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Abstract

In this thesis, we have investigated the peristaltic flow of Newtonian and non-Newtonian
nanofluid flows in a channel, uniform and non-uniform tube. We have modelled and
simplified the governing equations of such a fluid under the assumptions of long wave
length and low Reynolds number approximation. The momentum equation is solved by
utilizing the homotopy perturbation technique for velocity while the exact solutions are
computed for temperature and concentration equations. The analysis depicts the impact
of different situations such as endoscopic tube, magnetics field, convective boundary
conditions and viscous dissipation in the flow of nanofluids induced by pressure gradient.
The effects of different governing parameters on velocity and temperature fields are
analyzed graphically for peristaltic waves. The physics of the involved parameters and
important features of the modeled problems are discussed and analyzed with the help

of streamlines and plots for various quantities.



Chapter 1

Introduction

A process of symmetrical contraction and expansion of progressive waves on the walls of
the channel which mix and transport fluid in a channel is termed as peristalsis. In several
procedures of physiology and engineering, peristaltic flow concerns are broadly encoun-
tered in channel or tube. The applications of peristalsis covers swallowing food through
the esophagus, urine transportation from kidney to bladder, assessment of chyme in gas-
trointestinal tract, ovum movement in the female fallopian tube, vasomotion of narrow
blood vessels, movement of spermatozoa in human reproductive tract and water move-

ment from ground to above branches of grown-up trees [1-4].

Peristaltic flows have many biological and industrial applications such as blood pumps
in heart, lung machines and transportation of mordant fluids. For the viscous fluids,
Lithium and Sharpio [5] presented the earliest theoretical and experimental models for
peristaltic transport. Peristalsis during male reproductive system was examined exper-
imentally and numerically by Srivastava [6], Gupta [7], Guha [8] and Batra [9], where
a peristaltic flow has been modelled in the vas deferens by considering it to be a non
uniform tube. Many modern mechanical procedures have been investigated on the pri-
mary of the peristaltic pumping for transporting fluids without internal moving parts,
for example, the blood pump in the heart, lung machine and the peristaltic transport
of noxious fluid in the nuclear industry. It was also clarified that in the case of hyper-
thermia, the tissue can be destroyed when heated upto 42° — 459C. A mathematical
model of peristaltic hydromagnetic flow in a tube for the Johnson-Segalman fluid has

been studied by Hayat and Ali [10]. Hydromagnetic flow of fluid in a uniform pipe with

1
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variable thickness was investigated by Hakeem et al. [11]. Nadeem and Akbar [12] have
studied the peristaltic wave of a non-Newtonian fluid in a non uniform inclined pipe.
Peristaltic transportation of a non-Newtonian fluid in an inclined channel was discussed

by Vajravelu et al. [13].

Another important field of research related to peristalsis is known as Cilia, are mi-
croscopic hair-like structures are found in almost all groups of the animal kingdom. The
length of single cilium is 1 — 10 micrometers and width is about less than 1 micrometer.
There are two types of cilia define as motile and non-motile cilia. A mathematical model
for the flow of a Casson fluid due to metachronal beating of cilia in a tube has been
presented by Ali et al. [14]. Gueron [15] has investigated the movement of the cilia,
its modeling and the dynamics of multi tissue connection. Metachronal beating of cilia
under the influence of Casson fluid and magnetic field has been analyzed by Akbar et al.
[16]. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium
was investigated by Ellahi et al. [17]. A model for the variation of viscous fluid due to
ciliary motion in the ducts diffusive of male propagative tract has been investigated by
Lardier and Shack [18]. Physiological breakdown of Carreau fluid due to ciliary motion
has been discussed by Nadeem et al. [19]. The relations of cilia and its impulsion have
achieved to a large extent by engineers and physicists [20, 21]. Numerical simulation of
peristaltic flow of a Carreau nanofluid in an asymmetric channel have been discussed by
Akbar et al. [22]. Further studies relating to the sort of ciliary motion have been found

in Refs. [23, 24].

Fluids can be characterized into Newtonian and non-Newtonian fluids, Newtonian fluids
are those in which the local stress is linearly proportional to the local strain. Some
examples of Newtonian fluids are water, mineral oil, gasoline, alcohol, kerosene, organic
solvents, glycerin, etc. The fluids similar to condensed milk, tomato paste, soup, sugar
solution and shampoos cannot be distinguished from the Newtons law of viscosity. Such
fluids collapse in the class of non- Newtonian fluids. The study of peristaltic flows of
non-Newtonian fluids are also important field of research and has attracted the atten-
tion of many researchers. The non-Newtonian fluids cannot be examined through one
constitutive equation because of their diverse rheological properties. Different models of
non-Newtonian fluids have been established, which are named as, Pseudoplastic, Dila-

tant, Bingham, Casson, Herschel-Bulkley and Jeffrey six-constant models. Viscoelastic
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fluids are such fluids that explains limited elastic improvement that lead to the exclusion
of a deforming stress. These fluids possess properties of both elastic solids and viscous
fluids. Non-Newtonian fluids are classified and introduced on the basis of their rheolog-
ical properties. Study of peristaltic low of Newtonian and non-Newtonian fluids with
various flow geometries have been reported by many researcher such as [25, 26]. Jeffrey
six-constant fluid model [27] is a theoretically complicated non-Newtonian fluid model
of differential type which exhibits many properties and applications. More recently, the
study of convective heat transfer in nanofluids have great achievement and success due

to its wide application in various industrial processes.

The study of endoscope is another useful area of research in peristaltic mechanism.
Basically, endoscope is very essential instrument used for determining actual reasons for
many problems in human organs in which the fluids are moving by peristaltic pumping
such as, stomach, small intestine, etc. Also, there are no differentiation between endo-
scope and a catheter in a fluid dynamics. Further more, the use of a catheter in an artery
causes the change of the flow field and manage the pressure circulation accordingly. Ak-
bar et al. [28] ware discussed the endoscopic effects with entropy generation analysis
in peristalsis for the thermal conductivity of Hy 4+ Cu (copper) nanofluids. Effects of
an endoscope and generalized Newtonian fluid on peristaltic motion were investigated
by Hakeem et al. [29]. Mekheimer et al. [30] have studied the peristaltic transport of
a particle fluid suspension through a uniform and non-uniform annulus. Physiological
breakdown of Jeffrey six-constant nanofluid flow in an endoscope with non-uniform wall
have been discussed by Nadeem et al. [31]. In another study, Nadeem et al. [32] have
discussed the effects of induced magnetic field on peristaltic flow of Jeffrey six-constant

fluid in a vertical symmetric channel .

The rate of heat transfer is dependent on the temperatures of the systems and the
properties of the prevailing medium through which the heat is transferred. Different
authors have discussed [33, 34] the effect of force on the heat convection and mass trans-
fer. Three different types of heat transfer are conduction, convection and radiation.
Convection is defined as the transfer of heat by the movement of molecules of fluid from
hot place to cold place or by the bulk motion of fluid. Conduction is the flow of heat
through liquids and solids by the collision and vibration of free electronics molecules.

In other words, the transfer of heat from one body to another body due to the only
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collision of molecules which are in contact is called conduction. Radiation is that pro-
cess in which heat is transferred directly by electromagnetic radiations. In liquids and
gases, convection and radiation play very important role in the transfer of heat but in
solids convection is totally absent and radiation is usually negligible. Thus for solid
materials conduction play major role in the transfer of heat. Vajravelu et al. [35] have
analyzed the peristaltic flow and heat transfer in a vertical porous annulus with long
wave approximation. The heat transfer over an unsteady stretching surface with vari-
able heat flux in the presence of a heat source or sink has been discussed by Vajravelu
et al. [36]. Manca [37] numerically analyzed the forced convection flow of nanofluid in
a ribbed channel. Akbar et al. [38] have analyzed the heat transfer on physiological
driven movement with CNT and variable viscosity in the flow of nanofluids. Few re-

cent studies on peristaltic flow through heat transport have been found in Refs. [39, 40].

Study of peristaltic flow in the presence of magnetic field has also achieved a lot of
importance in daily life and engineering sciences. Some previous papers dealing with
MHD flows of peristaltic are discussed [41-43]. Effects of MHD on the peristaltic flows
for different modes of heat transfer like conduction, convection and radiations are re-
ported in the Refs. [44-48]. For other studies regarding MHD flows, are can consult the
Refs. [49-51].

Since the first investigation done by the Choi [52], the study of nanofluids have attracted
the attention of many researchers due to its tremendous applications in various fields of
life such as biomedical devices, treatment of tumor, nuclear reactor, microchips, cooling,
radiators and nanomedicines etc. Only few researches are available on the peristaltic

flows of nanofluids (see [53-58]).

1.1 Thesis contribution

The present thesis investigates the peristaltic flows of Jeffrey six-constant fluid, Sisko
fluid and Carreu fluid for different flow geometries. We have presented the modelling of
various non-Newtonian fluids, simplifications and the analytical solutions of the modelled
problems. The physical features of various pertinent parameters are also discussed with

the help of streamlines and plots for various quantities.
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1.2 Scheme of the thesis

This thesis consists of further seven chapters shortly described as:

Chapter 2: In this chapter, we have examined the endoscopic effects of peristaltic
flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics. The
effect of convective heat transfer and nanoparticles are also taken into account. The
governing equations of non-Newtonian fluid along with heat and nanoparticles are mod-
elled and simplified by using low Reynolds number and long wavelength assumptions.
The velocity equation is solved by utilizing the homotopy perturbation technique while
the exact solutions are computed for temperature and concentration equations. The ob-
tained expressions for the velocity, temperature and nanoparticles concentration profiles
are plotted and the impact of various physical parameters are investigated for different
peristaltic waves. The contents of this chapter are published in the international journal

AIP advances.

Chapter 3: This chapter deals with the simulation of mixed convection flow for physio-
logical breakdown of Jeffrey six-constant fluid in an inclined tube. Influence of convective
boundary conditions are also examined. The governing equations of non-Newtonian fluid
along with heat are modelled and simplified by using low Reynolds number and long
wavelength assumptions. The velocity equation is solved by utilizing the homotopy per-
turbation technique while the exact solutions are computed for temperature equations.
The obtained expressions for the velocity and temperature profiles are plotted and the
impact of various physical parameters are investigated for different peristaltic waves.

The contents of this chapter are published in Bulletin of the polish Academy of Science.

Chapter 4: This chapter deals with the peristaltic flow of sisko fluid with convec-
tive boundary conditions in a uniform tube. The effects of viscous dissipation are also
taken into account. The governing equations of non-Newtonian fluid along with heat and
nanoparticles are modelled and simplified by using low Reynolds number and long wave-
length assumptions. The velocity equation is solved by utilizing the homotopy perturba-
tion technique while the exact solutions are computed for temperature and concentration
equations. The solutions depend on Brikman number B, and magnetohydrodynamics

M. The obtained expressions for the velocity, temperature and concentration profiles
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are plotted and the impact of various physical parameters are investigated for different

peristaltic waves.

Chapter 5: This chapter deals with the physiological flow of Carreau fluid due to
ciliary motion inside a symmetric channel. The main purpose of this chapter is to
present a mathematical model of ciliary motion in an annulus. In this analysis, the
symmetric channel of a non- Newtonian fluid is observed in an annulus with ciliated
tips. The governing equations of non-Newtonian fluid are modelled and simplified by
using low Reynolds number and long wavelength assumptions. The velocity equation is
solved by utilizing the homotopy perturbation technique in terms of a variant of small
dimensionless parameter p. The obtained expressions for the velocity profiles are plotted
and the impact of different physical parameters are investigated for different peristaltic

waves. The contents of this chapter are published in AIP advances.

Chapter 6: In this chapter, deals with the mathematical model of ciliary motion in an
annulus. The effect of convective heat transfer and nanoparticle are taken into account.
The governing equations of Jeffrey six-constant fluid along with heat and nanoparticle
are modelled and then simplified by using long wavelength and low Reynolds number
assumptions. The reduced equations are solved with the help of homotopy perturba-
tion method. The obtained expressions for the velocity, temperature and nanoparticles
concentration profiles are plotted and the impact of various physical parameters are in-
vestigated for different peristaltic waves. Streamlines has also been plotted at the last
part of the chapter. The contents of this chapter are sketched for publication in Brazil-

ian society of mechanical science and engineering

Chapter 7: In this chapter deals with the peristaltic motion of non-Newtonian Jef-
frey six-constant fluid is observed in an annulus with ciliated tips under the effect of
heat and mass transfer. The effects of viscous dissipation are also taken into account.
The governing equations of non-Newtonian fluid along with heat and nanoparticles are
modelled and simplified by using low Reynolds number and long wavelength assump-
tions. The velocity equation is solved by utilizing the perturbation technique while the
exact solutions are computed for temperature and concentration equations. The solu-
tions depend on brikman number, soret number and schmidth number. The obtained

expressions for the velocity, temperature and nanoparticles concentration profiles are
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plotted and the impact of various physical parameters are investigated for different peri-

staltic waves. The contents of this chapter are published in communication in theoretical

physics (CTP).

Chapter 8: Here, we summarizes the thesis and give the major conclusion occuring

from the entire research and recommendations for the future work.



