rate probability)is 1 − 𝑞 

The probability of occurrence of states is shown in Figure 7.9 

 

 

 

 

 

 

 

The probability transition matrix for this is given as: 

_____________________________________________________________________ 

𝑃 =  
1 − 𝑝 𝑝

𝑞 1 − 𝑞
  

_____________________________________________________________________ 

The two Eigenvalues of matrix P are 1 and 1-p-q and the eigenvectors are: 

_____________________________________________________________________ 

𝑣1 =  
1
1
         𝑎𝑛𝑑         𝑣2 =  

−𝑝
𝑞   

_____________________________________________________________________ 

As per definition of Papoulis A. [2006, pp: 699-708], defining two vectors U and V, 

where U is a matrix of Eigenvector and V is the inverse of matrix U. The matrices U 

and V can then be used to estimate the n-step transition matrix. For the problem in 

hand, the matrices U and V are defined as: 

_____________________________________________________________________ 

𝑈 =  
1 −𝑝
1 𝑞

              𝑎𝑛𝑑           𝑉 =
1

𝑝+𝑞
 
𝑞 𝑝
−1 1

  

_____________________________________________________________________ 

The n-step transition matrix is then found as: 

( Eq 7.10) 

( Eq 7.11) 

Figure 7.9 : Detection probabilities of Randomly occurring faults in SI engine 

1-p 

p 

q 

1-q 

No Fault 

Fault 

No Fault Detected 

Fault Detected 

( Eq 7.9) 
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_____________________________________________________________________ 

𝑃𝑛 =
1

𝑞+𝑝
 
1
1
  𝑞 𝑝 +

 1−𝑝−𝑞 𝑛

𝑞+𝑝
 
−𝑝
𝑞   −1 1  

𝑃𝑛 =
1

𝑞 + 𝑝
 
𝑞 𝑝
𝑞 𝑝 +

 1 − 𝑝 − 𝑞 𝑛

𝑞 + 𝑝
 
𝑝 −𝑝
−𝑞 𝑞   

_____________________________________________________________________ 

Both 𝑝 and 𝑞 represent the events of False Alarm. Error analysis of predictions of the 

proposed algorithm (Figure 7.8) indicates that largest False Positive rate is 0.4 (when 

n is chosen as 10 instead of infinite) hence both p and q can be taken as 0.4. 

For estimating the limiting probabilities, 𝑛 → ∞. As  1 − 𝑞 + 𝑝 < 1 , hence for the 

estimation of limiting probability, the second term would be reduced to zero and Eq 

7.12 would reduced to: 

_____________________________________________________________________ 

𝑃𝑛 =
1

𝑞+𝑝
 
𝑞 𝑝
𝑞 𝑝  

_____________________________________________________________________ 

The proposed algorithm would always declare fault in one of the cylinder in every 

ignition cycle, so the probability of declaration of fault in third cylinder would be 0.25 

and in declaration of fault in any other cylinders would be 0.75. Assuming the initial 

probabilities of states as  0.25 0.75 , the limiting probabilities would become: 

_____________________________________________________________________ 

𝑝(∞) =
1

0.8
 0.25 0.75  

0.4 0.4
0.4 0.4

  

𝑝(∞) =
1

2
 1 1  

_____________________________________________________________________ 

i.e. the probability that fault is detected in 3
rd

 cylinder (Faulty cylinder) is 0.5 and 

probability that fault is not detected in 3
rd

 cylinder is also 0.5. Assuming that when 

fault is detected in any other cylinder then it can belong to any cylinder with equal 

probability, than the probability of detection of fault in different cylinders would be:  

( Eq 7.12) 

( Eq 7.13) 

( Eq 7.14) 



 

158 

 

_____________________________________________________________________ 

𝑝(∞) =  0.166 0.166      0.5     0.166  

_____________________________________________________________________ 

The limiting probability indicates that the algorithm identifies the probability of fault 

in cylinder 3 to be 0.5 and that of in cylinders 1, 2 and 4 is 0.166. The fault is 

therefore identified correctly even if random misfire fault is introduced in engine. 

