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Abstract

Asymmetric cryptography based on groups is mainly concerned with the role of

noncommutative groups. The origin of group based cryptography goes back in the

1980s. Since then, numerous cryptographic proposals based on noncommutative

groups have been evolved. In this thesis, we consider several noncommutative

settings in different cryptographic context. This study adds to the cryptographic

literature by demonstrating new asymmetric cryptographic schemes. On the one

hand, two new public key exchange protocols and two asymmetric cryptosystems

are constructed. On the other hand, different primitives like suggestion of plat-

form, size of different parameters, security and efficiency aspects regarding these

proposals, are also elaborated.



Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgements viii

Abstract x

List of Figures xiv

List of Tables xv

Abbreviations xvi

Symbols xviii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical Background 6

2.1 Basic Concepts in Number Theory . . . . . . . . . . . . . . . . . . 6

2.1.1 Obtaining the Greatest Common Divisor . . . . . . . . . . . 8

2.1.2 Modular Arithmetic . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Properties of Modular Arithmetic . . . . . . . . . . . . . . . 10

2.2 Some Algebraic Structures . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Ordinary Polynomial Arithmetic . . . . . . . . . . . . . . . 23

2.3.2 Polynomial Arithmetic with Coefficients in Zp . . . . . . . . 24

2.4 Finite Fields of the Form GF (2n) . . . . . . . . . . . . . . . . . . . 26

xi



xii

2.4.1 Modular Polynomial Arithmetic . . . . . . . . . . . . . . . . 29

2.4.2 Multiplicative Inverse of a Polynomial . . . . . . . . . . . . 30

3 Cryptographic Background 32

3.1 Basic Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Characterization of Cryptosystems . . . . . . . . . . . . . . 33

3.1.2 Cryptanalysis and Techniques of Attacks . . . . . . . . . . . 35

3.1.3 Cryptographic Applications . . . . . . . . . . . . . . . . . . 36

3.2 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 The General Model for Public Key Cryptosystem . . . . . . 38

3.3 Some Public Key Protocols . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Diffie–Hellman Protocol . . . . . . . . . . . . . . . . . . . . 40

3.3.2 RSA Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 El-Gamal Cryptosystem . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Public Key Cryptography Based on Groups . . . . . . . . . 45

3.3.5 Ko–Lee Protocol . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.6 Anshel–Anshel–Goldfeld Protocol . . . . . . . . . . . . . . . 48

4 A Cryptosystem with Noncommutative Platform Groups 51

4.1 Motivating Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Shamir’s Secret Sharing Scheme . . . . . . . . . . . . . . . . 52

4.1.2 The BCFRX Scheme . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3 Stickel’s Key Exchange Protocol . . . . . . . . . . . . . . . . 55

4.2 Proposed Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Suggested Platform and Parameters for the Proposed System 60

4.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Ciphertext Only Attack . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Known Plaintext Attack . . . . . . . . . . . . . . . . . . . . 70

4.4 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Computational Complexity of Some Matrix Operations . . . 71

4.4.2 Bit-Complexity of Proposed Cryptosystem . . . . . . . . . . 73

5 New Variants of Stickel’s Key Exchange Protocol 74

5.1 Some Cryptographic Hard Problems and Noncommutativity . . . . 74

5.2 Motivating Literature . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Diffie-Hellman-Like Protocol For Noncommutative Rings . . 77

5.3 Proposed Key Exchange Protocols . . . . . . . . . . . . . . . . . . . 78

5.4 Security Aspects of the Proposed Protocols . . . . . . . . . . . . . . 90

6 A Novel Algebraic Public Key Cryptosystem 93

6.1 Proposed Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Underlying Work Structure and Parameters . . . . . . . . . . . . . 96

6.3 Security of Proposed Cryptosystem . . . . . . . . . . . . . . . . . . 104

7 Conclusion and Future Work 106



xiii

Bibliography 108



List of Figures

2.1 Relation Between Different Algebraic Structures . . . . . . . . . . . 21

3.1 Symmetric Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Asymmetric Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Diffie Hellman Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Key Generation of ElGamal Cryptosystem . . . . . . . . . . . . . . 44

3.5 Encryption and Decryption of ElGamal Cryptosystem . . . . . . . . 45

5.1 Stickel’s Variant Protocol . . . . . . . . . . . . . . . . . . . . . . . . 80

xiv



List of Tables

2.1 The Properties of Modular Arithmetic. . . . . . . . . . . . . . . . . 11

2.2 The Multiplicative Inverse Using Extended Eucleadian Algorithm. . 13

2.3 Addition in Z8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Multiplication in Z8. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Addition in GF (23). . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Multiplication in GF (23). . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 Polynomial Addition Modulo (x3 + x+ 1). . . . . . . . . . . . . . . 30

2.8 Polynomial Multiplication Modulo (x3 + x+ 1). . . . . . . . . . . . 30

3.1 Cryptanalytic Attacks. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Bit-Complexity of Basic Modular Operations . . . . . . . . . . . . . 71

5.1 The size of set of polynomials of different degrees α and primes p
with order of matrices n = 2 . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The size of set of polynomials of different degrees α and β and
p = 29 with order of matrices n = 2. . . . . . . . . . . . . . . . . . 90

xv



Abbreviations

AES Advance Encryption Standard

ApCoCoA Applied Computations in Commutative Algebra

BCFRX Scheme Baumslag, Camps, Fine, Rosenberger and Xu Scheme

CSP Conjugacy Search Problem

DES Data Encryption Standard

DH Diffie Hellman

DLP Discrete Logarithm Problem

DP Decomposition Problem

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

GDP Generalized Decomposition Problem

GF Galois Field

GSDP Generalized Symmetric Decomposition Problem

IFP Integer Factorization Problem

KMOV Komaya, Maurer, Okamoto and Vanston

LUC Lucas Function

PGDP Polynomial Generalized Decomposition Problem

PKC Public Key Cryptography

PSDP Polynomial Symmetric Decomposition Problem

RC4 Rivest Cipher 4

RSA Rivest-Shamir-Adleman

xvi



xvii

SDP Symmetric Decomposition Problem

WP Word Problem



Symbols

gcd(a, b) Greatest Common Divisor of a and b

Z set of integers

Z>0 set of positive integers

Zn set of integers modulo n

Q set of rational numbers

R set of Real numbers

C set of Complex numbers

F Field

G Group

Z (G) Center of group G

R Ring

R[x] Polynomial ring in one indeterminate x over the ring R

GL(n,R) General linear group of matrices of order n over the ring R

M(n,R) set of matrices of order n over the ring R

xviii



Chapter 1

Introduction

1.1 Background

The two strategies of keeping our information secret are the Steganography and

the Cryptography. In Steganography, the existence of original message is concealed

within a covered message. Cryptography is the art and science of keeping informa-

tion unintelligible from unauthorized audiences. Conversely, the art and science

of breaking unintelligible form of data is known as Cryptanalysis. Both branches

Cryptography and Cryptanalysis together are called Cryptology.

Different cryptological aspects are indeed based on mathematical grounds. The

advent of public key cryptography is a tremendous demonstration of role of math-

ematics, that brings cryptography to enter a new and exciting phase. Usually,

public key cryptography is based on different primitives of commutative algebraic

structures. The most pioneer examples are the Diffie-Hellman key exchange pro-

tocol [15] and the Rivest-Shamir-Adleman (RSA) algorithm [46]. These two have

gained the wider acceptance and their security relies on the discrete logarithm

problem (DLP) and integer factorization problem (IFP), respectively, over the

commutative structures. A key exchange protocol proposed by Habeeb et. al. [22]

similar to the Diffie Hellman protocol, has its own features and some important

advantages. The finite cyclic semigroup is used for the protocol. The authors

1
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suggested the semigroup of matrices over the groupring Z7 [A5]. Different modifi-

cations of RSA like LUC’s scheme (based on Lucas function) [53], Cao’s schemes

[8, 9], Rabin-Williams [45, 58, 59] schemes and elliptic curve variant of RSA like

KMOV (Komaya, Maurer, Okamoto and Vanston) [32] are based on the commu-

tative structures. The underlying platform of the extended multi-dimension RSA

cryptosystem [9] is also the commutative structure Zn[x]. The family of ElGamal

like public key cryptosystems is another good example in this regard, including the

basic ElGamal cryptosystem [17], elliptic curve cryptosystem, McCurley scheme

[38] and variant of ElGamal scheme [24].

Due to Shor [51], Kitaev [30] and Proos-Zalka [44] algorithms, IFP, DLP and DLP

over elliptic curves (ECDLP) may efficiently be solved on quantum computer. So,

the algorithms based on these problems are believed to be insecure, in future. In

order to enrich cryptographic protocols, there are different kinds of group theo-

retical results [34] which can replace IFP and DLP. Especially, the cryptographic

techniques based on noncommutative structures attract more attention. The use

of noncommutative groups in public key cryptography was initially proposed by

Wagner and Magyarik [36] in 1985. A brief account of group based cryptographic

methods is given in the book, titled, ‘Group-based Cryptography’ by Myasnikov

et. al. [43]. For devising new cryptographic and cryptanalytic techniques, the

algebraic properties of different noncommutative algebraic structures, play a very

important role.

The work of Charalambos [11], based on the structure of grouprings is an impor-

tant addition to the field of noncommutative cryptography. Various cryptosystems

using noncommutative algebraic systems are based on the conjugacy search prob-

lem over certain noncommutative structures see, for instance [21, 41]. Although,

the conjugacy search problem is meaningful in noncommutative structures, it is

inconvenient to design public key cryptosystems over such structures. That is why

utilizing noncommutativity is really a challenging problem for developing a public

key cryptosystem over these kind of algebraic structures.
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1.2 Motivation

Research has been going on using noncommutative groups for public key encryp-

tion algorithms, for example see [2, 31]. They use braid groups which have various

computationally hard problems. Also, these groups are ideal for achieving imple-

mentation efficiency. Side by side attacks on braid group based cryptography have

also been published in the literature [23, 35, 42].

E. Stickel [56] proposed a public key exchange scheme using matrices in a certain

subgroup of GL(n,Fq). The methods presented by Stickel, is not a generalization

of the classical Diffie-Hellman protocol rather, it is a reminiscent of latter to non-

commutative groups. This approach can be used for the purpose of key exchange,

as well as, authentication protocols. Stickel suggested the use of general linear

group of matrices for his proposal. Different matrices based structures have a

great potential to be used as a noncommutative platform group in variety of ways

in cryptography. See, for instance [1, 25, 37, 40] and the references therein.

The present study is concerned with the development of cryptographic techniques

based on noncommutative algebraic structures. Specifically, we examine the role

of some noncommutative groups and rings of matrices as the platform group for

devising several new settings in cryptography. Indeed, the focus of our study is

on the development of new key exchange protocols and public key cryptosystems.

But, we also demonstrate several discussions regarding the security and suggest

values of involved parameters of the proposals.

1.3 Contribution of the Thesis

The main contribution of this thesis is as follows:

• Based on Stickel’s protocol, we have developed a cryptosystem. We have

proved the correctness of the proposed cryptosystem and discussed differ-

ent related issues like the choice of platform and parameters involved. A
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brief note on the security analysis of the said system is also given. Our ar-

ticle based on the exposition of this work is published in journal of Neural

Computing and Applications [26].

• Keeping in mind the spirit of Stickel’s protocol, we have presented two vari-

ant key exchange protocols. The underlying work structure for these proto-

cols is the set of polynomials over noncommutative ring. Different aspects

including its security and parameter values are also elaborated. This work

is submitted for a possible publication.

• Another cryptosystem which uses the polynomials over noncommutative

groups as underlying work structure. The useful feature of this cryptosystem

is that it provides high security because of the use of inner automorphisms

of a noncommutative group. This work is also submitted for a possible pub-

lication.

1.4 Organization of the Thesis

The conventional way to read this thesis is of course to read it sequentially. A

reader can also adopt the way of reading the Chapter 1 and then continue to read

the Chapters 4-6, containing the actual contents. However, the general consider-

ations of each chapter specifies organization of that chapter and the dependency

structure of its sections, is also given at the start of each chapter.

Overview of chapters

To read individual chapters, the following information might be helpful:

• Chapter 2 and 3 contain definitions, basic discussions and notations used

in the rest of the thesis. These specific definitions and discussions can be

read out separately, when needed. All the necessary prerequisites of number

theory, algebra and cryptography may be found in many basic books of

these subjects. For example, we refer lecture notes [16] and the book [19]
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for fundamental algebraic foundations. For number theoretic concepts, one

can see the reference [7]. The references [28], [39] and Stinson [57] can be

seen for cryptographic concepts.

• In Chapter 4, a new cryptosystem with noncommutative groups is presented.

The discussion related to different primitives of this cryptosystem is also

given.

• Chapter 5 is based on two new variants of Stickel’s key exchange protocol.

The platform for these protocols is ring of polynomials over noncommutative

rings.

• Chapter 6 is related to the study of a new cryptosystem based on the protocol

presented in Chapter 5.

• Chapter 7 describes the concluding remarks related to all proposals presented

in the thesis. There is also a brief discussion of some new directions for

possible future work.



Chapter 2

Mathematical Background

Modular arithmetic and finite fields have become increasingly important in cryp-

tography. Various cryptographic techniques rely deeply upon different properties

of modular arithmetic and finite fields. This chapter provides the sufficient back-

ground of modular arithmetic and finite fields which enables to comprehend the

rest of the cryptographic techniques of this dissertation. We first introduce the

basic concepts from modular arithmetic. Then comes a concise overview of some

algebraic structures. Next, some background of finite fields, is given. This chapter

concludes with a discussion of polynomial arithmetic.

2.1 Basic Concepts in Number Theory

This section provides some background of number theory. The concepts of divis-

ibility and greatest common divisor are elaborated. The division algorithm and

the Euclidian algorithm are also discussed in detail.

Definition 2.1.1. (Divisibility)

An integer b 6= 0 divides an integer a, if

a = bc, for some integer c.

6
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We use the notation b | a to say that b divides a. The integer b is called a divisor

(factor) of a and a is said to be a multiple of b.

Theorem 2.1.2. (The Division Algorithm/The Euclid Theorem)

For any integer b > 0 and any integer a > 0, there exist unique integers q and r

such that

a = bq + r, 0 ≤ r < b. (2.1)

In other words, on dividing a by b, we obtain two integers q and r for which the

equation (2.1) is satisfied. The integers q and r are known as quotient and remain-

der, respectively. This is also referred as the division algorithm. The remainder r

is referred as a residue under mod b.

From number theory, recall that the integer c 6= 0, is said to be a common divisor

of a and b if c | a and c | b.

Definition 2.1.3. (Greatest Common Divisor)

The integer d > 0 is known as the greatest common divisor of a and b, if

1. d | a and d | b.

2. Any other divisor c of a and b, divides d.

We denote the greatest common divisor of a and b by gcd(a, b).

If gcd(a, b) = 1, then a and b are said to be relatively prime or co-prime. That is

equivalently written as gcd(a, b) = 1.

Definition 2.1.4. (Prime Number)

An integer p > 1 is called a prime number if its only positive divisors are 1 and p.

Example 2.1.5.

1. The greatest common divisor of 24 and 60 or gcd(24, 60) = 12.

2. The integers 25 and 128 are relatively prime because gcd(25, 128) = 1.



Mathematical Background 8

2.1.1 Obtaining the Greatest Common Divisor

Euclid developed an algorithm which is used to find out the gcd of two integers.

For finding the gcd(a, b), where a > b and b > 0, we proceed as follows:

By Euclid’s Theorem 2.1.2, there exist unique integers q1 and r1 that satisfy the

equation

a = bq1 + r1, 0 ≤ r1 < b.

Here, we have two cases according to two values of remainder r1.

1. If r1 = 0 then b = gcd(a, b).

2. If r1 6= 0 then again by applying Euclid’s theorem, we can obtain unique

integers q2 and r2 that satisfy the relation

b = r1q2 + r2, 0 ≤ r2 < r1.

1. If r2 = 0 then r1 = gcd(a, b).

2. If r2 6= 0 then unique integers q3 and r3 exist, such that

r1 = r2q3 + r3, 0 ≤ r3 < r2.

We repeat this procedure until we obtain a zero remainder rm+1 say at (m+ 1)th

stage. The following set of equations is obtained:

a = bq1 + r1, 0 ≤ r1 < b,

b = r1q2 + r2, 0 ≤ r2 < r1,

r1 = r2q3 + r3, 0 ≤ r3 < r2,

...
...

rm−2 = rm−1qm + rm, 0 ≤ rm < rm−1,

rm−1 = rmqm+1 + 0, rm+1 = 0.

Here, we note the following:

1. rm > 0
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2. rm | a and rm | b

3. For every iterative step, d = gcd(rj, rj+1) and finally

d = gcd(rm, 0) = rm.

By applying the division algorithm, repetitively, the gcd of two integers can be

obtained. This procedure is given as the following algorithm:

Algorithm 2.1.6. (The Euclidean Algorithm)

Input : Two positive integers a and b.

Output: gcd(a, b)

1. M ←− a; N ←− b

2. if N = 0, return M = gcd(a, b)

3. R←−M mod N

4. M ←− N

5. N ←− R

6. goto step 2

Example 2.1.7.

