
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Dynamic Analysis of Epidemic

Computer Virus Models

by

Zaheer Masood

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Engineering

Department of Electrical Engineering

2020

www.cust.edu.pk
www.cust.edu.pk
Masood.Zaheer@Yahoo.Com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Dynamic Analysis of Epidemic Computer Virus

Models

By

Zaheer Masood

(PE141009)

Dr. Steve S. H. Ling, Senior Lecturer

University of Sydney, Sydney, Australia

(Foreign Evaluator 1)

Dr. Ibrahim Develi, Professor

Erciyes University, Kayseri, Turkey

(Foreign Evaluator 2)

Dr. Raza Samar

(Thesis Supervisor)

Dr. Noor Muhammad Khan

(Head, Department of Electrical Engineering)

Dr. Imtiaz Ahmed Taj

(Dean, Faculty of Engineering)

DEPARTMENT OF ELECTRICAL ENGINEERING

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2020



ii

Copyright c© 2020 by Zaheer Masood

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



iii

DEDICATED TO MY PARENTS









vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. Masood, Zaheer and Majeed, Khalid and Samar, Raza and Raja, Muham-

mad Asif Zahoor, “Design of Epidemic Computer Virus Model with Effect

of Quarantine in the Presence of Immunity” Fundamenta Informaticae, Vol.

161(3), 2018, PP. 249-73.

2. Masood, Zaheer and Samar, Raza and Raja, Muhammad Asif Zahoor, “De-

sign of a Mathematical Model for the Stuxnet Virus in a Network of Critical

Control Infrastructure” Computers & Security, Vol. 87, 2019, PP. 101565.

3. Masood, Zaheer and Samar, Raza and Raja, Muhammad Asif Zahoor, “De-

sign of fractional order epidemic model for future generation tiny hardware

implants” Future Generation Computer Systems, Vol. 106, 2020, PP 43-54.

Zaheer Masood

(Registration No.PE141009)



viii

Acknowledgements

All praise be to almighty ALLAH who has been bestowing me with his great

bounties and enabled me to complete my dissertation. I offer my deepest gratitude

to my parents and family who have provided me motivation and relentless support

in my entire life. I would like to express my heartiest gratitude to my supervisor

Prof. Dr. Raza Samar, Capital University of Science and Technology (CUST)

Islamabad. It was a wonderful experience and learning opportunity to work with

him as a PhD student. I am really indebted to his kind support and all out

help to complete this research work successfully. His continuous encouragement,

support and constructive criticism made me able to complete this task. In spite

of his administrative and managerial engagements, his dedication, as a supervisor,

is highly appreciable. I will always be in debt to him for his efforts to make me

a better researcher and a better human being. I would also like to extend my

gratitude to the Dean Faculty of Engineering Prof. Dr. Imtiaz Ahmad Taj and

Head of Department Prof. Dr. Noor M. Khan and Dr. Fazal ur Rehman for

their continuous encouragement and support during the entire span of my stay at

CUST. Special thanks to Prof. Dr. Aamer Iqbal Bhatti for technical help and

guidance. I am also thankful to Prof. Dr. Muhammad Asif Zahoor Raja for

continuous support with devotion and sincerity. I feel honor to express my feeling

of appreciation for the support I have received from the members of Research

Group, especially, Mr. Khalid Majeed, Dr. Syed Usama, Mr Zohaib Latif who

helped me in my research work and documentation of the thesis.



ix

Abstract

In the present arena of digital world and Internet of Things, networks are be-

coming the target of well-crafted cyber-attacks especially, the incidents related to

breach of internal system security and espionage of protected critical information.

The computer viruses that can cause serious damage and compromise sophisti-

cated systems have drawn special attention from the research community due to

their masked and multifarious attack patterns. Removable storage media plays

an important role in the transfer of data and virus to the computers connected

to the critical networks. The air-gap between these networks are compromised

by exploiting the internal weaknesses of the arrangement, transferring of data

through removable storage media, hardware implants and zero-day vulnerabili-

ties in the software / hardware that could be exploited in the real world before

its disclosure. Thus, in a computer network virus poses a serious threat to the

resource availability, confidentiality and integrity of critical assets. The purpose

of this study is to design and upgrade the existing epidemic virus models under

different conditions that describe the transmission of malicious computer code

in active computer networks. An epidemic virus model that portray the spread

of the malicious code in a critical infrastructure with pre-existing immunity and

quarantine as an effective control strategy is designed. Due to the rapid spread

of computer viruses and delay in the update of antivirus signature database, the

role of quarantine as a controlling mechanism has gained importance. An epi-

demic virus model is designed that depicts the behavior of Stuxnet virus which is

an advance persistent threat (APT) type cyber attack, uses unusual methods to

attack resources with an intend to access the critical information while remains

undetected and require special arrangement for control. Hardware based implants

are common in these days gadgets and in computing machines for exploitation.

Hardware implant based epidemic model is designed that portray the exploitation

of hardware through embedded tiny chip. The control strategy of these compro-

mised nodes are very difficult because they implant backdoors, install malicious

utilities, gain admin rights, work as a legitimate program or infect with viruses.

Nonlinear mathematical models are considered to analyze the dynamic behavior



x

of such virus spreads which exploits the inability of antivirus utilities and zero-day

bugs of the software / hardware systems. The existence of disease free and endemic

equilibrium points are explored in terms of the basic reproduction number R0 for

stability analysis. Numerical simulations are performed to investigate the dynam-

ics of the models using well-established numerical techniques. Fractional order

nonlinear models are designed for detailed analysis of the epidemic virus spread in

the normal, air-gapped critical networks and hardware based implant vulnerabili-

ties. Numerical experimentation’s for fractional order models are performed using

Grunwald-Letnikov (GL) based numerical solver and results show that fractional

order models provide enrich dynamics by means of supper fast transients as well as

supper slow evolutions of the steady-state which are seldomly perceived in integer

order counterparts. Models accuracy are evaluated by comparing the results with

available observed real data, published results and exact solutions.
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Chapter 1

Introduction

This chapter introduces the research work carried out in this thesis. Firstly, back-

ground and motivation for this work is developed and then the research problem

and research objectives are clearly defined. Novel contributions of this research

work which adds to the existing knowledge are summarized. This chapter con-

cludes with an overview of the thesis.

1.1 Background and Motivation

Motivation of this research is to design and upgrade virus models by consider-

ing the multifarious pattern of virus attack and their spreads in the computer

networks. The designed models provides an effective platform for remediation of

Stuxnet virus, tiny hardware implants vulnerabilities, zero day attacks, treatment

of hardware vulnerabilities, reduce system endemic vulnerabilities and can be used

for pre-emptive antivirus software design.

Maintaining database of virus signatures is very difficult due to high cre-

ation rate of new viruses with complicated updating mechanisms, especially

for isolated critical networks. It is observed that quarantine and immunity

can play an important role in the situation where virus signature and patch

1



Introduction 2

updates are difficult, especially in remote locations or bandwidth and re-

source limited systems. Due to the availability of two recovery mechanisms

immunity and quarantine, recovery of infectious nodes can be better and

crashing of nodes due to infection may come out to be low. A model with

detail analysis is required for investigating this. The inclusion of quarantine

class may reduce the chances of the system becoming endemic.

Limited study regarding role of removable storage media in the spread of

virus that compromise the air-gap in critical networks is available. Investi-

gation did not establish a link of virus spread to critical industrial networks

through removable storage devices.

To understand the in-depth analysis of Stuxnet virus model for fast tran-

sients and slow evolutions, fractional order model analysis is required to be

explored.

The advancement in technologies creates several challenges to the security

of the infrastructure of the nations in the presence of vulnerability and the

development of smart viruses [1]. The global median dwell time of attack-

ers is decreasing and targeting prey becomes easy due to bugged hardware.

Therefore, detailed dynamical analysis of hardware implants and their dev-

astation pattern with control mechanisms looks a promising domain to be

investigated by the research community. In this regard, a bugged, compro-

mised and patched (BCP) mathematical model is required which analyzes

the spread of the virus and exploitation of system resources in compromised

hardware.

1.2 Objectives and Significance

The objective of this study is to answer the question raised in motivation section.

1. Our objective is to extend the Hethcote MSEIR model [2] by developing an

MSEQIR model, to study the behavior and impact of virus spread in the

presence of immune and quarantine classes.
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2. Our goal in this study is to design a mathematical model that depicts the

Stuxnet spread in a working environment and its impact on critical infrastruc-

tures managed by industrial control computers.

3. Aim of present study is to exploit the rich heritage of fractional dynamics for

the development of fractional Stuxnet virus model in order to study the virus

spread in supervisory control and data acquisition systems.

4. Detailed dynamical analysis of hardware implants and their devastation pat-

tern with control mechanisms looks a promising domain to be investigated by

the research community. In this study, a bugged, compromised and patched

(BCP) mathematical model is presented to analyze the spread of the virus and

exploitation of system resources in compromised hardware.

5. In this study, a Fractional order BCP based mathematical model is presented

to analyze the very fast transients as well as slow evolutions of the virus spread

and exploitation of system resources in compromised hardware.

6. Local and global stability analysis of the models are performed at equilibrium

points both for virus free and endemic spread scenarios analytically.

7. Simulation and modeling of virus propagation is performed numerically using

state of the art standard numerical solvers such as Adams, backward differen-

tiation formula (BDF), implicit and explicit RK and Grunwald-Letnikov(GL)

fractional solver.

1.3 Methodology and Techniques

1.3.1 Literature Review

Virus modeling is a vast emerging field, especially computer virus modelling is

a new field. However, literature is reviewed extensively in the form of research

papers, review articles, thesis and related books regarding virus modeling and

related soft computing techniques.
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1.3.2 Mathematical Expansion / Up-gradation of the Model

Mathematical modeling is an art of translating complex real phenomena in to

tractable mathematical formulations which provide insight behavior of the problem

without interaction with the system. Mathematical models of virus propagation

are expanded and upgraded using differential equation models. The choice of

variables and parameters are well thought-out by considering their role and relation

with real world problems. Different environments are created using a diverse

combination of variables and parameters to test the real world situations depicting

the spread of virus.

1.3.3 Equilibrium Points

Equilibrium of a system is a state in which it does not change, or the rate of change

is zero. The equilibrium of a system can be estimated by setting the derivatives

to zero. To understand virus behavior, virus spread and disease free equilibrium

points are calculated. Disease free and endemic equilibrium points of the model

provide further basis for investigation of the virus spread behavior.

1.3.4 Basic Reproduction Number R0

The basic reproduction number R0 of the model is calculated which represents the

addition of new infection due to an infected individual in the susceptible popula-

tion. R0 is the parameter of infection spread measurement, if R0 > 1, infection

will grow in the system and if R0 < 1 then infection will die down.

1.3.5 Stability Analysis

To validate the theoretical boundaries of the virus free and endemic spread, stabil-

ity analysis of the model at virus free and endemic equilibrium points is performed.
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Local and global stability studies are carried out to define the boundaries of the

model.

1.3.6 Simulations

Numerical simulations are performed to check the accuracy of proposed models

using traditional numerical techniques and advanced fractional numerical methods.

1.3.7 Writeup of Papers/Thesis

Simulation results are systematically provided in the articles for possible publica-

tion in highly regarded national and international journals and finally when the

research contribution was well-established, thesis writeup was performed.

1.4 Research Contributions

The main contributions of this research work added to the existing knowledge of

research community are summarized as below:

1. An Immune M(t), Susceptible S(t), Exposed E(t), Quarantine Q(t), Infected

I(t) and Recovered R(t) nodes epidemiological based computer virus model

MSEQIR is designed by considering the effect of quarantine in the presence

of immunity in the field of network and security. This work is also published

in a reputed journal [3]

2. A Susceptible nodes S(t), Infected nodes I(t), Damaged nodes P (t), Removable

Susceptible storage media Us(t) and Removable Infected storage media UI(t)

computer virus model SIPUsUI is designed with ability to accurately model

the security of isolated critical industrial control networks.

3. A fractional order Stuxnet virus model is proposed by exploiting the rich her-

itage of fractional calculus in the environment of supervisory control and data
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acquisition by bridging the air-gap between traditional and critical control net-

work infrastructures.

4. A novel Bugged, Compromised and patched epidemic mathematical model is

designed for embedded tiny chip based infiltration within another computer.

5. A Fractional order Bugged, Compromised and patched mathematical model is

proposed to analyze the fast transients as well as slow evolutions of the virus

spread and exploitation of system resources in compromised hardware.

1.5 Overview of This Thesis

The thesis are organized as follow

Chapter 1, Introduction: This chapter introduces the research work carried

out in this thesis. Firstly, background and motivation for this work was devel-

oped and then the research problem and research objectives are clearly defined.

Novel contributions of this thesis are summarized. This chapter concludes with

an overview of the thesis.

Chapter 2, Literature Review: In this chapter introduction of malware types,

threats, impact on world security, attacking behavior, mathematical modeling and

fractional order modeling are discussed with references in computer network as well

as in biology literature. Literature survey in context of research gaps is carried

out.

Chapter 3, Role of Quarantine and Immunity in Virus Spread: This

chapter presents the role of quarantine and immunity in computer virus spread.

Due to the rapid spread of computer viruses and a delay in the update of antivirus

signature database, the role of quarantine and immunity has gained great impor-

tance.

Chapter 4, Dynamic Analysis of Stuxnet Virus Spread: In this chapter,

spread of virus infection due to removable storage media and infected hosts is an-

alyzed. Removable storage media plays an important role in bridging the air-gap

between isolated critical networks and commercial networks.

Chapter 5, Fractional Dynamics of Stuxnet Virus Propagation: In this
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chapter fractional dynamics of Stuxnet virus spread are analyzed in the regimes

of supervisory control and data acquisition environment when the air-gap between

traditional and critical control network is bridged. Spread behavior analysis of

malicious codes is investigated for distinct orders of fractional derivative in the

model.

Chapter 6, Vulnerability Analysis of hardware Implants: This chapter

presents the design of an epidemic model that portrays the exploitation of com-

puters by bugs implanted through embedded tiny chips (mini-computer within

another computer) such as Intel management engine (ME).

Chapter 7, Fractional Analysis of Hardware Implants Spread: This chap-

ter describes the fractional version of the epidemic model that portrays the ex-

ploitation of hardware through embedded tiny chips inside the computer.The

firmware level bugs allow escalation of privileges and remote execution of code

beneath the operating system for infiltration.

Chapter 8, Conclusion and Future Work: In this chapter conclusion of the

thesis results are drawn and suggestions regarding future work are proposed.



Chapter 2

Literature Review

This chapter discuss the literature review of malware types, advance persistent

threats, hardware implants, multifarious attacking pattern and impact on world

security. Mathematical modeling and fractional order modeling are also discussed

with reference to computer networks as well as in biology literature. Literature

survey in context of research gaps are identified. Detail of the literature reviews

are given below.

2.1 Introduction

Now a days, victory in wars is based on use of superior technologies and equip-

ments. They mostly use automated systems that are combinations of hardware

and software. There is no secret that in our societies most infrastructures are

dependent on computers and threats to computers cause threats to society. Soft-

ware normally controls the functionality of hardware and the real war is waged

with malicious software or malware. This is a software program whose intent is

malicious and covers a wide range of threats including virus, worm, trogan horse,

spam and spyware. A virus is a type of malware that requires human effort /

click to spread on the system whereas a worm replicates itself without any effort.

A trojan horse is not a virus, it is a destructive program that pretends to be a

8
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genuine application and opens backdoors in the target systems. Around 70% of

malicious code belongs to the category of trojan horse. Spam is a term used for an

abundance of unsolicited bulk emails. Statistics show that currently 70% of email

traffic falls under this category. Spyware is a program that collects information

covertly and transmits it to specific control stations. On the other hand, adware

(like spyware) collects user information and appeared in late 1990s [4].

In the present arena of networked computers, malware poses a serious threat to

the resource availability, confidentiality and integrity of computer networks. Elec-

tronic mail, sharing of resources in a network environment, use of secondary data

carrying devices and special websites are the major source of spread of malicious

objects [5, 6] that can erase data, compromise the resources, delay critical pro-

cesses, open back doors, modify the operations and launch of distributed denial

of service attacks [7–9]. Cyber threats in the form of virus, worm, spyware, ad-

ware and trojans stealing information or hacking accounts now often happen in

sophisticated and technical ways. Nations and individuals are accumulating cyber

resources and developing novel methods to exploit the selected targets in an op-

timal manner [10–12]. The world economy and security depends upon the secure

connectivity of the Internet and intranet due to automation of the industrial and

economic processes. International conflicts pose serious threats to system secu-

rity, financial loss, loss of critical information, damage of resources and ruin of

critical assets [13–15]. In the present arena, networks are becoming the target

of well-crafted cyber-attacks, especially incidents related to breaking of internal

systems and espionage of critical information. The air-gap between these systems

are mostly compromised by exploiting the internal weaknesses of the arrangement

and zero-day exploits in the software / hardware [16, 17]. Zero-day vulnerability

are the holes of any software / hardware that could be exploited in the real world

before their disclosure and in the absence of any patch [18]. Due to the natural de-

sire of automating every appliance, the use of software has increased enormously.

The poor programming approaches and weak software testing methodologies are

unable to detect the vulnerabilities and bugs in the codes, that may lead to com-

promising the whole system and an easy prey for hackers [19]. Bugs could affect
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Table 2.1: A brief overview of computer malware.

Year Author Description Ref.

2004 Hoglund, G Exploiting software: How to break code [20]

2006 Aycock, J Computer viruses and malware [4]

2011 Langner, R Stuxnet: Dissecting a cyberwarfare weapon [22]

2011 Kesler, B The vulnerability of nuclear facilities to cyber attack [24]

2012 Rid, Thomas Cyber-weapons [21]

2013 Finifter, M Empirical Study of Vulnerability Rewards Programs [23]

2014 Ablon, L Markets for cybercrime tools and stolen data [19]

2014 Axelrod, Robert Timing of cyber conflict [10]

2014 Sanger, David NSA devises radio pathway into computers [25]

2017 Ashibani, Y Cyber physical systems security challenges [14]

2017 Ablon, L Life and Times of Zero-Day Vulnerabilities [17]

2018 Tounsi, W Survey on sophisticated cyber attacks [11]

2018 Van der Walt Cyber-security detection on social media platforms [12]

2018 Ullah, F Data exfiltration [13]

2018 Hassan, S Security threats in Bluetooth technology [15]

2018 Kim, S Empirical study of cloned vulnerabilities [16]

everything from small to advanced devices and could be exploited to steal infor-

mation, insert rootkit, wipe data, manipulate desired results and compromise the

critical industrial plants [20]. These bugs are used as tools for cyber war [21] which

range from very small programs that just display annoying messages or very com-

plex program that can physical damage the system such as Stuxnet [22]. Cost

estimates of valuable zero-day exploits can go over $100,000 [23]. The discovery

of new vulnerabilities in known software is very common. It was found that in

a three-year period, 2009-2012, more than 400 problems were found in Firefox

browser and over 800 were found in Chrome browser [24]. The rapidly growing

market of zero-day exploits, demands careful designing and understanding of the

spread mechanism of malicious codes.

In the last few years hardware implants and bugs are commonly used for exploita-

tion of the server computers and systems connected to critical plants. Exploitation

of implanted hardware is easy and covertly provides a backdoors to access the in-

formation and execute desired instructions [25, 26]. Intel Management Engine
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(ME) is the creek behind the Intel Active Management technology (AMT) which

is present in almost all version of desktops, laptops and servers using Intel chipsets

since 2008 [27]. ME 11 is based on Intel Quark x86-based 32bit processor with

MINIX 3 operating system, independent from the main processor and operating

system [28]. Every modern computer is based on Intel architecture with an Intel

management engine (ME) having powered capabilities, full access to operating

memory, out-of-band network management and running of CPU independently

even in shutdown state (connected with battery or power supply) [29]. These

capabilities allow proprietary remote management of the system and allow In-

tel to implement different features and technologies [30], while on the other side

remote management options tempt hackers to target Intel ME for exploitation, in-

stallation of backdoors, stealing important information and compromising critical

infrastructures [31]. Intel ME is a firmware, stored in a serial peripheral interface

(SPI) flash memory along with BIOS using embedded flash file system, with an

isolated, powerfull, privileged and stealthy execution environment [32]. Manage-

ment Engine firmware module uses Huffman encryption algorithm for the security

of boot code that makes it quite difficult to re-construct [33]. Intel admitted that

the active management technology platform services are vulnerable to multiple

security threats which are reported by external security experts [34]. Hacker can

attack the machines having AMT features through AMT VNC-server, AMT web-

server, AMT HTTP protocol, AMT HTTPS protocol and AMT serial over LAN.

Security experts and critics like electronic frontier foundation say that ME is a

backdoor with privacy concern and worries of full access to memory without parent

CPU knowledge, can send and receive packets independently of operating system

and thus have no hurdle of any sort of firewall and antivirus [35, 36].

2.2 Virus Modeling

Advancement in Internet and computer technologies creates a challenge to the

security of the critical infrastructure of nations. These challenges also provide an
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Table 2.2: Overview of hardware bugs.

Year Author Description Ref.

2009 Bozdag, E Therac-25 and the security of the computer [27]

2012 Stewin, P Understanding DMA malware [29]

2013 Hoekstra, M Innovative instructions to create trustworthy software solutions [28]

2013 Stewin, P Stealthy peripheral-based attacks on the computing platform [32]

2014 Ruan, X Safeguarding the Future Security of Intel Management Engine [30]

2014 Skochinsky, I Intel ME Secrets [33]

2017 Ogolyuk, A Intel Management Engine Attack Vectors [36]

2017 Ermolov, M Hacking a Turned-Off Computer [31]

2017 Averlant, G Intel and ARM hardware isolation mechanisms [34]

2018 Robertson, J The big hack [26]

2018 Domas, C Hardware Backdoors in x86 CPUs [35]

opportunity to devise a controlling strategy. The behavior of virus spread is stud-

ied by using epidemiological modeling of virus propagation to safeguard against

threat propagation [37, 38]. The control strategies for these malicious codes are

inherently complex due to its rapid spread nature and higher birth rate [39, 40].

A mathematical model gives us the flexibility of deep understanding with a simple

procedure, as well as, vibrant assessment to solve complex problems. In mathe-

matical modeling, thoughts are translated in to a mathematical language which

is very concise and has well defined rules for manipulations. Models are broadly

categorized as deterministic and stochastic. In deterministic models random vari-

ation are ignored where as stochastic models are more statistical. In this regards,

mathematicians, biologist and computer scientists have introduced the concept of

models for critical analysis of the behavior of different malicious epidemic viruses

such as classical epidemic susceptible, infected and recovered model of Kermack

and McKendrick [41], analysis of dengue epidemic behavior [52, 53], malware prop-

agation in mobile computer devices [54], stochastic behaviour analysis models [49],

discrete models [46, 47], deterministic models [42, 50], time delay models [44, 51],

the effect of quarantine [43, 55], vertical transmission from mother to child and

horizontal transmission among same individual generations [48, 56], fuzziness

[45, 57], P2P networks [58, 59], a theoretical assessment approach of virus models
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Table 2.3: Overview of virus models in biology.

Year Author Description Ref.

1932 Kermack Contributions to the mathematical theory of epidemics [41]

2002 Srivastava, Ranjan Stochastic vs. deterministic modeling [42]

2002 Hethcote, Herbert Effects of quarantine in six endemic models [43]

2002 Nelson, Patrick Mathematical analysis of delay differential equation models [44]

2004 Jafelice, Rosana Fuzzy modeling in symptomatic HIV virus infection [45]

2010 Braverman, E Discrete delay host macroparasite model [46]

2010 Zhang, Cun-Hua Hopf bifurcations in a predator–prey system [47]

2012 Busenberg, Stavros Vertically transmitted diseases: models and dynamics [48]

2016 Amador, Julia SEIQS stochastic epidemic model with external infection [49]

2016 Braverman, Elena Stochastic difference equations with the Allee effect [50]

2016 Berezansky, Leonid Boundedness and persistence of delay differential equations [51]

2017 Alhumaidan, A Modelling and Analysing Qualitative Biological Models [38]

2017 Malik, Hafiz Abid Modeling and analysis of dengue epidemic behavior [52]

2019 Cai, Yongli Global transmission dynamics of a Zika virus model [53]

[60], discontinuous antivirus strategy in a computer virus model [61] and models

that discuss the topological aspects of the network [62].

2.3 Fractional Order Modeling

The state of many biological systems at a given time depends on the states of the

system at some previous times. So, fractional derivatives are the natural methods

for the solution of biological modeling arising in various disciplines. The con-

cept of fractional mathematics was developed towards the end of 19th century.

Fractional order system are at-least as stable as their counter part integer order

models [63, 64]. The concept of fractional calculus changes the way to see the

model and interpret the meaning. In this regards, mathematicians, computer sci-

entists, physicists and biologist have put efforts to design mathematical models

to understand the behavior of the viruses or implants such as fractional epidemi-

ological model for computer viruses [65], fractional order delay-varying computer

virus propagation model [66], fractional dynamics of computer virus propagation
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Table 2.4: Computer virus models overview.

Year Author Description Ref.

2004 Serazzi, G Computer virus propagation models [5]

2010 Mishra, Bimal SEIQRS model for the transmission in Computer Network [55]

2010 Mishra, Bimal Fuzzy epidemic model for the transmission of worms [57]

2011 Mishra, Bimal Dynamic model of worms with vertical transmission [56]

2013 Wang, XiaoMing Modeling of malware propagation in mobile wireless networks [59]

2014 Mishra, Bimal Dynamic model of worm propagation in computer network [39]

2014 Haldar, K Distributed attack on targeted resources in a computer [58]

2015 Ren, J Investigation of dynamics of a virus–antivirus model [8]

2016 Wang, Xu Virus propagation modeling in large-scale networks [37]

2016 Yang, L The optimal dynamic immunization [7]

2016 Dong, Tao Impact of discontinuous antivirus strategy in a computer virus [61]

2017 Xiao, Xi Design and analysis of SEIQR worm propagation model [40]

2017 Yang, Lu-Xing Impact of patch forwarding on the prevalence of computer virus [60]

2017 Zhang, Tianrui Dynamic malware containment under an epidemic models [62]

2017 Ren, J Compartmental model for computer virus propagation [6]

2018 Pont, Mara Modelling the malware propagation in mobile computer devices [54]

[67], fractional dynamics and control [68], fractional order SEIR model with ver-

tical transmission [69] and other applications of fractional calculus in engineering

[70–76].

2.4 Research Gaps

This thesis is concerned with the development of mathematical models for the dy-

namics of virus spread in network infrastructure and its constant control strategy.

Four type of closely related virus models are discussed for integer and fractional

order dynamics.

Security holes and zero-day vulnerabilities in operating system and software are

still a significant issue and these vulnerabilities can be addressed by introducing

the concept of immunization and effective quarantine strategy [77–79]. Isolation

from a highly infected individual/element is a known way of controlling disease
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Table 2.5: An overview of fractional calculus.

Year Author Description Ref.

1998 Podlubny, Igor Fractional differential equations [72]

2007 Sabatier, JATMJ Advances in fractional calculus [71]

2007 Ahmed,E Numerical solutions of fractional-order predator-prey models [64]

2008 Petráš, Ivo A note on the fractional-order Chua’s system [74]

2008 Scherer, Rudolf Numerical treatment of fractional heat equations [76]

2008 Petras, Ivo Stability of fractional-order systems with rational orders [63]

2011 Baleanu, Dumitru Fractional dynamics and control [68]

2011 Zalp, Nuri A fractional order SEIR model with vertical transmission [69]

2011 Petrás, Ivo Fractional derivatives and fractional integrals [75]

2014 Pinto, Carla Fractional dynamics of computer virus propagation [67]

2014 Machado, JA On development of fractional calculus [73]

2016 Ansari, Moien Fractional order delay-varying computer virus propagation [66]

2018 Singh, Jagdev Fractional epidemiological model for computer viruses [65]

spread in the biological world and the same can be incorporated for computer

viruses. Quarantine classes in the computer world have special significance in the

scenario where a virus signature database is outdated and the protection of assets

from unauthorized exploitation has high impact. Keeping in view of the above

facts and research gaps, an epidemic MSEQIR computer virus model is designed

that incorporate the quarantine and immunity classes which may reveal the inter-

esting results and address the research gaps.

Removable storage media plays a vital role in the spread of virus that compro-

mise the air-gap in critical networks. Few studies are conducted to observe the

effect of removable media in the spread of worm [80–82]. However, these investi-

gation provides theoretical analysis of the models and does not establishes a link

with real world virus spread in computer networks / critical industrial networks.

So, a research work is required to establish a link between real world viruses

(Stuxnet) spread in the air-gapped networks. Stuxnet is an advance presistant

threat (APT) type cyber attack, uses unusual methods to attack resources with

an intend to access the critical information while remains undetected and require
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special arrangement for control and eradication. APT type attack typical estab-

lishes different connection points of compromise to target the victim and ensure

that cyber-attack can continue in failure of any one point. Attacker removed the

evidence of APT occurrence without removing the re-entry path and can easily

regain the control of the target system. Therefore, resource mitigation strategy of

an organization from APT’s are a challenging cyber security research area [83, 84].

To overcome this gap, SIPUSUI epidemic model for Stuxnet virus is designed to

highlight the behaviour of Stuxnet virus spread that consider several attacking

vectors e.g., infection spread due to infected hosts I and infected removable stor-

age media UI that are further infected from other infection vectors like email,

network, file, application vulnerability, infected media, supply chain compromise

or human intelligence and deception.

The advancement in technologies creates several challenges to the security of the

infrastructure of the nations in the presence of vulnerability and the development

of smart viruses [1]. The global median dwell time of attackers is decreasing and

targeting prey is becoming easy due to bugged hardware. The firmware level bugs

allow escalation of privileges and remote execution of code beneath the operating

system for infiltration or completely intervene with computers. Defending against

hardware implants are extremely difficult. Despite the lack of supporting evidence

and refuting the reports of hardware implants, concerns in the security industry

rises that such implants were used by state agencies and advance state actors.