It is also interesting to analyze the case when the probability of occurrence of state 

𝐺1 becomes 1 under fault condition and 0.4 under no fault condition on the basis of 

ROC analysis. Here false positive case is emphasized for correct detection but false 

alarms are allowed in no fault condition. In this case 𝑞 = 1 𝑎𝑛𝑑 𝑝 = 0.4 and the value 

of limiting probability becomes: 

_____________________________________________________________________ 

𝑝(∞) =  0.714 0.285  

_____________________________________________________________________ 

The above analysis clearly indicates the following: 

 The limiting probability would converge to a fixed value depending upon the 

intensity of fault condition. 

 Random misfire conditions can be detected successfully even when the 

intensity of misfire condition is not very high. 

To simulate the random misfire a condition, the model was initially tuned by 

adjusting the gains of four sub-systems so that the value of limiting probability 

remain as close to [0.25 0.25 0.25 0.25] as possible. A random number with a mean 

value 0 and variance 1 was generated but latched only once in each ignition cycle. 

The number was compared with 0 (Threshold) and if the number is found greater than 

zero, the gain of faulty cylinder is adjusted to 1 and otherwise is set to 0. In this way 

random misfire events were simulated with misfire probability of 0.5. The probability 

of misfire events were changed by changing the threshold value from zero to some 

other values e.g. choosing threshold to be less than -1, implies misfire event will 

almost never occur and choosing threshold to be greater than 1 implies that misfire 

event would occur almost certainly. The condition of random misfire was simulated 

( Eq 7.15) 

( Eq 7.15) 
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in Matlab/ Simulink using proposed hybrid model. The simulation block diagram is 

shown in Fig. 7.10.  

 

Two cases of predictions of algorithm, one with 50% random misfire in cylinder 1 

and other with 50% random misfire in cylinder 2 are provided in Table 7.3. 

TABLE 7.3 SIMULATION RESULTS OF RANDOM MISFIRE  

Random Fault Limiting Probability 

No Fault [0.2695      0.2192      0.2527      0.2586] 

Cylinder 1 [0.6032      0.1293      0.1244      0.1431] 

Cylinder 2 [0.1125      0.6190      0.1254      0.1431] 

 

7.5.2 Detection of Multiple Misfire Events 

The study of multiple misfire events was carried out using simulation methods. In this 

regard data was generated using hybrid model. Random speed fluctuations as 

observed in experimental data were introduced in the output of the system by adding 

small noise in data. The conditions of both no-misfire and different misfire events 
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Gain 2 

Gain 3 

Gain 4 

Pulse input 

Random Input 

< 
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+ 
+ 

+ 
+ 

Figure 7.10 : Block Diagram of Experiment of Random Misfire  
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were simulated in model. The data was saved in a file for further analysis by the 

proposed misfire detection algorithm. The results indicating the limiting probability 

vector are provided in Table 7.5. 

 

TABLE 7.4 SIMULATION RESULTS OF MULTIPLE MISFIRE DETECTION  

Fault Limiting Probability 

No Fault [0.2556      0.2181      0.2441      0.2823] 

Cylinder 1 [0.9647      0.0118      0.0118      0.0118] 

Cylinder 2 [0.0099      0.9703      0.0099      0.0099] 

Double Fault Cylinder 1 +3 [0.5088      0.0118      0.4676      0.0118] 

 

The results indicate that under no misfire condition the probability of fault remain 

almost same for all cylinders but under misfire conditions the probability of fault for 

misfiring cylinder, become larger. Under double-misfire conditions, the probability 

increases for both the misfiring cylinders.  

The combined analytic, experimental and simulation results indicate that the proposed 

algorithms can detect incipient faults as well as intermittent faults. The method can be 

extended for the detection of multiple misfire. The method can also be used to 

generate early warnings of faults.  