For finding gcd(143, 110), we have

143 = 1× 110 + 33,

110 = 3× 33 + 11,

33 = 3× 11 + 0.

Therefore, gcd(143, 110) = gcd(110, 33) = gcd(33, 11) = gcd(11, 0) = 11.

2.1.2 Modular Arithmetic

We now give a brief account of modulus and related modular arithmetic concepts.
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Definition 2.1.8. (The Modulus)

The remainder obtained by dividing an integer a by a positive integer n, is defined

as a mod n. We call the integer n as the modulus.

By Theorem 2.1.2, on dividing a by n, we have

a = nq + r, 0 ≤ r < n,

or r = a mod n.

Two integers a and b are congruent to each other modulo n whenever

a mod n = b mod n.

We write it as

a ≡ b mod n.

Remark 2.1.9.

Following are some properties of congruence:

1. a ≡ b mod n implies b ≡ a mod n.

2. a ≡ b mod n if n | (a− b).

3. a ≡ b mod n and b ≡ c mod n imply a ≡ c mod n.

2.1.3 Properties of Modular Arithmetic

Observe that the operator mod n is a mapping which maps all integers into the

set {0, 1, · · · , (n− 1)}. We can confine ourselves to perform arithmetic operations

within this set. These techniques are known as modular arithmetic. Denote the set

{0, 1, · · · , (n− 1)} of nonnegative integers less than n as Zn. This set is called the

set of residues, or residue classes mod n. Every integer r in Zn is a representative

of a complete residue class. A residue class corresponding to r is labeled by

[r] = {a | a is an integer with the property a ≡ r mod n } .
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That is all the residue classes mod n are [0] , [1] , [2] , · · · , [n− 1] . The residue

classes mod 5 are

[0] = {· · · ,−20,−15,−10,−5, 0, 5, 10, 15, 20 · · · } ,

[1] = {· · · ,−19,−14,−9,−4, 1, 6, 11, 16, 21 · · · } ,

[2] = {· · · ,−18,−13,−8,−3, 2, 7, 12, 17, 22 · · · } ,

[3] = {· · · ,−17,−12,−7,−2, 3, 8, 13, 18, 23 · · · } ,

[4] = {· · · ,−16,−11,−6,−1, 4, 9, 14, 19, 24 · · · } .

A residue class is represented by the smallest nonnegative integer present in that

residue class. For the integers x1, x2, x3 ∈ Zn, the basic modular arithmetic oper-

ations are given as:

1. [(x1 mod n) + (x2 mod n)] mod n = (x1 + x2) mod n,

2. [(x1 mod n)− (x2 mod n)] mod n = (x1 − x2) mod n,

3. [(x1 mod n)× (x2 mod n)] mod n = (x1 × x2) mod n.

The properties of modular arithmetic within Zn are described in TABLE 2.1.

Property Expression

Commutative Laws (x1 + x2) mod n = (x2 + x1) mod n
(x1 × x2) mod n = (x2 × x1) mod n

Associative Laws [(x1 + x2) + x3] mod n = [x1 + (x2 + x3)] mod n
[(x1 × x2)× x3] mod n = [x1 × (x2 × x3)] mod n

Distributive Law [x1 × (x2 + x3)] mod n = [(x1 × x2) + (x1 × x3)] mod n
Additive Identity (0 + x1) mod n = x1 mod n
Multiplicative Identity (1× x1) mod n = x1 mod n
Additive Inverse For each x ∈ Zn, there exists a x′ ∈ Zn

such that x+ x′= 0 mod n.

Table 2.1: The Properties of Modular Arithmetic.

The modular arithmetic is somehow different from ordinary arithmetic. Note that

if (x1 + x2) ≡ (x2 + x3) mod n, then x1 ≡ x3 mod n
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because of existence of the additive inverse. But, the statement for muliplication

is true only with an additional condition:

if (x1 × x2) ≡ (x2 × x3) mod n, then x1 ≡ x3 mod n,

provided that x2 is relatively prime to n.

 (2.2)

The Euclidean algorithm in Zn relies on the following theorem:

For any integer a > 0 and any integer b > 0,

gcd(a, b) = gcd(b, a mod b). (2.3)

The equation (2.3) can be used repetitively, to find the gcd(a, b).

For a positive integer a < n, if gcd(a, n) = 1 then there exists a−1 ∈ Zn such that

a−1a = aa−1 = 1 mod n.

In order to determine a−1, the Euclidean algorithm can be extended. If gcd(a, n) =

1, the algorithm returns the multiplicative inverse a−1 of a modulo n. This algo-

rithm is known as the Extended Euclidean algorithm.

Algorithm 2.1.10. (The Extended Euclidean Algorithm)

Input: Two positive integers a and n with a < n.

Output: Multiplicative inverse a−1 of a modulo n.

1. (U1, U2, U3)←− (1, 0, n); (V1, V2, V3)←− (0, 1, a)

2. If V3 = 0 return U3 = gcd(a, n); no inverse

3. If V3 = 1 return V3 = gcd(a, n); V2 = a−1 mod n

4. W =
⌊
U3

V3

⌋
5. (T1, T2, T3)←− (U1 −WV1, U2 −WV2, U3 −WV3)

6. (U1, U2, U3)←− (V1, V2, V3)

7. (V1, V2, V3)←− (T1, T2, T3);
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8. goto 2.

Example 2.1.11.

To understand the execution of the Algorithm 2.1.10, consider that gcd(1759, 550) =

1. Therefor, the inverse (550)−1 mod 1759 exists which can be obtained as shown

in TABLE 2.2.

W U1 U2 U3 V1 V2 V3

1 0 1759 0 1 550
3 0 1 550 1 3 109
5 1 3 109 5 16 5
21 5 16 5 106 339 4
1 106 339 4 111 355 1

Table 2.2: The Multiplicative Inverse Using Extended Eucleadian Algorithm.

Definition 2.1.12. (Euler’s Totient Function)

For any integer n > 0, the Euler totient function, denoted by φ(n), is defined as the

number of integers a such that gcd(a, n) = 1, where 1 ≤ a ≤ n . That is, φ(n) is the

number of integers that are relatively or co-prime with n. For

example φ(5) = 4, and φ(24) = 8.

Theorem 2.1.13.

The Euler totient function satisfies the following properties:

1. If gcd(a, b) = 1, then φ(ab) = φ(a)φ(b).

2. φ(pn) = pn − pn−1, where p is a prime integer.

3. φ(nk) = nk−1φ(n).

Theorem 2.1.14. (Fermat’s Little Theorem)

For any prime p, and any integer a 6≡ 0 mod p, we have ap−1 ≡ 1 mod p. Further,

we can also say that for any integer a, we have ap ≡ a mod p.

Theorem 2.1.15. (Euler’s Theorem)

For an integer a which is relatively prime to a positive integer n that is

gcd(a, n) = 1,
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we have

aφ(n) = 1 mod n.

The Fermat little theorem is the special case of the Euler theorem with n is prime.

2.2 Some Algebraic Structures

Groups, rings, and fields are the elementary structures of abstract algebra or

modern algebra. While dealing with abstract algebra, the operations within these

structures, are not limited to ordinary arithmetical operations. Perhaps, to com-

bine two elements of the set, different algebraic operations can be defined depend-

ing on the nature of the elements of the set. This becomes clear as we proceed

further in this section.

Definition 2.2.1. (Groups)

A set G with a binary operation ∗, is called a group such that ∗ associates to each

order pair (g1, g2) ∈ G×G, an element (g1 ∗ g2) of G, provided that the following

axioms are satisfied:

(G1) Closure: For all g1, g2 ∈ G,

(g1 ∗ g2) ∈ G

(G2) Associative: For all g1, g2, g3 ∈ G,

g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3

(G3) Identity Element: For all g ∈ G, there exists an element e ∈ G, such

that

g ∗ e = e ∗ g = g
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(G4) Inverse Element: For all g ∈ G, there exists an element g′ ∈ G, called

the inverse of g, such that

g ∗ g′ = g′ ∗ g = e.

The subsets of a group which are also groups are called subgroups of that group.

That is, a subset H of a group (G, ∗) which contains the identity element e ∈ G

is called a subgroup of G, if it is also a group with the same binary operation ∗.

Symbolically, we write it as H ≤ G.

Definition 2.2.2. (Order of a Group)

A group G is referred as finite group if it has a finite number of elements in it.

The order |G| of a finite group G is the number of elements it contains.

Definition 2.2.3. (Commutative Group)

A group is called commutative or abelian with the following additional condition:

(G5) For all g1, g2 ∈ G,

g1 ∗ g2 = g2 ∗ g1.

The exponentiation of elements of a group is defined as the repetitive application

of the group operator ∗. For example

g3 = g ∗ g ∗ g.

Definition 2.2.4. (Order of an Element of a Group)

For an element g ∈ G, the smallest positive integer n is called the order of g,

denoted by |g| = n, such that gn = e and then g is said to have finite order.

Definition 2.2.5. (Cyclic Group)

A group G is said to be cyclic if each element of G can be expressed as a power

of a specific fixed element, say g ∈ G. The element g is known as the generator of

the group G. In that case the group G can also be denoted as

G = 〈g〉 .
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Example 2.2.6.

1. The set of complex numbers C, the set of real numbers R, the set of rational

numbers Q and the set of integers Z form groups with respect to addition.

For all these sets 0 is the identity element. Moreover, Z is subgroup of Q,

that is, Z ≤ Q. Similarly, Q ≤ R ≤ C.

2. The set of complex numbers C, the set of real numbers R and the set of

rational numbers Q (excluding 0) with respect to multiplication are groups.

The element 1 is the identity for these groups. All these are infinite groups.

3. The set Zn of all remainders modulo n forms a cyclic group under addition

modulo n. It is a finite group of order n.

Definition 2.2.7. (Center of a Group)

The center Z(G) of a group G is defined as the set

Z(G) = {x ∈ G | gx = xg ∀g ∈ G} .

That is, Z(G) is the set of all those elements that commute with every element of

G.

Definition 2.2.8. (Conjugate Elements)

Two elements g, h ∈ G, are said to be conjugate if gt = t−1gt = h, for some t ∈ G.

Definition 2.2.9. (Normal Subgroup)

A subset N which commutes with every element of group G is called invariant or

self-conjugate. Particularly, if N is also a subgroup of G, then N is said to be a

normal or invariant or self-conjugate subgroup of G.

Equivalently, we can also say that a subgroup N is called normal if g−1Ng = N ,

for all g ∈ G. We write N . G to express that N is a normal subgroup of G.

For example the center Z(G) of a group G is a normal subgroup of G.

Definition 2.2.10. (Homomorphism)

A mapping ψ : G −→ H from a group G to another group H is said to be a
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(group) homomorphism, if the group operation is preserved in the sense that

ψ(g1 ∗G g2) = ψ(g1) ∗H ψ(g2), for all g1, g2 ∈ G,

where, ∗G and ∗H are the binary operations defined in G and H, respectively.

The kernel of a homomorphism ψ is

kerψ = {g ∈ G | ψ(g) = eH} ,

where eH is the identity of group H.

The image of ψ is the set

img ψ = {h ∈ H | ∃ g ∈ G such that ψ(g) = h} .

Note that, usually we do not use the binary operation symbol, ∗, but concatenation

of two elements is used to show the specific binary operation of the corresponding

group.

Example 2.2.11.

1. Consider a group G and an element a ∈ G. The exponential function

ψ : Z −→ G defined by

ψ(n) = an,

for all n ∈ Z, is a group homomorphism from Z to G.

2. The map ϕ : Z→ Zn, ϕ(k) = k mod n, is a homomorphism from (Z,+) to

(Zn,+).

3. The set (R \ {0}, ·) is a group. The map det : GL(n,R)→ R \ {0}, defined

as

det(M) = |M |,

is a homomorphism.
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Definition 2.2.12. (Isomorphism)

If a group homomorphism ψ : G −→ H from a group G to another group H,

possesses an inverse homomorphism, then ψ is said to be an isomorphism and the

corresponding groups are said to be isomorphic to each other. For the isomorphic

groups G and H, we write G ∼= H.

Example 2.2.13.

1. The map n 7−→ (−1)n is an isomorphism from (Z2,+) to ({1,−1} , ·).

2. For x ∈ R \ {0}, the map fx : R −→ R, defined as fx(y) = xy, is an

isomorphism from (R,+) to (R,+).

Definition 2.2.14. (Endomorphism and Automorphism)

An endomorphism is just a homomorphism ψ : G −→ G, where the domain and

codomain are the same group G, and an automorphism is just an isomorphism

ψ : G −→ G, from group G to the same group G.

The set of all automorphisms forms a group which is denoted by Aut(G), with the

binary operation as the composition of mappings.

Example 2.2.15. (Inner Automorphism)

The conjugate of any element g ∈ G by an element h ∈ G is h−1gh and we denote

it by gh. The automorphism defined as the conjugation by an element of the

group is known as inner automorphism. The collection of all inner automorphisms

of a group, denoted by Inn(G), is a subgroup of the group Aut(G).

Definition 2.2.16. (Finitely Presented Groups)

A group G on finitely many generators defined by finitely many relations between

these generators, is said to be finitely presented or finitely presentable group. A set

S of generators and a set R of relations among those generators can be specified.

Each element of such a group is a product of powers of some of these generators.

We can express G as

G = 〈S|R〉 .

Example 2.2.17.

The group of symmetries of a regular polygon which includes rotations and re-

flections known as dihedral group, is the simplest example of finitely presented
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groups. The dihedral group Dn of order 2n with a rotation r and a reflection f

has presentation

Dn =
〈
r, f | rn = f 2 = (rf)2 = 1

〉
.

Definition 2.2.18. (Word)

A word in a subset X of a group G, is any expression of the form

xε11 x
ε2
2 . . . xεnn

where x1, x2, ..., xn are elements of X and each εi is either 1 or -1. The number n

is called the length of the word.

Every word in X represents an element of G. For the elements x, y and z ∈ G,

the products of the form xy, z−1xzz and y−1zxx−1yz−1 are examples of words in

the set {x, y, z}.

Definition 2.2.19. (Ring)

A set R in which two binary operations addition “+”and multiplication “·”are

defined, is said to be a ring such that (R,+) is an abelian group and satisfies the

following conditions with respect to the multiplication operation “·”:

(M1) With respect to the operation of multiplication, R is closed that is, for all

r1, r2 ∈ R

r1r2 ∈ R,

where by r1r2, we mean r1 · r2.

(M2) With respect to the operation of multiplication R is associative that is, for

all r1 , r2, r3 ∈ R

r1 (r2r3) = (r1r2) r3,

(M3) Distributivity holds in R that is, for all r1 , r2, r3 ∈ R

r1 (r2 + r3) = r1r2 + r1 r3,

(r1 + r2) r3 = r1 r3 + r2 r3.
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If a ring R also satisfies the following condition, then it is called a commutative

ring.

(M4) With respect to multiplication, a ring R is commutative, if for all r1 , r2 ∈ R

r1r2 = r2r1.

Definition 2.2.20. (Integral Domain)

A set R is called an integral domain, if it is a commutative ring and satisfies the

following additional properties:

(M5) Multiplicative Identity: For every r ∈ R, There exists an element 1 ∈ R,

such that

1r = r1 = r.

(M6) No Zero Divisors: For r1, r2 ∈ R, if r1r2 = 0, then either r1 = 0, or r2 = 0.

Definition 2.2.21. (Field)

An integral domain F is called field, if it obeys the following additional axiom:

(M7) Multiplicative Inverse: For each nonzero a ∈ F, there exists an element

a′ ∈ F, called the inverse of a, such that

aa′ = a′a = 1.

The relation between different algebraic structures is show in FIGURE 2.1

Example 2.2.22.

1. The set of complex numbers C, the set of real numbers R, the set of rational

numbers Q and the set of integers Z, are rings.

2. The set M(n,R) of n× n matrices with entries from a ring R forms a non-

commutative ring, under the usual matrix addition and multiplication.

3. Consider the set GL(n,R) = {A ∈ Rn×n | det(A) 6= 0} of all n× n matrices

over R, where R is any ring having an identity element. We call it the general
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Figure 2.1: Relation Between Different Algebraic Structures

linear group of all n× n matrices over R. This set with matrix multiplication

forms a noncommutative group.

4. Zn is a commutative ring.

5. The set of integers Z with ordinary addition and multiplication forms an

integral domain.

6. The set of complex numbers C, the set of real numbers R and the set of

rational numbers Q are all fields.

7. The set Zp, for a prime p is a finite field.

2.2.1 Finite Fields

In the context of cryptography, infinite fields are not of particular interest. How-

ever, there are many cryptographic algorithms which are based on finite fields.

The order of a finite field can be shown to be a positive integer power of a prime
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number p. The finite field having order pn, where n is a positive integer, is generally

written as GF (pn). Here GF (pn) stands for Galois field, due to a famous math-

ematician Galois. For cryptographic techniques, we are interested in two special

cases. These two cases are n = 1 and n > 1. The finite field GF (p) (with n = 1)

have different structure than that of GF (pn). First, let us look at the structure of

finite fields having form GF (p).