NSA,s digital catalogue reveals several sophisticated tools of hardware espionage,

which was exposed in Der Spiegel, the German weekly newspaper and these tools

were used to conduct the espionage operation around the world [85]. Hardware

implants are more feasible due to simplified design and cost effectiveness [86]. Intel

ME is the creek behind the Intel Active Management Technology (AMT) which is

present in almost all version of desktops, laptops and servers in Intel chipsets since

2008 [27]. Intel admitted that the active management technology platform services

are vulnerable to multiple security threats [34]. Security experts and critics like

electronic frontier foundation say that ME is a backdoor with privacy concern and

worries of full access to memory without parent CPU knowledge, can send and
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receive packets independently of operating system and thus have no hurdle of any

sort of firewall and antivirus [35, 36]. Therefore, detailed dynamical analysis of

hardware implants and their devastation patterns with static control mechanisms

is a promising domain to be investigated by the research community. To overcome

the gap of hardware implant vulnerabilities, a mathematical model is designed

that simulate the vulnerabilities of embedded tiny chip based hardware implants

in network infrastructures.

To understand the in-depth analysis of virus spread for fast transients and super

slow evolutions, fractional order model provides a comprehensive analysis. Frac-

tional analysis of these models are carried out which provides further control in

term of fractional derivative α and tune the models for a wider domain.



Chapter 3

Role of Quarantine and Immunity

in Virus Spread

This chapter presents the role of quarantine and immunity in computer virus

spread. Due to the rapid spread of computer viruses and a delay in the update of

antivirus signature database, the role of quarantine and immunity gained impor-

tance.

3.1 Introduction

In the present arena of Internet of Things (IoT) that comprises of computers,

digital / mechanical machines, medical devices, critical systems which are inter-

connected through network and the vulnerability of a single machine compromise

the whole network. Malicious code poses a serious threat to the resource availabil-

ity, confidentiality and integrity of the network. Automatic mitigation for known

viruses are performed relatively with ease, but very hard in the case of unknown

malicious object and have to rely on behavior based tedious anomaly detection

techniques [87–89]. Therefore, it is essential that a better control strategy may be

devised to eradicate the malicious code from spreading on network.

Maintaining database of virus signatures is very difficult due to high creation rate

18



Role of Quarantine and Immunity in Virus Spread 19

as compared to limited known applications/files. On-demand virus scans are per-

formed rarely due to high utilization of resources and consequently slow execution

of the working applications. Resultantly, dormant viruses tend to have a long

life [90, 91]. On the other hand, virus removing applications are also not trou-

ble free because some of them consume more resources while others take a longer

time. Therefore, many user attempts to disable them, if they have limited re-

source system. Organization network uses a limited number of white applications

and securing these applications from virus using patch update (Immunization) or

segregation from the outer world (Quarantine) are an effective strategy to control

the virus or zero day attacks.

Security holes and zero-day vulnerabilities in the operating system and software

are still a significant issue and these vulnerabilities can be addressed by introduc-

ing the concept of immunization and effective quarantine strategy [77–79]. Isola-

tion from highly infected individual/element is a known way of controlling disease

spread in the biological world and the same can be incorporated for computer

viruses. Quarantine classes in the computer world have special significance in the

scenario where a virus signature database is outdated and the protection of assets

from unauthorized exploitation has high impact. Keeping in view of the above

illustrated facts, our objective is to extend the Hethcote MSEIR model [2] by de-

veloping an MSEQIR model, to study the behavior and impact of virus spread in

the presence of immunity and quarantine classes. The potential highlights of the

proposed virus model design are summarized as:

1. A novel epidemiological base computer virus model MSEQIR is designed by

considering the effect of quarantine in the presence of immunity in the field of

network and security.

2. Jacobian linearization matrix approach with an associated reproduction num-

ber verified the virus free and endemic stability of the proposed model.

3. Numerical simulation study of MSEQIR model is performed with real life pa-

rameters and results shows that the model mimic the situation viably.

4. The designed model provides an effective platform for utilization of zero day

attacks, reduce system endemic vulnerability and can be used for pre-emptive
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antivirus software design.

3.2 Design Methodology

In this section, we describe the formulation of the proposed virus model in terms

of Immune M(t), Susceptible S(t), Exposed E(t), Quarantine Q(t), Infected I(t)

and Recovered R(t) scenarios in the field of computers network and information

security. The overview of the designed scheme is presented in figure 3.1.

Figure 3.1: Schematic flow of proposed MSEQIR model

3.2.1 The Epidemic MSEQIR Virus Model

The Epidemic MSEQIR Virus Model having total population sizeN(t) which is the

sum of Immune M(t), Susceptible S(t), Exposed E(t), Quarantine Q(t), Infected

I(t) and Recovered R(t) computer nodes i.e. mathematically: N = M + S +E +

Q + I + R. In the model, we assume that few system attains passive immunity

through patch and virus signature database update while others are susceptible

to infection. Dynamic behavior and spread of the virus from different classes of

the model are depicted in figure 3.2. The transmission of MSEQIR model with

standardized incidence rate is expressed by system of differential equations. The

interaction between uninfected systems with infected is widely known as the mass

action principle that describes the mathematical perspective of the rate at which
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a virus can infect an uninfected cell [92]. The mass action incidence rule also

suggests that the rate of interaction between virus and virus free cells is directly

proportional to the product of participating classes [93].

Temporary immunities are present in the real life situation that arises in biology

as well as in the computer network world. However, these immunities are yet not

incorporated as a separate class in epidemic computer models. Aim of the present

investigate is to design and analyze a MSEQIR model with effect of quarantine

and immunities in the presence of other classes. Workflow of the proposed model

is illustrated in figure 3.2.

dM

dt
= b(N − S) + σR− (δ + d)M, (3.1)

dS

dt
= bS + δM + ηR− βSI

N
− dS, (3.2)

dE

dt
=
βSI

N
− (ξ + ϕ+ d)E, (3.3)

dQ

dt
= ϕE − (d+ ρ)Q, (3.4)

dI

dt
= ξE − (d+ γ)I, (3.5)

dR

dt
= γI + ρQ− (d+ σ + η)R. (3.6)

The initial conditions are given as follows:

M(0) = M0, S(0) = S0, E(0) = E0, Q(0) = Q0, I(0) = I0, R(0) = R0.

In this epidemic computer virus model as given in equations (3.1) to (3.6), the

parameter b represents the birth rate of new computers node, d represents the

death rate, δ represents loss of passive immunity, β the infectious contact rate, ξ

is latent period, ϕ represents quarantine recovery rate of exposed individuals, ρ is

recovery rate from quarantine, γ is recovery rate from infectious class, σ represents

temporary immunity rate due to patches and virus signature update and η is loss

of immunity rate. In this model, we assume that some node got temporary im-

munity after security patches and antivirus software signature database update,

while others are again susceptible to infection. In the most models, temporary

immunity are not considered. It is important to note that all parameter values in
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Figure 3.2: Schematic workflow of proposed scheme

this model are assumed to be positive.

New Computer Nodes having passive immunity and susceptibility are added in M

and S classes respectively, node moves from class M to class S at the rate of δ

which is represented by the immunity lost rate, nodes from class S moves to class

E when they are exposed with infectious class I, nodes from class E move to class

Q at quarantine rate ϕ and to class I for latent period ξ, nodes from class Q and

I move to recovered class R based on the recovery rate of these nodes from both

classes, class R nodes move to M and S classes based on its susceptibility and

immunity due to virus and patch definition update.
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Lemma 1. Let us consider the following two systems [94]

dw

dt
= F (t, w),

dz

dt
= g(z),

where (w, z) ∈ <n, F and g are continuous function satisfying a local Lipschitz

condition in any compact set W ∈ <n and F (t, w)→ g(w) as t→∞ so that sec-

ond system is the limit version of the first. Let φ(t, t0, w0) and ϕ(t, t0, z0) be the

solutions of these systems and e ∈ W is locally asymptotally stable equilibrium of

the limit system and its attractive region is given as:

L(e) = {z ∈ W |ϕ(t, t0, z0)→ e, t→∞}

Let Lφ be the omega limit set of φ(t, t0, w0). If Lφ∩L(e) 6= φ, then lim
t→∞

φ(t, t0, w0) =

e.

3.3 Model Analysis

3.3.1 Basic Reproduction Number R0

The basic reproduction ratio is the expected number of new cases from infection

produced by an infected individual and denoted by R0. R0 is the measure of dis-

ease spread potential in the population. If R0 < 1, then infected nodes connected

to the network in a susceptible environment will not replace themselves and in-

fection will be eliminated. If R0 > 1, then the number of infection will increase

rapidly. The meaningful value of R0 can be obtained by calculating the V and

F matrix, where V is a matrix for the rate of transmission and F is a matrix for

the rate of infection. Model MSEQIR has three infected classes. So to get R0,

we use only three equations (3.3)- (3.5) from a system of equations (3.1)-(3.6).

Linearizing the system (3.3)-(3.5), we obtain.


dE
dt

dQ
dt

dI
dt

 = (F − V )


E

Q

I

, F =


0 0 β

0 0 0

0 0 0
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and V =


d+ ξ + ϕ 0 0

−ϕ d+ ρ 0

−ξ 0 γ + d

.

Basic reproduction number R0 is the dominant eigenvalue of FV −1, that is

FV −1 =


β(dξ + ξρ)

(d+ ρ)(d+ γ)(d+ ξ + ϕ)
0

β

d+ γ

0 0 0

0 0 0

 ,

R0 =
βξ

(d+ γ)(d+ ξ + ϕ)
.

3.3.2 Existence and Stability of Equilibrium

For model MSEQIR in equilibria, the rate of change for each population is zero. For

computer virology perspective, we are able to find virus free equilibrium and virus

persistence equilibrium. If the value of any population is not zero in equilibrium,

it shows that these populations remains existing. If the value of any class at

equilibrium is zero (M = 0, S = 0, E = 0, Q = 0, I = 0, R = 0), those classes

will extinct in system / biology as time goes to infinity. Thus, if I = 0, E = 0

at equilibrium, the virus in computer nodes will vanish as time t tends to infinity.

If the value of any class is not zero ( M 6= 0, S 6= 0, E 6= 0, Q 6= 0, I 6= 0,

R 6= 0 ), those classes are defined as persistent. Thus, if M 6= 0, mean that

immunity will persist in that equilibrium state and if I 6= 0, then the infection will

be present in the nodes. Stability analysis accurately determines the type of the

system behavior. The birth rate of the population is represented by b and death

rate by d. The net rate in change of population may be positive, zero or negative.

In this study, we use the case of zero change in population size.

The system (3.1)-(3.6) is defined on the closed, positive invariant set D = (M , S,

E, Q, I, R); M , S, E, Q, I, R > 0: M + S + E + Q + I + R = N , then we

explore the stability of the model which possibly have two equilibria, virus free

equilibrium K0 = (0, N , 0, 0, 0, 0) and endemic equilibrium K* = ( M*, S*, E*,
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Q*, I*, R*).

Theorem 1. System (3.1)-(3.6) has two equilibrium point, virus free equilibrium

K0 = (M0, S0, E0, Q0, I0, R0) = (0, N , 0, 0, 0, 0) and endemic equilibrium K* =

(M*, S*, E*, Q*, I*, R*).

Proof. Solving the system (MSEQIR) of equations (3.1)-(3.6):

b(N − S) + σR− (δ + d)M = 0, (3.7)

bS + δM + ηR− βSI

N
− dS = 0, (3.8)

βSI

N
− (ξ + ϕ+ d)E = 0, (3.9)

ϕE − (d+ ρ)Q = 0, (3.10)

ξE − (d+ γ)I = 0, (3.11)

γI + ρQ− (d+ σ + η)R = 0. (3.12)

The equilibrium of the system (3.1)-(3.6) can be obtained by taking all equations

of the system equal to zero. Virus free equilibrium is obtained by assuming that

viruses are not present in the system and we obtained a unique virus free equilib-

rium K0 = (M0, S0, E0, Q0, I0, R0) = (0, N , 0, 0, 0, 0). Endemic equilibrium

point is characterized as the point in which infection (I 6= 0) is present in the

system. The point K*= (M*, S*, E*, Q*, I*, R*) is an endemic equilibrium

point and is given below:

M∗ = −


(d+ ρ)(d(d+ ξ)(d+ η + σ) + (d(d+ η + ξ)

+(d+ ξ)σ)γ) + (d(d+ η + ρ) + (d+ ρ)σ)(d

+γ)ϕ)(d2 − βξ + γ(ξ + ϕ) + d(ξ + γ + ϕ)


/

Λ, (3.13)

S∗ = ((d+ γ)(d+ ξ + ϕ))/βξ, (3.14)

E∗ = −

 δ(d+ ρ)(d+ η + σ)(d+ γ)(d2

−βξ + γ(ξ + ϕ) + d(ξ + γ + ϕ))

/Λ, (3.15)

Q∗ = −

 δ(d+ η + σ)(d+ γ)ϕ(d2 − βξ

+γ(ξ + ϕ) + d(ξ + γ + ϕ))

/Λ, (3.16)
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I∗ = −

 δ(d+ ρ)(d+ η + σ)(d2 − βξ

+γ(ξ + ϕ) + d(ξ + γ + ϕ))

/Λ, (3.17)

R∗ = −

 δ(ξ(d+ ρ)γ + ρ(d+ γ)ϕ)(d2

−βξ + γ(ξ + ϕ) + d(ξ + γ + ϕ))

/Λ. (3.18)

where, parameter Λ of equations (3.13) to (3.18) is given as:

Λ = βξ



d4 + δρ

ξ
 (η + σ)+

(η + ξ + σ)γ

+ δ (η + ρ+ σ) γϕ+ ρσγ(ξ + ϕ)+

d3

 δ + η + ξ + ρ

+σ + γ + ϕ

+ d2


ξρ+ ξσ + ρσ + ξγ + ργ + σγ

+(ρ+ σ + γ)ϕ+ η(ξ + ρ+ γ

+ϕ) + δ(η + ξ + ρ+ σ + γ + ϕ)

+

d


ϕ

 ηξρ+ ξρσ + ηργ + ξργ + ξσγ

+ρσγ + (ρσ + (η + ρ+ σ)γ

+

δ

 (ρσ + ργ + σγ + ξ(ρ+ σ + γ)+

(ρ+ σ + γ)ϕ+ η(ξ + ρ+ γ + ϕ







.

Hence, the proof is proved.

Virus free stability of the system (3.1)-(3.6) are analyzed by taking its Jacobian.

In real life, nearly all systems are nonlinear and to understand the behavior of non-

linear system, it is important to linearize the system. This process of linearization

approximates the nonlinear system to the nearest linear system at equilibrium

points. We compute the Jacobian matrix in order to linearize the system. Analy-

sis of the Eigenvalues of the Jacobian matrix determines the stability of the system.

Theorem 2. Disease-free equilibrium (DFE) is locally asymptotically stable in

D, if R0 < 1 and unstable for R0 > 1.

Proof. The disease free equilibrium (DFE) is locally asymptotically stable, if it

is stable and local attractive. According to Theorem 1, the dynamic system (3.1)-

(3.6) has virus free equilibrium point K0 = (M0, S0, E0, Q0, I0, R0) = (0, N , 0,

0, 0, 0). The Jacobian matrix at virus free equilibrium point K0 is
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J(D0) =



−d− δ −b 0 0 0 σ

δ 0 0 0 −β η

0 0 −d− ξ − ϕ 0 β 0

0 0 ϕ −d− ρ 0 0

0 0 ξ 0 −d− γ 0

0 0 0 ρ γ −d− η − σ


. (3.19)

The characteristics equation of the Jacobian matrix (3.19) is

|λI − J(D0)| = 0,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d+ δ + λ b 0 0 0 −σ

−δ λ 0 0 β −η

0 0 d+ λ+ ξ + ϕ 0 −β 0

0 0 −ϕ d+ λ+ ρ 0 0

0 0 −ξ 0 d+ λ+ γ 0

0 0 0 −ρ −γ d+ η + λ+ σ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.20)

Updated expression of equation (3.20) is given as:

−β(dδ + dλ+ δλ+ λ2)ξ(d+ λ+ ρ)(d+ η + λ+ σ) + (dδ + dλ+ δλ

+λ2)(d+ λ+ ρ)(d+ η + λ+ σ)(d+ λ+ γ)(d+ λ+ ξ + ϕ) = 0,
(3.21)

and the corresponding Eigenvalues are given as:

λ1 = −d,

λ2 = −δ,

λ3 = −d− ρ,

λ4 = −d− η − σ,

λ5 = 1
2
(−2d− ξ − γ − ϕ−

√
4βξ + ξ2 − 2ξγ + γ2 + 2ξϕ− 2γϕ+ ϕ2),

λ6 = 1
2
(−2d− ξ − γ − ϕ+

√
4βξ + ξ2 − 2ξΥ + γ2 + 2ξϕ− 2γϕ+ ϕ2).

(3.22)

Eigenvalues of (λ1 - λ5) of the above characteristic equation (3.22) are less than

zero and the eigenvalue of λ6 is less than zero for R0 < 1. Since

R0 = βξ
(d+γ)(d+ξ+ϕ)

< 1.
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Hence according to stability criteria, if R0 < 1, K0 is locally asymptotically stable

and converse the system may have one unstable point and K0 become unstable.

Thus, the theorem claim stands.

Theorem 3. K0 is globally asymptotically stable with respect to D, if R0 < 1,

otherwise unstable.

Proof. Let us define a following candidate Lyapunov function.

L(t) = ξE(t) + (d+ ξ + ϕ)I(t). (3.23)

Taking the derivative of the Lyapunov function in (3.23) we have.

•
L(t) = ξ

•
E(t) + (d+ ξ + ϕ)

•
I(t),

= ξ[βSI
N
− (ξ + ϕ+ d)E] + (d+ ξ + ϕ)[ξE − (γ + d) I],

= [ξ βS
N
− (ξ + ϕ+ d) (γ + d)]I,

≤ [ξβ − (ξ + ϕ+ d) (γ + d)]I.

(3.24)

Thus, R0 = βξ
(d+γ)(d+ξ+ϕ)

< 1, implies that
•
L(t) < 0 within D. According to

LaSalle Invariance Principle K0 equilibrium point is globally asymptotically sta-

ble for R0 < 1. Hence, claimed result obtained.

To investigate the endemic equilibrium stability of the point K*= (M*, S*, E*,

Q*, I*, R*), Obviously I* ≥ 0, and thus N ≥ S*, so that R0 = βξ
(d+γ)(d+ξ+ϕ)

≥ 1.

Theorem 4. K* is locally asymptomatically stable with respect to D, if R0 > 1.

Proof. Now to investigate the endemic equilibrium stability of the point K*=

(M*, S*, E*, Q*, I*, R*), obviously I* ≥ 0, is only possible when R0 > 1 and

thus N ≥ S*, so that

R0 = βξ
(d+γ)(d+ξ+ϕ)

≥ 1,

I∗ = −

δ(d+ ρ)(d+ η + σ)(d2 −R0(d+ γ)(d+ ξ + ϕ)

+γ(ξ + ϕ) + d(ξ + γ + ϕ))

/Λ

Simplifying the expression for I∗ ≥ 1 , when R0> 1.

I∗ = −

 δ(d+ ρ)(d+ η + σ)(d2 −R0(d2 + dγ + dξ + dϕ+ γξ + γϕ)

+dγ + dξ + dϕ+ γξ + γϕ)

/Λ
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. For simplification, we use K = dγ + dξ + dϕ+ γξ + γϕ, then

I∗ = −
(
δ(d+ ρ)(d+ η + σ)(d2 −R0(d2 +K) +K)

)/
Λ.

By simplifying the above relation, we have

I∗ = −
(
δ(d+ ρ)(d+ η + σ)(1−R0)(d2 +K)

)/
Λ.

So, it is concluded that when R0> 1 , we have I∗ ≥ 1.

Accordingly, endemic stability point K*= (M*, S*, E*, Q*, I*, R*) is positive

for R0 > 1, so the relations in (3.13) to (3.18) are also positive as given below:

M∗ = −

 ((d+ ρ)(d(d+ ξ)(d+ η + σ) + (d(d+ η + ξ) + (d+ ξ)σ)γ)

(d(d+ η + ρ) + (d+ ρ)σ)(d+ γ)ϕ)((1−R0)(d2 +K)

/Λ,

S∗ =
(d+ γ)(d+ ξ + ϕ)

βξ
,

E∗ = −
(
δ(d+ ρ)(d+ η + σ)(d+ γ)(1−R0)(d2 +K)

)/
Λ,

Q∗ = −
(
δ(d+ η + σ)(d+ γ)ϕ((1−R0)(d2 +K)

)/
Λ,

I∗ = −
(
δ(d+ ρ)(d+ η + σ)((1−R0)(d2 +K)

)/
Λ,

R∗ = −
(
δ(ξ(d+ ρ)γ + ρ(d+ γ)ϕ)((1−R0)(d2 +K)

)/
Λ.

The endemic equilibrium point K*= (M*, S*, E*, Q*, I*, R*) and the Jacobian

matrix at the endemic point is

J(D∗) =



−d− δ −b 0 0 0 σ

δ −I∗β 0 0 −S∗β η

0 I∗β −d− ξ − ϕ 0 S∗β 0

0 0 ϕ −d− ρ 0 0

0 0 ξ 0 −d− γ 0

0 0 0 ρ γ −d− η − σ


.

(3.25)

For simplicity, we use

A = d+ δ, B = d+ ξ+ϕ, C = d+ρ,D = d+γ, E = d+η+σ, F = I∗β, G = S∗β,
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then (3.25) is given as:

J(D∗) =



−A −b 0 0 0 σ

δ −F 0 0 −G η

0 F −B 0 G 0

0 0 ϕ −C 0 0

0 0 ξ 0 −D 0

0 0 0 ρ γ −E


. (3.26)

The characteristic equation of Jacobian matrix (3.26) is

|λI − J(D∗)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ A b 0 0 0 −σ

−δ λ+ F 0 0 G −η

0 −F λ+B 0 −G 0

0 0 −ϕ λ+ C 0 0

0 0 −ξ 0 λ+D 0

0 0 0 −ρ −γ λ+ E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.27)

Equation (3.27) in its simplified form is as follows:

λ6 + λ5(A+B + C +D + F + E) + λ4(AB + AC + AD + AF + EA+

BC +BD +BF + EB + CD + CF + EC + dδ +DF + ED + EF −Gξ)+

λ3(ABC + ABD + ABF + EAB + ACD + ACF + EAC + ADF + EAD+

eAF − AGξ +BCD +BCF + eBC +Bdδ +BDF + EBD + EBF + Cdδ+

CDF + ECD + ECF − CGξ + edδ + dδD + EDF − EGξ)+

λ2(ABCD + ABCF + EABC + ABDF + EABD + EABF + ACDF+

EACD + EACF − ACGξ + EADF − EAGξ +BCdδ +BCDF + EBCD+

EBCF + EBdδ +BdδD + EBDF + ECdδ + CdδD + ECDF − ECGξ+

EdδD − dδGξ − FηξΥ− Fηρϕ) + λ(ABCDF + EABCD + EABCF+

EABDF + EACDF − EACGξ − AFηξΥ− AFηρϕ+ EBCdδ +BCdδD+

EBCDF + EBdδD + ECdδD − CdδGξ − CFηξΥ− EdδGξ −DFηρϕ−

δFξσΥ− δFρσϕ) + EABCDF − ACFηξΥ− ADFηρϕ+ EBCdδD−

ECdδGξ − CδFξσΥ− δDFρσϕ = 0.

(3.28)
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To solve the equation (3.28), we apply the Hurwitz criteria by considering the

general characteristic equation of a system is written below:

a0s
n + a1s

n−1 + a2s
n−2 + a3s

n−3 · · · an−1s
1 + an = 0. (3.29)

There are n determinants in nth order equation (3.29), e.g., D1, D2, D3 and D5

are the first, second, third and fifth determinants of the characteristic equation

(3.29), respectively, as:

D1 = a1

D2 =

∣∣∣∣∣∣ a1 a3

a0 b2

∣∣∣∣∣∣
= a1a2 − a3a0,

D3 =

∣∣∣∣∣∣∣∣∣
a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣
= a3(a1a2 − a0a3)− a1(a1a4 − a0a5), (3.30)

and

D5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 a7 a9

a0 a2 a4 a6 a8

0 a1 a3 a5 a7

0 a0 a2 a4 a6

0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= a1

∣∣∣∣∣∣∣∣∣∣∣∣

a2 a4 a6 a8

a1 a3 a5 a7

a0 a2 a4 a6

0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣∣∣
− a0

∣∣∣∣∣∣∣∣∣∣∣∣

a3 a5 a7 a9

a1 a3 a5 a7

a0 a2 a4 a6

0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣∣∣
.

According to Lienard-Chipart stability criteria [95], a polynomial with real posi-

tive coefficients has roots in left half plane if and only if either all even number
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determinants are positive or all odd number of determinants are positive. Now

equating the coefficients of general characteristics equation, we get

a0 = 1,

a1 = A+B + C +D + E + F,

a2 = AB + AC +BC + AD +BD + CD + AE +BE + CE +DE + AF

+BF + CF +DF + EF + dδ −Gξ,

a3 = ABC + ABD + ACD +BCD + ABE + ACE +BCE + ADE

+BDE + CDE + ABF + ACF +BCF + ADF +BDF + CDF

+ AEF +BEF + CEF +DEF +Bdδ + Cdδ + dDδ + dEδ − AGξ

− CGξ − EGξ,

a4 = ABCD + ABCE + ABDE + ACDE +BCDE + ABCF

+ ACDF +BCDF + ABEF + ACEF +BCEF + ADEF

+ CDEF +BCdδ +BdDδ + CdDδ +BdEδ + CdEδ

− ACGξ − AEGξ − CEGξ − dGδξ − FηξΥ− Fηρϕ

+ ABDF +BDEF + dDEδ,

a5 = ABCDE + ABCDF + ABCEF + ABDEF + ACDEF +BCDEF

+BCdDδ +BCdEδ +BdDEδ + CdDEδ − ACeGξ − CdGδξ

− dEGδξ − AFηξΥ− CFηξΥ− FδξσΥ

− AFηρϕ−DFηρϕ− Fδρσϕ,

a6 = ABCDEF +BCdDEδ − CdEGδξ − ACFηξΥ− CFδξσΥ

− ADFηρϕ−DFδρσϕ.

From equation (3.30)

D1 = a1 = A+B + C +D + E + F,

for

A = d+ δ, B = d+ ξ + ϕ, C = d+ ρ, D = d+ γ,

E = d+ η + σ, F = I∗β, G = S∗β,

thus D1 > 0.
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Similarly

D2 = a1a2 − a3a0,

D2 = C2D + CD2 + C2E + 2CDE +D2E + CE2 +DE2 + C2F + 2CDF +D2F

+ 2CEF + 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D + e + F )

+ A2(B + C +D + E + F ) + dFδ + A((B + C +D + E + F )2 + dδ)

− (D + F )Gξ +B((C +D + E + F )2 −Gξ),

D2 = C2D + CD2 + C2E + 2CDE +D2E + CE2 +DE2 + C2F + 2CDF +D2F

+ 2CEF + 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D + E + F )

+ A2(B + C +D + E + F ) + dFδ + A((B + C +D + E + F )2 + dδ)

+B(C +D + E + F )2 − S∗βξ(D + F +B),

D2 = C2D + CD2 + C2E + 2CDE +D2E + CE2 +DE2 + C2F + 2CDF +D2F

+ 2CEF + 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D + E + F )

+ A2(B + C +D + E + F ) + dFδ + A((B + C +D + E + F )2 + dδ)

+B(C +D + E + F )2 − βξ

R0

(D + F +B).