Chapter 2

Physiological breakdown of
Jeffrey six-constant nanofluid flow
in an endoscope with nonuniform

wall

This chapter deals with the physiological breakdown of Jeffrey six-constant nanofluid
flow under the effect of endoscopics tube. The effect of convective heat transfer and
nanoparticles are also takn into account. The governing equations of non-Newtonian
fluid along with heat and nanoparticles are modelled and simplified by using low Reynolds
number and long wavelength assumptions. The velocity equation is solved by utilizing
the homotopy perturbation technique while the exact solutions are computed for tem-
perature and concentration equations. The solutions depend on thermophoresis number
Ny, local nanoparticles Grashof number G, and Brownian motion number N,. The ob-
tained expressions for the velocity, temperature and nanoparticles concentration profiles
are plotted and the impact of various physical parameters are investigated for different

peristaltic waves.
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2.1 Problem Formulation

We are taking into account the peristaltic nanofluid flow of an incompressible six-
constant Jeffrey fluid in a non-uniform vertical tube. The flow is generated by sinusoidal
wave trains propagating with constant speed c¢; along the wall of the tube. Heat transfer
along with nanoparticle phenomena has been taken into account. The inner tube is rigid
and is maintained at temperature 7 while the outer tube has a sinusoidal wave traveling
down its walls and is maintained at temperature 77. The geometry of the wall surfaces

is shown in Figure 2.1 and mathematically defined as

Rl = ai, (2 1)
_ 2 _
Ry = as + bsin [;(z - clf)] : (2.2)
D Z )
“+ o >
~
Wal
5
v 1]
’ R

FIGURE 2.1: Geometry of the problem.

where a; is the radius of the inner tube, as is the radius of the outer tube at inlet,
A is the wavelength, b is the wave amplitude and c; is the wave speed. We consider
the cylindrical coordinate system (R, Z) in such a way that R is taken along the radial
direction and Z is the axial direction.

The governing equations for a two dimensional and incompressible Jeffrey six-constant
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fluid model can be written as

au O oW

I Y A (2:3)
9 o9 _9\. oaP 10 I
9 . 59 w9 \g__ 0P 10 9 (7o) 4+ 168 2.4
P <6t U T Waz> U=—or T wor e + 57 (Trz) + - (24)

o 9 9N 9P 19, . 09 _
p<_—|—U_+W> W__ﬁ+§@ (RTpz) + 07 (T22)

+ pga(T — To) + pga(C — Co) — s BgW, (2.5)
9 o 9\ - R2T 10T T
<8t+ a*Waz)T—“<aRz+RaR+azz)
5 8C<9T+606T +& T 2+ T 2
B\OROR " 0Z0Z To \ \OR Y

2 190 24
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ey . (2.6)

0 07 OR?>  ROR 0Z?

Dy (0*T 10T  O*T
d el Rl 2.7
* Ty <8R2+R8R+822 ’ 27)

where 7 = EZ ;i is the ratio among the efficient heat capacity of the nanoparticle material

and the heat capacity of the fluid. The transformations between the two frames are

R, z=7—cit, (2.8)

=
Il

U w=W-—c. (2.9)

U

The corresponding boundary conditions are defined as

w = —cq, f‘ =1y, C = 0, at =11, (210)

L o0
w=-—-c, 1T=T, C=C, at F:_Q—a2+b51n[ ( le):| . (211)
The constitutional equation for a Jeffrey six-constant fluid is defined as [32]

P
T+€ L;t- — WA+ 7 W +d(7.D+ D.7)+ b7 : DI + thrf]

D
=2u [D—i—ez <Cfit—WD—|—D.W+2dD.D+bD:DI>} . (2.12)
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Here

D(symmetric measurement of velocity gradient) =

W (antisymmetric measurement of velocity gradient) =

Introducing the following non-dimensional variables

R 7 g Z z W D
R=—, T—L, rlzﬁze, 7z = —, Z—E, W =—, w—g, T:a—T
a9 a9 a9 )\ )\ C1 C1 CLLQ
A I C U azp. A = 2y, = ea
ascy ascy A i’ as as
2 —
pascy c a 79 Nk z v
R, = E. = 0= — =" =14 — 2 P =—
(4 [,L Y (& CpT(]? )\7 TQ CLQ + 2 + (;SSIH 7[-2 T
T-T Dgp(Cy —
0 = g7 o= k s Nb = (,OC)p B(CO Cl s M = \/7BOCL
(To —T1) (pc)y (pc)y
3(Co— C Dr(Co—C
B, — gaaz(Cg @) N, = (pe)pDr(Co 1)7 , - (C=C
v (pe)ra (Co—Ch)

With the help of Egs. (2.8) and (2.9), Egs. (2.3)-(2.7) under the assumption of low

Reynolds number and long wavelength § << 1 take the form

op 190

- a. TZ T Br _M2 1 ’ 2.1
0 8Z+ r (rry2) + G0 + Byo (w+1) (2.13)
_ op
0 = 3 (2.14)
10 00 00 do 0
0 = rar( ar >+Nbaa (a) ’ (2.15)

10 do 19
= 2.1
0 7’87’( 8r>+ <r8’r< >> (2.16)
The corresponding boundary conditions are reduced as

w=-1, =1, o=1, at r=ri=c¢,

Ak
w=-1, =0, oc=0, at r:r2:1+—z+¢sin2ﬂ'z.
az

With the help of Egs. (2.8) and (2.9), Eq. (2.12) under the assumption of low Reynolds

number and long wavelength § << 1 take the form

%{1+A1,\2(1—d(d+b)—f2d+3b)( ) }
1+ (1 -dd+b) - 52d+30) (32)°)]

Trz =
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Finally, in simplified form Eq. (2.13) can be written as
Jp
o 0, (2.17)
op _ 10 (0w 10 ow\*
0z ror " or r or aer or
10 ( , ow\® )
+;E (Oé Q2T (ar> > —+ GTQ -+ BrO' — M (’LU —+ 1), (218)
10 [ 00 90 o 96\ ?
10 Oo Ny (10 00

The boundary conditions are reduced as

w=—1,

=1, o=1, at r=ri =g,

Ak
w=-1, =0, o=0, at r:r2:1+—z+¢sin27rz.

a2

2.2 Solution of the problem

2.2.1 Exact Solution

The exact solutions for the temperature and the nanoparticle concentration satisfying

the relative boundary conditions are directly written as

T aln) Ny

93(2) 94(2)
r 91(2) Ny’

N,
o(r,z) = o g5(2) + g4(z)r_91(z)N”] +g1(z) InT + go(2),

Ny

(2.21)

(2.22)
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where
N,
14 In 1y (1 n m)
— b —
g1 = 92 =
Inry —Inreo Inre —Inrq
Ny
N”(H Nb)
1 —1
g P (N )
3 = N N )
=t -t
Nb<1+ Nb) Mo (1+Nb)
Inry—Inreg Inry—Inreg
T — 1y (Inrp —Inry)
() ()
r Inry—Inrg r Inry—Inrg 93
ga=———1 2 g5 = ———
Ny Ny )
(i) m(e ) J1N,
Inry—Inrg Inry—Inrg
1 T2

2.2.2 Homotopy Perturbation Method

The grouping of the perturbation method and homotopy analysis is called homotopy
perturbation method (HPM) (an analytical technique), which eliminates fixed pertur-
bation method while maintaining all their advantages.

We apply the homotopy perturbation method for solving the above problems. To il-
lustrate the basic idea of the method, we consider the following nonlinear differential

equation

A(u) — f(r) =0, (2.23)

with the boundary condition of
B <u 8“) =0, (2.24)
n
where A(u) is defined as follows
A(u) = L(u) + N(u). (2.25)
Homotopy perturbation structure is given as

H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) — f(r)], (2.26)
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or

H(v,p) = (1 = p)[L(v) = L(uo)] + p[A(v) — f(r)] = 0, (2.27)

where

v(v,p) : 2 x[0,1] — R, (2.28)
obviously considering Eqgs. (2.26) and (2.27) we have
H(v,0) = L(v) — L(up) =0, (2.29)

H(v,1) = A(v) — f(r) =0, (2.30)

where p € [0, 1] is an embedding parameter and uy is the first approximation that satisfies
the boundary condition.

v = vg + pu1 + pPug, (2.31)

and the best approximation is p =1
v = vy + V1 + V2. (2.32)
We use homotopy perturbation method to solve the Eq. (2.18)

19 w)’
ror aear or

5
+ 190 <a2a2r (m’) ) + G0+ Byo— M*(w+1) — gp] . (2.33)

H(q,w) = L(w) — L(w10) + ¢L(w1p) + g

ror r z

We take linear operator L = %%(r%) and the following initial guess which satisfy the

boundary conditions [27]
2
wip(r,z) = —14po {Alnr—i—ll—i-B} . (2.34)
Let us define

w(r,q) = wo + qui + ¢*wa + ¢Pwz + ...
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Making use of above expression and using the similar procedure as discussed in [20], the

expression for velocity profile can be written as

7n2

1 1
w=—1+ <A1 In[r] + 7t A2> p+ Agr—4 In[r] + A4r—2 In[r]

+ As (r5 ln[r]) + Ag (r4 ln['r]) + Ay ('rG ln[r]) + Ag (7‘3 ln[r])

+ Ag (1”2 ln[r]) + Ajolnfr] + Aq;. (2.35)

where Aq, As, ..., A11 are constants and given in Appendix 4. The expression for pressure

gradient can be written as
dp 16[F + A3

= . 2.36
dz A14 ( )
Flow rate in dimensionless form can be written as
B ¢? 2
F—2Q—7—1+6. (2.37)

The expression for pressure rise Ap and friction forces (at the wall) on the inner and

outer tubes are F(® and F(® in non-dimensional forms are defined as

Ap = /01 (ZZ)) dz, (2.38)

! d
F(O):/O r2 (—di’> dz, (2.39)

1
F(i):/o r2 <—j§> dz. (2.40)

Velocities streamfunction relation is defined as follow

1 1o
-3 (8) i)

For the flow analysis, we have discussed three waveforms sinusoidal wave, trapezoidal

wave and multisinusoidal wave. The dimensionless equations can be written as follows:

1. Sinusoidal wave
Nk
h(z) =1+ 222 4 gsin(2r2).
ag
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2. Multisinusoidal wave

h(z) =1+ ARz + ¢sin(2mmnz).
ao

3. Trapezoidal wave

2 (2n —1
Az 5 Z sin §(2n — 1) sin(2m(2n — 1)z).
2n

h(z) =1+ "=+ ¢ 5 Y

The coefficient of heat transfer at the wall can be computed with the help of the expres-
sion Z = h.0,.

2.3 Results and discussions

In this section, we have discussed the solution for the peristaltic flow of Jeffrey six-
constant nanofluid flow in an endoscope with diverging tube. The expressions for tem-
perature, velocity, pressure rise, pressure gradient and streamlines are calculated nu-
merically. Figures 2.2-2.3 show the variation in temperature profile for different values
of brownian motion parameter (N) and thermophoresis parameter (/V;). Figure 2.2 de-
picts that the temperature profile increases by increasing the values of brownian motion
parameter (Np), due to increase in the collision between the particles which produces
heat. Figure 2.3 depicts the influence of thermophersis parameter (N;) on temperature
field. An increase in thermophersis parameter results in the enhancement of temperature
field. Physically, the thermophersis parameter have a direct relation with temperature
gradient. So if we increases the thermophersis parameter (IV;), it means the temperature
gradient rises, which is responsible for the resulting increase in temperature field.

Figure 2.4 describes the impact of brownian motion parameter (N,) on concentration
field. As the brownian motion parameter (V) is directly proportional to concentration
gradient, an increase in brownian motion parameter (N,) enhances the concentration
field. Particles can diffuse under the effect of temperature gradient so increase in ther-
mophersis parameter (N;) results in the reduction of concentration field which is exhib-
ited through Figure 2.5. Figure 2.6 show that velocity profile gets increasing function in
the region (0.2 < r < 0.58) whereas it get opposite behaviour in the rest of the region.

The impact of magnetohydrodynamics (M) on velocity distribution is incorporated in
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Figure 2.7. With an increase in magnetohydrodynamics the velocity profile decreases
for (0.2 <r < 0.58) and increases for (0.6 < r < 1.0). As magnetohydrodynamics cause
lorentz forces, which are resistive forces, so an increase in magnetohydrodynamics leads
to more resistance to the fluid resulting in reduction in fluid velocity.

Figures 2.8, 2.11 show the pressure rise (versus flow rate) for diverse value of a, 71, M.
In these figures, it is depicted that by increasing value of « pressure rise increases in the
region (@ € [—3,0.01]) whereas reflux occur in the last. The retrograde pumping region
can also be seen in Figures 2.8, 2.11 when @ < 0 and Ap > 0 and free pumping region
can be seen when () = 0 and Ap = 0. Moreover, augmented pumping region can also
be seen in figures 2.8, 2.11 when Q > 0 and Ap < 0. Figures 2.9, 2.10, 2.12, 2.13 show
the frictional forces (inner and outer tube) for diverse values of «,r;, M. From these
figures, it is depicted that the inner and outer tube frictional forces have an opposite
behaviour as compared to pressure rise. It is observed that the outer frictional forces is
smaller then the inner frictional forces. Figures 2.14-2.16 describe the behaviour of pres-
sure gradient for three different waveforms sinusoidal, multisinusoidal, and trapizoidal
waves. Figure 2.14 describe that increasing value of ¢ the pressure gradient decreases
in the region (0 < Z < 0.5) and increases in the region (0.6 < Z < 1) and reflux occur
in the region (1.1 < Z < 1.5). Figures 2.15-2.16 show that the behaviour for different
values of ¢ by considering the multisinusoidal wave and trapizoidal wave.

