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Abstract

Adaptive algorithms are mostly optimized using integer order derivatives for error

minimization. The Least Mean Squares (LMS) and Recursive Least Squares (RLS)

adaptive filters are among the most commonly employed schemes. The LMS algo-

rithm is simple to implement, has robust tracking performance in nonstationary

environments and is less sensitive to floating point precision effects. However, it

has the issue of slow convergence especially when the number of weights is large.

The RLS achieves faster convergence but is computationally expensive, and prob-

lematic in nonstationary environments.

This study introduces fractional calculus techniques in stochastic gradient algo-

rithms. In addition to first order derivative, Fractional Order (FO) derivatives

are proposed in the optimization of gradient algorithms. Four configurations have

been considered based on whether the fractional derivative is applied to the in-

stantaneous present or posterior error. For evaluation of the FO algorithms, three

applications have been considered, that is, (a) adaptive equalization of multi-

path channels (b) Active Noise Control Systems (ANCS) and (c) tracking of time

varying Rayleigh fading sequences. In equalization, both supervised and unsu-

pervised algorithms are considered. For the supervised case, FO variants of LMS

and Normalized LMS (NLMS) are applied in both feed-forward and decision feed-

back configurations. In the unsupervised case, FO variants of Gordad and con-

stant modulus algorithms are developed. In ANCS, FO variants of the NLMS,

Filtered-x (input) LMS, Modified FxLMS and Filtered-error LMS algorithms are

developed. The noises are modelled as binary, Gaussian and impulsive sources

characterized by fractional lower order moments. In tracking, the behavior of FO

variants is evaluated for nonstationary environments. A Rayleigh channel has also

been considered having Doppler frequency shifts of 0.8KHz to 3KHz. The frac-

tional algorithms are compared with the standard NLMS, RLS and Extended-RLS

schemes.

The main performance metrics include (1) mean squared error (2) mean squared

deviation (3) relative modelling error (4) model accuracy using both frequency and

time domain analysis and (5) symbol error rate. The former three performance



x

metrics help compare the convergence speed and steady state performance; the

latter two are application specific. Simulation results are shown for different step

sizes and fractional orders. It is seen that the fractional variants show superior

performance in all the three applications and hold great promise for future use.
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Chapter 1

Introduction

Convergence time, tracking and computational cost are among the most important

parameters in designing adaptive signal processing systems. Faster convergence

speeds up the learning process and helps increase system efficiency in different

applications. Fewer training symbols in equalization or channel estimation help

increase efficiency of the transmission system by utilizing more time or bandwidth

for useful data. Adaptive filters must have the capability to track time based

variations in system parameters especially after the learning phase.

This chapter provides an introduction of adaptive signal processing systems and

some applications, for which fractional order filtering algorithms will later be pre-

sented. Different metrics have been defined which help evaluate the performance

of adaptive filters in different applications. Literature review is provided for differ-

ent algorithms. Finally, significance, aims and contributions of the research study

are highlighted.

1.1 Adaptive Filtering Systems

An adaptive filter progressively adjusts its transfer function according to an adap-

tation algorithm while monitoring the environment. In a stationary environment,

1
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Figure 1.1: Block diagram of adaptive filtering system.

the filter is expected to converge to an optimal solution. In non-stationary envi-

ronments, the filter is expected to track time variations and update its transfer

function accordingly. Traditional signal processing techniques utilize integer order

calculus for optimization of filter weights to minimize the error. In adaptive strate-

gies, the gradient search method and its variants have been employed. These are

among the most celebrated algorithms due to their cost effectiveness, robustness

and ease of implementation.

There are two basic operations involved in adaptive filtering process: adaptation

and filtering. In adaptation, the filter tries to adjust its coefficients based on some

constraints such as error minimization, tap-weight length or maintaining orthog-

onality. In filtering, a desired output is produced. The mean squared value of

the error signal is often used as the optimization criterion. Important parameters

also include numerical stability, accuracy and robustness. Adaptive filters are vi-

tal to many applications such as instrumentation, communication, controls and

bio-medical signal processing.

A block diagram of an adaptive filtering system is shown in Figure 1.1. At time

k, the filter has input x(k) and desired output d(k). It is assumed that both the

observed signals are corrupted by zero mean additive noise terms. Using vector

notations and assuming an Nth order filter, the estimated output y(k) of the filter

is:
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y(k) = wT(k)x(k) (1.1)

where

w(k) = [ w0(k), w1(k) . . . wN−1(k) ]T (1.2)

is a vector having the filter weights at time k and

x(k) = [ x(k), x(k − 1) . . . x(k −N + 1) ]T . (1.3)

Note that the superscripts H, T and * represent Hermitian, transpose and con-

jugate operations, respectively. The goal of the filter is to produce output y(k)

which is best estimate of the desired signal. This is achieved by devising a cost

function represented by Jw(k) which is a function of the error e(k) = d(k)− y(k).

Most commonly used criterion for optimization is the Mean Squared Error (MSE)

which is defined as [1]:

Jw(k) = E[e2(k)]. (1.4)

This cost function has some attractive features such as [1–6]:

• Physical relevance to energy

• Smooth performance surface with continuous derivatives

• Single global minimum (convex paraboloid) of the performance which allows

unambiguous selection of optimum parameters

• In the absence of noise, the minima provide best unbiased estimation

• For predication, minimum phase is guaranteed
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As stated above for the MSE, there is a single global minimum, the optimal solution

is called the Wiener filter [1–6], and is given by:

wo = R−1p (1.5)

In equation (1.5), R is the autocorrelation matrix of the input and is defined as

R = E[x(k)xT(k)]. The vector p is obtained from the cross correlation of input

and the desired signals, that is, p = E[x(k)d(k)]. The matrix R is symmetric

and Toeplitz, which facilitates a computationally efficient inverse operation with

complexity of O(N2) [5, 6]. The computation of R, however, requires all data

samples, which is expensive. An iterative algorithm on the other hand is more

appropriate for practical use and suits the framework of an adaptive system. The

basic philosophy in such cases is to minimize the MSE at each time instant k, a

correction term is applied to the filter weights to form a new set of coefficients at

time k+1, that is:

w(k + 1) = w(k) + ∆w(k). (1.6)

The design of adaptive filters deals with the formation of this correction term.

Using the gradient search method based on first order derivatives, the most com-

monly applied techniques to approximate the optimal Wiener solution wo are the

Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms. The

LMS is based on instantaneous error approximation of the MSE which makes it at-

tractive for practical applications; however it has relatively slow convergence. The

RLS approximates the autocorrelation matrix in a recursive manner which gives it

faster convergence, but is computationally expensive. The traditional algorithms

are based on Integer Order Derivatives (IOD) such as the gradient or Hessian

approaches. However, the IODs are local operators [7], and are determined by

properties of differentiable functions only in an infinitely small neighborhood of

the considered point. The thesis proposes the applications of Fractional Deriva-

tive (FD) in adaptive algorithms for the correction term ∆w(k). Since, the FD

is a generalization of the ordinary IOD, the properties that make FD suitable for
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modeling certain complex systems which may have “non-local dynamics”. The

processes dynamics may have a certain degree of memory [8] and can better be

modelled with non-local fractional operators instead of the ordinary IOD which is

a local operator [9].

1.2 Steepest Descent Algorithm

In the steepest descent algorithm, the correction term in equation(1.6) is formed

by exploiting a step size µ in the negative gradient direction, that is:

w(k + 1) = w(k)− µ∇Jw(k). (1.7)

Applying first order derivatives for the correction term in equation (1.7),

∇Jw(k) = −2E
[(

d(k)− y(k)
)
x(k)

]
= −2E

[
e(k)x(k)

]
. (1.8)

which can be rewritten, using equation (1.1) for y(k) as:

∇Jw(k) = −2E
[(

d(k)− y(k)
)
x(k)

]
= −2E

[(
d(k)−wT(k)x(k)

)
x(k)

]
. (1.9)

Simplifying equation (1.9) further and putting the value of gradient in equation

(1.7), the update equation becomes:

w(k + 1) = w(k) + µ
[
p−Rw(k)

]
. (1.10)

Equation (1.10) is the update equation for the steepest descent algorithm. It can be

seen that equation (1.10) still requires the knowledge of p and R. This algorithm

has theoretical significance, rather than practical application as an adaptive filter.
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1.3 Least Mean Square Algorithm

An approximation of equation (1.8) is to use the instantaneous value of the error,

this results in the Least Mean Square (LMS) algorithm. The correction term is

given by:

∇Jw(k) = −2e(k)x(k). (1.11)

A generalized update equation based on time varying step size for the LMS algo-

rithm is given by:

w(k + 1) = w(k) + µ(k)e(k)x(k). (1.12)

The complexity of LMS is O(N) which is attractive for online computations in

adaptive filtering applications. The LMS algorithm, however, exhibits slow conver-

gence and excessive misadjustment in the presence of noise since the instantaneous

value of the gradient may not be zero [2–6, 10]. The consequence is perturbation

of the tap-weight vector around the optimal weight vector even in the steady state.

1.4 Literature Review

Traditional adaptive signal processing techniques utilize integer order calculus for

optimization. The gradient search method [5, 6, 11] and its approximations have

attracted many researchers to work on applications in many scientific fields. The

Steepest Descent (SD) [6] algorithm and its stochastic variants such as the LMS,

the Least Mean Fourth (LMF) [12], the Normalized Least Mean Square NLMS

[13], and the Constant Modulus Algorithms (CMA) [14] are amongst the most

celebrated algorithms. These are mostly applied in system identification problems

such as in Active Noise Control Systems (ANCS) [1–4, 15–24], adaptive chan-

nel equalization (explicit and implicit)[10, 25, 26] of multipath channels, adaptive
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beamforming, line echo cancelation and many more due to their ease of imple-

mentation. However, these algorithms have issues of slow convergence [11]. This

implies the need for more training data in communication systems [27, 28], or

problems in tracking of the parameters of an unknown time varying system [29].

The only user tuneable parameter in these algorithms is the step size. A large step

size increases convergence speed [30–35] but may result in degraded performance

in the steady state. Conversely, a small step size helps improve performance in

the steady state [32] but requires more training data for convergence.

Adaptive step sizes strategies [18, 36, 37] have been developed which keep the

step size large in the start to increase convergence rate, and then reduce the step

size in the steady state to minimize error. In certain applications, such as ANCS,

the step size is also dependent on secondary path effects [30, 31]. This keeps the

step size requirement challenging, and usually smaller step sizes have to be used

resulting in slower convergence [32, 33]. One of the widely used algorithms in

ANCS is the Filtered-input (x) Least Mean Squares (FxLMS) algorithm due to

its better noise reduction and lower computational cost. The FxLMS algorithm

has been analyzed extensively in the literature [16]. Different variants including

the variable tap solutions [15, 38] for feed-forward configuration, Modified FxLMS

(MFxLMS), Leaky FxLMS [17], Filtered-error LMS (FeLMS)[33] and Filtered-x

Normalized LMS (FxNLMS) [18] have been proposed to improve its performance.

However, the problem of slow convergence exists, especially when the number of

weights is large, and divergence can result for relatively large step sizes [30, 31]. To

improve convergence rate, other complex algorithms such as Filtered-x Recursive

Least Squares (FxRLS) [19, 39] or Filtered-x Affine Projection (FxAP) [35] can be

used. However, their real-time realization is not as cost effective for most ANCS

applications. To attain faster convergence and to reduce computational complex-

ity, Fast Fourier Transform (FFT) based Frequency Domain Filters (FDFs) were

developed [20]. However, these have the drawback of a time delay equal to the

FFT length between the input and output [21]. To overcome the problem of delay,

Sub-Band (SB) ANCS algorithms were proposed which are based on system iden-

tification (delay-less SB) and its FxLMS adaptation. Among the popular variants
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of SB adaptive filters are those discussed in [22–24]. Parallel implementation with

lower order adaptive filters gives faster convergence; the computational complexity

is less than FDFs but higher than FxLMS.

To improve the convergence rate, other alternative approaches have been devised

such as RLS or Extended RLS (E-RLS) which is equivalent to Kalman filtering

[40]. However, in time varying nonstationary environments [11], the LMS, RLS and

E-RLS algorithms have unsatisfactory performance after convergence. In mobile

applications, nonstationary environments are modelled as time varying Rayleigh

sequences. In such cases, vehicular speeds are of the order of 500 km/h for Long

Term Evolution (LTE) [38] and 225km/h in Interim Standard 136 (IS-136) [41]

which produce Doppler shifts approximately of 0.8KHz to 3KHz depending upon

the transmission frequency and relative motion between the transmitter and re-

ceiver. The steady state performance of traditional algorithms severely degrades

in this case [11, 13, 40]. The RLS achieves faster convergence but has high com-

putational complexity as its update equation involves calculation of the inverse

of correlation matrix of higher orders. The steady state behavior of the RLS de-

grades as the degree of dynamics increases while the LMS has superior performance

[11, 40] in steady state, but suffers from poor convergence. To get improved per-

formance in both transient and steady state, the Kalman filter can be applied, but

results in high computational cost due to online solution of the Riccati equation

[11].

Recently, fractional calculus has been applied in control and signal processing ap-

plications [42–45]. For a fractional order system, inputs and outputs of the system

are related through differential equations having noninteger orders, the orders can

be positive, negative or even complex [46]. Fractional order techniques have been

exploited in many applications [47–51] used in optimal tuning of Fractional Or-

der (FO) Proportional-Integral (PI) controllers for FO Plus Dead-Time (FOPDT)

processes [44], design of a digital Riesz FO differentiator [52, 53] and ANCS [37].

Among other approaches in fractional calculus include tridiagonal matrices [54],

optimal tuning of fractional controllers [55], parameters and differentiation order

estimation [56], implementation [57, 58], Robustness , stability and fault-tolerance
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[59–61] and transform domain fractional techniques [62, 63]. Most fractional sig-

nal processing techniques as discussed above and in [47, 49, 64] are for discrete

time fixed filters [65], the development of corresponding adaptive filters is still in

its infancy [66–69]. In [68–71], the standard LMS algorithm has been modified to

include fractional order derivative of the gradient of the cost function in addition

to the first order derivative, the new approach obtained better results in system

identification problem [72]. In the area of signal processing, pioneering work is

being done by Ortguerira [72, 73]. Adaptive and variable fractional order FIR dif-

ferentiators have been investigated in [74, 75]. Simulation for time domain systems

with fractional order has been studied in [76].

1.5 Significance of the Research

Adaptive filters are required to have faster convergence, better tracking especially

in steady state, ease of implementation and numerical stability. These are mostly

trade-offs, improving one result in compromising the other. Adaptive signal pro-

cessing techniques have wide applications in biomedical, controls, communication

and defence fields. Applications may be categorized into(1) system identification

(2) inverse system modelling (3) spatial filtering (beamforming) and (4) prediction.

Examples include channel estimation, noise cancellation, channel equalization and

interference cancelation.

In this study, the strength of fractional calculus is exploited to develop fractional

order algorithms to improve performance of some existing signal processing algo-

rithms. These fractional algorithms have comparable computational complexity

and are easy to implement. The effects of varying the fractional order on the

convergence and performance of the algorithm have been studied. It is seen that

fractional algorithms provide improvement in convergence as well as steady state

error.

Various algorithms such as LMS, NLMS, CMA, FxLMS are modified using frac-

tional signal processing techniques to improve performance in terms of conver-

gence as well as tracking in the steady state. The modified algorithms exhibit
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faster convergence and have better tracking performance due to two extra control

parameters: the fractional order step size and the fractional order. It is worth

mentioning that the step size is not only adapted according to the input signal

energy but also according to the fractional order.

1.6 Research Aims

The aim of this research is to apply fractional derivative in the stochastic gradient

calculation to improve the performance of adaptive algorithms. The performance

is seen in various applications of system identification and tracking.

The first application is equalization of multipath channels with the objectives to

nullify efficiently the effects of inter symbol interference. Examples included are

linear equalization, decision feedback equalization and blind equalization based

on constant modulus algorithm. Typically, linear equalizers are implemented with

Finite Impulse Response (FIR) filters (feed-forward configuration), the weights are

adjusted using a training symbol set which is known to both the transmitter and

receiver. Decision Feedback Equalizers incorporate an FIR structure in the feed-

back path and operate on the decisions from the detector. The objectives are to

improve symbol error rate performance, in addition to the use of smaller number

of training symbols to improve frame efficiency. Better equalization techniques

also allow using higher order modulation schemes that further enhance the data

rate which is highly desirable in modern day communication systems.

The second application is ANCS which has numerous applications such as mitigat-

ing noise in personal hearing aids, duct-acoustics, room-acoustics, engine exhausts,

head sets, vehicle enclosures, vibrating machines and aircraft cabins [1–4, 32–34].

Fractional order variants are developed for ANCS which have faster convergence

and are easily implementable solutions as required in such applications due to

miniaturization of electronic modules.

The third application is tracking. Fast convergent algorithms based on integer

order derivatives have degraded tracking performance in non-stationary environ-

ments such as Rayleigh channels with higher Doppler shifts. In this regard, the
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performance of fractional order variants is evaluated in Rayleigh channels and

compared with the traditional counterparts.

Fractional signal processing techniques are introduced in most of the variants of

the LMS algorithm to improve the performance. This approach takes advantage

of using fractional derivatives [16, 17] in addition to the standard positive integer

order for minimizing the MSE. These algorithms exhibit faster convergence and

have better tracking performance. Fractional (Fr) order variants have been de-

veloped such that for the LMS, it is abbreviated as FrLMS, for CMA as FrCMA,

for normalized LMS as FrNLMS, for FxLMS as FrFxLMS, for modifiedFxLMS

as FrMFxLMS and for FeLMS the corresponding version as FrFeLMS. In these

algorithms, the step size is not only adapted according to the input signal energy

but also FO which further controls the learning process.

1.7 Contributions of the Thesis

This research study contributes in the following applications.

1.7.1 Multipath Channel Equalization

The main contributions for the channel equalization problem are summarized as

under:

• Design of FO variants of the LMS and NLMS algorithms for channel equal-

ization (both Feed-Forward (FF) and Decision Feedback Equalization (DFE)

configurations).

• Novel Tapped-delay line filter structures for DFE for the new fractional

schemes.

• Verification and validation of the proposed algorithm for different modula-

tion schemes, step sizes and fractional orders showing faster convergence and

improved Symbol Error Rate (SER).
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• Development of fractional order variants of CMA for fast convergence, and

low mean squared error performance (for larger step sizes).

1.7.2 Active Noise Control Systems

In ANCS, the main contributions are as follows:

• Design of Fractional Normalized FeLMS (FN-FeLMS) for feed-forward con-

figuration.

• Development of FO variants of NLMS, FxLMS, MFxLMS and FeLMS.

• Verification of the proposed algorithms using different step sizes and frac-

tional orders.

• Performance analysis for different sources such as binary, Gaussian and im-

pulsive noises

1.7.3 Tracking of Rayleigh Fading Sequences

In tracking, this research contributes in the following:

• Verification and validation of the fractional algorithms using different step

sizes and fractional orders in both stationary and nonstationary environ-

ments, and their comparative analysis with RLS, E-RLS and NLMS algo-

rithms.

• A hybrid approach where the initial weights are trained with RLS algorithm

for fast convergence, and subsequently the fractional algorithm is applied for

good mean squared deviation/mean squared error (MSD/MSE) performance
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1.8 Thesis Organization

The rest of the thesis is organized as follows: Chapter two provides a comprehen-

sive survey of developing update equations for different algorithms along with their

limitations. The LMS and its variants are considered for applications in ANCS

and equalization. For ANCS, FxLMS based algorithms for feedforward configura-

tions have been presented. For adaptive equalization problem, LMS and NLMS

have been presented. The generalized Godard algorithm and its variants have been

also discussed. The tracking problem consisting of Rayleigh fading sequences is

discussed.

Chapter three provides mathematical background of fractional derivatives, differ-

ent definitions of fractional derivatives and the β function which is used in such

representation. Firstly, fractional derivatives have been introduced. Definitions of

specialized functions have been provided along with examples of fractional deriva-

tives of some functions. The development of fractional LMS has been presented

and its limitations have been stated.

Chapter four deals with the application of fractional LMS and its modified version

in equalization of multipath fading channels. The mapping function is modified by

introducing a nonlinear term based on Riemann-Liouville definition of fractional

derivatives. Fractional variants of the LMS algorithm and its normalized version

have been derived. The decision feedback equalization configuration for higher or-

der quadrature amplitude modulations has been considered. Comparative results

are shown in terms of performance metrics as symbol error rate for various frac-

tional orders and step sizes, combined equalizer and channel responses for different

number of training symbols.

Chapter five contributes in applying fractional order signal processing to improve

the constant modulus algorithm (CMA-2). The cost function is based on the pos-

terior error. Different fractional orders and step sizes have been considered. In

addition, simulation results are shown for blind equalization of quadrature phase

shift keying symbols in a multipath fading environment.
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In chapter six, a novel fractional normalized filtered-error least mean squares (FN-

FeLMS) algorithm is designed for ANCS in the presence of secondary path model.

In this regard, the main contribution of the chapter is to investigate the use of

fractional calculus concepts in ANCS; both positive and negative fractional orders

are employed based on the differintegral operator. The proposed arrangement is

evaluated for a number of different scenarios by varying the step size and frac-

tional orders. Furthermore, FO variants of FxLMS algorithm including MFxLMS,

FeLMS and FN-FeLMS have been developed. The computational complexity of

the proposed algorithms along with comparative analysis is discussed. Simulation

results and analysis for various fractional orders, different inputs and step sizes are

presented. A number of scenarios have been considered where the input signals

modelled as binary, Gaussian or impulsive.

Chapter seven presents the tracking behavior of FO variants of the NLMS algo-

rithm in a nonstationary environment modeled as time varying Rayleigh fading

sequence. In evaluation, a high speed mobile environment is considered which

results in different Doppler frequency shifts depending upon the transmission fre-

quency, relative velocity of the transmitter and receiver. The proposed algorithms

are compared with the NLMS, RLS and E-RLS schemes. A hybrid scheme is also

shown where the weights of an FO variant are initially trained with RLS and then

perform self-adaptation.

