
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Test Data Generation for

Evolutionary Mutation Testing of

Object-oriented Programs

by

Muhammad Bilal Bashir

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

December 2017

www.cust.edu.pk
www.cust.edu.pk
bilalbezar@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2017 by Muhammad Bilal Bashir

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

Dedicated to

My Family Members

Acknowledgements

I express my gratitude to the Almighty Allah, Who is the Most Merciful and

Beneficent, Who bestowed His blessings on me and enabled me to complete this

thesis.

I dedicate this thesis to my parents, wife, kids, family members and friends who

are always with me, their prayers and love always supported me. My parents

commitment and devotion made it possible that I am completing this thesis and

my higher education today.

I further pay my gratitude to my kind and supportive supervisor Dr. Aamer

Nadeem, who helped me in every step during my thesis. Without his guidance

and help, I could never have been able to complete this thesis successfully. I

am also grateful to Dr. Shafiq-ur-Rehman and Shaukat Ali for their valuable

feedback and guidance during my thesis. I also like to say special thanks to my

wife Sadaf Manzoor for her immense support and motivation. I would also like

to acknowledge my senior researchers and all the members of Center for Software

Dependability (CSD) for their encouragement and support. In the end again,

I would like to acknowledge the support of my friends. My true gratitude and

thanks to my sincere and loving family, whose prayers have always been a source

of determination for me.

v

vi

List of Publications

Research work appeared in the following publications:

• Journal Publications

1. Bashir, M.B., Nadeem, A., (2017) ”Improved Genetic Algorithm to

Reduce Mutation Testing Cost”, IEEE Access, 2017.

2. Bashir, M.B., Nadeem, A., An Evolutionary Mutation Testing Tool

for Java Programs eMuJava, Under Review in Journal of Systems

and Software.

• Conference Publications

1. Bashir, M.B., Nadeem, A., (2014 December) A State-based Fitness

Function for the Integration Testing of Object-Oriented Programs. In

the Proceedings of the 10th International Conference on Emerging Tech-

nologies, (ICET ’14), Islamabad, Pakistan.

2. Bashir, M.B., Nadeem, A., (2013 December) A Fitness Function for

the Evolutionary Mutation Testing of Object-Oriented Programs, In the

Proceedings of the 9th International Conference on Emerging Technol-

goies, (ICET ’13), Islamabad, Pakistan.

3. Bashir, M.B., Nadeem, A., (2012 December) ”Control Oriented Mu-

tation Testing for Detection of Potential Software Bugs”, In the Pro-

ceedings of 10th International Conference on Frontiers of Information

Technology, (FIT 12), Islamabad, Pakistan.

4. Bashir, M.B., Nadeem, A., (2012 October) ”Object Oriented Muta-

tion Testing: A Survey”, In the Proceedings of the 8th International

Conference on Emerging Technologies, (ICET ’12), Islamabad, Pak-

istan.

vii

Abstract

Software testing aims to identify bugs in the software under test to raise its quality

and to ensure its correctness and usefulness for the user. It is an important phase

of software development life-cycle and it consumes most of the resources in terms

of time and money. Among all the activities of software testing, the test case

generation consumes most of the effort and can be laborious if software testers

perform it manually. Automatic generation of test cases can help in reducing the

amount of resources and the effort this activity requires. Mutation testing can be

very useful in generating effective test cases that can catch injected faults from

the program under test. Besides that mutation testing is useful in measuring the

effectiveness of given test suite. Mutation testing is computationally expensive

because it requires execution of a large number of mutant programs while gen-

erating test cases. Evolutionary testing techniques (like genetic algorithm) can

be used with mutation testing to reduce the computational overhead. This leads

to a new testing technique named as evolutionary mutation testing that aims to

automatically generate test cases using a genetic algorithm to kill non-equivalent

mutants. During the test case generation, the performance of genetic algorithm

depends on guidance that it gets from its fitness function.

An object-oriented program has two main components; data (object’s state) and

control (execution path). The fitness function should consider objects state as well

as control flow information of the program under test to correctly evaluate a test

case and to provide better guidance to genetic algorithm. Otherwise the process

can become stuck or random at times in absence of enough guidance.

There exist several evolutionary mutation testing techniques in literature. The

literature survey shows that although existing mutation based testing techniques

cover some important aspects of program and use the information to evaluate fit-

ness of a test case yet none of them uses object’s state and control-flow information

of program for fitness evaluation. The conventional crossover method generates

two offsprings from parents by merging first segment of a parent to the second

segment of the other and vice versa. This merger usually occurs at a randomly se-

lected crossover point. This type of crossover can actually generate four offsprings

by combing first segment of a parent to both the segments (first and second) of

the other and vice versa.

viii

Experiments show that this type of crossover can help exploring the input domain

comprehensively. But none of the existing evolutionary testing techniques uses

this method. Existing evolutionary mutation testing techniques use a fixed rate

of biological mutation in genetic algorithm. In some cases more random effect is

required to generate the required input values that crossover cannot produce. But

since mutation rate is fixed, search process has to wait for biological mutation’s

turn and hence unnecessary crossover wastes some effort.

In this thesis, we target object-oriented programs and present four proposals to

improve evolutionary mutation testing process. We have applied these proposals

on genetic algorithm to reduce test case generation effort. The first two improve-

ments are related to fitness function where we propose evaluating object’s state

and control flow information as part of the test case fitness. With the help of ob-

ject’s state fitness, it becomes easier to check if a given test case is able to achieve

the desired state of an object or if it requires further improvement. On the other

hand using control flow information of both original and mutated programs, fitness

function checks if mutated program is exercising expected behavior on a test case.

Sometimes this information helps in identifying logical programming errors (bugs)

in the program. The third proposal is introduction of new two-way crossover

method to evolve test cases using object’s state fitness so they converge towards

the target quickly. Finally we propose using an adaptable mutation rate during

execution of genetic algorithm that adjusts according to the situation and saves

testing effort.

In the later part of this thesis we present the proof of concept tool eMuJava that

stands for evolutionary Mutation testing of Java programs. We have performed

extensive experiments using this tool to compare our proposed approach with

other approaches. We have also compared the results with EvoSuite, which is

the most related tool we have found in literature. Our proposed approach is

able to increase mutation scores ranging from 6% to 10% im comparison to other

testing techniques (random testing and two variants of genetic algorithm). The

results show that our proposals help improving the evolutionary mutation testing

by reducing the amount of time required to achieve the targets.

Contents

Author’s Declaration iii

Plagiarism Undertaking iv

Acknowledgements v

List of Publications vi

Abstract vii

List of Figures xii

List of Tables xiv

Abbreviations xvi

1 Introduction 1

1.1 Software Testing and Automation 1

1.2 Mutation Testing . 3

1.3 Research Motivation . 4

1.4 Problem Statement . 5

1.5 Research Contributions . 6

1.6 Thesis Organization . 8

2 Background 9

2.1 Software Testing Techniques . 9

2.1.1 Mutation Testing . 10

2.1.2 Evolutionary Testing . 12

2.1.3 Evolutionary Mutation Testing 14

3 Related Work 17

3.1 Evolutionary Mutation Testing Techniques 17

3.2 Evolutionary Mutation Testing Tools 23

3.3 Conclusion of Survey . 24

ix

x

4 The Proposed Approach 26

4.1 Research Proposals at a Glance . 26

4.2 Control-oriented Mutation Testing 29

4.2.1 Program’s Output . 31

4.2.2 Method Produces an Output 32

4.2.3 Method Does Not Produce an Output 35

4.2.4 An Example . 36

4.3 State-based and Control-oriented Fitness Function 38

4.3.1 State-based Reachability Cost 40

4.3.2 State-based Necessity Cost 41

4.3.3 Control-oriented Sufficiency Cost 43

4.3.4 Overall Fitness . 43

4.3.5 An Example . 44

4.4 Two-way Crossover Method . 49

4.5 Adaptable Mutation Method . 53

5 Tool Support 56

5.1 eMuJava Tool . 56

5.1.1 eMuJava Architecture . 58

5.1.2 eMuJava Operations . 59

5.2 eMuJava Algorithms . 62

5.2.1 GenMutants . 63

5.2.2 GenPopulation . 63

5.2.3 ExecTestCases . 64

5.2.4 EvalTestCases . 65

5.2.5 TWCrossoverTests . 67

5.2.6 MutateTests . 67

5.3 Supported Test Case Generation Techniques 68

5.4 eMuJava Design Model . 69

5.5 eMuJava Configuration . 69

5.6 Screenshots of eMuJava Tool . 72

5.6.1 Source Code & Configuration 72

5.6.2 Configuration Editor . 75

5.6.3 Mutants Viewer . 75

5.6.4 Test Case Viewer . 76

5.6.5 Statistics & Results . 76

6 Experiments and Results Analysis 79

6.1 Test Environment . 79

6.2 Initial Experiments and Results . 82

6.3 Detailed Experiments and Results 85

6.3.1 Less Iterations, Higher Mutation Score 86

6.3.2 Comparison with EvoSuite 94

6.3.3 Detecting Suspicious Mutants to Raise Mutation Score . . . 96

xi

6.4 Statistical Analysis . 98

6.4.1 MannWhitney U-test . 99

6.4.2 Normality Test . 100

6.4.3 Analysis of Initial Experiments and Results 101

6.4.4 Analysis of Detailed Experiments and Results 102

6.4.5 Effect Size Measure . 103

6.5 Test Set Evaluation . 104

7 Conclusion and Future Work 107

7.1 Future Work . 110

Bibliography 111

A Literature Survey - Mutation Testing 119

A.1 Object-Oriented Mutation Testing 119

A.2 Evaluation Criteria . 121

A.2.1 Cost Effective . 121

A.2.2 Equivalent Mutant Detection 122

A.2.3 OO Feature Coverage . 122

A.2.4 Level of Testing . 123

A.2.5 State Mutation Support . 123

A.2.6 Potential Mutation Operators 124

A.2.7 Tool Support . 124

A.3 Surveyed Techniques . 124

A.4 Analysis of Surveyed Techniques . 128

A.5 Mutation Testing Tools . 132

B Literature Survey Evolutionary Testing 136

B.1 Evolutionary Testing Techniques . 136

B.2 Evolutionary Testing Tools . 140

C Java Subset for eMuJava Tool 142

C.1 Java Language Subset for eMuJava 142

C.1.1 Context Free Grammar (CFG) 142

C.1.2 Keywords . 142

C.1.3 Data Types . 144

C.1.4 Special Symbols . 144

C.1.5 Operators . 144

C.1.6 Tool Assumptions . 145

D Additional Experiment Results 146

List of Figures

2.1 Mutation Testing Process Flow . 11

2.2 Genetic Algorithm Process Flow . 13

2.3 Fitness Function of Genetic Algorithm 14

2.4 Evolutionary Mutation Testing Process Flow 15

4.1 Research Proposals to Improve Evolutionary Mutation Testing Pro-
cess . 27

4.2 Control Flow Mutation Testing: Method Producing an Output [1] . 33

4.3 Code Snippet to Demonstrate Using Control-flow Information in
Mutation Testing: Method Producing an Output [1] 34

4.4 Control Flow Mutation Testing: Method Producing No Output [1] . 35

4.5 Illustration of Control-Oriented Mutation Testing 36

4.6 Office Class with Method empTaxExempt() to Illustrate Control-
oriented Mutation Testing . 37

4.7 Java Code of Mathematics Class 39

4.8 Control Flow Graph of smaller() Method 39

4.9 Code Snippet to Demonstrate Proposed Fitness Function 45

4.10 Test Case Set . 46

4.11 Code Snippet of Stack Class . 50

4.12 Code Snippet of Calculator Class 54

5.1 eMuJava Architecture . 57

5.2 Anatomy of a Test-case for Object-Oriented Program Testing [2] . . 61

5.3 GenMutants Algorithm . 63

5.4 GenPopulation Algorithm . 64

5.5 ExecTestCases Algorithm . 65

5.6 EvalTestCases Algorithm . 66

5.7 TWCrossoverTests Algorithm . 67

5.8 MutateTests Algorithm . 68

5.9 eMuJava Design Class Diagram . 70

5.10 Main GUI - eMuJava Tool . 72

5.11 eMuJava Wizard Step 1 . 73

5.12 eMuJava Wizard Step 2 . 73

5.13 eMuJava Wizard Step 3 . 74

5.14 eMuJava Source Code & Configuration 74

5.15 eMuJava Configuration Editor . 75

xii

xiii

5.16 eMuJava Mutants Viewer . 76

5.17 eMuJava Test Case Viewer . 77

5.18 eMuJava Statistics & Results . 77

6.1 Comparison of Experiment Results among Random Testing, GA
with Standard Fitness Function, and GA with Proposed Fitness
Function . 84

6.2 Comparison of Experiment Results among Random Testing, GA
with Standard Fitness Function, and Improved Genetic Algorithm . 88

6.3 Comparison among Average Executed Test Cases by Test Genera-
tion Techniques . 89

6.4 Comparison to Show Progress among All Approaches while Achiev-
ing 100% Mutation Score . 94

6.5 Comparison of Experiment Results Obtained from EvoSuite and
eMuJava (Improved Genetic Algorithm) 97

6.6 CGPACalc Mutant with Logical Bug (Suspicious Mutant) 98

6.7 Comparison of Mutation Scores among Genetic Algorithm, Evo-
Suite, and Improved Genetic Algorithm 99

A.1 Mutation Operators Set [1] . 120

C.1 Context Free Grammar for eMuJava Tool 143

List of Tables

6.1 List of Programs and Details . 81

6.2 Results of Initial Experiments with Fixed Number of Iterations . . . 83

6.3 Results of Experiments Performed using eMuJava 87

6.4 Number of Iterations and Executed Test Cases by All Four Approaches 90

6.5 Experiment Results . 96

6.6 Results of Test Set Evaluation . 106

A.1 Evaluation Criteria for Cost Effective 121

A.2 Evaluation Criteria for Equivalent Mutant Detection 122

A.3 Evaluation Criteria for OO Feature Coverage 122

A.4 Evaluation Criteria for Level of Testing 123

A.5 Evaluation Criteria for State Mutation Support 123

A.6 Evaluation Criteria for Potential Mutation Operators 124

A.7 Evaluation Criteria for Tool Support 124

A.8 Analysis Table of Mutation Testing Techniques for Object-Oriented
Programs . 129

C.1 Supported Keywords by eMuJava 143

C.2 List of Primitive Data Types . 144

C.3 List of Special Symbols . 144

C.4 List of Operators . 144

D.1 List of Case Studies . 146

D.2 Iterations Used while Test Case Generation for AutoDoor 147

D.3 Iterations Used while Test Case Generation for Calculator 147

D.4 Iterations Used while Test Case Generation for BankAccount 148

D.5 Iterations Used while Test Case Generation for CLI 148

D.6 Iterations Used while Test Case Generation for BinarySearchTree 149

D.7 Iterations Used while Test Case Generation for JCS 149

D.8 Iterations Used while Test Case Generation for CGPACalc 150

D.9 Iterations Used while Test Case Generation for Collections 150

D.10 Iterations Used while Test Case Generation for Compress 151

D.11 Iterations Used while Test Case Generation for Crypto 151

D.12 Iterations Used while Test Case Generation for CSV 152

D.13 Iterations Used while Test Case Generation for ElectricHeater . . 153

D.14 Iterations Used while Test Case Generation for HashTable 154

xiv

xv

D.15 Iterations Used while Test Case Generation for Lang 154

D.16 Iterations Used while Test Case Generation for Logging 155

D.17 Iterations Used while Test Case Generation for Math 155

D.18 Iterations Used while Test Case Generation for Stack 156

D.19 Iterations Used while Test Case Generation for TempConverter . . 156

D.20 Iterations Used while Test Case Generation for Text 157

D.21 Iterations Used while Test Case Generation for Triangle 157

Abbreviations

ABS Absolute Value Insertion

AOR Arithmetic Operator Replacement

EAM Accessor Method Change

EMM Modifier Method Change

eMuJava Evolutionary Mutation Testing of Java programs

EOC Reference Comparison and Content Comparison Replacement

GUI Graphical User Interface

IOD Overriding Method Deletion

IOP Overriding Method Calling Position Change

IOR Overriding Method Rename

IPC Explicit Call of a Parent’s Constructor Deletion

ISD Super Keyword Deletion

ISI Super Keyword Insertion

JDC Java-supported Default Constructor Creation

JID Member Variable Initialization Deletion

LCR Logical Connector Replacement

LoC Lines of Code

OMD Overloading Method Deletion

OMR Overloading Method Contents Replace

OOP Object Oriented Paradigm

PNC New Method Call With Child Class Type

ROR Relational Operator Replacement

UOI Unary Operator Insertion

xvi

Chapter 1

Introduction

The testing phase in software development life cycle plays a vital role in the success

of a software application. Testing phase attempts to identify maximum errors from

software under test so that after correction of those errors, software can work as

expected. Major steps involved in software testing include generating test cases

and input data, preparing the environment, test case execution, and analysis of

results. The generation of test-cases and input data are time consuming and costly

processes, and therefore these are required to be automated.

1.1 Software Testing and Automation

There exist two main categories of software testing techniques; black-box and

white-box. In black-box testing, tester considers the program under test as a black-

box that receives an input, processes it and produces an output. The tester is not

concerned with the internal details of the black-box. Tester generates the test cases

and test oracles using program’s specification, whereas the specification is written

usually in natural language or sometimes in formal specification languages. On the

contrary, white-box testing techniques are more concerned with the internal details

of the program, for example source code. Due to this reason white-box testing is

also called code-based testing. In white-box testing, tester generates test cases to

1

2

execute certain path in the code or certain segment of the code. The test cases are

generated on the basis of coverage criteria the tester wants to achieve on program

under test. Specification is not required because the test cases are generated from

the code itself.

Automating software testing phase and specifically test case generation process

can significantly reduce the required effort. But we see that it is fairly difficult

to automate black-box testing techniques for various reasons. Black-box testing

techniques use specification to write test cases but specification is usually written

in natural language. Natural languages are inherently ambiguous and a single

word or a statement can give different meanings in different scenarios. Although

formal languages exist for writing software specification but their use is uncom-

mon. Another reason is that even sometimes the specification is incomplete or

not available at all. Considering these issues, white-box testing techniques, for

example, mutation testing seems more suitable for automation because it relies on

code instead of specification. But automation faces new challenges as we see new

programming techniques emerge with the passage of time. The object-oriented

programming is the most common and popular paradigm in current era. It uses

classes and objects and brings many other features like inheritance from the real

world to programming the software.

Testing an object-oriented program is not straight forward and its automation is

even more challenging. Testing a structured program is generally simpler as com-

pared to testing an object-oriented program, because in structured programs, the

main focus of the testers is on generation of input values [3]. A structured program

comprises of functions or procedures and a function is, therefore, its basic unit of

testing. On the other hand object-oriented programs consist of classes whereas

each class is a blueprint of a real world concept. Unlike structured programs,

writing a test case for a class involves many steps including creating an object of

the class under test, generating a sequence of method calls to bring the object in

a specific state, and finally calling the method under test [4]. Each method call

in the test case may require generating input data to be passed as arguments,

which may be primitive or non-primitive. Sometimes testing a specific method of

3

a class requires the object to be in a specific state, so it is important to generate a

method call sequence that can bring the object in desired state. But initially, the

accurate call sequence is unknown hence this process consumes effort to produce

the required sequence of method calls [5].

1.2 Mutation Testing

Mutation testing is a code based testing technique but it differs from the other

white-box techniques. It is a fault-based technique in which plausible faults are

injected in the program under test. In this way, mutation testing can help mea-

suring the effectiveness of a given test case set by checking how many injected

faults the test set can catch. Mutation testing can also help in generating effec-

tive test cases [6, 7] that are capable of catching a set of faults in the program.

So mutation testing is more concerned about faults and catching them instead of

executing a certain path or a segment of source code. The concept of mutation

testing was first coined around four decades ago by DeMillo, Lipton, and Sayward

[8]. Mutation testing is computationally expensive by nature because it requires

executing a large number of mutants (program containing a fault). The effort can

be reduced only by generating effective test cases as quickly as possible

Evolutionary testing aims to automate the process of test case generation through

various approaches, for instance genetic algorithm. The genetic algorithm does

this by randomly generating a set of test cases initially. Then it evaluates them

by considering the targets they are supposed to achieve. Later, genetic algorithm

repairs the test cases, evaluates them again and repeats the process until it achieves

all the targets or defined number of attempts exhaust. The structure of a test

case can be different depending upon the paradigm used to develop the software.

In case of object-oriented paradigm, a test case consists of two parts including

invocations (constructor calls and method calls) and input data. When a class is

tested in isolation each test case comprises of constructor call for object creation,

4

method calls to gain desired state of object, the method under test, and input

data to be passed as method parameters.

Evolutionary mutation testing provides foundation to automate test case genera-

tion [6, 7] process in mutation testing to reduce its computational overhead. There

exists no finite deterministic algorithm that can generate test cases for every pro-

gram because test case generation is an undecide-able problem. Due to this reason,

we have to rely on meta-heuristic techniques (evolutionary testing) to automate

test case generation for mutation testing. We use evolutionary approaches like

genetic algorithm to generate test cases to kill non-equivalent mutants. For a test

case to kill a mutant, it has to satisfy three conditions including reachability con-

dition, necessity condition, and sufficiency condition. Fitness function of genetic

algorithm is designed to evaluate a test case against its strength of satisfying afore-

mentioned conditions. The process of test case generation uses test case fitness to

improve it so it can converge towards the target quickly.

In evolutionary mutation testing, it is important to correctly evaluate a test case

to generate effective population efficiently. Due to this reason fitness function

becomes an important part of the whole testing process. In order to satisfy the

three conditions to kill a mutant, in some cases the object needs to be in a desired

state or otherwise test case may fail to satisfy them. Besides that, while comparing

the original program with mutant program after executing a test case, control flow

information can provide very useful information about program’s behavior. The

fitness function, therefore, should consider object’s state as well as control flow

information to evaluate a test case. The later phases of the genetic algorithm

should intelligently utilize fitness information to evolve the test case set to achieve

the targets quickly.

1.3 Research Motivation

Object-oriented programming has gained world-wide acceptance during the last

two decades and almost all the types of user applications (desktop, enterprise, web,

5

mobile and so on) are being developed using object-oriented paradigm. It maps

real world concepts to software that makes it flexible and powerful for software

development. It has become increasingly important to test these systems to ensure

their correctness and reliability. Test case generation for testing object-oriented

programs require huge amount of effort. Due to this reason testers are looking

for practical and useful automated solutions to reduce testing effort and improve

fault detection rates.

Mutation testing is attractive but computationally expensive that hinders the

professionals from using it to test real world programs. Search-based techniques

like genetic algorithm can help in reducing mutation testing cost to a great deal

[7, 9, 10]. Search-based mutation testing has gained immense attention in recent

years. Over the last 5 years amount of published research in this area has rapidly

increased [11]. Though it is also important to investigate if conventional genetic

algorithm is sufficient to be used with mutation testing to automate test case

generation process.

Therefore, we are looking to carry out this research study to improve genetic algo-

rithm for mutation testing of object-oriented programs. As a result it will help in

automatic generation of test cases to gain higher mutation scores with minimum

effort (time) for object-oriented programs. We will also perform extensive experi-

ments to validate the proposals that will show the effectiveness and usefulness of

our proposed improvements.

1.4 Problem Statement

Automated test case generation is not straight forward while performing muta-

tion testing on object-oriented programs. Evolutionary mutation testing heavily

depends on the fitness function it uses for test case evaluation and for guidance

to improve the test cases. So we need a fitness function, which is intelligent and

comprehensive in a sense that it takes into account all the object-oriented features,

6

object’s state for instance. Otherwise the search may get stuck or even become

random, which results in consuming more time and effort for test data generation.

Mutation testing relies on program’s output to judge the deviation in mutant when

comparing it with the original program. The existing mutation testing techniques

ignore the paths that original and mutant programs exercise during the execution

of a test case. These paths are defined by the flow of control during execution and

they yield important information on how the programs behave against a given test

case. Mutation testing suffers badly from the existence of equivalent mutants and

the research shows equivalent mutants have the tendency to mask logical software

bugs that cannot be uncovered with conventional mutation testing. We need to

adapt some mechanism in mutation testing so it can take advantage of control

flow information. Furthermore, we also want our fitness function to be capable of

using control flow information to evaluate a test case appropriately according to

the program’s behavior.

After accurate and comprehensive evaluation of a test case, we want the later

phases (crossover and biological mutation) of genetic algorithm to use the fitness

information intelligently in order to repair the test cases effectively so they con-

verge towards the targets (killing the non-equivalent mutants) in less number of

iterations. Unfortunately, this is not happening with conventional crossover and

mutation methods. We want to improve crossover and mutation methods so they

can utilize fitness information intelligently to repair and improve the test cases.

1.5 Research Contributions

Our contributions in this thesis are summarized below

1. We have conducted a survey on object-oriented mutation testing techniques

[12]. In this survey we have covered the existing mutation testing techniques

and analyzed them against a set of parameters to find out strengths and

weaknesses in them.

7

2. We have proposed using control-flow information in mutation testing besides

using program’s output to compare the original and mutated programs [1].

In this study we have defined program’s output and then have explained how

the control flow information can be used to judge the program’s behavior.

Our experiments have shown that using control-flow information along with

program’s output can sometimes help in revealing potential software bugs

from the program.

3. We have devised a novel fitness function for the evolutionary mutation test-

ing of object-oriented programs [13]. The novel fitness function evaluates

a test case against its ability to satisfy the three conditions (reachability,

necessity, and sufficiency) to kill a mutant. Besides using the conventional

features including approach level, branch distance, and data state differences

in calculation of costs for reachability, necessity, and sufficiency conditions,

we have proposed using object’s state fitness and control flow information in

evaluation of a test case. With the inclusion of these features, the test case

generation process gets better guidance.

4. Our experiments with state-based and control-oriented fitness function have

shown that although fitness function provides adequate information about

the weaknesses in a test case but the standard genetic algorithm is unable

to utilize the information properly hence the potential of object’s state fit-

ness is not fully exploited. So we have proposed new two-way crossover

and adaptable mutation methods [14] to overcome this problem. Two-way

crossover generates four offsprings from parents instead of two if a test case

suffers from object’s state issue. Adaptable mutation dynamically adjusts

mutation rate at runtime to generate random input values frequently.

5. We have implemented a tool that we have named as eMuJava, which stands

for evolutionary Mutation testing of Java programs. eMuJava is imple-

menting all of our proposals and it can test Java based programs and can

8

generate test cases to kill mutants using four different approaches includ-

ing random testing, genetic algorithm with standard fitness function, ge-

netic algorithm with state-based & control-oriented fitness function, and ge-

netic algorithm with state-based & control-oriented fitness function, two-way

crossover, and adaptable mutation methods.

6. We have performed extensive experiments using eMuJava to validate the

effectiveness of our proposed approach [14]. We have compared our proposed

approach with random testing, two variants of genetic algorithm, and a tool

called EvoSuite, which we have found in literature. Our experiments have

shown that our proposals have potential in improving the test case generation

process for evolutionary mutation testing of object-oriented programs.

1.6 Thesis Organization

The rest of this thesis is organized as follows; in chapter 2 we present brief back-

ground of the domain under study (mutation based evolutionary testing of object-

oriented programs) whereas chapter 3 covers related work that includes techniques

we find in the literature; chapter 4 presents our research proposals including state-

based & control-oriented fitness function, two-way crossover, and adaptable muta-

tion; chapter 5 describes about the automated solution of our proposals including

its architecture and different modules, algorithms that we have devised, and some

implementation details; chapter 6 presents empirical analysis of our proposed ap-

proach and details about the experiments we have performed to compare our pro-

posed approach with others; conclusion and future work are presented in chapter

7.

Chapter 2

Background

The purpose of writing this chapter is to present brief background about testing

techniques including mutation testing, evolutionary testing, and evolutionary mu-

tation testing. The upcoming sub-sections provide information about the processes

involved and the purpose of the aforementioned testing techniques.

2.1 Software Testing Techniques

Software testing is considered as the back-bone phase of software development life

cycle. It plays a vital role because it helps in identifying bugs in the software

under development so that a quality product can be built and delivered to its

intended user. According to IEEE, software testing can be defined as: Testing is

the process of analyzing a software item to detect the differences between existing

and required conditions (that is, bugs) and to evaluate the features of the software

item [15]. Software testing requires a lot effort in terms of time and money, which

makes this phase the most expensive phase of the software development life-cycle.

There are several activities involved in software testing that include preparing a

test plan, test case design, test case execution, and evaluating the results. In

planning usually objectives and risks of the process are identified and important

decisions about the testing process are made, for example choosing the testing

9

10

strategy and defining intended targets. Test case design is the most important

and time consuming phase that includes test case generation according to the

targets that are to be achieved. During test case execution, test cases are run

on the software under test and results are recorded, which are evaluated against

the desired targets in the last phase. The process can continue until the desired

results are achieved.

