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Abstract

The aim of this thesis is to investigate the mixed convective nanofluid flow in the
square cavities with different physical effects. Initially, the influence of the cavity
inclination angle on the mixed convective nanofluid flow in a double lid-driven
cavity shall be considered. Then the magnetohydrodynamics mixed convective
nanofluid flow and entropy generation in a double lid-driven square cavity with
discrete heating will be examined. Furthermore, the mixed convection in nanofluid
filled lid-driven square cavity with an isothermally heated square blockage inside
with magnetic field effect will also be analysed. At the end, the mixed convective
nanofluid flow in a lid-driven square porous cavity using the Ko-Kleinstreuer-Li
model considering the effect of thermal radiation and inclined magnetic field will
be discussed. In all the discussed problems, the governing nonlinear partial dif-
ferential equations are solved by the Galerkin finite element method in space and
the fully implicit Crank-Nicolson scheme in time. The discretized systems of non-
linear equations are linearized by means of Newton’s method and the associated
linear subproblems are solved with the help of Gaussian elimination method. The
effect of physical parameters on the fluid flow has been investigated and discussed
in detail by means of streamlines, isotherms and plots. The optimization of the
thermodynamic efficiency of a system is today’s requirement. The entropy gener-
ation reduces this efficiency, therefore, it becomes necessary to reduce the entropy
generation. To do this, one has to carefully measure the entropy generation in
a process. Due to this motivation, calculation of entropy generation due to heat
transfer, fluid friction and magnetic field has also been taken into account in some

part of the study along with other physical effects.
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Chapter 1

Introduction

1.1 Introduction

In fluid dynamics, heat transfer over mixed convective flow in lid-driven cavities is
one of the most extensively studied problem by researchers and industrialists due
to its growing practical applications. A lot of problems arising in industry can be
simulated using cavity due to its simple geometry. In order to enhance the heat
conductivity of base fluids like water, ethylene glycol, oil, etc., modern techniques
have been adopted. First of all, Choi [1] contributed in this field by introducing
the nanofluids. Later on, many researchers have utilized nanoparticles to study
heat transfer mechanism [2-17]. In the last two decades, numerous scientists
have participated a lot to solve the heat transfer problems in cavities filled with

nanofluids experimentally, analytically as well as numerically.

1.1.1 Mixed Convection in Cavities

Mixed convection in cavities has been studied by many researchers due to its nu-
merous applications including electronic instruments cooling, heat exchangers,
chemical reactors, solar collectors, heating and cooling of buildings. Sourtiji et al.

[18] investigated heat treansfer in mixed convective AlyOs-water nanofluid flow in



a ventilated cavity. It is observed that heat transfer increases with an increase
in the values of Reynolds number, Richardson number and nanoparticle volume
fraction. Teamah et al. [19] have investigated laminar mixed convection in shallow
inclined cavities using numerical simulation. They showed the influence of cavity
inclination on the flow, thermal and mass fields for inclination angles ranging from
0° to 30°. Ahmed et al. [20] examined the mixed convection from a discrete
heat source in enclosures with two adjacent moving walls and filled with micropo-
lar nanofluid. It was noticed that average Nusselt number along the heat source
decreases as the heat source length increases while it increases when the solid
volume fraction increases. Sheremet and Pop [21] analyzed the mixed convec-
tion in a lid-driven square cavity filled by a nanofluid using Buongiorno’s mathe-
matical model. They found that Richardson number and the moving parameter
play a dominant role in the transfer of heat and mass and other flow charac-
teristics within a cavity. Sheikholeslami et al. [22] conducted numerical study
on MHD free convective alumina-water nanofluid flow taking into account ther-
mal radiation and observed the enhancement in the average Nusselt number with
Rayleigh number, nanoparticles volume fraction and radiation parameter while
it declined with a growth in Hartmann number and viscous dissipation parame-
ter. In another study, Sheikholeslami [23] utilized Ko-Kleinstreuer-Li formulation
simulating the nanofluid flow in a porous channel. KKL correlation was applied
to calculate the effective thermal conductivity and viscosity of nanofluid. Sheik-
holeslami and Rashidi [24] considered the influence of space dependent magnetic
field on free convection of FesO4-water nanofluid. Mixed convective flow in an in-
clined square enclosure saturated with a nanofluid was discussed by Abu-Nada and
Chamkha [25] with the conclusion that the Richardson number plays a vital role
in heat transfer process and flow properties inside an enclosure. Also, it was
anticipated that substantial heat transfer could be enhanced due to existence of
nanoparticles and this would be attained by inclination of cavity at different val-
ues of Ri. Mixed convection in an inclined two sided lid-driven cavity filled with
nanofluid utilizing two-phase mixture model was propounded by Alinia et al. [26].

It was observed that augmentation of SiO; nanoparticles enhances more heat



transfer as compared with pure fluid and inclination angle affects a lot on the flow
characteristics at high Richardson number. Sivasankaran et al. [27] considered a
lid-driven inclined cavity with discrete heating and found that more transfer of
heat was observed at cavity inclination angle of v = 30°. Mixed convection of
Cu-water nanofluid in an inclined lid-driven cavity utilizing the lattice Boltzmann
method was investigated by Karimipour et al. [28] and it was found that move-
ment of cavity lid at Ri = 0.1 has more effects on nanofluid than that of Ri = 1.
Also, introducing 4% of C'u-nanoparticles in the base fluid increases 50% of average
Nusselt number for inclination angles of cavity ranging from 0° to 90° at Ri = 0.1
and Re = 100. Larger concentration of nanoparticles increases the average Nus-
selt number faintly at R: = 1 for inclination angle equal to 0° but it enhances
rapidly average Nusselt number for inclination angle v = 90°. Das and Tiwari [29]
numerically examined the problem of mixed convection of differentially heated en-
closure saturated with Cu-water nanofluid and their conclusion showed that the
average Nusselt number increases significantly with the augmentation of nanopar-
ticles volume fraction keeping Richardson number at unity. Subdani et al. [30]
numerically investigated the flow and heat transfer in a square cavity filled with
alumina-water nanofluid, with a heat source at the bottom wall. In their study,
enhancement in heat transfer was observed with increasing Reynolds number for
constant Rayleigh number and heat source placed at the centre of the bottom
wall. A lid driven enclosure saturated with nanofluid was investigated numeri-
cally for the mixed convection by Muthtamilselvan et al. [31] and found that
fluid low and heat transfer were affected both by the aspect ratio of the cavity
and nanoparticles volume fraction. A similar study was performed numerically
for natural convection by Ho et al. [32] in a two-dimensional cavity. Their study
revealed that heat transfer in a cavity was enhanced due to augmentation in the
concentration of copper-water nanoparticles at some fixed Grashof number. Nat-
ural convective heat transfer in a cavity saturated with alumina-water nanofluid
using numerical simulation was performed by Khanafer et al. [33]. It was seen

that the heat transfer increases or decreases due to the model that was used for



viscosity and thermal conductivity of the nanofluid. Mahmoudi et al. [34] nu-
merically studied the mixed convection flow in a vented square cavity filled with
copper-water nanofluid. The special criteria they adopted was the consideration
of inlet and outlet ports to configure at four different places. They observed their
influence on the flow and heat transfer and it was noticed that Reynolds number,
Richardson number and nanoparticles volume fraction have significant effect on
the numerical characteristic of the flow field. Furthermore, they noticed that the
the flow fields and the temperature distribution inside the cavity were dependent

on the location of the inlet and outlet.

1.1.2 Magnetohydrodynamics

The effect of magnetic field on convective heat transfer in a cavity was extensively
investigated by many researchers [35-43]. Shirvan et al. [44] investigated the ef-
fect of magnetic field on mixed convective heat transfer in a ventilated square cav-
ity. It is worthy noted that the heat transfer rate decreases with an increase in the
Hartmann number. Malvandi and Ganji [45] discussed free convection in a cavity
saturated with alumina-water nanofluid with magnetic field effect. Observation in-
dicates that magnetic field increases the slip velocity and the velocity gradient near
the wall but reduces the heat transfer rate. Mixed convection of shear-thinning
fluids in a cavity with MHD was investigated by Kefayati [46]. For an electrically
conducting fluid, the influence of Lorentz force is to inhibit convection flow by re-
ducing the fluid velocity so that the existence of external magnetic field becomes
an active technique in manufacturing industries. Orientation and strength of mag-
netic field play a vital role in the behavior of flow. Applied magnetic field influences
the suspended particles and reshuffles their concentration in the fluid which effec-
tively changes the heat transfer characteristics of the flow. Mixed convection in a
porous cavity with MHD effect using numerical approach was examined by Mo-
han and Satheesh [47]. Analysis shows that MHD effect plays an important role
in the dynamics of temperature and concentration which depend on the aspect

ratio and Hartmann number. Elshehabey and Ahmed [48] have investigated MHD



effect on mixed convection in a cavity saturated with a nanofluid. It was shown
that inclined magnetic field cease the fluid flow. Selimefendigil and Chamkha [49]
analyzed the MHD mixed convective, non-Newtonian power law fluid in a cavity
with an uneven bottom wall considering the impact of an inclined magnetic field
and found that the natural convection plays a vital role for a shear-thinning fluid.
Sheremet et al. [50] considered a wavy-walled cavity saturated with a nanofluid
under the influence of magnetic field. It has been perceived that the average Nus-
selt number at vertical hot wavy wall is an increasing function of the magnetic

field inclination angle « for 0 < v < 7/2 and decreasing for 7/2 < vy < 7.

1.1.3 Isothermal Blockage Inside a Cavity

Heat transfer in a cavity with one or more obstacles inside has drawn the attention
of many researchers in the last decade. Esfe et al. [51] discussed the mixed con-
vective nanofluid flow in an enclosure with a hot obstacle inside. Their conclusion
showed that the nanofluid descends downward along the right wall, moves horizon-
tally above the obstacle to the left corner of the cavity along the bottom wall and
then moves upward and forms an eddy inside the cavity. Increasing the Richardson
number, clockwise rotating vortex becomes larger due to the effect of the obstacle.
Islam et al. [52] examined the mixed convection in a lid driven cavity with an
isothermal block inside and found that for any size of blockage kept at random
place in a cavity, the average Nusselt number changes only when the Richardson
number exceeds the order of 1. For Richardson number more than 1, average
Nusselt number increases speedily. Moreover, optimal situation for heat transfer
was acquired to maintain the block at the top left and bottom right corner of the
cavity. Oztop et al. [53] considered the fluid flow due to combined convection in
lid driven enclosure having a circular body. It was indicated that the circular body
played a role of control parameter for the heat and fluid flow. Billah et al. [54]
investigated the mixed convection in a lid-driven cavity with a heated circular hol-
low cylinder and found that the heat transfer and fluid flow are strongly dependent

on the diameter of the hollow cylinder. Considerable influence of cylinder on the



flow for the cases of forced, mixed and natural convection was observed. For the
fixed Richardson number, cylinder augmented the heat transfer with increasing
diameter. Mehrizi et al. [55] analyzed the mixed convection in a ventilated cavity
with hot obstacle considering the influence of nanofluid and outlet port location.
They have shown that the heat transfer enhanced with increasing the nanopar-
ticles volume fraction for various Richardson numbers and outlet port positions.
Moreover, an augmentation in the Richardson number caused to change the main
flow direction from top to bottom of the obstacle. Rahman et al. [56] examined
the magnetohydrodynamic mixed convection and Joule heating in a lid driven cav-
ity having a square block inside and observed that the flow field and temperature
profile mainly depend on the magnetic parameter, Joule heating parameter and
size of the inner block for the mixed convection regime. Khanafer and Aithal [57]
discussed the mixed convection flow and heat transfer in a lid driven cavity with a
circular cylinder. It was observed that the optimal heat transfer results could be
obtained while placing the cylinder near the bottom wall for different Richardson
numbers. For natural and mixed convection, the average Nusselt number increases
with an increase in the radius of the cylinder for various Richardson numbers. Se-
limefendigil and Oztop [58] considered the MHD mixed convection in a nanofluid
filled lid driven square enclosure with a rotating cylinder inside and their conclu-
sion showed that the heat transfer enhancement for Ri = 10 was 17% more than
that for R = 1. A numerical study on the mixed convection in a lid driven cavity
with a circular cylinder has been conducted by Zheng et al. [59]. They showed
that the fluid low and heat transfer characteristics in the cavity strongly depend
on the position of the circular cylinder as well as on the relative magnitude of the
forced convection and the natural convection caused by the movement in the top

wall of the cavity and the heating at the hot bottom wall, respectively.



1.1.4 Porosity

Mixed convective heat transfer in porous media has attracted a lot of researchers
due to its demanding applications in science and engineering including civil, chem-
ical and mechanical engineering. Heat exchangers [60], boilers [61], oil and gas
flowing in reservoirs [62], water filtration [63], ground-water flows [64], transfer
of drugs in tissues [65], fuel cells [66], packed-bed energy storage systems [67],
thermal insulation [68, 69] and fluidized beds [70] are some examples out of many
applications. One can found comprehensive discussion on the the heat and mass
transfer in porous media in the books [71-73]. Sheremet and Pop [74] investigated
natural convective nanofluid flow in a porous cavity and unveiled that the average
Nusselt number and Sherwood number amplify with an increase in the buoyancy
ratio parameter. Chamkha and Ismael [75] examined the natural convection in
the porous enclosure saturated with nanofluid and found that the Nusselt number
increases as thickness of porous layer reaches a certain critical value and after
that it is reduced. Ahmed et al. [76] considered the MHD and viscous dissipation
effects on the mixed convective flow in a porous cavity and observed that the av-
erage Nusselt number increases with an augmentation in the viscous dissipation
and Darcy number. Rashad et al. [77] discussed the free convective nanofluid flow
in a porous cavity considering the effect of magnetic field and internal heat gen-
eration. More study on nanofluid saturated porous cavity can be consulted in the

literature [78-88|.

1.1.5 Entropy Generation

Entropy is defined as the degree of disorder in a closed but varying system, a
system in which transfer of energy takes place in one direction only. Entropy
generation that signifies the amount of irreversibility in a process is the criteria
for the performance of the engineering machinery. Thermodynamic efficiency of a
system is reduced due to entropy generation. Entropy analysis tells us the part

of the physical model or system in which energy is dissipated to a greater extent.



Basics to minimize the entropy generation was examined by Bejan [89]. Proto-
typical structure of heat transfer procedure in various industries is acquired with
an accurate measurement of entropy generation since it clarifies waste of energy
in a process. Hence, entropy generation is examined in the mixed convection of
pure and nanofluid [90-100]. Hajialigal et al. [101] discussed the influence of mag-
netic field on the mixed convection and entropy generation in nanofluid saturated
with three dimensional microchannels. It is highlighted that the entropy gener-
ation reduces with a growth in the magnetic field strength and the solid volume
fraction. Mehrez et al. [102] investigated the impact of MHD on the transfer of
heat and entropy generation in a cavity filled with nanofluid. It was found that
an augmentation in the nanoparticles volume fraction results an enhancement in
the average Nusselt number and entropy generation. It depends mostly on the
strength and inclination angle of the magnetic field. Kefayati [103] has considered
simulation of the power-law fluids with Soret and Dufour effects in an inclined
porous cavity. Observations show that the entropy generation declines with an
enhancement in the inclination angle from 40° to 80°. Mixed convection and en-
tropy generation in a trapezoidal enclosure filled with nanofluid considering the
influence of magnetic field were conducted by Aghaei et al. [104]. It was shown
that the influence of fluid friction on entropy generation is negligible. Entropy is
mostly generated due to the heat transfer. Selimefendigil and Oztop [105] investi-
gated the impact of heat generation and magnetic field in a cavity saturated with
nanofluid. It was noticed that the heat transfer reduces due to the existence of
different obstacles. Entropy analysis of the MHD pseudo-plastic nanofluid flow
through a vertical porous channel with convective heating was discussed by Das et
al. [106]. It was found that the temperature of the fluid enhances with increasing
Eckert number, thermal conductivity parameter and Biot number. Also, an in-
crease in the power-law index caused the entropy generation rate to decline. Main

source of entropy and heat transfer irreversibility was the channel wall.



1.2 Thesis Contributions

In this thesis, numerical simulation of mixed convective alumina-water nanofluid
flow in a double lid driven square cavity has been executed. The Galerkin weighted
residual finite element method has been utilized for spatial discretisation and the
Crank-Nicolson implicit scheme is applied for temporal discretisation. Initially, we
consider the influence of cavity inclination angle on the mixed convective nanofluid
flow in a double lid-driven cavity. Then the magnetohydrodynamics mixed con-
vective nanofluid flow and entropy generation in a double lid-driven square cavity
with discrete heating was examined. Furthermore, the mixed convection in a
nanofluid filled lid-driven square cavity with an isothermally heated square block-
age inside with magnetic field effect has been analyzed. At the end, the mixed con-
vective nanofluid flow in a lid-driven square porous cavity using Ko-Kleinstreuer-
Li model considering the effect of thermal radiation and inclined magnetic field
was discussed. Furthermore, the behaviour of the average Nusselt number, the
entropy generation due to heat transfer, fluid friction, magnetic field, the total
entropy generation, average temperature, kinetic energy and Bejan number have
been investigated under the influence of different physical parameters like Reynolds
number, Richardson number, Hartmann number, Eckert number, Darcy number,
nanoparticles volume fraction, cavity inclination angle, magnetic field inclination
angle, porosity and thermal radiation parameter and discussed physically in detail
by means of streamlines, isotherms and plots.

All the computations during the preparation of this thesis are performed by us-
ing the finite element solver package FEATFLOW. The FEATFLOW is a general
purpose open source FEM software package particularly for the simulations of the

CFED problems. A brief introduction can be found at http://www.featflow.de.
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1.3 Thesis Outline

This thesis is further subdivided in the following way.

The basic governing equations, discretization techniques and solution method-

ology have been discussed in Chapter 2.

The effect of the inclination angle on the mixed convective nanofluid flow in a
double lid-driven cavity has been discussed in Chapter 3. The contents of this
chapter are published.

MHD mixed convective alumina-water nanofluid flow and entropy generation in
a lid driven square cavity is presented in Chapter 4. The contents of this chapter

are published.

Mixed convective alumina-water nanofluid flow in a lid-driven square cavity with
an isothermally heated square blockage inside under the influence of magnetic field
effect has been considered in Chapter 5. The contents of this chapter are pub-
lished.

MHD mixed convection in alumina—water nanofluid filled square porous cavity
using KKL model considering the effects of non-linear thermal radiation and in-
clined magnetic field has been elaborated in Chapter 6. The contents of this
chapter are published.

The whole analysis has been concluded in Chapter 7.



Chapter 2

Governing Equations and

Discretization Techniques

In this chapter, we briefly discuss the basic laws governing the mathematical mod-
els discussed in this thesis. Since the entropy generation will be calculated in the
forthcoming study, therefore the entropy generation and its principles have also
been listed. The finite element method has been explained by taking an example
of an unsteady heat equation along with semi-discretizations in space and time.