Finally, chapter eight provides a summary of the contributions, discusses the future

research directions based on thesis findings, and specify concluding remarks.



Chapter 2

Adaptive Signal Processing

Algorithms and Applications

This chapter briefly outlines some important algorithms and applications. For

the supervised case, the Least Mean Square (LMS) algorithm and its variants are

considered for equalization and active noise control systems. For the unsupervised

case, Constant Modulus Algorithm (CMA) is considered for blind equalization.

The Recursive Least Squares (RLS) algorithm is also discussed.

The presentation of the chapter is as follows: Section 2.1 is about the equalization

problem and algorithms such as LMS, normalized LMS (NLMS). The generalized

Godard algorithm and its variants are also discussed. In Section 2.2, algorithms

for feedforward ANC systems are presented. Section 2.3 is about tracking and

the RLS algorithm. The RLS algorithm is used as the benchmark for tracking

Rayleigh fading sequences.

2.1 Adaptive Equalization

In terrestrial radio environment, signals are mainly received via echoes (reflections

and diffractions). Multipath propagation delays lead to random superposition of

15
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Figure 2.1: Inter-Symbol Interference in a multipath environment.

Figure 2.2: FIR tapped delay line modelling a multipath channel.

signals at the receiver. This phenomenon is called fading. Depending on multi-

path propagation delays, a degrading effect known as Inter-Symbol Interference

(ISI) may occur. Figure 2.1 represents the transmission scenario of a binary phase

shift keying data stream. When the receiver samples the 5th symbol, it will con-

tain interference from the 3rd and 2nd symbols, that is, y5 = h0x5 + h1x3 + h2x2 .

The ISI phenomenon depends on the transmission rate Tsymb and the morphol-

ogy (scatterer distribution) of the environment. In indoor environments, root

mean square delay of up to hundreds of nanoseconds can occur for a data rate

of 20Mbps (Tsymb = 50 ns). Looking at the output of the receiver’s sampler, the

ISI phenomenon can be mathematically modelled as a Finite Impulse Response

(FIR) filter as shown in Figure 2.2. The channel tap values are random complex

numbers with Rician/Rayleigh magnitudes. In the frequency domain,this has a

distorting effect on the signal spectrum as the wireless channel is time varying in

nature [6, 11, 77–79].

To cancel ISI, both linear and Decision Feedback Equalization (DFE) techniques
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Figure 2.3: Functional Schematic diagram of the equalization process.

are applied. For severely faded channels, the effects of ISI cannot be removed

effectively with feed-forward linear equalizers. To solve such issues, the DFE uses

an additional feedback filter to reduce post decision ISI [5, 6, 10]. There are two

modes of an adaptive equalizer: training and decision directed [2]. In training,

a known pseudorandom sequence set of symbols is sent by the transmitter. The

equalizer filter adjusts its coefficients appropriately until the symbols in the se-

quence are received without ISI. The training length and frame size are decided in

such a way that the equalizer weights remain optimum during data transmission

phase. A functional block diagram for the equalization process is shown in Fig-

ure 2.3. The approach is inverse system identification where the input signal x(k)

passes through the channel h having M taps. The received sample y(k) (corrupted

by additive noise) is given by:

y(k) = h0x(k) +
∑M−1

i=1 hix(k − i) + n(k) (2.1)

The first term on the right side of equation (2.1) is the channel output due to the

input symbol, the second term represents ISI due to previous symbols [1–3], and

n(k) is additive white Gaussian noise. The input to the N-taps equalizer is the

distorted output of the channel, further corrupted by measurement noise. Ideally,

the dot product of channel vector h and equalizer weight vector w should be unity

so that the estimated and input symbols are the same. The weights are adjusted to

minimize the squared error. The error at iteration or time index k represented as

e(k) is the difference between the desired response d(k) and the output wH(k)y(k)

of the equalizer, that is, e(k) = d(k) − wH(k)y(k). Adaptive signal processing
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systems mostly operate on random processes; these are mostly characterized by

statistical averages which are time dependent. Examples of statistical averages of

the input and output signals include mean, variance, covariance, autocorrelation

function, cross correlation function and so on. The performance metrics utilizes

the expectation operator; these metrics are used for evaluating the performance of

signal processing algorithms such as mean squared error, mean squared deviation

and relative modeling error. The objective in equalization filtering is to minimize

the Mean Squared Error (MSE) which is defined as the expectation of the squared

error and is written as:

min
w

E
[
e∗(k)e(k)

]
(2.2)

During the training phased d(k) = x(k −∆), which is known to the receiver. The

parameter ∆ ∈ {0, 1, 2, · · · ,M + N − 1} is an integer which corresponds to the

decision delay of the equalizer. In the decision directed mode, d(k) is the output of

the detector x̂(k−∆). In the following sections, various algorithms are described

for optimization of equalizer weights. The design objective is to use the least

training symbols (and more data symbols) in the frame for higher efficiency and

better bandwidth utilization.

2.1.1 Optimal Filtering

Ignoring the decision delay ∆, and applying the expectation, the expanded equa-

tion (2.2) can be written as:

E
[
|e(k)|2

]
= σ2

x −wHE
[
y(k)x∗(k

]
−wHE

[
x(k)y∗(k)

]
+ wHE

[
y(k)yH(k)

]
w (2.3)

Here, σ2
x = E[d2(k)] is the average power of the transmitted symbol set. The

quantity E[y(k)x∗(k] = E[x(k)y∗(k)] is the cross correlation vector p between the

input and output of the channel. The expectation E[y(k)yH(k)] is the channel

output autocorrelation matrix R having size N × N. Defining the mean squared
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error as Jw(k) = E
[
e2(k)

]
, the cost function can be written in expanded form as:

Jw(k) = σ2
x − 2wHp + wHRw (2.4)

Minimum MSE (MMSE) is the optimum value of MSE with respect to equalizer

coefficients, i.e., min Jw(k) over all possible weights [5, 6, 10, 25, 26, 80]. Differen-

tiating equation (2.4) with respect to w and equating to zero, the optimal Wiener

solution becomes: wo = R−1p, and the resulting MMSE is:

Jmin(w) = σ2
x − pTR−1p. (2.5)

The computational complexity of computing R−1 is of order O(N3) [10, 25, 81],

which increases quickly with N (and more so when multiplications are in the

complex domain). Statistical information about the channel is also required, which

is to be estimated. This information is not known a priori and is also time varying.

In such a case, R and p are seldom calculated in real time as the channel impulse

response varies from frame to frame.

2.1.2 The Steepest Descent Algorithm

Many techniques have been developed so that Jw(k) is minimized in equation (2.4)

such as in [5, 6, 10, 12, 25, 26, 80–86]. The update equation of the steepest descent

algorithm is written as:

w(k + 1) = w(k)− 0.5µ∇Jw(k). (2.6)

where the step size µ needs to be suitably chosen to control the speed of conver-

gence. The step size is bounded as 0 < µ < 2∑N−1
i=0 λi

where λ denotes eigenvalues

of the correlation matrix R [5, 6, 10, 25, 26]. Substituting for the gradient in

equation (2.6), the weight adaptation equation becomes:

w(k + 1) = w(k) + µ
[
p−Rw(k)

]
. (2.7)
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This also requires prior knowledge of p and R.

2.1.3 The LMS Algorithm

Taking the first order derivative of equation (2.2), the gradient can be written as

2E
[
e(k)y∗(k)

]
, replacing the expectation by its one point approximation, equation

(2.7) can be written as the standard LMS update equation:

w(k + 1) = w(k) + µe∗(k)y(k). (2.8)

The LMS weight update equation is easy to implement and has a low computa-

tional cost. It does not rely on the matrix R and vector p for implementation.

However, its convergence properties are relatively poor [5, 6, 10, 25, 26]. Various

variants of this algorithm have been proposed (at the expense of computational

cost), however, fast convergence and stability remain a challenge [82–84]. Step

size is the only parameter that can be tuned to improve the rate of convergence

of the LMS algorithm.

2.1.4 The NLMS Algorithm

A variable step size may be selected to increase the speed of convergence, min-

imize MSE and enhance the tracking capability of the LMS algorithm [82, 83].

Normalized LMS is used to adjust its step size automatically and try to achieve

the aforementioned objectives; the variable step size in a given iteration is calcu-

lated as [5, 6, 10, 25, 26]:

µk =
1∥∥y(k)
∥∥2 . (2.9)

Since this step size is based on instantaneous values, there is a chance of misad-

justments. A new step size parameter β with limits 0 < β < 2 is introduced.
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Substituting for µk, the NLMS update equation becomes:

w(k + 1) = w(k) + βe(k)
y∗(k)∥∥y(k)

∥∥2 . (2.10)

The Normalized LMS (NLMS) has a faster convergence than LMS due to auto-

matic adjustment of step size in the algorithm. Although the problem of equaliza-

tion has been studied extensively, the approach here is different in the sense that

the problem is reformulated using fractional calculus. Fractional order derivatives

are applied to minimize the mean squared error, in addition to the standard inte-

ger order derivatives, this way the convergence is controlled by three parameters,

i.e., two step sizes and the fractional order.

2.1.5 Blind Algorithms

In digital modulation the statistical parameters such as mean and variance (signal

power) are usually known. Blind equalization techniques are very popular and

especially useful for digital modulation [14, 66, 80, 87]. To lessen the effect of ISI

and separate the source symbol from noisy and distorted data, the design objective

of the blind equalizer is to minimize the mean p-power generalized Godard cost

function [14] which is defined as:

ε = E
[(
|wH(k)x(k)|q − γq

)p]
(2.11)

The quantities p and q are positive numbers and different values of these con-

stants generate different variants. For p = q = 2, the algorithm is called the

constant modulus algorithm (CMA). In such a case, the aims minimization of er-

ror is achieved by keeping the output or modulus |wH(k)x(k)|2 as closed as possible

to the constant value γ2. The constant γq is the constellation level to be achieved

and is defined as:

γq =
E
[
|x(k)|2q

]
E
[
|x(k)|q

] (2.12)
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Figure 2.4: Active noise control system using Feedforward control.

The update equation is obtained by differentiating equation (2.11) with respect to

the filter weights. The adaptation algorithm for the Godard weights [66, 87] is:

w(k) = w(k-1) + µpq
(
|y(k)|q − γq

)p-1|y(k)|q−2y∗(k)x(k) (2.13)

where µ is a positive step size.

2.2 Algorithms for Active Noise Control Systems

Active Noise Control Systems (ANCS) involve creating a destructive interference

signal through a Secondary Path (SP) to cancel out the effects of noise [1]. ANCS

has numerous applications including mitigating noise in personal hearing aids,

duct-acoustics, room-acoustics, engine exhausts, vehicle enclosures, vibrating ma-

chines and aircraft cabins [2, 3]. Figure 2.4 shows a feed-forward ANCS and Figure

2.5 shows a functional schematic [6, 30–33]. The signal d(k) is the filtered version of

the noise signal x(k) through the primary path (PP) p. The antinoise signal d̂(k))

is generated by an FIR filter w of length N with the intent to nullify d(k). The

error signal e(k) is filtered version as it has to travel through an unknown paths

further between the secondary source and residual error measurement microphone.

The output y(k) of the control filter is defined as:

y(k) =
∑N−1

m=o wm(k− 1)x(k −m) = wT(k− 1)x(k) (2.14)
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Figure 2.5: Functional Schematic of Adaptive ANC System.

The error is a vector of the same size as the SP having length Q:

e(k) = [ e(k), e(k − 1) . . . e(k −Q+ 1) ]T (2.15)

The noisy measurement d(k) is given by:

d(k) = pT(k)x(k) + g(k). (2.16)

The term g(k) in equation (2.16) incorporates measurement and modelling errors;

it is assumed that this has a zero mean and having Gaussian distribution. The

error is calculated as:

e(k) = d(k)−wT(k− 1)x(k). (2.17)

The problem in ANCS is complicated by the existence of SP between the error

microphone and the control speaker. If the error microphone is considered to be

ideal, that is, g(k) = 0, then the error becomes:

e(k) = d(k)− y/(k). (2.18)

The output of the SP filter y/(k) is a function of the SP filter s, that is:

y/(k) = sT(k)y(k) =
∑Q−1

hq=0 sqx(k− q)w(k-q-1) (2.19)
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The vector y(k) = [ y(k), y(k − 1) . . . y(k −Q+ 1) ]T is input of the SP filter,

and is formed from present and past outputs of the ANC adaptive filter. Equation

(2.19) shows that the identification of the PP is complicated by the existence of

the SP. This prohibits the use of standard algorithms such as LMS, RLS, APA

[1–3, 30–34] and others in ANCS.

2.2.1 Optimal ANCS Controller

The residual noise e(k) is used to optimize the weights of the ANCS controller

[31–33]. Stating e(k) in terms of the SP term:

e(k) = d(k)− sT(k)y(k) (2.20)

The cost function Jw(k) is the mean square of the residual error (noise) and is

defined as:

Jw(k) = E
[
e2(k)

]
(2.21)

To have the optimal weights wo of the ANC controller, the MSE is minimized,

that is, e(k) = eo(k). In such a case, the required (optimal) output of the filter is:

yo(k) = wT
ox(k) (2.22)

The optimal residual noise can be written in convolution form as:

eo(k) = d(k)−wo ∗ s(k) ∗ x(k) = d(k)−wT
o f(k). (2.23)

Where f(k) = s(k) ∗ x(k) represents the filtered input. For optimal weights, the

cost function can be stated in expanded form as:

Jo(w) = σ2
d − 2wopf + wH

o Rfwo. (2.24)
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where σ2
d = E[d2(k)] is the power of the primary noise signal d(k). The sub-

script f represents the filtered version as stated above. The vector pf is the cross

correlation vector between filtered input f(k) and output y/(k) while Rf is the

autocorrelation matrix of the filtered input f(k). Differentiating Jo with respect

to the filter weights, setting to zero, the optimal weights are calculated as:

wo = R−1f pf. (2.25)

The optimal cost function or the MMSE, which is the minimum residual noise,

becomes:

Jo(w) = σ2
d − pfR

−1
f pf. (2.26)

2.2.2 Gradient Based FxLMS Algorithm and its Variants

The calculation of optimal weights and MMSE requires considerable computations

such as pf and Rf which further depends on PP and SP models. For gradient based

optimization, the weight update is formed as:

w(k) = w(k− 1)− µ∂Jw(k)

∂w

∣∣∣∣
w=w(k−1)

. (2.27)

The cost function Jw(k) is a one point approximation of the expectation operator.

It is defined as:

Jw(k) = e2(k). (2.28)

Differentiating Jw(k) with respect to the filter weights w:

∇Jw(k) = ∇e2(k) = 2e(k)∇e(k). (2.29)
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Figure 2.6: Schematic of FxLMS Based ANC System.

Using equation (2.20) for the error to include PP and SP, the gradient in equation

(2.29) results in:

∇e(k) = −f(k). (2.30)

Subsequently,

∇Jw(k) = −2e(k)f(k). (2.31)

Substituting in equation (2.27), the FxLMS update equation becomes:

w(k) = w(k− 1) + µ(k)e(k)f(k). (2.32)

Practically, f(k) is not available directly, estimate of f(k) is used in the implemen-

tation of equation (2.32). A modified diagram for the FxLMS algorithm is shown

in Figure 2.6. The modeling filter ŝ is used to compensate for the effects of the SP

[1–3, 30, 31]. For optimal convergence, the response of ŝ should match with that

of s. Using ŝ −→ s , the update equation of FxLMS [1, 31, 67] is:

w(k) = w(k− 1) + µ(k)ef(k)xT
f (k). (2.33)
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where ef(k) =
∑Q−1

q=o sq(k)e(k-q) is the instantaneous filtered error, the output of

the SP filter is xf(k) =
∑Q−1

q=o sq(k)x(k-q), which forms the input (filtered) of the

adaptive filter. The new regression vector is formed from present and past samples

of the SP filter outputs which is: xf(k) = [ xf(k), xf(k − 1) . . . xf(k −Q+ 1) ]T.

The parameter µk is the time varying [5, 6, 33, 34] positive step size; it controls

the adaptation speed and its value depends on the input signal energy which is

updated in each iteration. The filtered-x algorithm requires knowledge of the SP

filter s for filtering the input regression data, which causes the convergence rate to

be slow, and has to employ small step sizes to avoid divergence. The filtered-error

variant does not require knowledge of the filter s for the input, instead it exploits

the filtered-error [33, 67]; and has the following update equation:

w(k) = w(k− 1) + µ(k)ef(k)xT(k). (2.34)

Another version of equation (2.34) is the modified FxLMS (MFxLMS) which has

improved convergence performance over FxLMS. The update equation of MFxLMS

is [1, 21, 33]:

w(k) = w(k− 1) + µ(k)(ef(k) + yf(k)− ỹf(k))xT
f (k). (2.35)

where yf(k) =
∑Q−1

q=o sq(k)y(k-q) is the filtered output, and ỹf(k) = wT(k− 1)xf(k)

is the output based on the filtered input. The term yf(k)− ỹf(k) is the estimation

error in the MFxLMS algorithm [33] [88–91]. The extra terms in equation (2.35)

result in increased computational complexity of the MFxLMS algorithm, but pro-

vide improved stability and convergence by better modeling the SP. The standard

NLMS version is also considered which has a time varying step size. This provides

the performance benchmark of system identification case without considering the

effects of the SP in its update equation. It is stated as below:

w(k) = w(k− 1) + µ(k)e(k)xT(k). (2.36)
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Many other adaptive approaches are available [1–3] [20–24, 27]; these are, how-

ever, computationally expensive which prohibits their use in real-time applica-

tions. Filtered-x Least Mean Square (FxLMS) algorithm is widely applied due

to its improved noise reduction performance and small computational complexity.

The FxLMS algorithm has different variants including the variable tap solutions

[13, 15, 16, 38, 39] for feed-forward configuration, nonlinear solutions [48, 92–94],

Modified FxLMS (MFxLMS)[18], Leaky FxLMS [19], Filtered-error LMS (FeLMS)

[33, 34] and Filtered-x Normalized LMS (FxNLMS) [35]. These algorithms were

proposed to improve the performance of the FxLMS. To attain faster conver-

gence and reduce computational complexity, Fast Fourier Transform (FFT) based

Frequency Domain Filters (FDFs) were developed [20], however, these have the

shortcoming of a time delay equal to the FFT length between the input and output

[21, 22] which is overcome by Sub-Band (SB) ANCS algorithms. In SB adaptive

filters as discussed in [20–23]; the convergence rate is fast and the computational

complexity is considerably less than that of FDFs but higher than that of FxLMS.

2.3 Tracking of Rayleigh Fading Channels

The autocorrelation matrix R and the cross-correlation vector p behave as fixed

quantities for stationary processes. This results in a fixed performance surface and

the optimal weights are wo = R−1p. This sets a bench mark for calculation of

the MMSE and the convergence performance of different algorithms and is used

for comparison. However, in many applications, the underlying processes may not

be stationary. Consequently, the solution, wo = R−1p, is time varying. In such

a situation, adaptive algorithm is expected to track variations of the optimum

tap weights. Tracking is a steady-state behavior in which a system is following

variations of its environment after it is converged.

Consider the linear combiner as shown in Figure 2.7. The output d(k) is charac-

terized by the equation:

d(k) = wT
o (k)x(k) + go(k). (2.37)
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Figure 2.7: Linear combiner.

where go(k) is the plant noise, x(k) = [ x0(k), x1(k) . . . xN−1(k) ]T is the tap-

input vector and w(k) = [ wo,0(k), wo,1(k) . . . wo,N−1(k) ]T is the tap-weight vector.

The time index k in wo(k) emphasize that the plant tap-weight vector is time

variant. The time-varying wo(k) is selected to be a random-walk process defined

as [5, 6, 79]:

wo(k + 1) = wo(k) + εo(k). (2.38)

where εo(k) is the process noise vector. The LMS and its variants have been

described earlier; the RLS algorithm is derived next. In chapter 7, a performance

comparison will be made among the NLMS, RLS and fractional order variants of

NLMS algorithm.

2.3.1 The RLS Algorithm

In the RLS algorithm, the input covariance matrix R is iteratively estimated from

its past values using the recursive relation [6, 79],

R(k) = R(k− 1) + x(k)xT(k). (2.39)
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The above equation is a rank-1 update on the input covariance matrix R. An

alternate equation is given below:

R(k) = αR(k− 1) + (1− α)x(k)xT(k) 0 < α < 1 (2.40)

Further, the cross correlation vector p satisfies the following recursion.

p(k) = p(k− 1) + x(k)d(k). (2.41)

Application of the matrix inversion lemma [6, 71, 79] allows to recursively update

the inverse of a matrix.

R−1(k) = R−1(k− 1) +
R−1(k− 1)x(k)xT(k)R−1(k− 1)

1 + xT(k)R−1(k− 1)x(k).
(2.42)

It is important to note that the inversion lemma is useful only when the matrix

itself can be expressed using reduced rank updates as in equation (2.39). Summary

of the RLS algorithm [6, 79] is outlined below. The starting procedure is to set

R−1(0) = cI with c being a large positive constant.

g(k) =
R−1(k− 1)x(k)

1 + xT(k)R−1(k− 1)x(k)
(2.43)

e(k) = d(k)−wT(k− 1)x(k) (2.44)

w(k) = w(k− 1)− g(k)e(k) (2.45)

R−1(k) = R−1(k− 1) + g(k)xT(k)R−1(k− 1) (2.46)
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2.3.2 Rayleigh Fading Channel

As already discussed in Section 2.1, signals suffer from multiple reflections with

different amplitude and phase distortions while traveling from the transmitter to

the receiver. Furthermore, if there is relative motion between the transmitter and

the receiver, there will be destructive and constructive interferences which vary

with time. A single-tap fading channel can be written as [6]:

h(k) = γx(k)− δ(k− ko). (2.47)

where the time-variant complex sequence x(k) models the time-variations in the

channel,and ko is the channel delay. The sequence x(k) is assumed to have unit

variance, and the scalar γ is used to model the actual path loss that is introduced

by the channel. Several mathematical models can be used to characterize the

fading properties of x(k) or the channel. In the case of Rayleigh fading, provided

|x(k)| > 0 for each k, the amplitude|x(k)| is assumed to have a distribution defined

as:

f(|x(k)|) = |x(k)|e(|x(k)|2/2). (2.48)

while the phase ∠x(k) is assumed to be uniformly distributed within[−π, π]:

f(∠x(k)) =
1

2π
. (2.49)

The Doppler frequency fD is related to the speed of the mobile user v, and to the

carrier frequency fc , as follows:

fD =
vfc
c
. (2.50)
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Figure 2.8: Amplitude and Phase plots of Rayleigh fading with Doppler Fre-
quency of 100 Hz.

where c denotes the speed of light, c = 3 × 108m/s. Provided |f| ≤ fD the power

spectrum of the channel fading gain x(t),in continuous-time, would have the fol-

lowing well-known U-shaped spectrum [6].