There exist two large categories of software testing techniques; black-box and

white-box. In black-box testing, tester considers the program under test as a black-

box that receives an input, processes it and produces an output. The tester is not

concerned with the internal details of the black-box. Tester generates the test cases

and test oracles using program’s specification, whereas the specification is written

usually in natural language or sometimes in formal specification languages. On

the contrary, white-box testing techniques are more concerned with the internal

details of the program, for example source code. Due to this reason white-box

testing is also called code-based testing. In white-box testing, tester generates

test cases to execute a certain path in the code or a certain segment of the code.

The test cases are generated on the basis of coverage criteria the tester wants to

achieve on program under test. Specification is usually not required because the

test cases are generated by looking the code itself.

2.1.1 Mutation Testing

Mutation testing is a white-box testing technique but it differs from the other

white-box testing techniques because it is more concerned about faults than code

coverage. The concept of mutation testing was first coined by DeMillo, Lipton,

and Sayward [8], which tests software by injecting faults in it. The mutation

testing has been an area of interest for the researchers and a lot of research has

been done over the last two decades or so. The purpose of mutation testing is to

measure effectiveness of test cases as well as generation of effective test cases [6, 7].

It injects plausible faults in the program under test. Later the test cases are run

on it to check if the test cases can detect them. This testing technique can also

11

Figure 2.1: Mutation Testing Process Flow

be used to generate a test case set that may have potential to expose faults in the

program. The figure 2.1 shows an iteration of mutation testing process including

its inputs, processes, and outputs.

The first step in mutation testing is to generate mutant programs. A mutant

program is a variant of original program containing only one syntactic difference.

These syntactic changes are introduced using a predefined set of rules that are

called mutation operators. A mutation operator can introduce a single type of

change in the program whereas all the mutation operators may not be applicable

to a given program. Once we have mutant programs, we execute all the test

cases on them as well as on original program and observe their outputs. If a test

case generates different output on mutant program as compared to the original

program, then that particular mutant is considered as killed otherwise it remains

alive. If all of the test cases fail to kill a given mutant, then it is called an equivalent

mutant. Equivalent mutant cannot be killed because it is semantically equivalent

to the original program. If test cases fail to kill all the mutants, the tester needs to

re-generate a new set of test cases. The ultimate goal is to kill as many mutants

as possible. The effectiveness of a test case set is determined with the help of

mutation score, which is ratio of killed and all non-equivalent mutants.

12

Mutation testing is computationally expensive because it requires execution of

a large number of mutants. The situation gets worse in presence of equivalent

mutants because the mutant remains alive even after executing all the test cases.

This problem is a major hindrance for the industry to accept mutation testing as

a practical testing method and to use it at a high scale. Another debate has been

the effectiveness of faults, which we inject during mutation analysis that whether

they can represent real faults. Just et al. [16] prove through experimental study

that mutants have strong correlation with real faults and they can be used as

a substitute for program testing. We have presented existing work on mutation

testing in Appendix A.

2.1.2 Evolutionary Testing

Evolutionary testing [3] is an approach to automatically generate test cases for

the program under test. Evolutionary testing offers more than just one strategy

for this purpose. Genetic algorithm, which is one of the evolutionary approaches,

uses an iterative method to generate, evaluate, and repair test cases. Figure 2.2

presents the process flow of genetic algorithm [2]. Literature shows some research

instances and studies produced by researchers around the globe that have taken

this area a lot further than where it was in the beginning. Genetic algorithm is an

iterative process that can be automated for a given type of problem like test case

generation for a particular coverage criterion (test goal). The solutions go through

biological crossover and mutation to gain appropriate shape, which is capable of

achieving the desired test goal.

The process of genetic algorithm begins with random generation of initial popu-

lation (test cases). The population size can vary depending on the scenario and

requirement. The algorithm then runs the test cases on program being tested and

records the execution traces along with other details like variable values, failed

predicate and so on. When the test case execution completes, the test cases are

evaluated using execution traces against the desired test goal. Fitness function,

13

Figure 2.2: Genetic Algorithm Process Flow

which is one of most important part of genetic algorithm, performs the evalua-

tion. The algorithm stops its execution if the test cases achieve the desired goal

otherwise it repairs the test cases through crossover or biological mutation. Ge-

netic algorithm continues to iterate until the desired goal is achieved or number

of maximum iterations are reached. We have presented the existing work that we

have found in the literature on evolutionary testing of object-oriented programs

in Appendix B.

Fitness Function

The fitness function is a core part of genetic algorithm. It evaluates the test cases

and assigns them a fitness value that guides the process towards the desired goal.

The correct evaluation of test cases is very important otherwise the whole process

may become random. The fitness function can be seen as a system that receives

some inputs, process them, and produces some output as shown in figure 2.3 [2].

There are three inputs that a fitness function receives including test goals, ex-

ecution traces, and test case set. Each of the test cases is evaluated using the

execution traces it produces (during its execution on the program under test)

against the test goal it is supposed to achieve. After completing the evaluation,

fitness function assigns a non-negative cost to each test case as an output.

14

Figure 2.3: Fitness Function of Genetic Algorithm

2.1.3 Evolutionary Mutation Testing

The term evolutionary mutation testing was first coined by Domnguez et al. [17] to

reduce mutation testing cost by mutants reduction method. We have re-used this

term in same context (reduction of mutation testing cost) but we have achieved

it by improving test case generation process. Another reason of using this term

is that we are using two testing approaches, evolutionary testing and mutation

testing, in combination for our research. Literature shows that mutation testing

cost can be reduced by improving the process of test data generation [7, 9, 10].

Mutation testing is different in nature as compared to other white-box testing

techniques and their coverage criteria. In mutation testing, the main target is

to increase mutation score by killing all the non-equivalent mutants. So we need

special kind of fitness functions to complement the mutation testing and to provide

better guidance to the search. Although we find some work in the literature, which

has been done in this particular area but there exists some room for more work to

take full advantage of both the techniques.

The figure 2.4 presents the inputs, output, and activities involved in the testing

process. The process starts with the generation of mutants that requires two in-

puts; original program and the mutation operators. The result is a set of mutants

with injected faults and our target is to generate test cases to kill all non-equivalent

15

Figure 2.4: Evolutionary Mutation Testing Process Flow

mutants. Once we have mutants available, initial population (test cases) is gener-

ated and executed on all the mutants. The evaluation is performed to determine

how many mutants are still alive and to assign fitness to test cases against them.

If some mutants survive then we perform crossover and biological mutation on the

test cases to generate new population on the basis of guidance that search gets

from the evaluation process. This iterative process continues until all the non-

equivalent mutants have been killed or maximum number of attempts has been

exhausted.

If a test case fails to kill a mutant, it should be evaluated by the fitness function.

The literature shows a test case should satisfy three conditions to be able to

kill a mutant including; reachability condition [18], necessity condition [8], and

sufficiency condition [8]. Reachability condition requires that the statement that

contains the mutation must be executed. It is important for the test case to

execute this statement; otherwise the behavior of original and mutated program

remains the same. Secondly, the mutated statement must introduce some infection

(necessity condition). That means, it must cause some change in behavior of the

16

program as this is the intention and purpose of introducing the mutation in the

original program. Finally the infection caused by the mutation must be propagated

and noticeable in the output, that is what sufficiency condition means.

Chapter 3

Related Work

The purpose of writing this chapter is to cover the literature survey that sheds

some light on the research being done in the areas of object-oriented program

testing using evolutionary mutation testing techniques. It provides the details

about proposed work of researchers in this branch of testing.

3.1 Evolutionary Mutation Testing Techniques

The literature survey shows that, not a lot work has been done so far in evolution-

ary mutating testing of object-oriented programs. The researchers have mainly

focused on evolutionary approaches like genetic algorithm for test case generation.

We also find an object-oriented mutation testing tool that generates test data

automatically. Next we provide brief description on surveyed techniques and on

automated system that we have found in the literature.

L. Bottaci [18]

Bottaci [18] presents a fitness function for evolutionary mutation testing, which

tries to satisfy all three conditions to kill a mutant. The fitness function assigns

cost to test cases on the basis of their ability to satisfy these conditions. The reach-

ability cost is computed by finding the difference between goal and executed path,

17

18

and calculating the branch distance on the failed predicate. The necessity cost is

assigned the same way as of branch distance. Finally sufficiency cost is calculated

by counting the number of same data states after the mutated statement.

M. Masud, A. Nayak, M. Zaman, N. Bansal [19]

Masud et al. [19] present a framework for performing mutation testing using

genetic algorithm. Their work is basically an extension to the model proposed by

Bybro [20]. In this work, research propose to partition the program into small units

and then mutation is introduced in each unit independently. Before partitioning,

they instrument the whole program in such a way that output of each unit is

recordable. Mutations are introduced through structured mutation operators only

so there is found no support for object-oriented mutation analysis in this approach.

The mutations are performed through MU tool presented in the work of Bybro [20].

In the later phase test cases are generated using genetic algorithm and if a test suite

fails to kill the mutant, the test cases can be improved manually or automatically.

Due to the partitioning applied by the approach, this approach looks more closer

to the weak mutation testing rather than strong mutation testing.

P. May, J. Timmis and K. Mander [7]

May et al. [7] conducted a research to compare the performance of immune based

approaches with evolutionary approaches while generating test data for mutation

testing. First they define mutation testing and provide description about its pro-

cess and concepts that are involved. Later they provide description on Genetic

Algorithm and Immune Inspired Algorithm and highlight their major differences

and style of evolving solutions. They have also included the results of experiments

that they have conducted to see which approach (Genetic Algorithm or Immune

Inspired Algorithm) achieves high mutation score. For this they have developed

systems that implement both the algorithms under study. The results of their

experiments show that immune inspired algorithm (AIS) performs better than ge-

netic algorithm (GA).

19

G. Fraser and A. Zeller [6]

Fraser and Zeller [6] design and introduce a novel fitness function that is purely

object-oriented and little bit different in nature from what Bottaci [18] proposed.

They use three different costs to evaluate a test case. The first cost is distance to

calling function that assigns a cost to the test case that does not contain call to

the function containing the mutated statement. This is a new type of cost that

we do not notice in any other work so far. Also the test case structure seems

different from standard object-oriented test case [4]. The second cost is distance

to mutation that is calculated on the basis of approach level and branch distance,

which is similar to the reachability cost propose by Bottaci [18]. The third cost is

mutation impact that considers unique number of methods in mutated program

for which the coverage change and noticeable state differences.

K.K. Mishra, S. Tiwari, A. Kumar, A.K. Misra [9]

Mishra et al. [9] propose a new approach for mutation testing using elitist Genetic

algorithm. They extend the work of Bybro [20] and Masud [19] to generate test

case for Java based programs. This approach supports unit (class) level testing

and the generated test cases are in JUnit [21] format. Their approach uses test

cases, which have killed some mutants, as initial population because these are good

test cases and can improve performance of test case generation to a great deal.

J. Domnguez, A. Estero, A. Garca, I. Medina [17]

Domnguez et al. [17] present a novel approach to reduce number of mutants in

mutation analysis. They try to find such mutants that are hard to kill because such

mutants can help in generating test cases, which are better in quality as compared

to the initial set of test cases. In order to reduce mutants, Domnguez et al. use

evolutionary algorithms. They have also developed an automation solution called

GAmera for mutants reduction. Authors have also evaluated their approach and

present results of detailed experiments. The results show that instead of choosing

mutants randomly, the coe-volutive genetic algorithm evolve them systematically

and effectively.

20

M. Papadakis and N. Malevris [22]

Papadakis and Malevris [22] propose a fitness function for evolutionary mutation

testing. Their fitness function assigns four costs to a test case. The first two costs

are approach level and branch distance that they borrow from the work of Wegener

et al. [23]. The third cost is predicate mutation distance that requires mutation

distance, which is more or less same as of branch distance of failing condition. The

impact distance (fourth cost) they use is an attempt to complement sufficiency

condition. They borrow this from the research of Fraser and Zeller [6].

S. Subramanian, R. Natarajan [24]

Subramanian and Natarajan [24] propose a new approach that uses mutant gene

algorithm. Mutant gene algorithm combines both mutation testing and genetic

algorithm. Initially the test cases are generated randomly and then they are

minimized through mutation gene algorithm. In every iteration, test cases are

executed and evaluated using a fitness function. Then using rank based selection,

test cases are selected for single-point crossover to generate new population for

next iteration. Authors claim that their minimization approach outperforms other

approaches in complex scenarios.

J. Louzada, C. Camilo-Junior, A. Vincenzi, C. Rodrigues [25]

Louzada et al. [25] propose a new approach for performing search-based mutation

testing that uses elitist genetic algorithm for test data generation. Their approach

tries to generate test cases that can kill maximum mutants to gain high mutation

score. Authors have performed experiments on small scale on Java programs. The

results show that their approach performs better than random testing.

Y. Ali and F. Benmaiza [26]

Ali and Benmaiza [26] propose an approach for testing object-oriented programs

using search-based algorithm (genetic algorithm) and as a criteria they choose mu-

tation analysis. Their approach automatically generates test cases to kill mutants,

which are generated using class under test. Genetic algorithm uses mutation as

21

a fitness function and tries to maximize it through evolution. Authors have per-

formed experiments on Java programs and the results show that their technique

managed to reach 97.73% mutation score.

M. Rad and S. Bahrekazemi [27]

Rad and Bahrekazemi [27] study four evolutionary methods to improve test data

generation for mutation testing. Authors start the discussion with mutation test-

ing and present mutation operators proposed by [28]. Further they shed some

light on problems of mutation testing. Then they present all the studied evo-

lutionary algorithms including genetic algorithm, bacteriological, particle swarm

optimization, and evolutionary quantum. Authors have performed experiments

using Matlab [29] on a Java program. For experimentation they pick Tritype

program that receives three inputs and tell the type of a trangle as output. With

results of experiments, authors state that evolutionary algorithms can reduce mu-

tation testing cost.

G. Fraser and A. Arcuri [10]

Fraser and Arcuri [10] present a new scalable approach to generate test cases for

the programs. They use mutation testing as coverage criteria to generate test

cases. In this work they apply new optimization approaches to reduce the total

effort, which is required for mutation testing. Using these optimization approaches

first they monitor the state infection conditions to avoid redundant execution of

test cases to kill mutants and secondly, instead of generating test cases for indi-

vidual mutants, they do it for all the targets all at once to save time. In this

research they have performed extensive experiments using the EvoSuite [30] tool.

For experimentation, they have extended the tool to support the new optimiza-

tion methods. Their experiments show good results and the results indicate that

optimization methods can help reducing mutation testing effort to a great deal.

J. Miguel, M. Vivanti, A. Arcuri, G. Fraser [31]

Miguel et al. [31] present an empirical study that try to answer some research

questions regarding evolutionary mutation testing. In this research authors try to

22

answer some questions like if targets (mutants) should be investigated one by one

or the testing approach should try to generate test cases all at once. They also

want to investigate if the search process should only consider the targets, which

are not already covered. For experiments, authors have picked 100 Java classes

and performed detailed experiments. The results are quite interesting and show

that some targets need to have more specific attention and should be covered in-

dependently. On the other hand most of the targets (mutants) can be investigated

together.

N. Jatana, B. Suri, S. Misra, P. Kumar, A.R. Choudhury [32]

Jatana et al. [32] investigate the application of particle swarm optimization (PSO)

in the area of mutation based evolutionary testing. Authors start the discussion

with genetic algorithm, which is also a popular evolutionary approach and has

been widely used. Genetic algorithm has already been applied by researchers

to generate test data for mutation analysis. In this paper authors have tried

to explore if particle swarm optimization can also be equally effective as genetic

algorithm has been. To empirically prove that authors have applied PSO on

some benchmark C programs and computed results. The results show that PSO

has found killing many substantial mutants. On the basis of these experiments,

authors have claimed that PSO can also be a good choice for test data generation

in evolutionary mutation testing.

R. Silva, S. Rocio, S. Souza, P. Srgio [11]

Silva et al. [11] present a detailed literature survey of existing studies on search-

based mutation testing. They have performed a thorough survey on all the related

work and covered 263 research studies in the area of evolutionary and mutation

testing. In this study they have tried to identify those areas that still need atten-

tion and problems that are still unsolved. They have also covered various different

fitness functions that have been designed for search-based mutation analysis. The

survey shows that so far search-based techniques have been mainly applied for

the optimization of test data generation, selection of effective mutation opera-

tors, and mutant generation. Out of many, the researchers have used mainly five

23

techniques including genetic algorithm, ant colony, hill climbing, bacteriological

algorithm, and simulated annealing. Authors have highlighted that still areas that

need more attention are identification of equivalent mutants, experimental studies

and application of this method to different domains like concurrent programs.

P. Delgado, I. Medina, S. Segura, A. Garca, J. Jose [33]

Delgado et al. [33] present their research that investigate generation of hard mu-

tants through evolutionary algorithms. Authors initially present details about

mutation analysis and evolutionary algorithm (genetic algorithm). They also pro-

vide class mutation operators for C++ programs in this paper. Then a system

call GiGAn is presented along side its architecture. Authors have conducted brief

experiments to see if genetic algorithm can produce stronger mutants rather than

choosing them randomly. Although authors have claimed that genetic algorithm

works well but the amount of experiments in this study are too few to advocate

this claim.

3.2 Evolutionary Mutation Testing Tools

The above mentioned techniques are those that we have found in literature on

evolutionary mutation testing of object-oriented programs. We have found only

one tool that has been implemented and available for testing in this area that we

present next.

EvoSuite [30]

Fraser and Arcuri [34] have developed an automated solution that generates test

data for object-oriented programs. The tool is named as EvoSuite that has been

developed in Java programming language to test programs written in Java. Evo-

Suite is a white-box testing tool that performs unit level testing and generates

test cases for a class (unit). It can test as many classes as tester wants but the

test cases are generated for every class individually. EvoSuite supports branch

24

coverage as well as mutation based coverage criteria. EvoSuite integrates two op-

timization techniques to reduce the overhead of mutation testing; one it monitors

the state infection conditions, second it attempts to generate whole test suite by

killing as much mutants as possible rather picking up them one by one [10]. It

is a freeware tool, which is available for download from the internet [30]. The

tool can be used in two ways; firstly it can be integrated with Eclipse [35] which

is a popular tool for programming and secondly EvoSuite can also be used as a

stand-alone testing tool with the help of commands. We have briefly used it for

generating test cases for mutation based coverage criterion and we have found that

it produces promising and interesting results. Though it requires more detailed

analysis of test cases that it produces to judge its effectiveness.

3.3 Conclusion of Survey

As we have seen earlier in this section, a number of techniques exist for evolutionary

mutation testing in the literature. The most important feature of mutation based

evolutionary testing is its capability of finding optimal solution (test case) and the

goal is to achieve it as quickly as possible. The better the fitness evaluation is,

more chances are there for the search process to find the required solution in less

number of iterations.

After analyzing the approaches that we find in the literature, we come to know

that they are experiencing some issues, which we have explained below. The

techniques proposed by Bottaci [18] and Papadakis and Malevris [22] mainly focus

on structured paradigm so they are incapable of supporting evolutionary mutating

testing of object-oriented programs. The reason being, these approaches do not

provide support for object-oriented features like inheritance, polymorphism and

so on. The work of Fraser and Zeller [6] supports object-oriented paradigm but

it does not consider object’s state, which is an important object-oriented features

and the evolutionary search process may suffer from object’s state problem [36].

The technique proposed by Mishra et al. [9] supports only unit level testing of Java

25

programs hence they cannot test all object-oriented features through mutations.

Fraser and Arcuri [34] have developed a powerful tool, which they have called

EvoSuite. It can test Java programs at unit level so it cannot test all object-

oriented features. EvoSuite can apply limited set of mutation operators that are

designed for structured paradigm. To summarize we can state that the existing

approaches either support structured paradigm or they provide limited support to

object-oriented features. The existing object-oriented techniques are vulnerable of

suffering from object’s state problem as they do not consider it while evaluating a

test case. Due to these reasons their fitness functions also are not capable enough

to provide accurate guidance.

Secondly, the existing techniques rely on the program’s output only and do not

use control flow information generated by a test case after execution. Control flow

information can be very useful in determining the behavior of a program especially

in case of mutation testing where mutated program is compared with original pro-

gram. Sometimes this information can expose logical programming errors that are

introduced by the programmers unintentionally. Lastly, using fitness information

intelligently also increases the chances of finding the solution quickly, especially

in situations where object’s state matters. For this conventional crossover and

mutation methods cannot help exploring the input domain comprehensively. A

more sophisticated crossover and mutation methods are required.

Chapter 4

The Proposed Approach

This chapter presents our proposals to improve mutation testing and evolution-

ary mutation testing of object-oriented programs. The proposals include control-

oriented mutation testing [1], state-based & control-oriented fitness function [13],

and two-way crossover & adaptable mutation methods [14]. All of these proposed

techniques are specifically designed for object-oriented paradigm.

4.1 Research Proposals at a Glance

Before we go in the details of research proposals, in this section, we present a brief

description of our proposed modifications in mutation testing and evolutionary

mutation testing approaches. This will help the reader to understand the issues

we have addressed in this research, how our proposals are related to each other, and

how they improve the test case generation process. Figure 4.1 presents the process

flow of evolutionary mutation testing with highlighted activities that we have

improved in this research. As an evolutionary algorithm, we have chosen genetic

algorithm for our research. Genetic algorithm is the most widely used meta-

heuistic technique applied in the domain of mutation testing [11]. There exists

several variants of genetic algorithm and its fitness function, which are applicable

26

27

Figure 4.1: Research Proposals to Improve Evolutionary Mutation Testing
Process

in different domains of software testing. Next we present brief description about

each proposal before going in the detail in subsequent sections.

Catching Suspicious Mutants Using Control-flow Information: Mutation testing

techniques that we find in the literature compare the output of original and mutant

programs to decide if a test case is able to catch the injected fault or not. But the

behavior of a program is defined by output as well as flow of control. If we ignore

control flow of a program while analyzing its behavior on a test case, we may end

up losing important information. So besides using data flow information, we have

proposed that control-flow information should also be used to compare behaviors of

original and mutant programs against a test case. We call this approach as control-

oriented mutation testing. Sometimes original and mutant programs produce same

output but mutant program suspiciously exercises different execution path. This

may happen due to presence of some logical programming mistake or a potential

bug in the code.

Guiding Search Using Objects State & Control-flow Information: Secondly, we

28

have designed a novel fitness function that can evaluate a test case, which is written

for mutation based evaluation testing of an object-oriented program. The fitness

function considers all three conditions that need to be satisfied to kill a mutant

including reachability, necessity, and sufficiency conditions. We have called the

proposed fitness function as state-based & control-oriented fitness function because

we have included object’s state and control-flow information in it as part of test

case fitness. Both the parameters are based on our previous work including state-

based fitness function [2] and control-oriented mutation testing [1]. Our proposed

fitness function evaluates a test case thoroughly and provides better guidance to

the search process so it can converge to the target quickly.

New Crossover Method to Produce Effective Offsprings: Our third proposal is

about crossover method, which helps in covering the input domain in better way

especially when object’s state matters. The new crossover method considers ob-

ject’s state and generates offsprings (new test cases) that have the capability to

gain required object state, which is required to achieve the target (kill a mutant).

We have called our proposed crossover method as two-way crossover method for

genetic algorithm. The two-way crossover method works in conjunction with our

proposed state-based & control-oriented fitness function. It uses the fitness in-

formation produced by the fitness function to decide how to perform crossover to

generate new test cases.

Adaptable Mutation to Generate Frequent Random Inputs: Fourth proposal is

about biological mutation, which helps generating random input values more fre-

quently. The new method considers object’s state and changes the mutation rate

at runtime and we call it adaptable mutation method. If all the test cases have 0.0

as state fitness, it means their objects are able to gain desired state but the input

parameters of method under test are probably causing the test case to fail. So

crossover in this situation may result in wasting effort because crossover does not

change input parameters. The mutation can change input parameters of methods

so increasing its frequency can help in generating the required input parameters

quickly.

29

In the next sub-sections, we have presented all of our proposals in detail. Our pro-

posed modifications for GA may not work well with other evolutionary algorithms

like AIS so some adjustments may need to done in order to check effectiveness of

our proposals with other evolutionary approaches.

4.2 Control-oriented Mutation Testing

We propose to use flow of control of the program in mutation testing that can

uncover potential bugs present in the code. The details of our proposed technique

are presented here in this section with the help of an example.

Mutation testing techniques that we find in the literature compare the output

of original and mutant programs to decide if a test case is able to catch the

injected fault or not. But the behavior of a program is defined by output as

well as flow of control. If we ignore control flow of a program while analyzing

its behavior on a test case, we may end up losing important information. So

when a test case is executed, besides the output, the control flow information

should also be compared. We propose and present a new technique for mutation

testing that considers both of these behavioral elements (output and control flow

information) to decide if a mutant is killed or alive. With this modification in

mutation testing, a comprehensive comparison of both the programs can be made.

Sometimes on a test case, original and mutant programs produce same output but

mutant program suspiciously exercises different execution path. This may happen

due to some logical mistake (potential bug) in the code, which is usually made by

the programmer.

As the evolutionary mutation testing begins, it generates all possible mutants from

the program under test using mutation operators the tester provides as input. The

testing process continues and tries to kill all non-equivalent mutants through test

cases, which it generates automatically using genetic algorithm (GA). The GA

considers one mutant at a time as a target. The test cases are then executed

on original and mutant programs while output as well as execution traces are

30

logged. On completion of test case execution, GA compares output and traces

of all the test cases to decide on mutant’s status. If there exists at least one

test case that produces different output as well as different execution path on

original and mutated program, the mutant is declared as killed and GA picks

up the next target (mutant) and continues its execution. Otherwise if GA finds

a test case that produces same output but different execution path or different

output but same execution path, GA declares it as suspicious mutant. But if

there is no such test case and for all the test cases, output as well as execution

path remains the same, the mutant remains alive. The GA then goes on to run

next iteration and tries to kill the mutant by repairing test cases. If the maximum

number of iterations complete but mutant remains alive then GA gives up on

the current mutant and picks the next one and continues its execution. There are

some mutation operators that can affect the flow of control in mutants, for example

ROR (Relational Operator Replacement). So comparing control flow information

for such mutants can help in identifying piece of code containing a bug in method

under test. Because if mutant does not produce different output even though it

exercises different execution path there is a chance the program may have some

logical error in it. Below we present a list of mutation operators that can change

the execution path;

Mutation Operators for Structured Paradigm (Offutt et al. [37] & Bar-

bosa et al. [38])

• ROR: Relational operator replacement

• LCR: Logical connector replacement

Mutation Operators for Object-Oriented Paradigm (Offutt et al. [39])

• IOR: Overriding method rename

• IOP: Overriding method calling position change

• IOD: Overriding method deletion

31

• ISD: super keyword deletion

• ISI: super keyword insertion

• PNC: new method call with child class type

• IPC: Explicit call of a parent’s constructor deletion

• OMD: Overloading method deletion

• OMR: Overloading method contents replace

• JDC: Java-supported default constructor creation

• JID: Member variable initialization deletion

• EMM: Modifier method change

• EAM: Accessor method change

• EOC: Reference comparison and content comparison replacement

In object-oriented programs, every class can have methods whereas each method

contains the code. So a class is tested method-wise because each method represents

some behavior of the class. To test that behavior test cases are generated whereas

each test case first instantiate an object of the class under test. Then a sequence

of method calls is generated followed by the method under test. Methods in a

class may or may not generate some output. In coming sub-section we present

our proposed idea of using control flow information in mutation testing but before

that we shed some light on program’s output.

4.2.1 Program’s Output

A program generates an output after processing the data, which it receives as

input. In case of structured paradigm where program’s code is spread across many

functions, we consider the returned value of the function (containing mutated

statement) and variables passed by reference (if any) as output. This is not as

32

straight-forward in case of object-oriented programs because methods in a class

can not only return a value, they can also change the object’s state by redefining its

state variables. Due to this salient feature of object-oriented programs, a question

arises that how should the program’s output be determined after execution of

a test case in mutation testing. The survey of existing techniques provides no

information and the question remains unanswered. In our research we answer

this question by explicitly defining program’s output and we have considered both

(object’s state after function completes its execution and returned value of the

function) as output of the program. In coming sections, if we state a function

produces some output then it means the function either returns some value or it

redefines one or more object’s state variables or both of these.

It is interesting to note that a method in a class may not always produce some

output. So how mutation testing will behave to this situation? In next sub-

sections we present our idea of using control flow information in mutation testing

and explain how mutation testing will work when method of a class does and does

not produce some output.

4.2.2 Method Produces an Output

We explain this concept further with the help of figure 4.2. In first case if the

method under test produces an output, we will compare its output and execution

path with the original method. If for at least one test case original and mutated

methods produce different output and exercise different execution path, we declare

it as killed. Otherwise if for at least one test case original and mutated methods

produce same output but exercise different execution path or produce different

output but exercise same execution path, we declare such a mutant as suspicious.

The suspicious mutant alarms the tester to review the code for any possible bug

in it. Finally if there is no test case for which original and mutated methods

produce either different output or exercise different execution path, we declare

such a mutant as alive.