Figures 2.17-2.19 illustrate the streamlines for different wave shapes. When we move
from sinusoidal wave to multisinusoidal the number of the trapped bolus increase. Figure

2.19 show the pattern of streamlines for trapizoidal wave.
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FIGURE 2.2: Variation of temperature for N, when N; =8, Z = 0.2, 71 = 0.1, ap = 0.01
and A = 0.1, ¢ = 0.02.

0.4

0.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
r

FIGURE 2.3: Variation of temperature for N; when N, =8, Z = 0.2, 71 = 0.1, ag = 0.01
and A = 0.1, ¢ = 0.02.

FIGURE 2.4: Variation of concentration for N, when N, = 8, Z7 = 0.2, ry = 0.1,
ap = 0.01 and A = 0.1, ¢ = 0.02.
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FIGURE 2.5: Variation of concentration for Ny when N, = 8, Z7 = 0.2, r; = 0.1,
ap = 0.01 and A = 0.1,¢ = 0.02.
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FIGURE 2.6: Variation of velocity for & when N; =8, Z = 0.2, r; = 0.1 ,ap = 0.01 and
A=0.1,0 =0.02, N, =8, a1 = 8.

FIGURE 2.7: Variation of velocity for M when N; = 8, Z = 0.2, r; = 0.1, ag = 0.01
and A =0.1, ¢ =0.02, N, =8, a3 =8, a = 0.03.
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a=15
0.5} ﬁ‘%
y
-1 1 1 1 1 1
-3 2 1 0 1 2 3

FIGURE 2.8: Variation of pressure rise for a when N; =8, Z = 0.2, r; = 0.1, ap = 0.01
and A =0.1, ¢ =0.02, oy =8, M =0.9.

x 10

FIGURE 2.9: Variation of frictional force (inner tube) for @ when Ny = 8, Z = 0.2,
r1 =0.1, ap =0.01 and A = 0.1, ¢ =0.02, a; =8, N, =0.03, M =0.9.

x10

0

Q

FIGURE 2.10: Variation of frictional force (outer tube) for @ when N, = 8, Z = 0.2,
r1 =0.1, ap =0.01 and A =0.1, $ =0.02, a1 =8, M =0.9.
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FiGUurRE 2.11: Variation of pressure rise for M when Ny, = 8, Z = 0.2, r; = 0.1,
agp =0.01 and A =0.1, ¢ =0.02, a1 =8, a =0.03, N, = 7.

2)(10

FIGURE 2.12: Variation of frictional force (inner tube) for M when N, =8, Z = 0.2,
ry =0.1, ag = 0.0l and A =0.1, ¢ =0.02, o1 =8, a =0.03, N, = 7.

x10

s

FIGURE 2.13: Variation of frictional force (outer tube) for M when N, =8, Z = 0.2,
ry =0.1, a0 = 0.0l and A =0.1, ¢ =0.02, o1 =8, a =0.03, N, = 7.
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FIGURE 2.14: Pressure gradient %’ for sinusoidal wave when Ny =8, Z = 0.2, r; = 0.1,
ag=00land A=0.1, Ny =7, a1 =8, a =0.03, M =0.9.

_10 1 1
0 0.5 1 1.5

FIGURE 2.15: Pressure gradient % for multisinusoidal wave when N; = 8, Z = 0.2,
r1=0.1,a0=0.01land A\=0.1, N, =7, a1 =8, a =0.03, M =0.9.

dp/dz
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FIGURE 2.16: Pressure gradient % for Trapizodioal wave when Ny = 8, Z = 0.2,
r1 =0.1,a0 =00l and A=0.1, N, =7, a1 =8, « = 0.03, M = 0.9.
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FIGURE 2.17: Streamlines pattern for sinusoidal wave when Ny =8, Z = 0.2, r; = 0.1,
ap =0.01 and A =0.1, ¢ =0.02, a; =8, « =0.03, M = 0.9.
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FIGURE 2.18: Streamlines pattern for multisinusoidal wave when N; = 8, Z = 0.2,
r1 =0.1, a0 =0.01l and A =0.1, ¢ =0.02, a; =8, a = 0.03, M = 0.9.
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FIGURE 2.19: Streamlines pattern for Trapizodioal wave when N, = 8, Z = 0.2,
r1 =0.1, a0 = 0.0l and A =0.1, $ =0.02, 1 =8, « =0.03, M =0.9.
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2.4 Conclusion

In this chapter, we have analysed the physiological breakdown of Jeffrey six-constant
nanofluid flow in an endoscope with diverging tube. The main findings of the present

study are as follow:

e The temperature profile is enhanced for the increasing values of parameters Ny

and Nb.

e The nanoparticle concentration field is enhanced for the increasing values of ther-

mophoresis Ny and Brownian motion Np.

e It is clear that frictional forces and pressure rise have an opposite behaviour while

compare to each other.

e The pressure gradient increases with the increasing value of ¢.

e The trapped bolos increases with the increasing value of ¢.
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Simulation of mixed convection
flow for physiological breakdown
of Jeffrey six-constant fluid model
with convective boundary

condition

This chapter deals with the simulation of mixed convection flow for physiological break-
down of Jeffrey six-constant fluid in an inclined tube. Influence of convective boundary
conditions is also examined. The governing equations of non-Newtonian fluid along with
heat are modelled and simplified by using low Reynolds number and long wavelength
assumptions. The momentum equation is solved by utilizing the homotopy perturbation
technique for velocity while the exact solutions are computed for temperature equation.
The obtained expressions for the velocity and temperature are plotted and the impact

of various physical parameters are investigated for different peristaltic waves.

3.1 Problem Formulation

We are taking into account the simulation of mixed convection flow for physiological
breakdown of Jeffrey six-constant fluid in an inclined tube. The flow is generated by

25
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sinusoidal wave trains propagating with constant speed c; along the walls of the tube.

The equations for conservation of mass and momentum can be written as

ou U oW
OR R N

FIGURE 3.1: Geometry of the problem.

07

0,

_ oP 1 0 ,-_ J ,_

U=-o5+ 53 HRr) + 57 (TR2)
— pag(T — Tp) cos,

. OP 1 0 o

W—_ﬁ Eﬁ( RZ)+87(TZZ)

+ pag(T — Ty) sinn),

=

oO*T

oRe "

1o o1
ROR 072

>+Q07

(3.1)
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where 7 = EZ 3? is the ratio among the efficient heat capacity of the nanoparticle material

and the heat capacity of the fluid. The transformations between the two frames are
F=R, z=27-ct, (3.5)
u=U, w=W —ec. (3.6)

The corresponding boundary conditions are defined as

or

ow _

= =0, 3% " 0, at R=0, (3.7)
- T - - 2m 5

W =0, gR =-nT—-Tp), at R=H=a+bsin [;(Z—clf)] . (3.8)

The constitutive equation for a Jeffrey six-constant fluid model is defined as [32]

P
T+e [T —WT+7W+4+d(7.D+ D.7)+ b7 : DI + thrT‘]

dt
dD
=2u|D + e E—WD—FD.W—FQdD.D%—bD:DI . (3.9)
Here
VV + (VV)h
D(symmetric part of velocity gradient) = —'—2(),
VvV — (VV)h
W (antisymmetric part of velocity gradient) = 2( ) .
Introducing the following non-dimensional variables
_ B 7 B - B
RZE; TZC; Z:f’ Zziy W:Ka w:E’T:ai
a a A A 1 c1 Clo
UZE’ :&a t:£7 )\1:%’ )\2:%>
acy acy A a a
h C
R, = aclp’ 0= g, h=—-=1+esin(27z), P.= Ho L
1o A a k
2 T_T k 27 2
g Qo T- U ,GT:gﬁpa 0 _a’p

KTy~ T (pc) g cp c1A o



Chapter 8 28
Making use of non-dimensional variables Eqgs. (3.1) - (3.4), we obtain
ou u Ow
2oy Ty T 1
or r 0z 0 (3.10)
ou ou Op 0 6 0
3 ou Juy 0P 20 00
0" Re <u0r + w@z) or u z(Tm) + r or (r7er)
- ngg — G, (cosn) b, (3.11)
ow ow oP 10 0
5Re <u87" + w82> = _E + ;E (TTTZ) + 5% (TZZ)
+ G, (sinn) 6, (3.12)
00 00 100 0%
P u— —|=|-=—+—=—| +B. 1
0Re T<u(9r+w8,z> [rﬁr+8r2] + (3.13)
The corresponding boundary conditions are reduced as
ow 00
5= 0, 3 = 0, at r=0, (3.14)
w=—1, ?me:o, at r=h=1+esin(2rz). (3.15)
T

With the help of Egs. (3.5) and (3.6), Egs. (3.10) - (3.13) under the assumption of low

Reynolds number and long wavelength § << 1 take the form

1
0 = f% + ;%(TTTZ) + G,(sinn)0, (3.16)
Ip
0 = — 3.17
or’ (3.17)
106 0%
= |-—+ = B. 1
0 [7‘ or * 81"2} + (3.18)
The boundary conditions are reduced as
ow 00
= 0, 3 = 0, at r =0,
00 :
w=-1, —+kl=0, at  r=h=1+esin(2nrz).

or
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Finally, the Eq. (3.16) can be written as

dp
_ op 1
0 or’ (3.19)
dp _ 10 ( 0wy 10 ow)’
8.  ror\ or ror \ Y\ or
10 ( , ow\® _
—i—;a <a Qor <8r> ) + G,(sinn)0, (3.20)
100 0%

The boundary conditions are reduced as

ow a0

or =9, 81"_0’ at r=0,
06 :
w=—1, 8——#%920, at r=h=1+esin(2nrz).
T

3.2 Solution of the problem

3.2.1 Exact Solution

The exact solutions for the temperature satisfying the relative boundary conditions are

directly written as:

r
0 =-B— 22
+ 5 T2 (3.22)

1 (Bh B
4 K '

3.2.2 Homotopy Perturbation Method

We use homotopy perturbation method to solve the Eq. (3.20)

19 w\’
ror aer or

10 ( , w\’ : p
+ o (a aor <8r> ) + G, sinnf — Bz] . (3.23)

H(q,w) = L(w) — L(w10) + gL(w10) + ¢
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We take linear operator L = %%(r%) and the following initial guess which satisfy the

boundary conditions [27]

7,2 o h2:|

1 (3.24)

wip(r,z) = —14po [
Let us define

w(r,q) = wo + qui + ¢*wa + ¢Pwz + ...

Making use of above expression and using the similar procedure as discussed in [20], the

expression for velocity profile can be written as

r? =\ dp 2 _ 32 4_ 54 6 _ 16 8 _ 18
w=—-1+ 1 $+m5(r — h*) +mg(r® — h*) + mz(r® — h®) + mg(r® — h°)

+ mg(rlo _ th) + mlO(TIQ _ h12) + mll(,r,14 _ h14) + m12(7‘16 _ h16)

+ ’I’)’L13(T18 _ h18) + m14(7"20 o hQO) + m15(7“22 _ h22) + 77’L16(?"24 o h24), (325)

where ms, mg, ..., m17 are constants and given in Appendix 4. The expression for pressure

gradient is defined as

dp 16
diz’ = — 7 [F +ma). (3.26)

Flow rate in the dimensionless form can be written as

2

F:Q—;<1~|—€2>. (3.27)

The pressure rise Ap can be written as

Ap = /0 1 (fg) dz. (3.28)

Velocities in terms of streamfunctions are defined as

1o 1o
1) 1B
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3.3 Results and discussions

In this section, we have discussed the simulation of mixed convection flow for physiolog-
ical breakdown of Jeffrey six-constant fluid model with convective boundary condition.
We examined the behaviour for different parameters on velocity, temperature, pressure
gradient, pressure rise, and streamlines. Figures 3.2 show the temperature profile for
different values of Biot number (k) on temperature profile and heat source or sink pa-
rameter (B) respectively. Figure 3.2 shows that with the increase in heat source or
sink parameter (B) temperature profile increases. From figure 3.3 it is seen that with
the increase in Biot number (k) temperature profile decreases. Increased in Brinkman
number means greater viscous dissipation, thus by increasing Brinkman number, the
collision in the flow causes an enhancement in the internal energy of the fluid, which is
responsible for the resulting enhancement in the temperature field. Figures 3.4-3.7 show
the impact of Jeffrey six-constant parameter («), heat source or sink parameter (B),
Biot number (x), Grashof number (G,) on the velocity profile. Figures 3.4-3.5 illustrate
that with an increase in the value of a and k the velocity profile in the centre of the tube
decreases whereas it gets opposite behaviour near the tube or near the peristaltic wave.
In Figures 3.6-3.7 it is depicted that, at the centre of the tube, the velocity profile is
minimum whereas it gets opposite behaviour near the tube or near the peristaltic wave.
Figures 3.8-3.13 show the pressure rise for diverse values of o, A1, A2 (fluid parameters).
In these figures, it is depicted that by increasing value of Ay pressure rise increases in
the region (Q € [—2,—0.5]) whereas reflux occur in the last. Three different regions can
be recognized from this figure.