Furthermore, the mixed finite element method has also been discussed.

2.1 Fundamental Laws

2.1.1 Law of Conservation of Mass

“The continuity equation or the law of conservation of mass [107] is written as

dp B

11
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where p is density and V is the velocity of fluid. For incompressible fluids, the

above equation can be expressed in the following way

V.V =0. (2.2)

2.1.2 Law of Conservation of Momentum

The mathematical expression for law of momentum is

DV

The Cauchy stress tensor for an incompressible flow is —pI 4+ S in which p is the
pressure, I is the identity tensor, S is the extra stress tensor, b is the body force

and % is the material time derivative. The Cauchy stress tensor and the velocity

field are

Oxe Toy Txz

T = Ty$ Uyy Tyz , (24)
Tze Tzy Ozz
V= [U(l‘,y, 2)7U(l‘7y’ Z)JU(%,% Z)]) (25)

where o0, 0y, and 0., are the normal stresses, 7.y, Tzz, Tyz, Tyz, Tex and 7y
are shear stresses and u, v, w are the velocity components along the x, y and

z-directions respectively. Eq. (2.3) in scalar form yields

=~ "oy T 6 + by, (2.6)

ov ov Ov v\  O(1ye) | O(oy,)  O0(1y.)
p( + )— G gl g by (2.7)

p(aw ow | Ow a_w) O(rze) | O(1y) | 0(022)

, <au u O, 8u) O0za) | OTay) | O(7az)

=0t o + pb., (2.8)
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where b,, b, and b, show the components of body force along the z, y and z-axes,

respectively. The above equations for two-dimensional low become

ou ou ou\  0(0z2)  O(Tay)
p(at +“ax+“ay) = " or + ay + pby, (2.9)
v dv v INye) | Ooyy)
- - R 2.1
P <8t o +"’ay) or oy P (2.10)

2.1.3 Equation of Heat Transfer

According to first law of thermodynamics, the heat transfer equation is

de

P = 7L —V.q+ pry, (2.11)

where ¢ = C,T is the internal energy, C, is the specific heat, T is the temperature,
L = VV is the velocity gradient, q = —kVT is the heat flux, k is the thermal
conductivity and 7, is the radiative heating. The above equation in the absence

of radiative heating is

dT
pC

vy =T VV A kV*T. (2.12)

2.2 Magnetohydrodynamics

The magnetohydrodynamics is the study of the magnetic properties of an electri-
cally conducting fluid. The field of MHD was introduced by the Swedish plasma
physicist and the Nobel Laureate Hannes Alfvén. The basic perception of MHD
is that an electromagnetic force exerts an influence not only on the flow of con-
ducting fluid but it also changes itself under the influence of the flow. In general,
the system of equations illustrating the movement of the conducting fluid in the

presence of an external magnetic field, is composed of the Navier-Stokes and the
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Maxwell equations [108]. The Navier-Stokes equation of motion including electro-

magnetic body force (Lorentz force) F = j x B is

\Y 1 1
8@7 V)V = VP vV + SUxB). (2.13)

The continuity equation for incompressible fluids is

V.V =0 (2.14)

The Ohm’s law for slowly moving medium (medium velocity should be much

smaller than the velocity of light) in a magnetic field is
j=0c(E+V xB). (2.15)

The Maxwell equations are

%—]? — (VXE), (2.16)
= %(v < B) - e%—f, (2.17)
VB =0, (2.18)
V.E= g. (2.19)

Here V is the fluid velocity, o is the electrical conductivity, E is an electric field,
P is the pressure, v is the kinematic viscosity, B is the magnetic induction, p is
the density, j is an electric current. The Eq. (2.13) illustrates the movement of
a conducting fluid in the magnetic field and includes the force of pressure gradi-
ent VP, viscosity vV?V inertial force (V.V)V and Lorentz force j x B on the
element of moving medium. The existence of a Lorentz force in the conducting
fluid due to the interaction of the current j with the magnetic field B, shows the

major difference between the hydrodynamics and the magnetohydrodynamics.
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2.3 Principle of Entropy Generation

The concepts of entropy and irreversibility, derived from the second law of ther-
modynamics, were introduced by the German physicist Rudolf Clausius in 1856.
According to the second law of thermodynamics, the entropy of a closed system al-
ways increases with the time. It is constant in the case when a process is reversible
or in equilibrium. The enhancement in the entropy elucidates the irreversibility
of the natural processes.

Entropy is the thermodynamic characteristics just like pressure and temperature.
The changes in a closed system subject to entropy are expressed by the ratio Q/T,
where () is net heat transfer and 7' is temperature. Entropy increases as 1" de-
creases or () increases. In a reversible process, a small increase in the entropy (d.S)
of a system is defined as a ratio of the small transfer of heat (§Q) to a closed sys-
tem divided by the common temperature (7') of the system and the surroundings

which supply the heat, i.e.,
_ @

as -

(2.20)

Eq. (2.20) is valid for an ideal, closed and reversible process. For an actually
possible small process in an isolated system, the second law requires that the

above equation changes to an inequality given by

s > %Q (2.21)

2.4 The Finite Element Method

The finite element method is utilized for the spatial discretization of the problems
considered in this thesis. Initially, this method was used to solve the elasticity and
structural mechanics problems but these days it has become very beneficial for
the solution of partial differential equations arising in the fluid mechanics, solid
mechanics and engineering. In this mathematical technique, the original strong

form of the partial differential equations is transformed to variational or weak form
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by multiplying with a weight (or test) function and integrating over the domain.
We will apply Galerkin weighted residual finite element method in the subsequent

work.

2.4.1 Weighted Residual Formulation

We explain the weighted residual finite element method with the help of a two

dimensional, steady, linear problem

Lu = f in Q (2.22)

u=20 on 00, (2.23)

with Q C R? and L is the Laplacian operator. The function u is defined as
u : 2 — R and if the solution u is an exact, then the residual R(u) = Lu — f =0,
otherwise R(w) # 0 for an approximate solution @ ~ u. Our target is to search for
a function wy, that forces residual equal to zero by a suitable function [109]. The
Eq. (2.22) is in strong form. In finite element method we suppose the integral form
also known as the weak or variational form of Eq. (2.22). First, the equation is
multiplied by an appropriate test function w and then integrated over the domain
() to obtain

/(Lu — HwdQ=0, forall weW, (2.24)

Q

where W is the test space. Applying the Green’s theorem to Eq. (2.24) and

incorporating the boundary condition, we have

a(u, w) = / fwdQ, foral weW, (2.25)
Q
where
Ooudw  Oudw
= —— 4+ —— ) dQ, forall 2.2
a(u,w) /Q<8x3x+8yay>d’ orall weW, (2.26)

is the bilinear form. We say that a(.,.) is a bilinear formon VxVifa : VxV — R,

i.e., a(u,w) € Rforu, w € V. Let us assume that the function u be approximated
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by the trial function u; € Uj, of the form
N
Up ~ Z Cj(z)j S Uh, (227)
j=1

where Uy, ¢;, ¢; are the finite dimensional trial space, unknown coefficients (to be
determined) and basis functions, respectively. We must also replace the infinite di-
mensional test space W by a finite dimensional test space W), € W. Moreover, the
computational domain is subdivided into a number of non-overlapping elements.

Finite dimensional test space can be expressed as

N
Wy, ~ Z dﬂﬂz € Wh, (228)
=1

where v; are basis functions from the test space. Incorporating the approximate

solutions in Egs. (2.25) and (2.26), these can be rewritten as

o 8uh 8wh 8uh Owh .
a(uh’wh)_/g(ﬁx pe + o 8y) dQ—/Q fwy, dQ2. (2.29)

Our target is to compute c¢; where basis functions are predefined. The expres-
sion (2.29) holds for all possible choices of d;, i = 1,2,..., N. Thus the unknown
coefficients ¢; for the approximate solution w; can be determined by solving the

following system of equations

N
> cjaldy, ) = / f; dQ, Yi=1,2,.., N. (2.30)
j=1 @

There exist several methods of weighted residuals that depend on the choice of v;
for example the collocation method and the least square method. If one selects
1; = ¢;, this method is known as standard Galerkin method and the same method

is utilized in this work.
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2.4.2 The Unsteady Heat Equation

We consider an unsteady two dimensional heat equation, i.e.,

2 2
% - <% + g—yq;) =f in Q. (2.31)
The scaler unknown w is a function of both space and time variables and v : Q2 — R
with Q@ C R% The time domain is taken as [0, 7] that is further divided into N
subintervals [ty_1,tx], &k = 1,2, ..., N such that 0 = ¢y, t,_1 <ty and txy = T. The
time step is represented by At =t —t,_1, k = 1,2,..., N. To obtain a solution
at an initial time step on the full domain, an initial condition and two boundary
conditions are required. After multiplying Eq. (2.31) by the test (weight) function

w and integrating by parts, we get

ou oudw Ouldw
— 0= Q+B.T. 2.32
/Qe(atw—l—axax—l—ayay)d Qefwal + (2.32)

Here, B.T. represents the boundary integral term. The Eq. (2.32) is the variational
or weak form of the problem (2.31). For solution, we apply the method of lines in
which semi-discretiation of space is performed first to obtain a system of ordinary
differential equations, then the semi-discretiation in time is employed to get an

algebraic system of equations.

2.4.3 The Semi-discretization in Space

The approximate solution over an element can be given by

NEN
(x,y,t) Z ()i (z,y) (2.33)
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Substituting the approximate solution into the weak form, we get

NENau NEN AN NEN AN
LS 5s) e (S k) e (X 5) o

<2

fwdQ+B.T.  (2.34)
Qe

Utilizing the Galerkin finite element method, we choose a weight function w =

&(z,y) to get the following i'" equation of the elemental system

s

NEN 8u] NEN a6, \ o¢ NEN a6, \ o¢
LA(E Ssen)er (S oat) 3 (S 50)

F&AQ+ BT, (2.35)
Qe

Taking the summation sign outside of the integral
NEN

0&; 0; 95 0&;
YL GE) L (G5) e

> | [ gean| G2+
j:1 Qe at

F&dQ+B.T.  (2.36)
Qe

The final equation can be expressed in the following compact form
(M} + (K [w] = {F°}, (2.37)

where u° is the nodal unknown vector and {u} represents the time derivative for
the unknown. M€ K¢ and F°¢ are the mass matrix, stiffness matrix and force
vector at an element level, respectively. For the sake of brevity, the boundary
integral B¢ is included in F°. Following is the global system that is obtained after

assembling the local (element level) system

[M{a} + [K][u] = {F}. (2.38)
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2.4.4 The Semi-discretization in Time

— Tt

tk2 tk1  tk ke tke2
— At—>

Figure 2.1: Time domain discretization.

The Eq. (2.38) is not a system of simple algebraic equations but it is a set of
ordinary differential equations due to presence of the time derivative term. For
time discretization, we assume the time domain given by the Figure 2.1. Initial
condition gives the solution at zeroth time level k£ = 0. The solution is obtained
at the next time level utilizing the information at a previous time level. Here, t;
represents the present time level where the solution is known and ¢, is the next
time level where we want to find the solution. At is the time step between the both
time levels k£ and k4 1. For simplicity, we will assume At to be constant for the full
domain although it can be considered to vary with time for increasing efficiency.
For discretization of the time dependent problems, following three schemes are

frequently used

e Crank-Nicolson method
e Backward Euler method

e Forward Euler method

Since Crank-Nicolson method is utilized in this thesis therefore it becomes impor-

tant to discuss some details of it.

2.4.4.1 The Crank-Nicolson Scheme

Following formulation serves as a base for this scheme

{an} + {w}  {wen} — {w} 2
5 - N + O(AY. (2.39)
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It has an accuracy of order two and it is somewhat an average of forward and
backward difference schemes. For its derivation, we write Eq. (2.38) for both time

level £ and k£ + 1 in the following way

2 ) g = (240
e A, = (Pl (2.41)

After multiplying these equations by 1/2, adding them, using Eq. (2.39) to dis-
cretize the time derivative terms and rearranging them, we obtain the following

form

(b = (004 5000r) [ (190 5000 ) ke s
At }

+ 7({F}k +{F}rt1) (2.42)

2.5 Mixed finite Element Method

The mixed finite element method is utilized to obtain approximate solutions for
coupled partial differential equations with more than one unknowns, simultane-
ously. We want to find the velocity, temperature and pressure from our governing
equations, at the same time. So, the mixed finite element method is employed
to solve the system of equations. Here, we require different finite element spaces
for various unknowns. To ensure the convergence of the solution, these different
spaces are interrelated in such a way that the famous discrete inf-sup condition,
i.e., the Ladyzhenskaya-Babuska-Brezzi (LBB) condition given in expression (2.43)
is satisfied [110, 111], i.e.,

inf  sup —b(vh’ )

> . (2.43)
IhERR v, eV}, ||Uh||V||CIh||Q
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We have solved the governing equations of Chapter 3 in space by the noncon-
forming Stokes element @vl /Qo while the problems of the Chapters 4, 5 and 6 in
space are solved by the conforming Stokes element Q,/P#*¢. A brief description

of these finite element pairs is given in the following subsections.

2.5.1 The Nonconforming Stokes Element @vl /Qo

When the finite element space is not a subspace of the solution space, this approach
is called nonconforming. This is a recently established nonconforming rectangular
element [112]. The shape function consists of four terms as [1,z,y,2? — y?] and
there exists its four mean values along the edges of the rectangle. Let T} be the
regular decomposition of the domain €2 C R, into quadrilaterals respectively hex-
ahedrons denoted by 7', where the mesh parameter i > 0 describes the maximum
diameter of the elements of T),. By 07}, we denote the set of all (n — 1)-faces I'
of the elements T' € T}. The family 7}, is assumed to satisfy the usual uniform
shape condition. Accordingly, the generic constant ¢ used below is always inde-
pendent of h. In defining the parametric rotated multilinear element, one uses the
unit n-cube (with edge parallel to the coordinate axes) as a reference element T'.
For each T' € T}, let ¢p : T — T be the corresponding n-linear 1 — 1 transforma-

tion. We set
@1<T) = {qo w;l *q € span (1a$i7$i+1>37? - $12+1>i =1,...n)} (2.44)

The parametric rotated multilinear element has a nonparametric counter part. For
any element T' € Ty, let {§;} denote a coordinate system which is obtained by
connecting the center points of any two opposite (n—1)-faces of T. Since the mesh
family 7}, is uniformly regular, the linear transformation between {z;} and the

Cartesian system {¢;} is bounded independently of h. On each T' € T}, we set

Qi(T) = {govy' 1 q € span(1,&, 41,8 — Eyyi=1,..,n)}. (2.45)

The @ element consists of a quadrilateral with constant interpolation.
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2.5.2 The Conforming Stokes Element (Q,/P*

The domain is discretized into a number of non-overlapping quadrilateral elements
2, n € N. The biquadratic element Q) [113] is defined on each quadrilateral with 9
degrees of freedom as shown in Figure 2.2. Moreover, we use a reference coordinate
system (&, n) for the construction of local shape function on the physical element.
Now, we define a bilinear mapping between the physical and reference element by
G, : Qn — Q,. The inverse mapping G, : Q, — ﬁn is applied to get back to the
physical coordinate system (z,y). Figure 2.2 demonstrates both the physical and
reference coordinate systems. The value of shape function on each node is defined
by

1af =1

04f j#i,

0;(T:) = iy =

where z; € (NZn denotes the 7th node in ﬁn These nine shape functions are bi-
quadratic polynomials and can be expressed by {1,&,n,&n, &% 0%, &, En?, E20%}
where —1 < ¢ < 1 and —1 < n < 1. Then, the space Q2(2,) on the physical

element is defined by

Q2(,) = {hoG,' : h € span {1, z,y,xy, 2*, 9%, 2y, vy, 2°y*}} (2.46)

P Ge i
Y
d D C (1.1)

Ge_j

~

7 X (-1.-1) (1.-1)

Figure 2.2: Mapping between biquadratic physical and reference element.

The discontinuous P; finite element space contains piecewise polynomials which

are discontinuous across the boundaries that are common to the other element.
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Three degrees of freedom exist at the centre of each element as shown in Figure 2.3.
In mapped approach, the shape function on the reference element can be expressed

in the following way

gbl(g?n) - ]-7
$a(€,m) =€,
$3(&,m) = 1.

The space P;(€2,,) on the physical element, is defined by

Pi(Q,) =1{hoG, ' hcspan{l,z,y}}. (2.47)

y , G, 7

~ o e ay T ap
A EI—) 0.0) ]
— —> ¢

Ge_"r
>
B
>x (-1-1) d a

Figure 2.3: Mapping between discontinuous P; physical and reference element.



Chapter 3

Mixed Convective Nanofluid Flow

in a Cavity

3.1 Introduction

In this chapter, numerical simulations are performed to examine the effect of in-
clination on the heat transfer of Al,Os—water nanofluid for mixed convection flow
in a partially heated double lid driven inclined cavity. Two heat sources are af-
fixed at some portion of the bottom wall of the cavity while the remaining part
of this wall is considered as adiabatic. The moving vertical walls and the top
wall are kept at constant cold temperature. Buoyant force is responsible for the
flow along with two moving vertical walls. The governing equations are discretized
with the help of finite element method in space and the Crank-Nicolson in time.
Newton’s method is utilized to linearize the system of nonlinear equations and the
associated linear system is solved by the Gaussian elimination method in each
time level. Numerical results are presented and analyzed by means of streamlines,
isotherms, tables and some useful plots. Impact of emerging parameters on the
flow, in specific ranges such as Reynolds number (1 < Re < 100), Richardson
number (0.01 < Ri < 10), nanoparticle volume fraction (0 < ¢ < 0.04) as well

as inclination angle of cavity (0° < 1 < 45°) are investigated and findings are

25
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exactly of the same order as that of the previously performed analysis in the lit-
erature. Calculations of average Nusselt number, average temperature, average
entropy generation due to heat transfer and fluid friction and kinetic energy are
the main focus of this chapter. This study is organised in the following way: Sec-
tion 3.2 illustrates the problem configuration. Section 3.3 contains information
about space and time discretizations of the governing equations, the numerical
method, code validation and grid independence test. Results based on the numer-
ical simulation have been elaborated in Section 3.4. Finally, conclusion has been

drawn in Section 3.5.

3.2 Problem Formulation

3.2.1 The Problem Configuration

Alumina-water nanofluid

V=-Vy

V=-Vy

Figure 3.1: Schematic diagram of the physical model.