S(f) =
1

πfD

√
1− f

fD

.
(2.51)

It is worth mentioning that (2.51) may represent the output spectrum of a frac-

tional system. Rayleigh fading channels provide a practical example of non-

stationary environment. The correlation matrix R or the vector p are time varying

for which the optimal Weiner filter weight vector is also time varying. The adap-

tive filter which does not require the cross correlation vector or auto-correlation

matrix in its weight update equation is required to track the changes in the op-

timal weights. Although the convergence performance of the RLS algorithm is
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much superior than the LMS or its variants, its tracking performance is degraded

for the non-stationary case [40].

Considering the input derived from a Rayleigh distribution, the performance degra-

dation becomes more apparent when the Doppler shift frequency is increased. It is

worth mentioning to note that, in time varying non-stationary environments, the

LMS, RLS and their variants compromise convergence with steady state perfor-

mance. At very high vehicular speeds of the order of 500 km/h for LTE, 225km/h

in IS-136, or other standards can result in a maximum Doppler shift of roughly

0.8KHz to 3KHz. In such cases, the steady state performance degrades severely

or even fails to perform. RLS achieves faster convergence due to its high compu-

tational complexity, since its up-date equation involves calculation of the inverse

of correlation matrix of higher orders. However, the steady state behavior of RLS

degrades as the degree of dynamics increases while the LMS has superior perfor-

mance in steady state but has the issue of poor convergence.

An example of Rayleigh channel corresponding to a Doppler frequency of 100

Hz is shown in Figure 2.8. In the thesis, the study is provided for the tracking

performance of proposed fractional order adaptive filters with NLMS and RLS

algorithms for different Doppler shifts and step sizes. Chapter 7 describes the

algorithms and their comparative analysis based on simulation results.



Chapter 3

Fractional Order Derivatives and

Adaptive Signal Processing

This chapter introduces fractional derivatives, various definitions and important

functions that are used in these representations. Fractional calculus (FC) is re-

garded as generalization of integer order calculus, most research work has been

done by mathematicians since its inception in 1695 [42]. It remained a conceptual

idea for a long time until the first conference on applications of fractional calculus

in applied science and engineering in 1974, and has later on been used extensively

by the research community in almost all fields [95–107].

The presentation in the rest of the chapter is as follows: Section 3.1 gives an in-

troduction to fractional derivatives based on Euler Γ function. Section 3.2 uses

the Riemann-Liouville definitions to obtain the fractional derivatives of a polyno-

mial function. Section 3.3 gives an introduction of Fractional Least Mean Square

(FLMS) algorithm. The final section provides the summary.

3.1 Introduction to Fractional Derivatives

Fractional Derivatives (FD) had remained an abstract mathematical concept for

a long time until 1974 [43]. Recently fractional calculus has been applied in the

34
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areas of control, instrumentation and signal processing [45, 46, 52, 53, 65, 95–

101]. There are different ways of defining fractional integrals and derivatives, for

instance, Grünwald-Letnikov, Riemann-Liouville, Hadamard, Caputo and Riesz

definitions [9, 42, 43, 108, 109]. A useful discussion on different definitions and

their uses in signal processing are reported in [43, 108, 110–112]. In the following,

fractional order (FO) derivatives and related functions are defined. The nth order

integer derivative of a polynomial of power m is defined as [44]:

dnxm

dxn
= m(m− 1)(m− 2) . . . (m− n+ 1)xm-n (3.1)

The product term in (3.1) can be written in terms of Euler Γ functions as [9, 42,

109]:
Γ(m + 1)

Γ(m− n+ 1)
= m(m− 1)(m− 2) . . . (m− n+ 1) (3.2)

Using (3.2), the derivatives in (3.1) can be written in terms of Γ functions as

[42, 43, 109]:
dnxm

dxn
=

Γ
(
m+ 1

)
Γ
(
m− n+ 1

)xm-n (3.3)

where n can have non-integer values, m ≥ n. The Euler Γ function is defined as

[9, 42, 43]

Γ(x) =

∫ ∞
0

e−ττx−1dτ. (3.4)

The convergence of Γ function is provided by the exponential term e−τ for the

bounded input x > 0 [9, 42, 108, 109]. For a given fractional order ν, the charac-

teristic curves of Γ functions for parameters (2−ν) and (3−ν) are shown in Figure

3.1. In this thesis the fractional order is in the range (0 < ν < 1). Resultantly

the input parameters to the Γ functions, that is, (2 − ν) and (3 − ν) are always

positive.

3.2 The Riemann-Liouville Fractional Derivatives

For a finite interval Ω = [a, b](−∞ < a < b < ∞) on the real line <, the left side

fractional derivatives of order (ν > 0) are defined using the Riemann-Liouville
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Figure 3.1: The Characteristic curve of the Gamma function.

(RL) definition [9, 42, 108, 113] as below:

RLDν
a+f(x) =

1

Γ(n− ν)

(
d

dx

)n ∫ x

a

(x− τ)n−ν−1f(τ)dτ (x > a) (3.5)

The right side (x < b) RL fractional derivative is defined as [9, 42, 108, 113]:

RLDν
b−f(x) =

1

Γ(n− ν)

(
− d

dx

)n ∫ b

x

(τ − x)n−ν−1f(τ)dτ (x < b) (3.6)

where n = [ν] + 1 and [.] means the integer part of ν. Generally, for the case of

x > a, the left side RL based differentiation of fractional order ν of a polynomial

function f(x) = (x− a)β is defined as [9, 42, 108, 113]:

RLDν
a+(x− a)β =

Γ
(
β + 1

)
Γ
(
β − ν + 1

)(x− a)β−ν (3.7)

Similarly, for the case of x < b, the right side RL based differentiation of fractional

order ν of a function f(x) = (b− x)β is defined as [9, 42, 108, 113]:

RLDν
b−(b− x)β =

Γ
(
β + 1

)
Γ
(
β − ν + 1

)(b− x)β−ν (3.8)
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For β = 2, a = 0, the left side RL fractional derivative becomes:

RLDνx2 =
2

Γ
(
3− ν

)x2−ν (3.9)

For β = 1, a = 0, x > 0 (this case is used frequently in the following chapters of

the thesis), the left side RL definition becomes:

RLDνx =
1

Γ
(
2− ν

)x1−ν (3.10)

Similarly, for β = 1, b = 0, x < 0, the right side RL definition becomes:

RLDν(−x) =
1

Γ
(
2− ν

)(−x)1−ν (3.11)

We will call Dν as the fractional derivative operator. Moreover, for 0 < ν < 1 and

n = 1, the Γ function always operates on <+.

3.3 Fractional Least Mean Square Algorithm

FO calculus possesses the potential to achieve better performance than traditional

approaches with respect to both accuracy and convergence [88–91, 95–98, 114–118].

Also many theories and methods have been extended using fractional calculus, for

instance, controller synthesis [99], differentiation order estimation [56], Fourier

transformation [100], filters [101, 102] and system descriptions [73, 103] etc.; FO

variants give more design freedom, and can exhibit better performance.

In the field of fractional signals and systems, Ortigueira et al. have done pioneering

work [104, 105, 115–118]. The underlying concepts and applications are discussed

in [73, 74]. Tseng et. al. have designed 1-D and 2-D FIR filters with constrained

fractional derivatives [106, 107]. In [119], Wang et. al. have investigated fractional

zero phase filtering using the Riemann-Liouville integral. FO describing functions

and generalized power series have been studied in [120–122].

In the LMS algorithm [122], optimum weights are obtained for infinite number of

iterations (ideally). The convergence is generally poor [12, 30–35, 85, 86]; although
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small step size gives better steady state behavior. To improve convergence per-

formance, fractional LMS (FLMS) algorithms [67–70] were designed by employing

FO derivative of the cost function in addition to the integer derivative. Other ap-

proaches are given in [123–126]. The basic weight update equation for fractional

LMS is given as [37, 68, 69]:

w(k + 1) = w(k)− µ1
∂Jw(k)

∂w
− µ2

∂Jνw(k)

∂wν
. (3.12)

where µ1 and µ2 are the step sizes for the standard and fractional update parts, re-

spectively, k is the time index (or iteration number) and 0 < ν < 1 denotes the frac-

tional order. The notation includes an Nth order filter with weight vector w(k) =

[ w0(k), w1(k) . . . wN−1(k) ]T and u(k) = [ u(k), u(k − 1) . . . u(k −N + 1) ]T as

the input tap-vector. Equation (3.12) is similar to the augmented error methodol-

ogy which is based on MSE and minimization of the rate of change of squared error

(error penalty) [127–130]. The derivation of fractional update part using fractional

derivative operator can be seen in [37, 68, 69] and the final update equation is as

given below:

w(k + 1) = w(k) + µ1e(k)u(k) + µ2e(k)u(k)� Γ(3)w1−ν(k)

Γ(2− ν)
. (3.13)

where � shows element-wise multiplication. The relation given in equation (3.13)

is the weight update formula for FLMS. It can be seen that FLMS has more

design freedom, the update equation has more tunable parameters: an extra step

size parameter and a fractional order parameter which can both be adjusted to

improve the convergence and performance in the steady state. It has been seen in

[66, 69, 71, 88] that this class of algorithms performs better in applications such

as equalization, system identification, active noise control systems and tracking of

fading channels.
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3.4 Summary

This chapter introduced fractional derivatives and some important definitions. The

RL definition applied to obtain the fractional derivative of a polynomial. The frac-

tional derivatives based FLMS algorithm has been stated. In the coming chapters,

modifications to the FLMS are presented, and other algorithms developed with

performance illustrated for various applications.



Chapter 4

Fractional Normalized Least

Mean Square Algorithm for

Adaptive Equalization of

Multipath Channels

In this chapter, a nonlinear term based on fractional derivatives has been intro-

duced to derive the update of Fractional Least Mean Squares (FLMS) algorithm.

Different variants of the LMS algorithm and its normalized version are developed

for both linear and Decision Feedback Equalization (DFE). The final update term

depends on the fractional order and the in-process LMS weights. Large changes

are made to the weights which help the equalizer filter to better track the ef-

fects of multipath fading channels. The working of the proposed technique in the

equalization of multipath fading channels is validated for higher order quadrature

amplitude modulations. Comparative results are shown in terms of performance

metrics of symbol error rate for various fractional orders and step sizes, combined

equalizer and channel responses for different number of training symbols.

The presentation of the chapter is as follows: introduction of the DFE and its

problem formulation. In Section 4.2, fractional variants of the LMS algorithm

and its normalized version are presented. In section 4.3, simulation results are

40
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shown for higher order quadrature amplitude modulations. Finally, conclusions

are derived.

4.1 Feedfoward and Decision Feedback Equaliza-

tion

The effects of multipath propagation include signal fading, delay spread and

Doppler spread. Signal fading is caused by the interference between signals prop-

agating through different paths, since the received signal strength is dependent

on the locations of the transmitter and receiver. The delay spread is broadening

in duration of received signal with respect to the transmitted signal as different

delays are associated with the propagation paths. Delay spread introduces Inter-

Symbol Interference (ISI) in a digital wireless communication system, which limits

the achievable transmission rate [131]. Doppler spread refers to the broadening of

the frequency spectrum of the received signal with respect to the transmitted sig-

nal, when there is relative motion between the transmitter and the receiver. This

is due to the different angles of arrival associated with the propagation paths.

Efficient adaptive signal processing techniques are required to track channel vari-

ations in a communication system operating in a multipath propagation environ-

ment [4, 5, 131]. Equalizer is an essential part of every receiver to cancel out the

effects of transmission path [5, 6, 10, 25, 26]. The complexity of equalizers grows

if there are deep nulls in the faded signals [132]. Typically, linear equalizers have

poor performance for channels with high amplitude distortion [5, 6, 10, 25, 26].

To compensate for high distortion, the equalizer is required to generate gains with

large values. This results in noise amplification as the noise is embedded in the

signal [6, 133]. Decision Feedback Equalizers (DFE) are used in such cases. The

DFE utilize a Feedback (FB) filter that uses the detected symbols to produce an

output which is typically subtracted from the output of the linear equalizer [133–

136] or feedforward (FF) filter. In steady-state operation, the DFE contains an

estimate of the impulse response (inverse) of the channel.
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Figure 4.1: Communication System with Decision Feedback Equalizer.

A generalized schematic diagram of DFE is shown in Figure 4.1. The DFE pro-

cess consists of the channel h with M taps, FF filter wff with Nf taps, FB filter

wfb with Nb taps and the detector or decision device. The total taps of equalizer is

N = Nf +Nb and are adjusted through an adaptive algorithm. Assuming a direct

transmission scenario, the frequency selective multipath channel is modelled as a

Finite Impulse Response (FIR) filter. The symbol y(k) at time k received by the re-

ceiver is the transmitted symbol x(k) = [x(k), x(k−1), . . . x(k−M + 1)]T convolved

with the Channel Impulse Response (CIR), that is, h = [h0, h1, . . . hM-1]T and

disturbed by the receiver internal noise a(k). Defining the channel output vector

y(k) = [y(k), y(k−1), . . . y(k−Nf +1))T, each sample is given by [5, 6, 10, 133–136]:

y(k) =
∑M−1

i=0 hix(k− i) + a(k) = h0x(k) +
∑M−1

i=1 hix(k− i) + a(k) (4.1)

In terms of vectors inner product, the equation (4.1) can be written as:

y(k) = hTx(k) + a(k) (4.2)

In equation (4.1), the ISI is contributed by the second term that corresponds to

multipath effect from previous symbols x(k − i). Equalizer design requires to

recover x(k) from y(k). In the DFE, the measured output y(k) of the channel is

passed through the FF filter with weights vector wff = [wf0,wf1,wf2, . . .wf(Nf−1)]
T.

Similarly, the decisions from the detector are passed through the FB filter, it’s

output is wT
fbx̂(k−∆) where wfb = [wb0,wb1,wb2, . . .wb(Nb−1)]

T. The error is the

difference of the training symbol x(k−∆) and the estimated symbol x̂(k−∆) and



Fractional Normalized Least Mean Square Algorithm for Adaptive Equalization of
Multipath Channels 43

is defined as:

x̃(k−∆) ∼= x(k−∆)− x̂(k−∆). (4.3)

The parameter ∆ ∈ {0, 1, 2, · · · ,M + N − 1} is an integer which corresponds to

the decision delay of the DFE. It depends on the delay spread due to multipath

propagation and is characterized by the power delay profile used for extracting the

timing parameters of the channel. The performance of the DFE is very sensitive

to the choice of ∆ [131], especially when the number of taps in the feedforward

filter is small. Mostly, the sampling time and decision delays are estimated before

the equalization process. Usually, N > M and the optimal delay is almost half of

N +M [5, 131] and the number of feedforward filter taps are almost double of the

channel taps. A smaller error in (4.3) means that the estimated symbol x̂(k−∆)

will be sufficiently close to the transmitted symbol x(k−∆) and the decision device

will map to the correct symbol in constellation. Ideally, the decisions x̌(k −∆)

are correct and equal to x(k −∆). The cost function for the DFE is the Mean

Square Error (MSE) which is defined as [5, 6, 10, 131, 133, 134]:

Jw(k) = E

[(
x(k−∆)− x̂(k−∆)

)2
]
. (4.4)

The objective is to minimize the cost function, that is, min
wff ,wfb

E|x(k−∆)− x̂(k−

∆)|2. The estimated output from the equalizer filter, that is, x̂(k−∆) = wH
ff y(k)−

wH
fbx̂(k−∆) depends on properly adjusted weights w in the training phase. The

design objective is to choose wff and wfb so that the combined impulse response of

channel and equalizer is approximately δ(k −∆) where δ is Dirac Delta function.

This is difficult to obtain in the case of spectral nulls which cause severe ISI

[5, 6, 10, 133, 134]. The FB filter helps in reducing the ISI in such cases. Using

a vector notation such that w(k) = [wT
ff (k) wT

fb(k)]T and the input is u(k) =

[yT(k) − x̂T(k−∆)]T, the design objective is simplified as:

Jw(k) = E

[(
x(k−∆)− uT(k)w(k− 1)

)2
]
. (4.5)
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For optimization of equation (4.5) in adaptive algorithms, various solutions exist

in the literature. Most are based on integer order derivatives, challenges include

convergence, implementation complexity and steady state accuracy. Recent lit-

erature on the equalization problem concentrates on improving robustness and

convergence [25, 26, 80], decreasing computational complexity for efficient imple-

mentation [132–134], blind techniques using Quadrature Amplitude Modulation

(QAM) and Amplitude Shift Keying (APSK) in ADSL and Multi Input Multi

Output (MIMO) wireless systems [66, 87, 135–137]. Researchers in the recent

past have applied various strategies to improve the performance of LMS and its

variants such as Leaky least mean fourth algorithm [86], bias compensated NLMS

for noisy input [83], improvement of NLMS in impulsive noise [138] and the vari-

able tap-length linear equalizer [84]. Various techniques have been investigated to

design training/pilot symbols [27, 139] in order to cope with frequency selective

effects.

As stated earlier in chapter one, the basic philosophy of adaptive algorithm is to

minimize the MSE at each time instant k, a correction term is applied to the filter

weights to form a new set of coefficients at time k+1, that is,

w(k) = w(k − 1) + ∆w(k). (4.6)

The design of adaptive filters deals with the formation of the correction term

∆w(k). The LMS uses the instantaneous error for the MSE and utilize the gra-

dient approach for the calculation of ∆w(k). Fractional derivatives are applied to

obtain the correction term in (4.6) in addition to the standard first order gradi-

ent in different configurations. As mentioned in chapter three, the left fractional

derivative Dν of order 0 < ν < 1 of a polynomial function f(x) = xβ is written as

[42–44]:

Dνxβ =
(β + 1)

Γ(β − ν + 1)
xβ−ν x > 0 (4.7)
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The gamma function is defined as: Γ(α) =
∫∞

0
e−ttα−1dt [42–44]. For β = 1, the

equation (4.7) becomes:

Dνx =
Γ(2)

Γ(2− ν)
x1−ν x > 0 (4.8)

Similarly, for β = 1, the right side fractional derivative becomes:

Dν(−x) =
Γ(2)

Γ(2− ν)
(−x)1−ν x < 0 (4.9)

In training phase, the desired output d(k) = x(k−∆) and filter output x̂(k−∆) =

uT(k)w(k− 1), the error is defined as:

e(k) = d(k)− uT(k)w(k− 1). (4.10)

For the function Jw(k) = e2(k), using the chain rule approximation Dνe2(k) =

2e(k)Dνe(k) with 0 < ν < 1, w > 0, the left fractional derivative operator Dν

with respect to the filter weights in (4.10) gives:

Dνe(k) = Dν
[
d(k)− uT(k)w(k− 1)

]
= −u(k)� w1−ν(k− 1)

Γ(2− ν)
. (4.11)

The symbol � represents element-wise multiplication between two vectors. Simi-

larly, for w < 0, applying the right fractional derivative operator Dν with respect

to the filter weights in (4.10) results in:

Dνe(k) = Dν
[
d(k)− uT(k)w(k− 1)

]
= −u(k)� (−w(k− 1))1−ν

Γ(2− ν)
. (4.12)

The following identical equation [44, 108, 123, 125] is used for taking care of the

sign of the weight:

w1−ν(k) = |w|1−ν(k)sgn(w(k)). (4.13)

where sgn is the sign function, (4.13) is used to unify equations (4.11) and (4.12).

Generally, w can be positive or negative, using equation (4.13), the final form can
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Figure 4.2: Filter structure of FNLMS based DFE.

be written as:

Dνe(k) = −u(k)� |w(k− 1)|1−νsgn (w(k− 1))

Γ(2− ν)
. (4.14)

In the next section, two approaches are proposed for the equalization filtering

based on fractional derivatives [42–44, 112] using equations (4.11) and (4.14).

4.2 Proposed FNLMS Algorithm

Figure 4.2 shows a schematic block diagram of the proposed Fractional Normalized

LMS (FNLMS) algorithm based Decision Feedback Equalization (DFE) process.

The equalizer has two phases as shown by the switch. One is training phase in

which the desired response d(k) is same as the input to the filter x(k). The second

is decision directed phase in which the input to the FB filter is the output of the

detector. As can be seen, the input signal x(k) which is mapped using square
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Quadrature Amplitude Modulated (QAM) [136] constellation is passed through

the fading channel h. The optimization objective is to design the adaptive filter

w(k) = [wT
ff (k) wT

fb(k)]T such that the combined output of the filter produces an

inverse filtering system so that the error e(k) is kept to the minimum. As stated

earlier, the filter tap input column vector is formed from channel output y(k)

and past decisions of the detector x̂(k) with the assumption that ∆ = 0, that is,

u(k) = [yT(k) − x̂T(k)]T.