The finite field having form GF (p) is defined as the set Zp of integers less than p.

That is

Zp = GF (p) = {0, 1, · · · , (p− 1)}.

The order of set Zp is p. All the arithmetic operations are under modulo p. We

have already mentioned in a previous section that any integer a ∈ Zn possesses a

multiplicative inverse if a and n are relatively prime. Observe that for a prime p,

each nonzero integers in set Zp is relatively prime to p. Therefore, each nonzero

integers in set Zp has a multiplicative inverse in Zp. So, the set Zp is a finite

field of order p. Hence, in this particular case, the equation (2.2) can be rewritten

without the condition, as

if (x1 × x2) ≡ (x2 × x3) mod p, then x1 ≡ x3 mod p.

2.3 Polynomial Arithmetic

One of our concerning algebraic structure is the set of polynomials in one variable.

First, we give the definition of a polynomial.

Definition 2.3.1. (Polynomial)

For an integer n ≥ 0, an expression having the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 =
n∑
i=0

aix
i, an 6= 0

is called a polynomial of degree n. Here ai’s ∈ A, A is any designated set called

the coefficient set. This set can be a ring or a field. Such polynomials are said to
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be defined over the coefficient set A. This form of polynomial with variable x, is

referred to as the polynomial in one indeterminate.

To continue further discussion, we now revisit the following three kinds of polyno-

mial arithmetic:

A) Ordinary polynomial arithmetic, employing the basic algebraic rules.

B) Polynomial arithmetic with the coefficients of polynomials are from GF (p)

and the arithmetic operations are performed on the coefficients under modulo

p.

C) Polynomial arithmetic in which the coefficients of polynomials are from

GF (p) and the arithmetic operations are performed under modulo a spe-

cific polynomial M(x).

First two classes are examined in this section and the third class is discussed in

next section.

2.3.1 Ordinary Polynomial Arithmetic

All the operations are defined in a usual way. The addition or subtraction of

any two polynomials can be carried out by adding or subtracting corresponding

coefficients of the polynomials. Therefore, for any two polynomials

P (x) =
n∑
i=0

aix
i, Q(x) =

m∑
i=0

bix
i, n ≥ m,

addition and multiplication are defined as

P (x) +Q(x) =
m∑
i=0

(ai + bi)x
i +

n∑
i=m+1

aix
i,

P (x)×Q(x) =
m+n∑
i=0

cix
i, where

ci = a0bi + a1bi−1 + · · · ai−1b1 + a0bi.



Mathematical Background 24

In the formula of ci, ai’s are treated as zero for i > n and bi’s are zero for i > m.

The resulting polynomial obtained by the product of two polynomials P (x) and

Q(x), has the degree equal to n+m.

Definition 2.3.2. (Polynomial Ring)

A set of all polynomials in one indeterminate with coefficients from a ring R, is

denoted by R[x]. It is not hard to show that the set R[x], with defined addition

and multiplication, forms a ring, called a polynomial ring.

2.3.2 Polynomial Arithmetic with Coefficients in Zp

Now consider the polynomial ring F[x], where F is any field. In such a case, division

can be performed on polynomials. Here, the exact division may not be possible.

We explain this difference as follows:

In a field, we can say that b completely divides a, for two elements a and b of

a field. That is the quotient (a/b) ∈ F. But in a ring R, division, generally,

produces a quotient and a remainder. That is in a ring R, an element may or may

not completely divides another element. For example, consider the set of rational

numbers and let 5 and 3 be the elements of this set. The division of 5 by 3 produces

a rational number, as set of rational numbers is a field. Similarly, consider 5 and

3 being the elements of set Z7. We note that 5/3 = (5× 3−1) mod 7 = (5× 5)

mod 7 = 4 mod 7, as Z7 is a field. However, if we consider 5 and 3 as elements

of set of integers which is a ring, the division of 5 by 3 produces a quotient and a

remainder which are 1 and 2, respectively. Thus, 3 does not completely divide 5

over the set of integers.

The division has different aspects when performed over polynomials with coeffi-

cient set A. When set A is a ring the division may not be defined, always. For

example, (5x2)� (3x) has no solution, if coefficient set is the set of integers. Over

the polynomial with coefficient set as a field, the division is always defined. For

example, the same division over the polynomials with coefficients set Z7, gives

(5x2)� (3x) = 4x, and 4x ∈ Z7[x]. However the complete division is not always



Mathematical Background 25

possible. Generally, a quotient and a remainder is produced as a result of such

division. Consider the division (5x2 + 6)� (3x) as an example over coefficients set

Z7. This division will give a quotient 4x and a remainder equal to 6 which both

are the valid polynomial over Z7.

Now, let us restate the division algorithm defined in Theorem 2.1.2 for ring of

polynomials F[x] as follows:

Theorem 2.3.3. Given two polynomials P (x) and Q(x) of degrees n and m

(n ≥ m), respectively. The division of P (x) by Q(x), will give a qoutient Q
′
(x)

and a remainder R(x) that satisfy the following relation:

P (x) = Q
′
(x)Q(x) +R(x),

where deg(Q
′
(x)) = n−m and deg(R(x)) ≤ m− 1.

Analogous to integer arithmetic, if remainder R(x) = 0, then it can be said that

Q(x) | P (x) or Q(x) is a factor of P (x). Also, the remainder R(x) can be written

as

R(x) = P (x) mod Q(x),

Definition 2.3.4. (Irreducible Polynomial)

A polynomial P (x) in F[x] is said to be an irreducible or a prime polynomial if

it cannot be written as a product of two polynomials Q(x) and H(x) ∈ F[x] and

both Q(x) and H(x) having degree smaller than that of P (x).

For example, the polynomial P (x) = x3 + 1 over GF (2) can be expressed as

x3 + 1 = (x+ 1)
(
x2 + x+ 1

)
.

So, it is reducible. An example of irreducible polynomial over GF (2) is x3 +x+ 1.

Definition 2.3.5. (Greatest Common Divisor of Two Polynomials)

The polynomial D(x) is called the greatest common divisor of two polynomials

P (x) and Q(x) if D(x) divides both P (x) and Q(x) and any other divisor of P (x)

and Q(x) is also a divisor of D(x).
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The Euclidean Algorithm 2.1.6 can be employed to determine the gcd of two

polynomials. The equation (2.3) can be rewritten for polynomials as

gcd[P (x), Q(x)] = gcd[Q(x), P (x) mod Q(x)].

2.4 Finite Fields of the Form GF (2n)

It is mentioned earlier that a finite field must be of order of the form pn, for any

prime p and a positive integer n. We also talked about the special kind of finite

fields having order p. Note that, for polynomials with coefficients from pn, with

n > 1 (operations modulo pn), is not a field. Now, we discuss which structure

becomes a field with pn elements. Specially, we concentrate on GF (2n) which is

important for cryptographic perspective. Because, for implementation convenience

and efficiency, we have to deal with integers that fit exactly into a given number

of bits. That is why, the integers in the range 0 to 2n−1, which can be considered

and fitted to an n-bit word are preferred to work with.

For example, assume that we wish to use and perform division in 8 bits data for an

encryption algorithm. The integers in the range 0 to 255 can be represented with

8 bits. If we perform arithmetics in Z256, this set is not a field because 256 is not

a prime number. The prime number less than and closest to 256 is 251 and the

set Z251is a field under modulo 251. But, now we can not use the 8 bit patterns

to represent the integers from 251 to 255. This results in excessive and inefficient

use of storage. Keeping in mind this discussion, if all the integers ranging from

0 to 2n − 1 are desired to be represented in n bits, then the set of integers with

arithmetic modulo 2n will not generate a field. Moreover, there are also some

other restrictions on the use of set Z2n for the encryption algorithm, as illustrated

in the following example:

Consider a particular encryption algorithm in which 3 bit blocks are used and

only the operations of addition and multiplication are involved. The operations

of addition and multiplication in the set Z8 modulo 8 are as given in TABLE 2.3
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and TABLE 2.4, respectively. Observe that in the TABLE 2.4, the occurrence of

non-zero integers is not in an equal number of times. For instance, the integer 3

is appearing four times and 4 is appearing twelve times. But for the finite field

GF (23) of order 23 = 8, the nonzero integers are occurring in a uniform manner

for multiplication, as shown in TABLE 2.6. Let us just ignore the question of how

TABLE 2.5 and TABLE 2.6 are constructed, observe the following:

1. The two tables verify the commutative law with respect to their correspond-

ing operations.

2. All the nonzero elements of GF (23) are invertible with respect to multipli-

cation, unlike the case with TABLE 2.4.

3. The set of elements of GF (23) with multiplication defined as in TABLE 2.6,

becomes a finite field.

+ 0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 0
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

Table 2.3: Addition in Z8.
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× 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 0 2 4 6
3 0 3 6 1 4 7 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

Table 2.4: Multiplication in Z8.

000 001 010 011 100 101 110 111
+ 0 1 2 3 4 5 6 7

000 0 0 1 2 3 4 5 6 7
001 1 1 0 3 2 5 4 7 6
010 2 2 3 0 1 6 7 4 5
011 3 3 2 1 0 7 6 5 4
100 4 4 5 6 7 1 0 2 3
101 5 5 4 7 6 1 0 3 2
110 6 6 7 4 5 2 3 0 1
111 7 7 6 5 4 3 2 1 0

Table 2.5: Addition in GF (23).

000 001 010 011 100 101 110 111
× 0 1 2 3 4 5 6 7

000 0 0 0 0 0 0 0 0 0
001 1 0 1 2 3 4 5 6 7
010 2 0 2 4 6 3 1 7 5
011 3 0 3 6 5 7 4 1 2
100 4 0 4 3 7 6 2 5 1
101 5 0 5 1 4 2 7 3 6
110 6 0 6 7 1 5 3 2 4
111 7 0 7 5 2 1 6 4 3

Table 2.6: Multiplication in GF (23).

Generally, an attractive cryptographic algorithm is one that maps the integers

uniformly onto themselves unlike an algorithm that maps themselves unevenly.

Therefore, in cryptographic context, the use of the finite fields GF (2n) is preferred.
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To summarize, we seek a set of order 2n in which addition and multiplication are

defined and that set becomes a field. So that the integer ranging from 0 to 2n− 1

can be associated uniquely to the element of that set.

Now, we show how polynomial can be used to provide a mean for constructing the

required field.

2.4.1 Modular Polynomial Arithmetic

Let us consider the collection An of all the polynomials over the field Zp, such that

every polynomial of this set has degree at most n− 1. So, every polynomial is of

the following form:

P (x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 =
n−1∑
i=0

aix
i,

where ai ∈ Zp. The set An has a total of pn different polynomials.

Considering each such set An with the arithmetic operations that obey the follow-

ing rules, makes it a finite field:

1. The ordinary rules of algebra are obeyed in polynomial arithmetic but with

the following additional conditions:

2. The coefficients arithmetic can be done modulo p. The rules followed by the

coefficients are those which are followed in finite field Zp.

3. In case of multiplication of polynomials, if we get a polynomial with degree

greater than (n−1), then that resulting polynomial should be reduced mod-

ulo some irreducible polynomial M(x) of degree n. This means that the

resulting polynomial is divided by M(x) and replaced with the remainder.

In modular polynomial arithmetic, there is also the idea of a set of residues, just

as in ordinary modular arithmetic. There are pn elements in the set of residues

modulo M(x), where M(x) is an nth-degree irreducible polynomial. Each element
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of this set can be expressed as one of the pn polynomials with degree less than n.

Further, a fact can be established that this set of polynomials forms a finite field.

The modular polynomial arithmetic is explained in the following example:

The finite field GF (23) can be constructed by choosing a polynomial having degree

3 which is irreducible. Note that there are only two irreducible polynomials having

degree 3 which are (x3 + x2 + 1) and (x3 + x + 1). Let us choose and use

the irreducible polynomial (x3 + x + 1) to construct the results of addition and

multiplication for GF (23) as given in TABLE 2.7 and TABLE 2.8.

000 001 010 011 100 101 110 111

+ 0 1 x x + 1 x2 x2+1 x2+x x2+x + 1

000 0 0 1 x x + 1 x2 x2+1 x2+x x2+x + 1

001 1 1 0 x + 1 x x2+1 x2 x2+x + 1 x2+x

010 x x x + 1 0 1 x2+x x2+x + 1 x2 x2+1

011 x + 1 x + 1 x 1 0 x2+x + 1 x2+x x2+1 x2

100 x2 x2 x2+1 x2+x x2+x + 1 0 1 x x + 1

101 x2+1 x2+1 x2 x2+x + 1 x2+x 1 0 x + 1 x

110 x2+x x2+x x2+x + 1 x2 x2+1 x x + 1 0 1

111 x2+x + 1 x2+x + 1 x2+x x2+1 x2 x + 1 x 1 0

Table 2.7: Polynomial Addition Modulo (x3 + x+ 1).

000 001 010 011 100 101 110 111

× 0 1 x x + 1 x2 x2+1 x2+x x2+x + 1
000 0 0 0 0 0 0 0 0 0

001 1 0 1 x x + 1 x2 x2+1 x2+x x2+x + 1

010 x 0 x x2 x2+x x + 1 1 x2+x + 1 x2+1

011 x + 1 0 x + 1 x2+x x2+1 x2+x + 1 x2 1 x

100 x2 0 x2 x2+1 x2+x + 1 x2+x x x2+1 1

101 x2+1 0 x2+1 1 x2 x x2+x + 1 x + 1 x2+x

110 x2+x 0 x2+x x2+x + 1 1 x2+1 x + 1 x x2

111 x2+x + 1 0 x2+x + 1 x2+1 x 1 x2+x x2 x + 1

Table 2.8: Polynomial Multiplication Modulo (x3 + x+ 1).

2.4.2 Multiplicative Inverse of a Polynomial

The extended Euclidean algorithm can be used to determine the multiplicative in-

verse of a polynomial. For finding the multiplicative inverse of P (x) mod M(x),

the polynomial P (x) is required to have degree less than that of the polynomial

M(x) and the two polynomials should be relatively prime that is gcd[M(x), P (x)] = 1.

For an irreducible polynomial M(x), the gcd[M(x), P (x)] = 1, always holds. The

algorithm is as follows:
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Algorithm 2.4.1.

Input: Two Polynomials P (x) and M(x)

Output: Inverse of P (x) mod M(x)

1. [P1(x), P2(x), P3(x)]←− [1, 0,M(x)]; [G1(x), G2(x), G3(x)]←− [0, 1, P (x)]

2. if G3(x) = 0 return P3(x) = gcd[M(x), P (x)]; There is no inverse

3. ifG3(x) = 1 returnG3(x) = gcd[M(x), P (x)]; G2(x) = (P (x))−1 mod M(x)

4. Q(x) = quotient of P3(x)�G3(x)

5. [C1(x), C2(x), C3(x)]←− [P1(x)−Q(x)G1(x), P2(x)−Q(x)G2(x), P3(x)−QG3(x)]

6. [P1(x), P2(x), P3(x)]←− [G1(x), G2(x), G3(x)]

7. [G1(x), G2(x), G3(x)]←− [C1(x), C2(x), C3(x)]

8. return to step 2.



Chapter 3

Cryptographic Background

Every field of study has its own language and terminologies including the specific

terms that support an understanding of the object being investigated. We discuss

different preliminary concepts and material related to the field of cryptography,

in this chapter. The definitions and discussions contained therein will be used to

understand rest of the study. The structure of this chapter is as follows:

First section is about a few basic primitives of cryptography, including its charac-

terizations and applications. In the second section, a detailed discussion of public

key cryptography with some of public key protocols and systems, is given.

3.1 Basic Cryptographic Primitives

Before proceeding further, we first discuss the main components of a cryptosystem.

In a cryptosystem, any two communicating parties are usually referred as Alice and

Bob. The original unprocessed message is called the plaintext and the processed

message is known as the ciphertext. The procedure of transforming the plaintext in

to the ciphertext is called enciphering or encryption algorithm, while reverting the

procedure to get the plaintext back from the ciphertext is known as deciphering

or decryption algorithm. A key is a secret essential piece of information that is

32
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used to get the original message from the cipher. Without the key, no plaintext

would be produced.

3.1.1 Characterization of Cryptosystems

Cryptographic systems are characterized according to two approaches: the number

of keys used and the way of dealing the plaintext. First approach may further be

divided in two types: secret key cryptography and public key cryptography. The

second approach of characterization of a cryptosystems is based on the manner of

processing the plaintext for encryption. This characterization has also two types:

block cipher encryption and stream cipher encryption.