7.5.3 Early Warning 

Early warnings not only provide prior information of faults likely to occur in future 

but can also be used to estimate the Remaining Useful Life (RUL) of a product. For 

estimation of RUL the intensity of detected incipient fault has to be established. A 

good estimate of RUL can improve the Reliability of product. 

The results of Experiment 2, described in section 7.3.1.4 are quite promising as no 

perceptible evidences of misfire are evident in data plotted in Figure 7.5. Engine ECU 

was also not providing any indication of misfire condition, but the algorithm has 

successfully detected the misfire condition. The results of cylinder leakage indicate 

almost 10% air leakage from cylinders which is a slight misfire condition. This 

indicates that the algorithm can successfully detect the slight misfire faults also. With 



 

161 

 

The experimental setup did not provide facility to introduce controlled amount of 

fault. Simulation technique is therefore used to analyze the behavior of algorithm 

under different fault intensities.  

The proposed hybrid model was used to study the value of limiting probability of 

Markov chains under varying fault conditions. In this regard fault was introduced in 

one of the cylinder and severity of fault is gradually increased. The model generated 

for study of random misfire condition was used in this case because the severity of 

fault can be increased simply by adjusting the threshold value in Fig. 7.10. A 

threshold value of 0 means 50% misfire events are being occurring. A threshold value 

of 0.2 means almost 60% probability of misfire etc. The data generated using model 

was then analyzed to identify the values of limiting probability under different misfire 

conditions. 

TABLE 7.5 SIMULATION RESULTS OF GRADUAL RISE OF FAULT  

Random Fault Limiting Probability 

100% Misfire [0.9872      0.0039      0.0049     0.0039] 

90% Misfire [0.8264      0.0602      0.0483     0.0652] 

80% Misfire [0.7730      0.0759      0.0651     0. 0859] 

70% Misfire [0.7226      0.0918      0.0829     0. 1027] 

60% Misfire [0.6693      0.1086      0.1027     0. 1194] 

50% Misfire [0.6032      0.1293      0.1244     0. 1431] 

40% Misfire [0.5410      0.1461      0.1510     0. 1619] 

30% Misfire [0.4738      0.1678      0.1737     0. 1846] 

20% Misfire [0.4284      0.1856      0.1846     0. 2014] 

10% Misfire [0.3860      0.1984      0.1974     0. 2182] 

In simulations misfire condition was introduced in first cylinder and the intensity of 

fault was increased in the steps of 10% by changing the value of threshold from -1 to 

+1. The results of data analysis under different misfire conditions are provided in 

Table 7.4.  
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The simulation results provided in Table 7.4 indicate that the limiting probability of 

misfiring cylinder is increasing almost linearly with fault. The wear out region would 

not be sharp and a safe value of threshold can be defined on the basis of simulation 

results for generating early warning of fault. The warning would be generated well 

before the occurrence of complete failure.  

7.5.4 Misfire Detection as Reliability Problem 

The detection and identification of incipient misfire condition lead us to the area of 

prognosis. A brief terminology used in prognosis include ―Remaining Useful Life‖ 

RUL and Reliability. These areas represent the possible future extension of work 

presented in this thesis. To provide some idea of future extension, mathematical 

formulation of reliability is applied to Misfire fault detection problem.  

 A ―Reliability Function‖ could be generated to provide current intensity of fault. By 

identifying the location of point on bath tub curve, an educated guess can be made 

whether the operation is in useful life region or in wear out region. The basic 

terminology and definitions about reliability function can be found from Pradhan D. 

K. [1995, pp: 55-57].  

The proposed fault diagnostic method works on the basis that one of the cylinders is 

assumed faulty in each ignition cycle. If a particular cylinder was declared faulty 

𝑁𝑓(𝑡) times in N ignition cycles, then reliability of the cylinder at time t would be 

given as:  

_____________________________________________________________________ 

𝑅 𝑡 = 1 −
𝑁𝑓(𝑡)

𝑁
 

_____________________________________________________________________ 

Reliability function is defined as a differentiation of R(t) with respect to time. 