The retrograde pumping region can also be seen in Figures 3.8, 3.10, 3.12 when @) < 0
and Ap > 0 and free pumping region can be seen when Q = 0 and Ap = 0. Moreover,
augmented pumping region can also be seen in figures 3.8, 3.10, 3.12 when @ > 0 and
Ap < 0. Figures 3.9, 3.11, 3.13 show the forces have an opposite behaviour as well as the
pressure rise. Figures 3.14-3.16 describe the behaviour of pressure gradient for different
waveforms like Sinusoidal, Multisinusoidal, and trapizoidal wave. Figure 3.14 describe
that increasing value of € the pressure gradient decreases in the region (0 < Z < 0.5)
and increases in the region (0.6 < Z < 1) and reflux occur in the region (1.1 < Z < 1.5).
Figures 3.15-3.16 show that the behaviour for different values of € by considering the
multisinusoidal wave and trapizoidal wave.

Figures 3.17-3.18 illustrate the streamlines for different wave shapes. When we move
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from sinusoidal wave to multisinusoidal the number of the trapped bolus increase. Figure

3.18 show the pattern of streamlines for trapizoidal wave.
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FIGURE 3.4: Variation of velocity for o when Z = 0.23, ¢ = 0.22, k = 2.55, n = 7,
B=0.22,G.=15,a; =04, ag = 0.6.
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FIGURE 3.5: Variation of velocity for x when Z = 0.23, ¢ = 0.22, o = 0.22, n = 7,
B =0.22, a1 =022, g =04, G, = 1.5.

FIGURE 3.6: Variation of velocity for B when Z = 0.23, € = 0.22, k = 2.55, n = 7,
a=0.22, a1 =022, ayg =04, G, =1.5.

FIGURE 3.7: Variation of velocity for G, when Z = 0.23, ¢ = 0.22, n = 7, a = 0.22,
a1 = 0.22, as = 0.4, B = 0.22.
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FIGURE 3.8: Variation of pressure rise for A\; when Z = 0.23, ¢ = 0.01, n = 7,
a; =0.22, ap =04, G, =15, B=1.5.
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FIGURE 3.9: Variation of frictional forces for A\; when Z = 0.23, ¢ = 0.01, n = 7,
a; =022, s =04, G, =15, B=1.5.
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FIGURE 3.10: Variation of pressure rise for a when Z = 0.23, ¢ = 0.01, n = 7,

a1 =022, as = 0.4, G, = 1.5, B = 1.5.
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FIGURE 3.11: Variation of frictional forces for o« when Z = 0.23, ¢ = 0.01, n = 7,

a1 =0.22, ap = 0.4, G, = 1.5, B = 1.5.

FIGURE 3.12: Variation of pressure rise for Ay when Z = 0.23,
a1 =022, a0 =04, G, =15, B=1.5.
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FIGURE 3.13: Variation of frictional forces for Ay when Z = 0.23, ¢ = 0.01, n = 7,

a1 =022, as = 0.4, G, = 1.5, B = 1.5.
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FIGURE 3.14: Pressure gradient % for sinusoidal wave when Z = 0.23, n =
0.22, ap =04, G, =1.5, B=1.5.
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FIGURE 3.15: Pressure gradient % for multisinusoidal wave when Z = 0.23, n = 7,
a; =022, a0 =04, G, =15, B=1.5.
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FIGURE 3.16: Pressure gradient % for trapizodioal wave when Z = 0.23, n =
a; =022, a0 =04, G, =15, B=1.5.
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FIGURE 3.17: Streamlines pattern for sinusoidal wave Z = 0.23, ¢ = 0.01, n = 7,
a1 =022, 0 =04, G, =15, B=1.5.
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FIGURE 3.18: Streamlines pattern for multisinusoidal wave Z = 0.23, ¢ = 0.01, n = 7,
a1 =022, s =04, G, =15, B=1.5.
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FIGURE 3.19: Streamlines pattern for trapizodioal Z = 0.23, ¢ = 0.01, n = 7, ag =
0.22, ap = 0.4, G, = 1.5, B = 1.5.
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3.4 Conclusion

In this chapter, we have analyzed the simulation of mixed convection flow for physiolog-
ical breakdown of Jeffrey six-constant fluid model with convective boundary condition

in an inclined tube. The main findings of the present study are as follows:

Temperature profile decreases for increasing values of the Biot number.

It is clear that frictional forces and pressure rise have an opposite behaviour while

compare to each other.

e The pressure gradient increases with the increasing value of e.

Streamlines bolas take the form of the shape of the geometry.
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Physiological breakdown of Sisko
fluid with convective boundary

condition in a uniform tube

This chapter deals with the peristaltic flow of Sisko fluid with convective boundary con-
ditions in a uniform tube. The effects of viscous dissipation are also taken into account.
The governing equations of non-Newtonian fluid along with heat and nanoparticles are
modelled and simplified by using low Reynolds number and long wavelength assump-
tions. The velocity equation is solved by utilizing the homotopy perturbation technique
while the exact solutions are computed for temperature and concentration equations.
The solutions depend on Brinkman number (B, ) and Magnetohydrodynamics (M ). The
obtained expressions for the velocity, temperature and concentration profiles are plotted
and the impact of various physical parameters are investigated for different peristaltic

waves

4.1 Mathematical Formulation

We are taking into account the peristaltic flow of Sisko fluid with convective boundary
conditions in a uniform tube. The flow is generated by sinusoidal wave trains propagat-
ing with constant speed c¢; along the wall of the tube. Viscous dissipation effects are

also taken into account. The geometry of the wall surfaces is shown in Figure 4.1 and

40
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mathematically defined as

14

FIGURE 4.1: A physical sketch of the problem.

H =a+bsin [QI(Z—CJ)],

(4.1)

where a is the radius of the tube, b is the wave amplitude, A represent the wavelength,

c1 is the propagation speed and ¢ is the time.

For an incompressible fluid the law of conservation of mass and momentum in the absence

of body forces can be written as
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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The transformation relation between the two frames are

The corresponding boundary conditions are defined as

oW or oC _

_— = _— = _—= — t =

By 0, 95 0, R 0, a R=0,

_ oT _ _ _ _ 2

W =0, Kﬁ —n(T —Tp), C = Cy, at R=H=a+bsin )\ Z —ct)|.

The constitutive equation for a Sisko fluid model is defined as

_ ~ 7 ~ - ~
RZE, r:f, Z = —, z:i, W:K, sz,S: a5
a a A A cl ca c1lo
U:E _)\u 2257 )\1261017 N _62017
acy acy A a a
h
R, = aclp’ 5:97 h=—=1+esin(2nz), P, = MOCP,
o A a k
) __— _
p- S gl -To q_al k _ @
CpTy Ty c c1\ o’
pDk‘TT() 1% é_éo
S S = ) =——, M= B
= ,uT()CO H Dp 7 C Oa

With the help of above non-dimensional variables and under the assumption of low

Reynolds number Re << 1 and long wavelength § << 1 approximation, the equations



Chapter 4 43

can be written as

ou u Ow

0=+ + 5 (4.7)
O:gi (4.8)
0= 4 12 (1)~ MPw +1), (1.9
0= %% <r‘;f> + Bk%‘: (S2) | (4.10)
0= g1 2 (F)+ s 2 (2. (a.11)

The boundary conditions are reduced as

ow a0 0 Oo

87“:0’ or 31“:0’ at =0,
00 :
w=—1, 8——1—&9:0, o=0, at  r=h=1+esin(27z).
T

The stress tensor can be defined as
ow\" | ou
1 hihad el
+b ( or ) ] or’
ow\" Y| /ou Oow
14+b6 — 5+ ==
+ <87“> ]<0z5+0r>’
ow\" | ow
146 — —_
* <87“> ] 0z

Finally, in simplified form Eqgs. (4.7)-(4.11) can be written as

Spr =20

Srz =

S.. =20

op

o, (4.12)
op 10 ow\" | ow 2

9: " ror ( “b(ar) ]m)‘M (w1), (4.13)
10 [ 00 ow

SRS

1190 do 1 oo
Soror (a) 51, (a) =0 (4.15)
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The boundary conditions are reduced as

ow 00 _0 Oo

or ' or Tor ’ =0
00 :
w=—1, 8——1—/16?:0, oc=0, at r=h=1+esin(2rz).
r

4.2 Solution Methodology

We use homotopy perturbation method to solve the Eq. (4.13)

9 877”0 " + b 8710 " 82710
r \ Or " or Or?
Jp

+ —M*(w+1) - &z] : (4.16)

H(q,w) = L(w) — L(wio) + ¢L(w10) + ¢

We choose linear operator L = %% (r%) and initial guess which satisfy the required

boundary conditions are

2 h2
wio(r,z) = —14po [T y ] . (4.17)
H(q,w) for case 1 (n = 0, shear thinning fluid)
b 9 Op
H(q,w) = L(w) — L(wio) + ¢L(w10) + ¢ o M*(w+1) — 5| (4.18)
H(q,w) for case 2 (n = 1, b = 0, Newtonian fluid)
2 Ip
H(q,w) = L(w) — L(wio) + ¢L(w1o) +q | -M*(w+1) — e (4.19)
H(q,w) for case 3 (n = 2, shear thickening fluid)
H(q,w) = L(w) — L(w10) + qL(w10) + b(ow 2+2b Qw (0w
q,w) = L(w w10 qL(W1o0 q r \ or or or2
Ip
p— 2 R —
+ —M“(w+1) 82] . (4.20)

According to HPM, we solve for case 3 (n = 2, shear thickening fluid)

w(r,q) = wo+ qui+ ¢*ws + ¢Pwz + ...
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p(r,q) = pi+ap2+a®ps+@’pat ...

The velocity field for ¢ — 1 takes the form

2 12
w=—1+<r4h>jp+Amr—h%+Axﬁ—h%+Ax#—hﬁ

+ A4(T5 — h5) + A5(7“6 — hﬁ) + Aﬁ(T‘7 — h7) + A7(T9 — hg). (4.21)

The exact solutions for the temperature satisfying the relative boundary conditions are

directly written as

1 /—-B.h 1
9:< — —bB h4+4MB h5+—thMpo+—bB hip )

K 16 40 8 2240
l 2 2 6 3 2 7 3 132 5 4
+ <6144M B.hp? 11201)3 hS Mps — 5125 B.h Mp3 b B,.h%p
1/ 3
= =v*B,.h%pt 7523 RAM?pd 71)33 hEMpd —b4B,.;h7 6.
T <224 0+ 1280 0 5376 Pot 513 Po

(4.22)

The exact solutions for the concentration equation satisfying the relative boundary con-

ditions are directly written as

1
=—B, P(rt — pt B P - Lp P —nb
o 6 STSH O(T )+32 STSH op1(T ) 576 STSH o(T )
1
— B,.SpSyP? iy Lgoen — Y+ —SrSuP, —nb
+64 TSHPL(r ) 39 OTSH op2 (1 )+288 7S1 Pyp1 (r® Jai
1 3 6 6 3
+ 2SSBHSTSHPOP1(T h ) 2048STSH 0> (4.23)

where A1, As, ..., Ag are constants and given in Appendix 4. The expression for pressure

gradient can be written as
dp 16

10 1pyay. (4.24)

Flow rate in the dimensionless form can be written as

1 €2
F:Q—2<1—|—2>. (4.25)

The pressure rise Ap can be written as

Ap = /01 (ZZ) dz. (4.26)



Chapter 4 46

Velocities in terms of streamfunctions are defined as

1 1o
-3 (B) i)

For the flow analysis, we have considered three waveforms sinusoidal wave, trapezoidal

wave and multisinusoidal wave. The dimensionless equations can be written as

1. Sinusoidal wave

h(z) =1+ esin(27z).

2. Multisinusoidal wave

h(z) =1+ esin(2mmz).

3. Trapezoidal wave

32 = sinZ(2n — 1)

) 2 an 1) sin(2r(2n —1)2) | .

4.3 Results and discussions

In this section, we have analyzed the physiological breakdown of Sisko fluid model with
convective boundary condition in a uniform tube through graphs. We have presented the
solution attained by HPM by framing velocity, pressure rise, pressure gradient, tempera-
ture, concentration and streamline graphs for diverse values of the parameters power law
index (n) , fluid parameter b, magnetohydrodynamics (M), Biot number « , (Brinkman
number) (By), (Soret number) St ,(Schmidt number) Sy respectively. Figures 4.2-4.5
show that with the increase in b, By, M temperature profile increases. From figure 4.5 it
is seen that with the increase in k temperature profile decreases. Figures 4.6-4.9 show
that with the increase in b, By, M, St concentration profile increases. From figure 4.10
it is seen that with the increase in Sy concentration profile decreases. An increase in
Soret number (S7) enhances the concentration profile. Physically, when we increase the
Soret number (S7), it gives rise to diffuse the nanoparticles in the fluid, due to convec-
tion, which leads to increase the concentration profile. An increase in Schmidth number
reduces the concentration profile. It is due to the fluid that an increase in Schmidth
number (Sy) to reduces the diffusion of nanoparticles in the fluids flow, which is respon-

sible for the reduction of concentration field.
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Figure 4.11 shows that increases the value of M while the velocity profile in the centre
of the tube decreases as well as it gets opposite behaviour nearest of the tube or near the
peristaltic wave. Figures 4.12-4.13 show that shear stress gets increase function in the
region (0.5 < r < 0) whereas it get opposite behaviour in the region (—1 < r < —0.49).
Figures 4.14-4.19 show the pressure rise (versus flow rate) for diverse value of M, b, e.
From figure 4.14, it is depicted that by increasing value of M pressure rise increasing
in the region (Q € [—2,0.5]) whereas reflux occur in the last. The retrograde pumping
region can also be seen in Figure 4.14 when Q < 0 and Ap > 0 and free pumping region
can be seen when @@ = 0 and Ap = 0. Moreover, augmented pumping region can also be
seen in figure 4.14 when @ > 0 and Ap < 0. From figure 4.16, 4.18 it is seen that with
the increase in € pressure rise decreases in the region (Q € [—2,—0.4]) whereas reflux
occur in the last. Figures 4.15, 4.17, 4.19 show the friction force for diverse values of
M,b,e. From these figures it is depicted that the friction force have an opposite be-
haviour as compared to pressure rise.