We consider a lid driven square cavity inclined at an angle ¢ and filled with

nanofluid that is unsteady and incompressible. Two heat sources are fixed along
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Physical properties H,O AlyO4

p (kg m™3) 997.1 3970

C, (Jkg 'K 4179 765
E(Wm™! K1) 0.613 25

B (K1) 21 x 1075 1.89 x 100
d, (nm) - 47

Table 3.1: Thermo-physical properties of water and alumina [37].

the wall at the bottom at constant temperature (see Figure 3.1). L represents the
width of the cavity, while T}, is the prescribed constant hot temperature, T, is the
constant cold temperature. Distance of heat sources from both the side walls is the
same. It is assumed that the slipping effect between any two phases is negligible.
Viscous dissipation in the energy equation is neglected [93, 96]. Nanoparticles
used during this study have certain thermo-physical properties [114-116] that are
tabulated in Table 3.1. Density variation is taken into consideration by using the

Boussinesq approximation which is apparent as the buoyancy force.

3.2.2 The Governing Equations

Governing equations of continuity, momentum and energy [37] under the above-

mentioned assumptions are given by

ot ox oy Pny O Png \ 022 0y?
+ (’fﬂg(T—TC) sin v, (3.1)
nf
ot oz oy pusOy Pny \ Ox? Jy?
+ g 1) cosu, (3.2
nf
ou ov
g + o 0, (3.3)

2 2
or oT or _ o (8 T 0 T) ' (3.4)

a2 " oy
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3.2.3 The Dimensionless Governing Equations

Problem variables regarding the non-dimensional form are implemented as follows

x Y U v T-1T, D tVy
X=2v =2 U= — V=" §=_—-_""° p__+ 2w
L L v v T, — T, V2 LT L
wlL gBATL? Vs . Gr T2 L2
Re= 2" qr=9"22" p " R Gp = g0
T T T T T Ty YT R T T (T, - )Y

where V,,, v¢, oy and  are imposed lid velocity, kinematic viscosity, thermal
diffusibility and the coefficient of thermal expansion of nanofluid, respectively.

Dimensionless governing equations could be given as follows

U LU OU 0P 1 py U
or 0X Y 0X  Rep,s(1— 0X? 8Y2
. psﬁs )
+ Ri— [ 1— sin 3.5
Pnf( pfﬁf i 83)
oV oV OV 9P 1 p 0*V
o TV Y ey T Ty TRep =0 (axz aY2)
+ Ri2L <1—¢+ pSﬁS ) (cos )0 (3.6)
Pnf pfﬁf
ou oV
8_X + a—y = 0, (3.7)
00 09 00  an 1 (0% 0%
or " Vax T Vv T o Rerr <8X2 * aw) (3:8)

Associated with the problem, the boundary conditions are given by
U=0 V=-1 606=0, for X=0,1 and 0 <Y < 1,
U=0 V=0, =0, for 0 < X <1 and Y =1,

02 < X < 04,
0.6< X <0.8 andY =0,

0< X <0.2,

00
U:VZO,WZO for 04< X <06 and Y =0,

0.8< X < 1.



29

3.2.4 The Effective Nanofluid Properties

The effective density, thermal diffusivity, specific heat and the coefficient of ther-

mal expansion of the nanofluid [114, 115] could be expressed as follows

Py = (L=0) py+ dpp, (3.9)
(PCp)ns = (1 =) (pCo)s + G(pCy)p, (3.11)
(0B)ny = (L=0) (pB)s + & (pB)p- (3.12)

The Brownian motion has considerable influence on the thermal conductivity of
the nanofluid. Koo and Kleinstreuer [117] proposed the following model for effec-

tive thermal conductivity

keff = kstatic + kBroumiana (313)
3 (kp/kf — 1) ¢
(kp/kf + 2) - (kp/kf - 1) ¢ ’

Kstatic = Ky |1+ (3.14)

where k,, ky are the thermal conductivities of the solid nanosized particles and pure
fluid, respectively, kgaqie is the static thermal conductivity based on the Maxwell

[118] model, and kpgownian is the thermal conductivity proposed by the KKL model,

given by
4 kpl’ /
kBTownian =5x10 ¢pf(0p)f d g (Ta ¢’ dp)’ (315)
Pplp

where the empirical function ¢’ for the Al;Os-water nanofluid can be given by

J(T,¢,d,) = (a1 + azIn(d,) + azIn(¢) + a4 In(¢) In(d,) + asIn(d,)*) In(T)

+ (ag + a7 In(d,) + agIn(¢) + agIn(d,) In(¢) + aioIn(d,)?), (3.16)

with the coefficients a;(i = 1,2,...,10) being tabulated in Table 3.2. Koo and

Kleinstreuer [119] further proposed the following model for the effective viscosity
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due to micromixing in suspensions

kBroumian % 197

e — Mstatic rownian — Mstatic y 3.17
Heff = Pstatic T 4B Hstatic + ks Pr; (3.17)

where psatie = pr/(1 — ¢)*® is the viscosity of the nanofluid as given by the
Brinkman model [120]. Also, by incorporating the interfacial thermal resistence
Ry = 4 x 107%m?K/W, the original k, in Eq. (3.14) is replaced by kycss in the

form

Rf + == . (3.18)

Coefficients values Al,Osz-water

ap 52.813488759
s 6.115637295

as 0.6955745084
ay 0.041745555278
as 0.176919300241
ag -298.19819084
ay -34.532716906
as -3.9225289283
g -0.2354329626
a1 -0.999063481

Table 3.2: The coefficients values of alumina-water nanofluid [22].

3.2.5 The Entropy Generation

The entropy generation due to various physical sources can be written as follows:

kng | (OT\?  (OT\? n ou\®  [ov)?
s= () + () [+ 2L 2 (22 + (%
15 ox dy T ox oy
2
fnf (Ou  Ov
enfo( 22 4 22 3.19
kD (8y+8x)]’ (3.19)
where T = % The dimensionless entropy generation obtained from Eq. (3.19)

is given as follows:
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kg | (00N (00
ST—k—f[(a—x) “(av)

() (5))

g | (OU  OV\?
— || ==+ == 3.20
19%% <0Y + 0X ’ ( )
where Y is the irreversibility factor . It is expressed in the following
_wh( Vu Y (3.21)
YT \m-1) ‘
Let us write
St = Sur + SFr, (3.22)
where
knp | (00N> [ 06\
Sur=— || == — . 3.23
oS [(ax) * (ay) (3.23)
Here
2 2 2
L f ou oV ou oV
Y li? B ) = - — .24
Ser =X, [ ((ax) +<8Y oy Tax ) | (3:24)

where Syt and Spp represent the non-dimensional entropy generation due to the
heat transfer and fluid friction, respectively. Integrating Eq. (3.20) yields the

dimensionless average entropy generation St .y that could be given as follows

1
ST,avg = 5 / Srdi = SHT,avg + SFF,avg- (325)

Here, total volume of the nanofluid is represented by ¥, Surave and Sprpave are
respectively the dimensionless average entropy generation for heat transfer and

fluid friction.
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3.2.6 Calculation of the Nusselt Number

To determine the heat transfer characteristics, we are interested in computing
local and average Nusselt number on both of the discrete heat sources. Local

Nusselt number on each of the heat sources is given by

by L

Nu = , (3.26)
ky
where hy, is the heat transfer coefficient formulated as
q
h,r = ) 3.27
I T T (3.27)
Here ¢ is the wall heat flux per unit area given by
(T, —T.) 00
= —kyp—m"— ) 3.28
1 L v, (3:28)
As a result,
kny (00
Nu=——"|— 2
u s ( 8Y) , (3.29)
0.4 0.8
Nlgyg 51 = Nu dX, and Nugyg g2 = Nu dX. (3.30)
0.2 0.6

The overall surface average Nusselt number can be calculated as Nuayg 514+ N Uayg,52-

3.3 The Numerical Approach

3.3.1 Spatial and Temporal Discretization

The system of coupled non-linear partial dierential equations together with given
boundary conditions have been discretized numerically by the finite element for-
mulation. The numerical procedure used to solve the governing equations for the
present work is based on the Galerkin weighted residual method in which we have

used the nonconforming Stokes element @1 /Qo, where @1 element is utilized for
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the velocity and temperature and @)y element is used for the pressure (see 2.5 for
detail). The variational or weak form of the governing Eqgs. (3.5) - (3.8) is given

in the following:

/—w dQ) + / (Ug—g Vg}(i)wdfl— /—w d§)
1 pf 1 / 02U 82
T Repuy 1= g (6X2 Tove) v

- Pr PsBs®\ .
+ Rlpnf ( -9+ 015 ) (szﬁ)/@w s , (3.31)

oV ov
/—wdQ /(Ua—X Vay)wdQ— /—wdQ

Lp_f 1 / o0’V 0*V
e puy (1= 9% Q(aX2+8Y2 v

+I%;;:(1—¢%%ii§f>(GE¢0/QQM(KL (3.32)

%/(g%-+g¥>qd9—() (3.33)
%wdgw/ﬂ (Uaa—; Vg—f/)wdQ

N O;nff by /Q (6822(02 " 5;02) v e 53

Now, the infinite dimensional trial spaces U, V', § and P are approximated by Uy,
Vi, 0, and Py, respectively. Moreover, the infinite dimensional test spaces W and
() are approximated by the finite dimensional test spaces W), and Q,, respectively,

in such a way that

whEWhCHl(Q):{S:Q—>R:/|s(m)|2dx<oo,/|s'(x)|2dx<oo},
Q Q

qn € Qn C La(Q2) = {g:Q—)R:/Q|g(a:)|2dm<oo}.

After the finite dimensional approximation the Egs. (3.31) - (3.34) takes the form,

given as follows:

aU, ou, .. oU, B OP,
th dQ / (UhaX Vh 8Y>wh dQ——/a—th dQ2
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Lp_f 1 / 82Uh 82Uh

T Re s (L= 005 <8X2 Ty ) on 4

+ Rzp (1 G p558¢) (sin®) / Oy 2, (3.35)
nf

oV, av av P,
—hwh dQ + Zrhy h) wy, d9) = é;yh
Q

prB
2 2
+1pf /(th+8Vh)wth
Q

Re pny (1 —(b) : 0X?  0Y?
Rl (1 6+ ’;jfgf) (cos ) /Q B 9, (3.36)

oU, OV

89h 00 a0,

Oénf 1 829h 829h
= 0 . (3.
a; RePr / (aX2 T oyz ) d (3:38)

N
Using the FEM approximation U, (7, X,Y) = > U;(1)§;(X,Y), Vi(r, X)Y) =

j=1

ivjmg(x, Y), Ou(7, X,Y) = i 0,(T)&(X,Y) and Py(X,Y) = fl Py (X.Y)

N K
are the trial functions, similarly w, = > w; & and ¢, = > ¢; n; are the test
=1 i=1

functions. By the Galerkin finite element model for a typical element 2., the

Egs. (3.35) - (3.38) are transformed into the following system:

%%dﬂ +Uj / (U&% +V&8§9) dQ. = P / %dQ

Qe J@X

L pp 1 ‘ / 9§ 06 | 05 0&;
T Repy (I =o23 J, <aX ox Tavay ) K

r R < o4 psgs ¢) sinv; [ ggan. (3.39)

av; ¢ a¢ B 0&;
or ]gjfde + V/ (U& : + sz j) dQe - P /S;e JaYdQ

Qe

1 Py 1 / 9, 0&; af] 9&;
T Repy =057 |, (aX ox Tavay ) K

+Rz‘p—f( g Lol
Pnf psBy

Uj %ﬂl dQe + V;/ % i dQe = 07 (341)
Qe Qe

¢> COS QMJ fj&dQe, (340)

Qe
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/ % ¢ e1a0. + 0, / <U§Z‘9§J +V§Za§”> A,

Qe 87'

_ L[ (9896 | 98 06

= Repr” /Q (aX ox Tavay ) M (3.42)

The final system can be expressed in the following comprehensive form:

[M?J{u®} + [K*J[u®] = {F°}, (3.43)

ke ke o |y ]| ey
ey o | PO DR O O L | e |
K3 (K9] (K% (K || (P} (F3)
Lo i wgw | |y
where
v ) ] My
ey | M D) DG [ 5
M3 (M) [MF] (MY
) () (M) (M |

In the above expression (3.45), [M®] is the elemental block mass matrix in which
all the block matrices are zero except [Mj!] = [M7] = [Mj] = M = [, && d
where the variation of ¢ and j depends on the choice of the basis function and
the geometric element considered. Furthermore, {u®}, K® u® and F® in the
expression (3.44) are said to be the time derivative vector for the nodal unknowns,
the stiffness block matrix, the block solution vector for the nodal unknowns and
the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in F€. In stiffness block matrix,

11 1 pf 1 agj afz agj 8& 85] g]
K= e ((Gax +avar) (Ve +vegy) ) o

22 1 pf 1 af] agz afj 8& 85] 5]
K= Repuy T=05 / (<8X8X+8Y8Y> <ng ey )) e




36

ot _ Qg1 / (%a§i+%a§i) d96+/ (U&0§J+V§8£g> a0,
Qe Qe

7 ay RePr 0X 0X 0Y oY
K]l;l _ —Rz’ﬁ (1 — o+ p3B8¢) sin v §;& dSd. )
pnf pfﬂf Qe
K% = —RiPL <1 — o+ psm) costp [ &6 dQe,
Prf psBy Q.
9
3 (A
Kjlz = _/ n]aXdQQ’
. 0&;
K = —/ e,

o,
31 _ i
= [ Sman.

K® = / 0% 1402,
Qe

)4
12 21 33 34 41 42 43
KP=K!=K!=K}!=K!=K}=K; =0,
N N
U=> Ut V=> Vg
j=1 j=1

The above system (3.44) involves the nodal unknowns u® and the time dependent
terms {01°}. Time discretization of the nodal unknowns still remains to do. Time
discretization has been performed by utilizing the Crank-Nicolson method (see 2.4
for detail). We have utilized Q1/Qq, for space discretization (see 2.5 for detail).
After discretization in space and time, we obtain an algebraic system of nonlinear
equations. Integration regarding each term of these equations is performed by
Gaussian quadrature method. Then implementation of boundary conditions is
carried out and the linear algebraic equations are obtained from nonlinear equa-
tions by using the iterative Newton method. Some tolerance value is prescribed
to see the optimised minimum difference of the current values of the variables to
the previous iteration values by achieving the convergence of the solution of an it-
erative scheme. In other words, the adopted criterion to stop the iterative scheme
could be given as follows

Fn+1 —In

T | S 107 (3.46)

where U, V', P or 0 are denoted by a general variable I'. Superscript n represents

the iteration number in the above expression. Finally, these linear equations are
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computed by the Gaussian elimination method in each time level.

3.3.2 Code Validation and Grid Independence Test

Code validation has been presented in Table 3.3 for the mixed convection flow.
Code validation has also been performed for free convection results published in
the literature, given in Table 3.4, for various computed variables and the results
have an excellent agreement for both of the cases. Furthermore, the comparison
of our results with those of Ghaffarpasand [121] has also been demonstrated by
Figure 3.2. Grid independent solution for the problem is achieved through the
grid refinement study and results for average Nusselt number have been given
in Table 3.5 for Re = 100, Rt = 10, ¢ = 0.04, v = 15° together with the number of
elements #EL and the total number of all space degrees of freedom #DOFs which
are needed to represent the discrete velocity /temperature and pressure solution
with respect to the used discretization. A uniform grid at level { = 9 with #FL =
65536 is utilized for all the simulations in this chapter.
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Figure 3.2: Code validation of streamlines (above row) and isotherms
(bottom row) contours of present study (right column) to that of Ghaf-
farpasand [121] (left column).
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Re 100 400 1000
Ntuaye Present study 2.03 4.07 6.58
Malleswaran and Sivasankaran [122] - 4.08 6.48
Sheremet and Pop [123] 2.05 4.09 6.70
Saha et al. [124] 2.01 397 6.28
Abu-Nada and Chamkha [125] 2.09 4.16 6.55
Sharif [126] ~ 405 6.55
Iwatsu et al. [127] 1.94 3.84 6.33

Table 3.3: Comparison of the present results with those of [122-127].

Rayleigh number 103 10* 10° 106
Unax Present work 3.649 16.179 34.707 64.823
Moumni [12] 3.650 16.178 34.764 64.835
Kuzink et al. [129] 3.636 16.167 34.962 64.133
Dixit and Babu. [130] 3.652 16.163 35.521 64.186
De vahil Davis. [131] 3.649 16.178 34.730 64.630
Djebail et al. [132] 3.634 16.134 34.662 64.511
Markatos and Pericleous [133] 3.544 16.180 35.730 68.810
Ynax Present work 0.810 0.820 0.850 0.850
Moumni [128] 0.813 0.827 0.854 0.854
Kuzink et al. [129] 0.809 0.821 0.854 0.860
Dixit and Babu. [130] 0.812 0.828 0.855 0.849
De vahil Davis. [131] 0.813 0.823 0.855 0.850
Djebail et al. [132] 0.813 0.825 0.852 0.852
Markatos and Pericleous [133] 0.832 0.832 0.857 0.872
Nutgyg Present work 1.118 2245 4.522 8.826
Moumni [128] 1.117 2244 4521 8.824
Kuzink et al. [129] 1.117 2246 4.518 8.792
Dixit and Babu. [130] 1.121 2286 4.546 8.625
De vahil Davis. [131] 1.118 2.243 4.519 8.800
Djebail et al. [132] 1.115 2226 4.508 8.713
Markatos and Pericleous [133] 1.108 2.201 4.430 8.754

Table 3.4: Comparison of the present results with those of [128-133].
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14 #EL  #DOFs Nuaygsi Nuavgs2
4 64 496 1.13763  0.51621
5 256 1888 2.33642 1.27791
6 1024 7360 4.25657  3.54305
7
8
9

4096 29056 4.68552  4.04080

16384 115456 5.38090  4.62415
65536 460288 5.55777  4.78706

10 262144 1838080 5.56164 4.79133

Table 3.5: Results of grid independence test for AloOs-water nanofluid.

3.4 Results and Discussion

We have considered a cavity saturated with alumina-water nanofluid along with
two heat sources, both of the same length, located symmetrically from the side
walls at the bottom. Figure 3.3 illustrates the impact of Re on the contours of
streamlines and isotherms for nanofluid saturated with alumina nanoparticles in a
square cavity with Ri = 10, ¢ = 15° and ¢ = 0.04. It can be observed that for low
Re, the flow is symmetric in the whole cavity. Enhancement in Reynolds number
more than 10 causes the shear forces to increase due to moving walls that creates a
disturbance in symmetry. Moreover, the eddies become increasingly large and are
pushed down to the area near side vertical moving walls. One can observe from
isotherm plots that at Re = 1, the contours are uniformly distributed and paral-
lel to the two heat sources pointing that conduction is the dominant procedure for
transfer of heat in the cavity. Increasing the Re causes strong thermal plumes to
be formed that move to the side walls and tilt to the left heat source indicating

dominant convection of heat in the cavity.