33

Figure 4.2: Control Flow Mutation Testing: Method Producing an Output
[1]

Suppose there is a program P whose control flow graph G is presented in figure 4.2

having 6 nodes. When a test case T is executed on program P it produces execution

path shown with the help of doted arrows in figure 4.2(a) and produces output as

40. The control flow graphs in figures including 4.2(b), 4.2(c), and 4.2(d) represent

three different cases when the test case T is executed on mutant M generated from

program P. In figure 4.2(b) we show that mutant exercises different execution path

but produces same output (40). In figure 4.2(c), mutant exercises same path but

produces different output (30). As per our proposal both the cases shown in figure

4.2(b) and 4(c) are examples of suspicious mutants. In the last case shown in

figure 4.2(d), the mutant exercises different execution path and produces different

output (30) hence it is said to be killed. If a mutant exercises same execution path

and produces same output that remains alive.

34

Figure 4.3: Code Snippet to Demonstrate Using Control-flow Information in
Mutation Testing: Method Producing an Output [1]

Using control flow information in mutation testing can be useful in finding logical

errors (bug) present in the program. Next we present an example to explain how

it works. Figure 4.3(a) provides definition of a function compare() accepting two

parameters of integer type and returns an integer value to the calling function.

The compare() function computes the value of data member z, which is declared

outside the scope of the function. The function assigns a value to z (line 2 and

4) after making a comparison between its two arguments (x and y). Instead of

assigning value of variable y to z at line 4, the function assigns x again. Hence

the function will always return the value of variable x at line 6. The figure 4.3(b)

presents mutated version of the compare() function.

After applying the ROR (relation operator replacement) operator the predicate

x<y on line 1 is replaced by x>=y. This mutation will cause the original and

mutant versions to always exercise different execution paths with any value of x

and y. So if original program executes body of if statement, the mutant will

execute the else part and vice versa. But since there is a logical error in the

program (x defines z on line 2 and 4) the output of both the functions will be the

same. The problem here is that existing mutation testing techniques will declare

this mutant as alive because no test case can kill it. In this situation when we

apply our proposed technique, it will declare this mutant as suspicious and will

help in uncovering the error, the programmer made.

35

Figure 4.4: Control Flow Mutation Testing: Method Producing No Output
[1]

4.2.3 Method Does Not Produce an Output

If the method containing mutation does not produce some output we suggest

comparing execution paths to decide if the mutant has been killed or if it stays

alive. The reason being if we stay on conventional approach and try to compare

output of the programs or even object’s states, we will not be able to decide on

mutant’s status and mutant will remain alive. No test case will be able to kill such

a mutant and eventually this will be declared as equivalent mutant and a lot of

computational effort will go in vain.

Suppose there is a program P whose control flow graph G is presented in figure

4.4 having 6 nodes. When a test case T is executed on program P it produces

execution path shown with the help of doted arrows in figure 4.4(a) and produces

no output. The control flow graph in figure 4.4(b) represents the execution path

generated by the test case T when executed on mutant M. Logically, if a method

does not produce an output, ideally it uses no data inside its body hence execution

path should remain the same therefore, if a mutant exercises different execution

path, we declare it as suspicious mutant.

Next we present an example to illustrate how our control-oriented mutation testing

works.

36

Figure 4.5: Illustration of Control-Oriented Mutation Testing

4.2.4 An Example

In this section we show the working of our proposed technique using an example.

We apply ”PNC: new method call with child class type” operator in our example.

Consider the code snippet presented in figure 4.5;

Figure 4.5(a) provides definition of Employee class that declares a data member

salary of type float at line 1. The class provides a parameterized constructor

(line 2 to 4) that initializes salary with the parameter it receives. The Employee

declares and defines a method isTaxExempted() (line 5 to 10) that determines

if an employee is exempted from tax or not. Figure 4.5(b) provides definition

of Manager class, which is a sub-class of Employee. Manager also provides a

parameterized constructor. Manager inherits isTaxExempted() from Employee

hence Employee.isTaxExempted() is invoked whether a reference contains an

object of Employee class or Manager class.

Now consider code example of figure 4.6 that presents original and modified ver-

sions of method empTaxExempt(), which is defined in Office class.

37

Figure 4.6: Office Class with Method empTaxExempt() to Illustrate Control-
oriented Mutation Testing

The figure 4.6(a) provides definition of Office class having a function empTaxExempt()

that accepts a float type parameter and returns a String value to the caller. On

line 2 of the function, it creates an object of Employee class and invokes the

method isTaxExempted() on it, which also returns a String value. The figure

4.6(b) presents modified version of the code in figure 4.6(a). The modified version

contains just one change at line 2 where using polymorphism concept, an object of

Manager class is assigned to Employee reference. This is an application of operator

”PNC: new method call with child class type”.

If we run a test case on both versions of the program presented in figure 4.6, we

find that in both cases, Employee.isTaxExempted() is executed even though in

figure 4.6(b) the reference holds the object of Manager class. The reason being,

Manager class does not override this function rather it inherits it from the parent.

So in both cases the output remains the same although in mutant program the

control passes through different nodes as it invokes the constructor of Manager

class at line 2 instead of Employee class. As per our proposal we declare such

a mutant as suspicious whereas conventional techniques will tag the mutant as

alive.

38

4.3 State-based and Control-oriented Fitness Func-

tion

In this section we present a novel fitness function, which we have designed for evo-

lutionary mutation testing of object-oriented programs. The novel fitness function

is specifically designed to work with Genetic algorithm.

Our proposed fitness function evaluates three costs against three conditions that

a test case tries to satisfy to kill a mutant and as used by Bottaci [18]. We

have extended the conditions used by Botacci [18] and have incorporated two

additional parameters in them for better evaluation. The two parameters are based

on our previous work including state-based fitness function [2] and control-oriented

mutation testing [1]. Our proposed fitness function suits well for object-oriented

testing because we propose isolating state of the object from branch distance while

calculating costs for reachability and necessity conditions. It helps evaluating if

the object is in desired state. We also propose comparing flow of control besides

output of the original and mutant programs. Using control flow information in

mutation testing can help finding out logical errors in the program under test.

Fixing these errors can result in killing more mutants that eventually raises the

mutation score.

The figure 4.7 defines a class with name Mathematics that offers a default con-

structor for object creation. The class also provides a function smaller() that

accepts two parameters of type long. The function finds the smaller value be-

tween the two passed to it as parameters, computes its square and returns the

result to the caller. If both the values are equal then the square of first parameter

is computed and returned.

The Mathematics.smaller() function is represented with the help of control flow

graph in figure 4.8. Suppose there is a mutation introduced in the code shown in

figure 4.7 such that on line 6, a constant is assigned to variable small instead of

x. The control flow graph in figure 4.8 is logically sub-divided in three segments

to show the costs associated to a test case in evolutionary mutation testing.

39

Figure 4.7: Java Code of Mathematics Class

Figure 4.8: Control Flow Graph of smaller() Method

40

In figure 4.8, the control flow graph is sub-divided with the help of two lines.

This division is done to represent piece of code that is considered while evaluating

fitness (costs) of a test case. If the test case fails to execute mutated statement,

State-based Reachability Cost is evaluated. Otherwise if test case does execute

but no infection is introduced in the mutant, State-based Necessity Cost is com-

puted. Eventually if infection is introduced but not propagated to the output then

Control-oriented Sufficiency Cost is calculated for the test case.

In coming sections, we present all three types of fitness values associated with

a test case along with our proposed changes to demonstrate how our proposals

improve the fitness evaluation.

4.3.1 State-based Reachability Cost

In mutation testing, a test case should execute the line of code containing mutation.

In case of failure, the test case is assigned a cost that guides the process towards

reaching the mutated statement. Until test case executes the mutated statement,

whatever cost we assign to other two segments of fitness, it makes no difference.

In object-oriented program, executing a specific statement sometimes require the

object to be in a specific state. For this reason a test case makes calls to various

functions randomly on the object. If the function call sequence is not accurate

the object may not gain required state and fail to execute the mutated statement.

Here, the fitness function should highlight this discrepancy in test case through

the fitness it assigns to test case. The existing techniques do not take into account

object’s state as an important factor hence they can suffer from object’s state

problem. Bashir and Nadeem [2] propose separating object’s state fitness from

the branch distance of local variables in genetic algorithm. This way the fitness

function properly tells the search process if the object has gained the desired state

or if function call sequence in test case needs some modification.

41

We suggest using the idea of isolating object’s state fitness from local variables

fitness in evolutionary mutation testing. We call the new cost as State-based Reach-

ability Cost or simply SbRC. Thus the proposed cost comprises of state fitness,

approach level, and branch distance. This way if a test case fails to execute mu-

tated statement, it gets appropriate fitness value that guides the search accurately.

Following is the general representation of this cost;

SbRC(T) = (state fitness, coverage fitness) ...(4.1)

The equation (4.1) shows that for test case T, the SbRC comprises of two sub-

costs including state and coverage fitness. The formulas for calculating these costs

are mentioned below;

state fitness = branch distance(states) ...(4.2)

The state fitness is computed with the help of normalized branch distance, which is

calculated for state variables of the object that are found in the program node from

where the test case loses its way to the target. The coverage fitness is calculated

using following formula;

coverage fitness = [approach level, branch distance(vars)] ...(4.3)

The value for approach level is computed by counting the dependent nodes that a

test case fails to execute whereas branch distance is computed on local variables.

The fitness function computes these costs at the program node from where the

test case loses its way to the target.

4.3.2 State-based Necessity Cost

After the test case executes the mutated statement, the mutant must exhibit some

deviation in the behavior due to the mutation. If this does not happen, the mutant

becomes logically equivalent to the original program. In this situation the fitness

function should calculate and assign a cost to the test case. If the test case does

not execute the mutated statement, necessity cost of the test case can be any non-

zero value. Otherwise if the test case does execute the mutated statement but the

42

mutation does not cause some infection in the program, necessity cost should be

properly calculated and assigned.

The literature survey shows that all the techniques use only branch distance of

variables to compute necessity cost. This method works in situations where con-

ventional mutation operators are applied but fails to compute the fitness when

object-oriented mutation operators are involved. There are number of mutation

operators that do not use variables at all rather they operate on classes and objects.

For instance, there are set of operators that cover encapsulation, inheritance, and

polymorphism features and they do not involve making any change to the variables

of the program. So the necessity cost should be calculated by considering type of

the mutation operator.

We propose calculating necessity cost on the basis of the type of mutation operator

applied to the mutant. Since there are two types of mutation operators includ-

ing conventional and object-oriented, we suggest using two different methods to

compute necessity cost and we call it as State-based Necessity Cost or SbNC in

short.

1. SbNC for Conventional Operators: If a conventional mutation operator (for

example arithmetic operator replacement) is applied on the code, we suggest

computing SbNC with the help of normalized branch distance. The branch

distance shall be calculated for variables that are found in the mutated state-

ment like variables declared in a function, returned values of the function or

even object’s state variables.

2. SbNC for Object-Oriented Operators: If an object-oriented operator (for ex-

ample overriding method deletion) is applied on the code, we suggest check-

ing if the object type has changed. If the mutation is able to change the

type of the object involved in mutated statement, the SbNC should be ”0”.

We do this because when the type of an object is changed, a new object

is introduced and will have entirely different states. But if the object type

does not change, we suggest computing normalized branch distance, which

should be computed on state variables of the concerned object.

43

4.3.3 Control-oriented Sufficiency Cost

Once the test case executes mutated statement and that mutation causes some

change in the mutant program, its effect should be propagated towards the output.

Because if this does not happen, the mutant will produce same output and will

remain alive. The fitness function then computes the sufficiency cost for the test

case that tells how far the deviation propagates after the mutated statement.

Bottaci [18] proposes to compute this cost by counting the number of nodes in

the control flow graph (from bottom to top) that contain same data states. The

fitness function considers those program nodes that exist between the mutated

statement and the output node. This method is very simple and effective but it

ignores an important aspect of the program’s behavior; the flow of control. Bashir

and Nadeem [1] propose to use control flow information in mutation testing and

shows how useful it can be (Section 4.2). They suggest comparing flow of control

of mutant program with original program besides the output.

We give a new name to the proposed method of calculating sufficiency cost and

call it as Control-oriented Sufficiency Cost or simply CoSC. We propose comparing

flow of control of mutant program with the original one besides comparing the data

states. The comparison should occur right after the mutated statement till the

output node of the program. If the comparison indicates that mutant program

produces same output after exhaling different execution path or produces different

output after exercising same execution path, we call that mutant as suspicious

mutant. Such mutants can help in detecting logical errors from the program being

tested.

4.3.4 Overall Fitness

The general representation of the fitness for a test case can be formed by placing

together all three costs we have discussed above. All the costs should be kept

separate from each other for better representation of the fitness instead of adding

them up to generate a single fitness value. From the single fitness value, the

44

search process cannot determine which part of the test case needs improvement.

The general formula of fitness representation is mentioned below;

fitness(t) = [SbRC(t); SbNC(t); CoSC(t)] ...(4.4)

4.3.5 An Example

Now we present a code example to demonstrate how our proposed fitness function

works. We will generate a mutant and will show how the test cases generated to kill

that mutant will be evaluated using our approach. The figure 4.9 provides defini-

tion of GPACalculator class that declares five data members; gpa, totalPoints,

totalCredits, grades[], and creditHours. GPACalculator provides a con-

structor and three functions to define data members. The calculateGPA() is

most important function that calculates GPA for a given exam result. Initially

the function computes total earned credit hours and earned points (line 1 to 11).

Then the function computes gpa using totalPoints and totalCredts (line 13).

The value of gpa is then used to evaluate if the student has passed the exam or

not. Using this code snippet now we show how our fitness function works.

Mutants

Suppose a mutant is generated using the program in figure 4.9 by applying AOR

mutation operator. After applying the mutation, we replace the multiplication

(*) sign with addition (+) on line 8 of calculateGPA() function. The resultant

statement will look like as shown below;

8. pts = 2 + creditHours[g]; //AOR Mutation (+)

Before we show how our proposed fitness function operates, we want to highlight

an important aspect of the program in figure 4.9. The calculateGPA() function

has a logical error on line 16 because instead of returning "Failed" the function

returns "Passed" again. Both the original and mutant programs contain this

error hence whatever changes we make in the computation of gpa, the function

45

Figure 4.9: Code Snippet to Demonstrate Proposed Fitness Function

46

Figure 4.10: Test Case Set

always returns "Passed". Due to this reason almost all the mutants generated

from calculateGPA() function remain alive and cannot be killed.

Test Cases

We take three instances of test cases shown in figure 4.10 that will attempt to

kill the mutant we have generated from the program presented in figure 4.9. If an

instance does not kill the mutant we will show how our proposed fitness function

evaluates it.

We use a specific format for presenting the test cases that Tonella [4] proposes in

his work. When we execute them on the program (shown in figure 4.9) and on

its modified version we notice that all three test cases produce same output on

both versions, which is the string value "Passed". The reason being, the program

under test contains a logical error.

State-based Reachability Cost (SbRC)

The T1 fails to satisfy reachability condition because it does not execute mutated

statement, which is on line 8. Actually for a test case to execute this statement, the

grades[] array should contain one ’C’ in it. Only then predicate of if statement

at line 7 can be satisfied. The mutated statement is enclosed by two conditions

(line 1 and line 7) and T1 executes only one of them (line 1) so approach level

of T1 is 1. The predicate at line 7 involves state variable grades[] so as per our

proposal we calculate state fitness for T1, which we assume for now is 0.5. The

47

branch distance remains 0 here because the predicate does not contain any local

variable of the function. The SbRC for T1 is as follows;

SbRC(T1) = (0.5, [1, 0])

The fitness shows that T1 fails to execute the mutated statement because object in

T1 is not in desired state. The other two test cases execute the mutated statement

because the state variable grades[] contain a value ’C’ so the SbRC for T2 and

T3 is as follows;

SbRC(T2) = (0, [0, 0])

SbRC(T3) = (0, [0, 0])

State-based Necessity Cost (SbNC)

Unless a test case executes mutated statement, the state-based necessity condition

cannot be satisfied. The T1 fails to reach the mutated statement hence it cannot

satisfy this condition either so we can assign any constant ’c’ to T1 as its SbNC;

SbNC(T1) = c

If we analyze T2, we find that it executes mutated statement hence it is a strong

candidate of satisfying state-based necessity condition. But as we know T2 has

both values in creditHours[] as ’2’ so either program computes "2 * creditHours[g]

in original version or "2 + creditHours[g]" in modified version, both expression

result in value 4. That means although T2 satisfies SbRC yet it does not satisfy

SbNC because mutated statement causes no infection in the modified version of

program. So the fitness function computes SbNC for T2 and for this it computes

branch distance of state variable creditHours[] because it is involved in mutated

statement. For now we assume a value of 0.5;

SbNC(T2) = 0.5

The case with T3 is simple because it satisfies both SbRC by executing the mutated

statement and also SbNC by introducing infection in the modified version of the

program so fitness function assigns 0 as SbNC to T3;

48

SbNC(T3) = 0

Control-oriented Sufficiency Cost (CoSC)

Until and unless a test case executes mutated statement, it cannot satisfy control-

oriented sufficiency cost. The T1 fails to reach the mutated statement hence it

cannot satisfy this condition either so we can assign any constant ’c’ to T1 as its

CoSC. Since test case does not execute mutated statement, so no change can be

observed so we declare it as normal mutant;

CoSC(T1) = (c, normal)

The T2 also face similar situation where it although executes the mutated state-

ment but it does not cause any change. In this case fitness function assigns any

constant value ’c’ as CoSC to T2. Since no change is introduced in the mutant,

the status of mutant remains normal;

CoSC(T2) = (c, normal)

The T3 satisfies SbNC but we notice that the output of original and mutant

programs still remains the same. This happens because of the presence of logical

error in the program under test at line 16. So the fitness function computes CoSC

for T3 and compares data states of both the versions after the program node

that contains mutation. The fitness function finds only one equal data state so it

assigns ’1’ to T3 as its CoSC. After that fitness function compares flow of control

and finds that on original program T3 executes 12, 13, 14, and 15 whereas on

mutant program, it executes 12, 13, 14, and 16. Since T3 produces same output

on both programs but exercises different exestuation path, it tags the mutant as

suspicious;

CoCS(T3) = (1, suspicious)

Overall Fitness

After presenting the procedure of how our proposed fitness function computes costs

for different conditions, we present overall fitness of all the test cases as follow;

49

fitness(T1) = [(0.5, [1, 0]) ; c ; (c, normal)]

fitness(T2) = [(0, [0, 0]) ; 0.5 ; (c, normal)]

fitness(T3) = [(0, [0, 0]) ; 0 ; (1, suspicious)]

The above representation seems too complicated at first look but this kind of

comprehensive and detailed representation not only enhances the understandabil-

ity about fitness of the test case but it also guides the search quite well. The long

fitness value is capable to represent fitness of different aspects of a test case in

such a way that all the strengths and weaknesses of the test case are highlighted

in it.

4.4 Two-way Crossover Method

In this section we present new two-way crossover method for genetic algorithm

that uses objects state fitness to produce new test cases. To demonstrate how our

proposed two-way crossover works and helps the targets to converge quickly, we

have used an example of Stack class. The two-way crossover method works in

conjunction with our proposed fitness function (Section 4.3).

In our previous work [13] we propose a novel fitness function for evolutionary

mutation testing of object-oriented programs (see Section 4.3 for details). We

introduce two new values in a test case fitness including object’s state and control

flow information. Both of these values are calculated from execution traces of

program under test and are represented as separate costs in fitness. With initial

experiments and analysis of our approach we discover that although the proposed

fitness function provides information about the weakness in a test case (whether

object in the test case has gained desired state through state fitness) yet the next

phase of Genetic algorithm (crossover) fails to utilize it due to its inherent nature.

Whether Genetic algorithm uses one-point crossover or two-point crossover, it does

not consider object’s state fitness to produce offsprings (new test cases for next

iteration). The process has to wait until biological mutation uses state fitness to

form new method call sequence in a test case, which may help object in gaining

50

Figure 4.11: Code Snippet of Stack Class

desired state. If we can enable crossover to use the object’s state fitness to produce

offsprings, we may be able to push mutation score further up in limited number

of iterations. For this we have proposed a new method for performing crossover

using state fitness information.

Consider code snippet of Stack class in figure 4.11. The class has two private

data members including top pointer and elements[] array to contain integers

in stack formation. There are several methods defined in the class to simulate

stack’s behavior but we are interested in only pop() method definition for now.

The pop() method pops out the top most element from the stack but there is an

additional constraint on it. This method will remove and return the top element,

only if there are at least 2 elements present in the stack objet.

Now we generate a mutant from Stack class such that the line 3 of pop() method

contains a mutation. We want to generate a test case that will kill that mutant

by satisfying all three conditions (reachability, necessity, and sufficiency). For

a test case to kill this mutant, the object of Stack class is required to invoke

push(int) method (its definition is not shown in figure 4.11) for at least 2 times

before invoking pop() method otherwise test case will fail to execute the mutated

statement. Suppose the genetic algorithm generates following two test cases as

initial population;

51

Initial Population

T1: $s=Stack():s.push(int):s.mX():s.mY():s.pop() @ 22

T2: $s=Stack():s.mX():s.push(int):s.mZ():s.mA():s.pop() @ 6

Both the test cases cannot kill the mutant because they contain just one call to

push(int) method hence object does not gain the desired state before calling

pop(). Since both the test cases fail to achieve the target, fitness function comes

into play for their evaluation. Our proposed fitness function [13] will be able to

highlight the discrepancy in them by assigning a non-zero value to state fitness as

shown below;

Fitness of Initial Population

Fitness(T1): [(0.5, [1, 0]) ; c ; (c, normal)]

Fitness(T2): [(0.5, [1, 0]) ; c ; (c, normal)]

The 0.5 fitness shows that object is not in desired state and method call sequence

needs modification. After that genetic algorithm performs crossover to form new

population for next iteration. The one-point crossover picks a random point and

bisects both the test cases on that. The new test cases are generated by merging

the first part of first test case to the second part of second test case and similarly

by merging first part of second test case and second part of first test case as shown

below;

Current Population

T1: $s=Stack():s.push(int):s.mX():s.mY():s.pop() @ 22

T2: $s=Stack():s.mX():s.push(int):s.mZ():s.mA():s.pop() @ 6

New Population

T1: $s=Stack():s.push(int):s.mZ():s.mA():s.pop() @ 22

T2: $s=Stack():s.mX():s.push(int):s.mX():s.mY():s.pop() @ 6

If we carefully analyze the new population the new test cases have the same issue

as the old test cases had. The reason of this problem is that the crossover does

not consider the state fitness and does not try to repair test cases accordingly. To

solve this problem, we propose a new method of performing crossover, which we

52

call two-way crossover that takes into account object’s state fitness to form new

test cases.

In order to perform crossover, first we use tournament selection method to pick

the good test cases from population. Then we form pairs of test cases from the

selected test cases and crossover is performed on the pairs. In our proposed two-

way crossover method, we merge both the segments of first test case to both the

segments of second test case as shown below;

Current Population

T1: $s=Stack():s.push(int):s.mX():s.mY():s.pop() @ 22

T2: $s=Stack():s.mX():s.push(int):s.mZ():s.mA():s.pop() @ 6

New Population

T1: $s=Stack():s.push(int):s.mX():s.push(int):s.pop() @ 22, 6

T2: $s=Stack():s.push(int):s.mZ():s.mA():s.pop() @ 22

T3: $s=Stack():s.mZ(): s.mA():s.mX():s.mY():s.pop() @

T4: $s=Stack():s.mX():s.push(int):s.mX():s.mY():s.pop() @ 6

The two-way crossover doubles the test cases because it merges both the segments

of each test case with both the segments of other. The new set of test cases

contains a test case (T1) that gains desired object state before invoking pop()

method. Similarly even strict state requirement can be fulfilled in next iteration

by further crossing over test cases of this population. This Stack class has a simple

state requirement but experiments have shown that the two-way crossover works

equally well when situation demands even more complicated object’s state.

The two-way crossover has tendency to generate more test cases for next itera-

tion as compared to conventional crossover. Every pair involved in crossover can

generate up to four new test cases after performing two-way crossover. We adapt

two ways to control this rapid increase in test cases. First we perform two-way

crossover only on those test cases whose objects have state problem and have a

non-zero state fitness. So if in a pair of test cases, both test cases have state

fitness as zero, we do not perform two-way crossover on them. The reason is that

53

if test case does not have state problem, this means the issue lies within the vari-

able values passed as argument to method under test that needs modification and

crossover cannot help here. Secondly, in worst-case scenario, if all the test cases

of a given iteration have non-zero state fitness, then the next iteration will receive

double amount of test cases and so on. To control this, when genetic algorithm

performs biological mutation to ensure search does not get stuck in local optima,

we reduce number of test cases back to the size of population, tester sets in the be-

ginning. By these two ways, we control the number of test cases during execution

of Genetic algorithm.

4.5 Adaptable Mutation Method

Mutation operation in genetic algorithm prevents the search process to get stuck

in local optima. It is not possible to set one fix mutation rate that can produce

best results as every program is different in nature and requires different type and

range of input data. If mutation rate is too high, it will become close to random

testing and if mutation rate is too low, the test cases will become similar after a

certain number of iterations.

In evolutionary mutation testing, genetic algorithm can experience similar situ-

ation. Consider the code snippet presented in figure 4.12 of Calculator class

in which add() method is defined. This method takes two integer parameters,

adds them, and returns the result to caller. At line 1 it checks if either of two

parameters is non-zero and if so then it performs the addition operation. Now on

this condition a mutant can possibly be generated by applying relational operator

replacement (ROR) as follows;

if(a==0 || b!=0)

In order to kill the mutant having above mentioned condition as compared to the

one that Calculator.add() method has, either a and b both have to be 0 or a

has to be 1 and b has to be 0. For all other possible values the mutant remains

54

Figure 4.12: Code Snippet of Calculator Class

alive. In situations like these, crossover cannot help in generating the required

inputs because method under test needs specific set of values. Instead frequent

mutations can produce required input values rather quickly. On the other hand

there are certain applications like Stack (figure 4.11) that needs some time to

evolve test cases to satisfy complex predicates to kill the mutants. In this case

high mutation rate can result in diverging the search away from its target. So

we can state that a fixed mutation rate in genetic algorithm can cause problems

hence we need an adaptable mutation frequency that can adapt to the situation

as the situation demands.

Literature survey shows some research has been done by Baudry [40], Xie et al.

[41], Dharsana and Askarunisha [42], Alsmadi [43], and Wang et al. [44] that

provides basis to pick the right configuration for genetic algorithm and adapt mu-

tation rate as per situation. Mainly these approaches decide about pre-maturity

in population by analyzing the solutions (test cases) and comparing them whereas

some approaches are specifically for structured paradigm. These approaches are

not appropriate to help in object-oriented programs and for mutation based evo-

lutionary testing where the goal is a mutant not just a statement or a path to be

executed.

In this case our state-based & control-oriented fitness function provides compre-

hensive information to genetic algorithm to decide if mutation rate needs an ad-

justment for next iteration or current configuration is fine. For understanding,

55

consider the following general fitness of a test case ’t’ ;

fitness(t) = [SbRC(t); SbNC(t); CoSC(t)]

fitness(t) = [state fitness(t), coverage fitness(t); SbNC(t); CoSC(t)]

Once iteration completes, we propose analyzing fitness of all the test cases if the

mutant (target) remains alive. If state fitness of all the test cases remain 0.0, it

shows test cases have gained required state or the program under test does not

have state requirement. Now crossover of test cases cannot help because it does

not modify arguments of method under test. In such a case increasing mutation

frequency can save effort in producing required values for method under test. We

propose decreasing interval between two mutations by 1 after unsuccessful iteration

for programs that do not have state requirement or having 0.0 as state fitness.

Chapter 5

Tool Support

In this chapter, we present the automation details related to our proposed work.

The proposals have been implemented in a tool called eMuJava (evolutionary

Mutation testing of Java programs). This tool is efficient and is able to eval-

uate the fitness of test cases by considering the object’s state fitness. eMuJava

can classify mutants as suspicious or normal on the basis of control-flow informa-

tion obtained through execution traces. Besides that this tool performs two-way

crossover and adaptable methods using state-based fitness of a test case. eMuJava

also supports multiple methods for test case generation including random testing,

genetic algorithm with standard fitness function, genetic algorithm with state-

based & control-oriented fitness function, and genetic algorithm with state-based

& control-oriented fitness function, two-way crossover, and adaptable mutation

methods. This chapter presents automation details including algorithms used,

tool architecture, responsibilities of different tool components, supported test case

generation method, and screenshots of GUIs (Graphical User Interface).

5.1 eMuJava Tool

eMuJava has been implemented in Java programming language and is capable of

testing Java based programs. eMuJava does not rely on any other third party

56

57

Figure 5.1: eMuJava Architecture

or freeware component that makes it a complete and self-dependent automation.