Because R0 > 1, therefore D2 > 0. And for third determinant, we get

D3 = a3(a1a2 − a0a3)− a1(a1a4 − a0a5),

D3 = a3(D2)− a1(a1a4 − a0a5),

D3 = ABD2dδ + AB2Ddδ + 2A2BDdδ + ABE2dδ + ACD2dδ + AB2Edδ

+ AC2Ddδ + 2A2BEdδ + 2A2CDdδ + 2ABF 2dδ + 2AB2Fdδ

+ 2A2BFdδ + ACE2dδ + AC2Edδ + 2A2CEdδ + 2ACF 2dδ + 2AC2Fdδ

+ 2A2CFdδ + ADE2dδ + AD2Edδ + 2A2DEdδ + 2BCF 2dδ +BC2Fdδ

+B2CFdδ + 2ADF 2dδ +B2D3 +B3D2 + 2A2B2D2 + 2A2B2E2

+ 2A2C2D2 + 2A2B2F 2 + 2B2C2D2 + 2A2C2F 2 + 2B2C2E2 + 2A2D2E2

+ 2B2C2F 2 + 2A2D2F 2 + 2A2E2F 2 + 2B2D2F 2 + 2C2D2E2 + 2B2E2F 2

+ 2C2D2F 2 + 2C2E2F 2 + AB3D +BCD3 +B3CD +BD3E +B3DE

+BD3F +B3DF + AB2C3 + AB3C2 + A2BC3 + A2B3C

+ A3B2C + AB2D2 + A2BD2 + A2B2D + AB2D3 + AB3D2
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+ A2BD3 + A2B3D + A3BD2 + A3B2D + AB3E2 + AC2D3 + AC3D2

+ A2BE3 + A2CD3 + A2C3D + A3BE2 + A3CD2 + A3B2E + A3C2D

+ A2B3F + A3BF 2 + A3B2F +BC2D2 +B3CD2

+B2C2D + AC2E3 + AC3E2 +BC2D3 +BC3D2 + A2C3E

+ A3CE2 + A3C2E +B2CD3 +B2C3D + AC3F 2 + A2CF 3

+ A2C3F + A3CF 2 + A3C2F +BC3E2 +B2CE3 +B2C3E

+B3CE2 +B3C2E + AD2E3 + AD3E2 + A2DE3 + A2D3E + A3DE2

+ A3D2E +BC2F 3 +BC3F 2 +B2CF 3 +B2C3F +B3CF 2

+B3C2F + AD2F 3 + AD3F 2 + A2DF 3 + A2D3F + A3DF 2

+ A3D2F +BD2E2 +B2DE2 + 3B2D2E +BD2F 2 +B2DF 2 +B2D2F

+ AE2F 3 + AE3F 2 +BD2F 3 +BD3F 2 + A2EF 3 + A2E3F

+ A3EF 2 + A3E2F +B2DF 3 +B2D3F +B3DF 2

+B3D2F + CD2E3 + CD3E2 + C2DE3 + C2D3E

+ C3DE2 + C3D2E +BE2F 3 +BE3F 2 + CD2F 3 +B2E3F +B3EF 2

+B3E2F + C2DF 3 + C2D3F + C3DF 2 + C3D2F + CE2F 3 + CE3F 2

+ C2EF 3 + C3E2F +DE2F 3 +DE3F 2 +D2EF 3 +D2E3F

+B3Fdδ + C3Fdδ +D3Fdδ + E3Fdδ + 4ABC2D2 + 4AB2CD2

+ 4AB2C2D + 4A2BCD2 + 4A2BC2D + 4A2B2CD + 4AB2C2E

+ 4A2BCE2 + 4A2BC2E + 4ABC2F 2 + 4AB2CF 2 + 4AB2C2F

+ 4A2BCF 2 + 4A2BC2F + 4A2B2CF + 3ABD2E2 + 4AB2D2F

+ 3AB2DE2 + 3AB2D2E + 3A2B2DE + 4ABD2F 2 + 4AB2DF 2

+ 4A2BDF 2 + 4A2BD2F + 4A2B2DF + 4ACD2E2 + 4AC2DE2

+ 4A2CD2E + 4A2C2DE + 4ABE2F 2 + 4AC2DF 2 + 4AC2D2F

+ 4A2BEF 2 + 4A2CDF 2 + 4A2CD2F + 4A2B2EF + 3BC2DE2

+ 3BC2D2E + 3B2CDE2 + 3B2CD2E + 3B2C2DE + 4ACE2F 2

+ 4AC2EF 2 + 4AC2E2F + 4BCD2F 2 + 4BC2DF 2 + 4BC2D2F

+ 4A2CEF 2 + 4A2CE2F + 4A2C2EF + 4B2CDF 2 + 4B2CD2F

+ 4B2C2DF + 4BCE2F 2 + 4BC2EF 2 + 4BC2E2F + 4B2CEF 2
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+ 4B2CE2F + 4B2C2EF + 4ADE2F 2 + 4AD2E2F + 4A2DEF 2

+ 4A2DE2F + 3B2DEF 2 + 3B2DE2F + 3B2D2EF + 4CDE2F 2

+ 4CD2EF 2 + 4CD2E2F + 4C2DEF 2 + 4C2DE2F + 4C2D2EF

+ F 3Υηξ + F 3etaρϕ+ A2C2dδ + ADd2δ2 + 2ABD3F

+ ABG2ξ2 + ABd2δ2 + A2B2dδ + ACd2δ2 + A2D2dδ + AEd2δ2 + A2E2dδ

+BFd2δ2 +B2F 2dδ + CFd2δ2 + C2F 2dδ +DFd2δ2 +D2F 2dδ + EFd2δ2

+ E2F 2dδ + ABCD2 + ABC2D + AB2CD + A2BCD + 2ABCD3

+ 2ABC3D + 2AB3CD + 2A3BCD + 2ABCE3 + 2ABC3E + 2AB3CE

+ 2A3BCE + 2ABCF 3 + 2ABC3F + 2AB3CF + 2A3BCF + ABDE2

+ ABD2E + AB2DE + A2BDE + ABDE3 + ABD3E + AB3DE

+ 2A3BDE + ABDF 2 + ABD2F + AB2DF + A2BDF + 2ABDF 3

+ 2AB3DF + 2A3BDF + 2ACDE3 + 2ACD3E + 2AC3DE + 2A3CDE

+ 2ACDF 3 + 2ACD3F + 2AB3EF + 2AC3DF + 2A3BEF + 2A3CDF

+BCD2E +BC2DE +B2CDE +BCDE3 +BCD3E + 2BC3DE

+B3CDE +BCDF 2 +BCD2F +BC2DF +B2CDF + 2ACEF 3

+ 2ACE3F + 2AC3EF + 2BCDF 3 + 2BCD3F + 2BC3DF + 2A3CEF

+ 2B3CDF + 2BCEF 3 + 2BCE3F + 2BC3EF + 2B3CEF + 2ADEF 3

+ 2ADE3F + 2AD3EF + 2A3DEF +BDEF 2 +BDE2F +BD2EF

+B2DEF + 2BDEF 3 +BDE3F +BD3EF +B3DEF + 2CDEF 3

+ 2CDE3F + 2CD3EF + 2C3DEF + 7ABCDE2 + 7ABCD2E

+ 7AB2CDE + 7A2BCDE + 8ABCDF 2 + 8ABCD2F + 8ABC2DF

+ 8A2BCDF + 8ABCEF 2 + 8ABCE2F + 8ABC2EF + 8AB2CEF

+ 7ABDEF 2 + 7ABDE2F + 7ABD2EF + 7AB2DEF + 7A2BDEF

+ 8ACDE2F + 8ACD2EF + 8AC2DEF + 8A2CDEF + 7BCDEF 2

+ 7BCD2EF + 7BC2DEF + 7B2CDE + 2A2DFdδ +BD2Fdδ

+BD2Edδ +B2DEdδ + 2AEF 2dδ + 2AE2Fdδ + 2BDF 2dδ + 2A2EFdδ

+B2DFdδ + 2BEF 2dδ +BE2Fdδ + 2CDF 2dδ + CD2Fdδ +B2EFdδ

+ C2DFdδ + 2CEF 2dδ + CE2Fdδ + C2EFdδ + 2DEF 2dδ +DE2Fdδ
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+D2EFdδ + AF 2Υηξ + CF 2Υηξ + 2DF 2Υηξ +D2FΥηξ + 2EF 2Υηξ

+ E2FΥηξ + F 2Gdδξ + AF 2etaρϕ+ 2BF 2etaρϕ+B2Fetaρϕ

+DF 2etaρϕ+ 2EF 2etaρϕ+ E2Fetaρϕ+ ABCDE + ABCDF

+ 2ABCDdδ + 2ABCEdδ + 4ABCFdδ + ABDEdδ + 4ABDFdδ

+ 2ACDEdδ + 4ABEFdδ + 4ACDFdδ +BCDEdδ + 4ACEFdδ

+ 2BCEFdδ + 4ADEFdδ +BDEFdδ + 2CDEFdδ + ABFΥηξ

+ ADFΥηξ + AEFΥηξ + 2BDFΥηξ + 2BEFΥηξ + CDFΥηξ

+ 2DEFΥηξ + 2ABGdδξ + 2ADGdδξ + AFGdδξ +BFGdδξ

+DFGdδξ − EFGdδξ + ABFetaρϕ+ ACFetaρϕ+ 2BCFetaρϕ

+BDFetaρϕ+ 2BEFetaρϕ+ CDFetaρϕ+ 2CEFetaρϕ+DEFetaρϕ

− AC2Gξ − A2CGξ −BC3Gξ − A3DGξ −BD2Gξ −B2DGξ − A3FGξ

−BE3Gξ − C3DGξ − C3FGξ −DE3Gξ − E3FGξ + AB3dδ + AC3dδ

+ AD3dδ −BD2dδ −B2Ddδ − A2B2Gξ +BCG2ξ2

+ ADG2ξ2 − A2D2Gξ + AFG2ξ2 − A2F 2Gξ +BEG2ξ2 + CDG2ξ2

− C2D2Gξ + CFG2ξ2 − C2F 2Gξ +DEG2ξ2 −D2E2Gξ + EFG2ξ2

− ABC2Gξ − 2AB2CGξ − A2BCGξ − 2ABD2Gξ − 2AB2DGξ

− 2ACD2Gξ − 2AB2EGξ − AC2DGξ − A2BEGξ − A2CDGξ

− 2AB2FGξ − 2A2BFGξ + ACE2Gξ + AC2EGξ − 2BCD2Gξ

+ A2CEGξ − 2B2CDGξ − 2ACF 2Gξ − A2CFGξ −BCE2Gξ

− ADE2Gξ − 2AD2EGξ − A2DEGξ − 2BCF 2Gξ − 2BC2FGξ

− 2B2CFGξ − 2ADF 2Gξ − 2AD2FGξ − 2A2DFGξ − 3BDE2Gξ

−B2DEGξ − 2AEF 2Gξ − AE2FGξ −BDF 2Gξ −BD2FGξ

−B2DFGξ − CDE2Gξ − 2CD2EGξ − C2DEGξ − 2BEF 2Gξ

− 2BE2FGξ − 2CDF 2Gξ − 2CD2FGξ − 2B2EFGξ − 2C2DFGξ

− CE2FGξ − C2EFGξ + ABC2dδ + AB2Cdδ + 2A2BCdδ

− 2DE2FGξ − 2D2EFGξ + 2AD2Fdδ − ABCGξ + ABDGξ − ACDGξ

− ACEGξ +BCDGξ − ACFGξ +BDEGξ −BDFGξ + ABDdδ

−BCDdδ −BDEdδ +BDFdδ − 4ABCDGξ − ABCEGξ
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− 5ABDEGξ − 5ABDFGξ − ACDEGξ − 4ABEFGξ − 4ACDFGξ

− ACEFGξ − 5BCDFGξ − 4BCEFGξ − 4ADEFGξ − 4BDEFGξ

− AFΥδσξ −BFΥδσξ − CFΥδσξ −DFΥδσξ − EFΥδσξ − AFδρσϕ

−BFδρσϕ− CFδρσϕ−DFδρσϕ− EFδρσϕ+ 15ABCDEF

−B2D2 − F 2δρσϕ− F 2ΥδσξF −BD2dδ + 2A2B2C2 + 2A2C2E2

+ ABD3 + AB2E3 + A2B3E + AB2F 3 + AB3F 2 + AB2F 3 + AB3F 2

+ A2BF 3 + A3BC2 + A2BF 3 +BC2E3 +B3C2D + AC2F 3 + A2CE3

+B2EF 3 + C2E3F + C3EF 2 +D3EF 2 +D3E2 + AE3dδ +B2FΥηξ

+ 4ABC2E2 + 4AB2CE2 + 4A2B2CE + 3A2BDE2 + 3A2BD2E

+ 4AB2EF 2 + 4A2BE2F + 4A2C2DF + 3BCD2E2 + 4AD2EF 2

+ 2CF 2etaρϕ+ CD3F 2 +B2CD2 + 4AB2E2F + 4AC2D2E − AC2FGξ

+ 4A2D2EF + 3BDE2F 2 + 3BD2EF 2 − ABE2Gξ + 4ACD2F 2

+ 2ABEF 3 + 2ABE3F +BCDE2 + 7ABC2DE + 8AB2CDF

+ 8A2BCEF + 8ACDEF 2 + 7BCDE2F +BDE2dδ

+ C2Fetaρϕ+ ABDEF +BCDEF + 2BCDFdδ +BCFΥηξ

+ CEFΥηξ − CFGdδξ + AEFetaρϕ− A3BGξ −B2C2Gξ −B2E2Gξ

− E2F 2GξF − 2A2BDGξ − 2ABF 2Gξ − 2BC2DGξ −BC2EGξ

− 2B2CEGξ −BD2EGξ − A2EFGξ − 2CEF 2Gξ − 2DEF 2Gξ

− 5BCDEGξ − 4ABCFGξ − 4CDEFGξ + 2D2E2F 2 + 4A2CDE2

+ 3BD2E2F.

Due to the complexity of algebraic expression for determinant D3, we use numeric

values to prove that the D3 is positive for R0 > 1. Details of numerical procedures

are available in the appendix 10, which shows that D3 > 0. Similarly, in case of

fifth determinant, we may split the information as:

D5 = D5,1 +D5,2 +D5,3 +D5,4 +D5,5 +D5,6

where

D5,1 = − (δ(BCdDE − Cξ(dEG+ FσΥ)−DFρσϕ) + AF (BCDE

− η(CξΥ +Dρϕ)))(CDE + CDF + CEF +DEF + Cdδ + dDδ
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+ dEδ +B(EF +D(E + F ) + C(D + E + F ) + dδ)− CGξ − EGξ

+ A(DE +DF + EF + C(D + E + F ) +B(C +D + E + F )

−Gξ)) [(C2D + CD2 + C2E + 2CDE +D2E + CE2

+DE2 + C2F + 2CDF +D2F + 2CEF

+ 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D + E + F )

+ A2(B + C +D + E + F ) + dFδ + A(B2 + C2

+D2 + 2DE + E2 + 2DF + 2EF + F 2 + 2C(D + E + F ) + 2B(C

+D + E + F ) + dδ)−DGξ − FGξ +B(C2 +D2 + E2

+ 2eF + F 2 + 2D(E + F ) + 2C(D + E + F )−Gξ))(CDE

+ CDF + CEF +DEF + Cdδ + dDδ + dEδ +B(EF

+D(E + F ) + C(D + E + F ) + dδ)− CGξ − EGξ + A(DE

+DF + EF + C(D + E + F ) +B(C +D + E + F )−Gξ)),

D5,2 = − (A+B + C +D + E + F )(−ABCDE − ABCDF − ABCEF

− ABDEF − ACDEF −BCDEF −BCdDδ −BCdEδ −BdDEδ

− CdDEδ + ACEGξ + CdGδξ + deGδξ + AFηξΥ + CFηξΥ + FδξσΥ

+ AFηρϕ+DFηρϕ+ Fδρσϕ+ (A+B + C +D + E + F )(CDEF

+ CdDδ + CdEδ + dDEδ +B(DEF + dDδ

+ dEδ + C(EF +D(E + F ) + dδ))− CEGξ − dGδξ

+ A(CDE + CDF + CEF +DEF +B(EF +D(E + F ) + C(D

+ E + F ))− CGξ − EGξ)− FηξΥ− Fηρϕ))]− (A+B + C

+D + E + F )C2D + CD2 + C2E + 2CDE +D2E

+ CE2 +DE2 + C2F + 2CDF +D2F + 2CEF

+ 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D + E + F )

+ A2(B + C +D + E + F ) + dFδ + AB2 + C2 +D2

+ 2De + E2 + 2DF + 2EF + F 2 + 2C(D + E + F ),

D5,3 = − (δ(BCdDE − Cξ(dEG+ FσΥ)−DFρσϕ) + AF (BCDE
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− η(CξΥ +Dρϕ)))((CDE + CDF + CEF +DEF + Cdδ + dDδ

+ dEδ +B(EF +D(E + F ) + C(D + E + F ) + dδ)

− CGξ − EGξ + A(DE +DF + EF + C(D + E + F )

+B(C +D + E + F )−Gξ)) ((C2D + CD2 + C2E + 2CDE

+D2E + CE2 +DE2 + C2F + 2CDF +D2F

+ 2CEF + 2DEF + E2F + CF 2 +DF 2 + EF 2 +B2(C +D

+ E + F ) + A2(B + C +D + E + F ) + dFδ + A(B2

+ C2 +D2 + 2DE + E2 + 2DF + 2EF + F 2 + 2C(D + E + F )

+ 2B(C +D + E + F ) + dδ)−DGξ − FGξ +B(C2 +D2 + E2

+ 2eF + F 2 + 2D(E + F ) + 2C(D + E + F )−Gξ))(CDE

+ CDF + CEF +DEF + Cdδ + dDδ + dEδ

+B(EFD(E + F ) + C(D + E + F ) + dδ)− CGξ

− EGξ + A(DE +DF + EF + C(D + E + F ) +B(C +D + E

+ F )−Gξ))− (A+B + C +D + E + F )(

− ABCDE − ABCDF − ABCEF − ABDEF − ACDEF

−BCDEF −BCdDδ −BCdEδ −BdDEδ − CdDEδ

+ ACEGξ + CdGδξ + deGδξ + AFηξΥ + CFηξΥ

+ FδξσΥ + AFηρϕ+DFηρϕ+ Fδρσϕ+ (A+B

+ C +D + E + F )(CDEF + CdDδ + CdEδ + dDEδ

+B(DEF + dDδ + dEδ + C(EF +D(E + F ) + dδ))

− CEGξ − dGδξ + A(CDE + CDF + CEF +DEF

+B(EF +D(E + F ) + C(D + E + F ))− CGξ − EGξ)

− FηξΥ− Fηρϕ)))− (A+B + C +D + E + F )((C2D + CD2

+ C2E + 2CDE +D2E + CE2 +DE2 + C2F + 2CDF

+D2F + 2CEF + 2DEF + E2F + CF 2 +DF 2 + EF 2

+B2(C +D + E + F ) + A2(B + C +D + E

+ F ) + dFδ + A(B2 + C2 +D2 + 2De + E2 + 2DF + 2EF + F 2

+ 2C(D + E + F ) + 2B(C +D + E + F ) + dδ)−DGξ − FGξ
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+B(C2 +D2 + E2 + 2EF + F 2 + 2D(E + F ) + 2C(D + E + F )

−Gξ))(CdDEδ +B(dDEδ + C(DEF + dDδ

+ dEδ))− CdGδξ − dEGδξ − CFηξΥ− FδξσΥ

−DFηρϕ− Fδρσϕ+ A(B(DEF + C(EF +D(E + F ))) + Ce(DF

−Gξ)− Fη(ξΥ + ρϕ)))− (A+B + C +D + E + F )2(δ(BCdDE

− Cξ(dEG+ FσΥ)−DFρσϕ) + AF (BCDE − η(CξΥ +Dρϕ))))),

D5,4 = + (CdDEδ +B(dDEδ + C(DEF + dDδ + dEδ))− CdGδξ − dEGδξ

− CFηξΥ− FδξσΥ−DFηρϕ− Fδρσϕ+ A(B(DEF

+ C(EF +D(E + F ))) + CE(DF −Gξ)− Fη(ξΥ + ρϕ)))

(−ABCDE − ABCDF − ABCEF − ABDEF − ACEeF

−BCDEF −BCdDδ −BCdEδ −BdDEδ − CdDEδ

+ ACEGξ + CdGδξ + dEGδξ + (CD + CE +DE

+ CF +DF + EF +B(C +D + E + F ) + A(B + C +D + E

+ F ) + dδ −Gξ)(CDE + CDF + CEF +DEF

+ Cdδ + dDδ + dEδ +B(EF +D(E + F ) + C(D + E + F )

+ dδ)− CGξ − EGξ + A(DE +DF + EF

+ C(D + E + F ) +B(C +D + E + F )−Gξ))

+ AFηξΥ + CFηξΥ + FδξσΥ + AFηρϕ+DFηρϕ+ Fδρσϕ),

D5,5 = (CdDEδ +B(dDEδ + C(DEF + dDδ + dEδ))− CdGδξ − dEGδξ

− CFηξΥ− FδξσΥ− DFηρϕ− Fδρσϕ+ A(B(DEF

+ C(EF +D(E + F ))) + CE(DF −Gξ)− Fη(ξΥ + ρϕ)))− (CDEF

+ CdDδ + CdEδ + dDEδ +B(DEF + dDδ + dEδ + C(EF

+D(E + F ) + dδ))− CEGξ − dGδξ + A(CDE + CDF

+ CEF +DEF +B(EF +D(E + F ) + C(D + E + F ))− CGξ

− EGξ)− FηξΥ− Fηρϕ)[(CDE + CDF + CEF +DEF + Cdδ
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+ dDδ + dEδ +B(EF +D(E + F ) + C(D + E + F ) + dδ)− CGξ

− EGξ + A(DE +DF + EF + C(D + E + F ) + (B(C +D + E + F )

−Gξ))2 − (A+B + C +D + E + F )(CdDEδ +B(dDEδ + C(DEF

+ dDδ + dEδ))− CdGδξ − dEGδξ − CFηξΥ− FδξσΥ−DFηρϕ

− Fδρσϕ+ A(B(DEF + C(EF +D(E + F ))) + CE(DF

− Gξ)− Fη(ξΥ + ρϕ)))),

D5,6 = + (A+B + C +D + E + F )((CDEF + CdDδ + CdEδ + dDEδ

+B(DEF + dDδ + dEδ + C(EF +D(E + F ) + dδ))− CEGξ

− dGδξ + A(CDE + CDF + CEF +DEF +B(EF +D(E

+ F ) + C(D + E + F ))− CGξ − EGξ)− FηξΥ− Fηρϕ)((CD

+ CE +DE + CF +DFEF +B(C +D + E + F ) + A(B + C

+D + E + F ) + dδ −Gξ)(CDE + CDF + CEF +DEF + Cdδ

+ dDδ + dEδ +B(EF +D(E + F ) + C(D + E + F ) + dδ)− CGξ

− EGξ + A(DE +DF + EF + C(D + E + F )B(C +D + E + F )

−Gξ))− (A+B + C +D + E + F )(CDEF + CdDδ + CdEδ + dDEδ

+B(DEF + dDδ + dEδ + C(EF +D(E + F ) + dδ))− CEGξ − dGδξ

+ A(CDE + CDF + CEF +DEF +B(EF +D(E + F ) + C(D + E

+ F ))− CGξ − EGξ)− FηξΥ− Fηρϕ)) + (CDEF + CdDδ + CdEδ

+ dDEδ +B(DEF + dDδ + dEδ + C(EF +D(E + F ) + dδ))

− CeGξ − dGδξ + A(CDE + CDF + CEF +DEF +B(EF +D(E

+ F ) + C(D + E + F ))− CGξ − EGξ)− FηξΥ− Fηρϕ)(CdDEδ

+B(dDEδ + C(DEF + dDδ + dEδ))− CdGδξ − dEGδξ − CFηξΥ

− FδξσΥ−DFηρϕ− Fδρσϕ+ A(B(DEF + C(EF

+D(E + F ))) + CE(DF −Gξ)− Fη(ξΥ + ρϕ)))

− (CDE + CDF + CEF +DEF + Cdδ + dDδ + dEδ +B(EF

+D(E + F ) + C(D + E + F ) + dδ)− CGξ − EGξ + A(DE +DF
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+ EF + C(D + E + F ) +B(C +D + E + F )−Gξ))(δ(BCdDE

− Cξ(dEG+ FσΥ)−DFρσϕ) + AF (BCDE − η(CξΥ +Dρϕ)))

− (CD + CE +DE + CF +DF + EF +B(C +D + E + F )

+ A(B + C +D + E + F ) + dδ −Gξ)((CD + CE +DE + CF

+DF + EF +B(C +D + E + F ) + A(B + C +D + E + F ) + dδ −G

∗ ξ)(CdDEδ +B(dDEδ + C(DEF + dDδ + dEδ))− CdGδξ − dEGδξ

− CFηξΥ− FδξσΥ−DFηρϕ− Fδρσϕ+ A(B(DEF + C(EF +D(E

+ F ))) + CE(DF −Gξ)− Fη(ξΥ + ρϕ)))− (A+B + C +D + E

+ F )(δ(BCdDE − Cξ(dEG+ FσΥ)−DFρσϕ) + AF (BCDE

− η(CξΥ +Dρϕ)))))].

Due to the complexity of algebraic expression for determinant D5, we use numeric

values to prove that the D5 is positive for R0 > 1. Details of numerical procedures

are available in the appendix 10, which shows that D5 > 0. So all roots of the

Jacobian matrix are in left half plane for endemic equilibrium points K* at R0 >

1. According to stability theory, D∗ is locally asymptotically stable in D for R0 >

1. This concludes the proof of the theorem.

3.4 Performance Analysis

In this section, we present a set of simulations for proposed MSEQIR model to

evaluate the defending mechanism of the model in the presence of immunity and

quarantine classes.

3.4.1 Simulation and Results

Adams numerical method is employed to solve and simulate the system of dif-

ferential equations (3.1)-(3.6) using WOLFRAM MATHEMATICA 12 on 64 bit

windows 10 platform. The simulation of differential equation based virus models
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are performed under different parameters and initial conditions to evaluate the be-

havior of the Immune, Susceptible, Exposed, Quarantine, Infected and Recovered

Nodes. The results of simulation of the model is compared using known numerical

methods.The parameter values used in these simulations agree with the values in

real networks in different situations under different operating systems. Error plots

of MSEQIR model between Adams with Explicit Runge-Kutta (RK) numerical

method are shown in figure 3.3(c, d) for cases 1 and 2, while for cases 3 and 4 are

shown in figure 3.4(c, d). In this model, cases 1 and 2 have good built-in control

strategies for zero day attacks [96].

3.4.2 Case 1

In this case, MSEQIR model (3.1)-(3.6) behavior is observed by taking the param-

eters values as follow: the parameters b = 0.18, d = 0.966, δ = 0.715, β = 0.7, ξ =

10, ρ = 0.01, ϕ = 0.43, σ = 0.001, η = 0.001 and γ = 3.58 with initial conditions

M(0) = 0.3, S(0) = 0.25, E(0) = 0.2, Q(0) = 0.05, I(0) = 0.2, R(0) = 0 and

numerical results are shown in figure 3.3(a). The value of R0 calculated for the

said case is 0.13, while from figure 3.3(a), it is observed that the system is asymp-

tomatically stable. Due to an initial increase in immunity and effective antivirus

strategy, infection of the nodes decreases rapidly and recovery increases promptly.

Interaction of susceptible nodes with infected nodes and decrease in temporary

immunity make the system more prone to infection but due to amalgamation of

quarantine and immunity, infection will be controlled at earlier stages. Quarantine

class plays an important role in the scenario when infection controlling mechanism

are fragile or anti-virus signature definition and patch management are outdated.

Malicious objects are quarantined and isolated from other resources. The more we

quarantine, the lesser we will be infected and the more system will be recovered.

When a node updates security through patching, latent period in exposed node

reduces exponentially and infection reduces rapidly due to the existence of three

in built control process in the model which are immunity, quarantine and hidden

antivirus agent.
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3.4.3 Case 2

In second case, dynamic behavior of model (3.1)-(3.6) is analyzed by taking the

parameters b = 0.11, d = 0.7, δ = 0.715, β = 0.7, ξ = 6.02, ρ = 0.026, ϕ = 0.586,

σ = 0.168, η = 0.116 and γ = 1.95 with initial conditions M(0) = 0.3, S(0) =

0.25, E(0) = 0.2, Q(0) = 0.05, I(0) = 0.2, R (0) = 0 and results are shown in

figure 3.3(b). The value of R0 is equal to 0.21. It is observed that by slightly

increasing the values of contact rate, quarantine rate for exposed individuals and

recovery rate from quarantine, infection increases slightly and then reduce due to

increase in quarantine and recovery rate. Growth of prey (susceptible) decreases

slowly even in the presence of predators (infection) due to tight control of update

mechanism (immunity and quarantine).

3.4.4 Case 3

The model dynamics is studied by changing the initial conditions and parameter

values as: b = 0.125, d = 0.926, δ = 0.3, β = 0.602, ξ = 0.5, ρ = 0.001, ϕ =

0.106, σ = 0.068, η = 0.001 and γ = 1 with initial conditions M(0) = 0.1, S(0)

= 0.3, E(0) = 0.15, Q(0) = 0.1, I(0) = 0.3, R(0) = 0.05. The calculated value of

R0 = 0.10. The numerical results are shown in figure 3.4(a). It is observed that

by reducing the initial immunity of nodes, infection of the nodes increases. Due

to outdated antivirus signature definition, recovery from quarantine is less and

overall node recovery reduces, instead of increasing infection, it reduces rapidly,

which shows that quarantine play an important role in the scenarios where patch

and virus signature definitions updating take longer or are not possible.

3.4.5 Case 4

In this scenario, system dynamics is studied by changing the tunable parameters

with the same initial conditions as in case 3, changed parameter values are b =

0.16, d = 1, δ = 0.464, β = 1, ξ = 0.5, ρ = 0.116, ϕ = 0.85, σ = 0.352, η = 0.001
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and γ = 13.05 with initial conditions M(0) = 0.1, S(0) = 0.3, E(0) = 0.15, Q(0)

= 0.1, I(0) = 0.3, R(0) = 0.05. The dynamic behavior of the model is shown in

figure 3.4(b) with R0 = 0.01. It is seen that updating anti-virus software, recov-

ery from infection and quarantine are increased which decreases the number of

infectious nodes. Behavior analysis of node in the presence of immunity and quar-

antine class is performed in figure 3.5(b). It is observed that if the immunity of the

system is increased due to software patching and update in operating system, the

nodes in quarantine class are decreased and as immunity of the system decreases,

increases in quarantine class is observed. Figure 3.5(a) shows the relationship be-

tween susceptible and recovered nodes, susceptible nodes depend on the number

of recovered nodes and new computer connected to the network. More recovery

mean more number of nodes are available for prey (susceptible) and figure 3.5(c)

shows the relationship between immunity and susceptible nodes. In figure 3.5(f),

initially the number of immune nodes increases due to hardening (or patching),

this causes a reduction in the number of recovered nodes. Decreasing the immunity

increases the number of susceptible nodes which ultimately increases the number

of exposed nodes 3.5(e); this also causes an increase in the number of quarantined

nodes 3.5(d). Simulation results agree with the real life circumstances. The prede-

cessor of this model is used in the field of biology and the enhanced version of this

model (with inclusion of Quarantine class) has been developed for virus model-

ing in computer networks. The designed model is novel and simulated with initial

conditions and parameters adjusted as per computer network viruses, comparative

analysis with biological virus spread is not available.