In Figure 3.4, impact of R: on streamlines and isotherms with Re = 100, v = 15°
and ¢ = 0.04 is shown. For mixed convection case, i.e., Ri = 1 symmetric counter

rotating vortices are observed indicating that buoyancy forces and shear forces
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have equal effect on the flow in the cavity. Increasing the Ri more than 1 favors
the natural convection case due to which the symmetry of counter rotating cells
vanishes and strength of the buoyancy force increases which leads to the interac-
tion of the shear and buoyancy forces at high Reynolds numbers, i.e., Re = 100.
As one increases the Richardson number, the strength of streamlines also grows
that is evident from the scale affixed to the right side of each figure. Moreover,
with a rise in Richardson number, the isotherms are slightly pushed down towards
the bottom tilting to left side wall due to inclination indicating more heat transfer

because of left heat source.

Figure 3.5 represents impact of nanoparticles volume fraction on isotherms and
streamlines with Re = 100, Ri = 10 and v = 15°. As long as the streamlines are
concerned, two counter-rotating vortices of same magnitude can be observed in the
cavity. Moreover, addition of nanoparticles to base fluid reduces the strength of
flow field due to density augmentation. Increasing in solid volume fraction causes
a decrease in the intensity of buoyancy and, hence, the flow intensity. Thus, the
fluid moves slower in the cavity in the presence of nanoparticles. Isotherm plots
show a thermal plume in the middle of the cavity for ¢ = 0.01. Augmenting the
nanoparticles volume fraction, thickness of this plume starts increasing and be-

comes maximum for ¢ = 0.04 that indicates a growth in heat transfer in the cavity.

Effect of inclination angle v on streamlines and isotherms with Ri = 10, Re = 100
and ¢ = 0.04 is depicted in Figure 3.6. For v = 0° symmetric counter rotating
vortices of equal magnitudes are formed. Augmentation in inclination angle ~ dis-
turbs the symmetry of the vortices. Hence, larger and stronger vortices are formed
in the left side of the cavity. As long as isotherms are concerned, for v = 0° a main
vertical thermal plume in the middle of the cavity is noticed. Increasing v main

vertical thermal plume thickens and tilts to the left side of the cavity.

Variation of average entropy generation due to heat transfer, fluid friction, aver-

age temperature and kinetic energy with respect to inclination of cavity for pure
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fluid (¢ = 0) and nanofluid (¢ = 0.04) have been depicted in Figures 3.7-3.14.
It has been noticed that presence of nanoparticles has significant effect on the
physical properties of fluid. For both of the cases of pure fluid and nanofluid, en-
tropy generation due to heat transfer Sy, entropy generation due to fluid friction
Srr, average temperature and kinetic energy diminish with increasing inclination
angle v but for the case of nanofluid, increase in scale of these properties has been

observed.

Effect of cavity inclination angles on average Nusselt number of left heat source
and right heat source has been demonstrated in Figures 3.15 and 3.16. It is no-
ticed that average Nusselt number of both the heat sources is same with no cavity
inclination. As the cavity inclination angle is increased from 15° to 45°, average
Nusselt number due to left heat source increases while gradual reduction has been
observed due to right heat source. Enhancement in Nusselt number because of the

left heat source is due to density variation of the nanofluid.
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3.5 Closing Remarks

We have numerically investigated the heat transfer of AloOsz-water nanofluids in
two dimensional mixed convection flows in a partially heated two-sided lid driven
cavity. At the lower wall of the cavity, two heat sources are fixed and vertically
moving walls and top wall are kept cool at constant temperature. Buoyancy force
along with two moving vertical walls is responsible for the flow. First, problem
is formulated and then solved by the Galerkin finite element method. In this
method, we have used the nonconforming Stokes element @1 /Qo, where @1 ele-
ment is for the velocity and temperature and )y element for pressure. Effects
of pertinent parameters such as Re, Ri, ¢ and ¥ on the flow are investigated
and findings are exactly of the same order as those of the previously performed

analysis. This study can be concluded as follows.

1. An augmentation in the nanoparticles volume fraction and Richardson number

causes a significant increase in the heat transfer.
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2. An increase in the inclination angle diminishes the entropy generation due to
the heat transfer Sy, fluid friction Spp, average temperature and kinetic

energy.

3. An increase in the Richardson number Ri causes an enhancement in the

entropy generation and kinetic energy.

4. An increase in the inclination angle causes to increase the average Nusselt
number due to the left heat source while an opposite behavior has been

observed for the right heat source.



Chapter 4

MHD Mixed Convective
Nanofluid Flow with Entropy

Generation

4.1 Introduction

In this chapter, the mixed convective AlsOs-water nanofluid flow in a partially
heated square double lid driven cavity along with the entropy generation under
the influence of inclined magnetic field is numerically investigated. Two heat
sources are affixed at some portion of the bottom wall of the cavity while the
remaining part of this wall is considered as an adiabatic. The moving vertical
walls and the top wall are kept at constant cold temperature. Buoyant force is
responsible for the flow along with the two moving vertical walls. The govern-
ing equations are discretized in space using the LBB-stable finite element pair
Q,/P$¢ which leads to 3rd and 2nd order accuracy in the Ly-norm for the veloc-
ity /temperature and pressure, respectively and the fully implicit Crank-Nicolson
scheme of 2nd order accuracy is utilized for the temporal discretization. New-
ton method is utilized to linearize the system of nonlinear equations and associ-

ated linear system is solved by the Gaussian elimination method in each time

51
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level. Numerical results are presented and analyzed by means of the stream-
lines, isotherms, tables and some useful plots. The impacts of emerging parameters
on the flow, in specific ranges such as Reynolds number (1 < Re < 100), Richard-
son number (1 < Ri < 50), Hartman number (0 < Ha < 100), solid volume frac-
tion (0 < ¢ < 0.2) as well as the angles of inclined magnetic field (0° < v < 90°)
are investigated and the findings are found to be exactly of the same order as those
of the previously performed analysis. Calculation of the average Nusselt number,
the average entropy generation due to heat transfer, fluid friction and magnetic
field, total entropy generation, Bejan number and kinetic energy are the main fo-
cus of study in the present chapter. This study is organised in the following way.
Section 4.2 illustrates the problem configuration. Section 4.3 contains information
about space and time discretizations of the governing equations, the numerical
method, code validation and grid independence test. Results based on the nu-
merical simulation have been elaborated in Section 4.4. Finally, the conclusion has

been drawn in Section 4.5.

4.2 Problem Formulation

4.2.1 The Problem Configuration

We consider a lid driven square cavity filled with nanofluid and two heat sources
along the wall at the bottom at constant temperature (see Figure 4.1). The
width of the cavity has been denoted by L, while Ty, is the prescribed constant
hot temperature, T. is the constant cold temperature of the walls and ceiling and
es1 = es2 = L/ is the dimensional length of the heat sources. The distance of
the sources from both of the side walls is exactly the same. Insulation is pro-
vided to those parts of the bottom that are not active. Cavity is saturated
with Al,Os-water nanofluid. It is also assumed that the slipping effect between
any two phases is negligible. The Joule heating and viscous dissipation are as-
sumed to be neglected. Furthermore, the induced magnetic field is assumed to be

negligible as compared with the external magnetic field [93, 96]. Nanofluid used
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during this study has certain thermo-physical properties [38] that are tabulated in
the Table 4.1. Density variation is taken into consideration by using the Boussinesq

approximation which is apparent as the buoyancy force.

Physical Properties =~ Water Alumina

p(Kgm™3) 997.1 3970
C,(JKg'K™) 4179 765
k(Wm=1K-1) 0.613 40
B(KY) 21 x 107°  0.85 x 107
o (Qm)™! 0.05 1x 10710

Table 4.1: Thermo-physical properties of water and alumina

g

V=-Vw

V=V

Figure 4.1: Schematic diagram of the physical model.

4.2.2 The Governing Equations

Governing equations of continuity, momentum and energy [37] under the above-

mentioned assumptions are written as follows

ot ox oy Pny O Pnp \ Ox? Oy?
o fBg

(v siny cosy — usin? fy) , (4.1)
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ov ov ov 1 Op  py (00 0% (PB)ns
N T P QT Y (Ol T-T
ot Tl T Uay Pnf OY  pof (3:62 - dy? " 4 °
O-nfB(Q) . 2

. (u sin 7y cosy — v cos 'y) , (4.2)
ou ov
or o T o°T | O°T (4.4)
ot "or T Vay T M\ 02 T 92 .

4.2.3 The Dimensionless (Governing Equations

Problem variables implemented regarding the non-dimensional form are as follows.

x Y U v T-T, D tVy
L’ A A T T, —T. oV T L
L ATL3 T2L?
o= Vol G 98T o vi g [T g TR
vy vy ay 1y ky(Th — T¢)
Dimensionless governing equations are reduced as follows
ou ou ou OP 1 1 0*U 02U
v v 8 A +
or 0X oy X " Repnr (1—¢)25 \0X2 © 0v?
H 2
pp_,ic%R_i (Vsinycosy — Usin®~), (4.5)
ov ov ov OP 1 py 1 o?V 0?V
— + U=+ V== —-—=—= —_—— +
or 0X oy Y " Repns (1—0)25 \0X2 ' Y2
SM~Ss n H 2 .
+ Rl (1 —¢ + psf ¢) g + LLInf 20 (Usinycosy — Vcos®v), (4.6)
Pnf psby pny 05 Re
ou ov
- D 4,
0X )% 0 (47)
00 00 00 any 1 0%0 020
— U— V— = : 4.8
or " Y%ax TVay T oy Repr <8X2 T oy (4:8)

Associated with the problem, the boundary conditions could be given as follows.

U =0,
U=0,

V=-1,
V=0,

=0,
=0,

for r X=0,1 and0 <Y <1
for 0 <X <1 and Y =1
02< X <04,

U=V =0,0=1 for

06<X <08 andY =0,
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0<X <02,
Bl
U=V =0, a_yzo for 04< X <06 andY =0
08< X <1

4.2.4 The Effective Nanofluid Properties

The effective density, thermal diffusivity, electrical conductivity, specific heat and

the coefficient of thermal expansion of the nanofluid [37, 134] are given as follows.

pns = (1= 0)ps + dpp, (4.9)

= (PZ:;nf’ (4.10)
_ ., 3(c—1)¢ b p

Inf = 0f 1+(0’+2) —(c—=1)¢]’ oy (4.11)

(PCp>nf =(1-9¢) (pCp)f + ¢(pcp)p= (4.12)

(PB)ng = (L= 0)(pB)s + (pB)p- (4.13)

The nanofluid thermal conductivity is computed by the following model [114].

kf kp"‘zkf +¢(kf_kp), '

where k), and k are the thermal conductivities of dispersed nanoparticles and pure
fluid accordingly. By the help of Brinkman model [120], the effective dynamic

viscosity is calculated as follows:

finf = JW (4.15)
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4.2.5 The Entropy Generation

The entropy generation due to various physical sources can be written as follows:

kg | (OTN?  (OT\?| oy ou\> (o)’ du v\’
s= (=) + (5 ol (=) + (=) |+ (5 + =
15 ox dy T ox oy Jdy Ox
2
+ IntBo (usiny — v cosy)?, (4.16)

0

where T = # The dimensionless entropy generation obtained from Eq. (4.16)

(5 + (7))

is given as follows:

Ckap [ (00N (00
ST—?f[(a—X) (o)

+Xl;—7? <g—}U/+§—;>2 —|—XHa2ir—7 (Usiny — V cosv)?, (4.17)
where
St = Sur + Srr + Sur, (4.18)
Sur = % (5—;)2 + (g—g)Q : (4.19)
Spp = X% [2 (<2_§£)2 + (%)2) + (g—g + %)2 , (4.20)
SMF:XHQQE(USHI’Y —Veosy ). (4.21)

af

Here Sy, Spr and Sy r represent the non-dimensional entropy generation due to
heat transfer, fluid friction and magnetic field, respectively. In Eq. (4.17), x is the

irreversibility factor. It is expressed as follows:

2
,ufTO Vw
= . 4.22
XY=k (Th—Tc) (4.22)
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Integrating the Eq. (4.17) yields the dimensionless average entropy generation Sayg

that could be given as follows:

1

Savg = 5 / STdﬁ = SHT,avg + SFF,avg + SMF,avg- (423)

Here, the total volume of the nanofluid is represented by 9. Moreover, Sur ave,
Srrave and Syrpave are respectively the dimensionless average entropy generation
for heat transfer, fluid friction and magnetic field. An important dimensionless
number regarding the entropy is the Bejan number that is defined as the ratio
of entropy generation due to heat transfer to the total entropy generation which

could be written as follows:

S
Be = 22T
St
The Richardson number Ri = <% in the mixed convection is used to show the

Re?

significance of the free convection related to the forced convection. It might be
noticed that the free convection phenomena are studied for R: > 10, mixed con-
vection effects can be visualised for Ri = 1 and influence of forced convection can

be observed for Ri < 0.1.

4.2.6 Calculation of the Nusselt number

To determine the heat transfer characteristics, we are interested to compute the
local and the average Nusselt number on both of the discrete heat sources. Lo-

cal Nusselt number on each of the heat sources could be given as follows.

Nu = h"—fL, (4.24)
ky

where h,, s is the heat transfer coefficient with

q
hn = 3
T, -

(4.25)
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where ¢ is the wall heat flux per unit area with

(Ty, — T.) 00

S T Sl 7 it 4.26

q T oy, (4.26)
kng ( 06

Nu=——|— 4.2

YT T (ay)’ (4:27)

0.4 0.8
Ntayg 51 = Nu dX and Nugyg g0 = Nu dX. (4.28)
0.2 0.6

4.3 The Numerical Approach

4.3.1 Spatial and Temporal Discretization

The system of coupled non-linear partial dierential equations together with given
boundary conditions have been discretized numerically by the finite element for-
mulation. The numerical procedure used to solve the governing equations for the
present work is based on the Galerkin weighted residual method in which we have
used the higher order Stokes element @QQy/P#*¢, where Qs element is utilized for
the velocity and temperature and P#*¢ element is used for the pressure (see 2.5 for
detail). The variational or weak form of the governing Eqgs. (4.5) - (4.8) is given

in the following:

oU oU oU
ngdQ—i—/(Uﬁ Vay)wdQ— /—wdQ

1 pf 1 / 82 i
* Repur (1= 0P <8X2 Fay)r

H
+ p_f@_a (Sinycosv/ Vo dQ — SiIl2’7/ Uw dQ) , (4.29)
Pnf OFf Re Q
oV o oV or

1 pf 1 / i 62
T Repuy =g Q<8X2 T avz)

. PsBs
R— 1— 0w dS)
" anf < ¢+ Pfﬁf¢>/sz v
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ng Ha®
L PO 2O (sinfycosv/Uw dQ—cosny/Vw dQ>7
Q Q

pnf (Tf Re
oV

oU
/Q(a—X + 8_Y>qu_ 0,

00
— w df?
/Q o w +

ro 1

I

0%0

00 00
Y ) w dS)

Use + Vol

0X

o; RePr/Q <8X2 Ty

2
ae)wdﬂ.

(4.30)

(4.31)

(4.32)

Now, the infinite dimensional trial spaces U, V', 6§ and P are approximated by Uy,

Vi, 0, and Py, respectively. Moreover, the infinite dimensional test spaces W and

() are approximated by the finite dimensional test spaces W}, and @)y, respectively,

in such a way that

whEWhCHl(Q):{s:Q%R:/]s(x)\zd:v<oo,/]s'(x)]de<oo},
Q Q

qn € Qn C Lo(Q2) = {g:Q%R:/Q|g(x)]2da:<oo}.

After the finite dimensional approximation the Eqgs. (4.29) - (4.32) takes the form,

given as follows:

ouy,

Lo 1

Re pns (1 — ¢)25

ouy, oU},

oh o dQ) h TN, dQ = —
o or +/Q(Uhax+vhay>w"

0*U,
0Y?

>wh dS)

/ Uy,
o \ax?

P
Qwh a0

00X

ny Ha?
+ Pr Ong HA” (sin'ycosy/ Viwy, dQ—siuQ»y/ Unwy, dQ> )
Q Q

pnf 0 Re
th 8Vh th
=" wy, dQ - i 0= —
L or et /Q(UhaX T gy )
1 Pr 1 82Vh OQV}L
5 - 4 2 o
Re puy (1— 0)2 /Q<8X2 Ty
+ R (1—¢ + psﬁsqﬁ)/@hwth
Pnf prBs Q

OP,
T g dY
o oy

ny Ha?
+ ﬁﬁ_& <Sjn’yCOS’}//thh dQ—COSZ’Y/VhU)h dQ)a
Q Q

png 0f Re

[ (2, 2
o\ax T oy

_>thQ: 07

(4.33)

(4.34)

(4.35)
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D v 402 + / (Uhaeh T v, )wh dQ2

o OT 0X Y
oznf 1 820h 828}1

- Q. 4
o RePr/Q <8X2 Tayz ) (4.36)

N
Using the FEM approximation U, (7, X,Y) = > U;(1)§(X,Y), Vi(r, X)Y) =

Jj=1

ﬁlvj(T)gj(X, Y), Ou(r, X,Y) = ilgj<7—>§j(X, Y) and P, (X,Y) = iPﬂ]j(X, Y)

N K

are the trial functions. Similarly w, = > w; & and ¢, = > ¢; n; are the test
i=1 =1

functions. By the Galerkin finite element model for a typical element (2., the

Eqgs. (4.33) - (4.36) are transformed into the following system:

%@@dﬂ +Uj / (U&% +V£za§”) dQ, = P / % 4o,

Q. iox

Lopp 1 ‘ / 9¢; 06 | 0, 0&;
T Repy =g/, <aX ox "oy ay )

pf O'nf H ( . 2 )
+ ————— | sinycosyV; £dQ), — sin“~U; £dQ, ) 4.37
oy 07 e v cos vV o &€ vU; o &€ (4.37)
9&; %3] _
U; 8X mdQ, + V; aY n:dQ = 0, (4.38)
avj —2L£;6dQ. +V; / U@ 0 <t V@ 85] dQ, = — P / T 0c, 240,
0. OT o, oY
1 Py 1 / 9, 0&; af] agz
sV dQ,
T Rep; 1—0)25 7 Jo, (axax oy ay
+ri% (1 ( _ g4 DO ¢> 0, | &€do.
Pnf psBy 0.
ps ong Ha? ( : o
+ ———— | sinycosyU, £:6dQ), — sin® yV; ﬁ-ﬁidQe> , 4.39
pus 07 Re Y 7]96J 'YJQeJ ( )
/ %@gidﬁe +6, / (U@ 0 + V&a@) dQ.
1 0 06 9, 06,
SE———) =7 =5 Q.. 4.4
Repr /Q (axax Tavay ) “ (4.40)

The final system can be expressed in the following comprehensive form

[M?J{u®} + [K[u] = {F*°}, (4.41)
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In the expression (4.43), [M®] is the elemental block mass matrix in which all
(M3 = M = [ & dQ.

where the variation of ¢+ and j depends on the choice of the basis function and

the block matrices are zero except [M}'] = [M?] =

the geometric element considered. Furthermore, {a®}, K® u® and F¢ in the
expression (4.42) are said to be the time derivative vector for the nodal unknowns,
the stiffness block matrix, the block solution vector for the nodal unknowns and
the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in F*.
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ay | D DR D DY )
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M) (M (M) (M)

In stiffness block matrix,
n_ L opy 1
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The above system (4.42) involves the nodal unknowns u® and the time dependent
terms {01°}. Time discretization of the nodal unknowns still remains to do. Time
discretization has been performed by utilizing the Crank-Nicolson method (see
2.4 for detail). We have utilized @Qy/P* for space discretization (see 2.5 for
detail). After discretization in the space and time, we obtain an algebraic system
of nonlinear equations. Integration of each term of these equations is performed

by Gaussian quadrature method. Then the implementation of the boundary
conditions is carried out and the linear algebraic equations are obtained from
nonlinear equations using the iterative Newton method. Some tolerance value
is prescribed to see the optimized minimum difference of the current values of
the variables to the previous iteration values by achieving the convergence of the
solution of an iterative scheme. In other words, the adopted criterion to stop the
iterative scheme could be given as follows.