Secret key cryptography makes use of a single key. This single key is shared by

both sender and receiver. This type of system is also known as single-key, sym-

metric, or conventional cryptosystem. These cryptosystems are fast, highly secure

and not very computationally intensive. The main disadvantage of this type of

cryptography is that a key has to be sent through a highly secure channel before

starting the communication itself. Usually, the single-key used in these cryptosys-

tems is a lengthy one. The most famous examples of symmetric cryptographic

algorithms are Data Encryption Standard (DES) [12] and Advanced Encryption

Standard (AES) [13]. The model of secret key cryptosystem is shown in FIGURE

3.1, where the plaintext X is encrypted using an encryption algorithm E and the

key K to compute ciphertext C = E(K,X). The ciphertext is then decrypted by

receiver using corresponding decryption algorithm and symmetric key K to get

X = D(K,C). While in public key cryptography, two keys are involved: a key

Figure 3.1: Symmetric Cryptosystem
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K ′, known only to receiver called the private key and a key K, publicly available

to anyone who wants to communicate with the receiver which is called the pub-

lic key. The two keys are mathematically connected. This type of cryptosystem

is also known as asymmetric cryptosystem. If there is no mean to exchange a

key before starting communication, the public keys are used to establish secure

communication. These cryptosystems are computationally intensive as compared

to secret key cryptosystems. In such cryptosystems, the encryption algorithm E

is also publicly known to every body. So, they can never exhibit unconditional

security because an adversary looking at a ciphertext C, can try to encrypt each

possible plaintext X by using the encryption algorithm until he gets a plaintext

whose ciphertext is C. The model of public key cryptosystem is shown in FIGURE

3.2.

The two most famous and commonly used public key cryptosystems are RSA

(Rivest-Shamir-Adleman) [46] and elliptic curve cryptosystem [18].

Figure 3.2: Asymmetric Cryptosystem

An other characterization of a cryptosystem is based on the way of dealing the

plaintext. In a block cipher encryption, one block of a message is processed at a

time and corresponding to each input block, an output block is produced. While

in stream cipher encryption, the input message is processed continuously, as it goes

along and one output element is produced at a time. Hill cipher, playfair cipher,

DES, IDEA (International Data Encryption Algorithm) [33], RC5 [60], AES [13]

and Blowfish [49] ciphers are the examples of block ciphers. Caesar cipher, shift

register [20] and RC4 [47] are the examples of stream ciphers.
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3.1.2 Cryptanalysis and Techniques of Attacks

The main goal of cryptography is to keep the original message secret from the ad-

versaries. The adversaries are always trying to break the cryptosystem by getting

some secret information about the plaintext or to change the message. There-

fore, the cracking science of secrets is known as Cryptanalysis. Through different

techniques of cryptanalysis, an adversary may target cryptographic protocols and

authentication schemes. It is assumed that adversaries have a complete access

to the communication system (encryption algorithm, decryption algorithm and

the public key). This is the fundamental principle due to Kerckhoff [29] which

states that adversaries know everything about cryptographic algorithms except

the keys (private keys). The main aim of an attack is to observe and understand

the working of different cryptographic algorithms. So that the weaknesses and

flaws involved in these algorithms can be used to victimize or defeat them. Two

different approaches are there to break a cryptographic algorithm: Cryptanalytic

attacks and brute-force attack. Some cryptanalytic attacks are as follows:

In ciphertext-only attack, the adversary only knows some encrypted messages

but has no knowledge of the plaintext and any thing about the key being used.

In a known-plaintext attack, the cryptanalyst has some of the plaintext and

corresponding ciphertext. The main objective of this attack is to discover the

secret key used to encrypt the messages.

In a chosen-plaintext attack, the attacker has some access to the computer or

device which is used for the encryption. The attacker encrypts some plaintext of

his choice with the encryption algorithm and tries to find out the key.

In chosen-ciphertext attack, the cryptanalyst has access to the decryption algo-

rithm. He tries to obtain the key by choosing different ciphertexts to be decrypted.

These attacks are generally mounted against the public key cryptosystems.

In chosen-text attack, the attacker may have some access to encryption and de-

cryption algorithms. The attacker observes what will be encrypted and decrypted

and then determines the key by using observed results.
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The TABLE 3.1 shows a summary of the information available to the cryptanalyst

or attacker for mounting different cryptanalytic attacks.

In the brute-force attack, the strategy of the attack is to try every key from the

key space, on a ciphertext as far as an understandable plaintext is obtained. To

find out the actual key, an attacker has to check half of the key space, averagely.

Attack Type Attacker Knowledge
Ciphertext-only attack 1) Ciphertext
Known-plaintext attack 1) Ciphertext

2) Some plaintext ciphertext pairs created
by using the private key

Chosen-plaintext attack 1) Ciphertext
2) Plaintext selected by attacker plus its

respective ciphertext formed by using
the private key.

Chosen-ciphertext attack 1) Ciphertext
2) Purported ciphertext selected by attacker,

plus its respective plaintext formed by
using the private key.

Chosen-text attack 1) Ciphertext
2) Plaintext selected by attacker plus its

respective ciphertext formed by using
the private key

3) Purported ciphertext selected by attacker,
plus its respective plaintext formed by
using the private key

Table 3.1: Cryptanalytic Attacks.

3.1.3 Cryptographic Applications

Today, open communication channels are used to send secure information. For in-

stance, while using internet to purchase items, for financial transactions, in bank-

ing and alike situations. Unauthorized parties are there to get secret information

from the data transmitted over these open channels. This is one of the main rea-

sons behind the development of modern cryptography. As far as the applications

of modern cryptography are concerned, secrecy of the message is not the only
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purpose of the cryptography. Perhaps, cryptography is also used to address the

solution of the following problems.

1. Data Integrity: Data integrity simply means that the recipient of the message

should be able to verify whether the message was altered during transmission,

either accidently or deliberately. The unauthorized parties should be unable

to modify even a part of a message.

2. Authentication: In the authentication scenario, the recipient of the message

can verify the origin of the received message. In other words, at the time of

initiating the communication sender and receiver should be able to identify

each other. The unauthorized parties should be unable of pretending to be

Alice and send a message to Bob.

3. Non-repudiation: One of the purpose of modern cryptography is the non-

repudiation which means that the sender should be unable to deny the send-

ing of a message, later on.

3.2 Public Key Cryptography

While using the symmetric key cryptography, the sender and receiver only know

the encryption and decryption schemes, respectively. Moreover, once the encrypt-

ing scheme is exposed, the decryption scheme can be judged. Whereas in public

key cryptography, the encryption and decryption methods as well as a key are

publicly available to everyone but the private key used in decryption, is known

only to the receiver. Generally, when the encrypting algorithm involved in a secret

key (symmetric) cryptosystem is known, the order and the magnitude of time to

implement the decryption algorithm, is approximately same. But the implemen-

tation of the decryption method involved in a public key cryptosystem, is much

more difficult.

Definition 3.2.1. (Public key cryptosystem)

This type of cryptosystem consists of the following three algorithms:
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1. The algorithm KG is used for the purpose of key generation . A pair (P, S) of

two mathematically connected public and secret keys P and S, respectively,

are produced through this algorithm.

2. The encryption algorithm EP is used to produce a ciphertext C by taking a

plaintext message M and a public key P , as an input. That is C = EP (M).

3. The decryption algorithm DS which takes a ciphertext C and the secret key

S and gives the plaintext M as an output. That is M = DS(C).

3.2.1 The General Model for Public Key Cryptosystem

The construction of a public key cryptosystem is based on the idea of having a one-

way function or trapdoor function. It is easy to implement a one-way function but

any computation of its inverse remains infeasible without a specific secret infor-

mation. That is why encryption of a message is simple but decryption is too hard,

without knowing the inverse even if an adversary can have enough computational

resources and time (even those capable of using thousands of supercomputers for

tens of years). It is a formidable task to find an appropriate one way function.

For example

1. Modular exponentiation: f(x) = ax mod n.

2. Prime number multiplication f(p, q) = pq.

3. Modular squaring f(y) = y2 mod n, where n is a Blum integer. A natural

number n is a Blum integer if n = p × q is a semi-prime and p and q are

distinct prime numbers congruent to 3 mod 4. A natural number is known

as semi-prime if it can be written as the product of two prime numbers which

need not to be distinct.

Generally, the following model is used for public key systems:

Suppose (PA, SA) and (PB, SB) are the public and secret key pairs of Alice and

Bob, respectively. The encryption algorithm (map) EPA
of Alice as well as the
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encryption algorithm EPB
of Bob are known publicly. But only Alice and Bob

know their respective secret information used in decryption algorithms (inverse

maps) DSA
and DSB

, respectively.

1. Suppose Alice wishes to communicate a message M to Bob, she sends ci-

phertext C by computing

C = EPB
(M).

2. For decryption, Bob simply applies DSB
for which the secret information is

known to him, only. This gives him

M = DSB
(C),

to get the message M .

Let us now consider a little twist in this communication model as follows:

1. If Alice wishes to communicate a message M to Bob, she sends

EPB
(DSA

(M)).

2. For decryption, Bob applies first DSB
. This gives him

DSB
EPB

(DSA
(M)).

3. Now, he looks up publicly available EPA
and applies this

EPA
(DSA

(M)) = M

to get the sent message.

The question arises here, why didn’t Alice just send (EPB
(M)) to Bob? As Bob is

the only person who can decrypt this. The answer lies in the idea of authentication.
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That is, in the later method, Bob can confirm that the message actually sent from

Alice.

3.3 Some Public Key Protocols

In the subsequent subsections, we recall some well known number theoretic and

group based protocols and some cryptosystems.

3.3.1 Diffie–Hellman Protocol

Diffie and Hellman [15] formulated the innovative public key exchange idea which

is based on the discrete log problem. The discrete log problem states that in

modular arithmetic finding a power of an element is easy but given an element,

determining whether it is a power of another element, is difficult. Specially, let

the cyclic multiplicative group with prime order p and y = xk mod p, for some

integer k, then the integer k is the discrete log of y to the base x. Given x and

y ∈ Zp, the problem of finding such integer k, is called the discrete log problem

(DLP).

The standard form of the protocol, is the following:

Suppose Bob and Alice want to share a secret key k with 2 < k < p−1, where p is

a prime. Let g be a generator of Z∗p which is the multiplicative group of Zp. The

generator g is announced publicly. Note that with prime p, this group is cyclic.

1. Alice selects an a ∈ Zp with 2 < a < p − 1. She calculates ga mod p and

made it public.

2. Bob chooses an element b ∈ Zp and anounces gb mod p, publicly .

3. Alice can discover the secret key K = gab mod p as (gb)a mod p.

4. Similarly Bob computes K = gab mod p = (ga)b mod p.
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However, ga and gb and g are only known to an attacker but not the secret expo-

nents a and b. This protocol is based on the solution of the DLP. This algorithm

is shown diagrammatically, in FIGURE 3.3.

The problem of getting the secret key from the known information p, g, ga, gb,

is called the discrete log problem (DLP). The discrete log problem becomes very

hard if the prime p and the generator g are chosen to be very large. Because for

large p, the order of g remains very large.

The man in the middle attack is one of the attacks on the Diffie–Hellman key

exchange protocol. For this attack, attacker receives information from Alice, by

pretending to be Bob and then pretending as Alice for getting information from

Bob. So that, the attacker can find the shared secret key. The enhanced Diffie-

Hellman based protocol [4] easily defeats the man in the middle attack by using

authentication. This protocol is preferably used for communicating data but it is

not recommended for storing data or archived over long periods of time.

Figure 3.3: Diffie Hellman Protocol

3.3.2 RSA Cryptosystem

Currently, the RSA algorithm and its different variations are extensively used

public key cryptosystems. This algorithm is developed by Ron Rivest, Adi Shamir

and Leonard Adleman in 1977 [46]. There are two different keys, one public and

one private, are used in RSA algorithm. These keys are mathematically connected

to each other. The public key is announced and known to everyone, while the
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private key is kept secure. Any of the keys involved in RSA cryptography, can be

used for encrypting a message; the opposite key from the one used for encryption, is

used for decryption of the message. Due to this attribute, the RSA cryptosystem

is one of the most widely used public key cryptosystems. It can also provide

confidentiality, integrity, authenticity and non-reputability of communication.

This algorithm is based on the problem of factoring two large prime integers. It

is easy to multiply these two integers, but it remains infeasible to determine the

original prime numbers from the product. This is known as integer factorization

problem (IFP). The working of RSA algorithm is as follows:

1. Two large primes pA, qA are chosen randomly, by Alice. After that, Alice

also chooses a integer PA, relatively prime to

φ(pAqA) = (pA − 1)(qA − 1),

where φ is the Euler totient function. The primes should be chosen quite

large. Initially, the primes involved in RSA were of approximately 100 dec-

imal digits, however, with the increase in computing ability, the utilization

of larger primes has to be needed.

2. Now, Alice takes

NA = pAqA

and she computes the multiplicative inverse of PA modulo φ(NA) which is

SA. This means SA satisfies the equation

SAPA ≡ 1 mod φ(NA).

3. Alice announces her public key

KA = (NA, PA).
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4. The ciphertext CA is obtained by using encryption algorithm EPA
(which is

public knowledge of everyone) as follows:

CA = EPA
(M) = MPA mod NA,

where M ∈ ZNA
, is a plaintext.

5. The decryption algorithm is

M = DSA
(CA) = CSA

A mod NA.

Bob also follows the above mentioned algorithm to choose his parameters

pB, qB, PB. He lets

NB = pBqB.

His public key would be

KB = (NB, PB).

For sending an authenticated message to Alice, Bob sends

EPA
(DSB

(M)),

as described for the process of authentication in Section 3.2.1.

3.3.3 El-Gamal Cryptosystem

In 1985 Taher ElGamal [17] presented a cryptosystem that utilizes the Diffie–

Hellman key exchange method for encrypting the message.

Consider the communication between Bob and Alice through some open channel.

1. The parameters p and g are chosen by Alice, as discussed in the Diffie–

Hellman key exchange protocol.
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2. Alice then chooses an integer a with 1 < a < p− 1 and computes

A = ga mod p.

3. She announces her public key

(p, g, A),

as described in FIGURE 3.4.

Figure 3.4: Key Generation of ElGamal Cryptosystem

4. Bob, first converts the message M to an integer m mod p.

5. Now, Bob chooses an integer b with 1 < b < p− 2, randomly and computes

B = gb mod p.

6. After that, he sends

c = Abm mod p,

which means Bob formulates the encrypted message by multiplying the orig-

inal message m with the shared key.

7. The ciphertext is in the form of the pair (B, c).

Now, Alice decrypts as follows:
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1. The shared key can be computed as Ba.

2. Then c can be divided by this key gab to get m.

3. After obtaining the message m, only she can find the plaintext message M .

The encryption and decryption are described in FIGURE 3.5.

Figure 3.5: Encryption and Decryption of ElGamal Cryptosystem

The RSA cryptosystem, Diffie–Hellman protocol and El-Gamal cryptosystem are

based on the number theoretic methods. So, they depend on the commutative

structures. Now, the recent research deals with the development of cryptographic

techniques using noncommutative platforms. Among these the primitive schemes

are of Anshel, Anshel and Goldfeld and Ko and Lee. In these schemes the au-

thors, proposed noncommutative structures and combinatorial group theory for

developing public key exchange protocols.

3.3.4 Public Key Cryptography Based on Groups

In public key cryptography, using noncommutative groups is first time proposed

by Wagner and Magyarik [36]. The difficulty of their cryptosystem depends on

the Word Problem in finitely presented groups. Although, that scheme is theo-

retical one which has various unresolved issues. Wagner and Magyarik’s scheme
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is important because it interplays between cryptography and combinatorial group

theory.

The main reason to use combinatorial group theory for developing cryptographic

algorithms, is that the elements of groups can be written as words in some al-

phabet. Max Dehn [14] proposed the following problems of combinatorial group

theory:

1. Word Problem: Let G be a finitely presented group. For an arbitrary word

w, can we say that there exists an algorithm for determining w to be one of

the generators of G that defines the identity of G?

2. Conjugacy Problem: Let G be a finitely presented group. Is there an algo-

rithm to decide whether a pair of words w1, w2 in the generators of G to be

conjugate elements?

3. Isomorphism Problem: Given two arbitrary finite presentations, can we de-

termine through some algorithm, whether the groups they present are iso-

morphic or not?

The problem to determine the conjugator x ∈ G, given elements g, h in a group

G, where it is known that

gx = x−1gx = h,

is the called the conjugator search problem.

Remark 3.3.1. If a group G has a finite presentation, then the elements g, x, h ∈

G can be expressed as words of the generators of the group G, otherwise g, x, h ∈ G

are just the elements of the group G.

In the present study, our different proposals depend on the conjugator search

problem, somehow.

Now onwards, for an integer k, the notation gk refers to exponentiation of an

element g ∈ G. This means we multiply g by itself k-times. While gx is to be used
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for the conjugacy of g by an element x ∈ G, that is

gx = x−1gx. (3.1)

Two very famous group-based key exchange protocols proposed by Anshel, Anshel

and Goldfeld [2] and Ko et al [31] are based on the cojugator search problem. Their

key agreement schemes are considered as a generalization of the Diffie–Hellman

protocol to noncommutative groups.

3.3.5 Ko–Lee Protocol

For a nonabelian group, Ko and Lee [31] proposed a public key agreement protocol

that generalizes the protocol of Diffie and Hellman, given in Section 3.3.1. This

protocol relies on the hard problem of conjugacy of elements in a nonabelian

group. We take a noncommutative finitely presented platform group G. Following

the notation of (3.1), the protocol is as follows:

1. Two secret commuting subgroups A and B of the group G are chosen by

Alice and Bob, respectively. Let g ∈ G be a public element.