3.5 Chapter Summary

A MSEQIR dynamic epidemic model has been designed for the transmission of

viruses in computer network. The propagation of virus in this model are both

horizontal and vertical. We assume that system has temporary immunity and

infected nodes will stay in the latent period before they become infectious. The

virus free equilibrium of the model is asymptotically stable for R0 < 1 and unstable
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for R0 > 1. This model depicts the real situation of the system in the presence

of immunity and quarantine. It is observed that quarantine and immunity play

an important role in the situation where virus signature and patch update are

difficult, especially in remote locations or bandwidth or resource limited systems.

Due to the availability of two recovery mechanisms, the immunity and quarantine,

recovery of infectious nodes is very high and crashing of node due to infection

is low. The proposed model can be effectively utilized for zero day attacks and

preparation of pre-emptive antivirus software. The inclusion of quarantine class

reduces the chances of the system to become endemic.
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Figure 3.3: Dynamic behavior of model (a) Case 1, (b) Case 2, (c) Absolute
error of Adams from explicit RK method for Case 1 and (d) Absolute error of

Adams from explicit RK method for case 2.
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Figure 3.4: Dynamic Behavior of model (a) Case 3, (b) Case 4, (c) Absolute
error of Adams from RK method for Case 3 and (d) Absolute error of Adams

from RK method for case 4.
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Figure 3.5: Parameteric plots of different cases of virus model.



Chapter 4

Dynamic Analysis of Stuxnet

Virus Spread

4.1 Introduction

In this chapter, spread of virus infection due to removable storage media and in-

fected hosts are analyzed. Removable storage media plays an important role in

bridging the air-gap between isolated critical networks and commercial networks.

Ease of use and connectivity increases the role of removable storage media in trans-

fering data and virus to the computers connected to critical network (consisting of

industrial controllers) which are isolated from main networks. In early 1990s, spe-

cial hardware and protocols were used in most of the process control mechanisms

designed to manage critical systems such as electric grid station, power plant, oil

machinery, Radar and water monitoring etc. This makes the whole process sim-

ple, however, it also makes the system vulnerable to attack [126]. In March 2007,

Idaho National Laboratory conducted an Aurora vulnerability test, which allows

the attacker to remotely control the high voltage circuit breaker to destroy the

generator by quickly opening and closing the breaker [198]. On January 25, 2003

at 12:30 AM eastern standard time, Slammer started to exploit the vulnerability

of Microsoft SQL server and in just ten minutes, it infected about 75,000 servers

50
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worldwide, and only South Korea confronted with half-day internet outage [199].

Process control operators believe that their systems are impenetrable to virus at-

tack firstly due to isolation of their process control systems from the internet, and

secondly with the usage of the proprietary protocols for communication. How-

ever, many operators replacing their outdated hardware with new one to move

towards open protocols and in this process few control systems may connect with

Internet unintentionally and makes scenario vulnerable for attack [24]. The air-

gap between isolated industrial computer networks and public networks could be

bridged by the use of infected removable storage media [200], e.g., Manchester

police disconnected from head office for three days due to infection caused by such

devices [201]. Stuxnet a 500-kbyte worm, is one of the most complex virus that

was primarily written for industrial control systems which can spread using several

dimensions but most notorious in this regard are USB devices [138, 202]. The in-

ternal design of Stuxnet is very stealthy, complex and hiding ability for large span

of time, e.g., Stuxnet virus waits for seventeen months for conducive environment

and smartly delay the processes instead of destroying the centrifuges completely

[139, 203].

The behaviour of such malicious codes have been conducted by the research com-

munity through epidemiology modelling of virus propagation [65, 204]. The control

strategies for these sophisticated malicious codes are very difficult due to acquiring

a place as a legitimate system process, attaining admin rights, capacity of injecting

infectious code in system dynamic link libraries and removing traces [205, 206].

The Stuxnet virus possess all sophisticated virus properties to exploit the zero-

day vulnerabilities to target the victims [207, 208]. The advancement in Internet

technologies poses great challenges to the security of the critical infrastructure of

the nations in the presense of such vulnerability. Therefore, it looks promising

to have detailed analysis of dynamic behaviour of these malicious codes and de-

vice a controlling strategy to overcome their devastation effectively. Mathematical

modelling of malicious code provides us platform for profound understanding of

the problem and gives, us a path to devise flexible, stable and robust controlling

strategies.
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A mathematical model is designed to analyze the behaviour of the Stuxnet type

virus, a very refined piece of code, which got the name of first “digital weapon”

in news and got the fame a nation versus nation cyber-attack [210]. Our goal

in this study is to design a mathematical model that depicts the Stuxnet spread

and attacks in a working environment and its impact on critical infrastructures

managed by industrial control computers. Few studies are conducted to observe

the effect of removable media in the spread of worm [80–82], however in these

investigations the model behavior is theoretically verified without the use of real

data. Additionally, these models did not establish a link with critical industrial

computer scenarios. Main contributions of the proposed virus model based on

susceptible, infected, removed, susceptible and infected removable storage media

(SIPUSUI) are highlighted as:

1. A novel computer virus model SIPUSUI is designed with ability to accurately

model the security of isolated critical industrial control networks.

2. Local stability analysis through the basic reproduction number R0 of the model

is ascertained at equilibria points both for virus free and endemic spread sce-

narios.

3. Validation of the model through global stability analysis with Lyapunov func-

tion further esteblishes its worth.

4. Numerical simulation is performed to test the accuracy of the model for Stuxnet

virus, results shows that the model matches the actual situation with reason-

able accuracy.

4.1.1 An Overview of Stuxnet Virus

Stuxnet, a complex virus that mainly targets industrial control systems, uses four

zero-day vulnerabilities to attack and have capability to hide itself from antivirus

programs. Stuxnet uses two stolen digital certificates to show itself as a legiti-

mate program with deep knowledge of targeted Siemens supervisory control and

data acquisition (SCADA) systems. Stuxnet was discovered in June 2010, and it

was used to attack the Iranian nuclear enrichment plant at Natanz as shown in
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Figure 4.1. The facility at Natanz consists of centrifuge in a cascaded manner in

which, the output of one centrifuge piped through the input of the second and so

on. Stuxnet has several built-in malicious modules that makes it a sophisticated

cyber weapon. The virus exploits four zero-day vulnerabilities, changes system

libraries, attacks step7 (Siemens SCADA system), installs signed drivers, hides

its presence, clears logs and runs remote procedure call server for communication

with its control center and version update [122]. The components of the the virus

are graphically shown in Figure 4.2. Stuxnet virus spreads in the system by

an infected USB connected to the system and after infecting the first computer,

further attacks the network by exploiting different vulnerabilities. The ultimate

target of the virus was a machine connected to the centrifuges and managed by the

programmable logical controllers (PLCs), a special purpose computers. Typically,

such computers are not connected to the Internet and usually work in stand-alone

environment. Therefore, Stuxnet uses other transmission methods via USBs to

reach the target computers. The vulnerability caused by USBs is common, e.g.,

in China 26% infections were due to USB malware in year 2009, that exploit the

auto-run features of windows [201]. Different Stuxnet versions use different ex-

ploits, the latest version uses a Windows LNK vulnerability; older versions use

the ‘autorun.inf’ file vulnerability as shown in Figure 4.3. Stuxnet searches

the target Siemens WinCC, an interface used to control the SCADA systems, by

connection to SQL database using hardcoded passwords and uploads the infected

version. Then, Stuxnet spreads in networks via network shares, windows print

spooler MS 10-061 zero-day vulnerability, server message block used for file shar-

ing, zero-day MS 08-067 vulnerability, etc. Stuxnet infects the Siemens SIMATIC

Step7 programs that are opened on infected computers. Stuxnet uses built-in peer

to peer networks for update of older versions on the local network. Each copy

starts remote procedure call service and listens to connection and all connected

nodes update themselves. Stuxnet also tries to contact with command and control

servers by sending data in encrypted form [22]. Stuxnet is not really harmful for or-

dinary users, however uses them as a medium to reach the target, i.e., the Siemens

PLCs [211]. The virus hides itself from plant operators by installing rootkit on
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Figure 4.1: Overview of Stuxnet

Figure 4.2: Stuxnet components
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Figure 4.3: Different Methods that Stuxnet uses to exploit its target

the infected computers and PLCs. The Stuxnet attack destroyed 1,000 centrifuges

out of the 5,000 operating at the Natanz facility [121]. Similar cyber-attacks have

evolved a lot over the years for criminal and terrorist entities and also by states

as weapons. They can be used not only to gather information, but also to destroy

infrastructures.

4.2 The Epidemic Model for Stuxnet Virus

In this section, necessary description for the formulation of SIPUSUI mathematical

model is presented as shown in Figure 4.4. The total population N(t) is parti-

tioned into Susceptible nodes, Infected nodes, Damaged nodes and represented by

S(t), I(t) and P (t), respectively. The USB susceptible and USB infected media is

denoted by Us(t), and UI(t), respectively, with N = S + I + P and U = Us + UI

. In this configuration, all computers (networked or stand-alone) which are not

infected by the virus fall under the category of susceptible computers. Infected

computers are those that are infected due to network sharing or by connecting

removable storage media, i.e., USBs. Damaged computers are those that are tem-

porarily unable to perform their desired function and thus removed from the setup.
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Susceptible removable storage media are those that are virus free but can become

the prey of infection if connected with infected nodes. Infected removable storage

media are the main source of infection spread in the network due to weak firmware

security and plug and play features of USB devices. Let A1 be the arrival of new

computers and A2 be the arrival of removable storage devices, ρ is the damage

rate due to virus infection caused in control computers, connected to PLCs. β1

and β2 denotes the rate of infection transfer from infected computers to suscepti-

ble computers on the network and from infected removable devices to susceptible

computers, respectively. The natural removal (death) rates of computers and re-

movable devices from the network are represented by r1 and r2 respectively. The

probability of finding susceptible computers on network in Internet protocol ver-

sion 4 (IPv4) scheme is S/232 (the total number of computers in IPv4 are 232).

Removable storage devices are the major source of virus spread in air gapped

critical industrial networks, they bridge the gaps and provide the environment for

predators to target their prey [212]. In this chapter, we model the spread of virus,

especially Stuxnet [213, 214] in critical networks through removable storage media

and infected computers. Data flow in the model is shown in Figure 4.5, while the

following differential equations describe the propagation of the Stuxnet virus:

dS

dt
= A1 −

β1S(t)I(t)

232
− β2S(t)UI(t)

N(t)
− r1S(t),

dI

dt
=
β1S(t)I(t)

232
+
β2S(t)UI(t)

N(t)
− ρI(t)− r1I(t),

dP

dt
= ρI(t)− r1P (t), (4.1)

dUs
dt

= A2 −
β2Us(t)I(t)

N
− r2Us(t),

dUI
dt

=
β2Us(t)I(t)

N
− r2UI(t),

while the associated initial conditions are given as follows:

S(0) = S0, I(0) = I0, P (0) = P0, Us(0) = Us0, UI(0) = UI0.

dN

dt
= A1 − r1N, (4.2)

dU

dt
= A2 − r2U,



Dynamic Analysis of Stuxnet Virus Spread 57

where the arrival rate of the new nodes is represented by A1 and death rate by r1,

while A2 represents the arrival rate of new removable storage devices and r2 their

removal rate. Accordingly, the net rate of change of the population is given by

c1 = A1 − r1 and c2 = A2 − r2 which may be positive, zero or negative. Solving

Figure 4.4: Graphical abstract of proposed SIPUSUI model
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Figure 4.5: Schematic flow of proposed SIPUSUI model

set of equations (4.2), we get

N(t)→ A1

r1

∆
= N∗, t→∞, (4.3)

U(t)→ A2

r2

∆
= U∗, t→∞.

The system of equations (4.1) can be written in simplified or reduced form as:

dI

dt
=
β1(N(t)− I(t)− P (t))I(t)

232
+
β2(N(t)− I(t)− P (t))UI(t)

N(t)

− ρI(t)− r1I(t),

dP

dt
=ρI(t)− r1P (t), (4.4)

dUI
dt

=
β2(U(t)− UI(t))I(t)

N(t)
− r2UI(t).

Where

N(t) = N∗ + (N(0)−N∗)e−r1t,

and

U(t) = U∗ + (U(0)− U∗)e−r2t.

Using equation (4.3) in system (4.4) one have a limit system (IPUI) as [140]:

dI

dt
=
β1(N∗ − I − P )I

232
+
β2(N∗ − I − P )UI

N∗
− ρI − r1I,

dP

dt
= ρI − r1P, (4.5)
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dUI
dt

=
β2(U∗ − UI)I

N∗
− r2UI .

4.3 Model Analysis

4.3.1 Basic Reproduction Number (R0)

The basic reproduction number is defined as the advent of a new infection caused

by an infected individual and denoted by R0. R0 is the parameter of infection

spread, if R0 > 1, then infection spreads rapidly in the system and if R0 < 1 then

infected individuals will not be able to spread the infection and die down. Different

methods are used to calculate the basic reproduction number R0 in epidemiology

modeling [215]. Detail of R0 calculation with next generation matrix is also given

in appendix 10.

Model SIPUSUI has been reduced to three classes as given in equation (4.5) and

only two classes are infected. The essential condition for occurrence of an epidemic

is that the number of infected nodes should increase with the assumption that at

the beginning all populations are susceptible.

For
dI

dt
> 0,we have

β1(N∗ − I − P )I

232
+
β2(N∗ − I − P )UI

N∗
− ρI − r1I > 0,

In case
dUI
dt

> 0,

β2(U∗ − UI)I
N∗

− r2UI > 0,

Assuming that all the population should be susceptible, we may write the above

expression as:

β1N∗I
232

+ β2N∗UI
N∗

− ρI − r1I > 0,

β2U∗I
N∗
− r2UI > 0.
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Simplifying above relation, we have

β1N
∗

(ρ+ r1)232
+

β2
2U
∗

r2N∗(ρ+ r1)
> 1.

Accordingly,

R0 =
β1N

∗

232(ρ+ r1)
+

β2
2U
∗

r2N∗(ρ+ r1)
. (4.6)

4.3.2 Equilibria Studies

The model IPUI in set of equations (4.5) has two equilibrium points; virus free

point at which no virus exists in the system and endemic equilibria point, at which

infection spread in the system. Virus free equilibria point for system (4.5) is K0=

(I, P , UI) = (0, 0, 0) and endemic equilibria point is K∗ = (I∗, P ∗, U∗I ) for R0> 1.

The set of equations (4.5) for endemic equilibria analysis are written as:

β1(N∗ − I − P )I

232
+
β2(N∗ − I − P )UI

N∗
− ρI − r1I = 0,

ρI − r1P = 0, (4.7)

β2(U∗ − UI)I
N∗

− r2UI = 0.

Solving set of equations (4.7), we will get expression for the endemic equilibrium

point (I∗, P ∗, U∗I ) as:

I∗ =

√
b2 − 4ac− b

2a
, (4.8)

P ∗ =
ρ

r1

I∗, (4.9)

UI
∗ =

β2U
∗

β2I∗ + r2N∗
I∗, (4.10)

where

a =
(ρ+ r1)β1β2

232r1N∗
, c = (ρ+ r1)(1−R0)r2,

b =
β2(ρ+ r1)(1−R0)

N∗
+
β2

3U∗

N∗r2

+
β1(r2)β2

2U∗

232r1

(ρ+ r1).
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From equation (4.8), the condition I∗ > 0 is only possible whenever the value of

R0 > 1.

4.3.3 Disease Free Equilibria

Theorem 4.1. Disease-free equilibrium (DFE) is locally asymptotically stable in

K0, if R0 < 1.

Proof. The system is locally asymptotically stable at DFE point K0 = (I, P , UI)

= (0, 0, 0). Consider the Jacobian matrix of function with components:

f1(I, P, UI) = β1(N∗−I−P )I
232

+ β2(N∗−I−P )UI
N∗

− ρI − r1I,

f2(I, P, UI) = ρI − r1P,

f3(I, P, UI) = β2(U∗−UI)I
232

− r2UI ,

is given as:

J(I, P, UI) =


∂f1

∂I

∂f1

∂P

∂f1

∂UI
∂f2

∂I

∂f2

∂P

∂f2

∂UI
∂f3

∂I

∂f3

∂P

∂f3

∂UI

 .

Therefore, the Jacobian matrix of K0 DFE point is given as:

DFE(K0) =


β1N∗

232
− ρ− r1 0 β2

ρ −r1 0

β2U∗

N∗
0 −r2

 . (4.11)

To find the Eigenvalues, the characteristic equation of above matrix is

|λI −DFE(K0)| =

∣∣∣∣∣∣∣∣∣
λ− β1N∗

232
+ ρ+ r1 0 −β2

−ρ λ+ r1 0

−β2U∗

N∗
0 λ+ r2

∣∣∣∣∣∣∣∣∣ = 0,

and in simplify form as:

(λ+ r1)

[(
λ− N∗β1

232
+ ρ+ r1

)
(λ+ r2)− β2

2U∗

N∗

]
= 0,
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while the corresponding Eigenvalues are

λ1 = −r1,[(
λ+ ρ+ r1 − N∗β1

232

)
(λ+ r2)− β2

2U∗

N∗

]
= 0,

(λ+ r2)(ρ+ r1)
(

1− N∗β1
232(ρ+r1)

)
− β2

2U∗

N∗
= 0.

(4.12)

The equation (4.12) using (4.6) is written as:

1−
(

N∗β1
232(ρ+r1)

+ β2
2U∗

N∗r2(ρ+r1)

)
> 0,

1−R0 > 0.
(4.13)

If R0 < 1, then the corresponding equation (4.13) is positive, which show that

all Eigenvalues of the system (4.12) are in a negative half plane, so the system is

asymptotically stable for points K0 when R0 < 1. This completes the proof.

Theorem 4.2. If R0 < 1, then the point K0 is globally asymptotically stable,

otherwise unstable.

Proof. Let us consider the following Lyapunov function.

L(I, P, UI) = I +
β1

233ρ
P 2 +

β2

r2

UI . (4.14)

The function is always positive in R3, for R3 = (I, P , UI) and (I > 0, P > 0,

UI > 0).

Taking the derivative of the Lyapunov function (4.14) we get

•
L(I, P, UI) =

•
I +

2β1

233ρ
P
•
P +

β2

r2

•
UI ,

•
L(I, P, UI) =

β1(N∗ − I − P )I

232
+
β2(N∗ − I − P )UI

N∗
− ρI − r1I

+
β1PI

232
+
r1β1P

2

232ρ
+
β2

2U∗I

N∗r2

− β2
2U1I

N∗r2

− β2U1,

=

(
β1N

∗

232
+
β2

2U∗

N∗r2

− ρ− r1

)
I − β1I

2

232
− β2(P + I)UI

N∗

− r1β1P
2

232ρ
− β2

2P 2UII

N∗r2

,

=

(
(ρ+ r1)

(
β1N

∗

232(ρ+ r1)
+

β2
2U∗

N∗r2(ρ+ r1)

)
− ρ− r1

)
I
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− β1I
2

232
− β2(P + I)UI

N∗
− r1β1P

2

232ρ
− β2

2P 2UII

N∗r2

,

= (ρ+ r1)(R0 − 1)I − β1I
2

232
− β2(P + I)UI

N∗

− r1β1P
2

232ρ
− β2

2UII

N∗r2

.

Thus, R0 < 1, implies that
•
L(t) ≤ 0 and K0 is the only invariant set of system

(4.7) for
•
L(t) = 0 . According to LaSalle Invariance Principle K0 is globally

asymptotically stable, hence this proves the theorem. Therefore, K0 equilibrium

point is globally asymptotically stable for R0 < 1.

4.3.4 Endemic Stability

To investigate the endemic equilibrium of the point K∗= (I∗, P ∗, U∗I ), for R0 > 1

and obviously for I∗ ≥ 0, we have to find its local and global stability for R0 > 1.

Theorem 4.3 K∗ is locally asymptotically stable, if R0 > 1.

Proof. Consider the function f : R3 → R3 with components and Jacobian matrix

as:

f1(I∗, P ∗, U∗I ) = β1(N∗−I∗−P ∗)I∗
232

+
β2(N∗−I∗−P ∗)U∗I

N∗
− ρI∗ − r1I

∗,

f2(I∗, P ∗, U∗I ) = ρI∗ − r1P
∗,

f3(I∗, P ∗, U∗I ) =
β2(U∗−U∗I )I∗

232
− r2U

∗
I ,

J(I∗, P ∗, U∗I ) =


∂f1

∂I∗
∂f1

∂P ∗
∂f1

∂U∗I
∂f2

∂I∗
∂f2

∂P ∗
∂f2

∂U∗I
∂f3

∂I∗
∂f3

∂P ∗
∂f3

∂U∗I

 .

The endemic equilibrium point K∗= (I∗, P ∗, U∗I ) and the Jacobian matrix at the

endemic point is given below

J(K∗) =


β1(N∗−2I∗−P ∗)

232
− β2UI

∗

N∗
− ρ− r1 −β1I∗

232
− β2UI

∗

N∗
β2(N∗−I∗−P ∗)

N∗

ρ −r1 0

β2(U∗−UI∗)
N∗

0 β2I∗

N∗
− r2

 .

(4.15)
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Characteristic equation of the above Jacobian is

= |λI − J(K∗)| = 0,∣∣∣∣∣∣∣∣∣
λ− β1N∗

232
+ β1(2I∗+P ∗)

232
+ β2UI

∗

N∗
+ ρ+ r1

β1I∗

232
+ β2UI

∗

N∗
−β2(N∗−I∗−P ∗)

N∗

−ρ λ+ r1 0

−β2(U∗−UI∗)
N∗

0 λ+ β2I∗

N∗
+ r2

∣∣∣∣∣∣∣∣∣ = 0,

and simplifies as:

λ3 + (b11 + b22 + b33)λ2 + (b11b22 + b11b33 + b22b33 − b12b21

−b13b31)λ+ b11b22b33 − b12b21b33 − b13b31b22 = 0,
(4.16)

where

b11 = −β1N∗

232
+ β1(2I∗+P ∗)

232
+ β2UI

∗

N∗
+ ρ+ r1, b12 = β1I∗

232
+ β2UI

∗

N∗
,

b21 = −ρ, b23 = 0, b22 = r1, b13 = −β2(N∗−I∗−P ∗)
N∗

,

b31 = −β2(U∗−UI∗)
N∗

, b33 = β2I∗

N∗
+ r2, b32 = 0.

To analyze the stability of system (4.16), we use Hurwitz criteria as reported in

[216, 218]. To overview Hurwitz criteria, let us consider the general characteristic

equation of a system.

b0s
n + b1s

n−1 + b2s
n−2 + b3s

n−3 · · · bn−1s
1 + bn = 0,

with n determinants in nth order equation and the first three determinants, i.e.,

D1, D2 and D3, of the said characteristic equation is as:

D1 = b1,

D2 =

∣∣∣∣∣∣ b1 b3

b0 b2

∣∣∣∣∣∣ = b1b2 − b3b0,

D3 =

∣∣∣∣∣∣∣∣∣
b1 b3 b5

b0 b2 b4

0 b1 b3

∣∣∣∣∣∣∣∣∣ = b3(b1b2 − b0b3)− b1(b1b4 − b0b5).
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Now equating the coefficient of general characteristics equation with (4.16), we

have

b0 = 1,

b1 = b11 + b22 + b33,

b2 = b11b22 + b11b33 + b22b33 − b12b21 − b13b31,

b3 = b11b22b33 − b12b21b33 − b13b31b22,

b4 = 0,

b5 = 0,

D1 = b1 = b11 + b22 + b33,

= −β1N∗

232
+ β1(2I∗+P ∗)

232
+ β2UI

∗

N∗
+ ρ+ r1 + r1 + β2I∗

N∗
+ r2,

= β2(N∗−I∗−P ∗)UI∗
N∗I∗

+ β2UI
∗

N∗
+ β1I∗

232
+ r1 + β2I∗

N∗
+ r2,

> 0.

D2 = b1b2 − b3b0,

D2 = (b11 + b22 + b33)(b11b22 + b11b33 + b22b33 − b12b21

− b13b31)− b11b22b33 + b12b21b33 + b13b31b22,

= b2
11b22 + b2

11b33 + b11b22b33 − b11b12b21 − b11b13b31

+ b11b
2

22 + b11b22b33 + b2
22b33 − b22b12b21 − b22b13b31

+ b11b22b33 + b11b
2

33 + b22b
2

33 − b33b12b21 − b33b13b31

− b11b22b33 + b33b12b21 + b22b13b31,

D2 = b2
11b22 + b2

11b33 + b11b
2

22 + b22b
2

33 + b11b
2

33 + b2
22b33

+2b11b22b33 − b11b12b21 − b11b13b31 − b22b12b21

−b33b13b31,

> (b11b33 − b13b31)(b11 + b33),

>
{(

β1(N∗−I∗−P ∗)
232

+ ρ+ r1

)
r2 − β2

2(N∗−I∗−P ∗)(U∗−UI∗)
N∗2

}
(b11 + b33),

=
{(

β1(N∗−I∗−P ∗)I∗
232

+ ρI∗ + r1I
∗ − β2(N∗−I∗−P ∗)UI∗

N∗

)
r2
I∗

}
(b11 + b33),

= 0.

D3 = b3(b1b2 − b0b3),

D3 = b3(D2),
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using values of b3

D3 = (b11b22b33 − b12b21b33 − b13b31b22)((b11 + b22

+ b33)(b11b22 + b11b33 + b22b33 − b12b21

− b13b31)− b11b22b33 + b12b21b33 + b13b31b22),

=(b11b22b33 − b12b21b33 − b13b31b22)D2,

>(b11b33 − b13b31)b22D2,

>0.

Thus, all the values of D1, D2 and D3 are positive, so all the Eigenvalues of the

equation (4.16) are in the left half plane. If R0 > 1 then there exists an endemic

equilibrium point K∗ which is locally asymptotically stable. This completes the

proof.

Theorem 4.4 Endemic equilibrium point K∗ is globally asymptotically stable, if

R0 > 1.

Proof. Let for ease, we consider the five dimensional Lyapunov function as:

L(S, I, P, Us, UI) = (S − S∗ − S∗ ln
S

S∗
) + (I − I∗ − I∗ ln

I

I∗
)

+
S∗UI

∗

I∗Us
∗ (Us − Us∗ − Us∗ ln

Us
Us
∗ )

+
S∗UI

∗

I∗Us
∗ (UI − UI∗ − UI∗ ln

UI
UI
∗ ).

(4.17)

Lyapunov function is always positive in R5. Taking the derivative of (4.17) and

inserted the values of parameters we have

•
L(S, I, P, Us, UI) = (1− S∗

S
)
•
S+(1− I∗

I
)
•
I +

S∗UI
∗

I∗Us
∗ (1− Us

∗

Us
)
•
U
s

+
S∗UI

∗

I∗Us
∗ (1− UI

∗

UI
)
•
U
I
,

=

 β1
232

(1− S∗

S
)(S∗I∗ − SI) + β2

N
(1− S∗

S
)(S∗UI

∗ − SUI)

+r1(1− S∗

S
)(S∗ − S)


+

[
β1

232
(1− I∗

I
)(SI − S∗I) +

β2

N
(1− I∗

I
)(SUI −

S∗IUI
∗

I∗
)

]
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+

 β2S∗UI
∗

NI∗Us∗
(1− Us∗

Us
)(I∗Us

∗ − IUs) + S∗UI
∗

I∗Us∗
(1− Us∗

Us
)(UI − UI∗)

+ r2S∗UI
∗

I∗Us∗
(1− Us∗

Us
)(Us

∗ − Us)


+
[
β2S∗UI

∗

NI∗Us∗
(1− UI

∗

UI
)(IUs − I∗Us∗ UIUI∗ )

]
,

≤ β1
232

 2S∗I∗ − S∗2I∗

S

−SI∗

+ β2
N

 2S∗UI
∗ − S∗2UI

∗

S
− SI∗UI

I
+

2S∗UI
∗ − S∗IUI

∗2Us
I∗Us∗UI

− S∗UI
∗Us∗

Us

 ,
≤ β2S∗UI

∗

N

[
4− S∗

S
− SI∗UI

IS∗U∗I
− U∗s

Us
− IUsU∗I

I∗UIU∗s

]
,

≤ −2β2S
∗UI
∗

N

(
4

√
I∗UI
IUI
∗ − 4

√
IUI
∗

I∗UI

)2

,

≤ 0.

Which is negative. Hence the system (4.5) at the endemic equilibrium point K∗

is globally asymptotically stable for R0 > 1. This proves the theorem.

4.4 Simulation and Results

In this section, results of simulation are presented for SIPUSUI model to under-

stand the spread of the virus and the role of removable storage media in virus

spread. Adams numerical method is used to solve and simulate the system of dif-

ferential equations (4.1) for different parameters and initial conditions which are

given in tables 4.1 and 4.2. Numerical results are obtained using NDSolve rou-

tine for the solution of differential equations using WOLFRAM MATHEMATICA

12 on 64 bit windows 10 platform. Simulation results obtained from the Stuxnet

designed SIPUSUI virus model are compared using state of the art numerical meth-

ods Adams versus BDF. Error analysis of both methods are shown in error plots.

To validate the simulation results, we use the real data of Stuxnet virus spread

[122, 219, 220] to evaluate the accuracy and convergence of the SIPUSUI model.

Approximately 100,000 users across 155 countries were infected by the Stuxnet

attack and among these 63% were in Iran only. The number of hosts removed

(which went down and lost their functionality) because of the Stuxnet attack was

approximately 1500 (and 1200 were in Iran only).