Fn+1 —I"

T 1079, (4.44)

where U, V', P or 0 are denoted by a general variable I'. Superscript n represents
the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method in each time level.
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4.3.2 Code Validation and Grid Independence Test

Code validation has been performed for free convection results published in the
literature and given in Table 3.4 of chapter 3, for various computed variables.
Code validation has also been presented in Table 3.3 for mixed convection flow in
the section 3.3.2 of Chapter 3 and the results have an excellent agreement for both
of the cases. Grid independent solution for the problem is achieved through the
grid refinement study and results for average Nusselt number have been given in
Table 4.2 for Re = 100, Ri = 20,¢ = 0.2, Ha = 50,y = 15°. It is obvious that
grid independence is attained with a grid of size 256 x 256 in X and Y directions.
Therefore, all the following simulations are performed by this grid resolution. All

the results are produced and presented on a grid of size 256 x 256.

¢ #EL  #DOFs Nuagsi Niaygso
4 64 1059 146797 1.78793
5 256 4035 295710 3.59910
6 1024 15747  3.50279  4.31398
7
8
9

4096 62211  3.28871  4.13362
16384 247299  3.34808  4.20865
65536 986115  3.59976  4.49398
10 262144 3938307 3.66390  4.57513

Table 4.2: Result of grid independence test

v Ntaygsi Ntayg 52
0° 5.9842 5.9842
15° 5.7885 6.0696
30°  5.5760 6.0097
45°  5.5492 5.9303
60°  5.6903 5.9481
75°  5.9020 6.0110
90°  6.0165 6.0165

Table 4.3: Effect of magnetic field inclination angle v on Nusselt number
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4.4 Results and Discussion

Mixed convection flow of Al,O3-water nanofluid in a square double lid-driven cavity
with inclined magnetic field, discrete heating and entropy generation is numeri-
cally investigated. The numerical results are acquired for Reynolds number Re
= 1, 10, 50, 100, Richardson numbers R: = 1, 5, 10, 20, 50, nanoparticle volume
fraction ¢ = 0, 0.05, 0.10, 0.15, 0.20, Hartman numbers Ha = 0, 50, 75, 100 and
inclination angles of magnetic field v ranging from 0° to 90° with a difference of
15°. The assumed Prandtl number of pure fluid is 6.2. Standard values of Re,
Ri, ¢, Ha and ~ are taken as 100, 20, 0.2, 50 and 0°, respectively unless these are

mentioned.

Impact of magnetic field inclination angle on average Nusselt number is portrayed
in Table 4.3. It is observed that at v=0°,90°, heat transfer due to left heater S1
and right heater S2 is same. Heat transfer decreases due to left heat source for
ranging from 0° to 45° and then it enhances for v = 60° — 90°. Similarly, transfer
of heat declines due to right heat source for v ranging from 15° to 45° and then
it amplifies for v = 60° — 90°. Infact, heat transfer reduces as magnetic field is
applied close to the heat source and opposite behavior is shown when magnetic

field occurs beyond the heat source.

Figure 4.2 shows the impact of Reynolds number Re = 1,10, 50, 100 on isotherms
and streamlines for cavity saturated with Al,Oz-water nanofluid for Ri = 20, ¢ =
0.2, Ha = 50,7 = 0°. It can be seen the symmetry of flow from the counter
rotation of cells of same value for the given Re in the cavity. Augmenting the
value of the Re, the swirls become larger and are propelled to the left and right
verticle walls. Isotherms show that for small value of Re, the contours are equally
distributed and symmetrical to the discrete heat sources. This indicates that
conduction plays a governing role for the transfer of heat in cavity. Also, enhance-
ment in Re causes to push the cold fluid to the bottom wall which results in the

form of convective cooling. Thus a significant change can be observed in isotherms.
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The influence of R: on isotherms and streamlines is depicted in Figure 4.3. For
Ri = 1, the streamlines are symmetrically distributed to the vertical midline in the
cavity. Increasing the Ri, counter rotating cells are becoming larger and moving
to cold vertical side walls due to increase in buoyancy forces. Moreover, increase
in the R causes the isotherms to expand to the side moving vertical walls. This

indicates the augmentation in the temperature gradients.

Effects of inclined magnetic field on the flow and thermal configuration for in-
clination angles 0°,30°,60° and 90° in the form of streamlines and isotherms are
depicted in Figure 4.4. It is observed that for v = 0°, streamlines are more clus-
tered in the middle of the cavity with counter rotation of cells of same value. The
isotherms, particularly in the central portion, i.e., away from the boundaries, ex-
hibit appreciable effects of the convection currents. When inclination angle ~ is
increased from 30° to 60°, isotherms are more affected as compared to the stream-
lines and they change significantly. The streamlines are being to distort from their
original shape and the cluster of streamlines is shifted to right vertical wall and in
isotherms the main vortex is tilted to the right vertical wall. Finally, for v = 90°,
in isotherms, a straight upward plume arises in the center of the cavity expanding
to the side vertical moving walls. It indicates the maximum heat flow occurs in

the center of the cavity.

Impact of nanoparticle volume fractions on streamlines and isotherms is illustrated
by Figure 4.5. Enhancement in the rate of heat transfer from discrete heat sources
by increasing the nanoparticle volume fraction at constant Re and R: is noticed.
The effect is more amplified on isotherms as compared to streamlines. It is worthy
noted that the thickness of plumes, that rise from heat source in isotherms for

¢ = 0.2, is more enhanced as compared to ¢ = 0.05.

Effect of Reynolds number on Nusselt number, entropy generation and Bejan

number with different nanoparticle volume fraction is shown in Figures 4.6-4.11.
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It is observed that Nusselt number Nu, entropy generation due to heat transfer
Sur, entropy generation due to fluid friction Sgp, entropy generation due to mag-
netic field Sy,r, total entropy generation S; and Be increase with an increase
in Re and ¢. This increase in entropy generation is mostly due to heat transfer.
Fluid friction and magnetic field play a little role for enhancement of entropy gen-

eration.

In Figures 4.12-4.17, effect of Richardson number Ri on Nusselt number, entropy
generation and Bejan number with different magnetic field strength Ha is dis-
played. It is noticed that with an increase in Ri, the values of Nu and Syr
increase but for a fixed value of Ri and increasing the Ha, the values of Nu and
Sur decrease gradually. Entropy generation due to friction Spp decreases with
an increase in Ri but for a fixed value of Ri and increase in Ha result a gradual
increase in Spp. The value of Sy, increases with an increase in Ri and Ha. St in-
creases with an increase in R: while for a fixed value of Ri, total entropy generation
St decreases with an increase in Ha. Be increases with an increase in R¢ while

for a fixed value of Ri, Bejan number Be gradually decrease with an increase in Ha.

Effect of Richardson number on Nusselt number, entropy generation and Bejan
number with different nanoparticle volume fraction is shown in Figure 4.18-4.23.
It is observed that Nusselt number Nu, entropy generation due to heat transfer
Sy, entropy generation due to fluid friction Sgp, entropy generation due to mag-
netic field Sy,p, total entropy generation St and Be increase with an increase in
Re and ¢. It is commendable that increase in entropy generation is mostly due to

heat transfer.

In Figure 4.24-4.29, effect of Reynolds number Re on Nusselt number, entropy
generation and Bejan number with different magnetic field strength Ha is dis-
played. It is noticed that with an increase in Re, the values of Nu and Sy also
increase but for a fixed value of Re and increasing the Ha, the values of Nu and

Syt decrease gradually. Entropy generation due to friction Sgp increases with an
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increase in Re and Ha. The value of Sy increases with an increase in Re
and Ha. Sp increases with an increase in Re while for a fixed value of Re, total
entropy generation St decreases with an increase in Ha. Be increases with an
increase in Re while for a fixed value of Re, Bejan number Be gradually decrease

with an increase in Ha.

In Figure 4.30-4.33, effect of Reynolds number Re, Richardson number Ri, nanopar-
ticle volume fraction ¢ and Hartman number Ha on kinetic energy is exhibited.
One can observe that kinetic energy is enhanced with an increase in Re from 1 to
100 while for a fixed value of Re, it is decreased gradually with an increase in Ha
from 0 to 100. For Richardson numbers ranging from 1 to 50, Kinetic energy is
increasing gradually while for a fixed value of Ri, it decreases with an increase in
Ha. If we observe the behavior of kinetic energy versus ¢ for various values of Re

and Ri, we see that kinetic energy is enhanced for increasing values of Re, Ri and

¢.
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Figure 4.2: Streamlines and isotherms for different Re.
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Figure 4.3: Streamlines and isotherms for different Ri.
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Figure 4.4: Streamlines and isotherms for different ~.
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Figure 4.5: Streamlines and isotherms for different ¢.
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Figure 4.8: Effect of Reynolds number on entropy generation due to fluid
friction with different nanoparticle volume fraction.
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Figure 4.9: Effect of Reynolds number on entropy generation due to mag-
netic field with different nanoparticle volume fraction.
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Figure 4.10: Effect of Reynolds number on total entropy generation due to
magnetic field with different nanoparticle volume fraction.
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Figure 4.13: Effect of Richardson number on entropy generation due to
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Figure 4.15: Effect of Richardson number on entropy generation due to mag-
netic field with different Hartmann number.
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Figure 4.16: Effect of Richardson number on total entropy generation due to
magnetic field with different Hartmann number.
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Figure 4.18: Effect of Richardson number on average Nusselt number with
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Figure 4.19: Effect of Richardson number on entropy generation due to heat
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Figure 4.20: Effect of Richardson number on entropy generation due to fluid
friction with different nanoparticle volume fraction.
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Figure 4.21: Effect of Richardson number on entropy generation due to mag-
netic field with different nanoparticle volume fraction.
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Figure 4.22: Effect of Richardson number on total entropy generation due to
magnetic field with different nanoparticle volume fraction.
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Figure 4.23: Effect of Richardson number on Bejan number with different
nanoparticle volume fraction.



78

—$—Re=1
—+—Re=10
—&—Re =50
—6—Re =100 |{

:/

0 50 75 100
Ha

Figure 4.24: Effect of Reynolds number on average Nusselt number with
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0.016

—$—-Re=1

0015 ——Re = 10
—B—Re =50
—©6—Re =100

0.014

0.0131

avg

;- 0.012f

Ser

0.011r

0.01f

0.009

0.008— - -
0 50 75 100

Ha

Figure 4.26: Effect of Reynolds number on entropy generation due to fluid
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Figure 4.27: Effect of Reynolds number on entropy generation due to magnetic
field with different Hartmann number.
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Figure 4.28: Effect of Reynolds number on total entropy generation due to
magnetic field with different Hartmann number.
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4.5 Closing Remarks

In the present analysis, the mixed convective alumina-water nanofluid flow in a
double lid driven cavity with discrete heating in the presence of an inclined mag-
netic field along with the entropy generation is investigated. The fluid motion is
due to the buoyancy force along with the two moving vertical walls. Spatial dis-
cretization was carried out using the higher order finite element pair Q,/P#*¢ and
the fully implicit Crank-Nicolson is utilized for the temporal discretization. The
governing system of nonlinear equations is linearized with the help of Newton’s
method and the associated linear subproblems are solved by using the Gaus-
sian elimination method. Impacts of the emerging parameters on the fluid flow,
temperature distribution and heat transfer have been computed and analyzed.
Moreover, Syr, Srr, Svr, ST, Be and the kinetic energy have been calculated.

The main findings are as follows.

e With an increase in Ri, the values of Nu and Sy also increase but for a
fixed value of Ri and increasing the Ha, gradual decline in Nu and Syr is

observed.

e Total entropy generation S and Be augment with an increase in Re and ¢.
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The Spp declines with a growth in R: while for a fixed value of Ri and

increase in Ha, a gradual reduction in Sgp is observed.
The Sgr increases with an augmentation in Re and Ha.

The Bejan number Be increases with an enhancement in Re while for a fixed

value of Re, Bejan number Be gradually decreases with an increase in Ha.

The kinetic energy increases with an increase in Re, Ri, and ¢ whereas it

reduces for the increasing values of Ha.



Chapter 5

MHD Mixed Convective
Nanofluid Flow With an
Isothermally Heated Square
Blockage Inside a Cavity

5.1 Introduction

In this chapter, mixed convection in alumina-water nanofluid filled lid-driven square
cavity with an isothermally heated square blockage inside with magnetic field ef-
fect has been examined. All the walls of the cavity are at rest except the top wall.
A square blockage with isothermal heating is placed at the centre of the cavity.
The vertical side walls are adiabatic and the bottom wall is kept at some hot tem-
perature. Flow is generated due to motion of the top wall and buoyancy forces that
are produced in the cavity due to temperature gradient. The governing equations
are discretized in space using the Galerkin finite element method and time dis-
cretization is performed using the Crank-Nicolson scheme. Newton’s method is
used to cope with discretized nonlinear systems of equations and the Gaussian

elimination method has been applied to solve the associated linear subproblems

83
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in each nonlinear iteration at each time level. Analysis has been performed on nu-
merical results in the form of streamlines, isotherms, tables and some useful plots.
Influence of emerging parameters on the flow, in specific ranges such as Reynolds
number (1 < Re < 200), Richardson number (0.01 < Ri < 10), Hartmann number
(0 < Ha <100), Eckert number (0 < Ec¢ < 0.01) as well as nanoparticles volume
fraction (0 < ¢ < 0.2) are investigated and findings are very closely comparable
to the previous analysis for the special cases in the literature. Calculations of the
average Nusselt number, the entropy generation as well as the average temperature
in the cavity will be our focus of interest in this chapter. This study is organised
in the following way. Section 5.2 illustrates the problem configuration. Section 5.3
contains information about space and time discretizations of the governing equa-
tions, the numerical method, code validation and grid independence test. Results
based on the numerical simulation have been elaborated in Section 5.4. Finally,

conclusion has been drawn in Section 5.5.

5.2 Problem Formulation

5.2.1 The Problem Configuration

The geometry of the present problem is shown in Figure 5.1. It displays a lid
driven square cavity of width L containing alumina-water nanofluid. An isother-
mally heated square blockage with an average temperature of both top cold and
bottom hot walls and of width equal to L/4 is placed in the middle of the cav-
ity [135]. Top wall is moving to the right with constant speed Uy, other walls are
at kept at rest. Vertical side walls are adiabatic and bottom wall is maintained at
hot temperature T},. Flow is produced in the cavity due to temperature gradient
and movement of the top wall. The nanofluid is Newtonian and incompressible.
Flow is considered to be unsteady, two dimensional and laminar. A uniform mag-
netic field of strength By is applied in the x-direction. Induced magnetic field gen-

erated by the motion of an electrically conducting fluid is assumed to be negligible
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as compared to the applied magnetic field [136]. The base fluid and solid nanopar-
ticles are in thermal equilibrium. Slipping effect between any two phases, radiation
effects and viscous dissipation in the energy equation are neglected [93, 96, 137].
Standard Boussinesq model is used to approximate the density in buoyancy term
while the other thermo-physical properties [114-116] of the nanofluid are assumed
to be constant (see Table 5.1).

Physical properties HyO AlyO3

p (kg m=3) 997.1 3970

C, (J kg 'K™1) 4179 765
E(Wm! K1 0.613 40

B (K1) 21 x 1075 0.85 x 107°
o (2 m)! 0.05 1 x 10710

Table 5.1: Thermo-physical properties of water and alumina.

u=Uy,v=0T=Tc

Alumina-water nanofluid

u=0
Isothermal| v = 0
T=(Tn+Tc)i2

blockage

u=0,v=0T=Th 1

Figure 5.1: Schematic diagram of the physical model.

5.2.2 The Governing Equations

Governing equations [37] can be written as follows:

- oz oy

ou ou ou L@ N fng (82u 82u)

ot u— +o— = — 5.1
ot * u@x * Uay Pnf O Pnf (5.1)
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ov ov ov 1 dp ping (0% d*v (0B)ns
— — — = - — — | — — T-T
ot + u&c + ”ay Pnf Oy * Pnf (833'2 * dy? - Pnf 4l 2
BQ
_ It (5.2)
Pnf
ou ov
oT oT oT o*T 9T onfBi 4
il il D il - ) 4
5 o vy = o (5 T 5) e 54

5.2.3 The Dimensionless Governing Equations

To convert the governing equations in dimensionless form, following variables are

used
x Y U v T—1T., P UoL
L L Uy’ Uy’ T, — 1. o0 T T,
T, —T.)L3 tU, G
vy L T o Re
T272 2
ST = —8 0 5 Ec = UO ,
kp(Th —T¢) (Cp)p(Th — T2)

where Uy, vy, ay and B are imposed lid velocity, kinematic viscosity, thermal
diffusibility and the coefficient of thermal expansion respectively of nanofluid, g
is the gravitational acceleration.

Dimensionless governing equations could be given as follows:

oU U ou P 1 pp 1 92U U
o TVax Ty T T ax T Repy (1= (aX2 vz ) B9
a_V+Ua_V_|_Va_V—_8_P+Lp_f 1 82V+82V
or 0X Y —  OY  Repy (1—¢)25\0X2 = 0Y?2
H 2
+ RiLL (1—¢>+ psﬂsqﬁ) o — LLI 20 (56
Pnf pfﬁf Pnf Of Re
ou v
o Ty = O (5.7)
a0 o0 90 oy 1 920 920
ar " Vax Vv T af RePr <6X2 * 8Y2)
HQ2ECE (pcp)f v2. (58)

Re oy (pCp)ny
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The boundary conditions are given in the following way:

At thetopwall: U =1, V=0, 0=0,

At the bottom wall : U =0, V=0, 60=1,

At the left and right walls : U =0, V =0, (‘)8_?( =0,

At the blockage inside : U =0, V =0, 6#=0.5

5.2.4 The Effective Nanofluid Properties

The effective density, thermal diffusivity, electrical conductivity, specific heat and the
coefficient of thermal expansion of the nanofluid are the same as given in the sec-

tion 4.2.4 of Chapter 4.