_____________________________________________________________________ 

𝑑𝑅 𝑡 

𝑑𝑡
= −

1

𝑁

𝑑𝑁𝑓(𝑡)

𝑑𝑡
 

𝑑𝑁𝑓(𝑡)

𝑑𝑡
= −𝑁.

𝑑𝑅

𝑑𝑡
 

_____________________________________________________________________ 
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That represents the instantaneous rate at which the cylinder is declared as faulty. If 

_____________________________________________________________________ 

𝑁 = 𝑁0 + 𝑁𝑓  

_____________________________________________________________________ 

i.e. if cylinder was declared faulty Nf times then it was declared healthy N0 time. The 

―Hazard Function‖ or the ―Failure Rate Function‖ is then defined as: 

_____________________________________________________________________ 

𝑧 𝑡 =
1 

𝑁0(𝑡)
 
𝑑𝑁𝑓(𝑡)

𝑑𝑡
 

_____________________________________________________________________ 

If a test of N ignition cycles is conducted, then frequent visit of any state would not 

only increase the 
𝑑𝑁𝑓(𝑡)

𝑑𝑡
 but also decrease the value of 𝑁0(𝑡), resulting in increase of 

hazard function. The typical curve of hazard function is called “bathtub curve” with 

three distinct regions. In the first region the value of hazard function is high and 

decreases rapidly. This region is called the infant mortality region and is considered to 

come in the time before start of the useful life of component. In second region the 

curve is sufficiently flat and is considered as the useful life period of component. In 

the third region the curve rises rapidly and is known as the wear out region. A 

threshold value can not only be defined to generate an early warning before the failure 

but also can be used to identify the remaining useful life. 

7.6 Comparison Of Method  

A range of different evaluation criteria were used for the performance evaluation of 

fault diagnostic algorithms. A framework to compare and evaluate the diagnostic 

algorithms was created jointly by ―NASA Ames Research Center‖ and ―Palo Alto 

Research Center - PARC‖ for a competition called DXC’09 [Kurtoglu T et al , 2009]. 

Following evaluation criteria were adopted for the comparison of different diagnostic 

algorithms. 

 False Positive Rate : indicating spurious faults rate 

 False Negative Rate : indicating missed faults rate 
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 Detection Accuracy : indicate correctness of detection 

 Fault Detection Time : indicate time for detecting a fault 

 Fault Isolation Time : Time for last persistent diagnosis 

 Diagnostic Utility : indicate cost related to component replacement due to     

incorrect diagnosis 

 CPU load : indicate CPU time spent for diagnosis 

 Memory load : indicate the memory allocation 

Error analysis of proposed algorithm is already presented in section 7.4. Result of 

experiment 4 and Figure 7.7 indicates very small fault detection time. For most of the 

fault diagnostic algorithms found in literature such analysis for False Positive Rate or 

Detection Accuracy etc. are not provided for comparison. By the analysis of the 

algorithms provided in literature it is however possible to identify the CPU load and 

Memory load of algorithms. The proposed fault detection algorithm would therefore 

be compared to some other misfire detection algorithms found in literature on the 

basis of memory requirements (Memory load) and number of computations (CPU 

load) in a complete ignition cycle.  

The literature survey on detection of misfire fault in SI engine provided in chapter 3, 

indicates a wide range of method adopted for the detection and isolation problem. The 

proposed algorithm would be compared with methods based on cross-correlation of 

the observed signal with the signals of known faults. Correlation technique was used 

in a number of different proposals like Sood A. K. et al [1985, pp. 294-300] and 

Rizzoni, G. et al [1988, pp: 237-244] etc. 

Consider a vector with N samples in complete ignition cycle. The cross-correlation 

coefficient of data vector with known fault vector is given by:  

_____________________________________________________________________ 

Sij =
 [ xi n − x i  xj n − x j ]N

n=1

σiσj
 

_____________________________________________________________________ 

7.6.1 Memory Load 

 The method based on cross correlation need N memory locations for data and N 

memory location for each sample of known faulty signal. If N = 24 then 48 memory 

( Eq 7.17) 
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locations would be needed to detect a single fault. The proposed method need only 25 

memory locations: a system counter, four counters of subsystems, four igniter signals 

and 16 elements of state transition matrix. The method can detect all single fault 

cases.  