In gradient based search techniques, the cost function Jw(k) = E[e∗(k)e(k)] =

E[e∗(k)
(
x(k)− uT(k)w(k− 1)

)
] is minimized by differentiating with respect to

the filter weights w; in our proposed scheme the differentiation of the cost function

is performed by taking its fractional derivatives using the equations (4.9-4.12) in

equation (4.5). The final weights are formed as: The weights are updated as:

w(k) = wl(k) + wf(k) (4.15)

where wl is the LMS weight vector and wf is correction in the weight vector

corresponding to the fractional order derivative. In the proposed design, first of

all, the standard LMS update is performed using:

wl(k) = wl(k− 1) + µle
∗(k)u(k) (4.16)

where µl denotes a small positive step size; it is the only design parameter which

controls stability and convergence. To introduce the fractional term, the fractional

operators are used in the cost function [42–44] and equations (4.8-4.14). Taking

the fractional derivative of order ν of the cost function Jw(k) = e∗(k)e(k) with

respect to the filter weights, the update is:

wf(k) = −µfe
∗(k) Dν (d(k)− u(k)w(k)) (4.17)

where µf is positive step size for the fractional part; it may be noted that the frac-

tional update equation depends on the current LMS weights. Using the derivative
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Table 4.1: Summary of DFE Algorithm for FNLMS (Method 1).

Filter Orders N, Nf , Nb, Step Sizes µl & µf

Input Vectors uf,ub

Channel Output y

Filter Output x̂

Initialize G, ε

Initialize uf,ub,wff,wfb with zeros

Algorithm: for k = 1, 2, 3 · · ·

u(k) = [uf(k), uf(k− 1) . . . uf(k−Nf + 1), ub(k), ub(k− 1), . . . ub(k−Nb + 1)]

x̂(k) = wH
ff (k)uf(k)−wH

fb(k)x̂(k)

d(k) = x(k) if training phase otherwise detected symbol

e(k) = d(k)− x̂(k)

g(k) =
e∗(k)uH(k)

‖u(k)‖2 + ε

wlN(k + 1) = wN(k) + µlg(k)

wfN(k + 1) = µfg(k)�
w1−ν

lN (k + 1)

Γ(2− ν)

w(k + 1) = wlN(k + 1) + wfN(k + 1)

wff(k + 1) = wN(0→ Nf − 1) to update Feedforward filter taps

wfb(k + 1) = wN(Nf → Nb − 1) to update Feedback filter taps

k = k + 1
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equations (4.11-4.13) in equation (4.17), the fractional update part becomes:

wf(k) = µfe
∗(k)

(
u(k)� w1−ν

l (k)

Γ(2− ν)

)
(4.18)

To improve the convergence of equation (4.16), automatic adaptive strategies based

on variable step size are applied [5, 6, 25, 26, 80, 82, 83, 138], resulting in normal-

ized LMS (NLMS) algorithm, that is,

wl(k) = w(k− 1) + µle
∗(k)

u(k)

‖u(k)‖2
(4.19)

Similarly, the fractional part can also be normalized by the input signal energy as:

wf(k) = µfe
∗(k)

u(k)

‖u(k)‖2
� w1−ν

l (k)

Γ(2− ν)
(4.20)

The common parts in equations (4.19 & 4.20) can be calculated once, a new

variable g(k) is introduced such that:

g(k) =
e∗(k)u(k)

‖u(k)‖2
(4.21)

This algorithm is summarized in Table 4.1. This is called Method 1 this chapter

in which the step size g(k) is not dependent on fractional order and is only adapted

according to the norm of the input, that is, 1
‖u(k)‖2 .

In method 2, the final weight update equation for FNLMS algorithm is obtained

with automatic step-size adaptation in the fractional part, this helps to obtain

stable and fast convergence. The difference in the squares of the a-posteriori and

a-priori errors [5, 6, 10, 25, 26] is given as:

∆e2(k) = −4µ(k)e2(k)uT(k)u(k) + 4µ2(k)e2(k)

(
uT(k)u(k)

)2

. (4.22)

Differentiating equation (4.22) with respect to µ(k) and equating to zero for the

optimal value, the step-size for the standard NLMS can be calculated as [5]:

µl(k) =
µ

‖u(k)‖2
. (4.23)
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Taking fractional derivative Dν using (4.7) in equation (4.22) with respect to

µ(k), assuming a constant or zero deviation in squared error (which is the case

of orthogonality), the following equation is obtained for a given iteration number

and fractional order:

− Γ(2)

Γ(2− ν)
µ1−ν(k) +

Γ(3)

Γ(3− ν)
µ2−ν(k)

(
uT(k)u(k)

)
= 0. (4.24)

Simplifying equation (4.24) results in the following relation for step-size adaptation

for the fractional part:

µf(k) =
Γ(3− ν)

Γ(2− ν)Γ(3)

µf
‖u(k)‖2

. (4.25)

The fractional orders are kept within the bound of 0 < ν < 1. For the FNLMS

algorithm, the fractional update becomes:

wf(k) =
Γ(3− ν)

Γ(2− ν)Γ(3)
µf

e∗(k)u(k)

‖u(k)‖2
� w1−ν

l (k)

Γ(2− ν)
. (4.26)

The final FNLMS update is as given below:

w(k + 1) = w(k) + µl(k)e∗(k)u(k) + µf(k)e∗(k)u(k)� w1−ν(k)

Γ(2− ν)
. (4.27)

The computational complexity of the NLMS equation (4.19) as well as its fractional

variant (4.27) increases due to calculation of the normalization ||u(k)||2 and then

division of the update term by the norm; for fractional part it increases still more.

However, the norm can be calculated efficiently through recursive techniques; also,

the parameters for the function can be calculated beforehand.

To keep the step size within reasonable bounds, it is standard practice to add a

small and positive number ε to the norm [4–6, 10, 25], that is, µl(k) = 1
|u(k)|2+ε

,

the final FNLMS weight update equation becomes:

w(k + 1) = w(k) + µl
e∗(k)u(k)

‖u(k)‖2 + ε
+ µfG

e∗(k)u(k)

‖u(k)‖2 + ε
� w1−ν(k)

Γ(2− ν)
. (4.28)
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Here, the term G = Γ(3−ν)
Γ(2−ν)Γ(3)

is a constant, its value depends on the FO. As

the fractional order ν increases, the value of G decreases and vice versa. Since,

the weights can be positive or negative real quantities, (4.28) can be written in a

generalized form as below:

w(k + 1) = w(k) +µl
e∗(k)u(k)

‖u(k)‖2 + ε
+µfG

e∗(k)u(k)

‖u(k)‖2 + ε
� |w(k)|1−νsgn(w(k))

Γ(2− ν)
(4.29)

A simplified configuration without the FB filter is the FF linear equalization. Both

the standard NLMS and fractional FNLMS algorithms applied to the feedforward

(FF) equalization filtering are summarized in Table 4.2. Both NLMS and FNLMS

algorithms applied to the DFE are summarized in Table 4.3. Again the FNLMS

gives us more freedom for the selection of adaptation parameters. In the next

section, the error performance is shown for these filters and their symbol error

rate performance when used in both FF and DFE configurations.

4.3 Simulation Results

In this part, the simulation results are presented for the adaptive equalizer with

the newly developed algorithms along with the standard LMS and NLMS. The

equalization problem is simulated with different channels including flat fading and

frequency selective channels with different Root Mean Square (RMS) Delay Spread

(DS) and bandwidth. The fading channels are generated having RMS DS values

of the order of 10 Nano-Seconds (nsec) to 5.0 Micro-Seconds (µsec) which covers

wireless indoor (in building) to urban macrocellular (1-20 kilometres) environ-

ments. The number of taps of the channel depend on the DS, larger values of the

RMS DS has more multipaths (power delay profile) which is the average received

signal power as a function of delay. The power-delay profile of an environment is

the received powers as a function of the delays at different locations. The second

central moment of the power-delay profile is referred to as the RMS DS, and can

be used as one quantitative measure of the severeness of multipath propagation.

The RMS DS is dependent on the environment and the carrier frequency used for
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Table 4.2: NLMS and FNLMS Algorithms for FF Equalization (Method 2).

Filter Order N, Step Sizes µl & µf

Input Vectors u

Channel Output y

Filter Output x̂

Initialize G, ε, ν

Initialize u,w with zeros

Algorithm: for k = 1, 2, 3 · · ·

u(k) = [u(k), u(k− 1) . . . u(k−N + 1)]

x̂(k) = wH(k)u(k)

d(k) = x(k) if training phase otherwise detected symbol x̂(k−∆)

e(k) = d(k)− x̂(k)

NLMS Algorithm Based FeedForward Equalization

g(k) =
e(k)uH(k)

‖u(k)‖2 + ε

w(k + 1) = w(k) + µlg(k)

k = k + 1

FNLMS Algorithm Based FeedForward Equalization (Method 2)

g(k) =
e(k)uH(k)

‖u(k)‖2 + ε

w(k + 1) = w(k) + µlg(k) + µfg(k)� w1−ν(k)

Γ(2− ν)

k = k + 1
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Table 4.3: DFE Algorithms Based on NLMS and FNLMS (Method 2).

Filter Orders N, Nf , Nb, Step Sizes µl & µf and Constants G, ε, ν

Filter Output x̂

Initialize vectors uf,ub,wff,wfb

Algorithm: for k = 1, 2, 3 · · ·

u(k) = [uf(k), uf(k− 1) . . . uf(k−Nf + 1), ub(k), ub(k− 1), . . . ub(k−Nb + 1)]

x̂(k) = wH
ff (k)uf(k)−wH

fb(k)x̂(k)

d(k) = x(k) if training phase otherwise detected symbol

e(k) = d(k)− x̂(k)

g(k) =
e(k)uH(k)

‖u(k)‖2 + ε

NLMS Based Decision Feedback Equalization

wN(k + 1) = wN(k) + µlg(k)

wff(k + 1) = wN(0→ Nf − 1) to update Feedforward filter taps

wfb(k + 1) = wN(Nf → Nb − 1) to update Feedback filter taps

k = k + 1

FNLMS Algorithm Based Decision Feedback Equalization (Method 2)

wlN(k + 1) = wN(k) + µlg(k)

wfN(k + 1) = µfGg(k)�
w1−ν

lN (k + 1)

Γ(2− ν)

w(k + 1) = wlN(k + 1) + wfN(k + 1)

wff(k + 1) = wN(0→ Nf − 1) to update Feedforward filter taps

wfb(k + 1) = wN(Nf → Nb − 1) to update Feedback filter taps

k = k + 1
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transmission [131]. It is, therefore, extremely important for a wireless communi-

cation system to be robust against variations in channel parameters. From the

shape of the power-delay profile, a channel can be characterized as time-dispersive

fading or frequency-selective fading.

A comparative simulation analysis is provided of the four techniques for the per-

formance evaluation of the adaptive linear equalizer. These include Symbol Error

Rate (SER) analysis at 20 dB and 30dB Signal to Noise Ratio (SNR) values for

the LMS and FLMS algorithms; other ranges of the SNR are also applied in the

case of Decision Feedback Equalization (DFE). Various lengths of Training Sym-

bols (TS) have been used in the learning phase. Five to thirty taps filters have

been considered with Binary Phase Shift keying (BPSK) modulated symbols for

training purpose while Quadrature Phase Shift keying (QPSK) modulation has

been used for data symbols. In the case of DFE, higher order Quadrature Am-

plitude Modulation (QAM) are considered in the decision directed mode. Both

TS and data symbols are drawn from a finite symbol set which are equally likely

independent and identically distributed. The QPSK and square QAM have been

considered, the former has fixed amplitude for all the symbols but different phases,

in the latter, each symbol is characterized by an amplitude and phase.

4.3.1 NLMS vs FNLMS Method 1

In this section, simulation illustrations are provided showing the comparative per-

formance of FNLMS with conventional NLMS for DFE with different channels,

and with different parameters like number of FF and FB filters taps, step sizes

and fractional order for FNLMS. To have a fair comparison of both the algorithms,

the step sizes are kept equal in most cases, that is, µl = µf . The SER performance

is shown which is the number of symbols in errors divided by the total number of

symbols transmitted; it is plotted against the SNR in dBs. Other illustrations in

the form of scatter plots and combined CIR and DFE performance both in time

as well as frequency domain are given.
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Figure 4.3: Symbol-error rate for QAM constellations equalized with NLMS,
F-NLMS.

Different number (lengths) of training symbols (TS) are chosen which are mod-

ulated using Quadrature Phase Shift Keying (QPSK) technique and the number

of data symbols are fixed to 5000, which are Quadrature Amplitude Modulation

(QAM) symbols having orders 4, 16, 64 and 256, that is, each symbol carries in-

formation of 2, 4, 6 and 8 bits respectively. It is desirable to have low SER at a

given SNR, a near-perfect impulse at the delay point in the time domain and close

to 0 dB frequency response when the combined channel and equalizer behavior

is seen; in this case, the constellation of points will be concentrated towards the

mean of the given symbol.

Figure 4.3 shows SER for a channel with H(z) = 0.5 + 1.2z−1 + 1.5z−2 − z−3; the

step sizes and fractional order parameters are kept as: µl = µf = 0.2 and ν = 0.1

for the equalizer filters based on NLMS and the FNLMS. For both algorithms, TS

of lengths 120, 200, 400 and 600 are used for 4, 16, 64 and 256 QAM respectively;

the FNLMS is seen to perform better than the NLMS. This is also evidenced by

the scatter plots in Figure 4.4 for equalized symbols of 64 and 256 QAM. For a
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Figure 4.4: Scatter Plots of 64 and 256 QAM constellations equalized with
NLMS, F-NLMS.

symbol rate of 10−3, almost 3 dB gain is achieved for 4, 16 and 64 QAM,and about

2 dB gain for 256 QAM.

Figure 4.5 shows the SER performance for different SNR values for the channel

with RMS delay spread of 50 nanoseconds and 20 MHz bandwidth. The channel

model is a 12-tap FIR filter with delay ∆ = 10. Simulation parameter settings

are: 4 QAM with SNR variation from 5 to 15 dB, 16 QAM with SNR range from

15 to 25 dB, 64 QAM with SNR range from 20 to 30 dB and 256 QAM with SNR

range from 25 to 35 dB. The feed-forward filter has Nf = 36 taps; the feedback

filter has a single tap line. Simulation results are obtained for 50 independent iter-

ations and 1000 data symbols used in decision directed mode. The same number

of training symbols has been used i.e. 100, 300, 400 and 600 for 4, 16, 64 and 256
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Figure 4.5: SER for 4, 16, 64 and 256 QAM constellations for the NLMS and
FNLMS.

QAM respectively. The performance in 4 QAM is same (The SER of 8.38× 10−5

is achieved by both the algorithms but for other higher order modulations, the

fractional NLMS outperforms the NLMS; a considerable SNR gain is obtained

over the NLMS even for the more stringent SER requirements of 10−5.

Figure 4.6 (left) shows a 17-tap frequency selective channel with its impulse and

frequency responses (IR/FR). On the right side of the figure the complex impulse

response is given. It can be seen that both the real and imagenery components

have deep fades at different frequencies. The real component has about -15 dB and

the imaginary component has -20 dB fade; keeping the channel a very selective

one.

Figure 4.7(left) shows the combined frequency responses of the channel and the

equalizer for different number of training symbols. In the right part of the figure,

the corresponding time domain impulse responses have been shown. It is observed

that the FNLMS (red) response is almost on the 0 dB line with small peak to

peak difference as compared to the standard NLMS. This is true for all cases of

100, 200, 400 and 600 training symbols for training purposes for 4, 16, 64 and

256 QAM respectively. As the number of training symbols increase, the combined

response is improved which is desirable for higher order constellations and helps
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Figure 4.6: Representation of Channel impulse response (right), amplitude
response (top left) in dBs vs frequency and Time domain (bottom left) response

of the channel (right) with 17-taps.

increase the spectral efficiency.

In Table 4.4, SER values are given for QAM symbols using the 17-tap channel (Fig-

ure 4.7); the step sizes are fixed at µl = µf = 0.4, and the performance checked

for different values of fractional orders. SER values in column two correspond to

the NLMS algorithm while the rest of SER values are for FNLMS. Different SNR

values are selected for different QAM constellations. It can be seen that for all the

fractional orders, the FNLMS perform better than NLMS.

In Table 4.5, the fractional order is fixed as 0.4 and simulations are performed

for different values of step sizes. The step size for the NLMS is fixed at 0.4. It

can be observed that the proposed fractional methodology outperforms the stan-

dard NLMS scheme. In most cases, the fractional variant is error free. From the

simulation analysis, it is observed that the adaptive equalizers based on fractional

LMS and fractional NLMS outperform the standard LMS and NLMS respectively.

However, in the low SNR regime, FNLMS has comparable performance.
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Table 4.4: SER of NLMS and FNLMS for different ν values

QAM SNR(dB) NLMS ν = 0.01 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

10 0.0008 2.00E-05 4.00E-05 2.00E-05 2.00E-05 6.00E-05

12 0.0006 0 2.00E-05 0 0 0

14 0.0002 2.00E-05 0 0 0 0

4 16 0 0 0 0 0 0

18 0.0003 0 0 0 0 2.00E-05

20 0.0002 0 0 0 0 0

15 0.0009 1.60E-04 6.00E-05 1.00E-04 2.00E-04 1.20E-04

17 0.0002 0 2.00E-05 4.00E-05 2.00E-05 2.00E-05

19 0.0002 0 0 0 0 0

16 21 0 0 0 0 0 0

23 0.0001 0 0 0 0 0

25 0 0 0 0 0 0

20 0.0046 6.20E-04 8.40E-04 6.40E-04 7.60E-04 4.80E-04

22 0.0016 1.40E-04 6.00E-05 4.00E-05 2.80E-04 4.00E-05

24 0.0026 6.00E-05 4.00E-05 0 2.00E-05 2.00E-05

64 26 0.0023 0 2.00E-05 0 1.22E-04 0

28 0.002 0 0 0 0 0

30 0 1.00E-05 0 0 0 0

25 0.0081 7.40E-04 1.42E-03 1.30E-03 9.00E-04 6.80E-04

27 0.0056 4.20E-04 1.60E-04 1.20E-04 2.00E-04 5.00E-04

29 0.0015 3.80E-04 2.00E-05 0 4.00E-05 8.00E-04

256 31 0.0006 0 0 6.00E-05 0 2.00E-05

33 0.0016 0 0 0 2.00E-05 0

35 0.0003 0 0 0 0 0
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Table 4.5: SER of NLMS and FNLMS algorithms for different µ2 values

QAM SNR BER(Std.) BER(F) BER(F) BER(F) BER(F) BER(F)

(dB) µ1 = 0.4 µ2 = 0.1 µ2 = 0.2 µ2 = 0.3 µ2 = 0.4 µ2 = 0.5

10 0.0008 0 0.0001 0.0001 0 0

12 0.0006 0 0.0001 0 0 0.0001

14 0.0002 0 0 0 0 0

4 16 0 0 0 0 0 0

18 0.0003 0 0 0 0 0

20 0.0002 0 0 0 0 0

15 0.0009 0.0002 0.0002 0.0001 0.0001 0.0002

17 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001

19 0.0002 0 0 0 0 0

16 21 0 0 0 0 0 0

23 0.0001 0 0 0 0 0

25 0 0 0 0 0 0

20 0.0046 0.0005 0.0006 0.0004 0.0002 0.0003

22 0.0016 0.0002 0.0006 0.0001 0.0002 0.0001

24 0.0026 0.0001 0.0001 0 0 0

64 26 0.0023 0 0 0 0 0

28 0.002 0 0 0 0 0

30 0 0 0 0 0 0

25 0.0081 0.0009 0.0008 0.0008 0.0007 0.0007

27 0.0056 0.0005 0.0005 0.0006 0.0007 0.0005

29 0.0015 0.0001 0.0001 0.0001 0 0

256 31 0.0006 0 0 0 0 0

33 0.0016 0 0 0 0 0

35 0.0003 0 0 0 0 0
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Figure 4.7: Combined channel and equalizer frequency response.

4.3.2 LMS, FLMS, NLMS and FNLMS Method 2

In Table 4.6, SERs are shown for LMS and FLMS for different number of training

symbols. The sequence in these simulations corresponds to a slow fading channel

with five taps, there are 10000 QPSK symbols used in decision directed mode.

Note that, at 20 dB SNR, the FLMS has small SER with 300 Training Symbols

(TS) as compared to the 500 TS used by standard LMS. Similarly, at 30 dB SNR,

the SER of the FLMS algorithm at 100 symbols is not only smaller than standard

LMS with 200 symbols, but comparable to that obtained with 400 TS of the LMS.

It thus helps in reducing the number of TSs, resulting in increasing the packet
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Table 4.6: SER of NLMS and Fractional NLMS Algorithms

SNR Training Errors LMS, Errors FLMS SER SER

(dB) Symbols µl = 0.005 µf = 0.005, ν = 0.5 LMS FLMS

100 621587 180042 0.621587 0.180042

150 498306 115111 0.498306 0.115111

200 192945 1108 0.192945 0.001108

20 300 12192 484 0.012192 0.000484

400 2261 22 0.002261 0.000022

500 724 17 0.000724 0.000017

100 734020 67782 0.73402 0.067782

30 200 543595 4 0.543595 0.000004

400 3018 0 0.003018 0

efficiency.

Figure 4.8 shows two different fading channels (almost flat) with scatter plots of

the equalized symbols for various numbers of TSs. Effectively, FLMS has superior

performance in terms of decreasing the variance of the error. Large values of vari-

ance result in high uncertainty and erroneous decisions by the demodulator.

In Table 4.7, SERs are shown for NLMS and FNLMS schemes for different numbers

of TS. Since these algorithms exhibit faster convergence, only frequency selective

fading channels are considered with up to 28 taps, 10000 QPSK symbols are used

in decision directed mode. The SER is averaged over 200 independent runs and is

obtained for SNR values of 5, 10, 15, 20, 25 and 30 dB. The results are generated

using 100, 150 and 200 TSs. In the high SNR regime the FNLMS algorithm has

superior error performance as compared to the standard NLMS scheme.

Next, the performance for different fading channels are illustrated using scatter

plots for various numbers of TSs. Figure 4.9 (left) shows the scatter plots for the

27-tap channel and its equalization with 28 taps. ∆ is set to 14. It can be seen

that the FNLMS scheme is able to separate the symbols better than the NLMS,

especially with 100 TS. It is observed that with FNLMS, there were no errors in
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Figure 4.8: Scatter Plots for LMS, F-LMS, with Different Training Symbols.