Result of case 1 for SIPUSUI model is calculated with Adams method which
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Table 4.1: Parameters used in the simulation of model SIPUSUI.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

A1 0.042 0.042 40 100 40 40

A2 0.042 0.042 40.09 0 40.09 40.09

β1 0.336 0.4 0.349 0 0.42 0.42

β2 0.6 0.8 0.681 0.681 0 0

r1 0.1126 0.19 0.0804 0.0804 0.0804 0.0804

r2 0.0088 0.027 0.027 0.027 0.027 0.027

ρ 0.00265 0.051 0.0011 0.0011 0.0011 0.0065

Table 4.2: Initial values of the parameter used in the simulation of the model
SIPUSUI.

Variables S I P US UI

Case 1-2 2.3 ∗ 106 10000 10 50000 10000

Case 3-6 2.3 ∗ 106 30000 10 30000 10000

show the dynamic behaviour of the virus spread and its error analysis with back-

ward differentiation formula (BDF) as shown in figure 4.6(a) and (b), respectively.

The BDF is a family of multi-step linear numerical methods for ordinary differ-

ential equations and especially used for stiff problems. While the results of case

2 given in figure 4.7(a) and (b) shows slight increase in the infection rate of re-

movable storage media due to infected USBs. Model SIPUSUI also describes the

role of removable storage media for critical system networks, which are usually

isolated from the internet. In figure 4.6(a) number of hosts are plotted versus

time in months which shows the number of infected hosts due to a Stuxnet global

attack, which was approximately 97,000 in 24 months and the number of crashed

hosts (industrial systems which got destroyed) was approximately 1500. The total

number of removable storage media is assumed to be 60,000 and due to increase in

the number of infected hosts, infection in the removable storage media increases.
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Figure 4.6: (a-b) Simulation of virus spread using SIPUSUI model with pa-
rameters and initial conditions given in tables 4.1,4.2 respectively for case 1

and error analysis of Adams with BDF.

Increase of infection in removable storage media ultimately increase overall infec-

tions. In 24 months period infected removable storage media has reached up to

45,000. Camouflage of Stuxnet virus was revealed after 24 months after launching
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Figure 4.7: (a-b) Simulation of virus spread using SIPUSUI model with pa-
rameters and initial conditions given in tables 4.1,4.2 for case 2 respectively

and error analysis of Adams with BDF.

of virus first attack. Decrease in the number of infected hosts and removable stor-

age media is observed after 24 months due to availability of remedial techniques,

natural isolation from networks and anti-virus signature update for the Stuxnet

virus. The effect of removable storage media can also be analyzed by increasing
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the values of infectious contact rate of removable storage media as shown in figure

4.7(a). Number of removable hosts will be increased quickly as compared to figure

4.6(a) by slightly increasing the contact rate of infected removable media. The

maximum value of case 1 was achieved in 18 months as compared to 24 months

time. Figure 4.7(a) shows that increasing the infectious contact rate of removable

storage media also decline the number of infected nodes and infected media earlier

as compare to figure 4.6. Sudden increase in the virus malicious activity aggra-

vate the problem which will ultimately conceal the virus camouflage and earlier

remedial actions will be required. In figure 4.8(a), we increased the number of new

arrived computers and removable storage media to observe the model behavior for

Stuxnet virus in 60 months. The number of infected hosts were 92,680, removed

hosts were 828 and infected removable storage media were 17870. In figure 4.8(b)

infectious contact rate β1 of susceptible hosts with infected hosts is reduced to zero

which has an insignificant effect in the spreading of virus in infected and removed

hosts. The difference in the number of infected hosts and infected removable stor-

age media from previous case of figure 4.8(a) is only 50 and 1 respectively. So

infectious contact rate of susceptible computers by infected computer has negli-

gible effect on virus spread. In figure 4.9(a) effects of virus spread are analyzed

by changing the value of infectious contact rate of susceptible removable storage

media β2 to zero. Figure 4.9(a) shows a major change in the number of infected

and removed hosts which are 5005 and 124 respectively. The role of infected re-

movable storage media depicts that controlling its connectivity with susceptible

hosts controls the infection of Stuxnet virus in the network. Decreasing β2 will

not only decrease the number of infected hosts but also decrease the number of in-

fected removable media and consequently other hosts also. Limiting the number of

removable devices can control the virus spread. In air-gapped network removable

storage media play a major role in bridging the gap and normally plant networks

which includes SCADA / PLC’s type hardware that are isolated from other work

networks. Stuxnet is a type of virus that targets the special hardware which con-

trols the plants and this sholuld be isolated from other network. In figure 4.9(b),

simulations are performed by slightly increasing the values of ρ, the damage rate



Dynamic Analysis of Stuxnet Virus Spread 72

of infectious hosts and keeping values of other parameters fixed. Figure 4.9(b)

shows that slight increase in the value of ρ will increase the number of damaged

hosts .

Phase portrait of the model SIPUSUI as shown in the figure 4.10 (a-f), these shows

interesting results. Phase portrait of figure 4.10 (a) is plotted between susceptible

hosts, removed hosts and infected removable storage media to depict the behavior

of model for case 1. It is observed that curve in this phase portrait is forms a

loop, the number of susceptible host decreases slowly due to increase in the num-

ber of infected removable storage media. Decrease in the number of susceptible

hosts become rapid when infected removable storage media crosses the limit of

10,000 and the susceptible host increases again when infected removable media

reaches the limit of 30,000. It illustrates that increase in the number of remov-

able storage media, suddenly increases the infection in the system and reduces the

number of susceptible hosts and vice verse due to other controlling factors, like

revealing of virus camouflage etc. Phase portrait in figure 4.10(b) which is plotted

among susceptible, infected and removed hosts which highlights the relations of

these hosts for case 1. As simulation progress in figure 4.10(b), increase in the

number of infected and removed nodes are observed. Figure 4.10(b) form a loop

which shows the increase / decrease in the number of nodes and infection in the

system. Infection spreads in the system due to availability of susceptible nodes

and nonavailability of control mechanism. Decrease in the number of susceptible

hosts is observed due to natural removal and removal due to infection. Figure

4.10(c) shows that after 20,000 infected hosts, slightly increase in the number of

infected hosts will exponentially increase the number of infected removable storage

media. Reduction in the number of infected hosts will not reduce the number of

infected storage media which highlights the independent role of removable storage

media in the spread of the infection. Figure 4.10(d) shows that increase in the

number of susceptible hosts decrease the number of infected storage media and

vice versa. Infected hosts versus susceptible removable storage are plotted in Fig-

ure 4.10(e) which indicates that increase in the number of infected hosts decreases

the number of susceptible media exponentially. In figure 4.10 (f), increase in the
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number of infected hosts also increases the number of removed hosts. The number

of infected hosts were approximately 97,000 at that time and removed hosts were

around 1500. These results show that controlling the connectivity of removable

storage media, will control the spread of the virus in industrial control computers

specifically and partially in other networks, as public networks has different op-

tions for its connectivity. For the Stuxnet model, results obtained from the model

are validated using published data of Stuxnet virus spread (infection and damage

caused throughout the world).

Figure 4.8: (a-b) Simulation of virus spread using SIPUSUI model with pa-
rameters and initial conditions given in table 4.1,4.2 for case 3-4 respectively

and error analysis of Adams with BDF.
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Figure 4.9: (a-b) Simulation of virus spread using SIPUSUI model with pa-
rameters and initial conditions given in table 4.1,4.2 for case 5-6 respectively

and error analysis of Adams with BDF.

4.4.1 Control Strategies

In this section, a control strategies for Stuxnet virus propagation model are pre-

sented. In reality, control strategies are variable in time and the mathematical

theory behind these strategies are called optimal control theory, however control

strategies discussed here are constant. It is evident from the results presented that
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Figure 4.10: (a-f) Phase portrait of virus spread using a SIPUSUI model for
case 1.

the removable storage media plays an important role in the spread of Stuxnet virus

in air-gapped network and necessary interpretation of control strategy are briefly

highlighted as follows. As shown in figure 4.7(a); by increasing the value of β2,

the infectious contact rate of removable storage media in case 2 will increase the

infection quickly as compare to case 1. The role of β2 in controlling the infection
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is further investigated in cases 5 and 6 with observation that reducing the value

of β2 to 0 exponentially reduces the number of infected hosts for case 5 as shown

in figure 4.9(b). It is further noted that infection of virus spread is present in the

network but in case of Stuxnet virus that exploits specific hardware thus removal

of hardware are not relatively substantial. Increasing the value of parameter ρ,

i.e., damage rate due to virus infection, increases the infection due virus in specific

hardware which ultimately enhance the damage rate. Controlling the parameter

ρ will also control the damage rate of hardware connected with specific devices.

Meanwhile, time dependent control preventive policy can be obtained by minimiz-

ing the objective function (4.18) for damage rate due to virus infection on specific

hardware.

J(ρ) =

T∫
0

[K1UI(t) +K2I(t) +K3
ρ2(t)

2
]dt. (4.18)

The first term K1UI(t) in the objective function represents the number of infected

removable storage media and second term K2I(t) represents the number of infected

hosts. The term K3
ρ2(t)

2
represents the rate of damaged hosts. Theoretical analysis

of the objective function (4.18), can be conducted by interested readers for the

Stuxnet virus model through adaptation of similar procedures reported in relevant

studies [233, 234].

4.5 Chapter Summary

A SIPUSUI dynamic epidemic model is presented for the transmission of viruses

into a standalone computer network through removable storage media. If the

infection contact rate β2 = 0 for an SIPUSUI model, then it reduces the model

to an SIR model. The SIPUSUI model captures the spreading characteristics of a

sophisticated digital virus such as the Stuxnet. Mathematical analysis shows that

the dynamics of this model is determined through the basic reproduction number

R0. Disease free equilibrium of the model is globally asymptotically stable for

R0 < 1 and asymptotic endemic stability is also shown for R0 > 1. To control the
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spread of infectious disease one must retain the basic reproduction number less

than one. Removable storage media and infectious contact rate play an important

role in the extent of viruses spread. Additionally, numerical study is performed

with state of the art differential equation solvers for validation of the model on

available data for Stuxnet virus as well as number of scenarios for removable

storage media and consistently results are found in good agreement with standard

solutions and reported statistics.



Chapter 5

Fractional Dynamics of Stuxnet

Virus Propagation

In this chapter fractional dynamics of Stuxnet virus spread are analyzed in the

regimes of supervisory control and data acquisition environment by bridging the

air-gap between traditional and the critical control network infrastructures. Spread-

ing behavior analysis of malicious codes are investigated for distinct order of frac-

tional derivative terms in the model for transient response.

5.1 Introduction

Computer virus is a small program that works on a system without the consent of

the users and may cause damage or steal information for the exploitation of the

desired targets. In strategic conflicting environments as well as in financial mar-

ket, the use of computer viruses in network operation as a digital weapon against

the desired targets e.g., computer spyware program used as information collection

platform in syrian war [118], Shamoon and Stuxnet viruses for cyber incidents

[119]. The tools used for cyber war range from very small program that just dis-

play annoying messages or a very complex program that can physically damage

the system such as Stuxnet [120]. Stuxnet was discovered in June 2010 at Natanz

78
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nuclear enrichment facility in Iran [121]. The name of Stuxnet virus was derived

from two keywords in its source code, .stub and mrxnet.sys. Stuxnet virus is a

sophisticated piece of code that mainly targets the supervisory control and data

acquisition systems, exploits four zero-day vulnerabilities to attack the targeted

hosts and uses the advance technique to hide from guard programs. The possi-

bilities of Stuxnet virus spreads in the networks are due to windows print spooler

MS 10-061 zero-day vulnerability, network shares and server message block (SMB)

file sharing etc. Stuxnet virus monitors the frequency of motors operating cen-

trifuges machines before modification, which must be in range of 807 Hz to 1210

Hz. Stuxnet changes the output frequency for short periods of time to 1410 Hz

and then to 2 Hz and then to 1064 Hz. Change in the output frequency of the

motors essentially sabotage the working of machines [221]. The Stuxnet virus at-

tack destroyed 1000 centrifuges out of the 5,000 operating at the Natanz nuclear

facility in Iran [122]. The purpose of the virus was not just to infect the computers

but to cause real world physical damage

Theoretical behavior analysis of the Stuxnet malicious codes can be carried out

by the strength of epidemiology modelling of virus propagation [191–193]. The

control strategies of these malicious codes are very difficult because they often

hide themselves, may exploit zero-day vulnerabilities, gain admin rights and work

as a legitimate program. The advancement in technologies, creates several chal-

lenges to the security of the critical infrastructure of the nations in the presence

of vulnerability and the development of smart viruses. The process of automating

every appliance enormously increases the use of software, resultantly the lengthy

and complex routines are developed. Eradication of bugs in complex codes / rou-

tines are challanging tasks and complete removal of these bugs are impractical, so

these software may contain the vulnerabilities which can ultimately compromise

the whole system [126]. Therefore, detail dynamical analysis of these malicious

codes and their devastation pattern with control mechanisms looks promising do-

main to be investigated by the research community.

The spread of virus in computer networks has close analogy with the spread of

biological viruses in the population. Mathematical modeling of viruses in biology
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as well as in computer networks give us profound understanding of the problem

and help us to devise a reliable, viable and robust control strategies [127]. It is

known that the state of many biological systems at current time depends on the

states of the system at previous time. Thus, fractional derivative is the natural

method to use in the solution of the biological modeling arising in various disci-

plines. Besides these, the role of fundamental concepts and underlying theories

of fractional calculus has been applied effectively in the modeling of the complex

systems in diversified fields with rich dynamics than that of integer counterparts

[70, 71]. Keeping in view of these facts, aim of present study is to exploit the rich

heritage of fractional dynamics for the development of fractional Stuxnet virus

model in order to study the virus spread in supervisory control and data acqui-

sition systems. In this chapter, fractional order mathematical model of Stuxnet

virus is presented to analyze the fast transients, super slow evolutions of the virus

spread dynamic and attacking pattern on critical infrastructures managed by in-

dustrial control computers. The contributions of the proposed fractional Stuxnet

virus model is briefly highlighted as:

1. A novel fractional order Stuxnet virus model is proposed by exploiting the rich

heritage of fractional calculus in the environment of supervisory control and

data acquisition by bridging the air-gap between traditional and the critical

control network infrastructures.

2. Local and global stability analysis of Stuxnet virus model is proven at equilib-

rium points both for virus free and endemic spread.

3. Correctness of the proposed Grunwald-Letnikov based fractional numerical

solver is ascertained with close matching results from state of the art Runge-

Kutta numerical solver for integer order variants of the model.

4. Numerical experimentations with Grunwald-Letnikov based fractional numeri-

cal solver for distinct order of the fractional derivative terms in the system show

that fractional order models provide enrich dynamics by means of super-fast

transients as well as super slow evolutions of the steady-state.
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5.2 Fractional Calculus Fundamentals

5.2.1 Preliminaries

Fractional calculus is the generalization of classical calculus theory of derivatives

and integrals of real or complex orders. Fractional calculus is a 300 years old

topic in mathematics and the idea of fractional calculus was first listed in the

literature with a letter from Leibniz to L’Hostital in 1696. In this letter half

derivative term was introduced i.e. the generalization of the derivative operator

Dαf() while α represents the order of fractional derivative. The development of

fractional calculus belonged to the efforts of several scientists like Liouville, Euler,

Letnikov, and Riemann [73, 134]. Several definitions of fractional derivative exist

while the broadly used are given by Caputo (CP), Grunwald-Letnikov (GL) and

Riemann-Liouville (RL) [194]. The GL definition of fractional derivative is as

under.

GL
a Dα

t f(t) = lim
h→0

1

hα

[(t−a)/h]∑
m=0

(−1)m (αm)f(t−mh), t > a, a > 0. (5.1)

The Caputo’s definition of fractional derivatives can be written as

CP
a Dα

t f(t) =
1

Γ(n− α)

t∫
a

fn(x)

(t− x)α−n+1
dx, (5.2)

for (n− 1 < α < n), where Γ(·) is a gamma function.

The RL definition is given as

RL
a Dα

t f(t) =
1

Γ(n− α)

dn

dt

t∫
a

f(x)

(t− x)α−n+1
dx. (5.3)

For (n−1 < α < n), while a and t are the bounds of the operation for aD
α
t , Laplace

transform method is normally used with CP, GL and-RL fractional derivatives un-

der zero initial conditions as: [74].
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£{aD±αt f(t); s} = s±αF (s), (5.4)

while the analytical expressions are represented with Mittag-Leffler(ML) type func-

tions [135] introduced by Agarwal and Humbert [136] and is given mathematically

as:

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
, α, β, z ∈ C, <(α) > 0,<(β) > 0, (5.5)

where C represents the set of complex numbers and Eα,β is two parameter based

ML function.

5.2.2 Grunwald-Letnikov Based Numerical Solver for FDEs

Analytical solutions of the fractional differential equations (FDEs) were generally

determined through Laplace transformed method (5.4), these expressions are rep-

resented by commonly ML function (5.5) while the numerical solutions of the most

commonly used method is based on GL definition.

To introduced the numerical solver based on GL [137] for FDEs, Let’s consider a

general form of FDE along with initial conditions:

aD
α
t f(t) = f(y(t), t),

y(k)(0) = y
(k)
0 , k = 0, 1, 2, . . . n− 1,

where (n − 1 < α < n) , using equation (5.1), Ivo Petras [75] provided the final

recursive expression for GL based numerical solver as:

y(tk) = f(y(tk), tk)h
r −

k∑
j=v

c
(r)
j y(tk−j),

where

crj =

(
1− 1 + r

j

)
crj−1c

r
0 = 1, j = 0, 1, . . .

for tk = kh and h is the step size parameter. Further necessary details of GL

based numerical scheme can be seen in [76].
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5.3 Model Formulation of Fractional Order Stuxnet

Virus

The formulation of fractional order Stuxnet virus model (FO-SVM) is presented

here. The detail workflow diagram of the proposed FO-SVM is shown in figure 5.1.

The entire FO-SVM is segmented in to five classes; three for computer population,

i.e. susceptible S(t), infected I(t) and damaged M(t) while two for removable

storage media, i.e. susceptible storage media Us(t) and infected storage media

UI(t). Total population is represented by N(t), i.e., N(t) = S(t) + I(t) + M(t)

, while total removable devices U(t), i.e., U(t) = Us(t) + UI(t) . In rest of the

article, the variables with respective to time t, S(t), I(t), M(t), Us(t), UI(t),

N(t) and U(t) are denoted by S, I, M , Us, UI , N and U respectively. Let A1

and A2 represent the arrival of new computer nodes and removable storage media

respectively, damage rate caused to PLC’s due to virus infection is represented

by ρ , β1 is the infectious contact rate of susceptible nodes with infected nodes

during network scan and β2 denotes the infectious contact rate of removable storage

media with susceptible computer nodes, r1 and r2 are the natural removal (death)

rates of computers and removable devices from the network, respectively. The

number of nodes in Internet protocol version 4 (IPv4)is 232 and the probability

of finding susceptible nodes in IPv4 scheme is S/232. Susceptible nodes can be

infected at the rate β1SI or at β2SUI/N while the removable storage media could

be infected at rate β2UsI/N . Removable storage media is the common source of

virus spread in critical industrial air gapped networks, which are isolated from

normal networks. The removable storage devices facilitate the flow of information

to and from the networks that make them as an easy prey for intruders [80]. In

this chapter, fractional order virus model is exploited to illustrate the spread of

the virus, especially Stuxnet [138, 139] in industrial networks through removable

storage media. The flow diagram of proposed model is shown in figure 5.2 while the

governing differential equations describe the model and are given mathematically

as:

DαS = A1 −
β1SI

232
− β2SUI

N
− r1S,
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DαI =
β1SI

232
+
β2SUI
N

− ρI − r1I,

DαM = ρI − r1M, (5.6)

DαUs = A2 −
β2UsI

N
− r2Us,

DαUI =
β2UsI

N
− r2UI ,

where α ∈ [0, 1] is the order of the fractional derivatives term Dα = dα/dtα . In

case of α = 1 , the system provided in set of equation (5.6) is transformed to

standard first order model of Stuxnet virus propagation. From set of equation

(5.6) for the value of α = 1 we have
dN

dt
= A1 − r1N,

dU

dt
= A2 − r2U. (5.7)

The net rate of change of the population is given by c1 = A1− r1 and c2 = A2− r2

, and the values of these constants may be positive, zero or negative. Solving the

set of equations (5.7), we get

N(t)→ A1

r1

∆
= N∗, t→∞,

U(t)→ A2

r2

∆
= U∗, t→∞. (5.8)

The system of equations (5.6) can be written in simplified or reduced form by

incorporating the variable N and U as:

DαI =
β1(N − I −M)I

232
+
β2(N − I −M)UI

N
− ρI − r1I,

DαM = ρI − r1M, (5.9)

DαUI =
β2(U − UI)I

N
− r2UI ,

where

N(t) = N∗ + (N(0)−N∗)e−r1t,

and

U(t) = U∗ + (U(0)− U∗)e−r2t.
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Figure 5.1: Graphical overview of schematic for the proposed FO-SVM model

Using equation (5.8) in system (5.9), one may have a limit system (IMUI) as

[140, 141]:

DαI =
β1(N∗ − I −M)I

232
+
β2(N∗ − I −M)UI

N∗
− ρI − r1I,

DαM = ρI − r1M, (5.10)

DαUI =
β2(U∗ − UI)I

N∗
− r2UI .
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Figure 5.2: Schematic flow of proposed FO-SVM model

The equations in set (5.10), represented the reduced model for further investiga-

tions.

5.4 Model Analysis

In this section, stability of the model for local, as well as, global are presented

through derivation of basic reproduction number R0 for both disease free and

endemic equilibrium points.

5.4.1 Basic Reproduction Number (R0)

The basic reproduction number is defined as the average of new infection caused

by an infected individual in its infectious period and usually represented by R0.

If R0 > 1, then infection will spread rapidly in the system and if R0 < 1 then

infection will die down [142].

Reduced version of the model (5.10) has been used for the derivation of R0. The

R0 is computed on integer order model, i.e., α = 1. The essential condition for

an epidemic to occur is based on increase in the number of infected nodes with an

assumption of initially, susceptible nodes based population.
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In case of DαI > 0, we have DαUI > 0

β1(N∗ − I −M)I

232
+
β2(N∗ − I −M)UI

N∗
− ρI − r1I > 0,

and accordingly in case of DαUI > 0, we have

β2(U∗ − UI)I
N∗

− r2UI > 0.

Assuming that all new nodes in the population are susceptible at start, we may

write the above expressions as:
β1N∗I

232
+ β2N∗UI

N∗
− ρI − r1I > 0,

β2U∗I
N∗
− r2UI > 0.

Simplifying above relations, we have

β1N
∗

(ρ+ r1)232
+

β2
2U
∗

r2N∗(ρ+ r1)
> 1.

Accordingly,

R0 =
β1N

∗

232(ρ+ r1)
+

β2
2U
∗

r2N∗(ρ+ r1)
. (5.11)

The equation (5.11) represents the derived basic reproduction number of the

model.

5.4.2 Equilibria Studies

The model (5.10) has two equilibrium points; i.e., virus free and endemic equilibria

points. In case of endemic equilibrium point, infection spread in the system.

For equilibria studies, we have

DαI = 0, DαM = 0, DαUI = 0.

Virus free equilibria point for system (5.10) is K0 = (I, M , UI) = (0, 0, 0) and

endemic equilibria point is K∗ = (I∗, M∗, U∗I ) for R0 > 1.
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The model (5.10) for endemic equilibria analysis is written as:

β1(N∗ − I −M)I

232
+
β2(N∗ − I −M)UI

N∗
− ρI − r1I = 0,

ρI − r1M = 0, (5.12)

β2(U∗ − UI)I
N∗

− r2UI = 0.

Solving equations in set (5.12), we get expressions for the endemic equilibrium

point (I∗, M∗, U∗I ) as:

I∗ =

√
b2 − 4ac− b

2a
, (5.13)

M∗ =
ρ

r1

I∗, (5.14)

U∗I =
β2U

∗

β2I∗ + r2N∗
I∗, (5.15)

where

a =
(ρ+ r1)β1β2

232r1N∗
,

b =
β2(ρ+ r1)(1−R0)

N∗
+
β3

2U
∗

N∗r2

+
β1(r2)β2

2U
∗

232r1

(ρ+ r1),

c = (ρ+ r1)(1−R0)r2.

It is evident from equation (5.13) that the possibility of infection spread i.e., I∗ > 0,

is only verified for the value of R0 > 1.

5.4.3 Disease Free Equilibria

Theorem 4.1. Disease-free equilibrium (DFE) is locally asymptotically stable at

K0, if R0 < 1.

Proof. The system is locally asymptotically stable at DFE point K0 = (I, M ,

UI) = (0, 0, 0). Consider the Jacobian matrix of function f : R3 → R3 with

components:

DαI =
β1(N∗ − I −M)I

232
+
β2(N∗ − I −M)UI

N∗
− ρI − r1I,
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DαM = ρI − r1M,

DαUI =
β2(U∗ − UI)I

N∗
− r2UI .

Therefore, the Jacobian matrix at K0, DFE point for integer order model (5.10)

is given as:

DFE(K0) =


β1N∗

232
− ρ− r1 0 β2

ρ −r1 0

β2U∗

N∗
0 −r2

 . (5.16)

To find the Eigenvalues, the characteristic equation of (5.16) is

|λI −DFE(K0)| =

∣∣∣∣∣∣∣∣∣∣∣∣

λ− β1N∗

232
+ ρ+ r1 0 −β2

−ρ λ+ r1 0

−β2U∗

N∗
0 λ+ r2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

and simplify as:

(λ+ r1)

[(
λ− N∗β1

232
+ ρ+ r1

)
(λ+ r2)− β2

2U
∗

N∗

]
= 0.

While the corresponding Eigenvalues of above relation are

λ1 = −r1,[(
λ− N∗β1

232
+ ρ+ r1

)
(λ+ r2)− β2

2U
∗

N∗

]
= 0.

Simplifying the above expression for finding the values of remaining Eigenvalues

r1(λ+ r2) + ρ(λ+ r2) + λ(λ+ r2)− (λ+ r2)
N∗β1

232
− β2

2U∗

N∗
= 0,

λ2 + λ

(
r1 + r2 + ρ− N∗β1

232

)
+ r1r2 + ρr2 − r2

N∗β1

232
− β2

2U∗

N∗
= 0,

λ2

r2(ρ+ r1)
+
λ
(
r1 + r2 + ρ− N∗β1

232

)
r2(ρ+ r1)

+

(
1− N∗β1

232(ρ+ r1)
− β2

2U∗

N∗r2(ρ+ r1)

)
= 0,

λ2

r2(ρ+ r1)
+
λ

r2

(
r2

ρ+ r1

+
r1 + ρ

ρ+ r1

− N∗β1

232(ρ+ r1)

)
+ (1−R0) = 0,

rearranging the above expression
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λ2

r2(ρ+ r1)
+
λ

r2

(
r2

ρ+ r1

+ 1− N∗β1

232(ρ+ r1)

)
+ (1−R0) = 0, (5.17)

and for R0 < 1, equation (5.11) can be written as:

N∗β1

232(ρ+ r1)
< 1− β2

2U∗

N∗r2(ρ+ r1)
. (5.18)

Using the expression (5.18) in (5.17), make the coefficient positive for R0 < 1,

which show that all Eigenvalues of the system (5.17) are in a negative half plane,

so the system is asymptomatically stable for point K0 when R0 < 1. If system is

stable for the value of α = 1, it will be stable for the value of α < 1 as reported in

[63]. This completes the proof.

Theorem 4.2. If R0 < 1, then the point K0 is globally asymptomatically stable,

otherwise unstable.

Proof. Let us consider the following Lyapunov function.

L(I,M,UI) = I +
β1

233ρ
M2 +

β2

r2

UI . (5.19)

The function is always positive in R3, for R3 = (I,M,UI) and (I > 0,M >

0, UI > 0). Taking the derivative of the Lyapunov function (19) for α=1 we get

DαL (I,M,UI) = DαI +
2β1

233ρ
MDαM +

β2

r2

DαUI ,

DαL(I,M,UI) =
β1(N∗ − I −M)I

232
+
β2(N∗ − I −M)UI

N∗
− ρI − r1I +

β1MI

232

+
r1β1M

2

232ρ
+
β2

2U∗I

N∗r2

− β2
2U1I

N∗r2

− β2U1,

=

(
β1N

∗

232
+
β2

2U∗

N∗r2

− ρ− r1

)
I − β1I

2

232
− β2(M + I)UI

N∗

− r1β1M
2

232ρ
− β2

2M2UII

N∗r2

,

=

(
(ρ+ r1)

(
β1N

∗

232(ρ+ r1)
+

β2
2U∗

N∗r2(ρ+ r1)

)
− ρ− r1

)
I − β1I

2

232

− β2(M + I)UI
N∗

− r1β1M
2

232ρ
− β2

2M2UII

N∗r2

,
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= (ρ+ r1)(R0 − 1)I − β1I
2

232
− β2(M + I)UI

N∗
− r1β1M

2

232ρ
− β2

2UII

N∗r2

.

For R0 < 1, implies that DαL ≤ 0 and K0 is the only invariant set of system

(5.12). According to LaSalle Invariance Principle K0 is globally asymptotically

stable, hence this proves the theorem. Therefore, K0 equilibrium point is globally

asymptotically stable for R0 < 1. Additionally, If system is stable for the value of

α = 1 it will be stable for the value of α < 1 as reported in [63].

5.4.4 Endemic Stability

Endemic stability of equilibrium point K∗= (I∗, M∗, U∗I ) is investigated in this

section for the values of R0 > 1 and I∗ ≥ 0.

Theorem 4.3. Endemic equilibrium point K∗ is locally asymptomatically stable,

if R0 > 1.