The figure 5.1 presents architecture in terms of modules that the tool consists

of. There are three large modules that collectively work and share information

among them to perform testing of the programs. eMuJava is a prototype tool

and supports limited set of Java constructs (see Appendix C for more details).

It provides support for 10 mutation operators at this time out of which 5 are for

structured paradigm and 5 are for object-oriented paradigm. eMuJava cannot test

more than 2 Java classes at a time. Next we present details about eMuJava tool

including its inputs, outputs, and responsibilities of each component.

58

5.1.1 eMuJava Architecture

The implementation is complex in nature and based on three large components

(Mutant Generator, Code Analyzer and Instrumentation, Test Case Generator)

with a set of responsibilities assigned to each of them. Main inputs of eMuJava

include Java program under test and mutation operators whereas after processing

it produces test case set and results of experiment as result. Next we present

inputs, outputs, and responsibilities of each component of the tool in detail.

Mutant Generator

The first component of tool is Mutant Generator from where the process of test

case generation begins. It takes two inputs from the environment (usually provided

by the tester) including source code to be tested and the mutation operators. User

can load the source code in the tool by browsing through the directory structure of

testers computer and mutation operators can be selected by choosing them from

the list provided on tool interface. The mutant generator then starts generating

all possible mutants using the mutation operators. This process can take a while

to complete because mutants can be large in number depending upon the Java

classes under test and mutation operators selected by the tester. The execution

of mutant generator completes on generating all possible mutants whereas each

mutant contains single mutation.

Code Analyzer & Instrumentation

The output of Mutant Generator becomes the input of this component. The

major responsibility of this component is to perform analysis of the code and

instrument it so later on when the test cases are run, the traces can be generated

and logged. To perform these responsibilities, the component relies on its sub-

components. Initially, scanner and parser tokenize the code and parse the tokens

to collect information about the statements they appear in. After that the class

members extractor group the pieces back to form more meaningful segments like

data members, constructors, methods or functions. Towards the end, additional

code is inserted by this component to keep track of execution flow when test cases

59

are run on the code. This component generates instrumented Java code with no

syntax error so it can be compiled and later executed. Finally, the instrumented

mutants are compiled by this component.

Test Case Generator

This is the third and last component of eMuJava and it receives compiled instru-

mented mutants as input and starts the process of test case generation. eMu-

Java can use four different approaches for test case generation; random testing,

genetic algorithm with standard fitness function, genetic algorithm with state-

based & control-oriented fitness function, and genetic algorithm with state-based

& control-oriented fitness function, two-way crossover, and adaptable mutation

methods. This component receives the approach to be used for test case gen-

eration as input from the user along with other configuration details including

number of test cases to be used as initial population, number of iterations to per-

form, crossover and mutation rate and so son. This component produces final test

case set, results, and statistics of the experiment.

5.1.2 eMuJava Operations

This section explains how eMuJava performs various operations to conduct an

experiment. The details of testing process from the input it receives until the

output it produces.

Mutant Generation

Once eMuJava completes the process of identifying statements and tokens that

form a given statement, it starts generating mutants. eMuJava generates mutants

on the basis of mutation operators, the tester provides as input. eMuJava offers

ten mutation operators such that five are structured and five are object-oriented

mutation operators. The five mutation operators for structured paradigm are

chosen from the work Offutt et. al [37]. We have chosen these mutation operators

because Wong et. al [45] prove that the impact of applying these selective mutation

60

operators is almost equal to applying the whole mutation operators set. The

selective mutation operators include the following:

• Absolute value insertion (ABS)

• Arithmetic operator replacement (AOR)

• Logical connector replacement (LCR)

• Relational operator replacement (ROR)

• Unary operator insertion (UOI)

The object-oriented mutation operators are chosen from the research of Offutt et.

al [39]. We have chosen these operators such that we have a representation for

every object-oriented feature:

• Overriding method deletion (IOD)

• new method call with child class type (PNC)

• Overloading method deletion (OMD)

• Member variable initialization deletion (JID)

• Reference comparison and content comparison replacement (EOC)

Population Generation

When eMuJava begins the test case generation process, it generates initial popula-

tion of solutions (test cases) randomly. Tester provides the size of the population

as input whereas the default size is 50. For every given mutant, eMuJava looks

for the method containing the mutated statement and that method becomes the

method under test. We have used the test case template proposed by Tonella [4]

as shown in the figure 5.2.

The tool generates the test cases using the same template in which it creates an

object of class under test followed by a random number of calls to some other

61

Figure 5.2: Anatomy of a Test-case for Object-Oriented Program Testing [2]

method(s) of the same class and finally it calls to the method under test (method

with mutation). Later the tool generates required input parameters randomly.

eMuJava supports all the primitive data types of Java programming language as

well as generation of String literals of random length. If the class under test

depends on the object of another class then the tool generates the object of other

class and makes call to some methods to gain the desired state.

Next we present details about three more operations that eMuJava performs in-

cluding fitness evaluation, crossover, and biological mutation. These are standard

operations, which genetic algorithm performs; therefore, eMuJava does not per-

form them when tester chooses to use random testing for test case generation.

Fitness Evaluation

Our tool evaluates fitness of a test case using execution traces the test case gen-

erates. It evaluates fitness by two methods depending upon the approach tester

chooses for test case generation. If tester chooses to generate test cases using stan-

dard Genetic algorithm, then eMuJava uses fitness evaluation method of Bottaci

[18]. On the other hand eMuJava uses our state-based and control-oriented fitness

function [13] for test case evaluation.

Crossover

On completion of the iteration, if the target (mutant) remains alive, the test cases

are gone through crossover to generate off-springs for next iteration. eMuJava

uses tournament selection method to select test cases for crossover, after which,

pairs of test cases are formed. The tool uses two methods to perform crossover

62

depending on type of test case generation strategy user chooses in the beginning of

the process. First one is single point crossover, which is performed on a randomly

chosen point from the test cases. The second method is two-way crossover, which

we have proposed (Section 4.4) and it uses state fitness of test cases to perform

crossover.

Biological Mutation

The biological mutation helps minimizing the chances of the search process get-

ting stuck in local optima. Mainly on a test case, the tool performs two types

of mutations. If a test case has state fitness of 0.0 that means the object is al-

ready in a desired state and its method call sequence does not need a change.

In this case eMuJava only mutates the input parameters of the method under

test. Besides that eMuJava increases mutation frequency as the test cases need

correct combination of input values for the method under test. This is what we

call adaptable mutation method that adapts to the situation by increasing the

mutation frequency when required. In other case if the object is not in the desired

state (state fitness has a non-zero value) then the tool not only changes the input

parameters of method under but it also changes the method call sequence. One

or more method invocations may be introduced as well as one or more method

invocation may be removed from the sequence. Once the mutation operation com-

pletes on all the test cases, new population is ready for next iteration of genetic

algorithm.

5.2 eMuJava Algorithms

In this section we present the algorithms that we have devised to automate the

proposals implemented in eMuJava. These algorithms have been divided into six

sections including GenMutants, GenPopulation, ExecTestCases, EvalTestCases,

TWCrossoverTests, and MutateTests. The GenMutants generates mutants, Gen-

Population generates initial population, and ExecTestCases executes test cases

63

Figure 5.3: GenMutants Algorithm

and records the execution traces. Then EvalTestCases uses traces to evaluate fit-

ness of test cases and if mutant remains alive, TWCrossoverTests and MutateTests

algorithms repair test cases.

5.2.1 GenMutants

The figure 5.3 shows pseudo code of the GenMutants algorithm. The GenMutants

algorithm generates mutants by applying the mutation operators set provided by

the user on program under test. Input of this algorithm includes program under

test, which comprises of one or two Java classes and mutation operators including

operators for structured and object-oriented paradigm. This algorithm applies

mutation operators on the code and generates all possible mutants by applying all

possible variations of a given operator.

5.2.2 GenPopulation

The figure 5.4 shows the pseudo code of the GenPopulation algorithm. The Gen-

Population algorithm generates initial population. It takes population size, class

64

Figure 5.4: GenPopulation Algorithm

name, constructors and methods list and produces a set of test cases to be exe-

cuted on the class under test. The GenPopulation generates number of test cases

for each target (mutant to be killed) equal to population size. It randomly selects

the constructor from the list of available constructors and randomly adds method

call sequence before adding a call to method under test. The method under test is

one that contains mutated statement. The algorithm randomly generates required

arguments for the selected constructor and methods.

5.2.3 ExecTestCases

The figure 5.5 shows the ExecTestCases algorithm that generates, compiles, and

executes the Driver class. The Driver class is one that contains a test case,

which we want to run on original and mutated programs. After executing the

Driver class, the algorithm records the execution traces as well. The input of

ExecTestCases algorithm contains set of test cases and instrumented class under

65

Figure 5.5: ExecTestCases Algorithm

test. After receiving the input, the algorithm generates one Driver class for each

test case and then compiles the class. On successful compilation, the algorithm

executes the Driver class and records the execution traces, which is the output of

this algorithm as well.

5.2.4 EvalTestCases

The figure 5.6 shows the EvalTestCases algorithm. The EvalTestCases takes ex-

ecution traces, target (mutant to be killed), and set of test cases as input. On

the basis of target the test cases are evaluated. For a given test case, algorithm

evaluates three costs against its ability to fulfill three conditions (reachability, ne-

cessity, and sufficiency) to meet a target. The algorithm also uses object’s state

and control-flow information to evaluate a test case. The output of this algorithm

is fitness set of test cases.

66

Figure 5.6: EvalTestCases Algorithm

67

Figure 5.7: TWCrossoverTests Algorithm

5.2.5 TWCrossoverTests

The figure 5.7 shows the pseudo code of the algorithm. The TWCrossoverTests al-

gorithm performs crossover between pair of selected test cases. The TWCrossoverTests

receives test cases and their fitness as input. The test cases are selected on the ba-

sis of their fitness using tournament selection. The test cases, which are extremely

weak are filtered and dropped before crossover. TWCrossoverTests algorithm pairs

them up such that each test case in a pair either has 0 state fitness or non-zero

state fitness. If the pair of test cases have 0 state fitness, the algorithm performs

single-point crossover on them and generates two new test cases. If the pair of test

cases have non-zero state fitness, TWCrossoverTests performs two-way crossover

on them and generates four new offsprings. The output of this algorithm is new

test case set, which it generates after performing crossover.

5.2.6 MutateTests

The figure 5.8 shows the MutateTestCases algorithm. If the target (mutant) is

not achieved the MutateTestCases algorithm is used to mutate the test cases to

achieve the target. The MutateTestCases algorithm takes test case set as input

and produces mutated set of test cases as output. This algorithm analyzes every

test case and mutates arguments of method under test if the state fitness is 0

68

Figure 5.8: MutateTests Algorithm

and increase mutation frequency. Otherwise the algorithm mutates method call

sequence if state fitness is non-zero.

5.3 Supported Test Case Generation Techniques

eMuJava supports following four techniques to generate test cases for mutation

based testing.

1. Random Testing: The test cases and input data are generated randomly in

all iterations. If iteration fails to kill a mutant, the tool does not perform

either crossover or mutation to repair the test cases rather it generates new

population of test cases for next iteration.

2. Genetic Algorithm with Standard Fitness Function: This approach uses ge-

netic algorithm to generate and evolve test cases. In first iteration test cases

and input data are generated randomly. If a mutant (target) remains alive

after the iteration, eMuJava evaluates test cases using standard fitness func-

tion and then it performs single-point crossover and after certain number of

iterations, it performs biological mutation to repair the test cases.

69

3. Genetic Algorithm with State-based & Control-oriented Fitness Function:

This approach is identical to the approach we have discussed in 2) but the

only difference it has, lies in its fitness function. This variant of genetic

algorithm implements state-based & control-oriented fitness function [13]

for evaluating test cases.

4. Genetic Algorithm with State-based & Control-oriented Fitness Function,

Two-way Crossover, and Adaptable Mutation Methods: This approach is also

similar to the approach we present in 2) but besides genetic algorithm, it im-

plements state-based & control-oriented fitness function, two-way crossover,

adaptable mutation methods. Hence this approach implements all of our

proposals of this research.

5.4 eMuJava Design Model

This section presents the design class diagram of eMuJava tool in figure 5.9.

Class diagram shows business classes, their attributes, operations, and associa-

tions among these classes.

5.5 eMuJava Configuration

eMuJava provides some useful configurations to perform the experiments effi-

ciently. It allows the tester to provide test configuration testing; loading the

Java class(es) for testing, selection of mutation operators, selection of test case

generation approach, population size, maximum number of iterations, crossover

type, and biological mutation rate. Besides that there are some other notable

configuration options that eMuJava provides to the tester. The are listed below;

• Integer Range: eMuJava uses this range to generate integer numbers to be

passed as arguments to the method calls in a test case. The integer remains

between 0 and specified range. For example if tester sets the range be ’100’

70

Figure 5.9: eMuJava Design Class Diagram

71

then the generated integer will be between ”-100” and ”100”. Same range is

used to generate fractional values where required.

• Character Range: The character range is used to generate ASCII characters

at runtime. For a single instance only one character is generated randomly.

To generate strings, eMuJava first picks a length and then characters to

satisfy that length are generated randomly.

• GA Timeout: During test case execution, eMuJava generates driver classes.

After issuing compile command, eMuJava waits for the .class files to be

generated but in case if driver class or the instrumented programs have some

syntax error, no .class files will be generated. In this situation the tool may

went on waiting for indefinite amount of time. To handle this issue, this

parameter provides a timeout limit in milliseconds. Once it exhausts, tool

proceeds further and continues execution.

• GA Max Threads: eMuJava is multi-threaded tool that supports running

’n’ instances of a given test case generation technique simultaneously. By

default eMuJava executes single thread but on more powerful machines to get

full advantage of powerful resources more than just one thread can be run.

Using one thread on an Intel Core 2 Duo machine, eMuJava can successfully

generate, execute, and analyze 150-200 test cases.

• Old Population Rate: eMuJava uses tournament selection method to pick the

fitter test cases to perform crossover. This parameter provides the amount

of fitter test cases to be selected from whole population. Similarly this

parameter is used to pick the amount of test cases for biological mutation.

• Method Class Sequence Count: Every test case needs to invoke certain num-

ber of methods before calling the method under test. eMuJava selects the

amount of methods to be added in the test case using this parameter. eMu-

Java generates a random number between 0 and the provided value for this

parameter and then adds equal number of method calls in the test case.

72

Figure 5.10: Main GUI - eMuJava Tool

5.6 Screenshots of eMuJava Tool

This section provides some insight on graphical user interface of the tool. eMuJava

is a GUI based tool that provides user interactions and outputs on its interfaces.

There are four main components of the eMuJava tool including ’Source Code &

Configuration’, ’Mutants Viewer’, Test Case Viewer, and ’Statistics & Results’.

The main interface of eMuJava tool is presented in figure 5.10.

5.6.1 Source Code & Configuration

The first component of the eMuJava tool helps the user to load the source code

of class under test. User can create new project in eMuJava to open new project

wizard and provide various types of inputs and configuration details to the tool.

The wizard receives inputs in three steps. In the first step the wizard asks for

project name, project location, Java source code file(s) as input as shown in figure

5.11 below;

73

Figure 5.11: eMuJava Wizard Step 1

Figure 5.12: eMuJava Wizard Step 2

The second step of eMuJava wizard allows user to select the mutation operators

that he wants to apply on the source code under test to generation mutants. eMu-

Java offers ten mutation operators; five from structured paradigm and five from

object-oriented paradigm. The figure 5.12 shows the screenshot of the mutation

operators selection step of the wizard;

In the third step the user can provide test configuration to the tool including

74

Figure 5.13: eMuJava Wizard Step 3

Figure 5.14: eMuJava Source Code & Configuration

population size, test case generation technique, mutation rate, and maximum it-

erations. The figure 5.13 shows the screenshot of third and final step and figure

5.14 shows the loaded code and configuration;

75

Figure 5.15: eMuJava Configuration Editor

5.6.2 Configuration Editor

The configuration editor allows the user to view current configurations and enables

him to change them as per needs. The available options of configuration are

presented in Section 5.5. Figure 5.15 presents the screenshot of configuration

editor.

5.6.3 Mutants Viewer

This section allows the user to view all the mutants generated by eMuJava and

it also shows the mutated statement in the code through a single-line comment

as shown in the figure 5.16. This section divides the mutants in three categories;

killed, alive, and suspicious. After the test case generation process completes, the

tool updates this section to classify all the mutants and to show which mutant is

declared as suspicious or killed, and which one remains as alive.

76

Figure 5.16: eMuJava Mutants Viewer

5.6.4 Test Case Viewer

The test case viewer shows the test cases generated during the iterations performed

by eMuJava tool to achieve targets (kill mutants). There are two sections of this

component; first shows the test cases being generated in different iterations along

with their fitness and second section shows the test cases that are able to achieve

the targets. This section is updated by the tool when an iteration completes and

after each target is achieved during test case generation process so user sees live

updates coming to it. Figure 5.17 shows its screenshot;

5.6.5 Statistics & Results

The figure 5.18 presents its screenshot; The last section statistics and results

presents figures and graphs about test case generation process and it also gets

updated live during test case generation process. There are two sub-sections of

this section. The first sub-section shows the information about program under

77

Figure 5.17: eMuJava Test Case Viewer

Figure 5.18: eMuJava Statistics & Results

78

test, number of mutants, alive, suspicious, killed and mutation score. The pie-

chart is used to show the distribution of mutants in all categories. The second

sub-section shows information about effort consumed by the process during test

case generation including iterations performed, number of test cases generated,

effective test cases, and total time elapsed.

Chapter 6

Experiments and Results Analysis

In this chapter, we present evaluation of the proposed fitness function, two-way

crossover, and adaptable mutation methods. We have used our implemented tool

eMuJava (Chapter 5) to perform experiments and empirical evaluation. We have

used twenty programs to perform experiments for validation. We have carried

out experiments in two phases and have compared multiple test case genera-

tion approaches. Initially we have used random testing and genetic algorithm

with standard fitness function for test case generation and have compared the re-

sults with our proposed state-based & control-oriented fitness function. Later we

have carried out experiments with our improved genetic algorithm (state-based

& control-oriented fitness function, two-way crossover, and adaptable mutation)

and compared the results with all three approaches we use in first phase. Also

we have compared our improved genetic algorithm with an existing tool EvoSuite

[34]. Towards the end we present statistical analysis on the results obtained from

experiments.

6.1 Test Environment

Before we discuss details of the experiments that we have performed, first we

present some information about test environment that we have prepared and have

79

80

used to conduct them using eMuJava tool.

The experiments have been performed on Intel 32-bit machine having Core 2 Duo

Centrino processor. The computer has 2GB of memory (RAM) and enough hard

disk to store the execution traces generated by the tool. The machine is running

Windows 7 operating system supporting 32-bit architecture. The tool has been run

using Java virtual machine (JVM) version 8 with update 45 released by Oracle for

Windows platform. Every time a new experiment is conducted the tool has been

rerun to ensure the resources are completely released by JVM and new experiments

are not affected by any means. We have also made sure that source code under test

is syntax error free and the experiments are not affected by any runtime exception

generated by the tool.

We have placed source code of our tool and programs for researchers and stu-

dents. The URL is https://github.com/bilalbezar/eMuJava. The programs

are available for download from the aforementioned URL and everyone is free to

modify and use it for experiments. We have chosen programs (containing one or

more Java classes) from different domains for experiments and all of these pro-

grams are of different nature. Some of the programs are data structures (like

Stack and HashTable), whereas others are popular general purpose programs

(Calculator and TemperatureConverter) that we find in literature. Also we have

chosen programs that help automating home appliances (like ElectricHeather

and AutoDoor). Besides these programs we have also used 10 open source pro-

grams of Apache project available online at http://commons.apache.org/. These

programs include CLI, Collections, Compress, Crypto, CSV, JCS, Lang, Logging,

Math, and Text. Since eMuJava is a prototype tool and limited in syntax support

(Appendix C) so we had to make some changes in the programs to make them

compatible with our implementation. Table 6.1 presents list of all the programs

that we have used for experiments along with related information about the pro-

grams including their names, number of classes, number of methods, lines of code,

and total number of mutants generated from them. All the classes in programs

exhibit variety of behaviors (through public methods) and in order to test those

81

Table 6.1: List of Programs and Details

Programs Classes Methods Lines of Code Mutants

AutoDoor 1 9 112 111

BankAccount 2 14 116 180

BinarySearchTree 1 6 119 189

Calculator 1 7 60 97

CGPACalc 1 4 105 111

CLI 2 6 160 24

Collections 3 16 386 131

Compress 3 11 291 87

Crypto 1 2 81 120

CSV 2 4 129 145

ElectricHeater 1 9 120 146

HashTable 1 8 98 103

JCS 1 5 135 74

Lang 2 12 405 51

Logging 2 11 133 95

Math 1 4 109 103

Stack 2 13 144 107

TempConverter 1 8 60 106

Text 1 3 143 97

Triangle 1 5 99 147

Total 30 157 3005 2224

behaviors, some of the classes require their objects to be in specific state (for ex-

ample AutoDoor, Stack, ElectricHeater and so on). On the other hand some

of the methods in classes contain simple arithmetic expressions (having standard

arithmetic operations) and conditional statements hence they do not have any

serious requirement for objects to be in some specific state.

Out of these twenty programs, some (BankAccount, Stack, Collections and

82

so on) are based on more than one class. The classes in these programs form

inheritance relationship and the sub-classes override some of the methods from

the base class. This relationship helps applying mutation operators that cannot

be applied on a single class. eMuJava tool supports two of such mutation operators

including overriding method deletion (IOD) and new method call with child class

type (PNC).

6.2 Initial Experiments and Results

In this section, we present initial experiments and their results that we have

performed using eMuJava tool to validate the effectiveness of the state-based &

control-oriented fitness function [13]. The experiments are carried out on all ten

applications (see Section 6.1 for details) that we selected from different domains.

The experiment results are quite interesting and have helped us identifying a prob-

lem in our proposal that we have discussed later in this section.

Table 6.2 presents the results of initial experiments. eMuJava has been used to

perform experiments with three approaches; random testing, genetic algorithm

with standard fitness function, and genetic algorithm with state-based & control-

oriented fitness function. All of these approaches generate test cases that try

to satisfy three conditions to kill a mutant; reachability, necessity, and sufficiency.

Table 6.2 presents the results of the experiments in terms of average mutation score

of multiple runs (ranges from 5 to 10) by each approach against all the programs.

In order to check if our proposed fitness function guides the search process well

and if it helps achieving high mutation score in less number of iterations, we did

not allow the tool to run for indefinite amount of time. Instead we let the tool to

execute ten iterations per target to verify if it gains high mutation score with our

proposed approach.

The results of inital experiments have proven to be quite interesting. In figure 6.1,

we have plotted the results with the help of column chart for better understanding.

In the chart, x-axis plots the tested programs (from Table 6.2) and y-axis plots

83

Table 6.2: Results of Initial Experiments with Fixed Number of Iterations

Programs Loc M
Mutation Score (%)

Random
Testing

GA with
Standard
Fitness
Function

GA with
Proposed
Fitness
Function

AutoDoor 112 111 77 77 80

BankAccount 116 180 100 100 100

BinarySearchTree 119 189 87 85 83

Calculator 60 97 95 78 83

CGPACalc 105 111 96 84 84

CLI 160 24 78 73 82

Collections 386 131 70 73 78

Compress 291 87 71 78 82

Crypto 81 120 48 53 61

CSV 129 145 78 68 72

ElectricHeater 120 146 87 84 87

HashTable 98 103 68 65 74

JCS 135 74 50 48 55

Lang 405 51 83 85 83

Logging 133 95 49 58 56

Math 109 103 100 89 85

Stack 144 107 69 71 88

TempConverter 60 106 100 100 100

Text 143 97 82 86 92

Triangle 99 147 79 80 83

Total 3005 2224 78.3 76.7 80.4

mutation score. Results achieved by approaches are represented with a different

shade (random testing red, genetic algorithm with standard fitness function blue,

genetic algorithm with proposed fitness function - black) to distinguish among

them. All the approaches have given good results in general but the proposed

approach [13] has produced a touch better set of test cases than the other two.

84

Figure 6.1: Comparison of Experiment Results among Random Testing, GA
with Standard Fitness Function, and GA with Proposed Fitness Function

The proposed fitness function seems to obtain high mutation score for the programs

that have state requirement (AutoDoor, Collections, HashTable, Stack, and

Triangle) but the difference in mutation score is not very significant. When

we analyze the results, we discover that although the proposed fitness function

provides information about the weakness in a test case (whether the object is

in desired state through state fitness) yet the next phase of genetic algorithm

(crossover) fails to utilize it due to its inherent nature. Crossover does not consider

object’s state fitness to produce offsprings rather it randomly picks up a point in

parents and crosses them over to form the offsprings. So the search process has

to wait until biological mutation to use state fitness to form new method call

sequence, which may help object in gaining desired state

Besides that for ElectircHeater our proposed fitness function manages equal mu-

tation score and for CGPACalc it underperforms whereas both of these approaches

have state requirement. Actually ElectricHeater and CGPACalc require values

85

for state variables that do not have any particular pattern. Such values can be

generated quickly with random generation rather than crossover of test cases.

Similarly random testing produces better mutation scores for BinarySearchTree,

Calculator, CSV, and Math as compared to genetic algorithm. These programs do

not have state requirement but some predicates in the methods of these programs

have strict argument requirement (for example a==50). In this scenario crossover

cannot be useful and search process has to wait until biological mutation comes

into play and produces required method arguments to satisfy the conditions in

predicates.

If we can enable crossover to use the object’s state fitness to produce offspring,

we may be able to push mutation score further up in limited number of iterations.

For this our proposed two-way crossover method (Section 4.4) comes into play.

Besides that if a program does not have state requirement and it relies on the

method arguments, performing crossover for high number of iterations does not

help. In this situation if we can dynamically increase rate of biological mutation,

the search can produce required values quickly to kill the mutant in lesser number

of iterations (Section 4.5 - adaptable mutation method).

6.3 Detailed Experiments and Results

This section provides results of extensive experiments that are carried out to val-

idate the proposed two-way crossover and adaptable mutation methods. We have

performed experiments using eMuJava on twenty applications using four supported

approaches by the tool (Section 5.3). All four approaches generate test cases to

kill the mutants and attempt to raise the mutation score. This section is further

divided into three sub-sections and each section covers an aspect regarding ex-

periments. We have performed experiments to show that our proposals help in

generating a test case in less number of iterations, which can kill a mutant that

may or may not require an object to be in a certain state. Secondly, we have

86

compared the results with another tool EvoSuite. We have also shown with ex-

periments that detecting suspicious mutants can help identifying a bug (logical

programming mistake). By removing such logical bug in the program, apparently

looking equivalent mutant becomes non-equivalent that can then be killed to raise

mutation score.

6.3.1 Less Iterations, Higher Mutation Score

First we present and discuss results of experiments that we have performed to val-

idate if our proposed fitness function, two-way crossover, and adaptable mutation

help the search process to converge towards target in less number of iterations.

The experiments have been performed using same test configuration that includes

number of iterations, number of test cases in a single iteration, crossover, and

initial biological mutation rate.

We have presented results of experiments in Table 6.3 and they show that our

proposed approach has performed well. For every approach we have used same

test configuration and have not allowed the tool to run for indefinite amount of

time. To kill a mutant, eMuJava runs 10 iterations each carrying population of

50 test cases. After every iteration fitter test cases are crossed over and after fifth

iteration, test cases go through biological mutation. Random testing does not

use crossover or biological mutation whereas our improved genetic algorithm uses

two-way crossover and adaptable mutation rate. On completing 10 iterations, if

mutant remains alive, tool leaves it and picks the next mutant.

If we carefully analyze the results, we notice that random testing and genetic

algorithm with standard fitness function have not performed well on most of the

programs specially those who have strict state requirement including AutoDoor,

Collections, HashTable, Stack and so on. We have presented the comparison

of these two approaches with genetic algorithm having state-based & control-

oriented fitness function earlier (Section 6.2). Now we compare our improved

genetic algorithm with random testing and standard genetic algorithm. For better

87

Table 6.3: Results of Experiments Performed using eMuJava

Programs Loc M
Mutation Score (%)

Random
Testing

GA with
Standard
Fitness
Function

GA with
State-
based &
Control-
oriented
Fitness
Function

Improved
Genetic
Algo-
rithm

AutoDoor 112 111 77 77 80 88

BankAccount 116 180 100 100 100 100

BinarySearchTree 119 189 87 85 83 88

Calculator 60 97 95 78 83 93

CGPACalc 105 111 96 84 84 100

CLI 160 24 78 73 82 86

Collections 386 131 70 73 78 85

Compress 291 87 71 78 82 87

Crypto 81 120 48 53 61 65

CSV 129 145 78 68 72 79

ElectricHeater 120 146 87 84 87 90

HashTable 98 103 68 65 74 89

JCS 135 74 50 48 55 55

Lang 405 51 83 85 83 92

Logging 133 95 49 58 56 63

Math 109 103 100 89 85 95

Stack 144 107 69 71 88 98

TempConverter 60 106 100 100 100 100

Text 143 97 82 86 92 94

Triangle 99 147 79 80 83 89

Total 3005 2224 78.3 76.7 80.4 86.8

comparison we have plotted the results of these three approaches using a column

chart in figure 6.2. All three are represented with distinguished colors (random

testing - red, genetic algorithm with standard fitness function - blue, and improved

genetic algorithm - black). The x-axis represents programs under test and y-axis

represents achieved mutation score.