Figure 4.9: Scatter Plots with different training symbols and Responses of
NLMS, F-NLMS.
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Table 4.7: SER of NLMS and Fractional NLMS Algorithms

SNR SER for NLMS, SER for FNLMS,

(dB) β = 0.5 β = 0.5, γ = 0.5

100 TS 150 TS 200 TS 100 TS 150 TS 200 TS

5 0.001385 0.0010950 0.002025 0.003415 0.002165 0.002135

10 0.000165 0.0001450 0.000115 0.000150 0.000185 0.000210

15 0.000035 0.0000101 0.000010 0.000040 0.000016 0.000012

20 0.000015 0.0000015 0.000001 0.000005 0 0

25 0.000015 0 0 0 0 0

30 0.000010 0 0 0 0 0

the case of 150 and 200 training symbols while the NLMS have 10 and 5 erroneous

symbols respectively.

Figure 4.9 (right) shows the frequency response of selective channel and the cor-

responding time domain impulse response (first row) for a 200 TS case. In this

case, it is seen that no error for both algorithms, the plots correspond to correct

decisions. The simulation parameters set were: β = 0.4 , γ = 0.4 and SNR=20

dB. In the second row, the corresponding responses are shown for the NLMS and

FNLMS equalizers, which are almost the same. Since the input to the equalizer

is in the form of equation (4.1), the equalizer effectively reduces the effect of in-

ternal noise generated at the receiver. From the time domain combined response

(right bottom plot), it is apparent that the symbol is correctly equalized. For a

comparative analysis, the SER is given in Table 4.7. It can be inferred from the

scatter plots that the FNLMS has much smaller variance than NLMS, the former,

therefore, offer the attraction to use higher order QAM to enhance the data rate

further and thereby increase the link efficiency.

Figure 4.10 (left) shows scatter plots for various numbers of training symbols for

the given fading channel with the impulse response shown on the right side. The

channel has 12 taps and is equalized with 24 taps LMS and FLMS filters. The

simulation parameters are: µl = 0.01, µf = 0.03, ν = 0.1, ∆ = 12, SNR=30 dB, a
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Figure 4.10: Scatter Plots for LMS, FLMS with [100,200,300] Training Sym-
bols.

Figure 4.11: MSE for 300 Training Symbols of LMS and FLMS.
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Figure 4.12: Scatter Plots of 16 & 64 QAM constellations Equalized with
NLMS, F-NLMS.

total of 200 independent Monte Carlo runs were performed. Again it can be seen

that the FNLMS is able to separate the symbols better than the NLMS algorithm,

especially for 100 training symbols. It is seen that 573, 60 and 12 errors corre-

sponding to 100, 200 and 300 training symbols respectively for the LMS while 8, 0

and 0 errors for the FNLMS algorithm. Figure 4.11 shows the corresponding MSE

plot for both schemes, it can be seen that the MSE of the FLMS is much smaller

than the LMS for the case of 300 training symbols.

Figure 4.12 (left) shows another frequency selective fading channel having 17 taps

with delay ∆ = 15. For different step sizes and fractional orders of the FNLMS

algorithm, the performance are evaluated for the channel. The constellation di-

agrams for equalized signal are shown. In Figure 4.13, QAM constellations are

shown for a comparative analysis. The feed-forward filter has Nf = 51 taps; the

feedback filter has Nb = 1 tap. Simulations results are generated for 50 indepen-

dent iterations and 500 data symbols in the decision directed mode. The same

number of training symbols have been used i.e. 100, 300, 400 and 600 for 4 QAM,

16 QAM, 64 QAM and 256 QAM respectively. It can be seen that FNLMS is

able to isolate the symbols better than LMS. FNLMS has better performance in



Fractional Normalized Least Mean Square Algorithm for Adaptive Equalization of
Multipath Channels 67

Figure 4.13: Scatter Plots of 64 & 256 QAM constellations Equalized with
NLMS, F-NLMS.

decreasing the error variance. Large variations from desired symbol result in high

uncertainty especially in higher order modulation schemes and more erroneous de-

cisions by the demodulator.

Based on the simulation results provided in the form of symbol constellations

through scatter plots, symbol error rate versus SNR curves, combined channel and

equalizer responses, it can be observed that the proposed fractional order variant

of the NLMS algorithm has superior performance than its standard counterpart.

Meritoriously, the FNLMS has superior performance in decreasing the error and

has stable steady state performance (as shown by the SER when the equalizer

operates in decision directed mode). It can also be inferred that the FNLMS has

faster convergence, otherwise the SER performance would have severely degraded.
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4.4 Conclusions

In this chapter, fractional algorithms were proposed for both feedforward and

decision feedback equalization by introducing fractional updates in both the LMS

and NLMS algorithms. A filter structure was developed for the equalizer filter for

the fractional variants of the LMS; the performances in terms of mean square error

and symbol error rates of these fractional order techniques were compared with

the standard LMS and NLMS algorithms. It is worth mentioning that there are

three adaptation parameters in the proposed techniques, that is, two step sizes and

the fractional order. The extra parameters facilitate to improve the convergence

speed and steady state performance. The former helps in reducing the number of

training symbols required for weight adaptation and the latter helps in reducing

the symbol error rate performance.

Based on simulation results for the performance metrics of symbol error rate,

mean squared error and combined channel and equalizer response, it is concluded

that the fractional LMS and NLMS filters perform better than the standard LMS

and normalized LMS algorithms. This is true for both flat frequency as well

as frequency selective fading channels. Applying the new algorithms helps in

significant improvement in the SNR of the order of 2 ∼ 4dBs and increases the

link efficiency by using less number of training symbols (a saving of about 60%

training symbols) and minimizes the channel effects. The error rate performance

evaluated considering fading channels and various parameters of the fractional

versions; it was found that fractional algorithms provide better performance with

SER of about 10−5 as compared to the traditional approaches which is the order

of 10−3. Further investigation of the fractional algorithms is required in other

adaptive signal processing applications like system identification, beam-forming,

active noise control, diffusion strategies in multi-agent systems, etc.



Chapter 5

Fractional Order Constant

Modulus Blind Algorithms with

Application to Channel

Equalization

In this chapter, a novel methodology is developed for blind equalization where the

output of the linear filter is passed through a nonlinear fractional update term

derived from the cost function using fractional calculus. The final weight update

is a combination of the conventional constant modulus algorithm (CMA) and the

fractional part. The new fractional strategy helps capture the parameters of the

model faster while keeping the error small. The algorithm is applied to blind

equalization of flat and frequency selective channels. To assess the suitability of

the proposed technique, different fractional orders and step sizes are used, the

performance metric considered is mean squared error for a quadrature phase shift

keying transmission scheme. Simulation results show that the proposed technique

performs better than the conventional constant modulus algorithm, exhibits faster

convergence, and yields an improved steady state response.

The presentation of the chapter is as follows: Firstly, the derivation and weight

69
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updated mechanism of the fractional variants of the Godard algorithm are pre-

sented. In section 5.2, simulation results are shown for quadrature phase shift

keying based modulations. Finally, conclusions are stated.

5.1 Fractional Order Blind Algorithms

Blind equalization techniques (in which the reference signal is not required) are

very popular and especially useful for digital modulation [14, 136, 140], as the

latter have known statistics which can be obtained from constellation used. One

approach is based on variable tap-length filters [84], these can better model varying

delays of frequency selective channels. The contribution of this chapter is to ap-

ply fractional order signal processing to improve the constant modulus algorithm

(CMA-2). The cost function is based on the posterior error. Different fractional

orders and step sizes are considered, and simulation results are shown for blind

equalization of quadrature phase shift keying (QPSK) symbols in a multipath fad-

ing environment with mean squared error as the performance metric.

Consider the transmission of symbols drawn from a finite alphabet set s through a

channel with memory, modelled as an Mth order finite impulse response (FIR) filter

represented by the vector h = [ h(k), h(k − 1) . . . h(k −M + 1) ]T ; where (.)T rep-

resents the vector transpose. The received signal is corrupted by the additive noise;

the input regression vector is represented by x = [ x(k), x(k − 1) . . . x(k −N + 1) ]T

which carries the information of the present and previous N symbols that con-

tribute to inter-symbol interference (ISI). To lessen the effect of ISI and separate

the source symbol from noisy and distorted data, the design objective of the blind

equalizer with N weights w(k) = [ w0(k), w1(k) . . . wN−1(k) ]T ; is to minimize the

mean p-power generalized Godard cost function [14]:

ξ = E
[
(|wH(k)x(k)|q − γq)p

]
. (5.1)

where p and q are positive numbers and p = q = 2 is the CMA(2,2) case and

(.)H denotes Hermitian operator. The quantity wH(k)x(k) is the output y(k) of
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the equalizer filter, the constant γq is the constellation level to be achieved and is

defined as:

γq =
E
[
|s(k)|2q

]
E
[
|s(k)|q

] . (5.2)

The error is the difference of output y(k) and γq and is defined as:

e(k) = |wH(k)x(k)|q − γq. (5.3)

A fractional constant modulus algorithm (FrCMA) is proposed having a config-

uration in which the final weights w at sample index k are formed by combining

the conventional CMA (Godard) weights wG and the fractional weight update wf

such that:

w(k) = wG(k) + wf(k). (5.4)

In equation (5.4), wG(k) is obtained by differentiating equation (5.3) with re-

spect to the filter weights to obtain the gradient, the adaptation algorithm for the

Godard (CMA) weights update is as given below [14, 140]:

wG(k) = w(k-1)− µ∂ep(k)

∂w

∣∣∣∣∣
wG=w(k−1)

. (5.5)

The gradient operation is performed on the instantaneous error, putting e(k) from

equation (5.3) in equation (5.5) results in:

wG(k) = w(k-1)− µ∂ (|y(k)|q − γq)
p

∂w
. (5.6)

Applying the chain rule of integer derivatives, the gradient can be written as:

∂ep(k)

∂w
= p (|y(k)|q − γq)

p−1 ∂e(k)

∂w
. (5.7)

Putting for the error e(k) = |y(k)|q − γq, this can be written as:

∂ep(k)

∂w
= p (|y(k)|q − γq)

p−1 ∂ (|y(k)|q − γq)

∂w
. (5.8)
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which on further simplification becomes:

∂ep(k)

∂w
= pq (|y(k)|q − γq)

p−1 |y(k)|q−1∂|y(k)|
∂w

. (5.9)

Since, y(k) = wH(k)x(k) is the output of the adaptive filter, whose weights are to

be optimized, this partial derivative can be written as:

∂|y(k)|
∂w

= x(k). (5.10)

The equation (5.9) becomes:

∂ep(k)

∂w
= pq (|y(k)|q − γq)

p−1 |y(k)|q−1x(k). (5.11)

The term |y(k)|q−1 can be set to |y(k)|q−2y∗(k), so the final update equation (5.6)

for Gordad weights becomes:

wG(k) = w(k-1)− µpq
(
|y(k)|q − γq

)p-1|y(k)|q−2y∗(k)x(k). (5.12)

where (.)∗ denotes the complex conjugate operation and µ is a positive step size.

This can be written in terms of error e(k) as:

wG(k) = w(k-1)− µpqep-1(k)|y(k)|q−2y∗(k)x(k). (5.13)

It is worth mentioning that wG(k) relies on the final weights of the previous

iteration updated through equation (5.4). The update part in equation (5.13) is

derived from the gradient of the error measure ε = J(w) such that J(w + ∆w) <

J(w), where ∆w is the change in weight from present iteration to the next one.

Using Taylor series approximation, one arrives at the simplified LMS equation.

Inspecting the update part of equation (5.13), the weights undergo large changes

for steep gradients of error [127–130]. Conversely, for flat error surface, a small

step size is required as the change in weights needs to be small [127]. Since

each individual weight in the vector has a different value, the simplified gradient

search mechanism in the LMS cannot provide the required intelligence, that is,
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in the standard LMS, the output of the filter is more dependent on the weight(s)

having larger values and does not provide significance to other weights [130]. This

can be overcome to some extent by differentiating the cost function with respect

to the weight vector using fractional derivatives [129]. To improve stability and

convergence, a fractional update part is introduced as given in equation (5.4). The

fractional derivative operator Dν is used which for a function f(x) = xβ is defined

as [9, 42, 44, 108]:

Dνxβ =
Γ(β + 1)

Γ(β − ν + 1)
xβ−ν . (5.14)

Here, 0 < ν < 1 is the fractional order and Γ is the gamma function [42, 44]. For

β − ν + 1 > 0, this is computed as: Γ(β − ν + 1) =
∫∞

0
e−ttβ−νdt. To obtain the

fractional update part, the cost function is differentiated (first order derivative as

given in equation (5.3)) with respect to the weights and fractional derivative of

the last term in (5.9):

wf(k) = −µfD
ν
(
|wH(k)x(k)|q − γq

)p

∣∣∣∣∣
w=wG(k)

. (5.15)

where µf is the positive step size to be chosen for the fractional update part.

Taking the fractional derivative of ep(k) with respect to the filter weights w and

applying the chain rule approximation, the developed form is:

wf(k) = −µfpq
(
|yu(k)|q − γq

)p-1|yu(k)|q−2y∗u(k)x(k)� w
(1−ν)
G (k)

Γ(2− ν)
. (5.16)

Where� denotes element-wise multiplication of two vectors and yu(k) = wH
G(k)x(k)

is the output from the CMA stage and is computed before equation (5.16). Based

on values of positive integer parameters p, q and the fractional order ν, variants

of FrCMA can be generated. For p=2, q=1, equation (5.12) can be simplified to

the following form:

wG(k) = w(k-1) + µ
y∗u(k)

|yu(k) + ε|
(|yu(k)| − γ1)x(k). (5.17)
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Table 5.1: FrCMA Based Adaptation Procedure.

y(k) = wH(k− 1)x(k)

wG(k) = w(k-1) + µy∗(k)
(
|y(k)|2 − γ2

)
x(k)

yu(k) = wH
G(k)x(k)

wf(k) = −µfy
∗
u(k)

(
|yu(k)|2 − γ2

)
x(k)� w

(1−ν)
G (k)

Γ(2− ν)

w(k) = wG(k) + wf(k)

The corresponding fractional update becomes:

wf(k) = −µf
y∗u(k)

|yu(k) + ε|
(|yu(k)| − γ1)x(k)� w

(1−ν)
G (k)

Γ(2− ν)
. (5.18)

where ε is a some small positive number. As discussed in chapter four, in imple-

mentation for the general case where the weights may have positive or negative

values, equation (5.18) can be written as follows:

wf(k) = −µf
y∗u(k)

|yu(k) + ε|
(|yu(k)| − γ1)x(k)� |wG(k)|(1−ν)sgn(wG(k))

Γ(2− ν)
. (5.19)

For FrCMA (2, 2), the main adaptation procedure is summarized in Table: 5.1.

The sequence of execution starts from the traditional CMA, the posterior output

wH
G(k)x(k) of the first stage is calculated and used in the fractional update stage.

It may be noted that the conventional update uses the final updated weights w of

the previous iteration; the fractional update term depends on the in-process CMA

weights and the posterior output yu(k). Both terms are added to obtain the final

weights.

Figure 5.1 shows plots of the term ∆f =
w(1−ν)

Γ(2− ν)
against a scalar w to show the

effect of varying the fractional order ν. It can be seen that for ν = 0, the term is

linear in w, however, increasing the fractional order results in a larger ’gain’ for

small weight values. In the plot, the effect of different fractional orders can be

seen when the weight values are changed from 0 to 1; the nonlinear effect can be

noted. The fractional update part provides prominence to each individual weight
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Figure 5.1: Effect of varying the fractional order on the term w(1−ν)

Γ(2−ν) .

[127] based on its magnitude. This helps capture the required parameters at a

faster rate and keeps the error small; which results in improved convergence.

5.2 Simulation Results

The transmission of symbols modulated though a quadrature phase shift keying

scheme (γ1 =
√

2, γ2 = 2) is considered for the generation of simulation results.

The results are provided for performance metric of mean squared error based on

equation (5.1) for the cases when p = 2, and q = 1, 2 corresponding to standard

and fractional order CMA (2, 1) and CMA (2, 2) respectively i.e.,

MSE = E[(|y(k)|q − γ2)2]. (5.20)

Two complex channels are considered, the first one (channel 1) is a three-tap

case and exhibits an almost flat frequency response, the second (channel 2) is

a fourteen-tap frequency selective fading channel having a deep null of -35 dB.

The impulse response of channel 1 is h = [1.1 + 0.5i, 0.1- 0.3i, -0.2 - 0.1i] .
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Figure 5.2: MSE Performance of CMA and FrCMA for channel 1.

The equalizer has 14 taps and a delay of 8 samples. The simulation results are

generated for 5000 iterations and the mean squared error value is computed based

on 1000 independent runs. Keeping the step size and fractional order constant

(µ = µf = 0.005, ν = 0.2) , the MSE performance is calculated for different

signal-to-noise ratios (SNRs). Results are plotted in Figure 5.2. It can be seen

that FrCMA (2, 2) outperforms the conventional algorithm in terms of convergence

and steady state performance. At iteration number 500 and for SNR = [10, 15, 20]

dB, the MSE of CMA is [1.11×10−1, 1.16×10−2, 1.19×10−3], whereas for FrCMA,

the corresponding MSE is [7.48× 10−3, 5.27× 10−4, 1.64× 10−4], respectively.

We now consider Equalizers with 45 taps having a delay of 25 samples for channel

2 with impulse response: h = [0.2231 - 0.1745i, -0.0077 + 0.1281i, 0.3312 + 0.4829i,

0.1703 + 0.0282i, -0.1024 + 0.1293i, 0.0743 - 0.0580i, 0.0070 - 0.0642i, 0.0340 -

0.0442i, -0.0191 + 0.0023i, 0.0060 - 0.0076i, 0.0035 + 0.0133i, -0.0015 - 0.0067i,

0.0092 - 0.0045i, -0.0022 - 0.0003i].

The results are generated for 5000 iterations and 1000 independent runs, the SNR
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Figure 5.3: MSE Performance of CMA and FrCMA for channel 2 for different
step sizes and fractional orders.

is fixed at 30 dB, p=2, q=1 and step sizes are varied. Results are shown in Figure

5.3. It is seen that the proposed fractional variant has faster convergence and

smaller MSE for the given step sizes and fractional orders. For a step size of

µ = 0.02, the standard CMA (2, 1) algorithm has an MSE of 0.43, and limited

convergence, whereas the fractional variant with ν = 0.9 has a much better MSE

of about 6 × 10−3 after 50 iterations, showing a very fast convergence. With a

step size of 0.01, the CMA (2, 1) converges quite slowly to a lower MSE, but the

FrCMA (2, 1) clearly outperforms the conventional CMA. These results indicate

that the proposed fractional variants of CMA, where the posterior output is passed

through the nonlinear adaptive stage improves convergence.
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5.3 Conclusions

In this chapter, fractional order generalized blind algorithms were proposed for

feedforward equalization. The new blind adaptive algorithms which exploits frac-

tional derivatives in minimizing the Godard cost function is developed and ap-

plied to the inverse system identification problem of channel equalization. This

is achieved by introducing fractional updates based on posterior output (implicit

error based on the statistical parameter of modulus). The performance was mea-

sured in terms of mean squared error for different fractional orders, step sizes and

channel types. It is again worth mentioning that the proposed algorithms have

three adaptation parameters, that is, two step sizes and a fractional order. The

proposed algorithm has 50-60% faster convergence when the steady state error of

CMA is considered and improved mean squared error performance of the order of

100 times as compared to traditional CMA. It also achieves enhanced equalization

and better MSE performance. For larger step sizes, the conventional CMA algo-

rithm gives a poorer MSE and may also diverge, whereas the proposed algorithm

shows stable steady state behavior while also alleviating the noise effects better

than its traditional counterpart. FrCMA is, therefore, a useful addition in frac-

tional order signal processing and is open to further research. Further investigation

of the fractional algorithms is required in other adaptive signal processing applica-

tions like system identification, beamforming, multi-input multi output systems,

active noise control, diffusion strategies in multi-agent systems, tracking of fading

channels and so on.



Chapter 6

Fractional Order Adaptive Signal

Processing Strategies for Active

Noise Control Systems

Robust and computationally efficient adaptive algorithms are required in Active

Noise Control Systems (ANCS) to cancel out the effects of noise in the presence

of Secondary Path (SP) as the later makes the identification problem more chal-

lenging. To ensure stability in such applications, the step size parameter is kept

small but it results in slow convergence which limits the usefulness of such algo-

rithms in ANCS. In this chapter, two novel fractional order adaptive strategies

are proposed such that the output from the conventional Filtered-x Least Mean

Square (FxLMS) algorithm is passed through a new update equation derived from

a cost function based on a-posteriori error and optimized using fractional deriva-

tives. The proposed algorithms are designed for the feed-forward configuration

of ANCS. The new schemes are validated using the performance metrics of mean

squared error, mean squared deviation and mean relative modelling error. A num-

ber of scenarios are considered where different step sizes and fractional orders

have been used for evaluation with input signals modeled as binary, Gaussian and

impulsive noise sources. Simulation results shows that the proposed algorithms

outperform the conventional counterparts with convergence improvements in the

79
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Figure 6.1: Schematic of ANC system for machine noise suppression in a
channel using FN-FeLMS in a feedforward configuration.

range of 75-80%, while offer the same steady state behavior even for large step

sizes; thereby provide better modeling in the presence of SP.

The presentation in the rest of the chapter is as follows: Section 6.1 presents the

Fractional Normalized Filtered-error LMS (FN-FeLMS) algorithm. Section 6.2

presents modifications of FN-FeLMS algorithm and other FxLMS fractional order

variants. Section 6.3 provides discussion about the computational complexity of

the proposed algorithms along with comparative analysis. Simulation results and

analysis for various fractional orders, different input noise sources and step sizes

are given in Section 6.4. Conclusions are given in Section 6.5.