Proof. Consider the function f : R3 → R3 with components and Jacobian matrix

for integer order model (5.10) as:

DαI = f1(I∗,M∗, U∗I ) = β1(N∗−I∗−M∗)I∗
232

+
β2(N∗−I∗−M∗)U∗I

N∗
− ρI∗ − r1I

∗,

DαM = f2(I∗,M∗, U∗I ) = ρI∗ − r1M
∗,

DαUI = f3(I∗,M∗, U∗I ) =
β2(U∗−U∗I )I∗

232
− r2U

∗
I ,

J(I∗,M∗, U∗I ) =


∂f1

∂I∗
∂f1

∂M∗
∂f1

∂U∗I
∂f2

∂I∗
∂f2

∂M∗
∂f2

∂U∗I
∂f3

∂I∗
∂f3

∂M∗
∂f3

∂U∗I

 .

The endemic equilibrium point K∗= (I∗, M∗, U∗I ) and the Jacobian matrix at the

endemic point is given below for the value of α = 1.

J(K∗) =


β1(N∗−2I∗−M∗)

232
− β2U∗I

N∗
− ρ− r1 −β1I∗

232
− β2U∗I

N∗
β2(N∗−I∗−M∗)

N∗

ρ −r1 0

β2(U∗−U∗I )

N∗
0 −β2I∗

N∗
− r2

 .

(5.20)
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Characteristic equation of (5.20) is

= |λI − J(K∗)| = 0,∣∣∣∣∣∣∣∣∣
λ− β1N∗

232
+ β1(2I∗+M∗)

232
+

β2U∗I
N∗

+ ρ+ r1
β1I∗

232
+

β2U∗I
N∗

−β2(N∗−I∗−M∗)
N∗

−ρ λ+ r1 0

−β2(U∗−U∗I )

N∗
0 λ+ β2I∗

N∗
+ r2

∣∣∣∣∣∣∣∣∣ = 0,

simplifies as:

λ3 + (b11 + b22 + b33)λ2 + (b11b22 + b11b33 + b22b33 − b12b21 − b13b31)λ (5.21)

+b11b22b33 − b12b21b33 − b13b31b22 = 0,

where

b11 = −β1N∗

232
+ β1(2I∗+M∗)

232
+

β2U∗I
N∗

+ ρ+ r1, b12 = β1I∗

232
+

β2U∗I
N∗

, b21 = −ρ, b23 = 0,

b22 = r1, b13 = −β2(N∗−I∗−M∗)
N∗

, b31 = −β2(U∗−U∗I )

N∗
, b33 = β2I∗

N∗
+ r2, b32 = 0.

To analyze the stability, we use Hurwitz criteria as reported in [143, 144] for sys-

tem (5.21). Now equating the coefficient of general characteristics equation with

(5.21), we have

b0 = 1,

b1 = b11 + b22 + b33,

b2 = b11b22 + b11b33 + b22b33 − b12b21 − b13b31,

b3 = b11b22b33 − b12b21b33 − b13b31b22.

Determinants (D1, D2 and D3) of the characteristic equation (5.21) are expressed

in Hurwitz process as:

D1 = b1 = b11 + b22 + b33,

= −β1N
∗

232
+
β1(2I∗ +M∗)

232
+
β2U

∗
I

N∗
+ ρ+ r1 + r1 +

β2I
∗

N∗
+ r2,

using the value of equation (5.11) for R0 > 1 as:
β1N

∗

232
+
β2

2U
∗

r2N∗
> ρ+ r, we have
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D1 = −β1N∗

232
+ β1(2I∗+M∗)

232
+

β2U∗I
N∗

+ β1N∗

232
+

β2
2U
∗

r2N∗
+ r1 + β2I∗

N∗
+ r2,

D1 = β1(2I∗+M∗)
232

+
β2U∗I
N∗

+
β2
2U
∗

r2N∗
+ r1 + β2I∗

N∗
+ r2,

D1 > 0,

and

D2 = b1b2 − b3b0,

D2 = (b11 + b22 + b33)(b11b22 + b11b33 + b22b33 − b12b21 − b13b31)

− b11b22b33 + b12b21b33 + b13b31b22,

= b2
11b22 + b2

11b33 + b11b22b33 − b11b12b21 − b11b13b31 + b11b
2
22 + b11b22b33

+ b2
22b33 − b22b12b21 − b22b13b31 + b11b22b33 + b11b

2
33 + b22b

2
33 − b33b12b21

− b33b13b31 − b11b22b33 + b33b12b21 + b22b13b31,

D2 = b2
11b22 + b2

11b33 + b11b
2
22 + b22b

2
33 + b11b

2
33 + b2

22b33 + 2b11b22b33 − b11b12b21

− b11b13b31 − b22b12b21 − b33b13b31.

The above expression remain positive except for −b13b31(b11 + b33), D2 is desired

to be positive for R0 > 1, we simply represent the expression as:

D2 = +veterms + (b11b33 − b13b31)(b11 + b33),

D2 = D2−1 +D2−2,

Here, D2−1 represent the positive terms in D2 while the remaining terms repre-

sented with D2−2, we have.

D2−2 = (b11b33 − b13b31)(b11 + b33),

=
{(

β1(N∗−I∗−M∗)
232

+ ρ+ r1

)
r2 −

β2
2(N∗−I∗−M∗)(U∗−U∗I )

N∗2

}
(b11 + b33),

=
{(

β1(N∗−I∗−M∗)
232

+ ρ+ r1 −
β2
2(N∗−I∗−M∗)(U∗−U∗I )

r2N∗2

)
r2

}
(b11 + b33),

=
{(

β1(N∗−I∗−M∗)
232

+ ρ+ r1 − β2
2(N∗−I∗−M∗)U∗

r2N∗2
+

β2
2(N∗−I∗−M∗)U∗I

r2N∗2

)
r2

}
(b11 + b33),

=


 β1(N∗−I∗−M∗)

232
+ ρ+ r1 − β2

2U
∗

r2N∗
+

β2
2I
∗U∗

r2N∗2
+

β2
2M
∗U∗

r2N∗2

+
β2
2(N∗−I∗−M∗)U∗I

r2N∗2

 r2

 (b11 + b33),
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for using the value of R0 > 1 and after simplification, the above expression becomes

D2−2 >


 β1(N∗ − I∗ −M∗)

232
+
β1N

∗

232
+
β2

2U
∗

r2N∗
− β2

2U
∗

r2N∗

+
β2

2I
∗U∗

r2N∗2
+
β2

2M
∗U∗

r2N∗2
+
β2

2(N∗ − I∗ −M∗)UI
∗

r2N∗2

 r2


(b11 + b33),

D2−2 >


 β1(N∗ − I∗ −M∗)

232
+
β1N

∗

232
+
β2

2I
∗U∗

r2N∗2

+
β2

2M
∗U∗

r2N∗2
+
β2

2(N∗ − I∗ −M∗)UI
∗

r2N∗2

 r2


(b11 + b33),

D2−2 > 0,

as a result

D2 > 0.

D3 = b3(b1b2 − b0b3),

D3 = b3(D2),

D3 =

b11b22b33 − b12b21b33

−b13b31b22




(b11 + b22 + b33)(b11b22 + b11b33

+b22b33 − b12b21 − b13b31)

− b11b22b33 + b12b21b33 + b13b31b22

 ,

= (b11b22b33 − b12b21b33 − b13b31b22)D2,

> (b11b33 − b13b31)b22D2,

positivity of the expression b11b33− b13b31 for R0 > 1 is already proved for the case

D2, therefore,

D3 > 0.

Thus, all the values of D1, D2 and D3 are positive, so all the Eigenvalues of the

equation (5.21) are in the left half plane for R0 > 1, then there exists an endemic

equilibrium point K∗ which is locally asymptomatically stable. This completes

the proof.
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5.5 Simulation and Results

In this section, results of numerical simulations for FO-SVM are presented to un-

derstand the dynamics of virus spread in critical network infrastructure in the pres-

ence of removable storage connectivity which may compromise the air-gap between

the networks. Numerical experimentation is conducted for the designed FO-SVM

as given in equation (5.6) for different variation of parameters and initial start-up

scenarios as mentioned in tables 5.1 and 5.2 respectively. The dynamical behavior

of the fractional order (FO) model is studied by varying the non-integer order

derivative α using scientific computer programming language MATLAB R2015b

64bit. Most FO differential system lacks exact analytical solutions, so numerical

solver based on Grunwald-Letnikov (GL) procedure as described in section 2 is

exploited for approximate solution of the model. To establish the working accu-

racy of GL fractional numerical method, results of GL method is compared with

RK method for integer order scenario. Error analysis are shown in error plots

which establish the working accuracy of the method. The security firms includ-

ing Symantec tracked 100,000 infected computers as of September 29, 2010 in the

world. Additionally, available real data is used to validate the accuracy and con-

vergence of the model for Stuxnet virus spread. The virus infects approximately

100,000 users from 155 different countries and 63% were in Iran only. The number

of hosts that lost functionality (hardware connected to these hosts was damaged

due to sudden increase in frequency up to 1410 Hz then decreased to 2 Hz and

then again increased to 1064 Hz in spite of normal working range of 807 Hz to 1210

Hz) due to virus attack. Virus operated the machines connected with the hosts at

extreme range of frequencies dictated by Stuxnet and caused a physical damage

of 1500 centrifuge machines (approximately 1200 in Iran only). Approximately

3,280 unique samples and variants of Stuxnet virus were recorded by Symantec

and other security corporations [120, 122, 222].

In order to establish the working accuracy of GL based numerical solvers,

results of the scheme are compared with state of the art numerical solver based

on Runge-Kutta (RK) method for integer order case of the model. The results
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Table 5.1: Parameters variation in the simulation of the FO-SVM model.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

A1 0.042 0.042 40 100 5600 5600 5600 412 5600

A2 0.042 0.042 45.7 60 412 412 412 5600 412

β1 0.6 0.4 0.385 0.4 0.4 0.4 0.745 0.4 0.4

β2 0.6 0.8 0.795 0.635 0.745 0.745 0.4 0.745 0.004

ρ 0.00265 0.0051 0.001 0.009 0.021 0.8 0.021 0.021 0.021

r1 0.1126 0.19 0.0804 0.1598 0.1276 0.0804 0.1276 0.1276 0.1276

r2 0.0088 0.027 0.027 0.027 0.0131 0.0131 0.0131 0.0131 0.0131

Table 5.2: Initial values of the parameter used in simulation of the model.

Variables S I M US UI

Case 1 2.3 ∗ 106 10000 10 50000 10000

Case 2 2.3 ∗ 106 30000 10 50000 10000

Case 3 2.3 ∗ 106 30000 10 30000 10000

Case 4-9 2.3 ∗ 106 30000 10 30000 5000

are determined for nine cases of integer order model (5.6) by GL based computing

technique for inputs t ∈ [0, 60] with step size h = 0.001 (time t taken in months).

Numerical solutions of the model on the same inputs are also calculated by the RK

method for each variation. Figure 5.3 highlights the model behavior with Stuxnet

virus real world data. FO-SVM model results shown in figure 5.3 is calculated

using RK method for assuming the value of fractional order α = 1. In figure 5.3

number of hosts are plotted versus time in months which shows the number of

infected hosts due to a Stuxnet virus global attack. Number of infected hosts are

96,760 (real infected hosts were 100,000) and number of damaged hosts are 1500

(real damaged hosts were 1500) in 23 months time which shows model accuracy

for real world virus data as shown in figure 5.3 with red and blue dots respectively.
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Figure 5.3: Simulation of Stuxnet virus spread with available data having
parameters A1=0.042, A2=0.042, β1=0.366, β2=0.6, ρ=0.00265, r1=0.1126,

r2=0.0088, S=2.3 ∗ 106, I=10000, M=10, Us=50000, UI=10000.

In this case total number of removable storage media are assumed to be 60,000

and due to increase in the number of infected hosts (96,760 after 23 months), in-

fection in removable storage media increases. The number of infected removable

storage devices are 43,740 in 23 months. Decrease in the number of infected hosts

are observed after 23 months due to availability of remedial techniques, natural

isolation from networks and anti-virus signature update for the Stuxnet virus.

In figure 5.4, comparisons of results of both RK numerical solver and GL based

method are presented for susceptible hosts S in nine cases. The error analysis

based on absolute difference between two approaches are also plotted in figure 5.4

to assess the closeness. Results shows a matching of both solutions up to three

decimal place of accuracy. The small values of errors in these plots show that

results of GL method are in good agreement with standard RK numerical tech-

nique, which establishes the working accuracy of the GL based solver. In figures

5.5 and 5.6, comparison of RK method with GL method are presented for infected

nodes I, damaged node M , susceptible removable storage media Us and infected
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Figure 5.4: Comparison of solutions for GL solver from RK method in case
of susceptible S hosts; a and b for cases 2 to 4, c and d for cases 5 to 7 while e

and f for cases 8 to 10.

removable storage media UI respectively for nine cases of the model. These nine

cases also explain behavior of virus spread in different scenarios. Considering the

figures 5.4-5.6 and the different cases simulated, we have the following comments

to make. Case 1 shows the behaviour of model (5.6) by increasing the value of

infectious contact rate β1 from 36.6% to 60% (value of β1 in figure 5.3 is 36.6%).
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Figure 5.5: Comparison of solutions for GL solver from RK method in case
of infected hosts I and damaged hosts M ; a and b for cases 1 to 3, c and d for

cases 4 to 6 while e and f for cases 7 to 9.

It is observed that number of infected hosts in 24 months are 96,760 as shown

in figure 5.5a (in figure 5.3, number of infected hosts in 24 months are 96,270)

which shows a slight increase in the number of infected hosts. In case 2, num-

ber of initial infected hosts are assumed to be 30,000. Increasing the infectious
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Figure 5.6: Comparison of solutions for GL solver from RK method in case
of susceptible and infected removable storage media; a and b for cases 1 to 3, c

and d for cases 4 to 6 while e and f for cases 7 to 9.

contact rate of removable storage media (in case 2) reduces the number of suscep-

tible hosts rapidly as compared to case 1 (figure 5.4a). However, the number of

infected hosts are reduced (figure 5.5a) due to increase in the natural removal rate

of hosts and removable storage media r1 and r2 (hosts are removed to save from
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the Stuxnet attack). In case 3, we reduce the damage rate and the quantity of

initial susceptible removable storage media which reduces the number of infected

removable storage media (figure 5.6b) and increases the number of infected hosts

(figure 5.5a). In case 4, FO-SVM model dynamics are observed by increasing the

arrival rate of new nodes and the arrival rate of new removable storage devices as

mentioned in tables 5.1 and 5.2. Results shows that even increasing the arrival

rate of new hosts and arrival rate of new removable storage media will not spread

the infection faster without the presence of a sufficient number of infected remov-

able storage devices as shown in figure 5.5c. In cases 5 and 6, we further increase

the values of arrival rate of new nodes as well as removable storage devices for in-

depth behavior analysis of the model. Both cases have similar parameters except

case 6 which represents higher damage rate (especially, for zero-day vulnerability

or for a new virus attack) that increases the quantity of damaged computers and

reduces the number of infected computers (removed due to high damage rate) in

the networks as compared to case 5. Case 5 shows high number of infected nodes

(figure 5.5c) because Stuxnet virus only destroys the machines which have specific

hardware (Siemens specific PLCs) and remains dormant till it finds the target.

In case 7 values of β1 and β2 of case 6 are swapped to observe the behavior of

the model. In case 7 value of β1 is increased and the value of β2 is decreased as

compared to case 6. It is observed that increasing the infectious contact rate β1

of FO-SVM model does not increase the infection as much (figure 5.5e). However,

increasing the value of β2 (the infectious contact rate of removable storage media

with susceptible computer nodes) and A2 (the arrival of removable storage me-

dia) in case 8, will increase the infection in the network. This outlines the role of

removable storage media in transferring virus in the air-gapped networks (figure

5.5e). In case 9, value of infectious contact rate of removable storage media with

susceptible computer nodes β2 is reduced which results in the reduction of dam-

aged nodes (figure 5.5f), infected nodes (figure 5.5e) and increase in the number

of susceptible storage devices (figure 5.6e). Case 9 further elaborates the scenario

already presented in case 8.

The derivative order α = 1 has been presented in the figures 5.4,5.5 and
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Figure 5.7: Dynamics of the susceptible S, infected I and damaged M com-
puters for cases 1 to 3 of FO-SVM for 60-month time t by taking different

fractional orders.

5.6. The effect of change in fractional order α has been presented in figures 5.7-

5.11. Detailed analysis of FO-SVM model is conducted by changing fractional

order α in the system (5.6), such that one may observe fast transients as well as

slow evolutions in the dynamics of the model. The fractional order solution of

the FO-SVM model for different values of the fractional order α are solved using

GL based solver. The solutions are determined for nine cases of FO-SVM by GL

based numerical procedure for different fractional orders, i.e., α = [0.5, 0.75, 0.8,
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Figure 5.8: Dynamics of the susceptible S, infected I and damaged M com-
puters for cases 4 to 6 of FO-SVM for 60-month time t by taking different

fractional orders.

0.85, 0.9, 0.95, 1], for the inputs t ∈ [0, 60] with step size h = 0.001. Results

for the dynamics of the FO-SVM model in terms of susceptible S, infected I and

damaged M computers are plotted in figures 5.7,5.8 and 5.9 for cases 1-3, 4-6 and

7-9 respectively. Susceptible removable storage media Us and infected removable

storage media UI are plotted in figures 5.10 and 5.11 for cases 1-4 and 5-9 respec-

tively for different values of the fractional order α.

In figure 5.7 number of susceptible, infected and damaged hosts are plotted versus
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Figure 5.9: Dynamics of the susceptible S, infected I and damaged M com-
puters for cases 6 to 9 of FO-SVM for 60-month time t by taking different

fractional orders.

time for cases 1-3 with the value of α =[0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]. Con-

sistent pattern is observed in the evolution of curves with the value of order α.

The value of infected hosts in case 1 with α = 1 is 96,760, and for α = 0.95, the

value of infected hosts are approximately 56,000 for t = 24 months as shown in

figure 5.7b. In figure 5.7c, the number of damaged hosts (hosts that were con-

nected with specific models of Siemens PLCs) for the value of α = 0.95 are 1000

for t = 30. Adjusting the value of α to 0.98 may adjust the number of
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Figure 5.10: Dynamics of the susceptible removable storage media Us and
infected removable storage media UI for 60-month time t, for cases 1 to 5 of

FO-SVM by taking different fractional orders.

damaged hosts to 1500, which matches with the real published data of

the Stuxnet virus. This illustrate the controllability feature of α for tuning the

model. Despite the rapid spread-ability of Stuxnet virus it causes little or no harm

to the systems that don’t have specific hardware. Figures 5.8 and 5.9 highlight the

results for cases 4-6 and 7-9 respectively for variation of fractional order α, which

shows that variation in α gives smooth variations in the dynamics. For α = 0.1 we
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Figure 5.11: Dynamics of the susceptible removable storage media Us and
infected removable storage media UI for 60-month time t, for cases 5 to 9 of

FO-SVM by taking different fractional orders.

have the slowest evolution. In figures 5.10 and 5.11 number of susceptible storage

media and infected storage media are plotted for case 1-9 against time for different

values of fractional order α =[0.5, 0.75, 0.8, 0.85, 0.9, 0.95, 1]. It is observed that

tuning the values of α tunes the dynamics of transients as shown in figure 5.10a.

The value of susceptible storage media for t = 1 and α = 0.95 is 35,000 which

reduces to 10,000 for α = 0.8. For the value of α = 0.1, slow change is being

observed in the dynamics. Increasing the value of α increases the rate of change
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of the variables. Fractional version of the Stuxnet virus model is considered for

further virus analysis. The results of the fractional variant are compared with re-

sults of the standard integer order derivative model. The fractional model is novel

and to establish the working accuracy of GL fractional numerical method, results

of GL method are also compared with RK method for integer order scenario. Er-

ror analysis are shown in error plots which establish the working accuracy of the

method.

5.6 Chapter Summary

A detailed analysis of novel design of fractional order Stuxnet virus model is pre-

sented with richer dynamics for the transmission of virus spread in an isolated

critical network through removable storage media. The fractional order Stuxnet

virus based mathematical models are found at least as stable as integer order mod-

els. The value of fractional order α of proposed fractional Stuxnet virus model

control the solution reachability toward stead state point more effectively. Addi-

tionally, the fractional order system of Stuxnet virus model can tackle the different

responses viably, including super slow evolutions and very fast transients, these

responses are found in system having long memory characteristics. It is observed

that changing the value of α provide a degree of freedom for more general models.

More flexibility to be tuned / adjusted to predict new upcoming viruses / trojans

and their spread dynamics. Tacking the value of α = 0.98 may adjust the number

of damaged hosts to 1500 in case 1 which matches the number of damaged caused

by Stuxnet virus. The process of transformation of classical model in to a frac-

tional model is very sensitive to the value of order of differentiation α and can be

converted to a simple SIR model if we choose the values of infectious contact rate

β2 = 0. Theoretical analysis of the model capturing the Stuxnet virus spreading

characteristics is determined by mathematical derivation of the basic reproduction

number R0 for integer order scenarios. Disease free and endemic equilibrium points

of the model is globally asymptotically stable for R0 < 1 and R0 > 1, respectively.



Chapter 6

Vulnerabilities Analysis of

Hardware Implants

This chapter presents the design of an epidemic model that portray the exploita-

tion of hardware bug implanted through embedded tiny chip based mini-computer

within another computer such as Intel management engine (ME). The succeeding

chapter will also present the fractional variation of the proposed model.

6.1 Introduction

A bug in a software is an error, failure, flaw, that can produces an unenviable

results, behave in an undesirable way or might allow malicious user to bypass re-

striction to access the privileged control of the system [159]. Bugs are not viruses

but they may allow the installation of backdoor, malware and compromise the

whole system, e.g., a patient was died in a radiation therapy in 1980 due to a bug

in Therac-25 and a Chinook helicopter was crashed in 1994 due to a code bug in

its control computer [161]. Theoretical analysis of the compromised systems are

carried out by utilizing the strength of epidemiological modeling of threat prop-

agation [162, 163]. The control strategies of these compromised nodes are very

difficult because they implant backdoors, install malicious utilities, gain admin

108
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rights, work as a legitimate program or infect with viruses. Increase in the use

of Internet and advancement in fabrication technologies provides an opportunity

to implant hardware backdoors which poses a great challenge to the security of

system connected with critical infrastructures. Geopolitical tension increases the

frequency of attack for compromising enemy country systems, installation of back-

doors and sabotaging the critical infrastructure of the opponent [165]. Hardware

based implants are common in these days gadgets that would do malicious stuff,

subvert the system and possibly control the system to execute the malicious intent.

A fully capable computer tiny chip is a size of a pencil point that can compromise

the whole infrastructure. Detection of hardware based implants are very difficult

which also provides an opportunity for researcher to find a reasonable solution

[166–168].

Mathematical model used for the compromised hardware is an effective way to

analyze the spread of the malicious code in the infrastructure of any organization.

Theoretical analysis of the malicious codes can be carried out by the competency

of epidemiology modelling of virus propagation dynamics [131, 174]. The advance-

ment in technologies creates several challenges to the security of the infrastructure

of the nations in the presence of vulnerability and the development of smart viruses.

[1]. The global median dwell time of attackers are decreasing and targeting prey

become easy due to bugged hardware. Therefore, detail dynamical analysis of

hardware implants and their devastation pattern with control mechanisms looks

promising domain to be investigated by the research community. In this chapter, a

bugged, compromised and patched (BCP) mathematical model is presented to an-

alyze the spread of the virus and exploitation of system resources in compromised

hardware. The contributions of the proposed BCP model are briefly narrated as

follows:

1. A novel BCP based epidemic mathematical model is designed for embedded

tiny chip based mini-computer infiltration within another computer type vul-

nerability.

2. Disease free and endemic equilibria measures are used for theoretical analysis

of the BCP epidemic model by derivation of basic reproduction number as well
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as global and local stability conditions.

3. Strength of numerical solver based on Runge-Kutta methods is exploited for

numerical analysis of BCP model by varying infectious contact rate, loss of

immunity rate and efficacy of patching.

4. Results of numerical experimentations for variation of different parameters

shows interesting results.

6.2 Model Formulation of BCP System

Mathematical formulation of BCP model is presented here, the entire BCP model

is divided into three classes of computer nodes, i.e, bugged B(t), compromised I(t)

and patched P (t). Total population is represented as N(t) = B(t) + C(t) + P (t).

In rest of the chapter, the variables with respect to time t, i.e., B(t), C(t), P (t) and

N(t) are denoted by B,C, P and N , respectively. Let A represents the arrival of

new bugged computer nodes, δ represents the loss of immunity, β is the infectious

contact rate of bugged nodes with compromised nodes, η represents the inefficiency

of patching, γ is the rate at which compromised individuals become patched and

d is the natural death rate. After the implant of tiny spy hardware during man-

ufacturing or in transit, the targeted hardware becomes bugged. Bugged nodes

have inbuilt holes that can be easily exploited by installing backdoors which can

ultimately infect or compromise the whole infrastructure or network. The term

βB(t)C(t)
N(t)

shows that bugged nodes interact with compromised nodes and the prob-

ability of becoming compromised also depends on infectious contact rate β. The

efficacy of patching is shown in the expression δβP (t)C(t)
N(t)

which represents the inter-

action of patched nodes with compromised nodes and the probability of compro-

mising the patched nodes depends on the value of δ and β. Due to the diversity

of attacking pattern, patching efficiency δ gains pivotal role in system protection.

Understanding of bug node behavior is crucial for manipulation of devastation and

control strategy. Compromised nodes are more vulnerable because they offer full

control of the system as compare to partial infection.

In this chapter, BCP model is exploited to illustrate the spread of infection in
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the network through bugged nodes. The schematic workflow of proposed scheme

in terms of process block structures and flow diagram of proposed BCP model

is shown in figures 6.1 and 6.2 respectively. The governing system of differential

equations describe the model dynamics, detail of the model equations are given

below:

dB

dt
= A− βB(t)C(t)

N(t)
+ ξP (t)− dB(t),

dC

dt
=
βB(t)C(t)

N(t)
+
δβP (t)C(t)

N(t)
− γC(t)− dC(t), (6.1)

dP

dt
= γC(t)− δβP (t)C(t)

N(t)
− ξP (t)− dP (t),

from set of equation (6.1) we have

dN

dt
= A− dN. (6.2)

The net rate of change of the population is given by c = A− d and its values may

be positive, zero or negative. The system of equations (6.1) can be reduced by

incorporating the variable N and P as:

dC

dt
=
β(N − P − C)C

N
− δβPC

N
− γC − dC, (6.3)

dP

dt
= γC − δβPC

N
− ξP − dP.

The equations in set (6.3), represent the reduced order model for further investi-

gations.

6.3 Model Theoretical Analysis

In this section, analysis of BCP model for local and global stability are presented

through basic reproduction number R0 for both disease free and endemic equilib-

rium points.
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Figure 6.1: Graphical overview of schematic for the proposed BCP model

6.3.1 Basic Reproduction Number (R0)

The basic reproduction number is defined as the average of new infection caused

by an infected individual in its infectious period and usually represented by R0.

If R0 > 1, then infection will spread rapidly in the system and if R0 < 1 then

infection will die down [181].
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Figure 6.2: Schematic flow of proposed BCP model

Reduced version of the model (6.3) has been used for the derivation of R0. The

essential condition for an epidemic to occur, is based on increase in the number of

infected nodes with an assumption that initially all populations are susceptible.

In case of dC
dt
> 0, we have

βBC

N
− δβ(N −B − C)C

N
− γC − dC > 0.

Assuming that all new nodes in the populations are initially susceptible, we may

write the above expression as:

βBC
N
− δβ(N−B−C)C

N
− γC − dC > 0,

βB
N
− δβ(N−B−C)

N
> γ + d.

Simplifying above relation, we have

βB
N

+ δβN
N
− δβB

N
> γ + d,

β > γ + d,

therefore,
β

γ + d
> 1,

R0 =
β

γ + d
. (6.4)

Equation (6.4) represents the model derived basic reproduction number.
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6.3.2 Equilibria Studies

The BCP model (6.3) has two equilibrium points; i.e., virus free and endemic

equilibria points. In disease free environment, no infection spreads while in case

of endemic equilibrium, infection spreads in the system.

In equilibria studies, we have

dC

dt
= 0,

dP

dt
= 0.

So, virus free equilibrium point for system (6.3) is K0 = (C,P ) = (0, 0) and

endemic equilibrium point is K∗ = (C∗, P ∗) for R0 > 1.

The model (6.3) for endemic equilibrium analysis is written as:

β(N − P − C)C

N
+
δβPC

N
− γC − dC = 0, (6.5)

γC − δβPC

N
− ξP − dP = 0.

Solving equations (6.5) for endemic equilibrium point, we get the value of endemic

point (C∗, P∗), detail is avaiable in appendix (??)

C∗ =

√
b2 − 4ac− b

2a
,

P ∗ =
1
R0

+ C∗ − 1

δ − 1
. (6.6)

where

a = δβ b = δβ( 1
R0
− 1) + ξ + d− δγ + γ c = ( 1

R0
− 1)(ξ + d).

It is evident from equation (6.6) that the value of C∗ > 0 is only possible, if the

value of R0 > 1.

6.3.3 Disease Free Equilibria

Theorem 5.1 Disease-free equilibrium (DFE) point K0 is locally asymptotically

stable for R0 < 1.
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Proof. The system is locally asymptotically stable at DFE point K0 = (C,P ) =

(0, 0). Consider the Jacobian matrix of function f : R2 → R2 with components:

dC

dt
= f1(C,P ) =

β(N − P − C)C

N
− δβPC

N
− γC − dC,

dP

dt
= f2(C,P ) = γC − δβPC

N
− ξP − dP.

The Jacobian matrix at disease free equilibrium point K0 = (C,P ) is given below.

J(C,P ) =

 ∂f1
∂C

∂f1
∂P

∂f2
∂C

∂f2
∂P

 .