88

Figure 6.2: Comparison of Experiment Results among Random Testing, GA
with Standard Fitness Function, and Improved Genetic Algorithm

The results clearly show that our improved genetic algorithm has a significant im-

pact on mutation score and it has increased for all those programs (AutoDoor,

CGPACalc, Collections, ElectricHeater, HashTable, Stack, and Triangle)

that have strict state requirement. It has obtained equal or touch higher mutation

score for other programs (BankAccount and TempConverter) that do not have any

state requirement. With the help of adaptable mutation, our proposed genetic

algorithm has managed to complete random for programs (BinarySearchTree,

Calculator, CSV, and Math) that require specific range of values. Besides that

our improved genetic algorithm clearly outperforms remaining rest of the programs

(CLI, Compress, Crypto, JCS, Lang, Logging, Test, and Triangle). The differ-

ence in average mutation score obtained by our proposed approach from other

approaches ranges approximately from 6% to 10%, which is promising.

We have analyzed our improved genetic algorithm with a different angle as well.

89

Earlier we have presented comparison of mutation scores obtained by all the ap-

proaches in a fixed number of iterations. Now we shall see how many iterations all

the approaches require to achieving 100% mutation score (after filtering out all the

equivalent mutants). We have again performed experiments with eMuJava tool

and allow the tool to run until all the mutants get killed. The results are presented

in Table 6.4 in terms of number of iterations (I) consumed by each approach as

well as number of test case (TC) generated by all of the four approaches. In figure

6.3 we present average executed test cases by all the compared approaches using

bar chart. The chart shows our improved genetic algorithm reduces computational

effort in mutation testing to a certain degree.

We have plotted the results with the help of line chart in figure 6.4. Figure

6.4 presents 20 line charts, one for each program, which has been tested. All

four approaches are represented with four different colors (random testing - blue,

genetic algorithm with standard fitness function - red, genetic algorithm with

state-based & control-oriented fitness function - green, and our improved genetic

algorithm - black). In these charts x-axis represents number of iterations whereas

y-axis represents mutation score. The values used to generate these line charts are

provided in Appendix D for reference.

Figure 6.3: Comparison among Average Executed Test Cases by Test Gener-
ation Techniques

90

Table 6.4: Number of Iterations and Executed Test Cases by All Four Ap-
proaches

Programs
Random
Testing

GA with
Standard
Fitness
Function

GA with
State-based
& Control-
oriented Fit-
ness Function

Improved
Genetic
Algorithm

I TC I TC I TC I TC

AutoDoor 310 7750 311 7775 308 7700 140 3500

BankAccount 130 3250 131 3275 127 3175 123 3075

BinarySearchTree 263 6575 263 6575 294 7350 255 6375

Calculator 130 3250 280 7000 207 5175 157 3925

CGPACalc 93 2325 229 5725 195 4875 74 1850

CLI 95 2375 110 2750 85 2125 79 1975

Collections 242 6050 229 5725 206 5150 188 4700

Compress 253 6325 219 5475 183 4575 165 4125

Crypto 270 6750 239 5975 217 5425 204 5100

CSV 409 10225 525 13125 474 11850 382 9550

ElectricHeater 380 9500 559 13975 589 14725 375 9375

HashTable 615 15375 569 14225 411 10275 289 7225

JCS 203 5075 210 5250 175 4375 162 4050

Lang 107 2675 105 2625 122 3050 90 2250

Logging 430 10750 370 9250 390 9750 276 6900

Math 104 2600 211 5275 184 4600 99 2475

Stack 1052 26300 942 23550 450 11250 208 5200

TempConverter 91 2275 93 2325 87 2175 83 2075

Text 246 6150 192 4800 155 3875 110 2750

Triangle 432 10800 476 11900 519 12975 373 9325

Total 5855 146375 6263 156575 5378 134450 3832 95800

The line trace in these charts show the progress of all four approaches while they

kill the mutants and achieve 100% mutation score. Our improved genetic algorithm

seems to have clear advantage on all the other three approaches especially in the

programs that have state requirement. For rest of the programs it performs equally

well to the other approaches specially in comparison to random testing.

91

92

93

94

Figure 6.4: Comparison to Show Progress among All Approaches while
Achieving 100% Mutation Score

The results of these experiments prove our claim that with the help of state-

based & control-oriented fitness function, the search process gets better guidance.

Trough two-way crossover method test cases gain the desired state quickly. Adapt-

able mutation guides the genetic algorithm to increase the mutation frequency for

programs that need specific values to satisfy conditions. Eventually improved ge-

netic algorithm converges towards the targets in less number of iterations and

helps in reducing required testing effort.

6.3.2 Comparison with EvoSuite

Now we present our experiment results in comparison to EvoSuite [34], which is the

only available tool. EvoSuite can test Java based programs and can generate tests

for branch coverage and mutation based coverage. It only supports unit level test-

ing so EvoSuite cannot apply mutation operators that involve more than one class

(mutation operators for inheritance or polymorphism). In general EvoSuite does

not support any object-oriented feature and supports limited set of conventional

mutation operators from research of Andrews et al. [46] and Schuler and Zeller

95

[47]. Due to this reason although EvoSuite can test object-oriented programs in

general but it can apply only structured mutation operators. Besides these prob-

lems, EvoSuite seems to have performed well as the results of experiments we find

in study [10] so that makes it as best choice for validation and comparison with

our implementation.

There are many issues that we have discovered while experimenting with Evo-

Suite. EvoSuite does not provide information about the mutants it generates,

how many mutants remain alive, how does it handle equivalent mutants, and if it

includes all the mutants in calculating mutation score. Also the experiments we

have performed earlier to compare our improved genetic algorithm with existing

approaches, we restricted the iterations to see the performance of our approach but

in case of EvoSuite it is not possible by any mean to limit the number of iterations

to see how many targets it is able to achieve. Our implemented tool eMuJava dif-

fers a lot from EvoSuite and it is difficult to give an accurate comparison between

them due to hidden information in EvoSuite. By making some adjustments and

selecting the same mutation operators, we are able to produce a fair comparison

between both approaches. We have presented the results of experiments in Table

6.5.

We have used strong mutation testing parameter with EvoSuite to perform the

experiments. For better understanding, we have plotted the experiment results

presented in Table 6.5 using column chart in figure 6.5. The x-axis represents the

case studies we have used for experiments and y-axis shows average mutation score

achieved after multiple runs. The grey bars represent mutation score achieved by

EvoSuite whereas bars in black color represent mutation score achieved by eMu-

Java (our improved genetic algorithm). The difference between mutation scores

shows that our improved genetic algorithm has performed well as compare to Evo-

Suite for all the case studies used. eMuJava is able to kill more mutants in less

number of iterations hence it has produced better mutation score.

96

Table 6.5: Experiment Results

Programs Loc M
Mutation Score (%)

EvoSuite Improved
Genetic
Algorithm

AutoDoor 112 78 44 73

BankAccount 116 120 47 73

BinarySearchTree 119 102 38 60

Calculator 60 67 55 64

CGPACalc 105 59 59 58

CLI 160 18 61 79

Collections 386 70 71 84

Compress 291 56 75 87

Crypto 81 61 51 51

CSV 129 85 64 78

ElectricHeater 120 103 29 80

HashTable 98 71 44 57

JCS 135 43 32 39

Lang 405 34 76 91

Logging 133 54 33 48

Math 109 51 80 98

Stack 144 81 35 67

TempConverter 60 76 53 77

Text 143 58 89 96

Triangle 99 72 50 41

Total 3005 1359 54.3 77.8

6.3.3 Detecting Suspicious Mutants to Raise Mutation Score

Sometimes, it has been noticed that a small programming mistake (logical) affects

mutation score badly. Due to the logical error in program, the mutant becomes

equivalent, which not only damages mutation score but it also wastes a lot of time

during test case generation. In our earlier work [1], we coined an idea of using

97

Figure 6.5: Comparison of Experiment Results Obtained from EvoSuite and
eMuJava (Improved Genetic Algorithm)

control-flow information besides output of the program to see how mutant behaves

as compare to original program. This idea leads us to very interesting results and

we noticed that if program has a logical error, although original and modified

programs produce same output yet they exercise different execution path because

sometimes the logical error masks the change introduced by mutation hence the

mutant remains alive. We call such a mutant as suspicious mutant. So what

our approach does is that, if a mutant remains alive but for a given test case,

it exercises different execution path as compared to original program, we declare

it suspicious and encourages manual checking of the program to ensure a logical

programming error is not causing this problem. The figure 6.6 contains a code

snippet of CGPACalc program that explains the concept of suspicious mutant.

The incorrect string literal at line 16 will always cause the method to return

"Pass" even if the value of variable cgpa is less than 2.5. Hence all the mutants

generated from this method will remain alive. By using control-flow information

this error can be highlighted and corrected, which results in raising the mutation

score. We have used the same idea in our earlier work [13] in which we present

a fitness function for evolutionary mutation testing of object-oriented programs

(Section 4.3). In that work, we use control flow information as part of test case

98

Figure 6.6: CGPACalc Mutant with Logical Bug (Suspicious Mutant)

fitness. Now in this section, we have presented results of experiments that prove

its effectiveness.

None of the approaches including genetic algorithm, random testing, and EvoSuite

uses control flow information as part of test case fitness, hence they suffer from

such a situation where a logical error in the program causes the mutants to remain

alive. To show the difference in mutation scores between our proposed work and

others (genetic algorithm and EvoSuite), we have performed experiments using

CGPACalc program by introducing the same error we have presented in figure 6.6.

The figure 6.7 plots the results of experiments and proves the effectiveness of using

control flow information to evaluate a test case.

6.4 Statistical Analysis

In this section we present statistical analysis that we have performed to analyze the

results to find out their significance. We have performed analysis on the results we

obtained initially with respect to state-based & control-oriented fitness function

and later the results produced in validation of improved genetic algorithm. We

have used MannWhitney U-test and Vargha and Delaneys A measure to perform

statistical analysis. We have used a popular statistical tool, R [48] to perform all

the tests.

99

Figure 6.7: Comparison of Mutation Scores among Genetic Algorithm, Evo-
Suite, and Improved Genetic Algorithm

6.4.1 MannWhitney U-test

The MannWhitney U-test is also called MannWhitneyWilcoxon (MWW) or Wilcoxon

rank-sum test. It is a statistical procedure, which statisticians use to check if a ran-

domly selected value from one sample will be less than or greater than a randomly

selected value from the other sample. This method is useful to make comparison

of test case generation techniques to see if the proposed technique has made any

significant change in the mutation score. We have chosen this method to compare

our experiments’ results because it is easy to apply and it provides meaningful

results in no time.

The U-test is also known as non-parametric test and unlike t-test it does not require

the populartion of data to be normally distributed. In most of the cases the data

produced by randomized algorithms do not exhibit normality [49]. Literature also

shows that data samples that do not variate a lot as we have in this case the

mutation scores (1-100), researchers can use t-test but this phenomenon has been

mostly found in natural and social sciences [49]. The best solution in this case is

to test the normality of the data and then on the basis of results make the decision

about statistical test.

100

6.4.2 Normality Test

We want to statistically analyze the mutation scores presented in table 6.4. Before

deciding on what test should we use, first we have tested the data for normality

using Shapiro Wilk test using R-tool [48]. We have used ”0.05” for p-value to

decide if a given data samples are normally distributed or not. Data that will

produce lesser p-value will be considered as non-normal and data producing higher

p-value will be considered as normal. Results of experiments are presented below.

Null Hypothesis: The mutation scores are normally distributed.

1. Random Testing

• The computed value of W is 0.92328.

• The p-value is 0.1146.

• Conclusion: We accept the null hypothesis.

2. GA with Standard Fitness Function

• The computed value of W is 0.96319.

• The p-value is 0.6093.

• Conclusion: We accept the null hypothesis.

3. GA with State-based & Control-oriented Fitness Function

• The computed value of W is 0.90434.

• The p-value is 0.04976.

• Conclusion: We reject the null hypothesis.

4. Improved Genetic Algorithm

• The computed value of W is 0.83566.

• The p-value is 0.003094.

• Conclusion: We reject the null hypothesis.

101

5. EvoSuite

• The computed value of W is 0.96154.

• The p-value is 0.5751.

• Conclusion: We accept the null hypothesis.

The results show that data samples 3 and 4 are non-normal but normality tests are

influenced by sample size so it is advised that we should use visual representations

like Q-Q Plot for verification. The Q-Q Plot proved that both data samples 3 are

4 are non-normal. In this situation parametric tests like t-test are not suitable

[49]. So based on the normality test results, we decide to use U-test to compare

mutation scores.

6.4.3 Analysis of Initial Experiments and Results

First we have performed U-test on the results of initial experiments presented in

Section 6.2. Here we compare state-based & control-oriented fitness function with

random testing and GA with standard fitness function. Before we present the

results of U-test, we set null and alternate hypothesis;

Null Hypothesis: The state-based & control-oriented fitness function produces

same mutation score.

Alternate Hypothesis: The state-based & control-oriented fitness function pro-

duces higher mutation score.

1. Random Testing

• The mean and standard deviation of mutation scores are 78.35 and

15.94 respectively for random testing.

• The computed value of W is 177.

• The p-valueis 0.5418.

• Result: The location shift is not equal to 0.

102

• Conclusion: We reject the null hypothesis and accept the alternate

hypothesis.

2. GA with Standard Fitness Function

• The mean and standard deviation of mutation scores are 76.75 and

13.39 respectively for GA with standard fitness function.

• The computed value of W is 167.5.

• The p-value is 0.3859.

• Result: The location shift is not equal to 0.

• Conclusion: We reject the null hypothesis and accept the alternate

hypothesis.

6.4.4 Analysis of Detailed Experiments and Results

We have also performed U-test to compare improved genetic algorithm with ran-

dom testing, GA with standard fitness function, and EvoSuite. For this we have

used the results presented in Section 6.3. Before we present the results of U-test,

we set null and alternate hypothesis;

Null Hypothesis: The improved genetic algorithm produces same mutation

score.

Alternate Hypothesis: The improved genetic algorithm produces higher muta-

tion score.

1. Random Testing

• The mean and standard deviation of mutation scores are 78.35 and

15.94 respectively for random testing.

• The computed value of W is 132.5.

• The p-value is 0.06935.

• Result: The location shift is not equal to 0.

103

• Conclusion: We reject the null hypothesis and accept the alternate

hypothesis.

2. GA with Standard Fitness Function

• The mean and standard deviation of mutation scores are 76.75 and

13.39 respectively for GA with standard fitness function.

• The computed value of W is 98.

• The p-value is 0.00596.

• Result: The location shift is not equal to 0.

• Conclusion: We reject the null hypothesis and accept the alternate

hypothesis.

3. EvoSuite

• The mean and standard deviation of mutation scores are 54.3 and 16.92

respectively for EvoSuite.

• The computed value of W is 69.

• The p-value is 0.0004137.

• Result: The location shift is not equal to 0.

• Conclusion: We reject the null hypothesis and accept the alternate

hypothesis.

To summarize we can say that the state-based & control-oriented fitness function

produced briefly better results than random testing and GA with standard fitness

function. On the other hand our improved genetic algorithm has produced fairly

better results as compared to all other approaches and U-test proves this claim.

6.4.5 Effect Size Measure

The U-test has proven that our improved genetic algorithm has produced better

mutation scores but it is equally important to check the magnitude of the im-

provement. For this we have chosen Vargha and Delaneys A measure. The reason

104

of selection is our data is non-normal that we want to compare and for situations

like these A measure is the best choice [49]. We have compared our improved

genetic algorithm with random testing, GA with Standard Fitness Function, GA

with State-based & Control-oriented Fitness Function, and EvoSuite. The thresh-

old value is ”0.5” and as far as the value goes beyond the threshold, it indicates

magnitude of improvement.

• Random Testing: The effect size of our proposed approach with respect

of random testing is 0.67.

• GA with Standard Fitness Function: The effect size of our proposed

approach with respect to GA with standard fitness function is 0.76.

• GA with State-based & Control-oriented Fitness Function: The

effect size of our proposed fitness function with respect to state-based &

control-oriented fitness function is 0.72.

• EvoSuite: The effect size of our proposed approach with respect to EvoSuite

is 0.83.

The results of A measure indicates fair amount of improvement in the mutation

scores produced by our improved genetic algorithm.

6.5 Test Set Evaluation

In this section we present evaluation of the test case set generated by all the testing

techniques implemented in eMuJava. For evaluation, we have used the test data

generated by the tool when number of iterations were fixed (section 6.3.1). We

want to asses quality of the generated test cases through injecting multiple faults

in the programs and running the test cases again on them. We then analyze the

execution traces to see which mutated statements are executed. We also compared

the results with oracle to determine how many mutations are caught by the test

case set.

105

We have chosen some new mutation operators from structured paradigm list. The

operators have been selected from the work of King and offutt [28]. Authors have

designed mutation operators for FORTRAN programming language but they are

applicable on Java programs too. We want to see if test cases generated for a

certain mutant can catch a different mutation also. The selected operators are

listed below.

• CRP: Constant replacement

• CSR: Constant for scalar variable replacement

• SCR: Scalar for constant replacement

• SVR: Scalar variable replacement

We have seeded multiple faults using above mentioned mutation operators in the

program under test. We have introduced one fault per line of code. Table 6.6

presents the results of test set evaluation. The table presents number of total

faults injected in second column and then presents number of faults detected by

each technique. If a give test case is able to execute a statement having a mutation

and mutant program produces different output then we declare that mutation as

detected. Since eMuJava does not support above mentioned mutation operators

and does not support injection of multiple faults, we had to produce the mutant

programs manually. After execution of the test cases, we manually examine the

code to determine how many mutations have been detected by a given test case.

These results of experiments revealed interesting information. We have noticed

that multiple mutations can cause the program to behave in different ways. For

instance a predicate x>y can be changed like x>N where N is any random number.

This simple mutation can cause the mutant to become extremely hard to kill and

mutant may become equivalent in some cases. Similarly it can cause the mutant

to become extremely easy to kill also. We have made sure that the mutations

that we have applied do not cause the mutant to become equivalent or raise a

runtime exception. The results indicate that our improved genetic algorithm has

106

Table 6.6: Results of Test Set Evaluation

Programs Faults
Number of Detected Faults

Random
Testing

GA with
Standard
Fitness
Function

GA with
State-
based &
Control-
oriented
Fitness
Function

Improved
Genetic
Algo-
rithm

AutoDoor 29 29 29 29 28

BankAccount 26 26 23 26 23

BinarySearchTree 36 29 29 30 30

Calculator 17 17 17 17 17

CGPACalc 19 15 17 15 18

CLI 11 10 10 10 10

Collections 27 14 17 17 17

Compress 12 8 8 12 12

Crypto 10 10 10 10 10

CSV 10 8 0 1 8

ElectricHeater 39 33 35 35 35

HashTable 23 19 19 19 18

JCS 12 10 8 10 10

Lang 33 26 25 27 25

Logging 20 18 17 17 15

Math 23 16 16 23 23

Stack 22 20 20 18 20

TempConverter 16 16 16 16 16

Text 17 17 17 17 17

Triangle 24 20 19 19 19

Total 426 361 352 368 371

been able to catch more faults. The reason being our proposed approach was able

to achieve high mutation score in limited number of iterations (section 6.3.1) that

also means that the generated test cases are better. So some hard to kill mutants

were detected with those test cases.

Chapter 7

Conclusion and Future Work

Evolutionary mutation testing is a merger of two disciplines; evolutionary algo-

rithms and mutation testing. This discipline provides basis to automatically gen-

erate test cases for mutation testing using evolutionary approaches like genetic

algorithm that can help in reducing the testing effort. Object’s state is an impor-

tant aspect of object-oriented programs and it plays a significant role in testing

because objects behave differently in different states. So to test an object’s be-

havior, the object may need to be in a specific state. Besides that, the control

flow information of a program provides useful information about program’s be-

havior. If we use that information carefully, that can lead to produce interesting

results during software testing. In this thesis, we have proposed some extensions

to properly evaluate a test case, to perform crossover on test cases to enhance

its strength, and to biological mutation to generate specific inputs quickly. We

have improved genetic algorithm with these proposals and have validated their

effectiveness through experiments using our own implementation (eMuJava).

Mutation testing techniques that we find in the literature (discussed in Appendix

A) compare the output of original and mutant programs to decide if a test case is

able to catch the injected fault or not. But the behavior of a program is defined

by output as well as flow of control. If we ignore control flow of a program while

analyzing its behavior on a test case, we may end up losing important information.

So when a test case is executed, besides the output, the control flow information

107

108

should also be compared. We propose and present a new technique for muta-

tion testing (see Section 4.2 for details) that considers both of these behavioral

elements (output and control flow information) to decide if a mutant is killed or

alive. With this modification in mutation testing, a comprehensive comparison of

both the programs can be made. Sometimes on a test case, original and mutant

programs produce same output but mutant program suspiciously exercises differ-

ent execution path. This may happen due to the presence of some logical mistake

(potential bug) in the code, which is usually made by the programmer.

Using control-flow information and object’s state as part of test case’ fitness, we

have proposed a new fitness function for evolutionary mutation testing (Section

4.3). Our proposed fitness function evaluates three costs against three conditions

that a test case tries to satisfy to kill a mutant and as used by Bottaci [18]. We have

extended those conditions used by Botacci [18] and have incorporated control-flow

information (Section 4.1) and object’s state as part of fitness in them. The idea

of using object’s state as part of test case fitness is taken from our previous work

[2]. Our proposed fitness function suits well for object-oriented testing because we

propose treating state of the object as a fitness component that helps in evaluating

a test case properly, which can help the search process to converge to the target

in less number of iterations. Besides that other than comparing outputs, we also

suggest to compare flow of control of original and mutant programs to decide

on mutant’s status. With the help of control flow information, we can identify

suspicious piece of code and highlight suspicious behavior of the program. This

helps in improving the overall quality of the program as well.

As mentioned above, we introduce two new values in a test case fitness including

object’s state and control flow information. Both of these values are calculated

from execution traces of program under test and are represented as separate costs

in fitness. With initial experiments and analysis of our approach we discover that

although the proposed fitness function provides information about the weakness

in a test case (whether object in the test case has gained desired state through

state fitness) yet the next phase of genetic algorithm (crossover) fails to utilize it

due to its inherent nature. Whether genetic algorithm uses one-point crossover

109

or two-point crossover, it does not consider object’s state fitness to produce off-

springs (new test cases for next iteration). The process has to wait until biological

mutation uses state fitness to form new method call sequence in a test case, which

may help object in gaining desired state. To overcome this limitation, we have

proposed a new two-way crossover method (Section 4.4) that uses object’s state

fitness to decide if standard crossover method shall be applied to generate two off-

springs or our proposed two-way crossover be applied to generate 4 new offsprings.

The two-way crossover method covers the input domain well and does not let an

opportunity go that can converge the process towards the target (required test

case that kills a mutant).

Biological mutation is an important activity in genetic algorithm that prevents

the search process to get stuck in local optima. Too low mutation rate can cause

the search process to keep on looking in a certain region of input domain and too

high mutation rate can cause the process to become completely random. In some

situations, method under test needs specific set of input values that crossover

cannot generate and performing repeated crossovers on test cases waste testing

effort. In such a situation biological mutation can do the job and even increasing

its frequency can save some effort. All the existing evolutionary mutation testing

techniques use fix mutation rate. We propose adjusting the mutation rate dy-

namically during execution of genetic algorithm and call it as adaptable mutation

method (Section 4.5). The mutation rate is adjusted by checking object’s state

fitness after each iteration. None of the existing evolutionary mutation testing

approaches use this type of flexible mutation that can adapt to the situation intel-

ligently. Experiments have proven that adaptable mutation saves effort as it helps

in generating the required input parameters in less number of iterations.

We have implemented our proposals in a tool called eMuJava (Chapter 5), which

stands for evolutionary Mutation testing of Java programs. This tool is efficient

and is able to evaluate the fitness of test cases by considering the object’s state

fitness. eMuJava can classify mutants as suspicious or normal on the basis of

control-flow information obtained through execution traces. Besides that this tool

110

performs two-way crossover and dynamically adjust mutation rate using state-

based fitness of a test case. eMuJava also supports multiple methods for test

case generation including random generation of test cases, genetic algorithm with

standard fitness function, genetic algorithm with state-based & control-oriented

fitness function, and genetic algorithm with state-based & control-oriented fitness

function, two-way crossover, and adaptable mutation methods.

We have performed detailed experiments using eMuJava tool (Chapter 6) to val-

idate our proposed improvements in genetic algorithm and have compared the

results with other technique. The experiments have given positive results and we

are in the position to say that with the usage of object’s state fitness, control

flow information, two-way crossover, and adaptable mutation, the evolutionary

mutation testing process improves. The improved genetic algorithm is capable of

reducing mutation testing cost in terms of time and effort. The testing process be-

comes effective and efficient because of the appropriate guidance it gets, mutation

scores are increased, and logical programming errors are identified.

7.1 Future Work

This section presents the future directions for researchers;

• Extend the implementation of eMuJava tool to support complete Java lan-

guage syntax and support for additional object-oriented mutation operators.

• Further experiments can be conducted to compare the effectiveness of our

proposed approach with other search based techniques like particle swarm

optimization (PSO) and artificial immune system (AIS).

• The proposed modifications for test case evaluation (state-based & control-

oriented fitness function) can be applied with other evolutionary approaches

to see if they work equally good as they do with the genetic algorithm.

• Extension of eMuJava tool to support multiple evolutionary approaches to

perform experiments and evaluation.

Bibliography

[1] M. B. Bashir and A. Nadeem, “Control oriented mutation testing for detection

of potential software bugs,” in 10th International Conference on Frontiers of

Information Technology. IEEE, 2012, pp. 35–40.

[2] M. B. Bashir and A. Nadeem, “A state based fitness function for evolutionary

testing of object-oriented programs,” in 7th ACIS International Conference

on Software Engineering Research, Management and Applications, vol. 253.

Springer, 2009, pp. 83–94.

[3] B. Jones, H. Sthamer, and D. Eyres, “Automatic structural testing using

genetic algorithms,” Software Engineering Journal, vol. 11, no. 5, pp. 299–

306, 1996.

[4] P. Tonella, “Evolutionary testing of classes,” in ACM SIGSOFT International

Symposium of Software Testing and Analysis. ACP, 2004, pp. 119–128.

[5] Y. Cheon and M. Kim, “A specification-based fitness function for evolutionary

testing of object-oriented programs,” in 8th Annual Conference on Genetic

and Evolutionary Computation. ACM, 2006, pp. 1953–1954.

[6] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and ora-

cles,” IEEE Transactions on Software, vol. 38, no. 2, pp. 278–292, 2011.

[7] P. May, J. Timmis, and K. Mander, “Immune and evolutionary approaches

to software mutation testing,” in 6th International Conference on Artificial

Immune Systems. Springer, 2007.

111

Bibliography 112

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:

Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41,

1978.

[9] K. K. Mishra, S. Tiwari, A. Kumar, and A. Misra, “An approach for mutation

testing using elitist genetic algorithm,” in 3rd IEEE International Conference

on Computer Science and Information Technology. IEEE, 2010, pp. 426–429.

[10] G. Fraser and A. Arcuri, “Achieving scalable mutation-based generation of

whole test suites,” Empirical Software Engineering, vol. 20, no. 3, pp. 783–

812, 2015.

[11] R. Silva, S. Rocio, S. Souza, and P. Srgio, “A systematic review on search

based mutation testing,” Information and Software Technology, vol. 81, pp.

19–35, 2017.

[12] M. B. Bashir and A. Nadeem, “Object oriented mutation testing: A survey,”

in 8th International Conference on Emerging Technologies. IEEE, 2015, pp.

1–6.

[13] M. B. Bashir and A. Nadeem, “A fitness function for the evolutionary muta-

tion testing of object-oriented programs,” in 9th International Conference on

Emerging Technolgoies. IEEE, 2013, pp. 1–6.

[14] M. B. Bashir and A. Nadeem, “Improved genetic algorithm to reduce muta-

tion testing cost,” IEEE Access, vol. 5, pp. 3657–3674, 2017.

[15] “Software testing,” in http://standards.ieee.org/findstds/standard/29119-1-

2013.html (accessed on September 16, 2017). IEEE, 1998.

[16] R. Just, D. Jalali, L. Inozemtseva, M. Ernst, R. Holmes, and G. Fraser, “Are

mutants a valid substitute for real faults in software testing?” in The 22nd

ACM SIGSOFT International Symposium on the Foundations of Software

Engineering. ACM, 2014.