6.1 The FN-FeLMS Algorithm

A schematic of the FN-FeLMS based ANC system is shown in Figure 6.1. The

noisy input signal x(k) is passed through the primary path having impulse response

p = [ p0, p1 . . . pM−1 ]T, its output d(k) is corrupted by zero mean white Gaussian
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noise g(k). The objective is to design an adaptive filter w = [ w0, w1 . . . wN−1 ]T

such that its output y(k) when fed to the control speaker generate an anti-noise

signal and create a silence zone at the error microphone. The error e(k) is the

difference between d(k) and the secondary path signal passed through the adaptive

filter. The fixed filter s = [ s0, s1 . . . sQ−1 ]T is used to filter the error. In the

standard LMS algorithm, the cost function J(k) = E[e2(k)]T is minimized by

differentiating with respect to the filter weights w. In the scheme proposed here,

the weights w at sample k are updated as:

w(k) = wl(k) + wf(k). (6.1)

where wl(k) is the standard FeLMS weight adaptation vector and the term ∆wf(k)

represents the weight update term corresponding to the fractional order (FO).

With µl denoting the step size and x(k) = [ x(k), x(k − 1) . . . x(k −N + 1) ]T as

the input regression vector, the modified FeLMS equation is [33]:

wl(k) = w(k) + µlx(k)s
[
d(k)−wT(k− 1)x(k)

]
. (6.2)

The term s[d(k) − wT(k − 1)x(k)] = s[e(k)] represents filtering of the error by

the fixed filter s. The fractional correction term is calculated using the fractional

operator [6, 42]. The fractional derivative of order ν of the cost function Jw(k) is

applied to obtain the weight update term is:

wf(k) = −µfD
νe2(k)

∣∣∣∣
w=wl(k)

. (6.3)

where µf is the step size for the fractional part adaptation. For x > 0, the R-L

based differentiation of fractional order ν > −1 of a function f(x) = xβ is defined

as [42]:

Dνxβ =
Γ(β + 1)

Γ(β − ν + 1)
xβ−ν . (6.4)
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Here Γ is the gamma function; for β − ν + 1 > 0, it is computed as [42–44]:

Γ(β − ν + 1) =

∫ ∞
0

e−ttβ−νdt. (6.5)

For ν ≥ 0, the operation in equation (6.4) is differentiation and for ν < 0 it

becomes integration. In equation (6.3), using the chain rule approximation and

applying (6.4), the final fractional correction term at a given iteration can be

written as:

wf(k) = µfx(k)s
[
d(k)−wT(k− 1)x(k)

]
� w

(1−ν)
l (k)

Γ(2− ν)
. (6.6)

where � denotes element-wise multiplication. For traditional LMS, a time-varying

optimized step size is chosen for stability and performance and is given as [33, 34,

141]:

µl(k) =
µl

‖x(k)‖2
. (6.7)

Similarly, as discussed in chapter four, the step size can be adapted for the frac-

tional update part using fractional derivative in the objective function ‖w(k+1)−

w(k)‖2 subject to the constraint: d(k) = u(k)w(k + 1). The step size parameter

can be adjusted according to the FO as follows:

µf(k) =
Γ(3− ν)

Γ(2− ν)Γ(3)

µf

‖x(k)‖2
. (6.8)

As already discussed in, in implementation for the general case where weights may

have positive or negative values, the equation w1−ν(k) = |w(k)|1−νsgn(w(k)) can

be applied. Using equations (6.2), (6.6), (6.7) and (6.8), the sequence of execution

of weight update for the FN-FeLMS algorithm is summarized in Table 6.1. The

result is a semi-cascade structure such that the FeLMS weight update uses the

weight vector of the previous step, whereas the fractional correction term uses the

in process FeLMS weights.
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Table 6.1: Summary of ANC Algorithm for fractional normalized FeLMS.

wl(k) = w(k-1) + µl

x(k)s
[
d(k)−wT(k− 1)x(k)

]
‖x(k)‖2 + ε

wf(k) = µf
Γ(3− ν)

Γ(2− ν)

x(k)s
[
d(k)−wT(k−1)x(k)

]
‖x(k)‖2+ε � |wl(k)|(1−ν)sgn (wl(k))

Γ(2− ν)

w(k) = wl(k) + wf(k)

6.2 Modified Fractional FeLMS and its Variants

In this section, the techniques presented in previous section are further extended

to achieve an improved Fractional Order (FO) variant of the FN-FeLMS. In both

conventional FeLMS and the FN-FeLMS algorithms, the SP filter is applied on the

errors [d(k)−wT(k−1)x(k)] which is the filtered error instead of the filtered input.

In previous section, it is shown that the FN-FeLMS algorithm achieves faster con-

vergence than FeLMS; the final weights are updated through a combination of con-

ventional and fractional update terms. However, the steady-state performance de-

grades when the fractional order is increased [67] and this is shown with simulation

results in section 6.4. The approach provided in [67] is based on calculating the gra-

dient using fractional derivatives of the a-priori error e(k) = [d(k)−wT(k−1)x(k)].

To attain faster convergence and improve the steady-state response, the strategy

in [67] is modified by introducing a second cost function ξw(k) based on the a-

posteriori error ep(k). The fractional correction term is obtained by taking the

fractional derivative Dν with respect to weights of the conventional update as in

(6.3-6.8) as follows:

wf(k) = −µfD
νξw(k)

∣∣∣∣∣
w=wl(k)

. (6.9)

The final weights are obtained from combination of the weights updated though

the conventional and fractional terms, i.e., wl(k) + wf(k) . The cost function relies

on conventional weights and is defined as:

ξw(k) = e2
p(k) =

(
d(k)−wT

l (k)x(k)
)2
. (6.10)
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Note that the a-posteriori error is based on the in-process available weights wl.

Using the same approach, we also develop FO variants of other versions such

as Fractional Normalized LMS, (FrNLMS), Fractional FxLMS (FrFxLMS), Frac-

tional Modified FxLMS (FrMFxLMS) and Fractional FeLMS (FrFeLMS). Using

the chain rule approximation for the fractional derivative,the expanded form can

be written as:

Dνep(k) = µf
Γ(2)

Γ(2− ν)
x(k)�w1−ν

l (k). (6.11)

To attain a normalized LMS update, the objective function ‖w(k + 1) − w(k)‖2

is minimized subject to the constraint that the posterior error is zero, that is,

d(k) − wT(k)x(k) = 0. For integer order case, the optimized step size in a given

iteration is again stated as [34, 67]:

µl(k) =
µl

‖x(k)‖2 + ε
. (6.12)

As discussed in chapter four and the procedure for (6.8) above for the FN-FeLMS

algorithm, the following equation is obtained for the time varying step size which

also depends on the fractional order [67] as:

µf(k) = µf
Γ(3− ν)

Γ(2− ν)Γ(3)

µf

‖x(k)‖2 + ε
. (6.13)

The resulting fractional order update term for the normalized variant becomes:

wf(k) = µfG
ep(k)x(k)

‖x(k)‖2 + ε
�w1−ν

l (k). (6.14)

Here G is a new constant based on the Gamma function and for a given fractional

order is calculated as:

G =
Γ(3− ν)

Γ(2− ν)2
. (6.15)

By combining equations (6.14) and (6.15), and using a small positive constant ε

to avoid the denominator becoming too small, the time varying step size for the
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Table 6.2: FrFeLMS Based ANC.

e(k) = d(k)−wT(k− 1)x(k) (A)

eF(k) = sTe(k) (B)

wl(k) = w(k− 1) + µleF(k)
x(k)

‖x(k)‖2 + ε
(C)

ep(k) = d(k)−wT
l (k)x(k) (D)

wf(k) = µf
Γ(3− ν)

Γ(2− ν)
ep(k)

(
x(k)

‖x(k)‖2 + ε
� |wl(k)|(1−ν)sgn (wl(k))

Γ(2− ν)

)
(E)

w(k) = wl(k) + wf(k) (F)

fractional part can be further simplified to [67]:

µf(k) = G
µf

‖x(k)‖2 + ε
. (6.16)

Finally the conventional and fractional update terms are combined to yield the

desired weights, which can be written in a simplified form as:

w(k) = wl(k) + µf(k)ep(k)x(k)�w1−ν
l (k). (6.17)

In implementation for the general case where weights may have positive or negative

values, equation (6.17) can be written as below:

w(k) = wl(k) + µf(k)ep(k)x(k)� |wl(k)|(1−ν)sgn (w(k)) . (6.18)

Table 6.2 summarizes the steps for the modified version of this algorithm called

as the FrFeLMS. The novelty here is the introduction of the a-posteriori error

calculation (D) after the conventional stage and then its use in the fractional

update part (E). Also the fractional part relies on the conventional part updated

in (B) and the conventional part relies on the final weights of the previous iteration

updated through (E).

Table 6.3 summarizes the steps for the fractional variant of NLMS, that is, FrNLMS.
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Table 6.3: FrNLMS Based ANC.

e(k) = d(k)−wT(k− 1)x(k) (A)

wl(k) = w(k− 1) + µl(k)e(k)x(k) (B)

ep(k) = d(k)−wT
l (k)x(k) (C)

wf(k) = µf(k)ep(k)x(k)� |wl(k)|(1−ν)sgn (wl(k)) (D)

w(k) = wl(k) + wf(k) (E)

Only the main body of NLMS is shown here. A fixed fractional order case is con-

sidered so as to initialize G before the iterative process. It is assumed that the

error e(k), G and step sizes µl and µf are pre-computed as in equations (6.12),

(6.13) and (6.15). Equation (E) combines the weights from the conventional and

fractional parts of the algorithm. The fractional part uses the weights of the con-

ventional update whereas the LMS relies on the final weights of the previous step.

The FrNLMS algorithm is given as a benchmark algorithm; it does not incorporate

the effects of SP and therefore has a faster convergence. However, the performance

is poor when either the error signal is filtered or the input is filtered through the

SP. For the NLMS or FrNLMS algorithms F = δ(k) which corresponds to an ideal

discrete time impulse of unit magnitude.

Table 6.4 gives equations for the FrFxLMS algorithm. Note that the first two equa-

tions (A) and (B) are used in the conventional FxLMS algorithm; the last three

equations are the modifications due to FrFxLMS. The fractional update part not

only relies on the posterior error and the filtered input but also on the weights

updated through the conventional part (B). The final weights are constructed from

the conventional and the fractional parts. The fractional term Gw1−v behaves in

a nonlinear fashion and therefore gives importance to individual weights accord-

ing to the fractional order. Increasing the fractional order emphasizes the small

weight values more as compared to larger values. The behavior of G is also a de-

creasing function of fractional order; use of the posterior error helps in improving

convergence.
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Table 6.4: FrFxLMS Based ANC.

e(k) = d(k)−wT(k− 1)x(k) (A)

wl(k) = w(k− 1) + µl(k)eF(k)xT
F(k) (B)

ep(k) = d(k)−wT
l (k)x(k) (C)

wf(k) = µf(k)ep(k)xT
F(k)� |wl(k)|(1−ν)sgn (wl(k)) (D)

w(k) = wl(k) + wf(k) (E)

Table 6.5: FrMFxLMS Based ANC.

e(k) = d(k)−wT(k− 1)x(k) (A)

wl(k) = w(k− 1) + µl(k)x
T
F(k)

(
eF(k) + yF(k)− ỹF(k)

)
(B)

ep(k) = d(k)−wT
l (k)x(k) (C)

ỹF(p)(k) = wT
l (k)xF(k) (D)

w(k) = wl(k) + µf(k)

(
eF(k) + yF(k)− ỹF(p)(k)

)(
xT

F(k)� |wl(k)|(1−ν)sgn (wl(k))

)
(E)

Table 6.5 gives a more detailed form for the fractional variant of MFxLMS which is

called the FrMFxLMS algorithm. The final update is a function of the conventional

and fractional correction parts which is the second term on the right hand side

of (E). It can be seen that in addition to the posterior error (C), the fractional

update part is also dependent on the posterior filtered output (D) which is based

on the conventional weights updated through (B). The conventional update only

relies on the final weights of the previous iteration for its adaptation. It can also

be noted that both the conventional and fractional terms use the same filtered

input regression vector. The filtered error eF (k) =
∑Q−1

q=0 sq(k)e(k− q) the filtered

output yF (k) =
∑Q−1

q=0 sq(k)y(k − q) and the filtered output due to filtered input

ŷF(k) = wT(k − 1)xF(k) are pre-computed before the conventional update (B).

For fractional update the posterior filtered output ŷF (p)(k) due to filtered input is

based on the in-process weights updated through (B), that is, ŷF(k) = wT
l (k)xF(k).
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Table 6.6: Computational complexity of various algorithms.

Algorithm Multiplications Additions Fractional Powers

NLMS 2M+1 2M+1 0

FrNLMS 5M+2 4M+1 M

FxLMS 2M+2Q+1 2M+2Q-2 0

FrFxLMS 5M+2Q +2 4M+2Q-2 M

MFxLMS 2M+3Q +1 2M+3Q-1 0

FrMFxLMS 5M +5Q +2 5M+5Q+1 M

FeLMS 2M+2Q +1 2M+ Q -1 0

FrFeLMS 4M+ Q +2 4M+ Q -1 M

FN-FeLMS 3M+ Q +1 3M+ Q M

It can be noted that in all the fractional order variants, the instantaneous error

is based on the weights of the previous iteration which are updated through both

conventional and fractional parts. The conventional filtered LMS (all variants)

relies on these weights in conventional adaptation; a virtual output which does not

generate any signal for the control speaker but is used internally in the algorithm

is calculated and based on this output a new virtual or posterior error (since, it

is not observed through any sensor or microphone) is calculated. The fractional

term relies on this posterior error for its weight adaptation equation. In all the

algorithms, the step size is a function of only the input signal energy, that is, 1
‖x‖2

and also depends on the fractional order in fractional variants.

6.3 Computational Complexity

The computational complexity of most algorithms is determined using the number

of additions/subtractions and multiplications/divisions required per iteration [81,

142]. A new computational term is introduced for fractional power calculation

of a real or complex number. The detailed computational complexity analysis

of the proposed algorithms is shown in Table 6.6; the per-iteration complexity is
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almost double in terms of the traditional computation requirements of additions

and subtractions. It is assumed that there are M adjustable weights or taps,

and the SP is modeled by the filter s with Q taps, in general it is assumed that

M >> Q. There are M computations required for calculating the fractional power

since there are M weights. The complexity further increases if a variable fractional

order case is considered as the new parameter is based on Gamma functions of

different orders.

Here a fixed order case is considered. In the simulation results shown in the next

section, very fast convergence is achieved using the newly proposed algorithms,

the overall computations required to achieve the desired model accuracy are much

less than the traditional algorithms. For example considering a 10-tap case, the

FrFeLMS achieves -60 dB MSD in 200 iterations while its conventional counterpart

takes 2300 iterations, there are 59800 operations required in FeLMS while for

FrFeLMS 13800 operations are required. It is observed that not only get faster

convergence but also less computation to get the desired response. An option could

be to use fractional variants in the start to achieve faster convergence and then

use conventional algorithms in the steady-state to reduce computational load.

6.4 Simulation Results and Analysis

Extensive computer simulations are performed using different inputs, step-sizes

and fractional orders, the PP output is corrupted by independent and identically

distributed (i.i.d.) additive zero mean white Gaussian noise g(k); in almost all

cases its variance is set at 60 dB below the input signal power level. Although

the step sizes µl and µf can be different, their values are kept equal for clear

comparison. Reliability and accuracy of the proposed algorithms are assessed in

terms of three parameters. The first is the mean squared error (MSE) calculated
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as:

MSE(dB) = 10 log10 E [e2(k)]

= 10 log10 E

[(
d(k)−wT(k− 1)x(k)

)2
]

(6.19)

The second performance metric is the mean squared deviation (MSD) which is

defined as:

MSD(dB) = 10 log10 E
[
‖wo −w(k)‖2

]
(6.20)

The third performance metric which is very important in ANCS applications is

the relative modeling error and is defined as:

∆S(dB) = 10 log10 E

[
‖wo −w(k)‖2

‖wo‖2

]
(6.21)

where the vector wo represents the optimal weights. Four different primary path

models of different orders are considered for the simulations. The first one is a

basic model [30–33] having 10-taps and the rest are generated from the convolution

operation. The second model is a 19-tap case and is represented by P1 which is

given below:

P1(k) =
∑2M−1

i=0 pi(k)pi(k− i) (6.22)

The third model is the convolution of the basic and the second models and has

28-taps. It is given by:

P2(k) =
∑3M−2

i=0 pi(k)p1(k− i) (6.23)

The last model is a 37-tap case and is derived from the basic model as follows:

P3(k) =
∑4M−3

i=0 pi(k)p2(k− i) (6.24)

The normalized frequency responses of the different models for the primary paths
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Figure 6.2: Normalized frequency responses of the different primary path
models.

are shown in Figure 6.2. In the simulations, a fixed error path finite impulse

response (FIR) filter is considered [30–33] with response:

S(z) = 1− 1.2z−1 + 0.72z−2 (6.25)

Simulation results are also provided for impulsive noise sources which are mod-

elled as α-stable processes and are characterized by heavily tailed distribution

having fractional lower order moments or statistics (FLOM/FLOS). There is no

closed form expression for such density functions [143] but they have the following

characteristic equation:

ϕ(x) = exp

(
jλx− γ|x|α

[
1 + jβsign(x)ω(x, α)

])
(6.26)
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where

ω(x, α) =

 tan
απ

2
if α 6= 1

2

π
log |x| if α = 1

(6.27)

and the sign function is defined as:

sign(x) =


1 if x > 1

0 if x = 0

−1 if x < 1

(6.28)

Here, α is the characteristic exponent that decides the heaviness of the tails and

its value should satisfy 0 < α < 2; λ is the location parameter and is within the

range −∞ < λ < ∞; γ > 0 is the dispersion parameter and β is the index of

symmetry (−1 ≤ β ≤ 1); its 0 value is for symmetric distributions. The Gaussian

distribution is a special case of α-stable distribution [144–146] and is given by:

fα=2,β=0(γ, λ, x) =
1√
4πγ

exp

(
− (x− λ)2

4γ

)
(6.29)

Its first order special case is the Cauchy distribution that models highly impulsive

noises [146] and is given as:

fα=1,β=0(γ, λ, x) =
γ

π[γ2 + (x− λ)2]
(6.30)

6.4.1 Simulation Results for FN-FeLMS Algorithm

Detailed simulations with different step sizes and fractional orders are performed,

the primary path output is corrupted by additive zero mean white Gaussian noise

g(k), its variance is set at 60 dB below the input signal power level. Reliability

and accuracy of FN-FeLMS is assessed in terms of MSE and MSD. Simulations are

performed for 12,000 iterations for both FeLMS and FN-FeLMS algorithms; the
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Figure 6.3: MSE learning curves for FeLMS & FN-FeLMS for different choices
of µf and µl and for Gaussian noise, ν = 0.5, SNR = 60 dB.

MSE and MSD values are averaged over 500 Monte Carlo runs. The step sizes are

kept equal, that is, µf = γµl where γ is a multiplying factor; results are plotted in

Figures 6.3-6.5. The FIR filter s is modelled as low pass [2], its impulse response

is {1 -1.2 0.72}.

Figure 6.3 shows the ensemble average MSE learning curves for Gaussian input

data; step sizes for FeLMS are taken as:µl = {0.01, 0.05, 0.09}. For FN-FeLMS,

the fractional derivative order ν is taken as 0.5, and γ = 3.

Figure 6.4 shows the ensemble average MSD curves for Gaussian input data, ν

is 0.1, the step size µl = {0.02, 0.06, 0.1}, and γ = 2. Both figures confirm that

FN-FeLMS has faster convergence than FeLMS.

Figure 6.5 shows MSD curves for binary input data, the fractional order is -0.25

and γ = 4. In all the simulation scenarios considered, the FN-FeLMS shows faster

convergence than the FeLMS algorithm, also the steady state performance is seen

to improve as the fractional order decreases. For cases µl = {0.03, 0.08, 0.2},the

standard FeLMS method takes 6968, 2732, 1262 iterations to converge to an MSD
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Figure 6.4: MSD learning curves for FeLMS & FN-FeLMS for different choices
of µf and µl and for Gaussian input, ν = 0.1, SNR = 60 dB.

of -60 dB, whereas the FN-FeLMS converges in 4324, 1748, 1001 iterations respec-

tively.

Table 6.7 summarizes the effects of changing the fractional order on convergence

and steady state performance for binary input data. Taking µl = 0.1, γ = 4, the

FeLMS algorithm yields a steady state MSD of -60 dB at iteration number 2500; to

converge to -60 dB, a total of 2232 iterations are required. Column 2 of the table

shows the number of samples required for the FN-FeLMS to converge to an MSD

of -60 dB. The convergence improves as ν becomes more positive (more derivative

action), while the steady state performance degrades. For negative values of v,

the convergence is slower but the steady state performance improves due to more

integration action of the differintegral operator. The improvement over FeLMS is

seen in the last column of the table.

Figure 6.6 shows normalized frequency responses for FeLMS and FN-FeLMS algo-

rithms at iteration number 1500 for µl = 0.1, µf = 0.5; the latter more accurately

matches the ideal response, indicating better path modelling.
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Figure 6.5: MSD learning curves for FeLMS & FN-FeLMS for different choices
of µf and µl and for binary Input data, ν = 0.− 0.25.

Table 6.7: Convergence and MSD for FN-FeLMS for µl=0.1,γ = 4

ν k for MSD of -60 dB MSD at k = 2500 Gain in MSD over FeLMS

0.5 1063 -63.01 52.37%

0.25 1170 -63.73 47.58%

0.1 1259 -64.19 43.59%

-0.1 1371 -64.72 38.58%

-0.25 1442 -65.21 35.39%

-0.5 1596 -66.28 28.49%
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Figure 6.6: Frequency response of the primary path and secondary path mod-
els using FeLMS & FN-FeLMS methods, ν = −0.5.

6.4.2 Simulation Results for Modified FO Algorithms

Figure 6.7 shows comparative MSD learning performance of the baseline FN-

FeLMS [67] versus the proposed FrFeLMS in this work. The simulations are

performed for 1400 samples and the ensemble MSD is obtained through 500 inde-

pendent runs. The input is binary noise, the step size is 0.1 in both cases while

the constant term is γ = 4 for both cases. The fractional order is varied from

0 to 1 in increments of 0.2. Convergence improves in both cases over the tradi-

tional FeLMS; however FrFeLMS exhibits faster convergence and better steady

state performance as opposed to FN-FeLMS. In both cases, convergence increases

with fractional order, however MSD degradation in the earlier scheme of [67] is

more prominent as compared to the newly proposed scheme.