5.2.5 The Entropy Generation

The entropy generation due to various physical sources can be written as follows:
or\* L (0T s [y (20 (20Y7) (20, 20
ox dy ox dy Jdy Ox

O'nfBg 9
59
T, (5.9)

kg
-3

Hnf
+ 3

S

where Ty = %

. The dimensionless entropy generation obtained from Eq. (5.9)

() (5))

+xH2 22, (5.10)
Of

is given as follows:
kap | (00N (06"
G o= | 22 7
Tk [(ax) * (ay)
ou vy’
aY 0X
where Y is the irreversibility factor that is given by

2
psTo Uo
= . 11
= (n—n) (5.11)

My
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Let us write

St = Sur + Srr + Sur, (5.12)
where
kg | (002 [ 00\
Here
2 2 2
o [y (00N (VY (20 oV
SFF—Xluf [2((8)() +<8Y + 8Y+8X , (5.14)
SMF = XHCLQ%VQ, (515)
of

where Sy, Spr and Sy, r represent the non-dimensional entropy generation due to
heat transfer, fluid friction and magnetic field, respectively. Integrating Eq. (5.10)
yields the dimensionless average entropy generation St .y, that could be given as

follows

1
ST,an = 5 / STdﬂ = SHT,avg + SFF,avg + SMF,avg- (516)

Here, ¥ denotes total volume of the nanofluid. Bejan number is given by

Sur
Be = —. 1
e S, (5.17)

5.2.6 Calculation of the Nusselt number

Local Nusselt number and average Nusselt number are given by

kg (00
Ny = —-n [ =2
YTk (ay)

Nt = [ Nu dX. (5.19)

, (5.18)

Y=0,1
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5.3 The Numerical Approach

5.3.1 Spatial and Temporal Discretization

The system of coupled non-linear partial dierential equations together with given

boundary conditions have been discretized numerically by the finite element for-

mulation. The numerical procedure used to solve the governing equations for the

present work is based on the Galerkin weighted residual method in which we have

used the higher order Stokes element Q,/P#*¢, where Q5 element is utilized for

the velocity and temperature and P3¢ element is used for the pressure (see 2.5 for

detail). The variational or weak form of the governing Eqgs. (5.5) -

in the following:

oU oU aU OP

1 Pr / 0*U 0*U
— | w d22
" Rep 10 >25 <8X2 Toav)
8V /
— w dS) + w dS) = — w df
/ Q < oy )

1 py / a?v 0*V
Sl ) wdQ
" Repus (1 ¢>2 (fm T )

H2
+ RiPL (1—¢ + psﬂs¢>/9wd9_ p—fﬁ—“/vwdg,
Q Q

P PBy pnf Of Ite

ou oV

89 00 00
EwdQﬁL /(Ua_X + Va—Y)wdQ

any 1 020 96
= ds?
a; RePr/Q <6X2 Tavz )
2
+ Ha ECO'nf (pcp)f /V2w a0
Re oy (pCp)ng

(5.8) is given

(5.20)

(5.21)

(5.22)

. (5.23)

Now, the infinite dimensional trial spaces U, V', 6 and P are approximated by Uy,

Vi, 0, and Py, respectively. Moreover, the infinite dimensional test spaces W and

(@ are approximated by the finite dimensional test spaces W), and Q,, respectively,
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in such a way that
whEWhCHl(Q):{S:Q—>R:/|s(z)|2dm<oo,/|s'(x)|2dx<oo},
Q o)
thQhCLg(Q):{g:Q—)R:/|g(:ﬂ)|2dx<oo}.
Q

After the finite dimensional approximation, the Eqgs. (5.20) - (5.23) takes the form,

given as follows:

oU 8U 0P,
a—:wth—l—/Q(Uh h>wth_ a_)?wth
1 Pf 1 / 82Uh 82Uh
—_— Q .24
T Repny (1= )20 <ax2 aw wh i, (5:24)
% Wp, d§) + / Uhth Wp, dQ) = @ wy, dS)
Q q Y
1 pf 1 / 82Vh 82Vh a0
Re png (1 —¢)2® X2 Y2
+ RiLL <1 4 LB )/eh wy, dQ
Pnf pfﬁf
ps ong Ha?
- 4 — Q 2
pny Of Re / Viton (5.25)
oUy, 3Vh
/ (8_)( + Y )qh dQ2 = 0, (5.26)
89h agh aQh
. Qnf 1 820h 828h
T RePr/Q <aX2 Ty ) A
te e UG |y
+ — Viowy, dS) . (5.27
Re  of (pCylus Jo " " (527

N
Using the FEM approximation U, (7, X,Y) = > U;(1)§;(X,Y), Vi(r, X)Y) =

j=1
N N K
ZIVJ<T>§J(X7 Y)7 eh(Tv X, Y) = Z 0j<7—>£j(X7 Y) and Ph<X7 Y) = Z Pjrr]j(Xv Y)
j=
are the trial functions. Similarly w;, = Z w; & and q, = Z q; n; are the test
i=1 i=1

functions. By the Galerkin finite element model for a typical element (2., the

Egs. (5.24) - (5.27) are transformed into the following system:
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au%x;d9-+ (/ U6 050 4 Ve o dQez—J?/qnﬁ%idQe
Qe Qe Qe 8X

D [ (%0s 050
+ Re pny (1 — U]/Q <8X 0X 8Y oY e, (5.28)

/‘m%@d9+% (Tegs + Ve ) o= -r, [ 5 ao,
Qe Qe Qe oY

1 Pf agj afz 85] (9&
T Repns (1= 25%/9 (axax oy ay ) Mk

+RiL <1—¢+p55 ) /gjgz o, — 24 ""fH“ /5]52 aQ.,  (5.29)

Pnf Pnf OFf
3 3
Ui | o e+ Vi | it g <o, (5.30)
—J{ﬁ;dae+e{/ (Uff%3+-V@a§> a0,
Qe or Qe

_ 9¢; 06 | 0, 06
B RePrej /Q (aX oxX "oy oy A2

Ha*Econs (0Cy)s /
+ VEE dSLe. 5.31
Re o5 0Cphar " o\ 98 (531)

The final system can be expressed in the following comprehensive form:

Me){a°} + [K®|[u?] = {F°}, (5.32)
k2 ks s oy | ]
- MMWH@H%J VAT I RV S
K3 K2 KK || (P (F3)
Lo g || e | ey |
where
v ) ) My
ey | D) DG [ -
M) (M) (M) (M3
) M M) (M)
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In the above expression (5.34), [M®] is the elemental block mass matrix in which

all the block matrices are zero except [M;'] =

[MF?] = [MG]

=M = [, £ dQ.

where the variation of ¢ and j depends on the choice of the basis function and

the geometric element considered. Furthermore, {u®}, K® u® and F® in the

expression (5.33) are said to be the time derivative vector for the nodal unknowns,

the stiffness block matrix, the block solution vector for the nodal unknowns and

the right hand side block vector at an element level, respectively. For the sake of

brevity, the boundary integral is also included in F€. In stiffness block matrix,

1 pf 1

Repnfm/n ((

1 Pf 1
oot (5
’ Re pny (1= 9)*° Jq,
py ong Ha?
idS2e,
Jr,Onf o; Re / S
12 _HaQEcM (pCy) ¢
ji

Re a5 (pCp)ny

ay RePr

9§ 06

0X 0X 0Y oY

¢ 0

0X 0X 0Y oY

/ Vg d.,
Qe

g Omy 1 %8& %57
Ky = /(axax*ayay

K% = —RilL (1 L PelPsd >/ &6 dQ,

Pnf prBs
K;gz_/ Ry
K% = - / i,
KY = gﬁgmdg
K9 = gijnldﬂ

Kjlf — KJ21 K14 K33 K34

N
U=) Ui V= Z Vi;.
j=1 j=1

K43

) (U& %, +V@‘%3)) a0,

) (Ufz %, +V@‘%3)) a0,

) d0, + / (U@ +v&a§> a0,

0,

The above system (5.33) involves the nodal unknowns u® and the time dependent

terms {1°}. Time discretization of the nodal unknowns still remains to do. Time

discretization have been performed utilizing the Crank-Nicolson method (see 2.4

for detail). We have utilized Qo/ P& for space discretization (see 2.5 for detail).
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After discretization in the space and time, we obtain an algebraic system of nonlin-
ear equations. Integration regarding each term of these equations is performed by
the Gaussian quadrature method. Then the implementation of boundary con-
ditions is carried out and linear algebraic equations are obtained from nonlinear
equations using the iterative Newton’s method. Some tolerance value is prescribed
to see the optimized minimum difference of the current values of the variables to
the previous iteration values by achieving the convergence of the solution of an it-
erative scheme. In other words, the adopted criterion to stop the iterative scheme
could be given as follows

Fn+1 —_Tn

—6
S 107, (5.35)

where U, V', P or 6 are denoted by a general variable I'. Superscript n represents
the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method in each time level.

5.3.2 Code Validation and Grid Independence Test

Code validation has been performed for free convection results published in the
literature and given in Table 3.4 of chapter 3, for various computed variables.
Code validation has also been presented in Table 3.3 for mixed convection flow
in the section 3.3.2 of Chapter 3 and the results have an excellent agreement for
both of the cases. In addition, code validation has been provided in Table 5.2 for
a particular case of isothermal blockage in a cavity and results are found to agree
with [138]. Grid convergence test is performed for average Nusselt number and
given in Table 5.3 for Re = 100, ¢ = 0.2, Pr = 6.2, Ha = 25, Fc = 0.0001 together
with the number of elements (#EL) and the total number of all space degrees of
freedom (#DOF's) which are needed to represent the discrete velocity, temperature
and pressure solution with respect to the used discretization. A uniform grid at
mesh level ¢ = 8 with #EL = 65536 is found to meet the requirements of both the

grid independency study and the computational time limits. Further refinement
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of grids produce no significant changes. However, finer grids may be considered for

higher values of Reynolds or Richardson number.

Eccentricity (0, 0)

Nttayg Ri  Present Islam et al. [138]
0.1 2.5317 0.6118
1 2.5684 5.6935
10 7.9029 7.9083

Table 5.2: Comparison of the present results with those of Islam et al. [138]

( #EL #DOFs Nugg(Ri=1) Nuay(Ri=10)
3 64 1056  4.459971 7.081795
4 256 4032 5.138374 8.390714
5 1024 15744 5.508233 9.150767
6 4096 62208  5.674757 9.534331
7 16384 247296  5.741560 9.719424
8 65536 986112  5.774757 9.814020
9 262144 3938304  5.780689 9.810275

Table 5.3: Results of grid independence test for alumina-water nanofluid.

5.4 Results and Discussion

In this work, mixed convection in alumina-water nanofluid filled lid driven square
cavity with an isothermally heated square blockage inside with magnetic field ef-
fect has been examined. In the whole study standard values (Re = 100, Ri =
10,¢ = 0.2, Ha = 25, Ec = 0.0001, Pr = 6.2) have been taken unless these are
mentioned. We have considered three cases including the forced convection, the

mixed convection and the free convection.

Figure 5.2 demonstrates the influence of Hartmann number on streamlines and
isotherms for forced convection case (Ri = 0.1). Magnetic field is applied par-

allel to z-axis. In the absence of magnetic field (Ha = 0) clockwise rotating
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vortex with its centre above the blockage near the right top corner of the cavity
has been noticed. Streamlines are more densely distributed near the top moving
wall that indicates the region of higher fluid velocity whereas coarse distribution
of streamlines has been observed away from the top moving wall. When mag-
netic field strength is increased up to Ha = 25, flow circulation is reduced that
indicates a decrease in fluid velocity and more of the streamlines occur near the
top moving wall and above the central block. When magnetic field strength is
increased up to Ha = 50 and Ha = 100, all the streamlines are restricted to the
small area near the top moving wall and above the central blockage that indicate
a reduction in the fluid flow in the cavity. In fact, the Lorentz force is gener-
ated in opposite direction of flow due to the existence of the magnetic field. For
Ha = 0, isotherms are clustered near the hot bottom wall and around isothermal
blockage that indicate the high temperature gradient in that region. Due to shear
forces, isotherms are moved towards top of the left adiabatic wall. Hence, thermal
boundary layer occurs in this region. When strength of magnetic field is increased
up to Ha = 100, a slight change has been observed in isotherms behavior. The
diagonal lines from bottom of the right adiabatic wall to the top of left adiabatic
wall gradually become parallel to the bottom hot wall.

Figure 5.3 depicts the effect of Hartmann number on streamlines and isotherms
for mixed convection case (Ri = 1). In this case, buoyancy-induced flow due to
hot bottom wall or isothermal blockage and shear-driven flow due to top moving
wall play an equal role in the fluid flow and temperature distribution in the cavity.
For Ha = 0, more streamlines (compared to forced convection case) are densely
distributed around the central block that show buoyancy also play its role this
time. Moreover, weak circulation region is observed in the centre of rotating vor-
tex above the block. When strength of magnetic field is increased up to Ha = 25,
number of coarsely distributed streamlines around the block is less (compared to
Ha = 0) but is more as compared to forced convection regime. It indicates a
reduction in the fluid flow in the cavity due to application of magnetic field. For

the case of Ha = 50 and Ha = 100, streamlines are clustered to the top wall and
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are restricted to a small area showing more decrease in fluid velocity in the cavity.

[sotherms behavior slightly changes as compared to the case of forced convection.

Figure 5.4 displays the impact of Hartmann numbers on streamlines and isotherms
for natural or free convection regime (Ri = 10). In this case buoyancy-driven flow
is dominant over shear-driven flow. For Ha = 0, streamlines are almost equally
distributed and are slightly stretched diagonally to the top right corner due to
movement of the top wall. This indicates that fluid flow occurs due to bottom hot
wall. Moreover, weak circulation of rotating vortex is observed in the centre of the
cavity around the central blockage that shows reduction in fluid flow in this area.
When magnetic field strength is enhanced up to Ha = 25, weak circulating centre
of clockwise rotating vortex has been shifted to the area above the blockage that
shows a decrease in fluid velocity. For Ha = 50, coarse distribution of streamlines
around the left, right and bottom of the blockage has been observed. Similarly,
more streamlines are squeezed to the area near the top wall above the blockage
for the case of Ha = 100 indicating that most of the fluid flow occurs in this
region. Isotherms are densely distributed near the hot bottom wall and around
isothermal blockage. This indicates high temperature gradient and development

of thin boundary layer over the hot wall and blockage surfaces.

Figure 5.5 demonstrates the influence of Richardson number on streamlines and
isotherms for Eckert number 1072 . For Ri = 0.01, shear forces are dominant in
the cavity and streamlines are mostly restricted to the area near the top moving
wall above the central blockage. Increasing Ri up to 1, shear forces and buoyancy
forces contribute equally thus more streamlines can be seen near the bottom wall.
Enhancing Ri from 1 to 10, fluid movement has been observed throughout the
whole cavity around the central blockage due to free convection. Isotherms move
diagonally from the bottom of right adiabatic wall to the top of left adiabatic
wall and become clustered around the central isothermal blockage for forced con-
vection regime (Ri = 0.1). For mixed convection mode (Ri = 1), isotherms are

clustered near the bottom hot wall. For free convection case (Ri = 10), most of
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the isotherms become parallel to the hot bottom wall due to dominating buoyancy

forces.

Effect of Eckert number on average Nusselt number, average temperature, average
entropy generation due to heat transfer and average total entropy generation has
been demonstrated by Figures 5.6-5.9. Since we have selected very small variation
of Eckert number therefore mild effect has been observed in all of the convection
regimes for Ec = 107*,1072 and 1072. Variation is almost same for the case of
By =0, ie. , Ec=0to that of Ec = 107, so this is not shown in Figures 5.6-5.9.
A slight decrease in average Nusselt number with an increase in Eckert number
has been noticed in Figure 5.6. Eckert number generates an enhancement in
average temperature of the cavity that can be visualized from Figure 5.7. Aver-
age entropy generation due to heat transfer and average total entropy generation
increase with a growth in Eckert number as depicted in Figures 5.8 and 5.9, re-

spectively.

Figures 5.10-5.13 delineate the effect of Hartmann number on average Nusselt
number, entropy generation due to heat transfer, Bejan number and kinetic en-
ergy with Re = 1,10,100,200. It is evident from Figure 5.10 that increase in
magnetic field strength causes to decrease in average Nusselt number. This is due
to the fact that movement of buoyancy-induced flow slow down and shear forces
becomes dominant by the application of magnetic field. In fact, Lorentz forces
have resistance against thermal buoyancy forces. Influence of magnetic field inten-
sity on average entropy generation due to heat transfer, Bejan number and kinetic
energy has been illustrated by Figures 5.11-5.13, respectively. All these quantities

reduce with a rise in the strength of magnetic field.

For optimum utilization of energy, it becomes important to better understand
different convection modes in the cavity. Here, effect of three convection modes
namely forced convection (Ri = 0.1), mixed convection (Ri = 1) and free con-

vection (R: = 10) on various emerging parameters as a function of Hartmann
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number has been illustrated in Figures 5.14-5.21. It can be viewed from Fig-
ure 5.14 that average Nusselt number decreases with an increase in magnetic field
strength for different Richardson number. Average temperature in the cavity is
augmented with a growth in Hartmann number as ellucidated by Figure 5.15.
Average entropy generation due to heat transfer, fluid friction and magnetic field
have been portrayed by Figures 5.16, 5.17 and 5.18, respectively. Average en-
tropy generation due to heat transfer declines by the application of magnetic field.
Entropy generation due to fluid friction is increased for forced and mixed convec-
tion cases whereas in natural convection regime, increasing Ha from 0 to 50, it
decreases then starts increasing beyond Ha = 50. Entropy generation due to
magnetic field is enhanced monotonically for small values of Richardson number
(Ri = 0.1,1) but for natural convection case (Ri = 10), it amplifies up to Ha = 50
then starts decreasing for higher magnetic field strength. Average total entropy
generation and Bejan number gradually decrease with an augmentation in mag-
netic field strength that can be visualized from Figures 5.19 and 5.20, respectively.
By comparing the Figures 5.16 and 5.19 quantitatively, one can see that average
entropy generation due to heat transfer and average total entropy generation have
almost same magnitudes. Hence, it can be deduced that irreversibility is mostly
generated due to heat transfer. Fluid friction and magnetic field play a little role
in total irreversibility in the cavity. Kinetic energy declines with an increase in

the intensity of magnetic field as shown in Figure 5.21.