Therefore, the Jacobian matrix at K0, DFE point for reduced order model (6.3)

is given as:

DFE(K0) =

 β − γ − d 0

γ −ξ − d

 . (6.7)

To find the Eigenvalues, the characteristic equation of (6.7) is

|λI −DFE(K0)| =

∣∣∣∣∣∣ λ− β + γ + d 0

−γ λ+ ξ + d

∣∣∣∣∣∣ = 0,

which simplifies as:

(λ− β + γ + d)(λ+ ξ + d) = 0,

λ2 + λ(ξ + d− β + γ + d) + (ξγ + γd+ ξd+ d2 − βξ − βd) = 0,

λ2 + (γ + d)λ
[

ξ
γ+d

+ d
γ+d
− β

γ+d
+ 1
]

+ γ(ξ + d) + d(ξ + d)− β(ξ + d) = 0,

λ2 + (γ + d)λ
[

ξ
γ+d

+ d
γ+d
−R0 + 1

]
+ (ξ + d)(γ + d− β) = 0,

further simplifying with R0

λ2 + (γ + d)λ

[
ξ

γ + d
+

d

γ + d
+ 1−R0

]
+ (ξ + d)(γ + d)(1−R0) = 0.

All the coefficients in the above equation are positive for the value of R0 < 1, which

shows that all Eigenvalues are in left half plane, so the system is asymptotically

stable for point K0 when R0 < 1, which proves the stability of the system.



Vulnerabilities Analysis of Hardware Implants 116

Theorem 5.2 If R0 < 1, then the point K0 is globally asymptomatically stable,

otherwise unstable.

Proof. Let us consider the following Lyapunov function.

L(B,C, P ) = K(B + P + C). (6.8)

Disease free equilibrium point for equation (6.1) is (B,C, P ) = (A
d
, 0, 0). The

function is always positive in R3, R3 = (B, C, P ) and (B > 0, C > 0, P > 0).

Taking the derivative of the Lyapunov function (6.8), we get

•
L (B,C, P ) = K(

•
B+

•
C +

•
P ),

•
L (B,C, P ) = K[A− βBC

N
+ ξP − dB + βBC

N
+ δβPC

N
− γC − dC

+γC − δβPC
N
− ξP − dP ],

•
L (B,C, P ) = K[A− dB − dP − dC],
•
L (B,C, P ) = −Kd[C + P ].

For R0 < 1, implies that
•
L(t) ≤ 0 and K0 is the only invariant set of the sys-

tem (6.1) for
•
L(t) = 0. According to LaSalle Invariance Principle K0 is globally

asymptotically stable. This completes the theorem proof.

6.3.4 Endemic Stability

In this section endemic stability of the reduced order model at endemic equilibrium

point K∗ = (C∗, P ∗), for R0 > 1 and C∗ ≥ 0 is investigated.

Theorem 5.3 Point K∗ is locally asymptomatically stable for R0 > 1.

Proof. Consider the function f : R2 → R2 with components and Jacobian matrix

for reduced order model (6.5) as:

dC

dt
= f1(C∗, P ∗) =

β(N − P ∗ − C∗)C
N

∗

− δβP ∗C∗

N
− γC∗ − dC∗,

dP

dt
= f2(C∗, P ∗) = γC∗ − δβP ∗C∗

N
− ξP ∗ − dP ∗.
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Jacobian matrix at endemic equilibrium point K∗ = (C∗, P ∗) is given below.

J(C∗, P ∗) =


∂f1

∂C∗
∂f1

∂P ∗

∂f2

∂C∗
∂f2

∂P ∗

 ,

J(K∗) =

 β − (γ + d)− β(P ∗ + 2C∗)

N
− δβP ∗

N
−βC

∗

N
− δβC∗

N

γ − δβP ∗

N
− δβC∗

N
− ξ − d

 . (6.9)

Characteristic equation of (6.9) is

|λI − J(K∗)| =

∣∣∣∣∣∣ λ− β + (γ + d) + β(P ∗+2C∗)
N

+ δβP ∗

N
βC∗

N
+ δβC∗

N

−γ + δβP ∗

N
λ+ δβC∗

N
+ ξ + d

∣∣∣∣∣∣ = 0,

which simplifies as:

λ2 + (b11 + b22)λ+ (b11b22 − b12b21) = 0, (6.10)

where

b11 = −β + (γ + d) + β(P ∗+2C∗)
N

+ δβP ∗

N
,

b12 = −βC∗

N
− δβC∗

N
, b21 = γ − δβP ∗

N
,

b22 = δβC∗

N
+ ξ + d.

To analyze the stability of system (6.3), we use the Hurwitz criteria as reported

in [143, 144]. To overview the Hurwitz criteria, let’s consider the general charac-

teristic equation of the system.

b0s
n + b1s

n−1 + b2s
n−2 + b3s

n−3 · · · bn−1s
1 + bn = 0,

with n determinants in the nth order equation and the first two determinants, i.e.,

D1 and D2 of the said characteristic equation are as:

D1 = b1,

D2 =

∣∣∣∣∣∣ b1 b3

b0 b2

∣∣∣∣∣∣ = b1b2 − b3b0.
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Now equating the coefficients of general characteristics equation with equation

(6.10), we have

b0 = 1,

b1 = b11 + b22,

b2 = b11b22 − b12b21.

Determinants (D1 and D2) of the characteristic equation (6.10) are expressed in

Hurwitz process as:

D1 = b1 = b11 + b22,

D1 =
(
−β + γ + d+ β(P ∗+2C∗)

N
− δβP ∗

N
δβC∗

N
+ ξ + d

)
,

D1 = β
[
−1 + 1

R0
+ P ∗

N
(1− δ) + C∗

N
(2 + δ) + ξ+d

β

]
.

Simplifying the above expression, we get

D1 = β

[
−1 + 1

R0
−

1
R0

+C∗−1

δ−1
(δ − 1) + C∗(2 + δ) + ξ+d

β

]
,

D1 = β
[
−C∗ + C∗(2 + δ) + ξ+d

β

]
,

D1 = β
[
C∗(1 + δ) + ξ+d

β

]
,

where

C∗ =

√
b2 − 4ac− b

2a
, P ∗ =

1
R0

+ C∗ − 1

δ − 1
,

thus

D1 > 0.

Solving determinant D2:

D2 = b1b2 − b3b0,

D2 = b1b2 = (b11 + b22)(b11b22 − b12b21),

D2 = D1(b11b22 − b12b21).

D1 is positive, so we neglect it

D2 = b11b22 − b12b21,

D2 =
(
−β + (γ + d) + β(P ∗+2C∗)

N
− δβP ∗

N

) (
δβC∗

N
+ ξ + d

)
−
(
βC∗

N
− δβC∗

N

) (
γ − δβP ∗

N

)
,
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D2 = −γβC∗

N
+ δβ2P ∗C∗

N2 + γβC∗

N
+ δ2β2P ∗C∗

N2 + (γ+d)γβC∗

N
+ (γ + d)(ξ + d)

+ δβ2C∗(P ∗+2C∗)
N2 + (ξ + d)β(P ∗+2C∗)

N
− δβ2C∗

N
− β(ξ + d)

− δ2β2P ∗C∗

N2 − γβC∗

N
(ξ + d).

Simplifying the above expression, we get

D2 = −γβC∗

N
+ δβ2P ∗C∗

N2 + dδβC∗

N
+ δβ2P ∗C∗

N
+ 2δβ2C∗2

N
+ (ξ + d)β2C∗

N

− δβ2C∗

N
− β(ξ + d),

D2 = γ + d

 −γC∗R0

N
+ δβP ∗C∗R0

N2 + dδC∗R0

N
+ δβP ∗C∗R0 + 2δβC∗2R0

N

+R0(ξ + d)β2C∗

N
− δβR0C∗

N
−R0(ξ + d)

 ,
D2 = β

 −γC∗

N
+ δβP ∗C∗

N2 + dδC∗

N
+ δβP ∗C∗

N
+ 2δβC∗2

N
+ (ξ + d)β2C∗

N

− δβC∗

N
− (ξ + d)

 ,
D2 = β

[
−γC∗

N
+ δβP ∗C∗

N2 + dδC∗

N
+ δβP ∗C∗

N
+ (2C∗ − 1)(δβC∗ + ξ + d)

]
,

D2 = β
[
C∗(δβP ∗−γ)

N
+ δβP ∗C∗

N2 + dδC∗

N
+ (2C∗ − 1)(δβC∗ + ξ + d)

]
.

For R0 > 1, compromised nodes increase and the value of D2 becomes positive,

therefore D2 > 0. Thus all the values of D1 and D2 are positive, so all the

Eigenvalues of the equation (6.10) are in the left half plane for R0 > 1. Thus there

exists an endemic equilibrium point K∗ which is locally asymptomatically stable.

This completes the proof.

6.4 Simulation and Results

Numerical simulations are performed to understand the behavior of the BCP model

which may help us to devise controlling mechanisms and eradication strategies.

System of equations (6.1) are used in the simulation of the designed BCP model.

Numerical simulations for six different cases are studied with variations of parame-

ters and initial thresholds as mentioned in table 6.1. Dynamics of the BCP model

is plotted using the well-known Runge-Kutta (RK) method using WOLFRAM

MATHEMATICA 12 on 64 bit windows 10 platform and result of the simulations

are shown in figure 6.3.

In case 1, figure 6.3a shows that at start of vulnerability when a tiny chip is
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implanted in the hardware, limited knowledge about particular hardware vulner-

ability is present and the exploitation of the hardware is also less. Hence, the

number of Compromised nodes are lesser in number and same trend is also ob-

served in Patched nodes (due to new vulnerability, patches are unavailable). In

case 2, figure 6.3b slight increase in the infectious contact rate β from 1% to 1.45%

causes increase in the number of Compromised nodes. The number of Compro-

mised nodes are 15 in 42 months and in case 1, number of Compromised nodes are

2 in 42 months. In case 3, figure 6.3c all parameter values of case 1 are retained

except the value of δ which represents the loss of immunity. The value of δ in case

1 is 34.8% but increasing the value of δ in case 3, causes increase in the number

of Compromised nodes i.e., t = 60.11, B = 13.92, C = 13.92, P = 3.85. Case 4

figure 6.3d illustrates the behavior of the BCP model by changing the parameter ξ

that represents the inefficiency of patching and γ that represent the rate at which

Compromised nodes becomes patched. Reducing the value of ξ and γ reduces the

number of Bugged nodes and increases the number of Compromised nodes. De-

creasing the value of ξ from 12.6% to 0.5% decreases the number of Bugged nodes

due to inefficient patching. Reducing the value of γ from 8.4% to 0.5% increases

the number of Compromised nodes which highlights the fact that efficient patching

controls the number of Bugged nodes. Increasing the value of γ and decreasing the

value of ξ reduces the number of Compromised nodes and increases the number of

Patched nodes as shown in figure 6.3f for case 6. Case 5 (figure 6.3e) analyzes the

variation of parameter γ which is the rate at which Compromised nodes become

patched. Increasing the values of γ from 0.5% to 27.4% reduces the number of

Compromised nodes and increases the number of Patched nodes. This shows that

the hardware bug is now known and effective patching of the bug is also available.

Increasing the values of γ creates a slight oscillation after time t = 38 in case 6 as

shown in figure 6.3f.

Phase portrait of six cases are also shown in figure 6.4 (a) to (f) which illustrates

the complete behavior of the BCP model for cases 1-6 respectively. Results depict

that limiting the infectious contact rate β will reduce the number of Compromised

nodes. Limiting the number of Bugged nodes controls the spread of Compromised
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Table 6.1: Parameters variation in the simulation of the BCP model.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
A 1.665 1.665 1.665 1.665 1.665 2
β 0.01 0.0145 0.01 0.0145 0.0424 0.0412
δ 0.348 0.348 0.716 0.348 0.348 0.005
γ 0.084 0.084 0.084 0.005 0.274 0.72
ξ 0.126 0.126 0.126 0.005 0.005 0.005
d 0.05 0.05 0.05 0.05 0.05 0.05

nodes which ultimately controls the spread of infection. Phase portrait of figure

6.4a shows that due to nonavailability of information regarding particular hard-

ware implants, number of Bugged nodes increases. After 30 months time hardware

exploitation started which increases the number of Compromised nodes. Patch de-

velopment is also started after the availability of a knowledge about a particular

hardware bug. In case 2 small increase in the infectious contact rate β as compared

to case 1, increases the number of Compromised nodes as shown in figure 6.4b. In

case 3 increasing the value of δ (loss of patching immunity) as compared to case 1,

increases the number of Bugged nodes and later (after 40 months) also increases

the number of Compromised nodes as shown in phase portrait figure 6.4c. Phase

portrait in figure 6.4e is forming a loop which shows that both Compromised and

Patched nodes curves extend parallel after the number of Bugged nodes reaches

the limit of 20. Oscillatory behavior form a spiral shape in the phase portrait of

case 6 after t = 35 as shown in figure 6.4f.

6.5 Chapter Summary

In this chapter, BCP model is designed to investigate the spread of malicious code

through implanted tiny hardware in a legitimate system. Theoretical analysis of

BCP mathematical model for disease free and endemic equilibria points are carried

out based on basic reproduction number R0. Global stability of the model is proved

by using Lyapunov functions. It is observed that controlling the infectious contact

rate β controls the number of Compromised nodes. Furthermore, controlling the

number of Bugged nodes also controls the number of Compromised nodes.
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Figure 6.3: Solutions of BCP model using RK method for case1 to case6 (a-f)
respectively.
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Figure 6.4: Phase portrait of bugged, compromised and patched nodes for
cases 1 to 6 (a-f) respectively of BCP model.



Chapter 7

Fractional Analysis of Hardware

Implants Vulnerabilities

7.1 Introduction

This chapter describes the fractional version of the epidemic model that portrays

the exploitation of hardware through embedded tiny chip based implants within

another computer.The firmware level bugs allow escalation of privileges and remote

execution of code beneath the operating system for infiltration or completely in-

tervention with the computer. Mathematical modeling of compromised hardware

provide a platform for profound understanding of the problem and give us a path

to devise flexible, stable and robust control strategies. The state of many biologi-

cal systems at a given time depends on the states of the system at some previous

times. Fractional derivatives are a natural method for solution of biological models

arising in various disciplines. According to computer crime and security survey

74.3% of total financial loss related to the information incidents are caused due to

hardware theft [98]. Trend of hardware implants in future may further increases.

Defending against hardware implants is extremely difficult. Despite the lack of

supporting evidence and refuting of reports of hardware implants, concerns in the

security industry exists that such implants are used by state agencies and advance

124
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state actors. NSA’s digital catalogue reveals several sophisticated tools of hard-

ware espionage, which was exposed in Der Spiegel, the German weekly newspaper,

these tools were used to conduct espionage operation around the world [85] (Fig

7.1). Physical hardware implant attacks have become easier to conduct and little

defense against these implants is available till date. Hardware implants are com-

mon due to simplified design and cost effectiveness [86]. Utilization of fractional

Figure 7.1: Digital tools of espionage through hardware implants

calculus concepts and underlying theories to solve complex mathematical models

of computer epidemics gives us a more flexible approach as compared to integer

order models [74, 175]. A fractional order mathematical model is used for mod-

elling the compromised hardware for effective analysis of the spread of malicious

code in the infrastructure of any organization. Theoretical analysis of the compro-

mised nodes can be carried out by epidemiology modelling of virus propagation

dynamics [131, 174]. Controlling strategy for tiny hardware implant is very dif-

ficult because they are often hidden and create several challenges to security of

the infrastructure of the nations. To mimic the problem of hardware implants in

computer systems, requirement for a mathematical model to simulate the problem

was identified. Therefore, a detailed dynamical analysis of hardware implants and

their devastation patterns with control mechanisms looks a promising domain to
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be investigated by the research community. The rich heritage of fractional calculus

is exploited to develop a fractional order bugged, compromised and patched model

(FO-BCP) in order to depict the spread of malicious code in compromised hard-

ware due to bugged nodes. In this study, a FO-BCP based mathematical model

is presented to analyze the fast transients as well as super slow evolutions of the

virus spread and exploitation of system resources in compromised hardware.

7.2 Fractional Calculus: Preliminaries

Fractional calculus is the generalization of classical calculus theory of derivatives

and integrals of real or complex orders, i.e., non-integer order. The idea of half

derivative was first introduced by Leibniz in a letter. The development of fractional

calculus is the effort of several scientists such as Letnikov, Liouville, Euler and

Riemann [177, 178]. Several definitions of fractional derivatives exist while broadly

used definitions are given by Caputo (CP), Grunwald-Letnikov (GL) and Riemann-

Liouville (RL) [71, 134].

The definition of GL fractional derivative is as under.

GL
a Dα

t f(t) = lim
h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(
α
j

)
f(t− jh), t > a, α > 0. (7.1)

For generalization, the derivative operator Dαf(x) in which α represents the order

of fractional derivative is used.

The Caputo’s definition of fractional derivatives can be written as

CP
a Dα

t f(t) =
1

Γ(m− α)

t∫
a

fm(τ)

(t− τ)α−m+1dτ, (7.2)

for (m− 1 < α < m) and where Γ(·) is the gamma function. The RL definition of

fractional derivative is given as

RL
a Dα

t f(t) =
1

Γ(n− α)

dn

dt

t∫
a

f(x)

(t− x)α−n+1dx, (7.3)
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for (n− 1 < α < n) , while α and t are the bounds of the operation for aD
α
t .

In rest of the study, we will use the GL definition of fractional derivatives.

7.3 An Overview of Grunwald-Letnikov Numer-

ical Solver of FDE

In this section, necessary description of numerical solver based on the most com-

monly used definition of Grunwald-Letnikov (GL) fractional derivative is given.

The general form of fractional differential equation (FDE) with associated initial

conditions is given mathematically as:

GL
a Dα

t y(t) = f(y(t), t),

y(k)(0) = y
(k)
0 , k = 0, 1, 2, . . . n− 1,

(7.4)

where (n− 1 < α < n). Using equation (7.1) in (7.4) we have

1

hα

[(t−a)/h]∑
j=0

(−1)j (αk )y(t− jh) ≈ f(y(t), t),

simplifying above relation, we have

y(t) +

[(t−a)/h]∑
j=1

(−1)j (αk )y(t− jh) ≈ h−αf(y(t), t).

In case of discrete input grid in the interval t ∈ [0, T ] = [0, h, 2h, ...,Mh = T ] ,

where h is the step size parameter, so [0, T ] = [t0 = 0, t1, ..., tM = T ]. The grid

points in the interval are represented as tm = mh form = 0, 1, 2, ...,M . The

above equation is written in discrete from as:

y(tm) +
m∑
j=1

(−1)j
(
α
j

)
y(tm − jh) = h−αf(y(tm), tm),m = 0, 1, 2, ...M.
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In simple form,the above relation is written as:

y(tm) +
m∑
j=1

cαj y(tm − jh) = h−αf(y(tm), tm),m = 0, 1, 2, ...M,

where c
(α)
j is defined as:

cαj = (−1)j
(
α
j

)
, and cα0 = 1,

cαj =

(
1− 1 + α

j

)
cαj−1, j = 0, 1, . . .

Then the recursive relation for GL based numerical solver is given as:

y(tm) = f(y(tm), tm)h−α −
k∑
j=1

cαj y(tm−j),m = 0, 1, 2, ...M. (7.5)

Further necessary details of GL based numerical scheme can be seen in [70, 72].

7.4 Model Formulation of BCP Fractional Order

System

Mathematical formulation of FO-BCP model is presented here. The schematic

workflow of proposed scheme in terms of process block structures is shown in fig-

ure 7.2. The entire BCP model is divided into three classes of computer nodes,

i.e, bugged B(t), compromised C(t) and patched P (t). Total population is repre-

sented as N(t) = B(t) + C(t) + P (t). In this chapter, the variable with respect

to time t, i.e., B(t), C(t), P (t) and N(t) are denoted for simplicity by B,C, P

and N , respectively. Let A represent the arrival of new bugged computer nodes,

δ represent the loss of immunity, β the infectious contact rate of bugged nodes

with compromised nodes, η the inefficiency of patching, γ the rate at which com-

promised individuals become patched and d the natural death rate. Installation

of tiny implants during manufacturing or in transit make hardware bugged and

vulnerable to exploit. Bugged nodes compromise the attached peripherals and
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connected network. The expression βB(t)C(t)
N(t)

shows that when compromised nodes

interact with bugged nodes and the probability of becoming compromised also de-

pends on infectious contact rate β. The term δβP (t)C(t)
N(t)

represents the interaction

of patched nodes with compromised nodes and the probability of compromising

the patched nodes depends on the value of δ and β. Due to diversity of attack

vectors, parameter δ, efficacy of patching attain pivotal role in system protection.

Role of Bugged nodes increases due to behavior is crucial for manipulation of Un-

derstanding of bug node behavior is crucial for manipulation of devastation and

control strategy. Compromised nodes are more vulnerable because they offer full

control of the system as compare to partial infection. Bugged nodes have inbuilt

holes that can be easily exploited to install backdoors and compromise the sys-

tem, which ultimately infects or compromises the whole infrastructure or network.

Understanding of bugged node behavior is crucial for manipulation of devastation

and control strategy. Compromised nodes are more vulnerable because it offers

full control of the system as compare to partial infection.

In this chapter FO-BCP model is exploited to illustrate the spread of the infection

in networks through bugged nodes. The flow diagram of proposed BCP model is

shown in figure 7.3 while the governing system of differential equations describing

the model dynamics are given as:

DαB(t) = A− βB(t)C(t)

N(t)
+ ξP (t)− dB(t),

DαC(t) =
βB(t)C(t)

N(t)
+
δβP (t)C(t)

N(t)
− γC(t)− dC(t), (7.6)

DαP (t) = γC(t)− δβP (t)C(t)

N(t)
− ξP (t)− dP (t),

where α ∈ [0, 1] is the order of the fractional derivative term Dα = GL
a Dα

t . In

case of α = 1 , the system of equations (7.6) is transformed to standard first order

model of BCP infection propagation.

From set of equations (7.6) for the value of α = 1 we have

dN

dt
= A− dN. (7.7)
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The net rate of change of the population is given by c = A− d and its values may

be positive, zero or negative. The system of equations (7.6) can be reduced by

Figure 7.2: Graphical overview of schematic for the proposed FO-BCP model

Figure 7.3: Schematic flow of proposed FO-BCP model

incorporating the variable N and P as:

DαC =
β(N − P − C)C

N
− δβPC

N
− γC − dC, (7.8)
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DαP = γC − δβPC

N
− ξP − dP.

The equations in set (7.8), represent the reduced fractional order model for further

investigation in this chapter.

7.5 Model Analysis

In this section, stability analysis of FO-BCP model for local and global stability is

presented through basic reproduction number R0 for both disease free and endemic

equilibrium points.

7.5.1 Basic Reproduction Number (R0)

The basic reproduction number is defined as the average number of new infection

caused by an infected individual in its infectious period in a susceptible population

and represented by R0. If R0 > 1, then infection will spread rapidly in the system

and if R0 < 1 then infection will die down [181].

Reduced version of the model (7.8) has been used for the derivation of R0. Let

us calculate R0 for the integer order model, i.e., α = 1. The essential condition

for an epidemic to occur is the increase in the number of infected nodes with an

initial susceptible population.

In case of DαC > 0, we have

βBC

N
− δβ(N −B − C)C

N
− γC − dC > 0.

Assuming that all new nodes in the population are susceptible at start, we may

write the above expressions as:

βBC

N
− δβ(N −B − C)C

N
− γC − dC > 0,

βB

N
− δβ(N −B − C)

N
> γ + d.
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Simplifying above relations, we have

βB

N
+
δβN

N
− δβB

N
> γ + d,

β > γ + d.

Accordingly,
β

γ + d
> 1,

and

R0 =
β

γ + d
. (7.9)

Equation (7.9) represents the FO-BCP model basic reproduction number.

7.5.2 Equilibria Studies

The FO-BCP model (7.8) has two equilibrium points; i.e., virus free and endemic

equilibria points. In disease free environment, no infection spreads and in case of

endemic equilibrium point, infection spreads in the system.

For equilibrium, we have

DαC = 0, DαP = 0.

Virus free equilibrium point for system (7.8) is K0 = (C,P ) = (0, 0) and endemic

equilibrium point is K∗ = (C∗, P ∗) for R0 > 1.

The model (7.8) for endemic equilibrium analysis is written as:

β(N − P − C)C

N
+
δβPC

N
− γC − dC = 0, (7.10)

γC − δβPC

N
− ξP − dP = 0.

Solving equations (7.10) for endemic equilibrium point, we get the value of endemic

point (C∗, P ∗) as:

C∗ =

√
b2 − 4ac− b

2a
,
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P ∗ =
1
R0

+ C∗ − 1

δ − 1
, (7.11)

where

a = δβ, b = δβ( 1
R0
− 1) + ξ + d− δγ + γ, c = ( 1

R0
− 1)(ξ + d).

It is evident from equation (7.11) that the value of C∗ > 0 is possible only for

R0 > 1.

7.5.3 Disease Free Equilibrium

Theorem 5.1 Disease-free equilibrium (DFE) point K0 is locally asymptotically

stable for R0 < 1.

Proof. The system is locally asymptotically stable at DFE point K0 = (C,P ) =

(0, 0). Consider the Jacobian matrix of function f : R2 → R2 with components:

DαC = f1(C,P ) =
β(N − P − C)C

N
− δβPC

N
− γC − dC,

DαP = f2(C,P ) = γC − δβPC

N
− ξP − dP.

The disease free equilibrium point K0 = (C,P ) and the Jacobian matrix at the

disease free point is given below for the value of α = 1.

J(C,P ) =


∂f1

∂C

∂f1

∂P

∂f2

∂C

∂f2

∂P

 .

Therefore, the Jacobian matrix at K0, DFE point for integer order model (6.10)

is given as:

DFE(K0) =

 β − γ − d 0

γ −ξ − d

 . (7.12)

To find the Eigenvalues, the characteristic equation of (7.12) is

|λI −DFE(K0)| =

∣∣∣∣∣∣ λ− β + γ + d 0

−γ λ+ ξ + d

∣∣∣∣∣∣ = 0,
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which can be written as:

(λ− β + γ + d)(λ+ ξ + d) = 0,

λ2 + λ(ξ + d− β + γ + d) + (ξγ + γd+ ξd+ d2 − βξ − βd) = 0,

λ2 + (γ + d)λ
[

ξ
γ+d

+ d
γ+d
− β

γ+d
+ 1
]

+ γ(ξ + d) + d(ξ + d)− β(ξ + d) = 0,

λ2 + (γ + d)λ
[

ξ
γ+d

+ d
γ+d
−R0 + 1

]
+ (ξ + d)(γ + d− β) = 0,

λ2 + (γ + d)λ
[

ξ
γ+d

+ d
γ+d

+ 1−R0

]
+ (ξ + d)(γ + d)(1−R0) = 0.

The above expression shows that all Eigenvalues are in left half plane for R0 < 1,

so the system is asymptotically stable for point K0 when R0 < 1. This proves the

stability of system for the value of α = 1 and system will also remain stable for

α < 1 as reported in [182].

Theorem 5.2 If R0 < 1, then the point K0 is globally asymptotically stable,

otherwise unstable.

Proof. Let us consider the following Lyapunov function.

L(B,C, P ) = K(B + P + C). (7.13)

Disease free equilibrium point for equation (7.6) is (B,C, P ) = (A
d
, 0, 0). The

function is always positive in R3, for R3 = (B, C, P ) and (B > 0, C > 0, P > 0).

Taking the derivative of the Lyapunov function (7.13) for α = 1, we get

DαL (B,C, P ) = K(DαB +DαC +DαP ),

DαL(B,C, P ) = K[A− βBC
N

+ ξP − dB + βBC
N

+ δβPC
N
− γC − dC

+γC − δβPC
N
− ξP − dP ],

DαL(B,C, P ) = K[A− dB − dP − dC],

DαL(B,C, P ) = −Kd[C + P ].

DαL ≤ 0 for R0 < 1, implies that K0 is the only invariant set of the system

(7.12) for DαL = 0. According to LaSalle Invariance Principle K0 is globally

asymptotically stable. This completes the proof. Additionally, if system is stable

for α = 1, it will be stable for α < 1 as reported in [63].
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7.5.4 Endemic Stability

To investigate the endemic equilibrium at point K∗ = (C∗, P ∗), for R0 > 1 and

C∗ ≥ 0, we have to find the stability for R0 > 1.

Theorem 5.3 Point K∗ is locally asymptomatically stable for R0 > 1.

Proof. Consider the function f : R2 → R2 with components and Jacobian matrix

for integer order model (7.10) as:

DαC = f1(C∗, P ∗) = β(N−P ∗−C∗)C
N

∗
− δβP ∗C∗

N
− γC∗ − dC∗,

DαP = f2(C∗, P ∗) = γC∗ − δβP ∗C∗

N
− ξP ∗ − dP ∗.

The endemic equilibrium point K∗ = (C∗, P ∗) and the Jacobian matrix at the

endemic point is given below for α = 1.

J(C∗, P ∗) =

 ∂f1
∂C∗

∂f1
∂P ∗

∂f2
∂C∗

∂f2
∂P ∗

 .

J(K∗) =

 β − (γ + d)− β(P ∗+2C∗)
N

− δβP ∗

N
−βC∗

N
− δβC∗

N

γ − δβP ∗

N
− δβC∗

N
− ξ − d

 . (7.14)

Characteristic equation of (7.14) is

|λI − J(K∗)| =

∣∣∣∣∣∣ λ− β + (γ + d) + β(P ∗+2C∗)
N

+ δβP ∗

N
βC∗

N
+ δβC∗

N

−γ + δβP ∗

N
λ+ δβC∗

N
+ ξ + d

∣∣∣∣∣∣ = 0,

which simplifies as:

λ2 + (b11 + b22)λ+ (b11b22 − b12b21) = 0, (7.15)

where

b11 = −β + (γ + d) + β(P ∗+2C∗)
N

− δβP ∗

N
,

b12 = βC∗

N
+ δβC∗

N
, b21 = γ − δβP ∗

N
, b22 = δβC∗

N
+ ξ + d1.