Figures 4.20-4.22 describe the behaviour of pressure gradient for different waveforms like
Sinusoidal, Multisinusoidal, trapizoidal. Figure 4.20 describe that increasing value of €
the pressure gradient decreases in the region (0 < Z < 0.5) and increases in the region
(0.6 < Z < 1) and reflux occur in the region (1.1 < Z < 1.5).

Figures 4.21-4.22 show that the behaviour for different values of ¢ by considering the
multisinusoidal wave, trapizoidal. Figures 4.23-4.24, it is depicted that by increasing
value of b, M pressure rise increasing. Figures 4.25-4.34 illustrate the streamlines for
different wave shapes. It is distinguish that the streamlines of the flow are affected in a
related behaviour by increasing the value of €. In fact it is pragmatic that the strength
of trapped bolus appear in the wider part of the tube decreases by increasing the value

of e.
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FIGURE 4.2: Variation of temperature for b when Z = 0.23, ¢ = 0.22, kK = 2.55,
M =0.09, By = 0.23.
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FIGURE 4.4: Variation of temperature for M when Z = 0.23, ¢ = 0.22, k = 2.55,
b=0.01, B, = 0.23.
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FIGURE 4.5: Variation of temperature graph for x when Z = 0.23, e = 0.22, b = 0.01,
M =0.09, By = 0.23.
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FIGURE 4.6: Variation of nanoparticle concentration graph for By when M = 0.09,
Z=02,5=08,A=0.1e=0.22, Sy =0..8.
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FIGURE 4.7: Variation of nanoparticle concentration graph for M when By = 0.09,
Z =02, 5=08 A=0.1,e=0.22, Sy =0.8.
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FIGURE 4.8: Variation of nanoparticle concentration graph for b when M = 0.09,
Z=02,5=08,A=0.1,e=0.22, Sy =0..8.
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FIGURE 4.9: Variation of nanoparticle concentration graph for Sy when M = 0.09,
Z=02,5 =08, A=0.1,¢e¢=0.22, b= 0.01.

-0.005+ 1

-0.01 L L 1 L L
- 0 E

r

FIGURE 4.10: Variation of nanoparticle concentration graph for Sy when M = 0.09,
Z=02,b=001,A=0.1, e =022, Sy = 0.8.
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FIGURE 4.11: Variation of velocity graph for M when b = 0.01, Z = 0.2, Sp = 0.8,
A=0.1,e=0.22, Sy =0.8.
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FIGURE 4.12: Variation of shear stress graph for b when M = 0.09, Z = 0.2, Sp = 0.8,
A=0.1,e=0.22, Sy =0.8.
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FIGURE 4.13: Variation of shear stress graph for M when b = 0.01, Z = 0.2, ST = 0.8,
A=0.1,e=022 Sy =0.8.
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FIGURE 4.14: Variation of pressure rise graph for b when M = 0.09, Z = 0.2, Sp = 0.8,
A=0.1,e=0.22, Sy =0.8.
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FIGURE 4.16: Variation of pressure rise graph for e when M = 0.09, Z = 0.2, St = 0.8,
A=0.1,6=0.01, Sy =0.8.
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FIGURE 4.17: Variation of frictional forces graph for ¢ when M = 0.09, Z = 0.2,
St =08, A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.18: Variation of pressure rise for M when b
A=0.1,e=0.22, Sy =0.8.

100

50

0
I8
50
-100("
_150 1 1 1 1 1 1 1
2 45 4 05 0 05 1 15 2
Q

FIGURE 4.19: Variation of frictional forces for M when b = 0.01, Z = 0.2, St = 0.8,
A=0.1,e=022 Sy =0.8.



Chapter 4

54

dp/dz

0 0.5 1 1.5

FIGURE 4.20: Pressure gradient % for sinusoidal wave when M = 0.09, Z = 0.2,
St =08, A=0.1,6=0.01, Sy =0.8.
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FIGURE 4.21: Pressure gradient % for multisinusoidal wave when M = 0.09, Z = 0.2,
St =08, A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.22: Pressure gradient % for Trapizoidal wave when M = 0.09, Z = 0.2,
St =08, A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.23: Pressure gradient % for b when M =0.09, Z =0.2, S7 = 0.8, A = 0.1,
€ =0.01, Sy =0.8.

FIGURE 4.24: Pressure gradient % for M when e =0.22, Z =0.2, ST =0.8, A =0.1,

b=0.01, Sy = 0.8.
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FIGURE 4.25: Streamlines pattern for sinusoidal wave M = 0.09, Z = 0.2, Sp = 0.8,
A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.26: Streamlines pattern for multisinusoidal wave M = 0.09, Z = 0.2, Sp =
0.8, A=0.1,b=0.01, Sy =0.8.

FIGURE 4.27: Streamlines pattern for Trapizoidal wave M = 0.09, Z = 0.2, Sp = 0.8,
A=0.1,6=0.01, Sy =0.8.
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FIGURE 4.28: Streamlines pattern for b = 0.01 when M = 0.09, Z = 0.2, St = 0.8,
A=0.1,e =0.01, Sy = 0.8.
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GURE 4.29: Streamlines pattern for b = 0.02 when M = 0.09, Z = 0.2, St = 0.8,

A=0.1,e=0.01, Sy =0.8.

GURE 4.30: Streamlines pattern for b = 0.03 when M = 0.09, Z = 0.2, St = 0.8,

A=0.1, e=0.01, Sy = 0.8.

4.31: Streamlines pattern for b = 0.04 when M = 0.09, Z = 0.2, St = 0.8,
A=0.1,e =0.01, Sy = 0.8.
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FIGURE 4.32: Streamlines pattern for M = 1 when ¢ = 0.09, Z = 0.2, S; = 0.8,
A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.33: Streamlines pattern for M = 2 when ¢ = 0.09, Z = 0.2, S = 0.8,
A=0.1,b=0.01, Sy =0.8.
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FIGURE 4.34: Streamlines pattern for M = 3 when ¢ = 0.09, Z = 0.2, S = 0.8,
A=0.1,6=0.01, Sy =0.8.
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4.4 Conclusion

In this chapter, we have analysed the peristaltic flow of non-Newtonian fluid with con-
vective boundary conditions in a uniform tube. The viscous dissipation effects are also

taken into account. The main findings of the present study are as follow:

e The temperature profile is enhanced for the increasing values of sisko fluid param-
eter (b), Magnetohydrodynamics (M) and Brinkman number (By) and decreases

by increasing the values of k.

e The concentration field is increases by increasing the values of b, M, By and de-

creases by increasing the values of Sp.

e The pressure gradient increases with the increasing value of b, M.

e There is an opposite behavior between pressure rise and the frictional forces.

e The velocity profile decreases with the increasing value of M.

e Streamlines bolas take the form of the shape of the geometry.



Chapter 5

Physiological flow of Carreau

fluid due to ciliary motion

This chapter deals with the physiological flow of Carreau fluid due to ciliary motion inside
a symmetric channel. The main purpose of this chapter is to present a mathematical
model of ciliary motion in an annulus. In this analysis, the symmetric channel of a non-
Newtonian fluid is observed in an annulus with ciliated tips. The governing equations
of non-Newtonian fluid are modelled and simplified by using low Reynolds number and
long wavelength assumptions. The velocity equation is solved by utilizing the homotopy
perturbation technique in terms of a variant of small dimensionless parameter p. The
obtained expressions for the velocity profiles are plotted and the impact of different

physical parameters are investigated for different peristaltic waves.

5.1 Model of the Problem

We have considered the ciliary motion phenomenon for the two dimensional flow of an
incompressible fluid in an annulus. A metachronal wave is travelling with a constant
velocity ¢; that is generated due to collective beating of cilia along the walls of the
channel whose inner surfaces are ciliated. We are considering the cartesian coordinates
X,Y. Here X-axis is taken along the center of the body and Y-axis is the normal

direction. The geometry of the problem is shown in Figure 6.1.
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Y- . / Ciliated Wall
5
x >

\ Ciliated Wall

FIGURE 5.1: A physical sketch of the problem

The fundamental equations of continuity, momentum in the absence of body forces can

be written as

ou oV
ox Tov >y

ou - oU _0U] 0P 0Ty OTwy | 0T
p[at+UaX+VaY]__aX+aX+ay+aZ’ (5:2)

ot Uax Vv T oy Tax Ty T oz (5:3)

p[av 1% av] OP 07, 07, 0T,

where P represents the pressure and U,V represents the velocity components. The

constitutional equation for a Carreau fluids defined as

n—1

T = [ftoo + (Ho — ko)l [L+(T)°] = 7, (5.4)

Y = \/; ZZ Yy Y55 = \/;Hnj, (5.5)

where II is the second invariant of the strain tensor 7;;. We examine the constitutive
equations in the case when o = 0 and I'T << 1. Therefore, we write the extra stress

component as

T = o {1 + (";1> F2r2] Y, (5.6)
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where
Yi;=T=(V.V)+ (V.V). (5.7)
The envelops of the cilia tips can be expressed mathematically as
V= (X0 =+ [d + decos(%”)(x - ci)] — 4 (5.8)
X—%ﬂiﬂ—d%+wmhm(iv(X—mﬂ—ii (5.9)
The horizontal velocities of the cilia are
L N
o etemtia

The non-dimensional variables are stated as

X Y I d
A7 d7 d7 P)/ A’
t 1% Vi d*p
t=", V=" Vo=-2 p=—">
A ye c cALo
U U d axy
U:—’ U0:707 Re:pc7 Tziv
c c 1o c
T'c d _ d _
We = Ey Tex = ﬁ'rmxa Tey = 0 Csza
d d -
Tyr = — Tyx, Tyy =
Y L Y vy Loc vy
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Under the assumption of low Reynolds number and long wavelength v << 1 are esti-

mated

8z ' Ay =9
u 8u - 8]3 87—1‘1‘ 87—xy
Re”[“aﬁ”a]— or "o T oy

ov ov Op or, ar,
3 __op 20Tyz 20Tyy
[ }_ oy T ow T oy

The extra stress tensor can be written as
n—1 ou
e ()] 3).
n—1 9 of (Ou 90V
e [ () o0s] (- 78)

n—1 ov
w1 (U5 ) e (5):

The boundary conditions are reduced as

1 26my0 cos(2mx)
0= 1 — 27€8y cos(2mx)’
2 in(2
o — m§dy sin(27x) at y=4h=2[1+ Ecos(2mz)],

1 — 27wy cos(2mx)’

where £ represents the length of cilia, § is eccentricitry of path and -~ is ratio.

5.2 Solution Methodology

We use the homotopy perturbation method to solve the Eq. (5.13)

dP 0Ty

dx oy

=0,

ap Pu = W2 (0! 0% _
drz — Oy? 2 oy) oy

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



Chapter 5 64

The boundary conditions are reduced as

ou
— =0, t =0,
oy ey

ug = —1 — 2&7y0 cos(27x), at  y=h=1+ ecos(2mx),
since the above boundary value problem is non-linear. Thus it is appropriate to solve

it analytically with the help of homotopy perturbation method. According to HPM, we

determine L is the linear operator and NN is the non-linear operator as

_20)
L — R (5.19)
dP %) 3(n—1)W2 (3()\* ()
Nt ap T 3 <8y> oy (520)
We construct a homotopy v(r,p) : Q x [0,1] — R which satisfy
H(v,p) = (1 = p)[L(v) — L(wo)] + p[L(v) + N(v) — g(r)] = 0. (5.21)

Thus it is appropriate to solve it analytically with the help of Homotopy perturbation
method (HPM )

9%v 82w0]

2(v n— 2 v 2 2(v
(1_p){ay2_ay2 AP | &(v) | 3(n— YW <a< >> a()]:(]_(m)

+p _%—F Oy? 2 oy Oy?

The corresponding boundary conditions are defined as

ou

— =0 t =0

ay ? a y Y

ug = —1 — 2&my0 cos(2mx), at  y=h=1+ ecos(2mx).

Let us define

UV = vy + pu1 +p2U2+...
P=P +pP +p2P3+...

q=qo+pq +0°¢+ ...
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We take the initial guess which is satisfy the boundary conditions

2 2
y° —h*\ dPy
= ug + -, 5.23
o = to < 2 )d:U ( )

The solutions for the velocity satisfying the relative boundary condition are directly

written as

(5.24)

3
<y2 _ h2> dP (n — 1)W3(y4 — h4) (%I;O)
u =g+ — +
2 dx 4

3 200 _ gty (0N 1 L ygage ey (0
- w2 -t (P0) Py S apwie - (12

Volume of the flow rate in dimensionless form is defined as

h
q= / udy. (5.25)
0
The expression for volume flow rate is defined as

2(n — 1)W2h? (%)3

RS dp 3 o5 (dpo\” dp
— ugh — — (=2 = 1W2ps [ Z22) L (596
¢ =uoh— (5 + 5 tp o Ower (o) g (020
3 2757417 dpo b
28(n 1)*W_h (daj .