Effect of Eckert number on average Nusselt number and kinetic energy as a func-
tion of nanoparticles volume fraction has been illustrated by Figures 5.22 and
5.23, respectively. It is examined that average Nusselt number and kinetic energy
increase with an augmentation in nanoparticles volume fraction but with an en-
hancement in Eckert both have opposite behaviors, i.e., average Nusselt number
decrease whereas kinetic energy amplifies. Figures 5.24 and 5.25 demonstrate the
effect of nanoparticles volume fraction as a function of Eckert number on average
temperature and average total entropy generation, respectively. It is found that

both quantities augment with a growth in Eckert number.
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Figure 5.2: Effect of Hartmann number on streamlines and isotherms for Ri =
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Figure 5.7: Variation of average temperature as a function of Eckert number
for different Richardson numbers.

16—
——Ri=01
—B-Ri=1
141 —e—Ri=10 ]
212} |
!
-
I
)] 10M
8,
+— )
6 1 1 1
0.1 1 10
Ec x10°
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function of Hartmann number for different Reynolds number.
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Figure 5.12: Variation of Bejan number as a function of Hartmann number
for different Reynolds number.
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Figure 5.13: Variation of kinetic energy as a function of Hartmann number for
different Reynolds number.
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Figure 5.14: Variation of average Nusselt number as a function of Hartmann
number for different Richardson numbers.
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Figure 5.15: Variation of average temperature as a function of Hartmann num-
ber for different Richardson numbers.
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Figure 5.16: Variation of average entropy generation due to heat transfer as a
function of Hartmann number for different Richardson numbers.
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Figure 5.17: Variation of average entropy generation due to fluid friction as a
function of Hartmann number for different Richardson numbers.



107

0.42 ———
—©—-Ri=0.1
—B-Ri=1
041 ——Ri=10
o0—6
0.4f
2
©
D
0.39¢
—8— d
0.37—— :
011 10
Ec x10°

Figure 5.18: Variation of average temperature as a function of Eckert num-
ber for different Richardson numbers.
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Figure 5.19: Variation of average entropy generation due to magnetic field
as a function of Hartmann number for different Richardson numbers.
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Figure 5.20: Variation of Bejan number as a function of Hartmann number
for different Richardson numbers.
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Figure 5.21: Variation of kinetic energy as a function of Hartmann number
for different Richardson numbers.
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Figure 5.22: Variation of average Nusselt number as a function of nanoparti-
cles volume fraction.
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Figure 5.23: Variation of kinetic energy as a function of nanoparticles volume
fraction.
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Figure 5.24: Variation of average temperature as a function of Eckert number.
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Figure 5.25: Variation of average total entropy generation as a function of
Eckert number.

5.5 Closing Remarks

In the present analysis, the mixed convection in alumina-water nanofluid filled lid
driven square cavity with an isothermally heated square blockage inside with mag-
netic field effect has been examined. The top moving wall and buoyancy force are

responsible for motion of fluid. The Galerkin finite element method is used for
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space discretization and the Crank-Nicolson is utilized for the time discretiza-

tion.

Newton’s method has been used to linearize the governing system of nonlin-

ear equations and the Gaussian elimination method is applied to solve the linear

subproblems. The computations have been performed to observe influence of per-

tinent parameters on the heat transfer, temperature distribution and the fluid

fow.

The main findings of this chapter can be given as follows.

The streamlines strength in the whole cavity declines and in the proxim-
ity of the bottom hot wall, the isotherms become less concentrated with an

amplification in the Hartmann number.

. A reduction in the average Nusselt number and an augmentation in the av-

erage entropy generation due to the heat transfer, average total entropy gen-
eration and average temperature have been observed with an increment in

Eckert number.

. An increase in average temperature in the cavity has been noticed with an

augmentation in the Eckert number and magnetic field strength.

. A decline in the average Nusselt number, average entropy generation due to

the heat transfer, Bejan number and kinetic energy has been perceived with

an increase in the magnetic field strength.

. An increase in the average Nusselt number and kinetic energy has been

examined with an increase in the nanoparticles volume fraction.



Chapter 6

MHD Mixed Convective
Nanofluid Flow in a Porous

Cavity

6.1 Introduction

This chapter examines the influence of non-linear thermal radiation and inclined
magnetic field on the mixed convection in a square porous cavity. Here, the cav-
ity is saturated with alumina—water nanofluid. The Darcy-Brinkman-Forchheimer
model has been used to formulate governing differential equations. After trans-
forming equations to dimensionless form, these are solved by utilizing the weighted
residual Galerkin finite element method. Latest KKL model is employed for the
evaluation of effective thermal conductivity and dynamic viscosity of nanofluid.
The effect of pertinent parameters in specific ranges such as Richardson number
(0.01 < Ri < 100), radiation parameter (0 < Rd < 5), temperature ratio param-
eter (1.1 < Nr < 1.4), inclined magnetic field parameter (0° < v < 90°), Darcy
number (107% < Da < 107%), porosity parameter (0.2 < ¢ < 0.8) and volume
fraction of solid particles (0 < ¢ < 0.04) has been studied and presented in the

form of streamlines, isotherms and plots. Moreover, kinetic energy and average

111
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temperature have also been taken into account for better understanding the flow
philosophy. It is found that the radiation parameter, temperature ratio parameter,
Darcy number and porosity parameter augment the heat transfer, kinetic energy
and average temperature while inclined magnetic field parameter in the selected
aforementioned ranges declines the heat transfer due to the hot bottom wall. This
study is organised in the following way. Section 6.2 illustrates problem configu-
ration. Section 6.3 contains information about the space and time discretizations
of the governing equations, the numerical method, code validation and grid inde-
pendence test. Results based on the numerical simulation have been elaborated

in Section 6.4. Finally, conclusion has been drawn in Section 6.5.

6.2 Problem Formulation

6.2.1 The Problem Configuration

The flow model under consideration (see Figure. 6.1) consists of two dimensional
square porous cavity filled with alumina-water nanofluid. The bottom wall of the
cavity is hot with dimensional temperature T}, and the top wall has been kept
at cold temperature T, while both of the vertical walls are adiabatic and moving
with velocity V, in opposite directions. Shear forces due to vertical moving walls
and buoyancy forces due to the hot bottom wall are responsible for the fluid
movement. The porous medium is considered to be homogenous and isotropic.
Base fluid and nanoparticles are in thermal equilibrium and there exists no slip
velocity between them. Fluid is assumed to be Newtonian and incompressible. The
flow is designated as steady and laminar. Joule heating, viscous dissipation and
internal heat generation are neglected in the energy equation. Thermo-physical
properties (see Table 6.1) of water and alumina are invariant except for density

that is evaluated through Boussinesq approximation.



113

Physical properties H,O AlyO4

p (kg m™3) 997.1 3970

C, (J kg™ 'K™1) 4179 765
E(Wm*t K1 0.613 40

B (K1) 21 x 1075 1.89 x 10~°
o (Qm) " 0.05 1x 10710
ds (nm) - A7

Table 6.1: Thermo-physical properties of water and alumina.

Y V=Vw

u=0,v=0T=Tc

Alumina-water nanofluid

Porous cavity

u=0,v=0T=Thx 1
V=-Vy

Figure 6.1: Schematic diagram of the physical model.

6.2.2 The Governing Equations

Governing equations of continuity, momentum and energy under the above-mentioned

assumptions are given by

2 2
(o) - 25
+ O'nfBg (v siny cosy — usin? 7) — %u
- —\/1%];3 (Ve + 0?)u (6.1)
2 2
+ O'nfBg (usin’ycosv — v cos? fy) — Mv

K
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b (BT~ T) — ol (i 5 a2,

V150K e

(6.2)
ou ov

— — =0 6.3
Ox * oy ’ (6.3)

or or 82T 82T aQTx 3qu
il - = — e ) A4
Y ox * Uay anf(&ﬁ * 8y2) * (83: * 8y> (6.4)

Applying Rosseland approximation [139] for the radiation and expanding T* as
in Taylor series about T, just like T% &~ 4TT? — 3T and neglecting higher order

terms, thermal radiation terms can be expressed by

4o, OT? L 160, 73 oT

. = — = — 6.5

q 3ap Ox 3ap Oz (6:5)
4o, OT* 160, 0T

Qry = — . - T3_' (66)
3ar Oy 3ar Oy

The above Egs. (6.5) and (6.6) are non-linear in 7.

6.2.3 The Dimensionless Governing Equations

Following variables are utilized to transform the system into dimensionless form

x Y u v T-—-T. D K
X = — Y == U=— V =— Q= —— P=——  Dag=—
Lv La Vw, Vwa Th_Tca pnfU(?’ @ L27
40, T3 VL ATL? K
Ri="0le g Teb g o SEL pp U = gy, [
ARt vy v af [inf
. Gr Th
RZ:@, N?”:TC

The dimensionless governing equations are reduced as follows:

1 [ oU ou opP L pny (00U 0°U
|\ Uz + V=) = —55 +
€2 0X Y 0X eRe p, vy \ 0X? oY?
ny Ha?
—i—ﬁﬂ—a (Vsin’ycosy — Usin27)
pnf 0f Re
Hnf 1

PnfVy ReDa



1.75
- —— = (VU + v2)U, 6.7
V150Dae? ( * > (6.7)

1/ 0V oV opP L pny (OPV OV
N Uss + V) = — == +
€2 0X oYy Y eRe p, vy \ 0X? aY?
+ RiLL (1—¢+ p858¢> 0
Pnf pfﬁf
ps ong Ha?
pny 0f Re
Hnf 1
Pnfly ReDa

1.75
- ——— (VU2 + V2V, 6.8
\/150Da62< ) (68)
ou v

X Ty = O o9

Uﬁ + V@ — 1 %k_m 0% + ﬁ
0X oY — RePr aj k,y \0X2 = 0Y?2
Rd 5\ [ 00 9%0
+ —R€P7‘ ((1 + (NT - 1)9) ) (8X2 + W)

(Usinvcosv — VCOSQ’}/)

. (6.10)

Associated with the problem, the boundary conditions are given by

At thetopwall: U =0, V=0, 6=0,

At the bottom wall : U =0, V =0, 60=1,

00
At the left wall : U =0, V=-1, — =0
€ le a 9 9 a)r )
At the right wall =0 =1 —89 =0
eri all : U V .

g ? Y a):

6.2.4 The Effective Nanofluid Properties

The thermal diffusivity, effective density, coefficient of thermal expansion, specific

heat and electrical conductivity of the nanofluid [20, 140] could be expressed as

follows
pnp = (1= ®)ps + dpp, (6.11)
K s
g = : (6.12)
T (0Cy)ny

(PCp)ny = (L= 9)(pCp) s + d(pCp)p, (6.13)
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(PB)ns = (L= 0)(pB) s + ¢(pB)p, (6.14)
3(c—1)¢p s
(0+2)—(c—1)p]" or

Onf =0f 1+ (615)

The Brownian motion has considerable influence on the thermal conductivity of
the nanofluid. Koo and Kleinstreuer [141] proposed the following model for effec-

tive thermal conductivity.

3 (kp/kf _ 1) 0
(kp/ky +2) = (kp/kp —1) ]

keff - kstatic + kBrowniana (617)

kstatic = k:f 1+

(6.16)

where k, and k; are the thermal conductivities of solid nanosized particles and

pure fluid, respectively, kgqsie is the static thermal conductivity based on Maxwell

model [45] and kp,ownian 1S the thermal conductivity proposed by KKL model and

given by

I{bT ’
T, ¢, d 6.18

p d g ( 7¢7 p)7 ( )

p~"p

kBrowm'cm =90 X 1O4¢pf<cp>f

where empirical function ¢’ for the AlyOs-water nanofluid can be given by

J(T,¢,d,) = (a1 + azIn(d,) + azIn(¢) + as In(¢) In(d,) + as In(d,)?) In(7T)
+ (ag + ayIn(d,) + agIn(¢) + ag In(d,) In(¢) + a9 In(d,)?).  (6.19)

The coefficients a;(i = 1,2,...,10) are tabulated in Table 6.2. Koo and Klein-
streuer [119] further proposed following model for the effective viscosity due to

micromixing in suspensions.

kBrowm'an M
eff = Mstatic T rownian = Mstatic T X , 6.20
Heff = Hstat KB Hstat ks Pr; ( )

where fisaric = ps/(1 — ¢)*° is the viscosity of nanofluid, given by Brinkman [44].
Also, by incorporating the interfacial thermal resistence Ry = 4 x 10~ %m?K/W,



117

the original k, in Eq. (6.16) is replaced by k,.ss in the form

d
Ry+ -2 = : (6.21)
kp kp,eff

Effective heat capacity and effective thermal conductivity of the porous medium

Coefficient values  AlyOs-water

ap 52.813488759
s 6.115637295
as 0.6955745084
ay 0.041745555278
as 0.176919300241
ag -298.19819084
ay -34.532716906
as -3.9225289283
g -0.2354329626
a1 -0.999063481

Table 6.2: The coefficient values of AlaO3z-water nanofluid [22].

are calculated from the relations [71, 72] given by

(PCp)m = (1 = €)(pCp)p + €(pCp)ny, (6.22)
ke = (1 — €)ky + €k . (6.23)

We used the glass fibers to simulate the porous medium [142, 143].

6.2.5 Calculation of the Nusselt number

Local and average Nusselt number at the hot bottom wall are given by

_ 5 (29
Nu = kf (1+RdNr)(8y)

, (6.24)

Y=0,1

1
Ntgyg —/ Nu dX. (6.25)
0



118

6.3 The Numerical Approach

6.3.1 The Spatial Discretization

The system of coupled non-linear partial dierential equations together with given
boundary conditions have been discretized numerically by the finite element for-
mulation. The numerical procedure used to solve the governing equations for the
present work is based on the Galerkin weighted residual method in which we have
used the higher order Stokes element @Qy/P#*¢, where Q5 element is utilized for
the velocity and temperature and P#*¢ element is used for the pressure (see 2.5
for detail). The variational or weak form of the governing Eqgs. (6.7) - (6.10) is

given in the following:

1 oUu ou oP
= — — Q= — | == wdQ
= Q(U8X+V8Y)wd /Qand

L finy / 02U 02U
Q
* €Re p, vy Q(8X2 * oY? wd

nf Ha?
4 Pr ey A (sin*ycos*y /Vw dQ) — sin2’y/
Pnf Of Re Q Q

Hnf 1
— U w dS2
pnrvy ReDa /Q v

1.75
— ———— [ (VU ¥ V2) Uuw dO, 6.26
V150Dae? Q( ) (6.26)

1 ov ov oP
= — — Q= — | == wdQ
= Q(U8X+V8Y)wd /Qaywd

L finy / 0?V 0?V
Q
* €Re p, vy Q(8X2 * oY? wd

+ RilL (1—¢+psﬁs¢)/9wd9
Prf psBs Q

nf Ha?
+ Pr Tny 1A (sin’ycosv /Uw Q) — COS2’7/V1U dQ)
Pnf Of Re Q Q

_ gy /deQ
Q

pnrvy ReDa
(\/UQ n V2> Vw dS, (6.27)

1.75
ou ov
/Q (8_)( + 8—Y ) q ds) = O, (628)

Uw dQ)

~ V150Dae: Ja
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06 o U anrhm [ [P0 O
P v ) wda = Ang Fm IO a0
/Q (UaX Vv ) C = Py s s o (axz * aw) wd

Rd 4 [ 0%0 %6
1 Nr — 1 — Q
+ RePr/Q(( + (N7 )9))(8)(2 +8Y2)wd

(6.29)

Now, the infinite dimensional trial spaces U, V', 6 and P are approximated by Uy,
Vi, 0, and Py, respectively. Moreover, the infinite dimensional test spaces W and
() are approximated by the finite dimensional test spaces W), and Q),, respectively,

in such a way that

whEWhCHl(Q):{S:Q—>R:/]s(x)\Qd:U<oo,/]s'(m)]gdx<oo},
Q Q

qn € Qn C Lo(2) = {g:Q—)R:/Q\g(x)IQd:C<oo}.

After the finite dimensional approximation the Eqgs. (6.26) - (6.29) takes the form,

given as follows:

1 8Uh 8Uh aPh
- ] ] A0 = — [ Zh o, d0
&2 Q(UhaX +Vhay)wh G ox

1 Hnf 82Uh 82Uh
s
* eRe pnsvys /Q (8X2 * ayz )"

ng Ha’
_i_ﬁﬁ_a (Sil’l’)/COS'Y /Vhwh ds) — Sin27/thh dQ)
Pnf Of Re Q Q

S|
_ Mg /thth
Q

Pnfly ReDa
1.75
- — \JUZ + V2) Unwy, dS, 6.30
\/150Daeg Q( " " e ( )
1 8Vh 8Vh aPh
— Q= — | — Q
2 Q(Uh8X+Vh8Y> whd Qanhd
1 /Lnf / 82Vh 82Vh
ds2
eRe pnsvy Jo (8X2 + ayz )
+ RiPL (1—¢>+ psﬁs¢)/9h wy dQ
Pnf prBy Q

ny Ha?
+ ﬁﬂ_a (Sin’)/COS’Y /thh d§) — COSQ/)//Vh’th dQ)
pny 05 Re 2 @

Hon f 1
— Vi s
pnrvy ReDa /Q htWn
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1. /
aez

oUy, 8Vh
/Q(ﬁ_X + 8Y )qh ds) = O (632)

8«9h 69h 1 Onyf km / (920}1 829h
0= Onf Tm 9bh 0
/ (U"aX T Vhgy >wh A= pePras by Jo\ox2 T a2 ) W

Rd 3 629h 040y,
+ RePT/g;((l + (NT’ — 1)9h) ) (aXZ + aYZ)wh dQ2

(6.33)

N
Using the finite element approximation U,(X,Y) = > U;§(X,Y), Vi(X)Y) =
j=1

f} ViEi(X,Y), O(X,Y) = Z 0,6;(X,Y) and P,(X,Y) = i Pin;(X,Y) are the

j= j= =
trial functions. Similarly w, = Z w; & and q, = Z q; m; are the test functions. By
the Galerkin finite element model for a typical element Q., the Egs. (6.30) - (6.33)

are transformed into the following system:

1 9€; 23 _ 9&;
E_QU]\/Q (U&, J +V€l ]) dQe = —P]/ ’IbaX dQ

1 Hon f / afj agz afj agz
_ A Q
eRe pryvy S, (aX ox Tavay ) Hk

H 2
_|_ ﬁ%_@ (Sin’YCOS ’Y‘/}/ Sjg’bdQG - Sin2 ’}/Uj/ g]fzd96>
Png 05 Re Qe Qe

Hon f 1
__mr U. £ d),
pnrvy ReDa ! /Qe &t

1.75 S—
el | (\/U U+V V) &€ dQ., (6.34)

1 6 5 95 g0 p [ (%
2 [ (Tegi+vegs) an = [ o (G) .