To analyze the stability of system (7.8), we use Hurwitz criteria as reported in

[143, 144].

For application of the Hurwitz criteria, let us consider the general characteristic
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equation of a system:

b0s
n + b1s

n−1 + b2s
n−2 + b3s

n−3 · · · bn−1s
1 + bn = 0,

with n determinants in nth order equation and the first two determinants, i.e., D1

and D2, of the said characteristic equation are as:

D1 = b1,

D2 =

∣∣∣∣∣∣ b1 b3

b0 b2

∣∣∣∣∣∣ = b1b2 − b3b0.

Now equating the coefficient of general characteristics equation with (7.15), we

have

b0 = 1,

b1 = b11 + b22,

b2 = b11b22 − b12b21,

Determinants (D1 and D2) of the characteristic equation (7.15) are expressed using

Hurwitz process as:

D1 = b1 = b11 + b22,

D1 =
(
−β + γ + d+ β(P ∗+2C∗)

N
− δβP ∗

N
δβC∗

N
+ ξ + d

)
,

D1 = β
[
−1 + 1

R0
+ P ∗

N
(1− δ) + C∗

N
(2 + δ) + ξ+d

β

]
,

simplifying the above expression, we get

D1 = β

[
−1 + 1

R0
−

1
R0

+C∗−1

δ−1
(δ − 1) + C∗(2 + δ) + ξ+d

β

]
,

D1 = β
[
−C∗ + C∗(2 + δ) + ξ+d

β

]
,

D1 = β
[
C∗(1 + δ) + ξ+d

β

]
,

where

C∗ =

√
b2 − 4ac− b

2a
, P ∗ =

1
R0

+ C∗ − 1

δ − 1
,

and thus

D1 > 0.
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D2 = b1b2 − b3b0,

D2 = b1b2 = (b11 + b22)(b11b22 − b12b21),

D2 = D1(b11b22 − b12b21).

D1 is positive,

D2 = b11b22 − b12b21,

D2 =
(
−β + (γ + d) + β(P ∗+2C∗)

N
− δβP ∗

N

) (
δβC∗

N
+ ξ + d

)
−
(
βC∗

N
− δβC∗

N

) (
γ − δβP ∗

N

)
,

D2 = −γβC∗

N
+ δβ2P ∗C∗

N2 + γβC∗

N
+ δ2β2P ∗C∗

N2 + (γ+d)γβC∗

N
+ (γ + d)(ξ + d)

+ δβ2C∗(P ∗+2C∗)
N2 + (ξ + d)β(P ∗+2C∗)

N
− δβ2C∗

N
− β(ξ + d)

− δ2β2P ∗C∗

N2 − γβC∗

N
(ξ + d).

Simplifying the above expression, we get

D2 = −γβC∗

N
+ δβ2P ∗C∗

N2 + dδβC∗

N
+ δβ2P ∗C∗

N
+ 2δβ2C∗2

N
+ (ξ + d)β2C∗

N

− δβ2C∗

N
− β(ξ + d),

D2 = γ + d

 −γC∗R0

N
+ δβP ∗C∗R0

N2 + dδC∗R0

N
+ δβP ∗C∗R0 + 2δβC∗2R0

N

+R0(ξ + d)β2C∗

N
− δβR0C∗

N
−R0(ξ + d)

 ,

D2 = β

 −γC∗

N
+ δβP ∗C∗

N2 + dδC∗

N
+ δβP ∗C∗

N
+ 2δβC∗2

N
+ (ξ + d)β2C∗

N

− δβC∗

N
− (ξ + d)

 ,
D2 = β

[
−γC∗

N
+ δβP ∗C∗

N2 + dδC∗

N
+ δβP ∗C∗

N
+ (2C∗ − 1)(δβC∗ + ξ + d)

]
,

D2 = β
[
C∗(δβP ∗−γ)

N
+ δβP ∗C∗

N2 + dδC∗

N
+ (2C∗ − 1)(δβC∗ + ξ + d)

]
.

For R0 > 1, compromised nodes increases and the value of D2 becomes positive,

therefore D2 > 0. Since D1 and D2 are positive, so all the Eigenvalues of the

equation (7.15) are in the left half plane for R0 > 1, so there exists an endemic

equilibrium point K∗ which is locally asymptotically stable. This completes the

proof.
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7.6 Simulation and Results

In this section, numerical simulations are performed for FO-BCP model to un-

derstand the propagation dynamics of bugged hardware and controlling strategy

for the spread of malicious code in compromised nodes. Numerical simulations

are made for the designed FO-BCP model given in equation (7.6) using scien-

tific computer programming language MATLAB R2015b 64bit. Error diagrams of

comparison of methods are shown in error plots:

DαB(t) = f [B(t), C(t), P (t), t] ,

DαC(t) = f [B(t), C(t), P (t), t] ,

DαP (t) = f [B(t), C(t), P (t), t] ,

B(0) = B0, C(0) = C0, P (0) = P0.

The recursive relation of GL based numerical solver is developed using the proce-

dure given in section (7.2), to get

B(tm) =
(
A− βB(tm)C(tm)

N
+ ξP (tm)− dB(tm)

)
h−α −

k∑
j=1

crjB(tm−j),

C(tm) =
(
βBC
N

+ δβPC
N
− γC − dC

)
h−α −

k∑
j=1

crjC(tm−j),

P (tm) =
(
γC − δβPC

N
− ξP − dP

)
h−α −

k∑
j=1

crjP (tm−j).

Numerical solutions for the designed FO-BCP model are calculated for six cases

by varying the parameters as mentioned in Table 7.1. The dynamic behavior of

the FO-BCP system with different fractional orders (FO) is studied using the GL

based numerical solver. Results of GL method are compared with the well known

Runge-Kutta (RK) method for integer order scenarios to validate the accuracy of

the GL results for BCP model for α = 1. The results of all six cases of the model

given in equation (7.6) are calculated using GL method with step size h = 0.001

and t ∈ [0, 70] (time t taken in months). Simulation results are plotted in figures

7.4 and 7.5 for cases 1-3 and 4-6 of the model in terms of Bugged B, Compromised

C and Patched P nodes against time. Numerical solutions for α = 1 are calcu-

lated using RK method for each case and result are provided in figures 7.4 and 7.5.
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Table 7.1: Parameters variation in the simulation of the FO-BCP model.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
A 1.665 1.665 1.665 1.665 1.665 2
β 0.01 0.0145 0.01 0.0145 0.0424 0.0412
δ 0.348 0.348 0.716 0.348 0.348 0.005
γ 0.084 0.084 0.084 0.005 0.274 0.72
ξ 0.126 0.126 0.126 0.005 0.005 0.005
d 0.05 0.05 0.05 0.05 0.05 0.05

The results of both techniques are overlapping consistently for α = 1. In order

to assess the precision of GL solutions, error analysis based on absolute difference

of RK versus GL for α = 1 is performed and results of absolute deviations are

also presented in figures 7.4 and 7.5 for each case using semi-logarithmic scale.

Error plots in figures 7.4 and 7.5 show good matching of GL based solver with an

accuracy of up to four decimal places which exhibits the working accuracy of the

proposed methodology.

Fractional dynamics of the model are difficult to analyze using RK and other

analytical solvers, therefore GL based solver is exploited to study the fractional

dynamic of the FO-BCP model. We use GL based numerical solvers for detail

experimentation in order to analyze the behavior of FO-BCP model for variation

of fractional order α in the system (7.6). The fractional analysis give us an oppor-

tunity to observe fast transients and super slow changes in the model dynamic.

The effects of these changes may highlight certain hidden important facts. The

solution of all six cases are determined for FO-BCP model by using GL based

solver for different values of fractional orders α, i.e., α = [0.5, 0.75, 0.8, 0.85, 0.9,

0.95, 1], for input interval t ∈ [0, 70] with step size h = 0.001. Results of the

FO-BCP model in term of Bugged B, Compromised C and Patched P nodes are

plotted in figures 7.6 and 7.7 for cases 1-3 and 4-6, respectively. The dynamics

of FO-BCP model shows that fractional order α is a controlling parameter of the

model beside other tunable quantities of the system (7.6). In case 1, figures

7.4 and 7.5 show that at start of the vulnerability, the leakage of data through the

implanted hardware is covert and also exploitation of the hardware from hackers

is limited. The number of Compromised nodes (figure 7.4e) are small in num-

ber and same trend is also observed in Patched nodes (due to new vulnerability,

patches are unavailable). For time t = 60, α = [0.5, 0.75, 0.8, 0.85, 0.9, 0.95,
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Figure 7.4: Comparison of solutions for GL solver with RK method in case
of Bugged B hosts; (a) and (b) for cases 1 to 3, (c) and (d) for cases 4 to 6 and

(e) to (f) for Compromised C nodes for case 1 to 3.

1], the number of Bugged nodes are 10.71, 20.96, 23.23, 25.23, 25.9, 22.02 and

14.83 respectively (Figure 7.6a). Changing the value of α in FO models describes

a comprehensive range of scenarios which Bugged nodes can have in different net-

work environments. Slight increase in the infectious contact rate β from 1% to

1.45% causes increase in the number of Compromised nodes as shown in figure

7.4e for case 2. In case 2 number of Compromised nodes are 15 in 42 months

and in case 1 number of Compromised nodes are 2 in 42 months. However, in

case 2 for α = 0.9 the value of Compromised nodes are 2 in 42 months (figure

7.6e). In case 3, all parameter values of case 1 are retained except the value of
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Figure 7.5: Comparison of solutions for GL solver with RK method in case of
compromised hosts; (a) and (b) for cases 4 to 6, (c) and (d) for cases 1 to 3 for

patched P hosts while (e) and (f) for cases 4 to 6.

δ which represents the loss of immunity. The value of δ in case 1 is 34.8% and

increasing the value of δ in case 3, causes increase in the number of Compromised

nodes (figure 7.4e) i.e., t = 60.11, B = 13.92, C = 13.92, P = 3.85. Case 4

figures 7.4c and 7.5c illustrates the behavior of the FO-BCP model by changing

the parameter ξ that represents the inefficiency of patching and γ that represents

the rate at which Compromised nodes becomes patched. Different aspects of at-

tacking vectors (known vulnerability, insider attack or social engineering etc) on

Compromised nodes can be described by varying the value of α as shown in figure

7.7b. Fractional order models can highlight minute details by tuning the value of
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Figure 7.6: Dynamics of the bugged B, compromised C and patched P com-
puters for cases 1 to 3 of FO-BCP model for 70-month time t by taking different

fractional orders.

α as shown in figure 7.7. Reducing the value of ξ and γ reduces the number of

Bugged nodes and increases the number of Compromised nodes respectively.

In figures 7.8a - 7.8i, the dynamics of FO-BCP model are analyzed by plotting the

model simulations. Figure 7.8a shows that the number of Compromised nodes at t

= 0 is approximately zero and does not start increasing until Bugged nodes reach

at a certain threshold level. Change in the value of parameter β for cases 1 and

2 are shown in figure 7.8d. The sub-figure 7.8h for case 6 highlight the fact that

Compromised nodes are only present when a certain number of Bugged nodes are

available in the network.

Additional observations of fractional order system shows that change of α, will not
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Figure 7.7: Dynamics of the bugged B, compromised C and patched P com-
puters for cases 4 to 6 of FO-BCP Model for 70-month time t by taking different

fractional orders.

only change the velocity of the system but also change the movement toward equi-

librium point. Fast initial response is observed at α = 0.8 with slow convergence

at α = 0.1. Fractional models have the capacity to control the convergence speed

of the solution. To address the challenges of hardware implants, a novel BCP

epidemic model is designed to investigate the spread of malicious code through

implanted hardware bugs. The designed model is new, so a reference model for

comparative analysis is not available in this case.
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Figure 7.8: Dynamics of the bugged B, compromised C and patched P com-
puters for cases 1 to 6 of FO-BCP model.

7.7 Chapter Summary

An FO-BCP based mathematical model is at least as stable as integer order model.

Fractional derivative order α control the reachability of the solution toward its

steady state point effectively. Fractional order model can handle the different re-

sponses, fast transient behavior and super slow evolutions with long memory char-

acteristics. Conversion process of classical model into a fractional order model is

very complex and the choice of order of differentiation α is very delicate. Theoret-

ical analysis of FO-BCP mathematical model are carried out for disease free and

endemic stability based on basic of reproduction number R0 for an integer order

value of α.



Chapter 8

Conclusion and Future Work

The landscape of malware has grown in parallel with the growth of software and

technology. Adapting new strategy in design, discovering new platforms and tech-

niques in industry present lucrative opportunity for attackers. The game of ex-

ploitation between vendors and malware authors has no sign of stopping. Due

to the importance of the problem, spreading behavior of computer virus in crit-

ical networks with eradication and control scenarios are analyzed in this thesis

in term of mathematical modeling. Rapid spread of computer virus and delay in

the update of antivirus signature database, the role of quarantine and immunity

gained importance. Model results are simulated for different scenarios by chang-

ing the initial conditions and parameter values. The change of initial conditions

and parameters means the change of environment, which also includes the oper-

ating system. The change of parameter values also describe the behavior of the

operating system for a given virus. Antivirus applications or operating system

patch/update mechanisms may also be studied by appropriately adjusting the

values of these parameters.

The values of parameters in each model are chosen based on the information avail-

able in literature, virus spread statistics, hiding ability, damages rate, limitation

used in the model and the boundaries set in the theoretical analysis of the model.

Parameters are changed to see the effect on the spread dynamics of the virus and

see how the rate of change of different classes takes place. Different parameter

145
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settings give rise to different cases that describe virus spread in various environ-

ments. Boundary conditions of the model have been derived from the theoretical

analysis of the mathematical model based on basic reproduction number R0.

Different viruses have different spread and hiding characteristics. Based on the

nature of viruses and their spread, different time scales are used. Stuxnet has the

ability to hide itself for months from being exposed, while some other viruses have

ability to spread in minutes or seconds.

A MSEQIR epidemic model is designed to analyzed the transmission of viruses

in computer network in the presence of immunity and quarantine class. The

propagation of virus in this model are both horizontal and vertical. We assume

that system has temporary immunity and infected nodes will stay in the latent

period before they become infectious. The virus free equilibrium of the model is

asymptotically stable for R0 < 1 and unstable for R0 > 1. This model depicts

the real situation of the system in the presence of immunity and quarantine. It

is observed that quarantine and immunity play an important role in the situation

where virus signature and patch update are difficult, especially in remote locations,

bandwidth or resource limited systems. Due to the availability of two recovery

mechanisms immunity and quarantine, recovery of infectious nodes are very high

and crashing of nodes due to infection are low. The proposed model can effectively

utilized for zero day attacks and preparation of pre-emptive antivirus software.

The inclusion of quarantine class reduces the chances of the system to become

endemic.

Stuxnet is an advance persistent threat (APT) type cyber attack, uses unusual

methods to attack resources with an intend to access the critical information while

remains undetected and require special arrangement for control and eradication.

APT type attack typical establishes different connection points of compromise to

target the victim and ensure that cyber attack can continue in failure of any one

point. Attacker removed the evidence of APT occurrence without removing the

re-entry path and can easily regain the control of the target system. A SIPUSUI

dynamic epidemic model is designed for modeling transmission of Stuxnet virus in
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an isolated critical network through removable storage media. If the infection con-

tact rate β2 = 0 for an SIPUSUI model, it reduces to an SIR model. The SIPUSUI

model captures the spreading characteristics of a sophisticated digital virus such

as the Stuxnet. Mathematical analysis shows that the dynamics of this model is

determined through the basic reproduction number R0. Disease free equilibrium

of the model is globally asymptotically stable for R0 < 1 and asymptotic endemic

stability is also shown for R0 > 1. The spread control of infectious disease is

consistently achieved by retaining the basic reproduction number less than one.

Removable storage media and infectious contact rate play an important role in

the the extent of virus spread. Control strategies are also devised to minimize

the devastation of virus infection. Numerical study is performed with state of the

art differential equation solvers for validation of the model on available data for

Stuxnet virus as well as number of scenarios for removable storage media. Numer-

ical results are found consistently in good agreement with standard solutions and

reported statistics.

A detailed analysis of novel fractional order Stuxnet virus model is presented

with richer dynamics for the transmission of virus spread in an isolated critical

network through removable storage media. The fractional order Stuxnet virus

based mathematical model is found at least as stable as integer order model.

The value of fractional order α of proposed fractional model control the solution

reachability toward steady state point more effectively. Additionally, the fractional

order system of Stuxnet virus model can tackle the different responses viably,

including super slow evolutions and very fast transients, these responses are found

in system having long memory characteristics. Tacking the value of α = 0.98

may adjust the number of damaged hosts to 1500 in case 1 which matches the

number of damaged caused by Stuxnet virus. The process of transformation of

classical model in to a fractional model is very sensitive to the value of order of

differentiation α and can be converted to a simple SIR model if we choose the

values of infectious contact rate β2 = 0. Theoretical analysis of the model capture

the Stuxnet virus spreading characteristics and is determined by mathematical

derivation of the basic reproduction number R0 for integer order scenarios. Disease
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free and endemic equilibrium points of the model is globally asymptotically stable

for R0 < 1 and R0 > 1, respectively.

The computing world depends on underlying hardware. Harnessing the strength

of hardware with minor additions which create backdoors in the system and pro-

vide unlimited access to attacker. Hacking hardware through implant of malicious

chip has changed the security aspects of hardware. According to security experts

this sort of compromise is a god mode’ exploit. Bugged hardware has created

several challenges for security experts. It can even sometimes bypass very so-

phisticated security arrangements. Due to the importance of the issue, a BCP

epidemic model is designed to investigate the spread of malicious code through

implanted tiny hardware. Theoretical analysis of the model is carried out through

basic reproduction number R0 for disease free and endemic equilibrium points.

Global stability of the model is proved using Lyapunov functions for disease free

equilibrium point. It is observed that controlling the infectious contact rate β will

control the number of compromised nodes while also controlling the number of

bugged nodes and the number of compromised nodes.

A fractional order BCP model is designed to analyze the detailed spread char-

acteristics of the malicious code in compromised hardware which are hidden in

integer models. An FO-BCP based mathematical model is at least as stable as

integer order model. Fractional derivative order α controls the reachability of the

solution toward its steady state point. Fractional order models can handle the

different responses, very fast transient behavior and super slow evolutions with

long memory characteristics. Fractional order models provide an extra control pa-

rameter α. Conversion process of classical model into a fractional order model is

very complex and the choice of order of differentiation α is very delicate. Theoret-

ical analysis of FO-BCP mathematical model are carried out for disease free and

endemic equilibrium points based on basic reproduction number R0 for an integer

order value of α. Global stability of the model is proved using Lyapunov functions

for disease free equilibrium point. Fast initial response is observed at α = 0.8 with

super slow convergence at α = 0.1. Fractional models have the capacity to control

the convergence speed of the solution.
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Limitations or assumptions that were used during the simulation of these models

include: Equal scanning probability of all hosts, 1/232 in case of IPv4 scheme with-

out biased scanning of any subnets, unlimited availability of network bandwidth

and connectivity, no consideration of heterogeneity of computer networks (in re-

ality heterogeneous networks exist). In addition we also assume that all infected

nodes have a probability of infecting all susceptible nodes with the same infection

rate, with no consideration of firewall or protection, we further assume a fixed

removal rate of nodes from all classes, the population to be homogeneous and well

mixed, and no latency (exposure to infection causes immediate infection).

8.1 Future Work

Inability of virus detection approaches doesn’t means that we should give up pro-

tecting our computers from malware. We have to redefine our problems and ap-

proaches, and with the ambition for solutions that work well in impossibilities. The

challenge is to redefine the malicious behavior of program from benign behavior.

Mathematical modeling help us in redefining and simulation of these behaviors.

1. The proposed model can be effectively utilized for zero day attacks and prepa-

ration of pre-emptive antivirus software. The inclusion of quarantine class

reduces the chances of the system to become endemic.

2. Anomaly based detection systems using differential equation models boundary

may be defined to monitor the processes on a host machine for any abnormal

activity.

3. In future, one may explore in the application of designed model of stuxnet

virus on actual dataset for device vectors and general malware specimens of

SCADA enviroment. Additionally, it looks promising to investigate in design

and analysis a mathematical model for the Stuxnet virus in case of real-world

networks that exhibit more sophisticated topologies including scale-free and

small-world.

4. The validity of the BCP model may be verified using bugged hardware. The

spread of malware on BCP model may be explored on actual bugged devices
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for real virus dataset, so that how an implanted hardware espionage device

could interact with the host system.

5. In future, one may exploit the competency of stochastic numerical computing

paradigm based on fractional evolutionary and swarming optimization mech-

anisms for superior dynamical analysis of the models arises in the studies of

MSEQIR epidemic model, SIPUSUI dynamic epidemic model designed for

transmission of Stuxnet virus, Fractional stuxnet virus model and Intel Man-

agement Engine ME vulnerability as well as tiny hardware implants.

6. Design of time delay based differential equation models of the above work may

provide more closeness of the claimed results because infected system require

a time delay to become infectious.

7. Stochastic versions of the proposed models may provide more accurate results

due to probabilistic nature of the virus infection and host connectivity with

network.

8. Training of artificial intelligence (AI) based antivirus virus solutions using the

boundaries of mathematical models instead of real virus data which is very

difficult to gather and train the system.

9. In future, one may explore the utilization of these virus models for different

operating system under different environments.
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Appendix A

In this section, the proof of D3 and D5 are verified numerically for R0 > 1. Let us

consider the general characteristics equation of the system as:

a0s
n + a1s

n−1 + a2s
n−2 + a3s

n−3 · · · an−1s
1 + an = 0

The characteristics equation (3.25) is given as

λ6 + λ5(A+B + C +D + F + E) + λ4(AB + AC + AD + AF + EA+

BC +BD +BF + EB + CD + CF + EC + dδ +DF + ED + EF −Gξ)+

λ3(ABC + ABD + ABF + EAB + ACD + ACF + EAC + ADF + EAD+

eAF − AGξ +BCD +BCF + eBC +Bdδ +BDF + EBD + EBF + Cdδ+

CDF + ECD + ECF − CGξ + edδ + dδD + EDF − EGξ)+

λ2(ABCD + ABCF + EABC + ABDF + EABD + EABF + ACDF+

EACD + EACF − ACGξ + EADF − EAGξ +BCdδ +BCDF + EBCD+

EBCF + EBdδ +BdδD + EBDF + ECdδ + CdδD + ECDF − ECGξ+

EdδD − dδGξ − FηξΥ− Fηρϕ) + λ(ABCDF + EABCD + EABCF+

EABDF + EACDF − EACGξ − AFηξΥ− AFηρϕ+ EBCdδ +BCdδD+

EBCDF + EBdδD + ECdδD − CdδGξ − CFηξΥ− EdδGξ −DFηρϕ−

δFξσΥ− δFρσϕ) + EABCDF − ACFηξΥ− ADFηρϕ+ EBCdδD−

ECdδGξ − CδFξσΥ− δDFρσϕ = 0.

a0 = 1,

a1 = A+B + C +D + E + F,

a2 = AB + AC +BC + AD +BD + CD + AE +BE + CE +DE + AF+

BF + CF +DF + EF + dδ −Gξ,

177
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a3 = ABC + ABD + ACD +BCD + ABE + ACE +BCE + ADE +BDe

+CDE + ABF + ACF +BCF + ADF +BDF + CDF + AEF +BEF

+CEF +DEF +Bdδ + Cdδ + dDδ + dEδ − AGξ − CGξ − EGξ,

a4 = ABCD + ABCE + ABDE + ACDE +BCDE + ABCF + ABDF

+ACDF +BCDF + ABEF + ACEF +BCEF + ADEF +BDEF

+CDEF +BCdδ +BdDδ + CdDδ +BdEδ + CdEδ + dDEδ

−ACGξ − AEGξ − CEGξ − dGδξ − FηξΥ− Fηρϕ,

a5 = ABCDE + ABCDF + ABCEF + ABDEF + ACDEF +BCDEF

+BCdDδ +BCdEδ +BdDEδ + CdDEδ − ACeGξ − CdGδξ

−dEGδξ − AFηξΥ− CFηξΥ− FδξσΥ− AFηρϕ−DFηρϕ− Fδρσϕ,
a6 = ABCDEF + BCdDEδ − CdEGδξ − ACFηξΥ − CFδξσΥ − ADFηρϕ −

DFδρσϕ.

By equating the coefficients, we have

We choose the parameter values so that R0 = βξ
(d+γ)(d+ξ+ϕ)

≥ 1 and for one set of

these values we have

R0 = 0.9∗10
(0.5+0.01)(0.5+10+0.1)

≥ 1

then the parameter values are calculated as:

A = 1, B = 10.6, C = 0.6, D = 0.51, E = 1.1, F = 1.35, G = 0.53, δ = 0.5,

b = 0.12, ϕ = 0.1, ξ = 10, Υ = 0.01, ρ = 0.1, σ = 0.001, η = 0.6, β = 0.9.

Using these numeric values, characteristic equation of the Jacobean matrix (3.25)

at endemic equilibrium point D* is given as:

4.76 + 27.50λ+ 64.66λ2 + 78.91λ3 + 51.16λ4 + 15.15λ5 + λ6,

{λ1 → −11.16}, {λ2 → −1.09}, {λ3 → −0.79}, {λ4 → −0.75− 0.50i},

{λ5 → −0.75 + 0.50i}, {λ6 → −0.60}.

which shows that all coefficients have positive values, so all eigenvalues are in left

half plane, the value of D3 = 41108 and D5 = 3.3107 which are also positive.
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Derivation of endemic equilibrium points

P
′
= γC − δβPC

N
− ξP − dP.

At steady state P
′
= 0,

γC − δβPC
N
− ξP − dP = 0,

γC − δβCP ∗

N
− ξP ∗ − dP ∗ = 0,

P ∗ =
1
R0

+C∗−1

δ−1
,

γC − δβC
1
R0

+C∗−1

δ−1

N
− ξ

1
R0

+C∗−1

δ−1
− d

1
R0

+C∗−1

δ−1
= 0,

γC − δβC

R0(δ − 1)
+
δβC

δ − 1
− δβC2

δ − 1
− ξ

R0(δ − 1)
+

ξ

δ − 1
− ξC

δ − 1
− d

R0(δ − 1)
+

d

δ − 1
− dC

δ − 1
= 0,

−C2 δβ

δ − 1
+ C

[
γ − δβ

R0(δ − 1)
+

δβ

δ − 1
− ξ

δ − 1
− d

δ − 1

]
+

[
d

δ − 1
− d

R0(δ − 1)
+

ξ

δ − 1
− ξ

R0(δ − 1)

]
= 0,

C2 δβ

δ − 1
+ C

[
−γ +

δβ

R0(δ − 1)
− δβ

δ − 1
+

ξ

δ − 1
+

d

δ − 1

]
+

[
d

R0(δ − 1)
− d

δ − 1
+

ξ

R0(δ − 1)
− ξ

δ − 1

]
= 0,

multiplying (δ − 1) to LHS

C2δβ + C

[
−γ(δ − 1) +

δβ

R0

− δβ + ξ + d

]
+

[
d

R0

− d+
ξ

R0

− ξ
]

= 0,
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C∗ =

√
b2 − 4ac− b

2a
.

Where

a = δβ, b =
δβ

R0

− δβ + ξ + d− γ(δ − 1), c =
d

R0

− d+
ξ

R0

− ξ

and after simplifying the c, we know that for R0 ¿ 1 c is negative

c = d( 1
R0
− 1) + ξ( 1

R0
− 1),

c = ( 1
R0
− 1)(d+ ξ).

Simplifying the equation for P ∗,

β(N−P−C)C
N

+ δβPC
N
− γC − dC = 0,

C(γ + d)
[
β(N−P−C)C

N(γ+d)
+ δβPC

N(γ+d)
− 1
]

= 0,

C(γ + d)
[

β
(γ+d)

− βP
N(γ+d)

− βC
N(γ+d)

+ δβP
N(γ+d)

− 1
]

= 0,

C(γ + d)
[
R0 − R0P

N
(1− δ)− R0C

N
− 1
]

= 0,

C(γ + d)R0

[
1− P

N
(1− δ)− C

N
− 1

R0

]
= 0,

P (1− δ) = 1− C − 1
R0
,

P ∗ =
1
R0

+C∗−1

δ−1
.



Appendix C

An appendix section is introduced to narrate the necessary description of basic

reproduction number R0 on the basis of next generation matrix.

The basic reproduction number R0 is most important quantity in the study of

epidemiology modeling and its control strategies. The quantity is defined as a

new causes of infection due to a single infected individuals in susceptible popula-

tions. There are several methods to calculate R0 for more then one infectious class

[232] and in some time it may cumbersome to calculate more states, however next

generation method provides an easy solution. In next generation method R0 is

defined as spectral radius of the next generation operator and classes are catego-

rized in two compartments infected and non-infected. The value of R0 using next

generation can be obtained by calculating the value of V and F matrix, where V is

a matrix for the rate of individuals transfer from compartment and F is a matrix

of appearance of new infection in the compartment.

Model IPUI has two infected classes, to get R0, we use only two classes IUI from

system of equation 4.5. Linearizing the system, we obtain dI
dt

dUI
dt

 = (F − V )

 I

UI ,



F =

 β1
232

β2

β2U∗

N∗
0

 V =

 ρ+ r1 0

0 r2

 .
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Basic reproduction number R0 is the dominant eigenvalue of FV −1, that is

FV −1 =

 β1
232(ρ+r1)

β2
r2

β2U∗

N∗(ρ+r1)
0

 ,

and R0 with next generation matrix is

R0 =
β1

232(ρ+ r1)
+

√(
β1

232(ρ+ r1)

)2

+
4β2

2U∗

N∗(ρ+ r1)r2

.
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