The expression for pressure gradient is defined as

3
dp 3 0w W (dp 2(n — 1)W2ht (%) (5.27)
dr B3 Ul T e 5 '
+ | 20— 1ywzns (920 tdp 3 (- 1)2wipT (9P ’
10 ¢ dx der 28 € dx '
The Ap is defined as
Lap
Ap = —dx. 5.28
p= [ G (5.25)
Velocities in terms of streamfunction are defined as
U U
o __ o _ u. (5.29)

Y oy
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The streamfunction is defined as

3
3 2 n—1DW2(% — hiy) (e
s (£ iy ap T DG G
\I/—uoy—|—<6 5 ) 7+ I (5.30)
3 y° dpo\* dp:
—Sn-1)W2A(Z —hty) =) ——.
- WALty (B0)

5.3 Results and discussions

In this section, we have discussed the solution for Physiological flow of Carreau fluid
due to ciliary motion. The expression for velocity, pressure rise, pressure gradient and
streamlines are calculated numerically. Figures 5.2-5.5 show the velocity profile for
diverse values of n (power law index), W, (Weissenberg number), @ , £ , 0 and 7.
Figures 5.2-5.3 show that with the increase in n (power law index), W, (Weissenberg
number) velocity profile decreases. Figure 5.4 show that velocity profile gets increasing
function in the region (—1 <y < —0.5,0.5 < y < 1.0) whereas it get opposite behaviour
in the region (—0.6 < y < 0.6). From figure 5.5 it is seen that with the increase in @
velocity profile also increases. Figures 5.6-5.8 show the pressure gradient for different
values of Q),n. It is depicted that with the increase in n and () pressure gradient
decreases. From figure 5.9 it is seen that pressure gradient gets decreasing function
in the region (—0.7 < z < —0.3,0.3 < y < 0.7) whereas it get opposite behaviour in
the region (—0.2 < x < 0.2). Figures 5.10-5.11 it is depicted that at the centre of the
channel pressure gradient decreases whereas it get opposite behaviour nearest of the
channel. Figures 5.12-5.15 show the pressure rise for diverse values of n (power law
index), W, (Weissenberg number), @, £, 6 and ~. It is depicted that with the increase
in n, We,~y,d pressure rise increases. From figure 5.16 it is depicted that by increasing
value of ¢ (length of cilia tips) pressure rise increases in the region (Q € [—1.5,0.01])
whereas reflux occur in the last.

The retrograde pumping region can also be seen in Figure 5.16 when @ < 0 and Ap > 0
and free pumping region can be seen when Q = 0 and Ap = 0. Moreover, augmented
pumping region can also be seen in figure 5.16 when ) > 0 and Ap < 0. Figures 5.17-
5.28 illustrate the streamlines for different value of £, Q), We. It is distinguish that the

streamlines of the flow are affected in a related behaviour by increasing the value of W.
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In fact it is pragmatic that the strength of trapped bolus appear in the wider part of

the tube increases by increasing the value of W,.
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~1.0 —-0.5 0.0 0.5 1.0

FI1GURE 5.2: Variation of velocity for n when @Q = 0.3, £ = 0.7, 6 = 0.8, v = 0.7,

W, =0.9.
-0.2
0.4 R
® -0.6 ‘ T
-0.8 ’
W, = 0.05, 0.1, 0.15, 0.2, 0.25
-1.0

-1.0 -0.5 0.0

FIGURE 5.3: Variation of velocity for W, when § =0.3,£ =0.7,v=0.8,Q = 0.7, W, =
0.9.

-0.4

FIGURE 5.4: Variation of velocity for £ when 6 = 0.3,n =0.7,7=0.8,Q = 0.7, W, =
0.9.
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0.2

e LLT

vt

T, 001,03, 0.5,0.7,09
0.0

-1.0 -0.5 0.0 0.5 1.0

F1GURE 5.5: Variation of velocity for @ when § = 0.3,£ = 0.6,y =0.8,n = 0.2, W, =

dpP
dx

FIGURE 5.6: Variation of pressure gradient for n when § = 0.3,£ = 0.6,y = 0.8,Q =
0.7, W, =0.9.

dpP

dx

0'=0.05, 0.1, 0.15, 0.2, 0.25
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. PP,
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FIGURE 5.7: Variation of pressure gradient for () when § = 0.3,£ = 0.6,7 = 0.8,n =
0.6, W, =0.9.
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F1GURE 5.8: Variation of pressure gradient for W, when v =0.3,Q = 0.6,n = 0.8, =
0.5,& = 0.6.

X

FIGURE 5.9: Variation of pressure gradient for £ when v =0.3,Q = 0.6,n = 0.8, W, =
0.5,0 =0.9.

§=0,0.2, 0.4, 0.6, 0.8

-0.5 0.0 0.5

FI1GURE 5.10: Variation of pressure gradient for § when v = 0.6,Q = 0.5, = 0.8,n =
0.5, W, =0.9.
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y=0,02,0.4,0.6,0.8

F1GURE 5.11: Variation of pressure gradient for v when £ = 0.1,6 =0.1,Q = 0.1, W, =
0.5,n=0.3.

n=04,0.7,1,13,1.7

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Q

FI1GURE 5.12: Variation of pressure gradient for n when @ = 0.1, W, = 0.1,7 = 0.1,£ =
0.5,0 = 0.3.

W, = 0.05, 0.1, 0.15, 0.2, 0.25
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-1.5 -1.0 -0.5 0.0 0.5 1.0 15
Q

FIGURE 5.13: Variation of pressure rise for W, when @ = 0.1,n = 0.1,£ = 0.1,§ =
0.5,b=0.3.
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6=0.1,03,0.5, 0.7, 0.9

ap

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

FIGURE 5.14: Variation of pressure rise for § when @ = 0.1,n = 0.1, = 0.1,y =
0.5,b=10.3.
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FI1GURE 5.15: Variation of pressure rise for v when @ = 0.1, = 0.1,b = 0.1,n =
0.5, W, =0.3.
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FIGURE 5.16: Variation of pressure rise for £ when @ = 0.1,b = 0.1, W, = 0.1,n =
0.5,v=0.3.
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0.5, = 0.3.

GURE 5.24: Streamlines for different value of @ = 0.1, W, =0.1n =0.1,y=0.1,0 =

0.5,& = 0.3.

INiviviv
FRARRAREY

GURE 5.25: Streamlines for different value of @ = 0.1, W, =0.1n=0.1,7=0.1,§ =

0.5, = 0.3.



B

FIGURE 5.26: Streamlines for different value of Q@ = 0.1, W, = 0.1n =0.1,7 = 0.1, =
0.5, =0.3.

FIGURE 5.27: Streamlines for different value of Q = 0.1, W, = 0.1n =0.1,7v = 0.1, =
0.5,£ =0.3.

FIGURE 5.28: Streamlines for different value of @ = 0.1,W, =0.1n =0.1,7y=0.1,0 =
0.5,£ =0.3.
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5.4 Conclusion

In this chapter, we have analysed the Physiological flow Carreau fluid inner a symmetric
metachronal wave due to cillary motion. The main findings of the present study are as

follow:

Velocity profile in the centre of the channel decreases as well as it gets opposite

behaviour nearest of the channel.

e By increasing value of ¢ pressure rise increases in the region (Q € [—1.5,0.01])

whereas reflux occur in the last.
e Pressure gradient decreases with the increasing value of @), n.

Streamlines bolas take the form of the shape of the geometry.
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Metachronal wave analysis for
Non-Newtonian fluid under
thermophersis and brownian

motion effects

6.1 Introduction

The main purpose of this chapter is to present a mathematical model of ciliary mo-
tion in an annulus. The effect of convective heat transfer and nanoparticle are taken
into account. The governing equations of Jeffrey six-constant fluid along with heat
and nanoparticle are modelled and then simplified by using long wavelength and low
Reynolds number assumptions. The reduced equations are solved with the help of ho-
motopy perturbation method. The obtained expressions for the velocity, temperature
and nanoparticles concentration profiles are plotted and the impact of various physical

parameters are investigated for different peristaltic waves.

6.2 Model of the Problem

We have considered the ciliary motion phenomenon for the two dimensional flow of
an incompressible fluid in an annulus. We are considering the cylindrical coordinates
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system (R, Z). The geometry of the problem is shown in Figure 6.1.

Envelope of cilia tips

FIGURE 6.1: A physical sketch of the problem

The fundamental equations of continuity, momentum and nanoparticle concentration

are
ou U oW
i T 6.1
oR "R 0z (61)
0 -0 -0\ = oP 1 0 ,_ 0 T35
AT = W— = —— _— T55 — (T55 ﬁ 2
p <8t TUBRT az) U= T Ropfmm + 57 Tr2) + 1 (6.2)
0 0 -0 = o°P 1 0 ,-_ 0 ,_
+ pgoT — Tp) + pga(C — Co) — o BIW, (6.3)
0 -0 -0\ = *T 10T 0°T
=+ U—=4+W—=|T= —t ===+ —==
<8t+ oR az) a(8R2+R8R+6Z2)
oC oT 0CoT\ Dy [ (0T\> [0T\"
Dp| —=—=+ —=— — — — 6.4
T B<8R6R+828Z> T ((em) * (az) > o (64)
a -0 -0\ = 0’C  10C o°C
— 4 U—=4W—-—=|C=Dp| = + === + —=—
(aﬁ oR az> B(am +R8R+622>
Dy (0*°T 10T O*T
i <8R Tror " az) ’ (6.5)
where 7 = % is the ratio among the heat capacity of the nanoparticle material and

the heat capacity of the nanofluid.
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The constitutional equation for a Jeffrey six-constant fluid is defined as [32]

T+ € [dT —Wr+7.W +d(7.D+ D.7)+b7 : DI + thm_']

dt

dD
:2;1{D+62<—WD+DW+2dDD+bD D[ﬂ (6.6)

dt

Here

D(symmetric measurement of velocity gradient) =

W (antisymmetric measurement of velocity gradient) =

Let us examine that the envelops of the cilia tips can be denoted mathematically as

R=H=f(Z1= [a+ea cos<2;> (Z—Clt)]’

_ o B 9 _
Z =g(Z,Zy,t) = Zy + eaasin (;) (Z—clf).

(6.7)

(6.8)

The velocities of the transporting fluid are just those caused by the cilia tips, which can

be expressed

0z og 05 0Z

W=2fln=23it 97 a7 =
_ 9R  of OF 0z
U=Zflo=3;t 27 o

99
ot

oG -

oV (6.9)
of -

2L 1
aXW (6.10)

Using Eqs. (6.7) and (6.8) into the Egs. (6.9) and (6.10), we obtain as

 (®)eaac cosF)Z - ai)

VT @ aa cos(T)Z - ead)

o (e aacsnE)(Z )
= (Z) (e aa cos(E)(Z - i)

= X(va)a

=i
Il
>
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The transformations between the two frames are

The boundary conditions are defined as
ow oT oC _
? —07 ﬁ— T_O) (611)
_ _ - _ _ o
W=x(Z,t), T=T, C=Cy at T=h=a+acos [;r (Z—clf)] . (6.12)

Introducing the following non-dimensional variables

R:E7 f)":ﬁ7 Z:g’ 2237 W:K’ w:E’ :>\7U’
a a A A cl c1 ac
wo N _at oy _aa _ea o aap s a
acy A a a 1o A
_ h _ Gy gaa%To B (T —Tp)
h = " =1+4e€cos(2nmz), P, = o G, 2 0 = TR
Ny = DB gaadCo - (p0Dr(Co) (O Co)
(P v (pc) por Co
M = \/EB()G,.
n
The reduced equations can be written as
dp
= 1
op 190 9
= T3 -5 rz r B’r - M 1 ) 14
0 aZ+Tar(w)+G0+ o (w+1) (6.14)
10 ( 00 90 do AN
0= o <r6r) + Nbaa + Ny <87“> ) (6.15)
10 do Ny (10 a0
= \r )+ =5 (r5 ) ) 1
0 r or <r8r>+Nb (r@r (Tﬁr)> (6.16)

The corresponding boundary conditions are reduced as

ow ol do
E_()’ E_O’ E_O’ at r =20,

w=—1-2medacos(2rz), 6=0, o=0, at r=h=1+ecos(2nz).
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The extra stress tensor can be defined as
9e [14 Mg (1 - d(d+) - §(2d+3D)) (32)*)]
Trz = )
[1+)\2 (1= d(d+b) — 5(2d + 3b)) (22) )}
2
Trpr = Ao <881;}) (1+d+b) -\ (?:) (1+d+b> Trz,
2
Toy = A2 <881:> (—1+d—‘rb) -\ (?:) (—1+d+b) Trz,
2
Tog = A2 (aal:) b— M\ <88w> b2,
where
ar=1—dd+b)— g(2d+ 3b), as=M—A\, az=-\\.
Finally, in simplified form Eqgs. (6.13)-(6.16) can be written as
dp
g 1
5 0, (6.17)
op 10 (0w 10 ( (0w’
dz ror \' or ror \ "1 Uor
10 ( , ow\”® )
+ o (alagr <8r> > — M (w+1), (6.18)
19 ( 06 90 oo 96\
_10 < ” ) NIy N, <a> , (6.19)
10 ([ Oo 10 ([ 00
T ror < 8r> N (r or (Tar>> ' (6:20)

The corresponding boundary conditions are reduced as

ow 00 do
5_0’ E_o’ E_O’ at r =20,

w = —1—2medacos(2rz), =0, o=0, at  r=h=1+ecos(2nz).
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6.3 Solution Methodology