1 Hnf / 85] 862 aéj 85@
eRe pnfl/ij o (8X 0X % oY oY ¢

+ Ri2E (1 —o+4 '0868 ) / €690,
Pnf

Ha?
4 Lr T 28 (sinvcosij / £,6d9Q, — sin? 1V / gjgid98>
pny 0f Re Q. Q.

Hnf 1
- V; £dS),
PrnfVy ReDa J /Qe 535
1Dy (\/UU+VV) £.6; dO (6.35)
 V150Daes  Ja, e '
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9%; / _
U; 8X n; dSde +V; aynz . =0, (6.36)
0, / (U@ % +vsza’5”) a9,
Qe
| aurhm, [ (0406, 0606
= BePrag g /Q (8X ox Tavay ) “
Ri, oy (0, 0 06
+ Reprej /Q (1+ (Nr—1)(9)) (aX ax 9y oy dQ.. (6.37)
The final system can be expressed in the following comprehensive form
[K®][u®] = {F°}, (6.38)
(1G] G TGP G {U} {r'}
K2 K2 ) || vy || 69)
(GG IR G {r} {£°}
KR RS KS|| { ||
;{; ue ;‘g

where K€ u® and F€ are said to be the stiffness block matrix, the block solution

vector and the right hand side block vector at an element level, respectively. For

the sake of brevity, the boundary integral is also included in F€. In stiffness block

matrix,

1 »p 1
KU _ Fr
I €Re pps (1 — )25

+ 1 <U§Z % + V¢ ’5”)
Qe

€2

1 p 1
K22 — Fr
" €Re pps (1 — )25

0&; 08,
/Q (a)é ox "oy

0 06\
Y oY ¢
1.75

et ———y
v 150Daez Ja

/ 9 06 L%
Q. 0X 0X

0¢; 9&i
oY 8Y> a2

3] 9 L75
- Ufl J +V52 ” ) dQ. +
/ < VI50Dae? Jo

12__pfaana . -

K}? = _pnf _af T (sm’ycosv o ijdee)>

Ha?

K2 _PrOng B (Sin COS ‘ idQe> )
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Rd —\3 (0&; 0&  0&; &
" RePr /Q (L+ (N7 = 1)(8) (8)( ox Tavaoy) M
K% = _pilL (1 o+ psm) &6 9.,
Pnf pfﬂf Qe
o€,
K= - / i, |
J 0. T OX
o€,
K2 = - / 250, |
J o VY
o,
31 _ i
Ji o, aandﬂe )
o¢;
32 _ i
Kji = o —aynldQe )

14 _ 33 __ 34 __ 41 __ 42 43 __
Kji - sz’ - sz‘ - sz‘ - sz‘ = sz' =0,
N N N
U=> Ui V=) Vi&and0=> 0.
j=1 j=1 j=1

We have utilized Qy/ P for space discretization (see 2.5 for detail). After dis-
cretization in space, we obtain an algebraic system of nonlinear algebraic equa-
tions. Integration regarding each term of these equations is performed by Gaussian
quadrature method. Then implementation of boundary conditions is carried out
and linear algebraic equations are obtained from nonlinear equations utilizing it-
erative Newton method. Some tolerance value is prescribed to see the optimised
minimum difference of the current values of the variables to the previous iteration
values by achieving the convergence of the solution of an iterative scheme. In other
words, the adopted criterion to stop the iterative scheme could be given as follows

Fn+1 S,

-6
S 1076, (6.40)

where U, V', P or 6 are denoted by a general variable I'. Superscript n represents
the iteration number in the above expression. Finally, these linear equations are

computed by the Gaussian elimination method.
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6.3.2 Code Validation and Grid Independence Test

Code validation has been performed for free convection results published in the
literature and given in Table 3.4 of chapter 3, for various computed variables.
Code validation has also been presented in Table 3.3 for mixed convection flow in
the section 3.3.2 of Chapter 3 and the results have an excellent agreement for both
of the cases. Code has also been validated graphically with that investigated by
Moumni et al. [144] as shown in Fig. 6.2. Grid independent study is executed by
considering the uniform grids at different computation levels for average Nusselt
number with Re = 100, Ri = 1 and Ri = 10,¢ = 0.04,v = 0°,e = 0.6, Rd =
1,Ha = 25,Da = 0.1, Nr = 1.1. First, coarsest grid containing one element at
level £ =1 is considered, then level £ = ¢+ 1 is obtained by dividing each element
into four new elements by joining the opposite midpoints. Table 6.3 suggests that
average Nusselt number values for mesh level £ = 9 and ¢ = 10 are almost the
same. [t indicates that further increase in mesh level merely boosts computational
cost and there will be no significant effect on results. Therefore, all the simulations

have been carried out at mesh level ¢ = 9.
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Figure 6.2: Code validation of streamlines (above row) and isotherms (bottom
row) contours of present solver (right column) to that of Moumni et al. [144] (left
column) for Re = 50, Ri = 20 and ¢ = 0.2.
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0 #EL  #DOFs Nugg(Ri =1) Nugg(Ri = 10)
4 64 1059 4.959023 8.079592
5 256 4035 6.382236 9.232417
6 1024 15747  5.988722 8.418373
74096 62211  5.750869 7.838208
8 16384 247299  5.379401 7.285173
9 65536 986115 5.181349 6.979336
10 262144 3938307 5.116674 6.918256

Table 6.3: Results of grid independence test for alumina-water nanofluid.

6.4 Results and Discussion

Numerical simulation has been accomplished on mixed convective alumina-water
nanofluid filled porous square cavity considering the effect of non-linear thermal
radiation and inclined magnetic field. In the whole study, considered standard
parameters are Re = 100, R: = 1,Ha = 25,¢ = 0.04,v = 0°, Rd = 1, Nr =

1.1, Da = 1073, ¢ = 0.6 unless mentioned, otherwise.

Effect of radiation parameter on streamline maps for Ri = 0.01,1 and 100 has
been demonstrated by Figure 6.3. Streamlines show almost the same pattern for
small Richardson numbers, i.e., Ri = 0.01 and R: = 1, two weak rotating cells
along vertical walls are observed in these cases. Increasing the Richardson num-
ber up to Rt = 100, deeper flow activity in the cavity is induced due to dominant
buoyancy forces which carries more energy from the hot bottom wall, thus caus-
ing significant changes in flow behavior. When radiation parameter is gradually
increased from Rd = 0 to Rd = 5, maximum absolute stream function value in-
creases that is more pronounced for the case of Ri = 100. In this situation, weak
rotating vortices eventually coalesce into a single vortex in the middle of the cavity

indicating higher fluid velocity in the cavity.

Impact of radiation parameter on isotherm maps for Ri = 0.01,1 and 100 has

been portrayed by Figure 6.4. Isotherms show nearly the same behavior for small
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Richardson numbers. Initially, for low radiation parameter, isotherms with large
magnitude occur in the right bottom and lines with small values exist in the top
left corner of the cavity. Isotherms with intermediate values seem to travel diag-
onally from left bottom to top right vertex of the cavity. With an increase in the
radiation parameter up to Rd = 5, isothermal lines are distributed uniformly that

indicates dominance of conduction in the cavity.

Influence of Darcy number on streamline contours for Rz = 0.01,1 and 100 has
been elaborated by Figure 6.5. Initially, for Da = 107%, Ri = 0.01 and Ri = 1,
two parabolic shaped rotating eddies appeared near the vertical adiabatic walls
due to their movement in the opposite direction. An increase in Darcy number
up to 1073 causes in reduction in the resistance of fluid friction that results in the
form of higher fluid velocity (¢4, = 0.0034) in the cavity. Moreover, for the case
of Rt = 100 and low Darcy numbers, two weak rotating vortices near the verti-
cal walls appeared that are eventually combine into a central main vertex in the
middle of the cavity, with an increase in Darcy number up to Da = 1073, This in-
dicates an increase in fluid velocity due to decline in fluid friction resistance. This

fact is also evident from maximum stream function values, i.e., ¥4, = 0.0150.

Impact of Darcy number on isotherm contours for Ri = 0.01,1 and 100 has
been manifested by Figure 6.6. Isotherm sketches appear to be almost the same
for Rt = 0.01 and Ri = 1 whereas significant variation has been observed for
Ri = 100. For Da = 107%, Ri = 0.01 and Ri = 1, isotherms are nearly parallel
to hot bottom and top cold horizontal walls that are uniformly distributed indi-
cating conduction in the cavity. Increasing Da, gradual slight variation has been
noticed by transforming conduction to convection flow regime for low Richardson
numbers. But for Ri = 100 and Da = 1073, thin thermal boundary layer is seen
along the bottom hot and top cold walls. In this case, isotherms in the vicinity of

adiabatic vertical walls become almost parallel to the walls.

Effect of porosity parameter on streamline and isotherm maps for R: = 0.01, 1, 100
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has been shown by Figures 6.7 and 6.8. As long as streamlines are concerned, for
Ri =0.01,R: = 1 and € = 0.2, initially, two weaker eddies along opposite vertical
adiabatic walls appear. As porosity parameter increases, strength of these eddies
starts increasing slightly and becomes maximum for e = 0.8 that is also evident
from maximum stream function value, ,,,, = 0.0183. Significant growth in max-
imum stream function value moves from low value of porosity to high porosity
value. Slight variation in isotherm patterns is observed for Ri = 0.01 and Ri = 1
for fixed value of porosity parameter but significant changes occur for Ri = 100.

Increase in porosity gradually converts conduction to convection flow behavior.

Average Nusselt number is a decreasing function of magnetic field inclination angle
as illustrated by Figure 6.9. Moreover, nanofluid with ¢ = 0.04 has the capability
to transfer more heat in the cavity as compared to base fluid with ¢ = 0. Effect
of radiation parameter on average Nusselt number has been shown in Figure 6.10
and observed that heat transfer enhances with an increase in radiation parame-
ter that is more highlighted for Ri = 10 and (¢ = 0.04). As a consequence of
non-linear thermal radiation, an emerging control temperature ratio parameter
Nr arises that increases heat transfer due to hot bottom wall as portrayed by
Figure 6.11. Darcy number relates directly to the permeability of porous medium.
Higher Darcy number penetrates powerful penetration that results in the form of
higher heat transfer rate. This is also evident from Figures 6.12 and 6.13 that
average Nusselt number is an increasing functions of Darcy number and porosity
parameter and this increment is more pronounced for the case of nanofluid with
¢ = 0.04. This enhancement in heat transfer becomes more pronounced for free
convective flow regime (Ri = 10). Kinetic energy slightly rises with magnetic
field inclinaton angle for small Richardson number but interestingly it decreases
for Ri = 10 as exhibited by Figure 6.14. From Figure 6.15, kinetic energy is an
increasing function of radiation parameter for free convection dominated regime
(Ri = 10) and for pure fluid (¢ = 0) whereas kinetic energy is almost constant
for mixed and forced convection flows. Kinetic energy augments with porosity

parameter and Darcy number as shown by Figures 6.16 and 6.17, respectively.
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The plots for Ri = 0.01 and R:i = 1 overlap each other to show the same behav-
ior. Furthermore, it is witnessed from mentioned sketches that kinetic energy has
greater value at higher Darcy number (Da = 0.001) due to less contribution from

non-linear inertial drag in the momentum equations.

Influence of different physical parameters on average temperature has been pre-
sented in Figures 6.18-6.21. Average temperature in the cavity declines for forced
convection (Ri = 0.01) and mixed convection (Ri = 1) regimes with magnetic
field inclination angle whereas interestingly, it slightly increases for free convective
flows (Ri = 10) at v = 60° and v = 90° that can be noticed from Figure 6.18.
Moreover, average temperature due to nanofluids is less than pure fluids. Average
temperature in the cavity is an increasing function of thermal radiation parameter
as can be inferred from Figure 6.19. Average temperature increases linearly with
temperature ratio parameter that is illustrated by Figure 6.20. From Figure 6.21,

average temperature increases with porosity parameter.
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Figure 6.3: Streamline contours for different radiation parameters.
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Figure 6.4: Isotherm contours for different radiation parameters.
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Figure 6.5: Streamline contours for different Darcy numbers.
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Figure 6.6: Isotherm contours for different Darcy numbers.
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Figure 6.7: Streamline contours for different porosity parameters.



133

0.00

0.00

Figure 6.8: Isotherm contours for different porosity parameters.
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Figure 6.12: Effect of Richardson number on average Nusselt number at the
bottom hot wall due to Darcy number.
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Figure 6.21: Effect of Richardson number on average temperature as a func-
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6.5 Closing Remarks

In this study, numerical simulation has been performed on the mixed convective
alumina-water nanofluid filled porous square cavity considering the effects of non-
linear thermal radiation and inclined magnetic field. The governing equations are
solved through the Galerkin finite element method. The streamlines, isotherms and
some important plots are sketched in order to explore the influence of pertinent
parameters on the flow. Some significant points of the present investigation may

be summarized as follows

e For a fixed value of Richardson number, an increase in maximum stream
function value has been observed with a rise in porosity parameter and Darcy

number that is more pronounced for dominant free convective flows.

e An augmentation in maximum stream function value has been noticed with

a growth in thermal radiation parameter as well, for free convection flows.

e The amplification in the heat transfer has been observed with an extension
in Darcy number, solid volume fraction, porosity, radiation and temperature

ratio parameters.
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A reduction in average Nusselt number has been explored with an increase

in magnetic field inclined angle.

More heat transfer has been seen as a function of Darcy number, porosity,
temperature ratio, radiation and magnetic field inclination parameters for

the case of nanofluid with ¢ = 0.04 as compared to the pure fluid ¢ = 0.

The kinetic energy and the average temperature are increasing functions of
Darcy number, thermal radiation and porosity parameter but interestingly
pure fluid with ¢ = 0 has greater values for average temperature and kinetic

energy as compared to nanofluid with ¢ = 0.04.

The average temperature is almost constant up to v = 30°, further increment
in magnetic field inclined angle results a decline in average temperature for
forced and mixed convective regimes whereas opposite behavior has been

inspected for free convection flows.

An augmentation in the inclined magnetic field angle results a slight increase
in kinetic energy for forced and mixed convection cases whereas opposite

response is observed for free convective flow regime.



Chapter 7

Conclusion and Future Work

7.1 Introduction

In this thesis, numerical simulation of mixed convective alumina-water nanofluid
flow in a double lid driven square cavity is executed. Initially, we considered
the influence of cavity inclination angle on the mixed convective nanofluid flow
in a double lid-driven cavity. Then the magnetohydrodynamics mixed convective
nanofluid flow and entropy generation in a double lid-driven square cavity with dis-
crete heating was examined. Furthermore, the mixed convection in nanofluid filled
lid-driven square cavity with an isothermally heated square blockage inside with
magnetic field effect is analyzed. At the end, the mixed convective nanofluid flow
in a lid-driven square porous cavity using the KKL model considering the effect of
thermal radiation and inclined magnetic field was discussed. Furthermore, the be-
haviour of the average Nusselt number, the entropy generation due to heat trans-
fer, fluid friction, magnetic field, the total entropy generation, the average temper-
ature, kinetic energy and Bejan number have been investigated under the influence
of different physical parameters like Reynolds number, Richardson number, Hart-
mann number, Eckert number, Darcy number, nanoparticles volume fraction, cav-
ity inclination angle, magnetic field inclination angle, porosity and thermal radia-

tion parameter. The whole study can be concluded in the following remarks.

140
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7.2 The Concluding Remarks

e With an increase in the buoyancy forces, an augmentation in the heat trans-

fer and the entropy generation due to heat transfer is observed.

e The total entropy generation and the Bejan number enhance with an increase

in the Reynolds number and the nanoparticle volume fraction.

e The entropy generation due to the fluid friction declines with a rise in the

buoyancy forces.

e The entropy generation due to the fluid friction grows with an increment in

the Reynolds number and magnetic field strength.
e Bejan number increases with a rise in the Reynolds number.

e The kinetic energy increases with an increase in the Reynolds number, Richard-
son number and nanoparticle volume fraction whereas it reduces for the in-

creasing values of the magnetic field.

e An augmentation in the nanoparticles volume fraction causes a significant

increase in the heat transfer.

e An increase in the cavity inclination angle diminishes the entropy generation

due to heat transfer, fluid friction, average temperature and kinetic energy.

e An increase in the inclination angle causes to increase the heat transfer due
to the left discrete heat source while an opposite behavior is observed for the

right discrete heat source.

e A reduction in the average Nusselt number and an augmentation in the
average entropy generation due to the heat transfer, the average total entropy
generation and the average temperature are observed with an increment in

the Eckert number.

e An increase in the average temperature in the cavity has been noticed with

an augmentation in the Eckert number and magnetic field strength.



142

A decline in the heat transfer, the entropy generation due to the heat trans-
fer, Bejan number and the kinetic energy is perceived with an increase in

the magnetic field strength.

An increase in the heat transfer is seen with a growth in the thermal radi-
ation parameter that is more pronounced for the case of nanofluid and free

convective flow regime.

For a fixed value of the Richardson number, an increase in the maximum
stream function value is observed with a rise in the porosity parameter and
the Darcy number that is more pronounced for dominant free convective

flows.

An augmentation in the maximum stream function value is noticed with a

growth in the thermal radiation parameter as well, for free convection flows.

A magnification in the heat transfer is observed with a rise in the Darcy
number, solid volume fraction, porosity, radiation and temperature ratio

parameters.

A reduction in the heat transfer is explored with an increase in the magnetic

field inclined angle.

More heat transfer is seen as a function of Darcy number, porosity, temper-
ature ratio, radiation and magnetic field inclination parameters for the case

of nanofluid as compared to the pure fluid.

The kinetic energy and the average temperature are increasing functions
of the Darcy number, thermal radiation and porosity parameter but inter-
estingly pure fluid has greater values for the average temperature and the

kinetic energy as compared with the nanofluid.

The average temperature is almost constant up to the magnetic field incli-
nation angle v = 30°, further increment in the magnetic field inclined angle
results a decline in the average temperature for forced and mixed convective

regimes whereas an opposite behavior is inspected for free convection flows.
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e An amplification in the inclined magnetic field angle results a slight increase
in the kinetic energy for forced and mixed convection cases whereas an op-

posite response is observed for free convective flow regime.

7.3 Future Work

We have considered the viscous, laminar, Newtonian and incompressible fluid in a
square lid-driven cavity. A lot of work can be done in this direction by considering
the non-Newtonian fluid. Turbulent flow regime can also be considered. A list of

some possible problems out of many is given in the following.
e Entropy generation in the non-Newtonian fluids can be considered with dif-
ferent effects.

e Double diffusion phenomenon along with the entropy generation can be in-

vestigated with various physical effects.

e Effect of porosity can be examined considering the entropy generation.
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