[17] J. Domnguez, A. Estero, A. Garcia, and I. Medina, “Evolutionary mutation

testing,” Information and Software Technology, vol. 53, pp. 1108–1123, 2011.

Bibliography 113

[18] L. Bottaci, “A genetic algorithm fitness function for mutation testing,” in In-

ternational Workshop on Software Engineering using Metaheuristic Inovative

Algorithms. ACM, 2001, pp. 3–7.

[19] M. Masud, A. Nayak, M. Zaman, and N. Bansal, “A strategy for mutation

testing using genetic algorithms,” in Canadian Conference on Electrical and

Computer Engineering. IEEE, 2005, pp. 1049–1052.

[20] M. Bybro, “A mutation testing tool for java programs,” in A Mutation Testing

Tool for Java Programs. Department of Numerical Analysis and Computer

Science, 2003.

[21] “Junit,” in http://junit.org/junit5/ (accessed September 16, 2017). GitHub,

2000.

[22] M. Papadakis and N. Malevris, “Automatic mutation based test data gener-

ation,” in 13th Annual Conference Companion on Genetic and Evolutionary

Computation. ACM, 2011, pp. 247–248.

[23] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for

automatic structural testing,” Information and Software Technology, vol. 43,

no. 14, pp. 841–854, 2001.

[24] S. Subramanian and R. Natarajan, “A tool for generation and minimization

of test suite by mutant gene algorithm,” Journal of Computer Science, vol. 7,

no. 10, pp. 1581–1589, 2011.

[25] J. Louzada, C. Camilo, A. Vincenzi, and C. Rodrigues, “An elitist evolution-

ary algorithm for automatically generating test data,” in IEEE Congress on

Evolutionary Computation. IEEE, 2012, pp. 1–8.

[26] Y. Ali and F. Benmaiza, “Generating test case for object-oriented software

using genetic algorithm and mutation testing method,” International Journal

of Applied Metaheuristic Computing, vol. 3, p. 1, 2012.

[27] M. Rad and S. Bahrekazemi, “Applying genetic evolutionary, bacteriological

and quantum evolutionary algorithm for improving performance optimization

Bibliography 114

segment of test data sets in mutation testing method,” International Journal

of Soft Computing and Software Engineering, vol. 4, no. 1, pp. 167–186, 2014.

[28] K. King and J. Offutt, “A fortran language system for mutation-based soft-

ware testing,” Software: Practice and Experience, vol. 21, no. 7, pp. 685–718,

1991.

[29] “Matlab,” in http://www.mathworks.com/products/matlab/ (accessed on

September 24, 2017). MathWorks, 1984.

[30] “Evosuite,” in http://www.evosuite.org/downloads/ (accessed September 16,

2017). EvoSuite, 2011.

[31] J. Miguel, M. Vivanti, A. Arcuri, and G. Fraser, “A detailed investigation

of the effectiveness of whole test suite generation,” Empirical Software Engi-

neering, vol. 22, no. 2, pp. 852–893, 2016.

[32] N. Jatana, B. Suri, S. Misra, P. Kumar, and A. R. Choudhury, “Particle

swarm based evolution and generation of test data using mutation testing,”

in International Conference on Computational Science and Its Applications.

Springer, 2016, pp. 585–594.

[33] P. Delgado, I. Medina, S. Segura, A. Garca, and J. Jos, “Gigan: Evolutionary

mutation testing for c++ object-oriented systems,” in Symposium on Applied

Computing. ACM, 2017, pp. 1387–1392.

[34] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for

object-oriented software,” in ACM SIGSOFT symposium and the 13th Eu-

ropean conference on Foundations of software engineering. ACM, 2011, pp.

416–419.

[35] “Eclipse,” in https://www.eclipse.org/downloads/ (accessed September 16,

2017). Eclipse, 2001.

[36] P. McMinn and M. Holcombe, “The state problem for evolutionary testing,”

in Genetic and Evolutionary Computation Conference, vol. 2724. Springer,

2003, pp. 2488–2497.

Bibliography 115

[37] J. Offutt, A. Lee, G. Rothermel, R. Untch, and Z. C., “An experimental

determination of sufficient mutant operators,” ACM Transactions on Software

Engineering and Methodology, vol. 5, no. 2, pp. 99–118, 1996.

[38] E. Barbosa, J. Maldonado, and A. Vincenzi, “Toward the determination of

sufficient mutant operators for c,” Software Testing, Verification and Relia-

bility, vol. 11, no. 2, pp. 113–136, 2001.

[39] J. Offutt, Y. S. Ma, and Y. R. Kwon, “The class-level mutants of mujava,” in

2006 International Workshop on Automation of Software Test. ACM, 2006,

pp. 78–84.

[40] B. Baudry, F. Fleurey, J. M. Jezequel, and Y. L. Traon, “Automatic test case

optimization: A bacteriologic algorithm,” IEEE Software, vol. 22, no. 2, pp.

76–82, 2005.

[41] X. Xie, B. Xu, C. Nie, L. Shi, and L. Xu, “A dynamic optimization strategy

for evolutionary testing,” in 29th Annual International Computer Software

and Applications Conference. IEEE, 2005.

[42] C. S. S. Dharsana and A. Askarunisha, “Java based test case generation

and optimization using evolutionary testing,” in International Conference on

Computational Intelligence and Multimedia Applications, vol. 4. IEEE, 2007,

pp. 44–49.

[43] I. Alsmadi, “Using genetic algorithms for test case generation and selection

optimization,” in 23rd Canadian Conference on Electrical and Computer En-

gineering. IEEE, 2010.

[44] M. Wang, B. Li, Z. Wang, and X. Xie, “An optimization strategy for evolu-

tionary testing based on cataclysm,” in 34th Annual Computer Software and

Applications Conference Workshops. IEEE, 2010, pp. 359–364.

[45] W. E. Wong and A. Mathur, “Reducing the cost of mutation testing: An

empirical study,” The Journal of Systems and Software, vol. 31, no. 3, pp.

185–196, 1995.

Bibliography 116

[46] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an appropriate tool for

testing experiments?” in 27th International Conference on Software Engi-

neering. ACM, 2005, pp. 402–411.

[47] D. Schuler and A. Zeller, “(un-)covering equivalent mutants,” in 3rd Interna-

tional Conference on Software Testing Verification and Validation. IEEE,

2010, pp. 45–54.

[48] R. D. C. Team, “R: A language and environment for statistical computing,” in

https://www.r-project.org/ (accessed on November 30, 2017). R Foundation

1288 for Statistical Computing, 2008.

[49] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for assessing

randomized algorithms in software engineering,” Software Testing, Verifica-

tion and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[50] S. Kim, J. Clark, and J. McDermid, “The rigorous generation of java mutation

operators using hazop,” in 12th International Conference Software & Systems

Engineering and their Applications. University of York, 1999.

[51] T. Kletz, “Hazop and hazan: Identifying and assessing process industry haz-

ards,” in HAZOP and HAZAN: Identifying and Assessing Process Industry

Hazards. Hemisphere Publishers, 1992.

[52] S. Kim, J. Clark, and J. McDermid, “Class mutation: Mutation testing for

object-oriented programs,” in Net.ObjectDays Conference on Object-Oriented

Software Systems. Object-Oriented Software Systems, 2000.

[53] P. Chevalley, “Applying mutation analysis for object oriented programs using

a reflective approach,” in 8th Asia-Pacific Software Engineering Conference.

IEEE, 2001, pp. 267–270.

[54] Y. S. Ma, Y. R. Kwon, and J. Offutt, “Inter-class mutation operators for java,”

in 13th IEEE International Symposium on Software Reliability Engineering.

IEEE, 2002, pp. 352–363.

Bibliography 117

[55] L. Gallagher, J. Offutt, and A. Cincotta, “Integration testing of object-

oriented components using finite state machines: Research articles,” Software

Testing, Verification & Reliability, vol. 16, no. 4, pp. 215–266, 2006.

[56] P. Chevalley and P. Thvenod-Fosse, “A mutation analysis tool for java pro-

grams,” in LAAS Report No 01356, vol. 5. Springer, 2001, pp. 90–103.

[57] R. Alexander, J. Bieman, S. Ghosh, and J. Bixia, “Mutation of java objects,”

in 13th International Symposium on Software Reliability Engineering. IEEE,

2003.

[58] J. Offutt, Y. S. Ma, and Y. R. Kwon, “An experimental mutation system for

java,” in ACM SIGSOFT Software Engineering Notes, vol. 29. ACP, 2004,

pp. 1–4.

[59] A. Derezinska and A. Szustek, “Object-oriented testing capabilities and per-

formance evaluation of the c# mutation system,” in 4th IFIP TC 2 Central

and East European conference on Advances in Software Engineering Tech-

niques. Springer, 2009, pp. 229–242.

[60] Y. S. Ma, M. Harrold, and Y. R. Kwon, “Evaluation of mutation testing

for object-oriented programs,” in 28th International Conference on Software

Engineering. ACM, 2006, pp. 869–872.

[61] I. Moore, “Jester,” in http://jester.sourceforge.net/ (accessed September 24,

2017). SourceForge, 2001.

[62] Y. S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class muta-

tion system: Research articles,” Software Testing, Verification and Reliability,

vol. 15, no. 2, p. 2, 2005.

[63] J. Bradbury, J. Cordy, and J. Dingel, “Exman: A generic and customizable

framework for experimental mutation analysis,” in Second Workshop on Mu-

tation Analysis. IEEE, 2006.

[64] “Jumble,” in http://jumble.sourceforge.net/ (accessed on September 24,

2017). SourceForge, 2007.

Bibliography 118

[65] B. Grun, D. Schuler, and A. Zeller, “The impact of equivalent mutants,” in

International Conference on Software Testing, Verification, and Validation

Workshops. IEEE, 2009, pp. 192–199.

[66] L. Madeyski and N. Radyk, “Judya mutation testing tool for java,” IET

Software, vol. 4, no. 1, pp. 32–42, 2010.

[67] J. Wegener, K. Buhr, and H. Pohlheim, “Automatic test data generation for

structural testing of embedded software systems by evolutionary testing,” in

Genetic and Evolutionary Computation Conference. ACM, 2002, pp. 1233–

1240.

[68] S. Wappler and F. Lammermann, “Using evolutionary algorithms for the unit

testing of object-oriented software,” in Genetic and Evolutionary Computa-

tion Conference. ACM, 2005, pp. 1053–1060.

[69] Y. Cheon, M. Kim, and A. Perumandla, “A complete automation of unit test-

ing for java programs,” in International Conference on Software Engineering

Research and Practice. UTEP, 2005.

[70] A. Seesing and H. Gross, “A genetic programming approach to automated

test generation for object-oriented software,” International Transactions on

Systems Science and Applications, vol. 1, no. 2, pp. 127–134, 2006.

[71] R. Pargas, M. Harrold, and R. Peck, “Test-data generation using genetic

algorithms,” Software Testing, Verification & Reliability, vol. 9, no. 4, pp.

263–282, 1999.

[72] P. McMinn, “Search-based software test data generation: a survey,” Journal

of Software Testing, Verifications, and Reliability, vol. 14, no. 2, pp. 105–156,

2004.

[73] K. Liaskos, M. Roper, and M. Wood, “Investigating data-flow coverage of

classes using evolutionary algorithms,” in 9th Annual Conference on Genetic

and Evolutionary Computation. ACM, 2007, pp. 1140–1140.

Bibliography 119

[74] M. B. Bashir and A. Nadeem, “A state-based fitness function for the integra-

tion testing of object-oriented programs,” in 10th International Conference

on Emerging Technologies. IEEE, 2014, pp. 24–29.

[75] “Geatbx,” in http://www.geatbx.com/ (accessed September 24, 2017).

GEATbx.com, 1995.

Appendix A

Literature Survey - Mutation

Testing

In this appendix, we describe set of evaluation parameters, details of existing

mutation testing techniques for object-oriented program, and present a brief anal-

ysis of those techniques. Also in the end we present some information about the

automated solutions that exist in the literature.

A.1 Object-Oriented Mutation Testing

The object-oriented way of programming offers variety of features that makes it

different from the structured paradigm. Some of them are listed below;

• It allows modeling of objects from real world to digital world using classes

• It classifies the data of a class into groups and restricts the access for safety

(encapsulation)

• It encourages to reuse the code to reduce effort (inheritance) and

• It makes maintenance easy by allowing to add functionality without having

to change the design of the software (polymorphism).

119

Appendix A 120

Figure A.1: Mutation Operators Set [1]

The above mentioned features present object-oriented paradigm as the most suit-

able for real world projects but testing object-oriented programs also becomes

challenging due to them. The structured mutation testing techniques are not

adequate to test object-oriented programs because their mutation operators are

insufficient and cannot support object-oriented features. So besides using muta-

tion operators of structured paradigm we need to introduce new operators so they

can cover all toe object-oriented features.

The overall steps and information used by object-oriented mutation testing is

same with structured paradigm but there exists some difference. The inputs of

the process includes program under test and mutation operators. Using mutation

operators, all possible mutants are generated. To kill those mutants, test cases are

written and revised until all non-equivalent mutants are killed. The effective test

cases and obtained mutation score are the outputs of the process. The difference

exists in the format of test case and type of mutation operators. The test case

contains more than just input values including call to the constructor for object

creation, certain number of invocations to the different functions of the class and

input values that are required for the function invocations. On the other hand

mutation operators set is also larger than the structured paradigm’s set to cover

all the object-oriented features as shown in figure A.1;

The figure A.1 models the mutation operators set for structured and object-

oriented paradigm. The figure tries to explain how for object-oriented paradigm

the mutation operators set is larger than the set of structured paradigm. In gen-

eral we know that almost all the features of structured programming language are

supported by an object-oriented programming language including variables, data

Appendix A 121

types, operators (arithmetic, relational, conditional and so on), functions, and

many other features. But object-oriented features are not supported by structured

languages. Now if we take a look at figure A.1, there are there ovals there. The

oval A represents mutation operators to cover the features of structured paradigm.

The oval C represents those features that are specific to a given programming lan-

guage like Java supports extensive file handling, exception handling, and so on.

The oval B is the one that contains mutation operators for object-oriented fea-

tures. It also overlaps to oval A and oval C that means it utilizes operators from

the domain A and C. Hence the oval B contains larger mutation operators set.

A.2 Evaluation Criteria

In this section we present the list of parameters that we have devised to evaluate

mutation testing techniques for object-oriented paradigm.

A.2.1 Cost Effective

The more a technique helps to reduce computational cost in mutation testing, the

more it is suitable for practical use. For example a good technique may help to

reduce execution of large number of mutants, which can be achieved by reducing

mutation operators. We present evaluation criteria for this parameter in table A.1

below;

Table A.1: Evaluation Criteria for Cost Effective

Value Criteria

Yes If a technique offers reduced set of mutation operators, we assign
value Yes to that technique.

No If a technique does not offer reduced set of mutation operators, we
assign value No to that technique.

Appendix A 122

A.2.2 Equivalent Mutant Detection

Equivalent mutants are semantically similar to the original program so they cannot

be killed. The mutation testing technique should offer mutation operators that

produce less number of equivalent mutants or at least the technique should be

able to catch equivalent mutants to save the effort. The evaluation criterion is

presented in Table A.2;

Table A.2: Evaluation Criteria for Equivalent Mutant Detection

Value Criteria

Yes If a technique can avoid generation of or can detect equivalent mu-
tants, it gets Yes value for this parameter.

No If a technique cannot avoid generation of or cannot detect equivalent
mutants, it gets No value for this parameter.

A.2.3 OO Feature Coverage

An object-oriented mutation testing technique should provide full support to cover

all the object-oriented features. In literature there is no metrics available to cal-

culate or judge the amount of coverage a given technique provides so we will

have to take some existing study as a benchmark. We find technique of Offutt et

al. [39] most suitable for this purpose because it provides maximum support for

object-oriented features. We present the evaluation criterion in Table A.3.

Table A.3: Evaluation Criteria for OO Feature Coverage

Value Criteria

Full We assign value Full to a technique that provides equal support for
object-oriented features as compared to our benchmark study.

Partial We assign value Partial to a technique that supports less amount of
object-oriented feature as compared to our benchmark study.

Appendix A 123

A.2.4 Level of Testing

Some object-oriented features involve interaction of more than one class so a tech-

nique that operates at unit level cannot cover them. Mutation testing technique

should provide inter-class testing support. We present the criterion for this pa-

rameter in Table A.4;

Table A.4: Evaluation Criteria for Level of Testing

Value Criteria

AC If a mutation testing technique operates at unit (class) level, we as-
sign value AC to it.

IC If a mutation testing technique supports and operates at inter-class
level, we assign value IC to it.

A.2.5 State Mutation Support

Object posses data and states and a technique should be able to test all possible

states of an object. This cannot be achieved without having to mutate object’s

state during execution. Most of the techniques support mutation at compile time

but for a technique to be able to mutate object at runtime is also important. The

criterion for this parameter is presented in Table A.5;

Table A.5: Evaluation Criteria for State Mutation Support

Value Criteria

Yes We assign value Yes to a technique that has the capability of mutating
state of an object during testing.

No We assign value No to a technique that does not have the capability
of mutating state of an object.

Appendix A 124

A.2.6 Potential Mutation Operators

To make mutation testing more useful a set of reduced mutation operators is

required that can ensure maximum feature coverage as well as got the potential

to catch real faults. We present the criterion for this parameter in Table A.6;

Table A.6: Evaluation Criteria for Potential Mutation Operators

Value Criteria

Yes We assign value Yes to a technique if it lists of potential mutation
operators.

No We assign value No to a technique if it does not list of potential
mutation operators.

A.2.7 Tool Support

A mutation testing technique is considered practical and usable if it provides

automated solution in the form of a tool for the testers. The evaluation criterion

is presented in Table A.7 for this parameter;

Table A.7: Evaluation Criteria for Tool Support

Value Criteria

Yes If a testing technique provides full tool support for performing mu-
tation testing, we assign value Yes to that.

No If a testing technique does not provide full tool support for performing
mutation testing, we assign value No to that.

A.3 Surveyed Techniques

We need a specialized set of mutation operators for testing object-oriented pro-

grams with mutation testing because of the salient features of object-oriented

Appendix A 125

paradigm including encapsulation, inheritance, and polymorphism. Although sur-

vey shows a significant amount of research has already been done but still some

areas need improvement. Besides mutation testing techniques, literature survey

shows automated tools are also developed.

S. Kim, J. Clark, and J. McDermid [50]

Kim et al. [50] propose a novel approach that uses a concept of HAZOP [51] from

another engineering discipline. HAZOP stands for Hazard and Operability Study.

Authors have applied their approach on Java programming language specification.

First they list out all the constructs of Java and then identify their attributes.

Using a list of 10 guide words, authors find all the possible deviations in a Java

element and the consequence of that deviation. When a meaningful deviation is

found, it is listed as possible mutation operator that can be applied on a Java

program. This way authors cover whole Java specification and as a result a com-

prehensive set of mutation operators is found by the authors. This is a generalized

method and can be applied to any programming language to build its complete

mutation operators set. But this is also the limitation of this approach because

it finds a huge set of mutation operators and applying all of them on a program

increases the cost of mutation testing.

S. Kim, J. Clark, and J. McDermid [52]

Kim et al. [52] propose an approach for object-oriented mutation testing. The

name of their proposed approach is Class Mutation. This approach supports inte-

gration level mutation testing of object-oriented programs. This approach allows

the tester to choose mutation operators as per requirement that makes it less

expensive in nature. Despite the fact this approach supports inter-class level mu-

tation operators but complete object-oriented feature coverage is not guaranteed.

There are no experimental results provided by the authors in the published work

though they claim that they have applied Class Mutation on an IBM application

Product Starter Kit (PSK). This approach is generalized in nature because it can

be merged with languages that have both non-object oriented features as well as

object oriented features like C++ and Java.

Appendix A 126

P. Chevalley [53]

Chevalley [53] proposes an extension to the existing work of Kim et al. [52]. He

adds 5 mutation operators for mutation testing of object-oriented programs. The

new additions deal with inter-class level mutations. One noticeable contribution of

this research is that author has tried to reduce the mutation operators set without

compromising their impact on the testing process. Author has also done a survey

on existing approaches and tools in his work. He has developed an automated tool

with the name JavaMut that implements his approach. The tool has a graphical

user interface that makes it easy to use for the testers. JavaMut supports 26

mutation operators covering both structured and object-oriented features. Out of

26, fifteen operators are taken from the work of Kim et al. [52], five are newly added

operators, and six are selective mutation operators from structured paradigm.

JavaMut has been used to perform experiments on a Flight Guidance System

(FGS) and the results of the experiments are presented by the author. The new

operators have been introduced based on the past experience of the author instead

of using some rigorous method so this approach is not covering all the object-

oriented features.

Y.-S. Ma, Y.-R. Kwon, and J. Offutt [54]

Ma et al. [54] propose a novel approach for integration level mutation testing of

object oriented programs. Their proposal is based on an existing fault model of

Gallagher et al. [55]. The fault model lists all possible faults that can appear

while collaboration of more than one class. One major contribution of this work is

the analysis of existing mutation testing approaches of Kim et al. [52], Chevalley,

and Thvenod-Fosse [56], and Chevalley [53]. Authors state in their study that the

work of aforementioned researchers is not generalized rather it is either applica-

tion or problem specific. In this work, authors have provided formula to calculate

number of mutants that a particular mutation operator can generate. Authors

have developed and presented an automated solution that is based on a reflective

system that operates at compile time.

Appendix A 127

R. Alexander, J. Bieman, S. Ghosh, and J. Bixia [57]

Alexander et al. [57] propose an approach that deals with mutation testing of Java

objects. Authors state that mutation operators are designed to inject faults in the

code that are syntactically correct as well as these operators are used to attain

code coverage criterion like branch coverage. User defined objects are application

specific so it is difficult to know their purpose without having knowledge about

the reason of their creation and due to this reason it is difficult to design mutation

operators for changing user defined object’s state. But in general, some operators

can be designed for Java packages because a package usually contains similar

classes in it. This is one of the contributions of authors in this research. They also

have built a Mutation Engine that generates mutants for each type of mutation.

This is a unique work of authors because no other research in literature deals

directly with objects though some experiments need to be performed to test its

applicability on real world projects.

Offutt, Ma, and Kwon [39]

Offutt et al. [39] have extended their previous work [58] in this research. They

have made some modifications in the mutation operators set and devised a new

set by introducing 3 new operators, splitting 3 existing mutation operators, and

merging 2 mutation operators into 1. The split operators are as follows; first

is ”super keyword deletion” (ISK), ”static modifier change” (JSC), and ”Mem-

ber variable initialization deletion” (JTD). The six new operators that originate

from these three include ”super keyword deletion” (ISD), ”super keyword inser-

tion” (ISI), ”static modifier insertion” (JSI), ”static modifier deletion” (JSD),

”this keyword deletion” (JTD), and ”this keyword insertion” (JTI). Authors have

also proposed new operators that include ”Type cast operator insertion” (PCI),

”Type cast operator deletion” (PCD), and ”Cast type change” (PCC). Authors

have also combined two existing operators to form a new one. The name of new

operator is ”Arguments of overloading method call change” (OAC), which is orig-

inated from ”Argument order change” (OAD) and ”Argument number change”

Appendix A 128

(OAN).Another contribution of authors in this research is that they present some

general rules that can be followed in order to avoid generating equivalent mutants.

A. Derezinska and A. Szustek [59]

Derezinska and Szustek [59] present an approach on mutation testing of C# pro-

grams. They make some enhancements in the object-oriented mutation operators

set to test C# programs comprehensively. The two major contributions that au-

thors make includes; one is new object-oriented mutation operators for C# and

to avoid generating invalid mutants and partially equivalent mutants, second they

speed up the mutation testing process with the help of a new parser and reflection

method as well as they reduce the space to store mutant updates. The authors

have also discussed mutation testing of six open source projects that are commonly

used. They have checked the quality of the test case set that is provided with these

open source projects and have done performance evaluation too.

A.4 Analysis of Surveyed Techniques

Here in this section, we provide detailed analysis of mutation testing techniques

that we have surveyed. We have presented seven mutation testing techniques in

section A.3 and in section A.4 we have presented our benchmark parameters that

we have used to perform the analysis. In table A.8, we present the analysis of

surveyed techniques in row-column format. We have shown it in table for clarity

and for better understanding of the reader. One side of the table presents surveyed

techniques and in front of them we assign them a value for each of the parameter

from evaluation criteria that we have devised for their evaluation.

A
ppen

dix
A

129

Table A.8: Analysis Table of Mutation Testing Techniques for Object-Oriented Programs

Techniques
Evaluation Parameters

Cost Ef-
fective

Equivalent
Mutant
Detection

OO Fea-
ture Cov-
erage

Level of
Testing

State Mu-
tation
Support

Potential
Mutation
Operators

Tool Sup-
port

Kim et al. [50] No No Partial IC No No No

Kim et al. [52] No No Partial IC No No No

Chevalley [53] No Yes Partial IC No No Yes

Ma et al. [54] No Yes Partial IC No Yes Yes

Alexander et al. [57] No No Partial IC Yes No No

Offutt et al. [39] No Yes Full IC No No Yes

Derezinska and Szustek [59] No No Full IC No No No

Appendix A 130

Mutation testing is computationally expensive, which is why it has not gained wide

range of acceptance in the software industry for testing real world projects. One

way of reducing the high computational cost is to reduce execution of mutants,

which can be done by reducing mutation operators set. Although we find reduced

set of operators for structured paradigm but still this has to be done for object-

oriented mutation operators. Some studies like Kim et al. [50, 52], Chevalley and

Thvenod-Fosse [56], Ma et al. [60], and Offutt et al. [39] do discuss this issue and

give their analysis on mutation operators that can be more useful in testing and

operators that mostly generate equivalent mutants but still more work has to be

done to find out reduced set of mutation operators. The study also needs to be

backed up with large amount of experiments to prove the significance of selected

operators set.

It is not possible to kill equivalent mutants because they are semantically similar

to original program. Due to their presence the testing cost and effort increases for

mutation testing. Detection and identification of equivalent mutants cannot be

automated because it is an undecidable problem so no algorithm can be devised.

Usually detection of equivalent mutants requires human (tester) inspection of the

code. But we can still take some measures that can at least avoid generation of

equivalent mutants. For this we need to know the mutation operators that have

the tendency of generating equivalent mutants. Some existing research studies

including Chevalley [53] and Ma et al. [54] have done some progress on this and

they have shown with the help of experiments, which operators produce most of

the equivalent mutants. Examples of such mutation operators include ”Access

Modifier Change” (AMC), ”static Modifier Change” (SMC), ”Instance Variable

Declaration with Parent Class Type” (PMD), ”Parent Variable Declaration with

Child Class Type” (PPD), and ”Hiding Variable Insertion” (IHI). These studies

can be made as benchmark to convince testers not to use them during testing.

In the study of Offutt et al. [39] we find ’equivalency conditions’ that provide

us situations that result in generation of equivalent mutants. If we avoid those

equivalency conditions, we can avoid generation of equivalent mutants to a great

deal.

Appendix A 131

The mutation testing technique should support mutation operators that can cover

all the object-oriented features. Unless and until all the object-oriented features

including encapsulation, inheritance, and polymorphism are covered, thoroughness

of testing cannot be ensured. To do this we need a comprehensive and rigorous

method to generate all possible mutation operators so they can ensure complete

coverage of features. In literature, we find mutation operators set designed and

proposed by Offutt et al. [39] that provide maximum coverage if we compare it

with other related approaches.

A mutation testing technique should support testing of interaction among classes

because two of object-oriented features including inheritance and polymorphism

operate on more than one class. So if there is a technique that supports unit level

of testing, it cannot test these object-oriented features. The techniques we find

in the literature (Section A.3) for object-oriented paradigm do support inter-class

level of testing.

An object contains data and states and during runtime the object can shift from

one state to another as some operation is performed on it and when its data is

changed. The mutation testing technique should be able to alter the states of an

object at runtime forcefully to see if the test cases can distinguish between the

states of objects involved in original and modified version of the programs. This

concept is called state based testing and a very limited amount of work has been

done so far in this domain. We find in the literature that Alexander et al. [57]

proposed a method that changes the states of objects at runtime by manipulating

their values. They apply their proposal on three Java APIs to demonstrate how

it works.

Mutation testing is fault based testing technique so besides ensuring the object-

oriented feature coverage, we need to design a technique that injects real faults

in the programs. This can be achieved by studying the type of faults an object-

oriented program can have. In the research study of Ma et al. [54], we find them

using a fault model that presents object-oriented faults and they design mutation

Appendix A 132

operators using them. None of the other techniques that we find in the literature

uses this method to generate mutants and perform mutation testing.