We use homotopy perturbation method to solve the above Eqgs. (6.18 - 6.20)

2
H(0.) = L(0) ~ L) + oL(0w) + 4 | Mgy o + 3 (5 ) ] SNCES
H(g,0) = L(o) — L(ow) + aL{ow) + 4 [ﬁb (15 (?))] o 622)
3
H(q,w) = L(w) — L(wio) + qL(w10) + ¢ 11"88r (alagr <?;:> )
5
+ 71~66r <a§a3r (gﬁ’) ) + G0+ Bro — M?*(w +1) — gﬂ : (6.23)

We have taken linear operator L = %% (r%) and initial guesses are discussed which

satisfy boundary conditions

7“2 _ h2
910(7‘7 Z) = ( 4 )7
2 2
— N,
m(r2) = (R
r2 — h%\ Opo
W, = —1-—27ed 2 —_—.
10(r, 2) medacos(2mz) + ( 1 ) 9%
According to HPM, we define
O(r,q) = 00—|—q91+q292+...
o(r,q) = o0o+qo1+ ¢+ ...

w(r,q) = wo + qui + ¢wa + . ...
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The solutions for velocity, temperature and nanoparticle phenomena can be written as

forg — 1

w——1—27r65acos(27rz)+( 1 ><dz> _33 2(82) (r* — h%)

T 1921 g
1 N, 1 N, 1 Apo
~ B2 — 24_737" 4 gVt 2 goa202 g2y [ 9P0
MR TR U Ul il e (e v T G U
19 4\ [ Opo 1.9 2
+ 64M (r* — nt) ( o 2M (r — h*)medacos(2mz) (6.24)
r2—h2 7“4—]14 7'4—h4 h2_r2 7“6—]16
9 = — N, N, N;)?
(=55) - () v () e () + () oo
N, (6.25)

r2 —h2\ N, h? —r2\ N; h? —r2\ N, r2 — K2 9
a_< >+< >Nb_< 1 >Nb+< % )(Nt). (6.26)

(6.27)

Where
h2 2 6 Ipo 6172 aPO

N 3
h4M27re(5a cos(2mz) + 963 hﬁﬁz - %h%qozz <aa}:)> . (6.28)

Flow rate in the dimensionless form can be written as
1 €2
F=Q—-—=-1+—). 6.29
2-5(1+%) (6.29)
The pressure rise Ap can be written as

Ap = /0 1 (fg) dz. (6.30)

Velocities in terms of streamfunctions are defined as

1 /0 1 /0
1) )
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6.4 Results and discussions

In this section, we have discussed the solution for the peristaltic flow of Jeffrey six-
constant nanofluid flow due to ciliary motion. The expression for temperature, concen-
tration, velocity, pressure rise, pressure gradient and streamlines are calculated numer-
ically. Figures 6.2-6.4 show the velocity profile for diverse values of fluid parameters
(a1) magnetohydrodynamics (M) and amplitude ratio (¢). Figure 6.2 shows that ve-
locity profile gets decreasing function in the region (—0.6 < r < 0.6) whereas it get
opposite behaviour in the rest of the region. Figures 6.3-6.4, it is depicted that velocity
profile gets increasing function in the region (—0.6 < r < 0.6) whereas it gets opposite
behaviour in the rest of the region. Figure 6.5 show the temperature profile for differ-
ent values of thermophoresis parameter (N;) . It is depicted that with an increase in
thermophoresis parameter (IV;) temperature profile decreases. Figures 6.6-6.7 show that
with an increase in N, and N; concentration profile increases. From figure 6.7, it is seen
that with an increase in Ny, concentration profile decreases.

Figures 6.8, 6.10, 6.12 show the pressure rise (versus flow rate) for diverse value of
a1, €,a3. In these figures, it is depicted that by increasing value of «y pressure rise
decreasing in the region (Q € [—3, —1]) whereas reflux occur in the last. The retrograde
pumping region can also be seen in Figures 6.8, 6.10, 6.12 when Q < 0 and Ap > 0
and free pumping region can be seen when () = 0 and Ap = 0. Moreover, augmented
pumping region can also be seen in figures 6.8, 6.10, 6.12 when @ > 0 and Ap < 0.
Figures 6.9, 6.11, 6.13 show the frictional force for diverse values of aq,€, 3. Figures
6.14-6.16 describe the behaviour of pressure gradient for different values G, €, Ny, Ny .
Figure 6.14 describe that increasing value of € the pressure gradient decreases in the
region (—1 < Z < 0.3) and increases in the region (0.2 < Z < 0.7). Figures 6.15-6.16 it
is depicted that with an increase in Ny, N, G pressure gradient decreases. Figures 6.17-
6.19 illustrate the streamlines for different wave shapes. In these figures, it is depicted

that by increasing value of g, trapped bolus increases.
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F1GURE 6.2: Velocity for different values of oy when o = 0.28, § = 0.43, B = 0.87,
e=0.12, N, =0.8,N, = 0.7, G,. = 5.57
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F1cURrRE 6.3: Velocity for different values of € when o = 0.28, § = 0.43, B = 0.87,
Ny =0.8,Ny, = 0.7, G, = 5.57
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FIGURE 6.4: Velocity for different values of M when o = 0.28, § = 0.43, B = 0.87,
€ =0.12, Ny =0.8,N, = 0.7, G,, = 5.57
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FIGURE 6.5: Temperature for different values of Ny when o« = 0.28, § = 0.43, B = 0.87,
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F1GURE 6.6: Concentration for different values of N, when ov = 0.28, § = 0.43, B =

0.87, e =0.12, N; = 0.8, G, = 5.57
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FIGURE 6.8: Pressure rise for different values of vy when oo = 0.28, § = 0.43, B = 0.87,
e=0.12, N, =08,N, =0.7, G. =5.57, M = 0.9
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F1GURE 6.9: Frictional forces for different values of a; whena = 0.28, § = 0.43,
B =0.87¢=0.12, Ny =0.8,N, =0.7, G, = 5.57, M = 0.9
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FIGURE 6.10: Pressure rise for different values ofe when o = 0.28, 6 = 0.43, B = 0.87,
Ny =0.8,N, =0.7, G, =557, M =0.9
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FIGURE 6.11: Frictional forces for different values of € when o = 0.28, 6 = 0.43,
B =0.87, Ny =0.8,N, =0.7, G, =557, M = 0.9

FIGURE 6.12: Pressure rise for different values of a3 whena = 0.28, § = 0.43, B = 0.87,
e=0.12, Ny =08,N, =0.7, G, =5.57, M = 0.9

0.5 F

FIGURE 6.13: Frictional forces for different values of a3 when o = 0.28, § = 0.43,
B=0.87,¢=0.12, N, =08,N, =0.7, G, =5.57, M = 0.9
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FIGURE 6.14: Pressure gradient for different values of € when a = 0.28, § = 0.43,
B =0.87, a30.12, N, = 0.8,N, = 0.7, G, = 5.57, M = 0.9

dp/dz

FIGURE 6.15: Pressure gradient for different values of G, when a = 0.28, § = 0.43,
B =0.87,¢=0.12, N, =08,N, =0.7, ag = 5.57, M = 0.9
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FIGURE 6.16: Pressure gradient for different values of Ny when a = 0.28, § = 0.43,
B=0.87¢=0.12, a3 =0.8,N, =0.7, G, =557, M = 0.9
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FIGURE 6.17: Streamlines for different values of vy = 0.1 when o = 0.28, § = 0.43,
B=0.87€¢=0.12, N, =08,N, =0.7, G, =5.57, M = 0.9

~

FIGURE 6.18: Streamlines for different values of vy = 0.3 when o = 0.28, § = 0.43,
B =0.87,¢=0.12, N, =08,N, =0.7, G, =5.57, M = 0.9

~

FIGURE 6.19: Streamlines for different values of vy = 0.5 when o = 0.28, § = 0.43,
B =0.87¢=0.12, Ny =0.8,N, =0.7, G, = 5.57, M = 0.9
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6.5 Conclusion

In this chapter, we have analysed the nanoparticle analysis for peristaltic flow of a non-
Newtonian fluid due to ciliary motion. The main findings of the present study are as

follow:

e The temperature profile is decreases for the increasing values of thermophersis

parameters V;.

e The nanoparticle concentration field is enhanced for the increasing values of Brow-

nian motion Ng.

e It is clear that frictional forces and pressure rise have an opposite behaviour while

compare to each other.

e The pressure gradient increases with the increasing value of e.
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Physiological flow of Jefirey
six-constant fluid due to ciliary

motion

This chapter deals with the physiological flow of Jeffrey six-constant fluid due to ciliary
motion in an annulus. In this analysis, the peristaltic motion of non-Newtonian Jeffrey
six-constant fluid is observed in an annulus with ciliated tips under the effect of heat
and mass transfer. The effects of viscous dissipation are also taken into account. The
governing equations of non-Newtonian fluid are modelled and simplified by using low
Reynolds number and long wavelength assumptions. The velocity equation is solved by
utilizing the regular perturbation technique in terms of a variant of small dimensionless
parameter «. The obtained expressions for the velocity profiles are plotted and the

impact of different physical parameters are investigated for different peristaltic waves.
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7.1 Formulation of the Problem

The governing equations in the fixed frame for an incompressible fluid can be written as
ou U oW _,
OR R 07

(7.1)
0 -0 -0\ ~ oP 1 0 ,-_ o ,_ 90
Gt U A W | U= e+ =—— = (Fpy) — -2 2
p<8t+ 8R+W82>U o T RorTER) T 57 TR2) — (7.2)
o - - 0\ = o°P 1 0 - 0
ST W)W = -2 4 = (Ripy) + ~—= (725 7.3
p(aﬁ oR az) 07 T RoR\r2) * 57(72z2), (7:3)
o -~ o0 90\~ _ oU _ oW _ oU _ oU _ U
PCp 5{+Uﬁ+wﬁ T = RRZR ngﬁ-l-TRZafZ-i-Tzzﬁ-i- 00
+ K ﬂ+l@+@ (7.4)
OR?  ROR 027%2)° '
o -0 -0\ ~ 0’C 100  0*C
(aﬁ oR az) <8R2+RaR+aZZ>
Dy (0*T 10T _0°T
v (oL 298 L 9L 7.5
T <8R2+R6R+822> (7.5)
The constitutional equation for a Jeffrey six-constant fluid model is defined as
T+e [CZ —Wr+7W+d(7.D+D.7)+ b7 : DI + CDtT’T:|
dD
=2 [D +ex(r — WD+ D.W +2dD.D +bD : DI)] : (7.6)

in which
VV + (VV)h

D(symmetric measurement of velocity gradient) = +2( )
vV —

\Y vv)h
W (antisymmetric measurement of velocity gradient) = 2( ) .

Let us examine that the envelops of the cilia tips can be denoted mathematically as

R—h=f(Z,D) = [a—keacos <2;> (z—ct‘)} ,

(7.7)

o i, m\
Z = §(Z. Zo.1) = Z+ eBasin (;) (Z - ),
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where a represents the radius of the ciliated tube , € is the mean non-dimensional measure
with respect to the cilia length, A\ presented by wavelength and ¢ denotes the wave speed.
[ is the measure of the eccentricity of the elliptical motion of the cilia tips. The velocities
of the transporting fluid are just those caused by the cilia tips, which can be expressed
as

0z dg 0 9Z 9y 99

=it oz oo Tax (7.9)

oR _of of o7 _of o,
e =9 oz a "ot Tax (7.10)

=

Il

|
)
3
N
3

Il
=
N
N/

U= t T=h
1= (Z)(e f a cos(E)(Z — ch)) '
The transformations between the two frames are
F=R, zZ=27—ct,
u=U, w=W—-¢
ow oT aC
77 e = = t = 11
or or or 0, at 7=0, (7.11)
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Introducing the following non-dimensional variables

_ ~ 7 ~ _ ~ ~
R:E, T:C, Z:*, Z:E, I/I/:K7 'LU:E,TZE
a a A A c c clio
AU A t
U= ) u = 7/” t= a ) A1 = 61017 AQ - 62017
ac ac A a a
h C
Re—aclp, 6—3, h=—=1+ecos(2rz), Pr:'uU P
140 A a k
2 T—T, I k 2
Ec:Civ 0= = 07 H:La o= y P= apv
CyT T c (pc) ¢ 1A\l
g pDk‘TT() S 1% C7’_00
T = = H — ) 0 = =
wIoCo Dp Co

Under the assumption of low Reynolds number and long wavelength § << 1 are esti-

mated
ou u Ow
O=—+—+ — 7.13
or et 0z’ (7.13)
Op
0=— 7.14
or’ (7.14)
op 10
= —a_ —a_ rz) s q
0 6z+r6r(m— ) (7.15)
10 ( 00 ow
= —a a_ By— rz) q
0 ror <r8r> * " or (772) (7.16)
110 ( 0o 10 ( 00
= -2 (r S (v ). 1
0 Sgror (T8r> +ST7’ or <r8r> (7.17)
ow 00 Oo
E_O, 5 =0 5_0, at r=20,
w=—1—2medfcos(2nz), =0, o=0, at r=h=14ecos(2nz).
Finally, in simplified form Eqs. (7.13)-(7.17) can be written as
% =0, (7.18)
dp _ 10 (0w 0 w3
=150 +15 (aalr (57) )
w5
+12 (o2azr (32)7), (7.19)
L ) 4 B () =0 (1.20)

L1 08) + 514 (48 o (721
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The corresponding boundary conditions are defined as

8w_ 80_0 do

or ’ or " Or ’ ar ’

w=—1—-2medfcos(2nz), 6=0, o=0 at r=h=14 ecos(2mz).