2. A random secret element a ∈ A is chosen by Alice. She then computes ga

and makes it public, where ga = a−1ga.

3. Similarly, a random choice of secret element b ∈ B, Bob computes gb and

makes it public, where gb = b−1gb.

4. The shared secret is K = gab can now be computed by both Alice and Bob

as follows:

(ga)b = gab = gba = (ga)b.

This follows by the commuting property of elements of the chosen subgroups.

Here the underlying hard problem is due to the difficulty of the CSP.
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Generally, the CSP is undecidable but there are groups where it is a bit hard. As

with the CSP, it is known that the structures of such groups can be considered as

a suitable platform for the Ko–Lee protocol. Use of braid groups is suggested as

such a platform group. Some weaknesses of this protocol are highlighted in [35].

These weaknesses further lead to develop new algebraic protocols.

As with the case of standard Diffie–Hellman protocol, an El-Gamal like cryptosys-

tem can be constructed through the Ko–Lee protocol.

3.3.6 Anshel–Anshel–Goldfeld Protocol

In this section, a brief discussion of the Anshel–Anshel–Goldfeld [2] public key

agreement protocol is given. Consider a goup G having a finite presentation. For

sharing a secret key, the following steps are followed:

1. Alice and Bob select two subgroups A and B of G, respectively. A generating

set for each subgroups

A = {a1, ..., an}

and

B = {b1, ..., bm}

is made public.

2. A secret group word

a = a(a1, ..., an)

is chosen by Alice from her subgroup.

3. Similarly, Bob also makes choice of a secret group word

b = b(b1, ..., bm)

from his selected subgroup.
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4 Alice computes the conjugates

bai , i = 1, ...,m,

from the known generators bi of Bob’s subgroup and her secret word a. She

sends them to Bob. Bob also sends the conjugates

abj, j = 1, ..., n,

to Alice.

5 Alice computes

a(ab1, a
b
2, ..., a

b
n) = ab = b−1ab.

Also, she multiplies b−1ab by a−1, from the left to get a−1b−1ab.

Similarly, Bob computes

b(ba1, b
a
2, ..., b

a
m) = ba = a−1ba.

Now, he multiplies a−1ba by b−1, from the left and takes the inverse of whole

thing as

(b−1a−1ba)−1 = a−1b−1ab.

The shared secret key will be the commutator

[a, b] = a−1b−1ab.

An adversary has to find the corresponding conjugator to attack on this system.

This means that he must know the element that conjugates each of the generators.

There are some groups in which the CSP is solvable but, generally, the complexity

of solving the CSP is considered to be “hard”. The groups for which the CSP is

hard, seem to be the ideal candidates for the Anshel–Anshel–Goldfeld protocol.

This protocol is successfully cryptanalyzed in [42].
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Various public key exchange protocols based on nonabelian groups are discussed

by Myasnikov, Shpilrain and Ushakov, in their book [43]. These authors them-

selves have proposed various protocols based on different “hard” group theoretic

problems.



Chapter 4

A Cryptosystem with

Noncommutative Platform

Groups

This chapter presents a new public key cryptosystem that uses noncommutative

groups as platform group. The underlying hard problem of the proposed cryptosys-

tem is a combination of discrete log problem and conjugacy search problem. Due

to use of noncommutative platform groups, it is expected that the presented cryp-

tosystem provides higher levels of security against known attacks. Some important

issues regarding the choice of platform and parameters of this cryptosystem are

addressed. Further, a brief analysis of security aspects is also presented.

The material of this chapter is based on the exposition of our paper [26] and is

organized as follows:

In the first section, some motivating literature behind our main work, is discussed.

Second section presents the proposed cryptosystem. We also discuss implementa-

tion aspects of our proposed scheme by giving an example. The security analysis

is given in Section 4.3.

51
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4.1 Motivating Literature

Here, we discuss some key exchange protocols which serve as motivation for the

work presented in this chapter. We begin our discussion by describing Shamir’s

secret sharing scheme [50] which relies on the hardness of DLP. This is also re-

ferred as Shamir’s ‘no-key’ key transport protocol. After that, the matrix based

key exchange protocol by Baumslag, Camps, Fine, Rosenberger and Xu, [6] is dis-

cussed. The scheme is referred as the BCFRX scheme which is described in the

subsequent subsection. At the end, Stickel’s scheme [56] is given.

4.1.1 Shamir’s Secret Sharing Scheme

Let G = 〈g〉 be a cyclic group, generated by g. Both g and its order d is announced

publicly. The following procedure is executed to share a secret key:

1. Alice selects at random a key k = gr ∈ G and an integer 2 ≤ a ≤ d− 1. She

sends

ka ∈ G

to Bob.

2. Bob chooses, randomly an integer 2 ≤ b ≤ d− 1 and sends

(ka)b = kab ∈ G

to Alice.

3. Then Alice computes (
kab
)a−1

= kb

and sends it to Bob.

4. Finally, Bob computes (
kb
)b−1

= k.
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Thus at the end of step 4, both Alice and Bob have a common shared secret

k. As discussed earlier that the security of Diffie–Hellman Problem relies on the

discrete logarithm problem (DLP). If the discrete logarithm problem can be effi-

ciently solved then one can efficiently break the Diffie–Hellman Protocol. Likewise,

Shamir’s ‘no-key’ protocol depends on the discrete logarithm problem. Thus, for

implementing these types of protocols, finding difficult instances of the DLP is

a minimum requirement. Also, the difficulty of the discrete logarithm problem

strongly depends on the representation of the group G. So, the appropriate choice

of group G makes the DLP computationally infeasible.

4.1.2 The BCFRX Scheme

Before executing the BCFRX scheme [6], Alice and Bob have to share a common

secret which is their long term secret key. To establish a session key for subsequent

communication, is the main purpose of this protocol. For this goal, Bob sends a

session key to Alice, in three passes, as follows:

Consider two commuting subgroups A and B (so that AB = BA that is, for all

x ∈ A and y ∈ B, xy = yx) of a finitely presented group G. Here the group G

is publicly announced but the subgroups A and B are the long term secret key of

Alice and Bob, respectively. Although, the subgroups A and B may be infinite,but

have finite presentation. So, they are kept secret. Now,

1. Bob selects a session key k ∈ G and two elements b, b
′ ∈ B. He forms

k1 = bkb
′

and sends it to Alice.

2. Alice chooses two elements a, a
′ ∈ A and sends

k2 = ak1a
′
= abkb

′
a
′
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to Bob.

3. Bob then sends

k3 = b−1k2b
′−1 = aka

′
, (Since abkb

′
a
′
= baka

′
b
′

)

to Alice.

4. Alice finds

k = a−1k3a
−1.

This protocol is similar to that of Shamir’s ‘no-key’ protocol, in the sense that the

exponentiation operation is replaced by the multiplication on the left and right by

an element of the group. Baumslag et al. [6] suggested various platform groups for

their protocol, but we are concerned here, only with their matrix based proposal.

They take G = SL(4,Z), that is the group of matrices of order 4 over the integers

and having determinant equal to 1. The commutative subgroups are constructed

as follows:

Define two subgroups U and V of G as

U =

 SL(2,Z) 0

0 I2

 and V =

 I2 0

0 SL(2,Z)

 ,
where

I2 =

 1 0

0 1

 .
Let M ∈ SL(4,Z) known to both Alice and Bob and this matrix can be considered

as the long-term secret key. Now define two subgroups as

A = M−1UM and B = M−1VM.

In BCFRX protocol, the authors have not fully specified about the choice of long

term secret key M. It is also not mentioned how to choose the elements from A

and B by Alice and Bob, respectively.
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4.1.3 Stickel’s Key Exchange Protocol

In 2005, Stickel [56] proposed a key agreement scheme for noncommutative groups.

This protocol can be easily implemented and it is expected to provide higher levels

of security in noncommutative setting. This method, is not a generalization of the

classical Diffie-Hellman protocol rather, it is a reminiscent of latter to noncom-

mutative groups. This approach can be used for the purpose of key exchange, as

well as, authentication protocols. Stickel suggested the use of general linear group

of matrices for his proposal. Different matrices based structures have a great po-

tential to be used in various ways for cryptographic algorithms. See for example

[11, 25]. The main protocol as given by Stickel [56], is as follows:

Protocol 4.1.1.

Let a, b ∈ G, where G is a noncommutative finite group and ab 6= ba. Let n1 = |a|

and n2 = |b| . To share a common secret key, Alice and Bob will do the following

steps:

1. Two secret natural numbers r and s with 0 < r < n1 and 0 < s < n2 are

chosen, randomly by Bob. He then forms

c = arbs

and transmit it to Alice.

2. Two secret natural numbers v and w with 0 < v < n1 and 0 < w < n2 are

chosen, randomly by Alice. She forms

d = avbw

and transmit it to Bob.

3. Alice computes the secret key K as

K = avc bw. (4.1)
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4. Bob similarly computes K as

K = ard bs. (4.2)

In this way, Protocol 4.1.1 enables Alice and Bob to have common secret key K.

This follows immediately by putting value of c in expression (4.1) and value of d

in expression (4.2).

A variant of key-exchange Protocol 4.1.1 proposed by Stickel [56], can also be

implemented by slightly modifying Step 2 as follows:

Protocol 4.1.2.

Let a, b ∈ G, where G is a noncommutative finite group and ab 6= ba. Let n1 = |a|

and n2 = |b| . To share a common secret key, Alice and Bob will do the following

steps:

1. Bob computes c = arbs as in Protocol 4.1.1 and submits it to Alice.

2. Two secret natural numbers v and w with 0 < v < n1 and 0 < w < n2 are

chosen, randomly by Alice. She forms

K = avbw

and

d = avc bw.

Here, K is the secret key and d is submitted to Bob.

3. The secret key K can be computed by Bob as

K = a−rd b−s.

These protocols are for noncommutative groups and may be considered as a rem-

iniscent of Diffie-Hellman protocol. The main idea is the use of noncommutative

behavior of product of elements of the form av and bw of a group G.
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4.2 Proposed Cryptosystem

We are going to propose a cryptosystem based on the Stickel approach. Many key

exchange protocols can be used to design a cryptosystem. The most prominent

example is the ElGamal [17] cryptosystem which employs the Diffie-Hellman key

establishment [15] for encryption and decryption purpose. In the same fashion,

we have used the variant of Stickel key exchange Protocol 4.1.2 to create a public

key cryptosystem. The important feature of the proposed cryptosystem is that

it can be implemented in a noncommutative structure. The main focus is on

the development of a cryptographic scheme based on noncommutative groups.

Particularly, the role of general linear group of matrices over finite field will be

examined for the implementation of the scheme. The scheme relies on both, the

DLP and the CSP in a noncommutative setting. Therefore, our scheme is believed

to be more secure in post-quantum world.

Now, we present the general scheme for a public key cryptosystem as follows:

Cryptosystem 4.2.1.

Initial setup: Let G be a noncommutative group having the elements with large

orders. Let a, b ∈ G such that ab 6= ba. The order of the elements a and b be n1

and n2, respectively. Suppose that in G the DLP and CSP are intractable.

For developing a communication between Alice and Bob, the following steps will

be executed:

Key Generation (KG)

By KG, Alice randomly chooses two natural numbers r and s with 0 < r < n1

and 0 < s < n2. The pair (r, s) is the secret key SA of Alice. Then, she forms

KA = arbs (4.3)

and announces her public key PA = (a, b,KA).

Encryption Algorithm (EPA
)

Input: Plaintext message M ∈ G and public key PA = (a, b,KA).

Output: Ciphertext CA = (C
′
, C).
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To send a message (plaintext) M ∈ G to Alice, Bob chooses randomly v and w

with 0 < v < n1, 0 < w < n2. Then, he executes Steps E-1 to E-5 as given below:

E-1) using Alice’s public key PA = (a, b,KA) Bob, computes

x = avbw,

E-2) using x and KA, he computes

C1 = (KA)x,

E-3) then finds x−1 ∈ G to computes

C2 = (KA)x
−1

,

E-4) given the plaintext message M , Bob computes C as

C = C1MC2,

E-5) and finally he computes

C
′
= avKAb

w. (4.4)

The resulting transmitted ciphertext is the pair (C
′
, C).

Decryption Algorithm (DSA
)

Input: Ciphertext message CA and secret key SA = (r, s).

Output: Plaintext M.

When Alice receives the ciphertext CA, she executes the following steps:

D-1) By using her secret key SA = (r, s), Alice computes

D̃ = (ar)−1C
′
(bs)−1 (4.5)
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D-2) Now with the help of D̃, she computes

D̃1 =
(
K−1A

)D̃
, (4.6)

and

D-3)

D̃2 = (K−1

A )D̃
−1

, (4.7)

D-4) Finally, she gets the plaintext as

M = D̃1CD̃2.

Theorem 4.2.2.

In view of specified notation of Cryptosystem 4.2.1, the correctness of its decryp-

tion is guaranteed.

Proof. Correctness: The correctness of the scheme is guaranteed as follows: First

note the expression (4.5) in step D-1 which is

D̃ = (ar)−1C
′
(bs)−1.

In view of expressions (4.4) and (4.3), respectively, we have

D̃ = (ar)−1 (avKAb
w) (bs)−1,

= (ar)−1 (avarbsbw) (bs)−1,

= (ar)−1
(
av+rbw+s

)
(bs)−1,

= avbw,

= x.

Therefore, we can write expressions (4.6) and (4.7), respectively as

D̃1 =
(
K−1A

)D̃
= (x)−1K−1A x,

D̃2 =
(
K−1A

)D̃−1

= xK−1A (x)−1 .
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Now consider that

D̃1CD̃2 =
[
(x)−1)K−1A x

]
C
[
xK−1A (x)−1

]
,

=
[
(x)−1K−1A x

]
C1MC2

[
xK−1A (x)−1

]
,

=
[
(x)−1K−1A x

]
Kx
AMK

(x)−1

A

[
xK−1A (x)−1

]
,

=
[
(x)−1K−1A x

] [
(x)−1KAx

]
M
[
xKA (x)−1

]
×[

xK−1A (x)−1
]
,

= M.

4.2.1 Suggested Platform and Parameters for the Proposed

System

The proposed cryptosystem can be implemented to any noncommutative group

having elements of large order. We suggest to use GL (n,Fp) for implementing

proposed scheme, where GL (n,Fp) is the general linear group of matrices of order

n over the field Fp, for some prime p. The size of GL(n,Fp) can be calculated by

the following formula [48]

N = |GL(n,Fp)| =
n−1
Π
i=0

(
pn − pi

)
.

That is we have a space of size N from which we can choose the public matrices

A and B in GL(n,Fp).

Since the encryption involves the conjugation of matrices which can be considered

as we are dealing with inner automorphisms of GL(n,Fp). In this case the inner

automorphism is working linearly on the n2-dimensional algebra of matrices of

degree n over Fp. So, the discrete logarithm problem reduced to the discrete

logarithm problem in GL(n2,Fp). Now the natural question arises, is there any

algorithm to solve this problem?
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A quite good algorithm for solving the DLP in GL(n,Fp), is proposed by Menezes

and Wu [40]. The authors have proved that for any two matrices A,B ∈ GL(n,Fp),

where Ak = B , k ∈ N; the solution of DLP can be obtained if the characteristic

polynomial of A have small degree irreducible polynomial as its factors. If the

characteristic polynomial is irreducible then DLP in 〈A〉 reduces to the DLP in

Fpn . While working in GL(n2,Fp), the characteristic polynomials has degree n2.

In this case it can be easily seen that if the characteristic polynomial is irreducible

then the extension of the minimum degree in which the characteristic polynomial

will split is Fpn2 . So, DLP of this cryptosystem depends on solution of DLP on

Fpn2 which becomes harder as the field gets huge.

Today’s recommendation for key management used for public key cryptography

is 112-bit security [5]. So the best known attack to the cryptosystem should take

at least 2112 steps. Hence, we have to make sure that to find exponents from

public information A,B,KA, one needs at least 2112 steps. We suppose that for a

breaking algorithm, the computations in Fp and in GL(n,Fp) takes the same time.

The size of the field should be 2112. In the view of this discussion, we can make

the choices of p to be a 112-bit prime.

Example 4.2.3. To comprehend the implementation details of the proposed cryp-

tosystem, we take GL (2,Z101) , as the platform group. All the computations are

performed in ApCoCoA [3].

Initial setup: Let

A =

 21 47

27 95

 ∈ GL (2,Z101)

and

B =

 89 17

19 67

 ∈ GL (2,Z101) .

The order of these matrices are n1 = |A| = 1275 and n2 = |B| = 1700, respectively.
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Key generation: Alice randomly chooses two natural numbers r = 15 < 1275

and s = 21 < 1700. The secret key of Alice is SA = (15, 21). She then forms

KA = ArBs = A15B21 mod 101,

=

 57 34

21 78

 mod 101

and announces her public key PA = (A,B,KA).