7.6.2 CPU Load 

The method based on correlation will first calculate velocity vector. The average and 

standard deviations of velocity vectors are computed. The correlation coefficient 

would then be found by N multiplications, N additions and a division for each fault. 

The proposed method needs only N+8 comparisons and 12 additions to identify all 

faults.  

The other methods based on model based fault detection and wavelet based 

techniques need floating point calculations and is computationally more expensive. 

The implementation philosophy and flow chart of proposed algorithm indicates the 

simplicity of proposed fault diagnosis algorithm without floating point calculations. 

7.7 Summary 

This chapter presented the results and discussed them in details. The results section is 

divided into two basic areas i.e. the validation of model and validation of fault 

diagnostic algorithm. The chapter is started with a brief description of experimental 

setup, its development and its weaknesses. The proposed hybrid model was 

programmed using Matlab. The values of different coefficients were selected on the 

basis of engineering judgment, knowledge of experts and data observed using 

internet. The simulation results were then compared with the experimental data and 

the values of different model parameters were tuned to match the simulation results as 

closely to the experimental results as possible under no fault condition. When the 

simulation results matched the experimental results, misfire fault was introduced first 

in experimental setup and the faulty data is recorded. Misfire fault was then 

introduced in the simulation and the response of model under faulty condition was 

observed. The results of experimental and simulation under faulty conditions were 

then compared to validate the proposed model. 

The experimental results under no-fault conditions and faulty conditions were then 

used in the proposed fault detection algorithm to identify the fault. The results of 

simulation and experiments were plotted in a number of different ways to identify the 
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different events and steps of fault diagnostic algorithm. In this regard a histogram plot 

of crankshaft speed variations indicated the residual. A 3D plot of engine speed, 

ignition cycle and cylinder number provided the visual indication of ignition cycle, 

residual etc. The experimental results under healthy engine condition and in the 

presence of fault were then finally processed using the proposed fault diagnostic 

algorithm. It was concluded that the fault is successfully identified from the data of 

experiment when fault was present in engine. It was however observed that the data of 

healthy engine also indicate the fault. The setup was then explored for any possible 

fault in it and a new experiment was conducted in which the spark plugs were 

removed and a pressure indicator was placed in their position. When the cylinder 

pistons were moved by rotating the starting (self) motor, pressure was established in 

different cylinders. It was observed that air leak fault was observed in one of the 

engine cylinder indicating slight misfire condition.  

The experiment was later repeated when engine was operating under healthy 

conditions and it was observed that no fault was indicated by the algorithm. To study 

the response of algorithm for data analysis, simulations were performed without 

predictions, two step prediction and ten step prediction using Markov chains (n=0, 

n=2 and n=10 respectively  in Eq 6.16). The results were then used to predict the 

faults in engine system and the engine data was compared with the predicted data to 

identify the false positive and true positive rates. An ROC curve was plotted for all 

these observations and it was observed that the results corresponding to n=0, i.e. when 

the algorithm was totally bypassed were totally random and lie close to the confusion 

line on the plot. As the data was predicted using Markov assumption, the results were 

improved. In this regard the results corresponding to n=10 were found to be the best 

results that lie close to the convex hull of the ROC curve. ROC plot clearly indicated 

that the results corresponding to the limiting probabilities would be close to the 

experimental results and thus the fault can be identified using the mentioned 

algorithm.  

The validity of algorithm was then explored for the intermittent misfire fault 

condition. The basic problem in this regard was the validation of results as the 

experimental setup provided no method to introduce random faults in it. The problem 

of validity of algorithm for intermittent misfire fault was therefore explored 
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analytically and it was proved that the algorithm is capable to detect intermittent 

misfire faults also. The analytic results were then validated using simulations by 

representing SI engine by Hybrid model and introducing random misfire fault in it. 