Table 6.8 provides both the -60 dB convergence and the steady state performance

for f = 1 for 2000 samples, the ensemble MSD is obtained through 500 runs. Differ-

ent fractional orders νε[0, 1] have been considered. For binary input, the step size

µl = 0.1, γ = 1, while for Gaussian input µl = 0.05 and γ = 4. It is seen that for

binary input, the proposed FrFeLMS has about 4 dB improved MSD performance,

while for Gaussian input with smaller step size the improvement is about 5 dB over
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Figure 6.7: FrFeLMS vs. FN-FeLMS MSD Learning curves for different step
sizes.

the FN-FeLMS [67]. The convergence improvement of the proposed FrFeLMS over

the FN-FeLMS technique is from 43% to 67%; simulation results clearly establish

the superiority of the proposed algorithm over that of the previous [67]. In [67]

the MSD for the conventional case is -65.45 dB at 2500 samples, and for -60 dB,

the required number of iterations is 2232. The convergence improvement over the

conventional algorithm is in the range 54% to 84%.

Figure 6.8 shows the MSD performance of FxLMS and its fractional variant Fr-

FxLMS for different step sizes for binary input noise. The fractional order chosen

for FrFxLMS is 0.8. It can be seen that FrFxLMS has faster convergence for all

step sizes and has a similar MSD performance in the steady-state. For a step

size of 0.1, FxLMS converge to -60 dB in 8288 iterations whereas FrFxLMS re-

quires 1946, resulting in 76.52% improvement. For µ = 0.08 FxLMS converges

in 1.034× 104 iterations and FrFxLMS in 2386 iterations which results in 76.92%

improvement.For µ = 0.05, the improvement is 77.26% as the fractional variant

requires 3721 iterations while its conventional counterpart takes 1.636× 104 iter-

ations.
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Table 6.8: MSD Convergence performance comparison of FrFeLMS vs. FN-
FeLMS [67]

Input FO k for k for FN-FeLMS MSD at FrFeLMS MSD

noise (ν) FN-FeLMS FrFeLMS k=2000 [67] at k=2000

Binary 0.1 1537 900 -65.59 -69.15

input 0.3 1458 818 -65.56 -69.15

µl = 0.1 0.5 1368 714 -65.36 -68.81

and 0.7 1292 644 -64.96 -68.76

γ = 1 0.9 1238 610 -64.96 -68.76

Gaussian 0 1808 1025 -64.09 -69.21

input 0.2 1555 837 -63.64 -68.47

noise 0.4 1354 655 -63.53 -68.28

and 0.6 1222 495 -62.39 -67.81

µl = 0.05 0.8 1122 389 -62.32 -67.55

γ = 4 1 1084 356 -62.32 -67.52

Figure 6.9 shows the MSD performance of MFxLMS and its fractional variant

FrMFxLMS for different step sizes and Gaussian input noise. The noise level is

kept 30 dB below the input signal level. Simulate results are obtained for 15000 it-

erations and each MSD is obtained by averaging over 200 independent runs. The

fractional order chosen for FrMFxLMS is 0.95. It is seen that FrMFxLMS has

faster convergence for all step sizes; the steady state MSD is a bit poorer. For a

step size of 0.06, MFxLMS converges to -30 dB using 1999 iterations, whereas FrM-

FxLMS requires 1135 iterations resulting in a 43.22% improvement. For µ = 0.04,

the MFxLMS algorithm converges in 3022 iterations and FrMFxLMS in 1621 it-

erations which results in a 46.34% improvement. For µ = 0.06, the improvement

is 76.08% as the fractional variant requires 6253 iterations while its conventional

counterpart takes 1.232× 104 iterations.

Figure 6.10 shows the MSE learning curves of NLMS, FxLMS, FeLMS and their

fractional variants FrNLMS, FrFxLMS and FrFeLMS for Gaussian noise as input.
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Figure 6.8: FxLMS vs. FrFxLMS MSD Learning curves for different step
sizes.

Figure 6.9: MFxLMS vs. FrMFxLMS MSD Learning curves for different step
sizes.
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Figure 6.10: MSE performance of NLMS, FxLMS, FeLMS, FNLMS, FrFxLMS
and FrFeLMS for Gaussian noise.

The fractional order is fixed at 0.95 and step size at 0.15. The basic 10-taps path

is considered with results are shown for 5000 input samples and the ensemble

average MSD is obtained from 1000 independent runs. The fractional variants

have faster convergence rates than their corresponding conventional counterparts.

The filtered variants show a better convergence performance. The FrNLMS has

the fastest convergence, followed by the FrFeLMS, NLMS, FrFxLMS, FeLMS and

FxLMS algorithms.

Figure 6.11 shows the MSD learning curves for different tap-lengths, input noise

samples are drawn from standard normal distribution with zero mean and unit

variance. Results are shown for 8000 input samples and ensemble average MSD

is obtained from 1000 independent runs. The step size is fixed at 0.25 and the

fractional order is set to 0.8. Tap lengths considered are 19, 28 and 37 which are

obtained from the basic 10-tap primary path p through the convolution opera-

tion. As can be seen the performance of FeLMS degrades severely as compared to

FrFeLMS. With FrFeLMS the 60 dB MSD value is obtained in 587 iterations for

19-taps, 978 iterations for 28-taps and 1477 iterations for the 37-taps case. For the
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Figure 6.11: FeLMS vs. FrFeLMS MSD Learning curves for different tap-
lengths.

FeLMS, it requires 2487, 4448 and 7168 iterations, respectively. The convergence

improvement over FeLMS is therefore 76.4%, 78% and 79.4% for 19, 28 and 37

taps, respectively.

Figure 6.12 shows the MSD performance of FxLMS and FrFxLMS for binary input

generated through an i.i.d. random process with equally probable bipolar outputs

and different number of taps of the primary path, the step size chosen is 0.15

and the fractional order is 0.75. It can be seen that FrFxLMS has faster conver-

gence rates for all taps-lengths, and has an almost similar MSD performance in

the steady-state. Using 10-taps, FxLMS converges to -60 dB in 5670 iterations,

whereas FrFxLMS requires 1400 iterations which correspond to a 76.31% improve-

ment. For 19-taps FxLMS converges in 1.225 × 104 iterations and FrFxLMS in

2879 iterations which results in 76.50% improvement. For the 28-taps case, the

improvement of FrFxLMS over FxLMS is 75.23% as the fractional variant requires

4954 iterations while FxLMS takes more than 20000 iterations.

Figure 6.13 shows the MSD learning curves of FrFeLMS for different fractional

orders and step sizes. Again the noise samples are drawn from standard normal
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Figure 6.12: FxLMS vs. FrFxLMS MSD Learning curves for different tap-
lengths.

distribution with zero mean and unit variance. The basic 10-taps path is consid-

ered with results are shown for 1000 input samples and the ensemble average MSD

is obtained from 1000 independent runs. Results on the left side are shown for a

fixed step size of 0.5 and the fractional order is varied from 0.1 to 1 in increments

of 0.1. Results on the right side are shown for a step size of 0.1 and the same

fractional orders. It is seen that the convergence speed increases as the fractional

order is increased. The MSD is dependent on step size only; it improves as the

step size is decreased.

Figure 6.14 shows effects of changing the number of taps of the primary path at

different iteration numbers, the procedure is the same as for Figure 6.12. Here, the

weights and regression vectors are kept as of the previous iteration. The numbers

of taps are changed at iteration number [1000, 2000, 3000, and 4000] from 10 to 19,

19 to 28, 28 to 37, 37 to 28, and 28 to 19 and back to 10. The change in primary

path does not affect the MSE performance of fast convergent NLMS, FrNLMS,

and FrFeLMS since the paths are already modeled using weights in the previous

iterations. In the case of FxLMS, its MSE performance is seen to be quite poor
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Figure 6.13: MSD Learning performance of FrFeLMS for different fractional
orders and Gaussian input noise.

relative to FrFxLMS.

6.4.3 Simulation Results for Impulsive Noises

Figure 6.15 shows the relative modeling error performance of FeLMS and FrFeLMS

for SαS(β = 0) based impulsive noise having 1st order and fractional order statis-

tics. Simulations are provided for the basic path for 15000 iterations and the

average obtained of 100 independent runs. The fractional order is fixed at 0.85,

γ = 1.5 and µl = µf. The small figure shows a portion of the input noisy signal

samples with outliers reaching amplitude of 1000; the input corresponds to Cauchy

density function when α = 1, β = 0. In such a scenario the FeLMS has a divergent

behavior and is unstable even at low step sizes. The performance of FrFeLMS is,

however, almost within the acceptable range. For α = 1.5 and 1.75, the FrFeLMS

has faster convergence at relatively bigger step sizes of 0.075 and 0.1 respectively.

For α = 1.5 and µl = 0.075, the -60 dB performance is achieved by FrFeLMS
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Figure 6.14: Effects of changing the number of taps of the primary path at
different iteration number.

in 1346 iterations while 6603 iterations required in FeLMS; the improvement in

convergence is 79.6%. Similarly For α = 1.75 and µl = 0.1, FrFeLMS converges in

1066 iterations and FeLMS in 4849 iterations, the improvement in convergence is

78%.

Figure 6.16 shows the relative modelling error performance of FeLMS and Fr-

FeLMS for different α values and step sizes for AαS (β = 1) impulsive noise. The

results are generated for the primary path P1 with 19-taps. The RME is calculted

for 10000 iterations and averaged over 200 independent runs. The fractional order

is fixed at 0.85, γ = 1.5 and µl = µf. As opposed to the previous case, FeLMS

has stable but slow convergent behavior. For α = [1.75, 1.5] with corresponding

µl = [0.1, 0.075], the FeLMS converges in [4757, 7297] iterations while the pro-

posed FrFeLMSin [1008, 1374] iterations, which corresponds to an improvement of

[78.8%, 81%] respectively. For α = 1.75, the FrFeLMS has a very fast convergence

as compared to its counterpart.

Figure 6.17 shows the relative modelling error performance of FN-FeLMS and Fr-

FeLMS, the impulsive noise is generated for the characteristic exponent α = 1.5,
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Figure 6.15: Relative Modelling Error of FeLMS and FrFeLMS algorithms for
SαS impulsive input noise.

Figure 6.16: Relative Modelling Error of FeLMS and FrFeLMS for asymmetric
α-stable impulsive input noise.
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Figure 6.17: Relative Modelling Error of FeLMS and FrFeLMS for asymmetric
α-stable impulsive input noise.

dispersion parameter of 5 and β = 1. The iterations considered are 4000 and

Monte Carlo runs of 200. The same step size of 0.05 has been chosen and frac-

tional orders of [0, 0.25, 0.5, 0.75, 1] are kept for both the algorithms. It can

be seen that the proposed variant FrFeLMS has superior performance in terms of

convergence rate as well as steady state response as compared to FN-FeLMS for

all fractional orders.

It is seen from simulation results that FrFeLMS shows much improvement in

convergence performance over FeLMS, followed by FrFxLMS over FxLMS. The

improvements in these algorithms is about 75-80%. In case of FrMFxLMS the

convergence improvement is approximately 45% in all cases. The steady-state

performance of the fractional variants also shows improvement, especially when

the relative modeling performance metric is considered. The limitation of the con-

ventional algorithms is that the only adaptation parameter is the step size which

controls the rate of convergence and provides robustness in ANC applications.

The fractional order algorithms provide fast convergence by treating each weight
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Figure 6.18: Effects of fractional order on Gw1−v, the single plot shows the
behavior of G for different fractional orders.

independently [127] according to the fractional order and weight values. In Fig-

ure 6.18, plots of the term Gw1−ν are shown for a scalar w to show the effect

of varying the fractional order. Increasing the fractional order results in a larger

’gain’ for small weight values. The plot at the bottom right shows the variation

of G with respect to the fractional order, which also helps adjusting the step size.

The proposed strategies provide improvements over the traditional approaches,

the new fractional technique helps capture the parameters of the model quickly,

while keeping the error small.

6.5 Conclusions

New hybrid algorithms are designed to generate fractional alternatives of FxLMS

and its variants. The algorithms are applied to the active noise control system in

the feed-forward configuration using different non-integer orders, and performance
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is compared with their traditional counterparts. The performance indicators con-

sidered are the mean squared error, the mean squared deviation and the relative

modeling error. The performance of the algorithms are also considered for differ-

ent primary path models changing during the steady state. Results show that the

fractional variants converge faster for different types of input noise such as binary

and Gaussian. The steady-state performance for the designed algorithms is almost

the same as their conventional counterparts. It is seen that FrFeLMS shows high-

est improvement in convergence performance over FeLMS, followed by FrFxLMS

over FxLMS. The improvements in these algorithms are of the order of 75-80%

for the same step size. In case of FrMFxLMS the convergence improvement is

approximately 45% in all cases.



Chapter 7

Tracking of Rayleigh Fading

Channels

This chapter presents the tracking behavior of Fractional Order (FO) variants of

the Normalized Least Mean Square (NLMS) algorithm in a nonstationary envi-

ronment modeled as time varying Rayleigh fading sequence. In such cases, mostly

the celebrated Recursive Least Squares (RLS) or its variant Extended RLS (E-

RLS) algorithms have much degraded steady state response. The FO algorithms

are obtained by applying fractional derivatives in the cost function; such schemes

provide two step sizes and an FO to control the rate of convergence and have

an acceptable steady state behavior. In evaluation, a high speed mobile envi-

ronment is considered with a Rayleigh channel which results in different Doppler

frequency shifts depending upon the transmission frequency and relative velocity

of the transmitter and receiver. The proposed algorithms are compared with the

NLMS, RLS and E-RLS schemes, numerical experiments show the superiority of

the FO variants over these schemes in terms of stability and model accuracy in the

steady state. A hybrid scheme is also shown where the weights of an FO variant

are initially trained with RLS and then performs self-adaptation; the FO scheme

is seen to have better performance than all traditional counterparts.

The presentation in the rest of the chapter is as follows: Section 7.1 presents intro-

duction with importance of the tracking relating to literature. Section 7.2 states

109



Tracking of Rayleigh Fading Channels 110

the system model for the track-ing of time varying sequences. Sections 7.3 and

7.4 respectively summarize the RLS and Fractional variants of NLMS algorithms.

Section 7.5 shows simulation results and discussions for different parameters of the

algorithms and characteristics of the fading sequences. The final section concludes

the chapter.

7.1 Introduction

Fast and efficient implementation of algorithms is required to accurately track

fast time vary-ing channels which result from Doppler phenomena in a high speed

mobility environment such as high speed airplanes, trains and vehicles. In these

applications, Doppler shifts of about a tenth to a few thousands of Hertz may

arise depending upon the transmission frequency, vehicle velocity and direction of

motion [77, 78, 147]. The problem is made worse by multipath effects due to re-

flections, scattering and diffraction, which result in inter-symbol interference (ISI)

[78, 147–149]. The LMS based algorithms are frequently applied in stationary en-

vironments due to their implementation ease and better steady state performance

[79, 150]. However, they have poor rate of convergence; so alternative approaches

such as recursive least squares (RLS) or extended RLS are used [11]. However,

in time-varying nonstationary environments [122], the LMS, RLS and their vari-

ants compromise convergence with steady state performance; and at very high

Doppler frequency shifts (with vehicular speeds of the order of 500 km/h for LTE

[38, 151–153], 225km/h in IS-136 [41, 147, 154, 155] and other standards that can

result in a maximum of Doppler shift of roughly 0.8KHz to 3KHz, the steady state

performance also substantially degrades [25, 82, 83]. RLS achieves faster conver-

gence but its steady state behavior degrades as the dynamics increase, while the

LMS has superior performance in steady state but has the issue of poor rate of

convergence. To get improved performance in both transient and steady state,

the Kalman filter can be applied but it exhibits relatively high complexity due to

on-line update of the Riccati equation [11], [156, 157].

The effects of multipath propagation include signal fading which is characterized
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by delay spread and Doppler spread. Signal fading is caused by the interference be-

tween signals propagating through different paths. The delay spread is broadening

in duration of received signal with respect to the transmitted signal as different

delays are associated with the propagation paths. Doppler spread refers to the

broadening of the frequency spectrum of the received signal with respect to the

transmitted signal, when there is relative motion between the transmitter and the

receiver. This is due to the different angles of arrival associated with the propa-

gation paths.

The importance of tracking fast fading channels in high mobility vehicular commu-

nications [147, 149], motivates the authors to examine the application of fractional

calculus to improve the performance metrics i.e., mean squared error (MSE) and

mean squared deviation (MSD). It is worth mentioning that the performance of dif-

ferent tracking algorithms has been studied extensively in the literature for the last

three decades [158–168], including variable step size adaptation in [158, 159, 169],

amplitude tracking in OFDM systems in [160, 161], tracking in MIMO systems in

[162, 163] and MIMO-OFDM systems in [164, 165]. For tracking channels, least

squares [71, 166] and spline adaptive filters [167] have been applied recently, [168]

provides a study of a third order amplitude tracking loop for online slow fading

sequences.

7.2 System Model

Rayleigh fading channels provide a practical example of non-stationary environ-

ment. For tracking a Rayleigh fading sequence, a block diagram based on adap-

tive filtering is shown Figure 7.1. In such a case, the auto-correlation matrix of

the input signal or the cross correlation vector of the input-output signals are

time varying for which the optimal Weiner filter weight vector wo(k) is also time

varying. Estimation with a Weiner filter is a complex implementation issue re-

quiring the calculation of an auto-correlation matrix, its inverse and the output

cross-correlation vector. A gradient-based adaptive filter, on the other hand does

not explicitly require the cross correlation vector or auto-correlation matrix in its
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Figure 7.1: Schematic of adaptive tracking problem.

weight update equation to track the changes in the optimal weights. Finite Im-

pulse Response (FIR) transversal structure is assumed for the adaptive filter with

time varying weight vector w with M taps. An error vector is defined with M

elements:

e(k) = [ e(k), e(k − 1) . . . e(k −M + 1) ]T. (7.1)

The objective of the adaptive filter is to minimize the instantaneous (squared)

error between the observed output:

d(k) = wT
o (k)x(k) + g(k). (7.2)

and the output y(k) of the adaptive filter. In equation (7.2), the time varying vector

wo(k) corresponds to the optimal Wiener weights required for optimal identifica-

tion and g(k) is the additive white noise modelled as a zero mean Gaussian random

variable. Having stated the inputs and outputs of the filter, in the next section

the adaptation algorithms are presented based on fractional order calculus as well

as NLMS, RLS and E-RLS.
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7.3 The Recursive Least Squares Algorithm

The weights in the least-squares method are optimized by minimizing the sum

of squared values of the error samples of the filter output. The optimization

procedure relies on observations from the time the filter starts until the present

time. The objective function [5, 6, 11, 79], is defined as:

ξ(k) =
∑k

l=o ρ(l)e2(l) =
∑k

l=o λ
k−le2(l). (7.3)

where λ is the forgetting factor and its objective is to weight the recent samples

more heavily as compared to the older ones. The input data is conveniently as-

sumed to be zero for initialization. The error e(k) is the difference of the desired

response d(k) and the filter output y(k), that is:

e(k) = d(k)−wT(k)x(k) (7.4)

For derivation of RLS, standard literature can be seen such as[5, 6, 11, 79] and

other references, the objective here is to state its update procedure. The auto-

correlation matrix R is defined as the expectation of the outer product of input

vectors scaled by λ as given by:

R(k) =
∑k

l=o λ
k−lxT(l)x(l). (7.5)

Next, the input-output cross correlation vector is defined in terms of scale factor

λ as:

p(k) =
∑k

l=o λ
k−lxTk (l)yk(l). (7.6)

A gain vector is calculated to simplify the calculations and later its usage in the

update part, this is called the Kalman gain and in terms of forgetting factor and

auto-correlation matrix [5, 11, 79], it is given by:

q(k) =
R−1(k− 1)xT(k)

λ+ R−1(k− 1)xT(k)
. (7.7)
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The final update equation is:

w(k + 1) = w(k)− q(k)e∗(k). (7.8)

The current auto-correlation matrix is updated [5, 11, 79] as below:

R−1(k) =
1

λ

[
R−1(k− 1) + q(k)xH(k)R−1(k− 1)

]
. (7.9)

The total computational complexity of the RLS algorithm is very high, especially

when M is large [5, 6]. The complexity per iteration is about 4M2 multiplications

and 3M2 additions/subtractions per iteration [6, 11]. The above algorithm is the

standard RLS algorithm and the update equations are represented in terms of

correlation matrix and gain vectors. Although there are many variants of the RLS

algorithm, in the following, only the extended RLS (E-RLS) algorithm is presented

using the alternate representation form used for describing the Kalman filter. The

general RLS algorithm is a special case of Kalman filter [40, 157]. In [5, 40] it has

been shown through general deterministic criterion that E-RLS is equivalent to a

full-blown Kalman algorithm and is better suited for tracking of non-stationary

inputs. The tracking problem can be formulated by having the measurement

variable d(k) as in equation (7.2) and set h(k) = w(k). The recursions in terms of

forgetting factor λ can be derived, the details of which can be seen in the references

[5, 11, 79, 170–172]. The a-posteriori error in terms of forgetting factor can be

written as:

r(k) = λkx(k)P(k− 1)x∗(k) (7.10)

The Kalman gain parameter can be written as:

q(k) =
P(k− 1)

r(k)
(7.11)
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The a-priori error is calculated as:

e(k) = d(k)− hT(k− 1)x(k) (7.12)

The estimated input is obtained through the scaled ( weighted by α ) weight

update equation as below:

h(k) = αh(k− 1) + q(k)e(k− 1) (7.13)

Finally,

P(k) = |α|2
[
P(k− 1)− P(k− 1)x∗(k)x(k)P(k− 1)

λk + x(k)P(k− 1)xH(k)

]
+ λksI (7.14)

By the change of variables h(k) = w(k), P(k) = λ−kP(k + 1), and multiplying

the recursion for P(k) by λ−k, zero initialization of w, the following two update

equations are obtained for weight adaptation and P(k) respectively.

w(k) = αw(k− 1) +
λ−1αP(k− 1)x∗(k)

1 + λ−1x(k)P(k− 1)x∗(k)

[
d(k)− x(k)wT(k− 1)

]
(7.15)

P(k) = λ−1|α|2
[
P(k− 1)− λ−1P(k− 1)x∗(k)x(k)P(k− 1)

1 + λ−1x(k)P(k− 1)x∗(k)

]
+ sI (7.16)

Here, s is some positive scalar and |α| < 1. Equivalence among the many variants

of the RLS algorithms has been established widely. Here, the tracking performance

of fractional order strategies developed in this thesis are compared with the above

well-known RLS algorithm which is a special case of the Kalman filter and the

E-RLS which is full-blown equivalent of the Kalman filter as already discussed.