Encryption (EPA
): To send a message (plaintext)M =

 25 20

60 69

 ∈ GL (2,Z101)

to Alice, Bob chooses ν = 37 < 1275 and w = 51 < 1700. He then forms

E-1)

X = AvBw = A37B51 mod 101,

=

 88 60

71 17

 mod 101,

E-2)

C1 = KX
A = (X)−1KAX mod 101,

=

 14 80

73 20

 mod 101,

E-3)

C2 = K
(X)−1

A = XKA (X)−1 mod 101,

=

 5 95

76 29

 mod 101, (4.8)

E-4)

C = C1MC2 mod 101,

=

 31 41

79 75

 mod 101, (4.9)
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E-5)

C
′
= AvKAB

w = A37KAB
51 mod 101,

=

 14 97

61 3

 mod 101. (4.10)

The ciphertext transmitted to Alice is

CA = (C
′
, C).

Decryption (DSA
): Upon receiving the ciphertext, Alice computes

D-1)

D̃ = (Ar)−1C
′
(Bs)−1 = A−15C

′
B−21 mod 101,

=

 88 60

71 14

 mod 101,

D-2)

D̃1 =
(
K−1A

)D̃
= D̃

−1
K−1A D̃ mod 101,

=

 97 16

55 78

 mod 101,

D-3)

D̃2 = (K−1

A )D̃
−1

= D̃K−1A D̃
−1
,

=

 75 19

96 100

 mod 101.

D-4)

M = D̃1CD̃2 =

 25 20

60 69

 mod 101.
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Example 4.2.4. In this example, we show the computation of the proposed cryp-

tosystem by taking account the set GL (3,Z1009) , the general linear group of ma-

trices of order 3 over Z1009, as the platform group. All the computations are

performed in ApCoCoA [3].

Initial setup: Let

A =


28 470 12

6 27 95

10 2 90

 ∈ GL (3,Z1009)

and

B =


8 70 120

60 207 950

1 22 9

 ∈ GL (3,Z1009) .

The order of these matrices are n1 = |A| = 1018080 and n2 = |B| = 50904,

respectively.

Key generation: Alice randomly chooses two natural numbers r = 1007 <

1018080 and s = 500 < 50904. The secret key of Alice is SA = (1007, 500). She

then forms

KA = ArBs = A1007B500 mod 1009,

=


919 240 970

162 594 314

301 931 241




848 828 328

754 170 278

885 887 416

 mod 1009

=


504 299 796

447 53 787

67 730 725

 mod 1009

and announces her public key PA = (A,B,KA).
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Encryption (EPA
): To send a message (plaintext)

M =


453 717 135

504 93 477

816 533 732

 ∈ GL (3,Z1009)

to Alice, Bob chooses ν = 100 < 1018080 and w = 51 < 50904. He then forms

E-1)

X = AvBw

= A100B51 mod 1009,

=


736 813 604

796 426 456

814 487 589




474 804 9

157 387 394

218 74 715

 mod 1009

=


759 593 38

752 111 584

526 513 74

 mod 1009,

E-2)

C1 = KX
A

= (X)−1KAX mod 1009,

=


926 978 260

587 267 373

543 701 802




504 299 796

447 53 787

67 730 725

×

=


759 593 38

752 111 584

526 513 74

 mod 1009

=


424 289 336

448 166 748

390 235 692

 mod 1009,
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E-3)

C2 = KX−1

A

= XKAX
−1 mod 1009,

=


759 593 38

752 111 584

526 513 74




504 299 796

447 53 787

67 730 725

×

=


926 978 260

587 267 373

543 701 802

 mod 1009

=


57 900 362

979 1006 18

212 631 219

 mod 1009,

E-4)

C = C1MC2

=


424 289 336

448 166 748

390 235 692




453 717 135

504 93 477

816 533 732

×

=


57 900 362

979 1006 18

212 631 219

 mod 1009

=


230 158 395

722 519 29

56 779 37

 mod 1009.

E-5)

C
′

= AvKAB
w

= A100KAB
51 mod 101,
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=


736 813 604

796 426 456

814 487 589




504 299 796

447 53 787

67 730 725

×

=


474 804 9

157 387 394

218 74 715

 mod 1009

=


799 295 610

264 96 77

163 823 297

 mod 1009.

The ciphertext transmitted to Alice is

CA = (C
′
, C).

Decryption (DSA
): Upon receiving the ciphertext, Alice computes

D-1)

D̃ = (Ar)−1C
′
(Bs)−1 = A−1007C

′
B−500 mod 1009,

=


149 119 899

316 196 227

540 233 797




799 295 610

264 96 77

163 823 297

×

=


1004 588 620

319 167 1000

29 753 204

 mod 1009

=


759 593 38

752 111 584

526 513 74

 mod 1009.

D-2)

D̃1 =
(
K−1A

)D̃
= D̃

−1
K−1A D̃ mod 1009,
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=


926 978 260

587 267 373

543 701 802




288 809 568

597 993 691

288 807 386

×

=


759 593 38

752 111 584

526 513 74

 mod 1009

=


17 535 125

911 1 64

222 312 580

 mod 1009,

D-3)

D̃2 = (K−1

A )D̃
−1

= D̃K−1A D̃
−1

mod 1009,

=


759 593 38

752 111 584

526 513 74




288 809 568

597 993 691

288 807 386

×

=


926 978 260

587 267 373

543 701 802

 mod 1009

=


821 423 534

96 893 72

39 966 902

 mod 1009,

D-4)

M = D̃1CD̃2 mod 1009

=


17 535 125

911 1 64

222 312 580




230 158 395

722 519 29

56 779 37

×

=


821 423 534

96 893 72

39 966 902

 mod 1009
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=


453 717 135

504 93 477

816 533 732

 mod 1009,

4.3 Security Analysis

We will now discuss some good aspects that can be expected from the proposed

cryptosystem. Since the complexity depends both on matrix CSP and DLP, our

approach can cover following features.

First, note from equation (4.3) that r and s are exponents of two different group

elements a and b, respectively. Because of the involvement of DLP of two elements

a and b, it is hard to extract the exponents r and s from publicly known KA.

Shpilrain [52] and Sramka [54] discussed the cryptanalysis of the Stickel main pro-

tocol. Sramka’s attack reveals the private exponents r, s, ν, w, whereas, Shpilrain

more efficiently worked to get the shared key K of main protocol without knowing

any of private exponents. To prevent these attacks, we have used Stickel’s variant

key exchange protocol for sufficient security.

The attack presented in [42] does not seem to be applicable to our proposed cryp-

tosystem, as our proposal is based on a mixture of CSP and DLP.

If we take `, as well as (2` − 1) to be the prime numbers. The number ` is called

the Mersenne exponent and the numbers having form (2`−1) are called Mersenne

primes [56]. For the matrices of order (2` − 1), the total number of different ele-

ments of the form of product ArBs is equal to (2` − 1)2. For brute force attacks,

an adversary has to check the space of this size. To enlarge the size of this space,

the choice of order n of matrices to be a Mersenne prime n > 31, is recommended.

Further, the matrices A and B which have irreducible characteristic polynomi-

als should be selected, so that the eigenvalue and eigenvector attacks [56] remain

infeasible.

The matrices C1 and C2 involved in encryption, are the matrix conjugates of the

matrix KA by the private matrix X. The relevant problem of the matrices C1 and

C2, is the conjugacy search problem. For conducting matrix conjugation attacks,
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an adversary has to find the unknown matrices C1, C2, first. That is why these

types of attacks can also be avoided.

4.3.1 Ciphertext Only Attack

Suppose an adversary knows only the ciphertext (C
′
, C), as given in expressions

(4.10) and (4.9), respectively. In (4.9) the unknown matrices M, C1 and C2 are

involved. To know C1 and C2 an adversary has to find the solution of

XC1 = KAX, C2X = XKA, (4.11)

where the matrix X is also unknown. For the underlying structure GL(n,Fp),

system (4.11) will lead to a large system of equations for the choice of sufficiently

large n. For the discussion on choice of n, see Section 4.2.1.

Also the DLP of matrices A and B is involved in the expression (4.10) of C
′
.

As discussed earlier in Section 4.2.1, the DLP of this cryptosystem depends on

solution of DLP on Fpn2 which becomes harder as the field gets huge. Due to all

these reasons, this type of attack becomes infeasible.

4.3.2 Known Plaintext Attack

Let (C
′
i , Ci) be the ciphertext corresponding to the plaintext Mi known to the

adversary. From this information he needs to find the next plaintext Mi+1 from

the corresponding ciphertext (C
′
i+1, Ci+1). In our situation this type of attack can

be made infeasible by using different exponents v and w in the encryption of every

new message. So the knowledge of previous plaintext-ciphertext pairs provide not

enough information to find the next plaintext.
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4.4 Efficiency Analysis

This section deals with some aspects related to the efficiency of the proposed

cryptosystem. The details regarding the bit-complexity analysis are elaborated.

Then bit-complexity of our proposed cryptosystem is estimated and compared

with the classical RSA cryptosystem. There are more efficient modifications of

RSA cryptosystem, but we are comparing to the classical one, the state of the art

(SoTA) rival algorithm.

4.4.1 Computational Complexity of Some Matrix Opera-

tions

The bit-complexity of basic operations in the residue ring Zn are given in TABLE

(4.1 ) [39].

Operations (∀z1, z2, z ∈ Zn) Bit− Complexity
Modular addition (z1 + z2) mod n O (lg n)

Modular subtraction (z1 + z2) mod n O (lg n)

Modular inversion z−1 mod n O
(
(lg n)2

)
Modular multiplication (z1z2) mod n O

(
(lg n)2

)
Modular exponentiation zk mod n, k < n O

(
(lg n)3

)
Table 4.1: Bit-Complexity of Basic Modular Operations

Now, we give the bit-complexity of modular arithmetic in matrices. The subse-

quent discussion is for matrices of order 2.

1. Bit-Complexity of Matrix Multiplication

In the matrices of order 2, the multiplication of any two matrices consists

of 8-modular multiplication and 4-modular additions. By considering only

the multiplication, the bit-complexity of matrix multiplication is estimated

as 8(lg n)2-bit operations, where lg n are the number of bits in binary repre-

sentation of n.

For a 112-bit prime, the estimate of bit-complexity of matrix multiplication
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is

8(112)2 = 23(16× 7)2 = 23(28× 72) = 210× 98 ≈ 9 · 8× 104− bit operations.

2. Bit-Complexity of Scalar Multiplication

This computation involves 4-modular multiplications. The estimated bit-

complexity of scalar multiplication is 4(lg n)2-bit operations.

For a 112-bit prime, the estimate of bit-complexity of scalar multiplication

is

4(112)2 = 210 × 49 ≈ 4 · 9× 104 − bit operations.

3. Bit-Complexity of Matrix Inversion

The calculation of determinant of a matrix involves 2−modular multiplica-

tion and 1−modular subtraction. The process of finding inverse of a matrix

consists of modular inversion of value of determinant and its scalar multipli-

cation with the matrix. So, the estimated bit-complexity of matrix inversion

is 2(lg n)2 + (lg n)2 + 4(lg n)2 = 7(lg n)2-bit operations.

For a 112-bit prime, the estimate of bit-complexity of matrix inversion is

7(112)2 = 73 × 28 = 3 · 43× 102 × 2 · 56× 102 ≈ 8 · 8× 104 − bit operations.

4. Bit-Complexity of Matrix Exponentiation

Assume that the exponent has size in bits proportional to that of n. That

is the size of exponent is O(lg n). Thus, the operation of matrix exponen-

tiation involves lg n modular multiplication of matrices. So, the estimate

of bit-complexity of matrix exponentiation is (lg n) · 8(lg n)2 = 8(lg n)3-bit

operations.

For a 112-bit prime, the estimate of bit-complexity of matrix exponentiation

is

8(112)2 = 73×215 = 3 ·2768×104×3 ·43×102 ≈ 1 ·1×107−bit operations.
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4.4.2 Bit-Complexity of Proposed Cryptosystem

There are 2−exponentiation, 1−inversion and 9−multiplications of matrices are

involved in the encryption of our proposed Cryptosystem 4.2.1. Neglecting other

operations as compared to the matrix exponentiation, the bit-complexity of en-

cryption is

2× (1 · 1× 107) = 2 · 2× 107 − bit operations. (4.12)

In decryption, there are 4−inversion and 8−multiplications of matrices are in-

volved. Therefore the estimated bit-complexity is

4× (8 · 8× 104) + 8× (4 · 9× 104) = 7 · 44× 105 − bit operations. (4.13)

As mentioned earlier, we are considering the RSA cryptosystem as point of ref-

erence for comparing the efficiency of our cryptosystem. The encryption and

decryption of RSA cryptosystem involve only modular exponentiation. The bit-

complexity of RSA encryption and decryption is (lg n)3−bit operations. For

1024−bit n, we obtain the estimate of bit-complexity as

(1024)3 = (210)3 ≈ (103)3 = 109 − bit operations. (4.14)

In view of expressions (4.12), (4.13) and (4.14), we can say that our proposed

cryptosystem is more efficient than classical RSA cryptosystem.



Chapter 5

New Variants of Stickel’s Key

Exchange Protocol

In this chapter, we present two variants of Stickel’s protocol based on noncom-

mutative structures. Particularly, the use of polynomials over noncommutative

rings is examined. The underlying idea of the protocols is to generalize the de-

composition problem over noncommutative rings. Due to use of noncommutative

structure and polynomials over noncommutative rings, it is expected that the pro-

posed protocols provide high security levels. Some issues regarding the choice of

parameters involved in the protocols, are also addressed. Further, a brief note on

the security of the protocols, is also presented.

5.1 Some Cryptographic Hard Problems and Non-

commutativity

As discussed earlier, the trap door one way function can be used behind the public

key cryptography. Therefore, there must exist computationally hard problems

for defining the protocols based on public keys. The following are the problems

involved in the security of different noncommutative group based cryptographic

proposals. We also defined a variant of these problems and use it in our proposal.

74
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Definition 5.1.1. (Decomposition Problem [10])

Let G be a noncommutative group and S be a subset of G. Given two elements

g, h ∈ G, the problem of finding two elements k1, k2 ∈ S, where

h = k1gk2

is known as the decomposition problem (DP).

Generally, for a noncommutative group G, the decomposition problem is consid-

ered difficult enough regarding the cryptographic assumptions. More specifically,

the DP is intractable which means that there is no probabilistic polynomial time

algorithm that is used to solve DP with non negligible accuracy.

Definition 5.1.2. (Symmetric Decomposition Problem [10])

Let G be a noncommutative group, two elements g, h ∈ G and m,n ∈ Z. Finding

the element k ∈ G, where

h = kmgkn,

is known as the symmetric decomposition problem (SDP).

Definition 5.1.3. (Generalized Symmetric Decomposition Problem [10])

Let G be a noncommutative group, a subset S of G, two elements g, h ∈ G and

m,n ∈ Z. Finding the element k ∈ S, where

h = kmgkn,

is known as the generalized symmetric decomposition problem (GSDP).

In the view of the these problems, we now define the following cryptographic

problem over a noncommutative group G.

Definition 5.1.4. (Generalized Decomposition Problem)

Let G be a noncommutative group, two subsets S1, S2 ⊆ G and two elements

g, h ∈ G and m,n ∈ Z. Finding two elements k1 ∈ S1, and k2 ∈ S2, where

h = km1 gk
n
2
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is known as the generalized decomposition problem (GDP).

Note that the GDP can be considered as a special form of DP. If the size of sets

S1 and S2 are taken to be more than 200 integers and also extracting k1 and k2

from km1 gk
n
2 is hard from the membership information of sets S1 and S2, then the

GDP is at least as hard as DP. It follows that the generalized decomposition as-

sumption states that the GDP is intractable, which means there does not exist any

probabilistic polynomial time algorithm that can solve GDP with non negligible

accuracy.

5.2 Motivating Literature

In [10], Cao at. el. proposed a scheme for devising a public key cryptosystem

based on noncommutative rings. It is proposed that for a noncommutative ring,

the set of polynomials can be considered as the underlying work structure. The

authors construct Diffie-Helman like key exchange protocol and ElGamal like cryp-

tosystems, using polynomials over noncommutative ring. They also extend their

technique to noncommutative groups. The difficulty of their Diffie-Hellman-Like

key agreement proposal is based on the following hard problem:

Definition 5.2.1. (Polynomial Symmetric Decomposition Problem [10])

Let R be a noncommutative ring. For any element a ∈ R, consider the set Sa ⊆ R

defined as

Sa = {P (a) | P (x) ∈ Z>0[x]}

and m,n ∈ Z. Given two elements g, h ∈ R, finding the element k ∈ Sa, where

h = kmgkn ,

is known as the polynomial symmetric decomposition problem (PSDP).
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5.2.1 Diffie-Hellman-Like Protocol For Noncommutative

Rings

A common secret key can be shared between two communicating parties Alice and

Bob, as follows:

1. To launch the protocol, two elements a, b ∈ R and two small (say, less than

10) positive integers m,n ∈ Z>0 are chosen by Alice and transmitted to Bob.

2. Alice selects a random polynomial P (x) ∈ Z>0[x], such that P (a) 6= 0 and

keeps P (a) as her private key.