The simulation results also indicated that the algorithm can be used for the detection 

of intermittent misfire fault condition, incipient fault conditions and misfire fault in 

multiple cylinders.  

The problem of misfire detection is also posed as a reliability problem. This work can 

be extended in future to develop a method for prognosis by finding the position on 

bathtub curve.  

The chapter is finally concluded by comparing the proposed misfire fault diagnostic 

algorithm with some other algorithms proposed in literature for detecting misfire fault 

on the basis of amount of memory needed and number of computations required by 

different algorithms.  

 

 

 

 

 

 

 



 

168 

 

Chapter 8 

CONCLUSIONS AND FUTURE WORK 

This thesis was aimed to contribute to Misfire Fault Detection in Spark Ignition 

Engine. This chapter provides a brief overview of basic motivating factor behind the 

work and its methodology. The main contributions of work are presented in section 

8.1. A brief summary of future works is described in section 8.3 and the social 

contribution of research work and development work carried out during the study and 

execution of this research is described in section 8.4.  

8.1 Main Contributions 

The main contribution of the thesis can be distributed in two major areas: 

 Hybrid Modeling of SI engine 

 Early detection of misfire fault in SI engine 

8.1.1 Hybrid Modeling of SI Engine 

The development of Hybrid model was motivated on the basis that SI engine contain 

both continuous and discrete states. Also for application of Markov Chains it was 

desired that output of model be defined so that it could easily be transformed to states 

for analysis. Since geometry of SI engine indicates limited number of cylinders, 

special emphasis was given to the geometry of SI engine in developing the model. In 

deriving the engine model for a four cylinder SI engine, model of each of the four 

cylinders was derived and linked with the discrete event representing the spark signal 

that make a cylinder active to deliver power. The mathematical abstraction was 

established as a model combining the discrete state representing the production of 

spark and continuous state as the evolution of crankshaft speed. In context with the 

proposed model following studies and validations were established. 

 The simulated model response was validated by performing experiments on SI 

engine of production vehicle. 
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 The properties of model were explored to establish some experimental 

observations and facilitate the statistical analysis of output variable of 

proposed hybrid model. 

 One basic result was that under steady state condition, all the sub-

systems (cylinders) of SI engine are decoupled. This result was used to 

make the basic assumption of independence of events in statistical 

analysis of engine response. 

After development of novel hybrid model for SI engine, statistical properties of 

crankshaft speed variations were studied and the following results were established: 

 It was established that the variable representing air sucked in engine cylinder 

is Gaussian using ―Central Limit Theorem‖ 

 It was established that random process representing speed variations observed 

on the crankshaft can be considered as Gaussian and Markov process using 

properties of proposed hybrid model. 

8.1.2 Early detection of misfire fault in SI engine 

Using properties of hybrid model a set of four states were formed using output 

variable of hybrid model. Each state represented faulty response of one of the engine 

cylinder i.e. the presence of system in state was a representative of the presence of 

fault in cylinder corresponding to that state. A state transition matrix representing the 

jumps from one state to the next state was defined. It was assumed that initially the 

probability of fault in all engine cylinders is equal. An algorithm based on the 

estimation of limiting probability was proposed to estimate the fault. 

The basic strength of algorithm was observed when the MIL light of engine was 

indicating no fault condition and apparent behavior of engine was also indicating a 

healthy behavior but the algorithm detected a fault and later the experimentation 

indicated a minor air leakage fault in one of the engine cylinder. This indicated that 

the proposed algorithm could be used to generate the early warning in a system. 

However intensity of fault could not be defined due to unavailability of appropriate 

experimental setup. 

The algorithm was validated by conducting experiments on the engine of a production 

vehicle. To analyze the performance of algorithm following studies were carried out: 
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 Algorithm was tested for the detection of multiple misfire events using 

simulations 

 The benchmark problem of detection of multiple misfire events was studied 

using theoretical calculations 

 ROC analysis of estimation was carried out to study the ―True positive‖ and 

―False positive‖ rate by estimating faults using proposed algorithm and 

experimental data. 