One way of reducing required effort to perform mutation testing is to use auto-

mated tools. Researcher usually developer prototype tools for their approaches

to provide a proof that their approaches are practical and automate-able. In the

literature we find the techniques of Chevalley and Thvenod-Fosse [56], Chevalley

[53], Ma et al. [54], and Offutt et al. [39] are fully supported by a complete auto-

mated tool. Alexander et al. [57] also implement and present a tool in their work

but that is just a prototype tool whereas Kim et al. [50, 52] provide no details of

any tool in their research. Most of the surveyed techniques have also presented

experiment results but in the work of Kim et al. [50, 52] and Alexander et al. [57]

although we find discussion on experiments but their results are not presented by

the researchers.

A.5 Mutation Testing Tools

In this subsection, we present the automated solutions that researchers have de-

veloped to aid testers.

JavaMut [56]

Chevalley and Thvenod-Fosse [56] have built a tool called JavaMut, which is a

mutation testing tool for object-oriented programs. JavaMut uses a compile time

reflection system known as OpenJava at back-end to obtain required information

about Java class under test. In this tool the tester can view the mutant program

using its graphical user interface. JavaMut supports up to 26 mutation operators

from which 6 are selective operators from the work of Offutt et al. [37] and Barbosa

et al. [38], fifteen are obtained from the work of Kim et al. [52], whereas five new

operators in the tool have been introduced by the authors. The tool analyzes

mutants before execution and considers only those, which do not have any syntax

error and secondly, their byte-code differs from the byte-code of original program.

Appendix A 133

Jester [61]

Moore [61] has built an automated solution for mutation testing of object-oriented

programs. This automation can test Java-based programs only and it has given

a name, Jester. Jester can perform mutation testing at unit level because it can

test only one Java class at a time. Therefore Jester has got support for only

those mutation operators that can be applied to one class. Jester relies on JUnit

[21] for test case generation. One limitation of Jester is that it does not have

support for mutation operators that are designed for inheritance, association, and

polymorphism.

Object Mutation Engine [57]

Alexander et al. [57] have developed a mutation testing tool to test Java APIs.

The name of the tool is Object Mutation Engine (OME). OME comprises of

seven different components that make it complex in nature. All these components

perform different responsibilities; the overall execution of tool is controlled by

OME Executor, Test Manager manages the execution of test job, State Insecptor

and Results Collection keeps an eye on the state of an object and its values, results

are rendered in the required format by Result Rendering, Test Drivers prepare the

environment, Mutation Operators contain one type of operators for mutation, and

Test Evaluation to evaluate the mutation testing results.

MuJava [62]

Offutt et al. [58], and Ma et al. [62] have developed an automated tool called

MuJava, which stands for Mutation System for Java. The tool performs mutation

testing on Java programs through an easy to use user interface. MuJava per-

forms all the mutation testing tasks like mutant generation and their execution.

The earlier release of MuJava supports 29 mutation operators from which five

are selective mutation operators [37] and rest are object-oriented operators [54].

The tool comprises of three components responsible for performing different tasks;

Mutants Generator generates mutants, Mutants Executor executes them, and Mu-

tants Viewer presents the results to tester on the tool interface. MuJava has been

Appendix A 134

used to perform extensive experimental evaluations on various Java programs and

the results have been published [60] for the researchers. The later release of Mu-

Java [39] tool has some modifications in the object-oriented mutation operators

set. The current release of MuJava [39] tool now supports 29 object-oriented mu-

tation operators. These mutation operators have been designed by making some

omissions and additions to the previous set of operators.

ExMan [63]

Bradbury et al. [63] propose an approach for mutation analysis, which is gener-

alized in nature. According to their proposal, the artifacts and components can

be interchanged to compare quality assurance tools. While using this tool, they

start through a setup phase in which they create a profile to tell command-line

usage and purpose of using this application. Then they select a project that we

want to run on it. After that they provide the tool with original program so it

can generate mutants and can compile original and mutant programs. In the last

phase they provide benchmarks to ExMan for the comparison of results or asser-

tions. These benchmarks are used by the ExMan tool to perform analysis and to

produce results.

Jumble [64]

Jumble [64] is similar in nature with Jester [61]. Jumble is also a mutation testing

tool for Java-based programs that can test one class at a time only hence, it

supports unit level mutation testing. Jumble uses JUnit [21] for generating test

cases for the class under test. Just like Jester, the limitation of Jumble is that it

does not have support for mutation operators that are designed for inheritance,

association, and polymorphism.

JavaLanche [65]

Grun et al. [65] propose a framework and they implement it in a tool they

name as JavaLanche. They want to determine the impact of equivalent mutants.

JavaLanche supports only selective mutation operators. The tool runs only those

Appendix A 135

test cases that can execute mutated statement and to find out such a test case,

the tool uses coverage data about the test case.

Judy [66]

Madeyski and Radyk [66] have developed a tool for mutation testing of Java pro-

grams. They have implemented a novel approach in the tool to reduce the required

effort for mutation testing in terms of time. For this they use a concept of point-

cut and advice, which is used in Aspect-oriented Paradigm to create collection of

mutants. The collection of mutants help avoiding multiple compilations of mutant

programs and it eventually reduces total time required for mutation testing. They

have performed experiments using Judy and have compared them with an existing

tool MuJava [58, 62].

Appendix B

Literature Survey Evolutionary

Testing

In this appendix, we present details of existing evolutionary testing techniques for

object-oriented program, and we provide some information about the automated

solutions that exist in the literature.

B.1 Evolutionary Testing Techniques

We have considered those approaches for our survey that use Genetic Algorithm for

evolutionary testing of object-oriented programs. Researchers have been working

on devising an optimal fitness function that can evaluate a test case accurately as

well as can guide the search.

P. McMinn and M. Holcombe [36]

McMinn and Holcombe [36] use an Ant Colony System in their proposed tech-

nique in order to problem of states in the program. The proposed technique uses

constants (static) variables that do not lose their values even after the execution

of a method. First they provide an example to describe the problem and then

propose possible solutions in detail along with their limitations. They use data

136

Appendix A 137

dependence analysis and optimization at two levels to solve the state problem

of programs. Their approach requires constructing a directed graph of complete

program where the statements become nodes. Initially a test case is evaluated

by path-oriented fitness function [23, 67] and the best among those are selected

for ET-state algorithm. After that evaluation on state is performed, more nodes

can be added to improve state if they are required. Their approach looks quite

good but directed graph of complete program, path-oriented fitness function and

two-level optimization adds up complexity. They have shown its application on

programs written using structured paradigm and they have tested it on a small

scale. Also their approach seems to be quite in-appropriate and time consuming

when applied to object-oriented programs where several classes can be involved

even in testing a single class and each class may have several methods.

P. Tonella [4]

Tonella [4] presents a technique that tests a class as a single unit and in isolation.

His proposed approach supports unit testing using genetic algorithm. Tonella

proposes a new template to write test cases for object-oriented programs and

his approach supports mainly branch coverage. His technique uses four types

of operations to repair a test case. These operations are mutating the input

data, replacing constructors, removing and adding new method calls and one point

crossover. His proposes to evaluate a test case on the basis of its potential of

getting close to the respective target (approximation level). Test cases should be

in the format of JUnit [21] finally in order to execute on the class under test.

This technique requires insertion of assertions into driver class manually in order

to execute the test cases, which is a limitation of this approach. Tonella has

also developed a tool called eToc (Evolutionary Testing of Classes) to perform

experiments. The results of Tonella’s experiments look promising when using

branch converge for testing a program.

S. Wappler and F. Lammermann [68]

Wappler and Lammermann [68] propose an approach that supports white-box

testing of object-oriented programs using genetic algorithm. They use universal

Appendix A 138

evolutionary algorithms provided by popular toolboxes and these algorithms are

application independent. This is also a major difference from other approaches,

authors have presented till now. We can say that we do not need to build an

approach for evolutionary testing from scratch rather we can use the general-

ized genetic algorithms by molding them according to the requirement. Authors

provide proper encoding and decoding strategy in order to represent a test case.

The test case consists of constructor invocation, method calls with their required

parameters and the input required to be passed as the method parameters. To

evaluate a test case, authors use different type of information in this technique.

Their technique uses number of errors, constructor distance, and dynamic error

evaluation. Also a tool has been developed in Matlab [29] for experimentation.

Y. Cheon, M. Kim, A. Perumandla [69]

Cheon et al. [69] propose a white-box testing technique for object-oriented pro-

grams. Their approach supports programs written in Java programming language.

The main idea behind this work is to automate the tasks performed in testing

phase. This will not only speed up the testing process but will also save some

resources in the terms of time and money. According to their approach assertions

are used to build an assertion tree. This tree can help identifying feasible method

call sequences and evaluating object’s state. To apply their technique on a Java

class, the code should first be annotated using Java Modeling Language (JML) be-

cause the annotation is further used to detect assertions and to build the assertion

tree. Sometimes specification of a program is not available and it may not have

been written in some cases, therefore, for that program it will not be possible to

perform annotation hence this technique will not be applicable on such a program,

which is a huge limitation of this proposed work.

Y. Cheon and M. Kim [5]

Cheon and Kim [5] present a technique to apply white-box testing on object-

oriented programs written in Java language. This particular approach is specifica-

tion based written in Java Modeling Language (JML). Their proposed approach

Appendix A 139

can work in scenarios where source code is not available but it requires JML spec-

ification which is also a limitation of this approach. If a state variable is used

in predicate, authors suggest changing the predicate condition for that variable.

This technique looks simple and the experiments show that it has the potential

but more experiments need to be performed on real world projects to check its

effectiveness and applicability.

A. Seesing and H. Gross [70]

Seesing and Gross [70] use genetic algorithms to test object-oriented programs

written in Java language. First they provide brief introduction of evolutionary

testing and comparison of testing procedural and object-oriented programs. Af-

ter that they present some related work and application of genetic algorithms to

test object-oriented programs. They have proposed an approach to generate test

software for testing object-oriented programs. For evaluation of a test case, the

fitness function their approach uses is similar to the one proposed by Jones et al.

[3] and Pargas et al. [71]. They have evaluated their approach on a very small

scale but the results show promising results. Since this approach inherits fitness

function from Jones et al. [3] and Pargas et al. [71], hence it also inherits the

problem of guidance for search process, which is also discussed by McMinn [72]

K. Liaskos, M. Roper, and M. Wood [73]

Liaskos et al. [73] present their work which is in fact an extension of Tonellas [4]

work. Their main focus is on the data-flow coverage while using genetic algorithm

for evolutionary testing. They first describe the challenges of object-oriented evo-

lutionary testing and then present brief description on data-flow coverage. They

present the testing framework for data-flow coverage afterwards. Authors then

discuss three different levels of data-flow coverage of methods in unit testing of

classes. Their approach requires approximation level to evaluate a test case, which

indicates how close a test case was able to reach to the target. They have applied

their proposed solution on six classes of Java library and have compared the results

of data-flow coverage with the results presented in the work of Tonella [4].

Appendix A 140

M. B. Bashir and A. Nadeem [2]

Bashir and Nadeem [2] present a novel fitness function for performing evolution-

ary testing on object-oriented programs. Their basic aim of this proposal is to

solve the object’s state problem and for this they propose to isolate object’s state

variables fitness from the fitness of local variables. When object’s state fitness is

isolated, the search process gets better guidance that helps to achieve the targets

quickly. As a proof of concept they have also developed a prototype tool called

SOFT (State Oriented Fitness evaluation of Test-cases) and performed some ex-

periments using it. The results obtained from experiments are interesting and

indicate the usefulness of their proposal but large scale experiments are required

to further validation. Bashir and Nadeem [74] extended this work proposed a novel

approach for integration level testing of object-oriented programs. This technique

also uses state-based fitness function for the evaluation of test cases generated to

test interactions between two objects. The idea works well at the integration level

as the technique evaluates a test case on the basis of its ability to gain the desired

state of objects involved in the interaction.

B.2 Evolutionary Testing Tools

We have covered the proposed approaches by researchers in the area of evolutionary

testing of object-oriented programs and next we present the available automated

solutions for the aid of testers.

eToc [4]

Tonella [4] has developed a tool called eToc (Evolutionary Testing of Classes)

for his proposed technique and has presented the results of testing Java standard

classes using this tool. The experiments are performed using six standard API

classes of Java. The eToc tool supports two white-box coverage criterion including

branch coverage and data-flow coverage. Tonella has performed experiments with

eToc to test its ability to attain high branch coverage. The results of Tonella’s

Appendix B 141

experiments look promising when using branch converge for testing a program.

eToc is a command based tool and it is available for download and experimentation

[4].

Implementation by Wappler and Lammermann [68]

Another implementation that we have found in the literature is done by Wappler

and Lammermann [68]. They have implemented their approach in Matlab [29]

using genetic algorithm toolbox GEATbx [75]. The implementation demonstrates

their approach and the purpose of this implementation is to perform experiments

for empirical evaluation. It requires test cases to be in the format supported by

JUnit [21] since it uses that format for the execution of test cases.

TCGOJ [42]

Dharsana and Askarunisha [42] have implemented an evolutionary testing tool for

Java programs. The name of that tool is TCGOJ (Test Case Generation and

Optimization for Java Programs). The tool can generate optimized set of test

cases for any Java program using Genetic Algorithm that it implements. TCGOJ

uses crossover operation on chromosomes as well as does biological mutation to

gain maximum coverage.

SOFT [2]

Bashir and Nadeem [2] have developed a tool for evolutionary testing of Java

programs. They name the tool as SOFT that stands for State Oriented Fitness

evaluation of Test-cases. SOFT tool performs testing of a Java programs at unit

(class) level and generates test cases to achieve statement coverage. The tool

implements Genetic Algorithm with their proposed state-based fitness function. At

first the SOFT tool takes source code of Java class as input, performs evolutionary

testing on the class under test, and eventually produces test case set for statement

coverage. This is a prototype tool developed in Java language and it supports

limited Java constructs.

Appendix C

Java Subset for eMuJava Tool

In this appendix we present the details of Java language subset we have chosen

and assumptions that we have made for the implementation of eMuJava tool.

C.1 Java Language Subset for eMuJava

For implementation of eMuJava tool, we have selected a subset of Java language

and cut down the complete set of keywords and syntax to a small set. This section

provides details about this.

C.1.1 Context Free Grammar (CFG)

We have chosen a subset of Java programming language to implement the tool

and we have defined a context free grammar for it. The CFG is presented in figure

C.1.

C.1.2 Keywords

We have chosen a subset of Java keywords that are supported in the eMuJava

tool. Table C.1 shows the list of supported keywords in eMuJava tool.

142

Appendix B 143

Figure C.1: Context Free Grammar for eMuJava Tool

Table C.1: Supported Keywords by eMuJava

boolean byte char class

double else extends float

if int long private

protected public return short

static this void while

Appendix B 144

C.1.3 Data Types

We have considered the following primitive data types of Java shown in Table C.2.

Table C.2: List of Primitive Data Types

byte shot int long

float double char String

C.1.4 Special Symbols

We have considered the following special symbols of Java. Table C.3 shows the

list of special symbols supported by eMuJava tool.

Table C.3: List of Special Symbols

Special Symbols () { } ; : .

C.1.5 Operators

We have considered the following operators of Java, which is shown in Table C.5.

Table C.4: List of Operators

Relational Operators < <= > >= == !=

Conditional Operators && ||

Arithmetic Operators + - / * %

Assignment Operator =

Appendix C 145

C.1.6 Tool Assumptions

We have chosen a limited set of Java programming language and implemented it

in our tool. There are certain assumptions regarding the source code which we

have mentioned below. The subset of Java programming language that we have

chosen can demonstrate our proposed technique and due to this reason we have

not implemented complete Java programming language syntax. Due to the limited

number of control constructs there are few assumptions that we have made and

they are categorized into three groups which we have explained below:

1. General

• There should be no syntax error in the source code.

• Java standard libraries are not supported so there should be no import

statement in the code.

2. Declarations

• Only primitive data types and String class is supported.

• Arrays are not supported.

3. Methods and Statements

• Methods can only be non-static.

• Class under test should not have main() method.

• Only if, if-else, and while conditions should be used in the code,

nesting is allowed though.

• There ! logical operator should not be there in the source code.

• Ternary operator is not considered.

Appendix D

Additional Experiment Results

In this appendix we present the results of experiments that are used to generate

line-charts of figure 6.4 in chapter 6. These are results of 20 case studies that are

generated using eMuJava (see Chapter 5) tool.

We will use short names in the table headers to save some space. The list is given

below and Table D.1 lists all the case studies in experiments.

M#: Mutant Number

RT: Random Testing

SGA: GA with Standard Fitness Function

PGA: GA with State-based & Control-oriented Fitness Function

IGA: Improved Genetic Algorithm

Table D.1: List of Case Studies

No. Case Study No. Case Study No. Case Study No. Case Study

1 AutoDoor 6 JCS 11 CSV 16 Math

2 Calculator 7 CGPACalc 12 ElectricHeater 17 Stack

3 BankAccount 8 Collections 13 HashTable 18 TempConverter

4 CLI 9 Compress 14 Lang 19 Text

5 BinarySearchTree 10 Crypto 15 Logging 20 Triangle

146

Appendix D 147

Table D.2: Iterations Used while Test Case Generation for AutoDoor

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 12 1 1 25 173 203 181 55 49 197 227 205 79

2 2 13 2 2 26 174 204 182 56 50 198 228 206 80

3 3 25 3 3 27 175 205 183 57 51 199 229 207 81

4 4 26 4 4 28 176 206 184 58 52 200 230 208 82

5 5 27 5 5 29 177 207 185 59 53 201 231 209 83

6 6 28 6 6 30 178 208 186 60 54 202 232 210 84

7 7 29 7 7 31 179 209 187 61 55 203 233 211 85

8 8 30 8 8 32 180 210 188 62 56 204 234 212 86

9 9 31 9 9 33 181 211 189 63 57 205 235 213 87

10 10 32 10 10 34 182 212 190 64 58 206 236 214 88

11 11 33 11 11 35 183 213 191 65 59 207 237 215 89

12 44 73 51 21 36 184 214 192 66 60 208 238 216 90

13 82 113 91 29 37 185 215 193 67 61 209 239 217 91

14 117 153 131 35 38 186 216 194 68 62 210 240 218 92

15 152 193 171 45 39 187 217 195 69 63 211 241 219 93

16 153 194 172 46 40 188 218 196 70 64 212 242 220 94

17 154 195 173 47 41 189 219 197 71 65 213 243 221 95

18 155 196 174 48 42 190 220 198 72 66 214 244 222 96

19 156 197 175 49 43 191 221 199 73 67 239 269 250 117

20 157 198 176 50 44 192 222 200 74 68 264 294 278 127

21 158 199 177 51 45 193 223 201 75 69 286 297 296 133

22 159 200 178 52 46 194 224 202 76 70 308 309 306 138

23 160 201 179 53 47 195 225 203 77 71 309 310 307 139

24 172 202 180 54 48 196 226 204 78 72 310 311 308 140

Table D.3: Iterations Used while Test Case Generation for Calculator

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 25 82 208 159 101 49 106 257 183 134

2 2 2 2 2 26 83 209 160 102 50 107 258 185 135

3 3 3 4 4 27 84 210 161 103 51 108 259 186 136

4 4 4 5 5 28 85 211 162 104 52 110 260 187 137

5 5 5 6 6 29 86 212 163 105 53 111 261 188 138

6 6 6 7 7 30 87 213 164 106 54 112 262 189 139

7 7 7 8 8 31 88 214 165 107 55 113 263 190 140

8 8 8 9 9 32 89 215 166 108 56 114 264 191 141

9 9 9 10 10 33 90 216 167 109 57 115 265 192 142

10 10 10 11 11 34 91 217 168 110 58 116 266 193 143

11 11 11 18 25 35 92 218 169 111 59 117 267 194 144

12 12 40 30 30 36 93 219 170 112 60 118 268 195 145

13 18 57 42 35 37 94 220 171 113 61 119 269 196 146

14 20 87 43 45 38 95 221 172 114 62 120 270 197 147

15 36 117 83 61 39 96 222 173 115 63 121 271 198 148

16 40 143 90 70 40 97 223 174 116 64 122 272 199 149

17 43 146 108 71 41 98 224 175 117 65 123 273 200 150

18 49 174 115 72 42 99 225 176 118 66 124 274 201 151

19 60 202 130 85 43 100 226 177 119 67 125 275 202 152

20 71 203 139 96 44 101 227 178 120 68 126 276 203 153

21 78 204 155 97 45 102 228 179 121 69 127 277 204 154

22 79 205 156 98 46 103 229 180 122 70 128 278 205 155

23 80 206 157 99 47 104 230 181 123 71 129 279 206 156

24 81 207 158 100 48 105 232 182 124 72 130 280 207 157

Appendix D 148

Table D.4: Iterations Used while Test Case Generation for BankAccount

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 42 48 43 42 42 83 89 84 83 83

2 2 2 2 2 43 49 44 43 43 84 90 85 84 84

3 3 3 3 3 44 50 45 44 44 85 91 86 85 85

4 4 4 4 4 45 51 46 45 45 86 92 87 86 86

5 5 5 5 5 46 52 47 46 46 87 93 88 87 87

6 6 6 6 6 47 53 48 47 47 88 94 89 88 88

7 7 7 7 7 48 54 49 48 48 89 95 90 89 89

8 8 8 8 8 49 55 50 49 49 90 96 91 90 90

9 9 9 9 9 50 56 51 50 50 91 97 92 91 91

10 10 10 10 10 51 57 52 51 51 92 98 93 92 92

11 12 11 11 11 52 58 53 52 52 93 99 94 93 93

12 14 12 12 12 53 59 54 53 53 94 100 95 94 94

13 16 13 13 13 54 60 55 54 54 95 101 96 95 95

14 18 14 14 14 55 61 56 55 55 96 102 97 97 96

15 20 16 15 15 56 62 57 56 56 97 103 98 99 97

16 22 17 16 16 57 63 58 57 57 98 105 100 101 98

17 23 18 17 17 58 64 59 58 58 99 106 101 102 99

18 24 19 18 18 59 65 60 59 59 100 107 102 103 100

19 25 20 19 19 60 66 61 60 60 101 108 103 104 101

20 26 21 20 20 61 67 62 61 61 102 109 104 105 102

21 27 22 21 21 62 68 63 62 62 103 110 105 106 103

22 28 23 22 22 63 69 64 63 63 104 111 106 107 104

23 29 24 23 23 64 70 65 64 64 105 112 107 109 105

24 30 25 24 24 65 71 66 65 65 106 113 108 110 106

25 31 26 25 25 66 72 67 66 66 107 114 115 112 107

26 32 27 26 26 67 73 68 67 67 108 115 116 113 108

27 33 28 27 27 68 74 69 68 68 109 116 117 114 109

28 34 29 28 28 69 75 70 69 69 110 117 118 115 110

29 35 30 29 29 70 76 71 70 70 111 118 119 116 111

30 36 31 30 30 71 77 72 71 71 112 119 120 117 112

31 37 32 31 31 72 78 73 72 72 113 120 121 118 113

32 38 33 32 32 73 79 74 73 73 114 122 123 119 115

33 39 34 33 33 74 80 75 74 74 115 123 124 120 116

34 40 35 34 34 75 81 76 75 75 116 124 125 121 117

35 41 36 35 35 76 82 77 76 76 117 125 126 122 118

36 42 37 36 36 77 83 78 77 77 118 126 127 123 119

37 43 38 37 37 78 84 79 78 78 119 127 128 124 120

38 44 39 38 38 79 85 80 79 79 120 128 129 125 121

39 45 40 39 39 80 86 81 80 80 121 129 130 126 122

40 46 41 40 40 81 87 82 81 81 122 130 131 127 123

41 47 42 41 41 82 88 83 82 82

Table D.5: Iterations Used while Test Case Generation for CLI

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 2 1 1 9 28 33 30 18 17 72 78 75 61

2 2 3 4 2 10 45 47 45 34 18 74 79 78 64

3 12 15 14 5 11 46 50 48 36 19 75 80 79 66

4 13 16 15 8 12 47 51 54 38 20 78 83 80 67

5 14 18 16 9 13 50 52 55 42 21 80 85 82 70

6 15 20 17 11 14 53 56 56 44 22 83 98 84 74

7 16 21 19 15 15 55 59 60 46 23 95 110 85 79

8 27 31 28 17 16 58 62 61 47

Appendix D 149

Table D.6: Iterations Used while Test Case Generation for BinarySearchTree

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 35 83 61 133 86 69 197 216 245 198

2 2 2 2 4 36 84 65 137 94 70 198 217 246 199

3 5 4 3 5 37 85 69 145 95 71 199 218 247 200

4 6 6 4 6 38 97 85 157 105 72 201 219 248 201

5 7 7 16 9 39 98 87 158 106 73 202 220 250 203

6 13 8 18 10 40 102 89 159 109 74 204 221 252 204

7 18 10 25 22 41 111 102 171 123 75 205 222 253 205

8 22 12 32 28 42 112 103 173 125 76 206 223 255 206

9 29 13 34 34 43 116 104 175 127 77 207 224 256 207

10 33 15 46 40 44 119 105 177 134 78 208 225 257 208

11 36 17 58 46 45 122 106 178 137 79 209 226 258 209

12 40 18 74 47 46 127 107 180 143 80 210 227 259 210

13 45 20 83 59 47 141 132 181 144 81 211 228 260 211

14 46 21 84 61 48 143 133 184 145 82 212 229 261 212

15 47 25 86 63 49 149 145 185 153 83 213 230 262 213

16 50 31 88 64 50 152 146 187 157 84 214 231 263 214

17 52 35 96 67 51 153 147 188 158 85 215 232 264 215

18 54 38 99 68 52 156 148 189 160 86 216 233 265 216

19 55 43 104 69 53 173 173 205 162 87 222 236 266 218

20 58 44 110 70 54 176 185 221 164 88 230 239 268 220

21 59 45 117 72 55 177 186 223 167 89 233 240 270 221

22 70 47 118 73 56 178 188 224 175 90 234 241 272 222

23 71 48 119 74 57 182 189 225 176 91 239 244 274 228

24 72 49 120 75 58 183 190 226 179 92 242 247 276 234

25 73 51 123 76 59 186 203 231 187 93 244 248 277 237

26 74 52 124 77 60 187 204 234 188 94 245 249 278 240

27 75 53 125 78 61 188 205 235 189 95 247 250 279 241

28 76 54 126 79 62 189 206 236 190 96 253 251 283 245

29 77 55 127 80 63 190 209 237 191 97 256 255 287 246

30 78 56 128 81 64 191 210 238 192 98 259 259 290 251

31 79 57 129 82 65 192 211 239 193 99 260 260 291 252

32 80 58 130 83 66 193 212 240 194 100 261 261 292 253

33 81 59 131 84 67 194 213 241 195 101 262 262 293 254

34 82 60 132 85 68 195 215 243 197 102 263 263 294 255

Table D.7: Iterations Used while Test Case Generation for JCS

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 7 6 7 5 19 102 115 87 87 37 125 134 105 105

2 14 12 15 12 20 103 116 88 88 38 128 135 108 106

3 21 19 22 19 21 104 117 89 89 39 130 136 110 107

4 28 25 29 25 22 105 118 90 90 40 131 140 112 108

5 36 33 36 30 23 106 120 91 91 41 138 147 115 109

6 43 42 42 35 24 107 121 92 92 42 145 152 122 115

7 48 45 43 36 25 108 122 93 93 43 152 159 128 120

8 54 50 44 37 26 109 123 94 94 44 158 166 135 125

9 55 55 45 38 27 110 124 95 95 45 165 170 140 135

10 56 56 46 39 28 111 125 96 96 46 170 177 145 145

11 57 57 47 40 29 112 126 97 97 47 171 178 146 146

12 59 63 48 42 30 113 127 98 98 48 175 180 147 147

13 65 64 55 49 31 114 128 99 99 49 182 185 150 155

14 72 65 62 55 32 115 129 100 100 50 189 195 158 156

15 79 78 66 60 33 118 130 101 101 51 196 202 165 160

16 85 85 73 68 34 120 131 102 102 52 203 210 175 162

17 88 95 79 78 35 122 132 103 103

18 95 102 86 86 36 123 133 104 104

Appendix D 150

Table D.8: Iterations Used while Test Case Generation for CGPACalc

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 10 21 12 10 21 32 125 65 33 41 53 145 87 53

2 11 30 13 11 22 33 126 66 34 42 54 146 88 54

3 12 46 14 12 23 34 127 67 35 43 55 147 89 55

4 13 47 23 13 24 35 128 68 36 44 56 148 90 56

5 14 60 24 16 25 36 129 69 37 45 57 149 91 57

6 16 61 28 17 26 37 130 70 38 46 58 150 103 60

7 17 73 29 18 27 38 131 71 39 47 60 151 108 61

8 18 74 30 19 28 39 132 72 40 48 64 152 120 62

9 20 106 42 21 29 40 133 73 41 49 65 153 132 63

10 21 107 43 22 30 41 134 74 42 50 73 169 144 64

11 22 108 44 23 31 42 135 75 43 51 74 189 145 65

12 23 109 45 24 32 43 136 76 44 52 75 190 146 66

13 24 110 46 25 33 44 137 79 45 53 76 191 147 67

14 25 111 47 26 34 45 138 80 46 54 77 192 148 69

15 26 112 48 27 35 46 139 81 47 55 78 193 149 70

16 27 120 49 28 36 48 140 82 48 56 79 215 171 71

17 28 121 50 29 37 49 141 83 49 57 80 216 172 72

18 29 122 51 30 38 50 142 84 50 58 81 217 173 73

19 30 123 52 31 39 51 143 85 51 59 93 229 195 74

20 31 124 64 32 40 52 144 86 52

Table D.9: Iterations Used while Test Case Generation for Collections

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 2 1 1 30 133 112 107 119 59 202 185 178 160