3. A random polynomial Q(x) ∈ Z>0[x], such that Q(a) 6= 0 is selected by Bob

and Q(a) is his private key.

4. Alice computes

rA = P (a)mbP (a)n

and transmits it to Bob.

5. Bob computes

rB = Q(a)mbQ(a)n

and transmits rB to Alice.

6. The common secret key computed by Alice is

KA = P (a)mrBP (a)n.

7. Bob computes

KB = Q(a)mrAQ(a)n

as the common secret key.

We now define a new variant of GDP over a noncommutative ring R and name it

as polynomial generalized decomposition problem (PGDP).
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Definition 5.2.2. (Polynomial Generalized Decomposition Problem)

Let R be a noncommutative ring. Let Z(R) be the centre of R and Z(R)[X] be

the polynomial ring over Z(R). For any random elements a1, a2 ∈ R, consider the

sets Sa1 ⊆ R and Sa2 ⊆ R defined as

Sa1 = {P (a1) : P (X) ∈ Z(R)[X]} ,

Sa2 = {P (a2) : P (X) ∈ Z(R)[X]}

and m,n ∈ Z. Given two elements g, h ∈ R, finding two elements k1 ∈ Sa1 and

k2 ∈ Sa2 , where

h = km1 gk
n
2 ,

is known as the polynomial generalized decomposition problem (PGD).

So, the PGD cryptographic assumption states that PGDP over R is intractable

which means there does not exist any probabilistic polynomial time algorithm that

can solve PGDP with nonnegligible accuracy. We are going to use PGDP in our

proposed key exchange protocols as described in the following section.

5.3 Proposed Key Exchange Protocols

In this section, a novel key exchange protocol is proposed to start a communication

session between two parties, namely, Alice and Bob. Our scheme is based on a

noncommutative ring.

Protocol 5.3.1.

Consider a noncommutative ring R. Let Z(R) be the centre of R and Z(R)[x] be

the polynomial ring over Z(R). The following steps would be executed for sharing

a secret key.

Global Agreement/Parameters: The elements c ∈ R \ Z(R) and a1, a2 ∈ R.

1. Alice chooses a polynomial P (x) ∈ Z(R)[x], randomly, as her private key

such that P (a1) 6= 0 and P (a2) 6= 0. She also chooses r, s ∈ Z>0. She
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computes

KA = (P (a1))
r c (P (a2))

s (5.1)

and sends it to Bob.

2. Now, a random polynomial Q(x) ∈ Z(R)[x], is chosen by Bob as his private

key such that Q(a1) 6= 0 and Q(a2) 6= 0. He also chooses u, v ∈ N. He then

computes

KB = (Q (a1))
u c (Q (a2))

v (5.2)

and sends it to Alice.

3. The shared key computed by Alice, is

WA = (P (a1))
rKB (P (a2))

s . (5.3)

4. Bob finds the shared secret key as

WB = (Q (a1))
uKA (Q (a2))

v . (5.4)

The correctness of the proposed Protocol 5.3.1 is shown as follows:

Theorem 5.3.2.

In view of specified notation of Protocol 5.3.1, it follows that the shared secret

keys obtained by both entities Alice and Bob are same that is WA = WB.

Proof. First consider the expression (5.3)

WA = (P (a1))
rKB (P (a2))

s ,

by using (5.2), above expression becomes

WA = (P (a1))
r (Q (a1))

u c (Q (a2))
v (P (a2))

s . (5.5)
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Expression (5.4) with (5.1) gives

WB = (Q (a1))
u (P (a1))

r c (P (a2))
s (Q (a2))

v . (5.6)

Although the ring R is noncommutative, but we have

(P (g))` (Q (g))m = (Q (g))m (P (g))` ,
∀ g ∈ R, ∀ `,m ∈ Z>0

∀ P (x), Q(x) ∈ Z(R)[x].
(5.7)

In view of property (5.7), expressions (5.5) and (5.6) are same.

Obviously, for the proposed public key exchange protocol, the passive attack can

be resisted with the PGD assumption over the noncommutative ring.

Practically, the steps 1 and 2 of Protocol 5.3.1 can be done simultaneously. Alice

communicates to Bob through one pass and similarly, in the step 2, there is a

requirement of only one pass from Bob to Alice. Finally, the steps 3 and 4 can be

executed by both entities, without any further communications. This communi-

cation is described in FIGURE 5.1.

Figure 5.1: Stickel’s Variant Protocol

We naturally employ the square and multiply procedure to speed up the calcu-

lations for conducting exponentiation. This procedure helps to compute large

powers of random elements very quickly [55].

Example 5.3.3.

To understand the implementation details of the Protocol 5.3.1, we take M(2,Zp),
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with a large prime p. The care must be taken in the choice of a large value of

prime, approximately of the order of 60 decimal digits. But for simplifying the

calculations, we take Z29 in this example.

In the initial set up of the Protocol 5.3.1, we take M(2,Z29) as the noncommutative

ring. All the computations are performed in ApCoCoA [3]. The center ofM(2,Z29)

is the set

Z(M(2,Z29)) = {gI | g ∈ Z29} , where

I =

 1 0

0 1


is the identity matrix. Now the following steps of Protocol 5.3.1 would be exe-

cuted.

Global Parameters: Assume that the following matrices are the global param-

eters:

A1 =

 2 0

3 1

 ,
A2 =

 11 2

9 4




∈M(2,Z29)

and

C =

 11 3

2 0

 ∈M(2,Z29) \ Z(M(2,Z29))

1. Alice chooses a random polynomial from Z(M(2,Z29))[x]

P (x) =

 21 0

0 21

+

 4 0

0 4

x2 +

 13 0

0 13

x4
and (r, s) = (2, 8). Then

P (A1) =

 21 0

0 21

+

 4 0

0 4

 2 0

3 1

2

+

 13 0

0 13

 2 0

3 1

4
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=

 13 0

12 9


and

P (A2) =

 21 0

0 21

+

 4 0

0 4

 11 2

9 4

2

+

 13 0

0 13

 11 2

9 4

4

=

 16 20

3 4

 .
Now she computes

KA = (P (A1))
2C (P (A2))

8 =

 13 0

12 9

2  11 3

2 0

 16 20

3 4

8

=

 23 9

7 0


and sends it to Bob.

2. Now, a random polynomial is chosen by Bob

Q(x) =

 2 0

0 2

x+

 15 0

0 15

x3 ∈ Z(M(2,Z29))[x]

and (u, v) = (3, 4). Then

Q(A1) =

 2 0

0 2

 2 0

3 1

+

 15 0

0 15

 2 0

3 1

3

=

 8 0

2 17



Q(A2) =

 2 0

0 2

 11 2

9 4

+

 15 0

0 15

 11 2

9 4

3
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=

 8 0

0 8

 .
Then he computes

KB = (Q (A1))
3C (Q (A2))

4 =

 8 0

2 17

3  11 3

2 0

 8 0

0 8

4

=

 13 22

16 6


and sends it to Alice.

3. The shared key computed by Alice is

WA = (P (A1))
2KB (P (A2))

8 =

 13 0

12 9

2  13 22

16 6

 16 20

3 4

8

=

 14 8

25 18

 .
4. Bob finds the shared key as

WB = (Q (A1))
3KA (Q (A2))

4

=

 8 0

2 17

3  23 9

7 0

 8 0

0 8

4

=

 14 8

25 18

 .
Note that although the elements A1 and A2 are publicly known, but for an adver-

sary the polynomials P (x) and Q(x) ∈ Z(M(2,Z29))[x] are unknown. Hence, the

following elements

(P (A1))
r =

 24 0

3 23

 , (P (A2))
s =

 6 1

19 17

 ,
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(Q (A1))
u =

 19 0

21 12

 , (Q (A2))
v =

 7 0

0 7

 ,
are also unknown.

Let us suppose that an adversary intercepts KA and KB. For obtaining the shared

secret key, he only knows the following expressions

KA = (P (A1))
r C (P (A2))

s =

 23 9

7 0

 ,
KB = (Q (A1))

uC (Q (A2))
v =

 13 22

16 6

 .

That is equivalent to find the solution of generalized decomposition problem.

For the brute force attack, one has to check the set of polynomials whose coeffi-

cients come from the center of the ring. The feasibility of brute force attack could

be avoided because the number of polynomials having degree α and coefficients

from Z(M(2,Zp)), is (p − 1)pα. The values of (p − 1)pα for different values of α

and p are shown in TABLE 5.1.
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Table 5.1: The size of set of polynomials of different degrees α and primes p with order of matrices n = 2

.
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We note that Protocol 5.3.1 exhibits some kind of symmetry in the sense that

computation of public keys KA and KB involves the same polynomial which is

multiplied with element c, from both sides. This symmetry can be avoided by

introducing two different polynomials for each user. Therefore, Protocol 5.3.1 can

be modified as follows:

Protocol 5.3.4.

Global Agreement/Parameters: The elements c ∈ R \ Z(R) and a1, a2 ∈ R.

1. Alice chooses two random polynomials P1(x) and P2(x) ∈ Z(R)[x] such that

P1(a1) 6= 0 and P2(a2) 6= 0. She also chooses r, s ∈ Z>0. She computes

KA = (P1 (a1))
r c (P2 (a2))

s

and sends it to Bob.

2. Bob also selects two polynomials Q1(x) and Q2(x) ∈ Z(R)[x] such that

Q1(a1) 6= 0 and Q2(a2) 6= 0. He also chooses u, v ∈ Z>0. He then computes

KB = (Q1 (a1))
u c (Q2 (a2))

v

and sends it to Alice.

3. The shared key computed by Alice, is

WA = (P1 (a1))
rKB (P2 (a2))

s . (5.8)

4. Bob finds the key as

WB = (Q1 (a1))
uKA (Q2 (a2))

v . (5.9)

The shared secret keys obtained in both cases (5.8) and (5.9) are same, following

a similar argument as in Protocol 5.3.1.

The next example shows the procedure of the Protocol 5.3.4.
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Example 5.3.5. The platform group and global parameters are selected as in

Example 5.3.3.

1. Alice chooses two random polynomial

P1(x) =

 21 0

0 21

+

 4 0

0 4

x2 +

 13 0

0 13

x4 ∈ Z(M(2,Z29))[x],

P2(x) =

 11 0

0 11

+

 24 0

0 24

x5 +

 3 0

0 3

x9 ∈ Z(M(2,Z29))[x]

and (r, s) = (2, 6). Then

P1(A1) =

 21 0

0 21

+

 4 0

0 4

 2 0

3 1

2

+

 13 0

0 13

 2 0

3 1

4

=

 13 0

12 9

 and

P2(A2) =

 11 0

0 11

+

 24 0

0 24

 11 2

9 4

5

+

 3 0

0 3

 11 2

9 4

9

=

 9 16

14 11

 .
She computes

KA = (P1 (A1))
2C (P2 (A2))

6

=

 13 0

12 9

2  11 3

2 0

 9 16

14 11

6

=

 2 1

27 9


and sends it to Bob.
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2. Bob selects two polynomials, randomly

Q1(x) =

 2 0

0 2

x+

 15 0

0 15

x3 ∈ Z(M(2,Z29))[x],

Q2(x) =

 16 0

0 16

+

 19 0

0 19

x+

 27 0

0 27

x10 ∈ Z(M(2,Z29))[x]

and (u, v) = (3, 4). Then

Q1(A1) =

 2 0

0 2

 2 0

3 1

+

 15 0

0 15

 2 0

3 1

3

=

 8 0

2 17


and

Q2(A2) =

 16 0

0 16

+

 19 0

0 19

 11 2

9 4

+

 27 0

0 27

 11 2

9 4

10

=

 12 15

24 3

 .
Then he computes

KB = (Q1 (A1))
3C (Q2 (A2))

4

=

 8 0

2 17

3  11 3

2 0

 12 15

24 3

4

=

 12 10

16 26


and sends it to Alice.

3. The shared key computed by Alice is

WA = (P1 (A1))
2KB (P2 (A2))

6
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=

 13 0

12 9

2  12 10

16 26

 9 16

14 11

6

=

 2 11

3 0

 .
4. Bob finds the shared key as

WB = (Q1 (A1))
3KA (Q2 (A2))

4

=

 8 0

2 7

3  2 1

27 9

 12 15

24 3

4

=

 2 11

3 0

 .
Here, an adversary knows A1 and A2 since they are public, but the polynomi-

als P1(x), P2(x), Q1(x) and Q2(x) ∈ Z(M(2,Z29))[x] remain unknown. So the

following elements are also unknown

(P1 (A1))
r =

 24 0

3 23

 , (P2 (A2))
s =

 2 5

8 28

 ,
(Q1 (A1))

u =

 19 0

21 12

 , (Q2 (A2))
v =

 8 8

7 9

 .

Let us suppose that an adversary intercepts KA and KB. Similar argument as

given for Protocol 5.3.1, for obtaining the shared secret key, he only knows the

following expressions

KA = (P1 (A1))
r C (P2 (A2))

s =

 2 1

27 9

 ,
KB = (Q1 (A1))

uC (Q2 (A2))
v =

 12 10

16 26

 ,

where the polynomials P1(x), P2(x), Q1(x) and Q2(x) ∈ Z(M(2,Z29))[x] and the
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integers r, s, u and v have to be found, first. This problem leads to solve generalized

decomposition problem.

There are two polynomials involved in the public key of each user. If the degrees

of two polynomials are α and β, respectively, then the total number of possible

polynomials for one user is (p−1)2p(α+β). The values of (p−1)2p(α+β) for different

values of α, β and p = 29 are shown in TABLE 5.2.

α�β 3 7 11 · · ·
2 16080740816 11373602445081300 8044332910959540000000 · · ·
3 466341483664 329834470907358000 233285654417827000000000 · · ·
4 13523903026256 9565199656313370000 6765283978116980000000000 · · ·
5 392193187761424 277390790033088000000 196193235365392000000000000 · · ·
6 11373602445081300 8044332910959540000000 5689603825596380000000000000 · · ·
7 329834470907358000 233285654417827000000000 164998510942295000000000000000 · · ·
.
.
.

.

.

.

.

.

.

.

.

.

Table 5.2: The size of set of polynomials of different degrees α and β and
p = 29 with order of matrices n = 2.

5.4 Security Aspects of the Proposed Protocols

This section presents discussion on the security analysis of the protocols proposed

in Section 5.3.4.

As mentioned earlier, the security of the protocols depends on the solution of the

generalized decomposition problem. For solving such problem in a noncommuta-

tive ring, no polynomial time algorithm is known, to the best of our knowledge. In

case of both protocols, an adversary has to find the solution of the decomposition

problems which is expressed as the following system of equations

MAMB = MBMA, (5.10)

NANB = NBNA, (5.11)

MACNA = KA, (5.12)

MBCNB = KB. (5.13)
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The adversary also knows the elements a1,a2 ∈ R and c ∈ R \Z(R). To break the

Protocol 5.3.1, the adversary has to find the elements MA,MB, NA and NB. For

this, the adversary tries to find out two polynomials H1(x), H2(x) ∈ Z(R)[x] and

numbers `1, `2,m1,m2 ∈ N such that

(H1(a1))
`1 = MA,

(H1(a2))
`2 = NA,

(H2(a1))
m1 = MB and

(H2(a2))
m2 = NB.

Then, one can guarantee the conditions (5.10) and (5.11).

We note that the size of space of polynomials over Z(R) is actually a set of all

possible random choices. Also, the adversary has to verify the conditions (5.12)

and (5.13). By taking the space of polynomials over Z(R) to be large enough, the

possibility of brute force attack would be infeasible.

In the same fashion, for Protocol 5.3.4, an adversary has to find the elements

MA,MB, NA, and NB. Also, the polynomials H1(x), G1(x), H2(x), G2(x) ∈ Z(R)[x]

and natural numbers `1, `2,m1,m2 ∈ N have to be determined, such that

(H1(a1))
`1 = MA,

(G1(a2))
`2 = NA,

(H2(a1))
m1 = MB and

(G2(a2))
m2 = NB.

Notice that conditions (5.10) and (5.11) are again guaranteed. In this case, there

is an increase in the number of polynomials which would add an extra difficulty.

The solution of intractable decomposition problem is involved in a brute force

attack. The only possibility to get solution of generalized decomposition problem

is to search out the space of polynomials Z(R)[x]. This search becomes infeasible

when the order of the space of the polynomials would be taken large enough. To
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make brute force attack infeasible, it is suggested to make the choice of a prime p

of order of 60 decimal digits and polynomials of degree 20.

The order of the matrices n can be chosen so that 2n − 1 is a Mersenne prime.

The choice of a Mersenne prime n > 31 is recommended.



Chapter 6

A Novel Algebraic Public Key

Cryptosystem

Different public key exchange protocols can be employed to design a cryptosystem.

The most famous example is the ElGamal cryptosystem [17] which uses the Diffie-

Hellman key establishment [15] to do encryption and decryption. In the same

fashion, we propose a public key cryptosystem in spirit of a variant of Stickel key

exchange protocol presented in Chapter 5. This variant uses the polynomials over

noncommutative groups as underlying work structure. The useful feature of the

presented cryptosystem is that it provides favorable security level because of use

of inner automorphisms of a noncommutative group. The issues regarding the

choice of parameters and platform are discussed. A brief note on security of the

proposed cryptosystem is also presented.