7.2 Solution Methodology

7.2.1 Perturbation solution

We apply the regular perturbation method in terms of a variant of Jeffrey six-constant
fluid parameter . As perturbation technique, following expansion of w, 6, o, and p

in terms of small parameter « are used

w = wy+ aw + awy + O(a?),
0 = 6+ ab + o’y + O(a?),
o = 0o+ ao +aloy+0(ad),

p = po+ap+aip+ (9(043)-

The perturbation solution for velocity, temperature and concentration profile is given in

Egs. (7.22)-(7.24)

4 _ 14 1 3
W =—1-2medf cos(2mz) + r—h <dp> <8po> (rt — b

4 dz) 372Oé2 0z
3aq [ Opg 2 op1 4 4 904% 6 6 [ Opo 3 302, ¢ 6
_ oM (9P (ORI 4ty T 6 6y (9RO} 09206 6y (7,90
32 ( 9z 2 AR Gl 576l ) (122)
h——Lp P2(rt — nt) — 1p Pop1(r* — hY) + Lp Pt — hHoy
64 "0 327" 576 0
1 1
__B.PXr — 1Y+ —nP 4 g4y 1 53 6 16
61 Tt —h) + 39 op2(r® — h%) 283 op1(r” — 7)o
1 3 6 6 3 4 8 gy 2 L 63 8\ .2
+ 288B,€P0p1(7" h®)oq + 2048B,~PO;01 (r® — h%)ag 2048P0 (r® — h%)ag
1 6/ .8 8\ .2 L 6.8 8
740963'{P0 (r® — h%)ay 74096]30 (r® — h®)aa. (7.23)



Chapter 7 98

1 1
:7Bn P2(p4 _ A B P — WY~ —B.PYS — 1S
o= StSuPs(r* —h") + 39 WSTSHPop1 (r* — h*) 576 o(r° —h°)
+ 6 1p <STSHPE(rt — ht) — —STSHPOpg(r -+ @ 3(r® — h%)ay
—B P, —hb P, —h®a? + —— @ —h®
+ 288 wSTSH PP (r® — h%)ar = 2048STSH opa(r® =B + g (r )
B P, —hd P, —nd 24
+4096 ST SH 0p1( ) 4096STSH opl(T )az, (7.24)
dp 16
=T [F + Al], (7.25)
where
Al = h—2—|—h27re<5ﬂcos(27rz)—ih6p3a —ih6p2p a +ih8p304 —7]18 az. (7.26)
2 96" POM T 301 POPIO T o Do T gt Poa -
Flow rate in the dimensionless form can be written as
1 2
F:Q—2<1+€2>. (7.27)

The pressure rise Ap can be written as

Ap = /0 1 (?zl]:) . (7.28)

Velocities in terms of streamfunctions are defined as

(?w 81p
u =
0z or
For the flow analysis, we have considered three waveforms sinusoidal wave, trapezoidal

wave and mulltisinusoidal wave. The dimensionless equations can be written as

1. Sinusoidal wave

h(z) =1+ ecos(2mz)

2. Multisinusoidal wave

h(z) = 1+ ecos(2mnz)

3. Trapezoidal wave

h(z)=1+¢ %% z:l SHE%@_nl_)) sin(27(2n — 1)2)
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7.3 Results and discussions

In this section, we have analyzed the solution for physiological flow of Jeffrey six-constant
fluid due to ciliary motion through graphs. We have presented the solution attained by
perturbation by framing velocity, pressure rise, pressure gradient, temperature, concen-
tration and streamline graphs for diverse values of the parameters «, @, £ , § and =,
ST, Sy respectively. Figures 7.1-7.2 show that with the increase in «aq, as temperature
profile decreases. Figures 7.3-7.4 show that with the increase in B,, ¢ temperature profile
increases. Figures 7.5-7.8, it is depicted that with the increase in a1, as, S7, Sy con-
centration profile increases. Figures 7.9 show that increases the value of as while the
velocity profile in the centre of the tube decreases whereas it gets opposite behaviour
near the tube or near the peristaltic wave. Figures 7.10 it is depicted that, at the centre
of the tube, the velocity profile is minimum whereas it gets opposite behaviour near the
tube or near the peristaltic wave. Pressure rise and frictional forces for diverse values
of a1, a, 8 and is plotted in Figures 7.11-7.16. In these figures, it is depicted that by
increasing value of ay, a1, 8 pressure rise increasing in the region (@) € [—2, —1]) whereas
reflux occur in the last. Three different regions can be recognized from these figures.
The retrograde pumping region can also be seen in Figures 7.11, 7.13, 7.15 when @ < 0
and Ap > 0 and free pumping region can be seen when Q = 0 and Ap = 0. Moreover,
augmented pumping region can also be seen in figures 7.11, 7.13, 7.15 when @ > 0 and
Ap < 0. Figures 7.12, 7.14, 7.16 show the forces have an opposite behaviour as well
as the pressure rise. Figures 7.17-7.18, it is depicted that by increasing value of aq, as
pressure rise decreasing. Figures 7.19-7.21 illustrate the streamlines for different wave

shapes.
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FIGURE 7.1: Variation of temperature graph for oy when Z = 0.75, ¢ = 0.22, M = 0.2,
B, =022, « =0.22, 5 =1.5, as = 0.6.
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FIGURE 7.2: Variation of temperature for «; when Z = 0.75, ¢ = 0.22, M = 0.2,
B, =022, a=0.22, =1.5 a; =0.6.

FIGURE 7.3: Variation of temperature for B, when Z = 0.75, ¢ = 0.22, M = 0.2,
a1 =022, a =022 8=15 as=0.6.
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FIGURE 7.4: Variation of temperature for ¢ when Z = 0.75, B,

a1 =022, a =025, 3= 1.5, as = 0.6.
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FIGURE 7.5: Variation of nanoparticle concentration for o; when Z = 0.75, B, = 0.22,
M=02 =022 a=0.25 =15 a,=0.6, S =0.7, Sy =0.5.

FIGURE 7.6: Variation of nanoparticle concentration for as when Z = 0.75, B, = 0.22,
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FIGURE 7.7: Variation of nanoparticle concentration for S when Z = 0.75, B, = 0.22,
M =02 =022 a=0.25 =15 a; =0.6, ag =0.7, Sy = 0.5.
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FIGURE 7.8: Variation of nanoparticle concentration for Sy when Z = 0.75, B, = 0.22,
M=02e=022 a=0.25 =15 a; =06, ag = 0.7, Sp = 0.5.
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FIGURE 7.9: Variation of velocity for as when Z = 0.75, B, = 0.22, M = 0.2, ¢ = 0.22,
a=0.25 6=15 a =0.7
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FIGURE 7.10: Variation of velocity for € when Z = 0.75, B, = 0.22, M = 0.2, oy =
0.22, « =0.25, B = 1.5, ay = 0.27

FIGURE 7.11: Variation of Pressure rise for ar; when Z = 0.23, ¢ = 0.01, a; = 0.22,
Qo = 0.4, ﬁ = 1.5, B = 1.5, ST = 0.7, SH =0.5.

FIGURE 7.12: Variation of frictional force for oy when Z = 0.23, ¢ = 0.01, o = 0.22,
ar=04,8=15,B,=15,Sr=0.7, Sg = 0.5.
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FIGURE 7.13: Variation of Pressure rise for ay when Z = 0.23, ¢ = 0.01, oy = 0.22,
a=04,=15, B, =15, 5=0.7, Sy =0.5.
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FIGURE 7.14: Variation of frictional force for ao when Z = 0.23, ¢ = 0.01, oy = 0.22,
a=04,8=15 B,.=15, 5 =0.7, Sy =0.5.
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FIGURE 7.15: Variation of Pressure rise for  when Z = 0.23, ¢ = 0.01, oy = 0.22,
a=04,as =05, B, =1.5, S =0.7, Sg = 0.5.
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FIGURE 7.16: Variation of frictional force for 8 when Z = 0.23, ¢ = 0.01, a7 = 0.22,
a=04,as =05, B, =1.5, S =0.7, Sg = 0.5.
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FIGURE 7.17: Pressure gradient % for sinusoidal wave when Z = 0.23, ¢ = 0.01,
a=04,as =05, B, =15, 5 =0.7, Sy = 0.5.
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FIGURE 7.18: Pressure gradient % for sinusoidal wave when Z = 0.23, ¢ = 0.01,

a1 =022, =04, B, =15, 57 =0.7, Sy = 0.5.
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FIGURE 7.19: Streamlines pattern for sinusoidal wave Z = 0.23, ¢ = 0.01, a; = 0.22,
a=04, s =05, B, =15, S0 =0.7, Sy = 0.5.

FIGURE 7.20: Streamlines pattern for multisinusoidal wave Z = 0.23, ¢ = 0.01, oy =
0.22, «a =04, as =0.5, B, = 1.5, S =0.7, Sy = 0.5.

FIGURE 7.21: Streamlines pattern for Trapizodioal Z = 0.23, ¢ = 0.01, a7 = 0.22,
a=04,as =05, B, =1.5, S0 =0.7, Sg = 0.5.



Chapter 7 107

7.4 Conclusion

In this chapter, we have analyse the physiological breakdown of Jeffrey six-constant flow

due to ciliary motion. The main findings of the present study are as follow:

e The temperature profile is enhanced corresponding to increasing values of param-

eters B, and parameter e,

e The nanoparticle concentration field is enhanced corresponding to increasing values

of Sp and Sy,

e [t is clear that frictional forces and pressure rise have an opposite behaviour while

compare to each other.

e The pressure gradient increases with the increasing value of ¢.



Chapter 8

Conclusion

In this thesis, we have investigated the incompressible, laminar and two dimensional
peristaltic flow of different non-Newtonian fluids for different flow geometries in the
presence of heat transfer. The governing equations of non-Newtonian nanofluid along
with heat and mass transfer are modelled and simplified by using low Reynolds number
and long wavelength assumptions. The momentum equation is solved by utilizing the ho-
motopy perturbation technique while the exact solutions are computed for temperature
and concentration equations. The obtained expressions for the velocity, temperature
and nanoparticles concentration are plotted and the impact of various physical param-
eters are investigated for different peristaltic waves. The main conclusion of this thesis

is concluded in the coming paragraph.

In general, temperature profile increases by increasing Brownian motion parameter (V)
due to increase in the collision between the particles which produces heat as a result
temperature field increases. As particles can diffuse under the effects of temperature
gradient so increase in thermophersis parameter (IV;) results in the reduction of concen-
tration field. Increasing the Brinkman number (By) means greater viscous dissipation,
thus by increasing Brinkman number, the collision in the flow causes an enhancement in
the internal energy of the fluid, which is responsible for the resulting enhancement in the
temperature field. By increasing the value of amplitude ratio (¢), the pressure gradient
increases. Streamlines bolus takes the form of the shape of the geometry. The trapped
bolus increases with the increasing value of ¢. It is found that in the peristaltic flows

of different non-Newtonian fluids that non-Newtonian parameters have strong effects
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on the velocity profile, thus the theoretical study of non-Newtonian peristaltic flows for
various flow geometries are very important for new physical models and their analytical

computations. The main findings of the thesis are as follows:

e Velocity profile enhances near the endoscopic tube by increasing values of a because
buoyancy forces play a dominant role near the endoscopic tube, also reflux case

occurs near the peristaltic waves.

e The trapping bolus phenomenon shows that the bolus decreases with an increase

in Jeffrey six-constant parameter o;.
e Temperature profile decreases for increasing values of the Biot number.

e Temperature of the fluid decreases with an increase in the nanoparticle volume
fraction ¢ because high thermal conductivity plays an important role in dissipating

heat.

e Pressure rise and frictional forces have an opposite behaviour as compared to each

other.

8.1 Future work

The analysis performed in this thesis can be extend in many directions e.g., slip con-
ditions, no-slip conditions, convective boundary conditions and temperature dependent
viscosity. An interesting research of this field to analyze in future will be to study the
effects of different nanoparticles, viscous dissipation and heat transfer of non-Newtonian

fluids. Some of them are listed as follows.

Peristaltic flow of a Maxwell nanofluid in an endoscope with non-Newtonian fluids.

Physiological breakdown of a second grade nanofluid flow in an endoscope embed-

ded in a porous medium.

Peristaltic low of a Williamson nanofluid in an endoscope with non uniform wall.

Simulation of variable thermal conductivity in the flow of peristaltic flow of a

non-Newtonian fluid model.
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e Simulation of thermally stratified fluid in the flow of a peristaltic flow of a New-

tonian and non-Newtonian fluids.

Simulation of viscous nanofluid in the flow of peristaltic flow of third grade fluid.

Physiological flow of Sisko fluid due to cilliary motion.

Peristaltic flow of a non-Newtonian fluids due to cilliary motion.

Physiological flow of Jeffrey fluid induced by cilliary motion.
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Appendix A

In this appendix, we present the constants appearing in homotopy perturbation solution

for velocity in Equation (2.35).
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Appendix B

In this appendix, we present the constants appearing in homotopy perturbation solution

for velocity in Equation (3.25).
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Appendix C

In this appendix, we present the constants appearing in homotopy perturbation solution

for velocity in Equation (4.21).
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