Tracking of Rayleigh Fading Channels 116

7.4 Fractional Least Mean Square Algorithm and

Its variants

In this section, the fractional order algorithms are presented in a summarized form

as most of them have been derived in previous chapters. A Fractional Normalized

LMS (F-NLMS)algorithm (version 1) with step size dependent on the input signal

energy and having two update parts [71], that is, a first order gradient based and

a fractional update part is as follows:

w(k + 1) = w(k) + µlg(k) + µfg(k)� w1−ν(k)

Γ(2− ν)
(7.17)

where g(k) is the correction term based on integer order derivatives and is given

by:

g(k) =
xH(k)e(k))

‖x(k)‖2 + ε
(7.18)

The initially developed fractional least mean square (FLMS) algorithm [37, 68,

69] has some inherent issues. The final update was derived based on successive

approximation assumption which is essentially not required and can be relaxed.

In [67, 88, 114], it was proposed to calculate the standard update equation first,

followed by the fractional update part and then both the weights are added to get

the final weight update (version 2). The iterative processes is as follows:

wl(k) = w(k− 1) + µlg(k) (7.19)

where, g(k) is calculated as in equation (7.18). Next the fractional part is calcu-

lated using the weights updated through equation (7.19) and the iteration number

is kept fixed, that is:

∆wf(k) = µfg(k)� w1−ν(k)

Γ(2− ν)
(7.20)
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Table 7.1: Summary of Fractional Normalized LMS v3.

wl(k) = w(k-1) + µl
x(k)[d(k)−wT(k− 1)x(k)]

‖x(k)‖2 + ε
(A)

∆wf(k) = µf
Γ(3− ν)

Γ(2− ν)

x(k)[d(k)−wT(k− 1)x(k)]

‖x(k)‖2 + ε
� |wl(k)|(1−ν)sgn (wl(k))

Γ(2− ν)
(B)

w(k) = wl(k) + ∆wf(k) (C)

The final update is formed through the addition of equations (7.19) and (7.20).

w(k) = wl(k) + ∆wf(k) (7.21)

For the general case where the weights in the fractional update part can be positive

or negative, the implementation is done by using the sgn function. In such a case,

the equation (7.20) can be written as follows:

∆wf(k) = µfg(k)� |wl(k)|(1−ν)sgn (wl(k))

Γ(2− ν)
(7.22)

It can be noted that in both the updates equation (7.17) and equation (7.20), the

step size in the fractional updates is independent of the fractional order. The third

modification (version 3) made to the normalized variant was the fractional order

dependent step size adaptation; it has been applied in active noise control systems

[67, 88]. For the tracking problem, the summary of the algorithm is given in Table

7.1; note that this is a modified version of the algorithm as presented in [67, 173].

The final modification (version 4) which is made is the use of posterior error based

adaptation. The standard update uses the prior error, while the fractional part

exploits the posterior error. The update is derived using the fractional derivative

by taking the posterior error in the second cost function. Table 7.2 shows the main

update equations. In the next section, the tracking performance results of these

algorithms are shown and a comparative study is performed with NLMS, RLS and

E-RLS algorithms.
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Table 7.2: Summary of F-NLMS v4..

e(k) = d(k)−wT(k− 1)x(k) (A)

wl(k) = w(k-1) + µ(k)e(k)x(k) (B)

ep(k) = d(k)−wT
l (k)x(k) (C)

∆wf(k) = µf(k)ep(k)x(k)� |wl(k)|(1−ν)sgn (wl(k)) (D)

w(k) = wl(k) + ∆wf(k) (E)

7.5 Simulation Results and Analysis

For performance evaluation of the proposed algorithms, the tracking of Rayleigh

fading channels is considered; different channels are generated with different Doppler

shifts. Fading occurs in wireless communications due to multi-paths and motion

of the transmitter, receiver or the environment. The combined signal from all

paths is the result of constructive or destructive interference depending upon the

phases of the individual signals; among several mathematical models Rayleigh

fading is generally the most practical. The composite signal magnitude exhibits

Rayleigh distribution while the phase follows a uniform distribution. The Doppler

frequency changes in direct proportion to the vehicle speed as well as the transmit-

ted signal frequency. For simulation purpose and comparative analysis with other

algorithms, two basic performance metrics of mean squared error (MSE) and mean

squared deviation (MSD) are considered for the evaluation. All the algorithms are

evaluated through extensive simulation results using the Monte Carlo approach, a

comparison is provided with their traditional counterparts.

The above four fractional order algorithms are considered with equation (7.17) as

version 1 (v1), the second algorithm (7.19-7.21) as v2, the third (Table 7.1 A, B, C)

as v3 and the fourth (Table 7.2 A, B, C, D, E) as v4. It is shown in [40, 171, 172]

that NLMS is robust in a nonstationary environment while the computationally

complex RLS and E-RLS algorithms have degraded performance as the Doppler

shift increases. The fractional variants are compared through simulation results

for time varying channels generated for different Doppler shifts in frequency. The
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observed output is corrupted by the measurement noise g(k) which has a Gaussian

distribution. It has been shown in previous chapters that convergence improves

with increase in fractional order. In most cases, simulations for higher fractional

orders are shown, all the results are obtained for 1000 samples and 500 indepen-

dent runs. Each run is performed on different sets of time varying weights of the

Rayleigh channel which assumes scattering from 20 objects and observations are

drawn from a Rayleigh density function. In each run, the weights of all the filters

are initialized to zero. The parameters α and s used in RLS and E-RLS algorithms

are set such that α = Jo(2fDTs) and s = (1−α2)I, where Jo is a zero order Bessel

function of the first order and is defined as:

J(2πfDTs) =
1

π

∫ π

0

cos(2πfDTs) sin(θ)dθ (7.23)

where Ts is the sampling period of the input x(k), and fD is the Doppler frequency

which is a function of carrier frequency fc and speed v of the mobile user [5], that

is,

fD =
vfc
c

(7.24)

c = 3× 10−8m/s is the speed of light.

Figure 7.2 shows the MSE learning performance for step sizes µl = 0.2 and µf =

0.5. The Doppler shift is kept as fD = 100 Hz, and the sampling frequency is

1.25 MHz. The fractional order is set as: ν = 0.99 and the forgetting factor as:

λ = 0.999. It is seen that the RLS and E-RLS algorithms converge to the MSE

value of -25 dB in 10 iterations while the F-NLMS v1 converges in 37 iterations

and NLMS in 101 iterations. This clearly shows the convergence improvement over

the NLMS algorithm(63.37%). The steady state MSE for the NLMS, F-NLMSv1,

RLS and E-RLS is [-28.01, -27.32,-10.06,-10.13] dBs respectively. It can be seen

that NLMS has better MSE followed by F-NLMS v1 algorithm.

Figure 7.3 shows the corresponding MSD learning curve for the same parameter

settings. The steady state MSD for the NLMS, F-NLM v1, RLS and E-RLS

algorithms are [-64.11,-57.45, -19.29,-19.44] dBs respectively. It can be seen that
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Figure 7.2: MSE Learning curves of NLMS, F-NLMSv1, RLS and E-RLS for
fD = 100 Hz.

RLS and E-RLS has essentially the same MSD performance.It is also seen that

NLMS has better MSD followed by F-NLMS v1, however, the latter has superior

convergence performance.

Figure 7.4 shows the MSE learning performance for µl = 0.2 and µf = 0.3. The

Doppler shift fD = 400 Hz, and the sampling frequency is 1.25 MHz. The fractional

order is chosen to be ν = 0.85, and λ = 0.999. It is seen that the RLS and E-RLS

algorithms converge to the MSE value of -15 dB in 10 iterations while the F-

NLMSv2 converges in 29 iterations and NLMS in 85 iterations. This clearly shows

the convergence improvement of65.88%over the NLMS algorithm. The steady

state MSE values for the NLMS, F-NLMSv2, RLS and E-RLS algorithms are [-

17.32, -16.67, 1.45, 0.42] dBs respectively. It can be seen that NLMS has better

MSE followed by F-NLMS v2.

Figure 7.5 shows the corresponding MSD learning curve for the same parameter

settings. The steady state MSD for the NLMS, F-NLMSv2, RLS and E-RLS

algorithms are [-41.14, -34.78, 3.62, 1.53] dBs respectively. The RLS has the most

degraded performance.



Tracking of Rayleigh Fading Channels 121

Figure 7.3: MSD Learning curves of NLMS, F-NLMSv1, RLS and E-RLS for
fD = 100 Hz.

Figure 7.4: MSE Learning curves of NLMS, F-NLMSv2, RLS and E-RLS for
fD = 400 Hz.
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Figure 7.5: MSD Learning curves of NLMS, F-NLMSv2, RLS and E-RLS for
fD = 400 Hz.

Figure 7.6 shows the MSE learning performance for µl = 0.2 and µf = 0.5. The

Doppler shift is 900Hz, fractional order is 0.95 and forgetting factor is 0.999. The

steady-state MSE for NLMS, F-NLMSv3, RLS and E-RLS is [-13.51, -14.29, 6.11,

2.85] dBs while the corresponding MSD values are [-29.21, -27.14, 12.96, 6.43]dBs

respectively. Noise is 20 dB below the input. Figure 7.7 shows the MSD learning

curves for the same parameter settings. The RLS and E-RLS algorithms have

severely degraded performance at such high Doppler shifts.

Figures 7.8 and 7.9 respectively show the MSE and MSD learning curves for µl =

0.2 and µf = 0.5. The Doppler shift is chosen to be 1300Hz, fractional order as

0.99 and forgetting factor is 0.999. The SNR is set at 20 dB. The steady-state

MSE values for NLMS, F-NLMSv4, RLS and E-RLS are [-11.51, -21.83, 6.44,

2.95]dBs while the corresponding MSD values are [-23.27, -45.43, 13.81, 6.69]dBs

respectively. Not only the RLS and E-RLS algorithms have severely degraded

performance at such high Doppler shifts, the NLMS has also slow convergence and

degraded steady state performance as compared to the F-NLMS v4 algorithm.

Figure 7.10 shows the tracking behavior with taps 1, 2, 4 and 5 for the above
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Figure 7.6: MSE Learning curves of NLMS, F-NLMSv3, RLS and E-RLS for
fD = 900 Hz.

Figure 7.7: MSD Learning curves of NLMS, F-NLMSv3, RLS and E-RLS for
fD = 900 Hz.
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Figure 7.8: MSE Learning curves of NLMS, F-NLMSv4, RLS and E-RLS for
fD = 1300 Hz.

Figure 7.9: MSD Learning curves of NLMS, F-NLMSv4, RLS and E-RLS for
fD = 1300 Hz.
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Figure 7.10: Tracking behavior of different taps of the algorithms.

parameter setting, the behavior of tap-3 is shown in Figure 7.11. The supremacy

of F-NLMS v4 algorithm can be seen in these cases, the channel is almost perfectly

followed by the tap weight. It can be noted that the for the above cases, the

parameters α and s have been kept small.

Figures 7.12 and 7.13 show the MSE and MSD Learning curves of NLMS, F-

NLMSv4, RLS and E-RLS algorithms. In Figure 7.12, α = 0.95, s = 0.1, while

in Figure 7.13, α = 1, s = 0.1, considering the generation of Rayleigh channel

by deriving both of its real and imaginary components from independent and

identically distributed processes, it can be noted that the performance of E-RLS

and F-NLMS v4 is almost the same, followed by RLS and then NLMS, however,

the complexity of F-NLMS v4 is smaller than the E-RLS algorithm.

Figure 7.14 shows the MSE and MSD learning curves of NLMS, F-NLMSv4, RLS

and E-RLS algorithms in a hybrid configuration such that the weights of the

NLMS and F-NLMS v4 algorithms are initialized with RLS weights till the first ten

iterations and thereafter in the usual independent way of learning. The parameters

are set as: α = 1, s = 0.1, µl = 0.2,µf = 0.5,fD = 1500 Hz, ν = 0.99,λ = 0.999.
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Figure 7.11: Tracking behavior of tap-3 for different algorithms.

Figure 7.12: MSE and MSD Learning curves of NLMS, F-NLMSv4, RLS and
E-RLS.
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Figure 7.13: MSE and MSD Learning curves of NLMS, F-NLMSv4, RLS and
E-RLS.

The additive noise is 30 dB below input which is 0 dB. It can be noted that F-

NLMS v4 has the best performance followed by NLMS while RLS and E-RLS have

degraded performance. Figure 7.15 shows the taps tracking behavior.

7.6 Conclusions

In this chapter, the tracking performance of the proposed fractional order variants

was compared with its traditional counterparts as well as with the fast convergent

RLS and E-RLS algorithms. The input was a time varying channel sequence based

on different Doppler shifts, modelled by the Rayleigh distribution. The MSE and

MSD performances were compared for the NLMS, F-NLMS (different versions),

RLS and E-RLS algorithms. It was found that the F-NLMS variants mostly show

superior performance in the steady state even at higher Doppler shifts, in such

cases all other algorithms fail to perform. The RLS and E-RLS algorithms mostly

converge in about eight iterations, the FNLMS variants converge in 30-35 iterations
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Figure 7.14: MSE and MSD Learning curves of NLMS, F-NLMSv4, RLS and
E-RLS.

Figure 7.15: Tracking behavior of different taps of the algorithms in the hybrid
case.
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while the NLMS algorithm converges in 120 iterations. In the steady state NLMS

and FNLMS algorithms have almost similar performance, but RLS and E-RLS

diverge (especially for Doppler shifts greater than 100Hz). In the Hybrid case,

the FNLMS algorithm matches the convergence of RLS and exhibits steady state

performance better than both RLS and NLMS algorithms. The RLS and E-RLS

have slightly faster convergence rates but degraded steady state behavior. F-

NLMS has better convergence as well as steady state response than NLMS for

higher Doppler shifts.



Chapter 8

Summary and Future Work

The dissertation developed various fractional order adaptive signal processing al-

gorithms which were evaluated in different applications. The performance was

measured using standard signal processing as well as application specific metrics.

Based on the simulation results, it is observed that the fractional order signal

processing approaches have the potential of obtaining superior performance as

compared to the integer order classical algorithms. The rest of this chapter sum-

marizes the conclusions and presents some possible future work directions.

8.1 Summary and Conclusions

In this thesis, fractional adaptive signal processing algorithms have been applied

in four applications, namely (1) linear and Decision Feedback Equalization (DFE)

(2) constant modulus algorithm (CMA) based blind equalization (3) Active Noise

Control Systems (ANCS) and (4) tracking of time varying Rayleigh fading se-

quences.

Firstly, a fractional order variant of the normalized least mean square (FNLMS)

algorithm has been proposed for the DFE of multipath fading channels; it outper-

forms its traditional counterpart. Application of fractional calculus in combination

with the standard first order derivative allows improvement of symbol error rate

130
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per-formance by applying a more generalized modelling framework. The new hy-

brid filter structure exhibits better convergence and steady state performance, and

has greater flexibility in terms of tuning parameters. Based on simulation results

while considering different types of channels (such as frequency-flat and selective),

it could be inferred that the FNLMS gives extra freedom because of its two step

sizes options and choice of fractional orders, for better inverse modeling of the mul-

tipath channel. This can help increase the link efficiency not only by using higher

order modulation schemes, but lesser number of training symbols and therefore,

can reduce transmission power (to achieve acceptable symbol error rate at low

SNR values).

Next, a new blind adaptive algorithm has been developed which exploits fractional

derivatives in minimizing the Godard cost function, this is applied to the inverse

system identification problem of channel equalization. The proposed algorithm

has faster convergence and improved mean squared error performance, it achieves

enhanced equalization and can better alleviate the effects of additive white noise.

For larger step sizes, the conventional CMA algorithm can give a poorer MSE and

may also diverge, whereas the proposed algorithm exhibits better steady state be-

havior.

For ANCS, five fractional algorithms have been developed, namely Fractional

LMS (FrLMS), Fractional filtered-x LMS (FrFxLMS), Fractional Modified FxLMS

(FrMFxLMS), Fractional Filtered-error LMS (FrFeLMS) and Fractional Normal-

ized FeLMS (FN-FeLMS). It is seen that the FN-FeLMS converges much faster for

both binary and Gaussian input data than the standard FeLMS. The MSE and

MSD performance metrics were measured for different fractional orders and step

sizes. Increasing the fractional order helps in improving the convergence speed at

the expense of steady state performance.

Having noticed the convergence and steady state performance of the FN-FeLMS

algorithm, new hybrid algorithms were designed to generate fractional alternatives

of FxLMS and its variants. The algorithms were applied in ANCS using different

fractional orders, and performance compared to their traditional counterparts as

well as to FN-FeLMS. The algorithms were checked for different types of inputs,



Conclusion and Future Work 132

especially impulsive noise which is modelled by fractional lower order moments or

stable processes (both symmetric and asymmetric). The algorithms are also con-

sidered for different primary path models with various tap lengths. Results showed

that fractional variants converge faster for different types of input noise such as

binary and Gaussian. The steady-state performance for the designed algorithms is

almost the same as their conventional counterparts. It is seen that FrFeLMS shows

the most improved convergence performance over FeLMS, followed by FrFxLMS

over FxLMS. The improvements are of the order of 75-80% for the same step size.

In case of FrMFxLMS, the convergence improvement is approximately 45% in all

cases.

Finally, the tracking performance of the proposed fractional order variants were

compared with the traditional counterparts as well as with the fast convergence

recursive least squares (RLS) and the extended RLS (eRLS) algorithms. The input

was a time varying channel sequence based on different Doppler shifts and mod-

elled by Rayleigh distribution. The MSE and MSD performance was compared

for the NLMS, FNLMS, FrLMS, RLS and eRLS algorithms. It was found that

the FrLMS algorithm has superior performance in the steady state even at higher

Doppler shifts, in which case all other algorithms fail to perform. The RLS and

eRLS have slightly faster convergence rates but degraded steady state behavior.

It is worth mentioning that the FrLMS has better convergence and steady state

behavior than NLMS for higher Doppler shifts.

8.2 Future Work Directions

The proposed algorithms can be seen as a useful addition in the field of adaptive

(fractional order) signal processing which is open to further research. The newly

designed algorithms have attraction for wide applications since adaptive signal

processing techniques have been applied in a variety of fields such as bio-medical,

control and instrumentation, communication and defence. These include (but not

limited to) (1) system identification such as channel estimation, system model

identification, active noise control systems, line and acoustic echo cancellations,
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sensing, estimation and target localization in distributed environments, etc. (2)

inverse system modelling such as adaptive channel equalization and deconvolution

(3) spatial filtering (beamforming) such as interference and noise cancellation in

Radars, Sonars and speech enhancement, just to name a few. Some of the possible

future research directions could be the following:

• Block Filters: Fourier Transform (FT) of fractional FT (FrFT) based vari-

ants can be developed to have fractional order frequency domain adaptive

filters and sub-band adaptive filters. These filters can be applied in acous-

tics such as RADARs, SONARs, Active noise control systems, line / acoustic

echo cancellation, etc.

• Channel Estimation, Equalization or Joint Channel Estimation and Equal-

ization in Orthogonal Frequency Division Multiplexing (OFDM) or Code

Division Multiple Access (CDMA) schemes as these are among the latest

communication technologies for higher data rates and to accommodate more

users. These schemes can be evaluated with maximum likelihood sequence

estimation techniques based on soft input soft output (soft output Viterbi

Algorithm) or Turbo Codes.

• Numerical Stability Analysis: it is one aspect of checking the performance

of fractional order adaptive filters. This is usually required for fixed point

implementation of the algorithms. The performance can be compared with

other classical algorithms.

• H-infinity Robustness Analysis: the stability and robustness of LMS algo-

rithm was first established using the H-Infinity approach, similar techniques

might be helpful to investigate the robustness and stability of fractional order

adaptive filters.

• Convergence and Tracking Analysis: Mathematical proofs based on mean

squared error, mean squared deviation and tracking performance analysis.

This may require upper bounds on both the step sizes as well as the best
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performance for a given fractional order. A distributed fractional order ap-

proach may also be applied where each fractional order can be optimized.

• Variants Based on Exact Chain Rule or Product Rule of Fractional Deriva-

tives: Since an FD is a generalization of the integer derivative, it is going

to lose many of its basic properties. For example, losing its geometric or

physical interpretation, the derivative of the product of two functions is dif-

ficult to compute, and the chain rule cannot be straightforwardly applied. It

is recommended to explore the application of these techniques for adaptive

signal processing when such limitations are explored further.

• Diffusion LMS and application in WSNs: Fractional order variant (s) of dif-

fusion LMS can be developed with target applications of distributed sensing

and estimation, online machine learning, intrusion detection and target lo-

calization, etc. An example could be estimation of distributed channel gains

in wireless sensor networks.

• Fractional order variants of Volterra LMS, eNLMS, LMF or VSSLMS algo-

rithms can be developed and applied to various applications. These variants

can also be based on Mittag-Leffler function.

• Applications of other fractional derivative definitions especially the centered

fractional derivatives in fractional order adaptive signal processing.

• Optimization of adaptive signal processing especially when the performance

metrics or signals are characterized by fractional lower order moments.
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