 It was proved analytically that the proposed misfire detection algorithm is 

capable to detect the random misfire condition or intermittent misfire fault 

also. In this regard data under random misfire conditions was generated using 

proposed hybrid model and response of algorithm to detect the random misfire 

condition was tested. 

 The algorithm was finally compared with correlation based misfire fault 

detection algorithm on the basis of number of computation involved and 

memory requirements of algorithm. 

8.3 Future Work 

A little exploration of work presented in this thesis clearly indicates the following 

new directions of research that start from the work presented in this thesis: 

 The proposed hybrid model of SI engine is valid for steady state operation of 

SI engine only. The nature of SI engine is hybrid with both continuous and 

discrete states. It is therefore possible to develop a generalized hybrid model 

for SI engine valid for both transient and steady state engine operation 

 The fault diagnostic methodology proposed on the basis of Markov chain is 

studied at very high data rates so that exact waveforms of crankshaft signal 

can be formed and peaks could be detected. The analysis of data on the basis 

of hybrid model at the ECU rate can also detect the misfire problem when the 

tools of stochastic analysis would be applied appropriately. The study and 

development of this method is another extension of the presented work.  

 The alteration of setup to control the fault intensity and use the setup to 

identify the threshold conditions for ―Early Warning Generation‖ and 

―Prognosis Applications‖ 
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 Development of model based fault detection techniques using proposed hybrid 

model and detecting fault using techniques like sliding mode observer, 

Kalman filters or Linear Matrix Inequalities (LMI). 

 The potential of ―Artificial Neural Network‖ and ―Fuzzy Logics‖ can be used 

to develop new methods for the detection of misfire fault in SI engine. 

8.4 Social Contribution of Research  

The setup was also established during the course of research by writing an R&D 

proposal from ICT R&D Fund. The contract document indicates details of work 

committed in the project [Mohammad Ali Jinnah University, Project Funding 

Agreement, 2009]. The setup was obtained at the cost of some extra work of 

―Development of a Low Cost Fault Diagnostic Toolkit for Honda vehicle‖ for 

automotive mechanics. The social impact of training of some mechanics using those 

toolkits can therefore be attributed as an indirect social contribution of this project. 

The literature survey for the development was carried out in parallel with the 

literature survey of problem proposed in this thesis. Initially the diagnostic toolkit was 

developed using ELM-327 IC that provides the protocol conversion from ECU 

protocols to RS-232. The work was however continued to interface microcontroller 

with vehicle ECU using ISO-9141-2 protocols and its variants. Finally the hardware 

and software was developed to interface microcontroller with ECU using CAN 

protocol. The information about the new trends of vehicle diagnostics, sensors and 

actuator present in vehicles and different protocols used in vehicles was provided to 

the mechanics working on the device. This resulted in some knowledge uplifting of 

those mechanics.  

The availability of technology also created the opportunities of locally fabricating the 

low cost vehicle fault diagnostic kits for the local mechanics if sufficient finances 

could be made available. This would further increase the indirect beneficiaries of this 

research.  
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APPENDIX - B:  Typical Data Of SI Engine 

 

Typical data of some automotive engines provided by Srinivasan 

 

 
Vehicle Name FordEscort 15V Opel Astra 1.6 Maruti Esteem 

VX 

Engine Bore 76 mm 79 mm 74 mm 

Engine Stroke 78 mm 81.5 mm 75.5 mm 

Engine Capacity 1597 cc 1598 cc 1298 cc 

Engine Compression ratio 8.8 : 1 9.2 : 1 9.2 : 1 

Max. Power at speed (bhp) 83  76  65 

5500 rpm 4500 rpm 6000 rpm 

Max Speed (rpm) 7200 6000 6500 

Max. Torque (N-m) at speed 124 121 99 

3000 2500 4000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