6.1 Proposed Cryptosystem

Now, we present the general scheme for a public key cryptosystem as follows:

Cryptosystem 6.1.1.

Initial Setup: Let G be a noncommutative group. Let Z(G) be the centre of G

and Z(G)[y] be the polynomial ring over Z(G).

93
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For developing a communication, Bob and Alice will do the following steps:

Key Generation (KG)

To compute secret and public key pair (SA, PA) of Alice, KG works as follows:

The elements g1, g2 ∈ G, c ∈ G \ Z(G), a polynomial P (y) ∈ Z(G)[y], such that

P (g1) 6= 0 and P (g2) 6= 0 and r, s ∈ N are picked randomly. The secret and public

keys are SA = (r, s, P (y)) and PA = (g1, g2, c,KA), respectively, where

KA = (P (g1))
r c (P (g2))

s . (6.1)

Encryption Algorithm (EPA
)

Input: Plaintext message M ∈ G, Public key of Alice PA = (g1, g2, c,KA)

Output: Ciphertext CA

To send a message (plaintext) M ∈ G to Alice, Bob executes following steps:

E-1) He chooses random polynomial Q(y) ∈ Z(G)[y] such that Q(g1) 6= 0 and

Q(g2) 6= 0 and elements u, ν ∈ N. Then, he computes

B = (Q (g1))
u c (Q (g2))

v .

E-2) Now he uses the inner automorphism

φ : g 7−→ B−1gB, for g ∈ G

of the group G to compute

E-3)

C1 = φ(KA).

E-4) Finally, he computes

C = C1M.
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E-5) The ciphertext transmitted to Alice is CA = (C ′, C), where

C ′ = (Q (g1))
uKA (Q (g2))

v . (6.2)

Decryption Algorithm (DSA
)

Input: Ciphertext message CA, secret key of Alice SA = (r, s, P (y))

Output: Plaintext M

When Alice receives the ciphertext CA = (C ′, C),, she executes following steps:

D-1) She computes

D̃ = (P (g1))
−r C ′(P (g2))

−s. (6.3)

D-2) She defines an inner automorphism

ρ : g 7−→ D̃
−1
gD̃, for g ∈ G

and computes

D-3)

D̃1 = ρ
(
K−1A

)
.

D-4) Then plaintext message M can be obtained as

M = D̃1C.

Theorem 6.1.2.

In view of specified notation of Cryptosystem 6.1.1, the correctness of its decryp-

tion is guaranteed.

Proof. Correctness : The correctness of the scheme is guaranteed as follows:

Consider expression (6.3)

D̃ = (P (g1))
−r C ′(P (g2))

−s,
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using expression (6.2) and then (6.1) above expression reduces to

D̃ = (P (g1))
−r ((Q (g1))

u ((P (g1))
r c (P (g2))

s) (Q (g2))
v) (P (g2))

−s. (6.4)

Although the group G is noncommutative, but we have

(P (g))` (Q (g))m = (Q (g))m (P (g))` ,
∀ g ∈ G, ∀ `,m ∈ N

∀ P (y), Q(y) ∈ Z(G)[y].

 (6.5)

In view of property (6.5) and associativity of elements of a group, expression

(6.4) becomes

D̃ = (Q (g1))
u ((P (g1))

−r ((P (g1))
r c (P (g2))

s) (P (g2))
−s) (Q (g2))

v ,

= (Q (g1))
u c (Q (g2))

v

= B.

Also

D̃1C = ρ
(
K−1A

)
φ(KA)M,

=
(
D̃
−1
K−1A D̃

)
(B−1KAB)M

= M.

6.2 Underlying Work Structure and Parameters

We note that, generally our proposed cryptosystem can be used with any noncom-

mutative group G. But we suggest the use the general linear group of matrices

of order n over a Galois field of characteristic 2 because it reduces the key size.

The computations become efficient due to use of the known algorithms of fast

calculations in a field of characteristic 2. Particularly, the group of matrices over
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GF (2127) is recommended as underlying work structure. The Galois field GF (2127)

is the factor algebra Z2[x]/ 〈q(x)〉, where 〈q(x)〉 is the ideal generated by the ir-

reducible polynomial q(x) = x127 + x63 + 1. So the elements of GF (2127) are the

polynomials of degree at most 126 with coefficients in Z2. Each entry of a matrix

over the Galois field GF (2127) is an element of GF (2127) which is a string of 127

bits. The complexity of a matrix of order n over GF (2127) is 127·n2 bits.

The set of polynomials whose coefficients come from Z(GL(2, GF (2127))) is the

space for brute force attack. The brute force attack can be made infeasible because

the number of polynomials with degree α, is (2127 − 1)(2127)α.

Example 6.2.1. To comprehend the proposed cryptosystem, we useGL (2, GF (23))

as the noncommutative group in the following example. The irreducible polyno-

mial q(x) = x3 + x2 + 1 is used to do computations in GL (2, GF (23)). The

inverses of the elements of GF (23), are computed by using Algorithm 2.4.1. We

use ApCoCoA [3] for calculations.

Initial Setup : The center of GL (2, GF (23)) is the set

Z(GL
(
2, GF (23)

)
) =

{
gI | g ∈ GF (23)

}
, where

I =

 1 0

0 1

 .
For developing a communication, Bob and Alice will do the following steps:

Key Generation (KG) : Alice chooses a random polynomial as

P (y) =

 x 0

0 x

+

 x+ 1 0

0 x+ 1

 y2+
 x2 0

0 x2

 y4 ∈ Z(GL
(
2, GF (23)

)
)[y]
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as her private key. She also chooses elements

N1 =

 x x2 + 1

x+ 1 x2

 ,
N2 =

 x2 + 1 x

x+ 1 0

 ,


∈ GL

(
2, GF (23)

)

N =

 1 x+ 1

0 1

 ∈ GL (2, GF (23)
)
\ Z(GL

(
2, GF (23)

)
)

and (r, s) = (2, 8). So

P (N1) =

 x 0

0 x

+

 x+ 1 0

0 x+ 1

 x x2 + 1

x+ 1 x2

2

+

 x2 0

0 x2

×
=

 x x2 + 1

x+ 1 x2

4

mod (x3 + x2 + 1)

= =

 x2 + x x2 + 1

x+ 1 0

 mod (x3 + x2 + 1)

and

P (N2) =

 x 0

0 x

+

 x+ 1 0

0 x+ 1

 x2 + 1 x

x+ 1 0

2

+

 x2 0

0 x2

×
=

 x2 + 1 x

x+ 1 0

4

mod (x3 + x2 + 1)

= =

 x+ 1 x2 + x+ 1

x x2 + 1

 mod (x3 + x2 + 1).

Now she computes

KA = (P (N1))
2N (P (N2))

8

=

 x2 + x x2 + 1

x+ 1 0

2  1 x+ 1

0 1

×
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=

 x+ 1 x2 + x+ 1

x x2 + 1

8

mod (x3 + x2 + 1)

=

 x2 + x x+ 1

0 x2 + 1

 mod (x3 + x2 + 1)

and announces her public key (N1, N2, N,KA).

Encryption (EPA
) : To send a message (plaintext)

M =

 x2 + x x+ 1

0 x2 + 1

 ∈ GL (2, GF (23)
)

to Alice, Bob chooses random polynomial

Q(y) =

 x2 + 1 0

0 x2 + 1

 y +

 x 0

0 x

 y3 ∈ Z(GL
(
2, GF (23)

)
)[y]

and (u, v) = (3, 4). Then

Q(N1) =

 x2 + 1 0

0 x2 + 1

 x x2 + 1

x+ 1 x2

+

 x 0

0 x

×
=

 x x2 + 1

x+ 1 x2

3

mod (x3 + x2 + 1)

=

 x2 + x+ 1 0

0 x2 + x+ 1

 mod (x3 + x2 + 1)

and

Q(N2) =

 x2 + 1 0

0 x2 + 1

 x2 + 1 x

x+ 1 0

+

 x 0

0 x

×
=

 x2 + 1 x

x+ 1 0

3

mod (x3 + x2 + 1)
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=

 x+ 1 x2 + x+ 1

x x2 + 1

 mod (x3 + x2 + 1).

Then he computes

B = (Q (N1))
3N (Q (N2))

4

=

 x2 + x+ 1 0

0 x2 + x+ 1

3  1 x+ 1

0 1

×
=

 x+ 1 x2 + x+ 1

x x2 + 1

4

mod (x3 + x2 + 1)

=

 x2 + 1 x2

x2 + 1 x2 + 1

 mod (x3 + x2 + 1).

Also

|B| = (x2 + 1) mod (x3 + x2 + 1).

Using Algorithm 2.4.1

|B|−1 = (x2 + x+ 1) mod (x3 + x2 + 1).

The matrix B−1 can be computed as follows:

B−1 =
1

|B|
Adj(B)

= |B|−1Adj(B)

= (x2 + x+ 1)

 x2 + 1 x2

x2 + 1 x2 + 1

 mod (x3 + x2 + 1)

B−1 =

 1 x2 + x

1 1

 mod (x3 + x2 + 1).
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Now he uses the inner automorphism

φ : g 7−→ B−1gB, for g ∈ GL
(
2, GF (23)

)
to compute

C1 = φ(KA)

= B−1KAB

=

 1 x2 + x

1 1

 x2 + x x+ 1

0 x2 + 1

×
=

 x2 + 1 x2

x2 + 1 x2 + 1

 mod (x3 + x2 + 1)

=

 x2 + 1 x+ 1

0 x2 + x

 mod (x3 + x2 + 1).

Encryption is

C = C1M

=

 x2 + 1 x+ 1

0 x2 + x

 x2 + x x+ 1

0 x2 + 1

 mod (x3 + x2 + 1)

=

 x2 + x x2 + x

x2 + x x

 mod (x3 + x2 + 1).

The ciphertext transmitted to Alice is CA = (C ′, C), where

C ′ = (Q (N1))
3KA (Q (N2))

4

=

 x2 + x+ 1 0

0 x2 + x+ 1

3  x2 + x x+ 1

0 x2 + 1

×
=

 x+ 1 x2 + x+ 1

x x2 + 1

4

mod (x3 + x2 + 1)

=

 x2 + x+ 1 1

x2 + x x2 + x

 mod (x3 + x2 + 1).
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Decryption (DSA
) : When Alice receives the ciphertext, she computes

D̃ = (P (N1))
−2C ′(P (N2))

−8

=

 x2 + x x2 + 1

x+ 1 0

−2  x2 + x+ 1 1

x2 + x x2 + x

×
=

 x+ 1 x2 + x+ 1

x x2 + 1

−8 mod (x3 + x2 + 1)

=

 x2 + 1 x2

x2 + 1 x2 + 1

 mod (x3 + x2 + 1) and

D̃
−1

=

 1 x2 + x

1 1

 mod (x3 + x2 + 1).

Also, she computes the inverse of matrix KA as follows:

|KA| = (x2) mod (x3 + x2 + 1).

The Algorithm 2.4.1 yields

|KA|−1 = (x+ 1) mod (x3 + x2 + 1).

So,

K−1A =
1

|KA|
Adj(KA)

= |KA|−1Adj(KA)

= (x+ 1)

 x2 + 1 x+ 1

0 x2 + x

 mod (x3 + x2 + 1)

K−1A =

 x x2 + 1

0 x2 + x+ 1

 mod (x3 + x2 + 1).

She defines the inner automorphism

ρ : g 7−→ D̃
−1
gD̃, for g ∈ GL

(
2, GF (23)

)
.
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She computes

D̃1 = ρ
(
K−1A

)
= D̃

−1
K−1A D̃

=

 1 x2 + x

1 1

 x x+1

0 x2 + x+ 1

×
=

 x2 + 1 x2

x2 + 1 x2 + 1

 mod (x3 + x2 + 1)

=

 x2 + x+ 1 x2 + 1

0 x

 mod (x3 + x2 + 1).

Then

M = D̃1C

=

 x2 + x+ 1 x2 + 1

0 x

 x2 + x x2 + x

x2 + x x


=

 1 x

1 x2

 mod (x3 + x2 + 1).

Notice that although the elements N1 and N2 are public knowledge, but for an

adversary the polynomials P (y) and Q(y) ∈ Z(GL (2, GF (23)))[y] are unknown.

Hence, the elements (P (N1))
r , (P (N2))

s , (Q (N1))
u and (Q (N2))

v are also un-

known. He only knows the following expressions

KA = (P (N1))
rN (P (N2))

s =

 x2 + x x+ 1

0 x2 + 1

 mod (x3 + x2 + 1),

C ′ = (Q (N1))
uKA (Q (N2))

v =

 x2 + x+ 1 1

x2 + x x2 + x

 mod (x3 + x2 + 1).

That is equivalent to find the solution of generalized decomposition problem be-

cause the integers r, s and u, v are unknown to the adversary. Also P (y) and Q(y)

have to be determined, first.
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6.3 Security of Proposed Cryptosystem

We now address some computational hardness related to the security and perfor-

mance considerations of the proposed scheme.

The generalized decomposition problem is involved in the security of the pro-

posed cryptosystem. In a noncommutative group, no polynomial time algorithm

is known to obtain the solution of such problem. In our case the decomposition

problem gives the following equations:

UAUB = UBUA, (6.6)

VAVB = VBVA, (6.7)

UAWVA = KA, (6.8)

UBKAVB = C ′. (6.9)

The elements g1,g2 ∈ G and c ∈ G\Z(G) are known to an adversary. For breaking

the cryptosystem, the adversary has to find the elements UA, UB, VA and VB, for

which, the adversary has to find out two polynomials H1(y), H2(y) ∈ Z(G)[y] and

numbers `1, `2,m1,m2 ∈ N such that

(H1(g1))
`1 = UA,

(H1(g2))
`2 = VA,

(H2(g1))
m1 = UB and

(H2(g2))
m2 = VB.

Then, the conditions (6.6) and (6.7) may be guaranteed. Actually, the size of the

space of polynomials over Z(G) is the set of all possible random choices and an

adversary has to verify the Conditions (6.8) and (6.9). By taking the space of

polynomials over Z(G) to be large enough, the possibility of brute force attack

would be infeasible.

The only possibility to get solution of generalized decomposition problem is to

search out the space of polynomials Z(G)[y]. This search becomes infeasible when

the order of the space of the polynomials would be taken large enough. For the
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infeasibilty of brute force, it is suggested to make the choice of a prime p of order

of 60 decimal digits and polynomials of degree 20.

These matrix equations produce a large set of equations involving unknown ma-

trices UA, UB, VA, and VB. However an adversary has to face a problem with these

types of equations. That is, no matter how he rearranges these equations, the

problem of having a product of two unknown matrices can not be avoided which

leads to a large system of nonlinear equations in their entries.



Chapter 7

Conclusion and Future Work

Public key cryptography is an essential need in every field of today’s life. Current

cryptosystems depend on problems which are hard to break with today’s knowl-

edge and computing ability. Because of the continuous growing computational

ability, the key length should be enlarged permanently, for achieving a high level

of security. Therefore, researchers always looking for different approaches in al-

gebraic structures. In this regard noncommutative groups are considered to be

ideal.

Keeping in mind all these things, we have presented a new public key cryptosystem

in spirit of Stickel’s key exchange protocol, in chapter 4. This new cryptosystem

can be implemented by employing CSP and DLP in any noncommutative setting.

The correctness of the algorithm is proved. The proposed algorithm is simple and

efficient to implement with suggested platform and parameter values. A toy ex-

ample is also given to explain the algorithms. Finally, some security and efficiency

aspects are also discussed.

As mentioned in Section 4.3 that the proposed cryptosystem is secure against the

attack mentioned in [42]. However, as a future work, the possibility of an exten-

sion of such kind of attack can be explored.

In chapter 5, we have shown that the noncommutative rings can be used to de-

velop public key exchange protocols. These protocols are the variants of Stickel’s

key exchange protocol. Specifically, we proposed two protocols based on the ring

106
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M(n,Zp) and use polynomials over the center of the ring. These polynomials are

kept secret as the private keys by each user. It was discussed that for obtaining

shared secret key, an adversary, first has to find the polynomials. After that, solu-

tion of the generalized decomposition problem would be acquire. For solving such

problem in a noncommutative ring, no polynomial time algorithm is known.

The basic idea used in the presented protocol can be used to develop a signature

verification scheme. The possibility of exploring this idea for signature verifica-

tion, is open for future work.

We have presented new cryptosystem based on inner automorphism of a group,

in chapter 6. It is based on the variant of Stickel’s key exchange protocol for

polynomials over noncommutative groups. The security and suggestions related

to different parameters are discussed in detail. The combined use of polynomials

and automorphisms of a noncommutative platform enables this cryptosystem a

convenient and sensible choice for future security.

The development of another cryptosystem based on automorphisms with different

encryption and decryption schemes, is also under consideration.

For the three proposals presented in this study, more platforms can be explored

for achieving better security and efficiency. Further, the implementation of all the

new techniques proposed in this thesis is open for future study.
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