2 8 9 2 10 31 141 118 115 126 60 203 186 179 161

3 15 14 3 18 32 142 120 116 127 61 204 187 180 162

4 22 21 10 27 33 143 121 117 128 62 205 188 181 163

5 29 29 17 36 34 144 122 118 129 63 206 189 182 164

6 36 36 24 45 35 145 123 119 130 64 207 190 183 165

7 38 37 25 46 36 146 124 120 131 65 208 191 184 166

8 39 38 26 47 37 147 125 121 132 66 209 192 185 167

9 40 39 27 48 38 148 126 122 133 67 210 193 186 168

10 42 40 28 49 39 149 127 123 134 68 211 194 187 169

11 43 41 29 50 40 150 128 124 135 69 212 195 188 170

12 50 42 36 52 41 156 135 131 136 70 213 196 189 171

13 57 43 43 59 42 163 142 139 137 71 214 197 190 172

14 63 50 50 66 43 170 150 147 138 72 221 205 191 173

15 68 57 57 67 44 171 151 148 139 73 228 215 192 174

16 78 64 58 68 45 172 152 149 140 74 229 216 193 175

17 85 70 59 76 46 173 153 150 141 75 230 217 194 176

18 92 78 66 83 47 174 154 151 142 76 231 218 195 177

19 98 84 72 90 48 175 155 152 143 77 232 219 196 178

20 106 90 78 97 49 176 156 153 144 78 233 220 197 179

21 107 91 79 98 50 177 157 154 145 79 234 221 198 180

22 108 92 80 99 51 178 158 155 146 80 235 222 199 181

23 109 93 81 100 52 179 159 156 147 81 236 223 200 182

24 110 94 82 101 53 180 160 157 148 82 237 224 201 183

25 111 95 83 102 54 181 161 158 149 83 238 225 202 184

26 112 96 84 103 55 182 162 159 150 84 239 226 203 185

27 113 97 85 104 56 183 163 160 151 85 240 227 204 186

28 120 104 92 105 57 190 170 161 152 86 241 228 205 187

29 126 105 99 112 58 195 177 169 153 87 242 229 206 188

Appendix D 151

Table D.10: Iterations Used while Test Case Generation for Compress

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 10 9 11 10 25 82 73 50 69 49 194 176 112 123

2 20 18 20 21 26 83 74 51 70 50 195 177 113 124

3 31 27 21 32 27 84 77 52 71 51 196 178 114 125

4 42 37 22 33 28 85 80 53 72 52 197 179 115 126

5 52 47 23 34 29 86 81 54 73 53 198 180 116 127

6 63 49 24 43 30 87 82 55 74 54 199 181 117 128

7 64 51 25 46 31 88 83 56 75 55 200 182 118 129

8 65 52 26 47 32 99 84 57 85 56 201 185 119 130

9 66 53 27 48 33 108 86 58 86 57 202 188 120 132

10 67 55 28 49 34 115 96 60 87 58 203 189 121 135

11 68 57 29 50 35 125 106 70 89 59 204 190 122 137

12 69 58 30 51 36 135 115 79 99 60 205 191 123 138

13 70 59 31 52 37 146 135 88 100 61 215 192 135 140

14 71 62 32 53 38 157 142 97 102 62 225 193 148 150

15 72 63 33 54 39 166 149 98 103 63 235 203 159 151

16 73 64 35 55 40 177 158 99 114 64 247 213 170 159

17 74 65 37 56 41 186 168 100 115 65 248 214 174 160

18 75 66 38 57 42 187 169 101 116 66 249 215 178 161

19 76 67 40 59 43 188 170 103 117 67 250 216 179 162

20 77 68 43 61 44 189 171 105 118 68 251 217 180 163

21 78 69 45 62 45 190 172 108 119 69 252 218 182 164

22 79 70 47 64 46 191 173 109 120 70 253 219 183 165

23 80 71 48 66 47 192 174 110 121

24 81 72 49 68 48 193 175 111 122

Table D.11: Iterations Used while Test Case Generation for Crypto

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 2 1 1 27 30 34 35 32 53 145 125 103 102

2 2 4 3 2 28 35 39 40 37 54 150 131 108 107

3 3 6 4 3 29 40 44 47 42 55 156 133 113 112

4 4 8 6 4 30 46 49 54 47 56 162 138 119 117

5 5 9 7 5 31 51 50 55 48 57 167 144 126 125

6 6 11 10 6 32 56 55 57 55 58 172 149 130 129

7 7 12 11 7 33 62 61 59 56 59 173 150 131 130

8 8 14 12 8 34 67 66 60 57 60 174 151 132 131

9 9 15 13 9 35 68 67 62 58 61 179 156 137 136

10 10 17 14 10 36 69 68 63 59 62 184 161 142 141

11 11 18 15 11 37 74 73 64 60 63 189 166 148 148

12 12 19 16 12 38 79 77 65 61 64 194 170 153 154

13 13 20 17 13 39 84 82 70 66 65 199 175 158 159

14 14 21 18 14 40 89 87 76 72 66 205 180 163 164

15 15 22 19 15 41 94 92 82 77 67 212 185 169 165

16 16 23 20 16 42 100 93 83 78 68 218 193 174 166

17 18 24 22 17 43 106 94 84 80 69 219 194 175 168

18 20 25 23 18 44 112 95 86 81 70 220 195 176 170

19 22 26 25 19 45 120 100 87 82 71 226 200 181 172

20 23 27 27 20 46 125 105 92 87 72 232 205 188 177

21 24 28 28 21 47 130 111 97 96 73 239 211 192 181

22 25 29 29 22 48 131 112 98 97 74 247 216 198 186

23 26 30 30 23 49 132 113 99 98 75 253 221 202 191

24 27 31 31 25 50 133 114 100 99 76 259 228 207 196

25 28 32 33 27 51 134 115 101 100 77 265 233 212 200

26 29 33 34 29 52 139 120 102 101 78 270 239 217 204

Appendix D 152

Table D.12: Iterations Used while Test Case Generation for CSV

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 2 1 35 331 373 336 304 69 369 484 431 338

2 2 3 4 2 36 332 374 337 305 70 370 485 434 339

3 17 18 15 16 37 333 376 339 306 71 371 486 436 340

4 32 32 30 30 38 334 377 340 307 72 372 487 438 341

5 47 45 46 45 39 335 390 348 308 73 373 488 441 342

6 62 60 60 60 40 336 402 363 309 74 374 489 442 343

7 77 75 70 72 41 337 416 375 310 75 375 490 443 344

8 87 90 85 87 42 338 430 390 311 76 376 491 445 345

9 97 105 96 100 43 339 444 405 312 77 377 493 447 350

10 113 118 97 101 44 340 449 406 313 78 378 495 450 352

11 114 133 99 102 45 341 460 407 314 79 379 498 451 355

12 115 134 100 103 46 342 461 408 315 80 380 500 452 358

13 116 135 102 104 47 343 462 409 316 81 381 501 453 360

14 118 136 103 105 48 344 463 410 317 82 382 502 454 362

15 133 150 118 120 49 345 464 411 318 83 383 503 455 363

16 148 165 130 130 50 346 465 412 319 84 384 504 456 364

17 162 180 150 144 51 347 466 413 320 85 385 505 457 365

18 177 195 160 158 52 348 467 414 321 86 386 506 458 366

19 190 210 175 170 53 349 468 415 322 87 388 507 459 367

20 204 222 188 185 54 350 469 416 323 88 389 508 460 368

21 219 236 200 200 55 351 470 417 324 89 390 509 461 369

22 233 250 212 212 56 352 471 418 325 90 392 510 462 370

23 234 262 225 225 57 353 472 419 326 91 394 511 463 371

24 236 263 226 226 58 354 473 420 327 92 396 512 464 372

25 237 264 228 227 59 355 474 421 328 93 398 513 465 373

26 239 265 229 228 60 356 475 422 329 94 399 514 466 374

27 240 280 244 229 61 357 476 423 330 95 400 515 467 375

28 241 294 258 244 62 358 477 424 331 96 401 516 468 376

29 256 308 270 259 63 359 478 425 332 97 402 517 469 377

30 271 323 280 274 64 361 479 426 333 98 403 518 470 378

31 286 333 294 275 65 363 480 427 334 99 404 520 471 379

32 300 348 305 285 66 365 481 428 335 100 405 522 472 380

33 314 360 320 302 67 367 482 429 336 101 406 523 473 381

34 330 372 335 303 68 368 483 430 337 102 409 525 474 382

Appendix D 153

Table D.13: Iterations Used while Test Case Generation for ElectricHeater

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 2 35 146 213 226 156 69 248 371 313 268

2 2 2 2 4 36 147 214 227 157 70 249 372 314 269

3 3 3 4 6 37 148 215 228 158 71 250 373 315 270

4 4 4 5 8 38 149 216 229 159 72 251 374 316 271

5 5 5 6 9 39 150 217 230 160 73 252 375 317 272

6 6 6 13 11 40 151 218 231 161 74 253 376 318 273

7 7 7 15 12 41 152 219 232 162 75 254 377 319 274

8 8 8 17 14 42 153 220 233 163 76 255 378 320 275

9 9 9 18 15 43 154 222 235 164 77 256 379 321 276

10 12 11 20 17 44 155 223 236 165 78 257 380 322 277

11 13 12 21 18 45 156 224 237 166 79 258 381 323 278

12 14 13 22 19 46 157 225 238 167 80 259 382 324 279

13 15 15 23 20 47 160 227 239 168 81 260 383 325 280

14 16 16 24 21 48 161 228 240 169 82 261 385 345 282

15 38 41 45 42 49 163 230 241 170 83 269 387 365 289

16 52 55 48 54 50 164 231 242 176 84 270 388 366 290

17 80 80 85 85 51 165 232 243 177 85 271 389 367 291

18 85 115 122 99 52 166 238 255 179 86 272 390 368 292

19 92 150 138 105 53 170 244 256 181 87 273 391 369 293

20 99 164 175 111 54 181 255 263 192 88 282 403 371 303

21 132 199 212 142 55 182 267 264 206 89 289 404 387 304

22 133 200 213 143 56 193 297 268 221 90 292 405 388 305

23 134 201 214 144 57 203 311 278 222 91 293 406 394 306

24 135 202 215 145 58 207 324 279 234 92 295 407 400 307

25 136 203 216 146 59 214 336 282 237 93 296 408 401 308

26 137 204 217 147 60 215 348 292 245 94 316 439 432 322

27 138 205 218 148 61 220 349 304 254 95 336 470 463 336

28 139 206 219 149 62 221 351 305 255 96 354 472 494 349

29 140 207 220 150 63 222 353 306 259 97 361 495 525 367

30 141 208 221 151 64 241 365 307 263 98 364 526 556 371

31 142 209 222 152 65 243 366 309 264 99 378 557 587 373

32 143 210 223 153 66 244 367 310 265 100 379 558 588 374

33 144 211 224 154 67 245 368 311 266 101 380 559 589 375

34 145 212 225 155 68 247 370 312 267

Appendix D 154

Table D.14: Iterations Used while Test Case Generation for HashTable

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 26 306 284 216 103 51 441 412 297 202

2 2 2 3 2 27 307 285 217 104 52 442 413 298 203

3 3 3 5 3 28 308 286 218 105 53 443 414 299 204

4 4 4 6 4 29 309 287 219 106 54 444 415 300 205

5 42 26 28 8 30 310 288 220 107 55 445 416 301 206

6 70 48 50 12 31 311 289 221 108 56 446 417 302 207

7 98 70 72 16 32 312 290 222 109 57 447 418 303 208

8 126 92 94 20 33 313 291 223 110 58 448 419 304 209

9 154 114 116 29 34 314 292 224 111 59 449 420 305 210

10 182 136 128 38 35 315 293 225 112 60 473 442 317 218

11 210 158 140 47 36 316 294 226 113 61 497 464 335 226

12 238 180 152 56 37 342 316 238 134 62 519 485 353 234

13 240 211 167 65 38 368 338 239 146 63 541 497 361 253

14 266 232 168 73 39 396 359 260 158 64 563 518 365 257

15 281 253 187 82 40 420 380 281 170 65 585 539 369 261

16 296 274 206 93 41 421 381 282 171 66 597 551 387 272

17 297 275 207 94 42 422 382 283 172 67 609 563 405 283

18 298 276 208 95 43 428 384 288 174 68 610 564 406 284

19 299 277 209 96 44 429 385 289 175 69 611 565 407 285

20 300 278 210 97 45 430 386 290 176 70 612 566 408 286

21 301 279 211 98 46 431 387 291 177 71 613 567 409 287

22 302 280 212 99 47 437 408 293 198 72 614 568 410 288

23 303 281 213 100 48 438 409 294 199 73 615 569 411 289

24 304 282 214 101 49 439 410 295 200

25 305 283 215 102 50 440 411 296 201

Table D.15: Iterations Used while Test Case Generation for Lang

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 2 2 1 15 34 40 37 36 29 68 67 70 69

2 2 3 6 2 16 35 41 38 37 30 77 77 80 70

3 3 5 7 3 17 36 42 39 38 31 85 87 90 71

4 13 15 17 13 18 37 43 40 40 32 95 95 100 72

5 14 16 18 14 19 47 44 50 50 33 96 96 103 73

6 15 17 19 15 20 55 54 55 60 34 98 97 106 74

7 16 18 20 16 21 56 55 56 61 35 100 98 109 75

8 17 20 21 17 22 57 56 57 62 36 101 99 112 76

9 18 21 22 18 23 58 57 59 63 37 102 100 113 77

10 29 35 32 28 24 59 58 61 64 38 103 101 115 78

11 30 36 33 29 25 60 59 62 65 39 104 102 116 79

12 31 37 34 31 26 61 60 64 66 40 105 103 117 80

13 32 38 35 33 27 62 62 66 67 41 106 104 121 85

14 33 39 36 34 28 64 64 68 68 42 107 105 122 90

Appendix D 155

Table D.16: Iterations Used while Test Case Generation for Logging

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 10 12 10 8 25 179 147 132 110 49 262 237 242 195

2 22 24 25 16 26 191 157 144 115 50 263 238 243 196

3 32 36 36 22 27 203 168 156 125 51 275 239 244 197

4 44 48 50 32 28 204 169 166 130 52 287 240 245 198

5 56 61 61 40 29 205 171 176 136 53 288 241 246 199

6 66 71 75 46 30 206 173 186 140 54 289 242 248 200

7 77 81 76 56 31 207 174 187 141 55 290 243 250 202

8 88 85 78 68 32 208 175 188 142 56 291 244 253 204

9 99 95 80 75 33 209 176 189 144 57 292 245 256 207

10 110 110 90 80 34 210 177 190 146 58 293 246 259 210

11 125 120 95 90 35 211 178 192 147 59 294 247 260 211

12 135 125 100 91 36 212 192 202 157 60 295 248 261 213

13 136 126 102 92 37 225 202 212 167 61 307 260 275 214

14 137 127 112 93 38 240 212 222 175 62 319 272 290 222

15 138 128 113 94 39 250 224 232 185 63 331 284 305 232

16 150 129 114 95 40 251 225 233 186 64 343 296 320 241

17 160 130 115 96 41 253 227 234 187 65 353 310 335 250

18 161 131 116 97 42 255 230 235 188 66 362 322 345 262

19 162 132 117 98 43 256 231 236 189 67 371 334 355 271

20 163 133 118 99 44 257 232 237 190 68 381 344 366 272

21 164 134 119 100 45 258 233 238 191 69 395 354 376 273

22 165 135 120 102 46 259 234 239 192 70 405 366 388 274

23 166 136 121 104 47 260 235 240 193 71 416 367 389 275

24 167 137 122 105 48 261 236 241 194 72 430 370 390 276

Table D.17: Iterations Used while Test Case Generation for Math

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 2 1 2 24 35 91 86 30 47 68 163 145 68

2 2 3 2 4 25 38 92 88 31 48 69 164 146 72

3 3 13 3 8 26 40 93 90 32 49 70 165 147 73

4 4 23 13 9 27 42 94 92 33 50 72 168 148 74

5 5 33 23 10 28 45 96 93 35 51 74 170 149 75

6 7 43 32 11 29 46 98 94 36 52 78 173 150 76

7 9 44 33 12 30 47 101 95 38 53 79 182 160 77

8 11 45 34 13 31 49 105 96 40 54 82 192 170 78

9 14 46 35 14 32 52 106 97 42 55 85 194 171 79

10 15 47 36 16 33 54 116 107 52 56 88 195 172 80

11 16 48 37 17 34 55 126 117 53 57 90 196 173 81

12 17 49 38 18 35 56 135 118 54 58 92 197 174 82

13 18 54 39 19 36 57 144 122 55 59 94 198 175 83

14 20 56 42 20 37 58 153 124 56 60 96 199 176 84

15 21 58 44 21 38 59 154 128 57 61 97 200 177 85

16 22 68 54 22 39 60 155 130 58 62 98 201 178 86

17 23 79 65 23 40 61 156 136 59 63 99 202 179 87

18 25 85 76 24 41 62 157 137 60 64 100 203 180 90

19 26 86 77 25 42 63 158 140 61 65 101 204 181 92

20 28 87 80 26 43 64 159 141 62 66 102 207 182 96

21 31 88 82 27 44 65 160 142 63 67 103 210 183 97

22 32 89 84 28 45 66 161 143 65 68 104 211 184 99

23 33 90 85 29 46 67 162 144 66

Appendix D 156

Table D.18: Iterations Used while Test Case Generation for Stack

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 25 335 534 196 75 49 564 614 254 126

2 2 2 2 2 26 336 535 197 76 50 565 615 255 127

3 3 3 3 3 27 337 536 198 77 51 617 618 262 134

4 4 4 4 4 28 338 537 199 78 52 630 652 270 135

5 39 44 14 8 29 339 538 200 79 53 640 655 282 143

6 41 84 24 11 30 340 539 201 80 54 712 656 287 147

7 51 124 25 15 31 341 540 202 81 55 713 657 288 148

8 86 164 63 19 32 342 541 203 82 56 714 658 289 150

9 96 182 67 22 33 343 542 204 83 57 715 659 290 151

10 106 223 75 26 34 355 546 206 84 58 716 660 291 152

11 137 253 84 29 35 356 547 207 85 59 768 714 349 156

12 168 273 90 37 36 408 555 215 87 60 778 715 352 166

13 208 313 107 41 37 450 556 221 94 61 821 767 357 173

14 248 353 113 47 38 502 593 236 98 62 873 770 367 177

15 288 393 118 50 39 554 597 243 109 63 925 807 374 185

16 298 394 147 58 40 555 598 244 110 64 937 857 381 189

17 299 395 148 59 41 556 599 245 111 65 947 864 390 192

18 300 396 149 60 42 557 600 246 112 66 989 872 398 196

19 302 398 150 61 43 558 601 247 113 67 990 873 399 197

20 303 399 151 62 44 559 605 248 115 68 991 874 400 198

21 313 450 152 64 45 560 606 249 116 69 992 875 401 199

22 323 464 181 68 46 561 607 250 117 70 993 876 402 200

23 333 532 194 73 47 562 608 252 121 71 1045 880 409 201

24 334 533 195 74 48 563 609 253 122 72 1052 942 450 208

Table D.19: Iterations Used while Test Case Generation for TempConverter

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 29 29 29 29 29 57 57 57 57 57

2 2 2 2 2 30 30 30 30 30 58 58 58 58 58

3 3 3 3 3 31 31 31 31 31 59 59 59 59 59

4 4 4 4 4 32 32 32 32 32 60 60 60 60 60

5 5 5 5 5 33 33 33 33 33 61 61 61 61 61

6 6 6 6 6 34 34 34 34 34 62 62 62 62 62

7 7 7 7 7 35 35 35 35 35 63 63 63 63 63

8 8 8 8 8 36 36 36 36 36 64 64 64 64 64

9 9 9 9 9 37 37 37 37 37 65 65 65 65 65

10 10 10 10 10 38 38 38 38 38 66 66 66 66 66

11 11 11 11 11 39 39 39 39 39 67 67 67 67 67

12 12 12 12 12 40 40 40 40 40 68 68 68 68 68

13 13 13 13 13 41 41 41 41 41 69 69 69 69 69

14 14 14 14 14 42 42 42 42 42 70 70 70 70 70

15 15 15 15 15 43 43 43 43 43 71 71 71 71 71

16 16 16 16 16 44 44 44 44 44 72 73 72 72 72

17 17 17 17 17 45 45 45 45 45 73 75 74 73 73

18 18 18 18 18 46 46 46 46 46 74 77 77 74 74

19 19 19 19 19 47 47 47 47 47 75 78 79 75 75

20 20 20 20 20 48 48 48 48 48 76 79 81 76 76

21 21 21 21 21 49 49 49 49 49 77 81 83 77 77

22 22 22 22 22 50 50 50 50 50 78 83 84 78 78

23 23 23 23 23 51 51 51 51 51 79 85 88 79 79

24 24 24 24 24 52 52 52 52 52 80 87 89 80 80

25 25 25 25 25 53 53 53 53 53 81 88 90 82 81

26 26 26 26 26 54 54 54 54 54 82 90 91 84 82

27 27 27 27 27 55 55 55 55 55 83 92 93 87 83

28 28 28 28 28 56 56 56 56 56

Appendix D 157

Table D.20: Iterations Used while Test Case Generation for Text

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 26 90 85 54 42 51 220 135 111 78

2 2 2 2 2 27 92 88 55 43 52 221 140 115 79

3 3 4 3 3 28 96 89 60 44 53 222 142 120 85

4 5 9 4 5 29 99 90 62 45 54 223 144 122 86

5 9 10 5 6 30 100 92 64 46 55 224 145 124 88

6 15 15 6 7 31 120 95 65 47 56 225 149 126 90

7 18 17 7 8 32 125 105 82 48 57 226 150 129 94

8 22 22 8 9 33 135 108 85 50 58 227 155 130 96

9 25 25 15 11 34 136 109 86 53 59 228 158 133 97

10 28 28 20 15 35 137 110 87 55 60 229 160 134 98

11 35 29 21 16 36 140 112 88 56 61 230 162 135 99

12 36 30 22 17 37 155 113 89 57 62 231 163 136 100

13 39 34 23 20 38 165 114 90 58 63 232 164 137 101

14 44 35 25 22 39 178 115 91 59 64 233 165 138 102

15 45 36 30 25 40 180 116 92 61 65 234 175 139 103

16 46 40 32 26 41 181 120 93 63 66 235 180 140 104

17 47 42 36 28 42 182 122 94 65 67 236 182 141 105

18 55 48 40 30 43 183 123 95 66 68 237 184 142 106

19 60 55 45 35 44 184 124 96 67 69 238 185 143 107

20 75 65 46 36 45 185 125 97 68 70 239 188 144 108

21 76 68 47 37 46 190 126 98 69 71 240 189 145 109

22 79 69 50 38 47 200 129 99 70 72 244 190 148 110

23 84 70 51 39 48 205 130 100 72 73 245 191 150 111

24 85 75 52 40 49 208 131 105 75 74 246 192 155 112

25 86 79 53 41 50 212 134 110 77

Table D.21: Iterations Used while Test Case Generation for Triangle

M# RT SGA PGA IGA M# RT SGA PGA IGA M# RT SGA PGA IGA

1 1 1 1 1 25 26 50 44 26 49 389 381 401 324

2 2 2 2 2 26 27 51 45 27 50 390 382 402 325

3 3 3 3 3 27 28 52 46 28 51 391 383 403 326

4 4 4 4 4 28 29 53 47 29 52 392 384 404 327

5 5 5 6 5 29 30 54 48 30 53 393 385 405 328

6 6 6 8 6 30 31 55 49 31 54 394 386 406 329

7 7 7 20 8 31 32 56 50 32 55 395 387 407 330

8 8 8 21 9 32 33 57 51 33 56 396 388 408 331

9 9 9 22 10 33 34 58 52 34 57 397 389 409 332

10 10 10 23 11 34 35 59 53 35 58 398 390 410 333

11 11 11 24 12 35 53 60 85 37 59 410 391 411 334

12 12 12 25 13 36 71 61 117 39 60 411 392 412 335

13 14 38 32 14 37 132 122 178 40 61 412 393 414 336

14 15 39 33 15 38 177 183 239 89 62 413 394 415 337

15 16 40 34 16 39 189 184 244 92 63 414 395 416 338

16 17 41 35 17 40 226 236 276 144 64 415 396 417 339

17 18 42 36 18 41 267 288 308 177 65 416 428 418 346

18 19 43 37 19 42 281 330 350 236 66 417 429 419 347

19 20 44 38 20 43 326 331 392 273 67 419 443 452 348

20 21 45 39 21 44 344 343 396 305 68 424 445 453 362

21 22 46 40 22 45 359 347 397 312 69 426 460 462 363

22 23 47 41 23 46 371 367 398 313 70 427 463 484 370

23 24 48 42 24 47 387 379 399 322 71 431 475 517 371

24 25 49 43 25 48 388 380 400 323 72 432 476 519 373

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Software Testing and Automation
	1.2 Mutation Testing
	1.3 Research Motivation
	1.4 Problem Statement
	1.5 Research Contributions
	1.6 Thesis Organization

	2 Background
	2.1 Software Testing Techniques
	2.1.1 Mutation Testing
	2.1.2 Evolutionary Testing
	2.1.3 Evolutionary Mutation Testing

	3 Related Work
	3.1 Evolutionary Mutation Testing Techniques
	3.2 Evolutionary Mutation Testing Tools
	3.3 Conclusion of Survey

	4 The Proposed Approach
	4.1 Research Proposals at a Glance
	4.2 Control-oriented Mutation Testing
	4.2.1 Program's Output
	4.2.2 Method Produces an Output
	4.2.3 Method Does Not Produce an Output
	4.2.4 An Example

	4.3 State-based and Control-oriented Fitness Function
	4.3.1 State-based Reachability Cost
	4.3.2 State-based Necessity Cost
	4.3.3 Control-oriented Sufficiency Cost
	4.3.4 Overall Fitness
	4.3.5 An Example

	4.4 Two-way Crossover Method
	4.5 Adaptable Mutation Method

	5 Tool Support
	5.1 eMuJava Tool
	5.1.1 eMuJava Architecture
	5.1.2 eMuJava Operations

	5.2 eMuJava Algorithms
	5.2.1 GenMutants
	5.2.2 GenPopulation
	5.2.3 ExecTestCases
	5.2.4 EvalTestCases
	5.2.5 TWCrossoverTests
	5.2.6 MutateTests

	5.3 Supported Test Case Generation Techniques
	5.4 eMuJava Design Model
	5.5 eMuJava Configuration
	5.6 Screenshots of eMuJava Tool
	5.6.1 Source Code & Configuration
	5.6.2 Configuration Editor
	5.6.3 Mutants Viewer
	5.6.4 Test Case Viewer
	5.6.5 Statistics & Results

	6 Experiments and Results Analysis
	6.1 Test Environment
	6.2 Initial Experiments and Results
	6.3 Detailed Experiments and Results
	6.3.1 Less Iterations, Higher Mutation Score
	6.3.2 Comparison with EvoSuite
	6.3.3 Detecting Suspicious Mutants to Raise Mutation Score

	6.4 Statistical Analysis
	6.4.1 Mannâ��Whitney U-test
	6.4.2 Normality Test
	6.4.3 Analysis of Initial Experiments and Results
	6.4.4 Analysis of Detailed Experiments and Results
	6.4.5 Effect Size Measure

	6.5 Test Set Evaluation

	7 Conclusion and Future Work
	7.1 Future Work

	Bibliography
	A Literature Survey - Mutation Testing
	A.1 Object-Oriented Mutation Testing
	A.2 Evaluation Criteria
	A.2.1 Cost Effective
	A.2.2 Equivalent Mutant Detection
	A.2.3 OO Feature Coverage
	A.2.4 Level of Testing
	A.2.5 State Mutation Support
	A.2.6 Potential Mutation Operators
	A.2.7 Tool Support

	A.3 Surveyed Techniques
	A.4 Analysis of Surveyed Techniques
	A.5 Mutation Testing Tools

	B Literature Survey â�� Evolutionary Testing
	B.1 Evolutionary Testing Techniques
	B.2 Evolutionary Testing Tools

	C Java Subset for eMuJava Tool
	C.1 Java Language Subset for eMuJava
	C.1.1 Context Free Grammar (CFG)
	C.1.2 Keywords
	C.1.3 Data Types
	C.1.4 Special Symbols
	C.1.5 Operators
	C.1.6 Tool Assumptions

	D Additional Experiment Results

