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Abstract

This thesis is devoted to the study of squeezing fluid flow between two paral-

lel plates. The results are obtained regarding the flow behavior of Newtonian,

Maxwell, Casson and micropolar fluid flow. Instead of Fourier’s and Fick’s laws,

heat and mass transfer mechanisms are discussed by using the Cattaneo-Christov

heat and mass fluxes. The impact of entropy generation has been considered.

For the enhancement of thermophysical properties of such fluids, the concept of

nanofluid is utilized. No slip and stratification effects at the boundary are taken

into account. Further, the effect of chemical reaction and thermal radiation are

also considered. The physical flow models are governed in the form of prtial dif-

ferential equations. The governing partial differential equations of the fluid flow

are converted into ordinary differential equations by using the similarity trans-

formation. The ordinary differential equations are solved numerically. Shooting

method with fourth order Runga Kutta integration scheme is used to calculate

the numerical results. For the validation of the results obtained by the shooting

method, a MATLAB built in function bvp4c is also employed. A comparison of

presently computed and already publish results is made. The quantities of physical

significance, for example skin friction, Nusselt number and sherwood number are

computed numerically and presented through tables. The effect of physical param-

eters on velocity, temperature and concentration have been investigated through

graphs.
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Chapter 1

Introduction

1.1 Introduction

Squeezing flows are referred as the flows between two parallel plates or the flows in

which two boundaries approach each other. The squeezing flow received attention

in nineteenth century because of its comprehensive employment in science and

engineering. The particular utilization of squeezing flow is in injection molding,

biology, polymer and agricultural industries [1]. Squeezing flows are also applicable

in the extraction of crude oil from the rocks. Lubrication system can be designed

with the assistance of squeezing flow. Stefan [2] formulated the first mathematical

model of squeezing flow under the lubrication system. Later on, for elliptic plate,

Reynolds [3] studied the same problem. Archibald [4] studied the Stefan problem

for angular plates. It was concluded that the film thickness decreases in a specified

time. Wang [5] considered the viscous squeezing fluid flow. Asymptotic solution is

achieved for smaller and greater squeezing parameter and is found that the resis-

tance is opposite to the direction of motion. Bhattacharyya and Pal [6] conducted

an investigation on the squeezing flow between two parallel disks. From the study,

it was observed that with an increment in the magnetic field and angular velocity,

the torque on the lower disc increases. Verma [7] studied the numerical solution

of the unsteady squeezing fluid flow. The study is performed with all values of the

1
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Reynolds number permissible in lubrication problems. The squeezing and extru-

sion of a fluid flow having invariant temperature was observed by Duwairi et al. [8].

It was concluded that with an increase in the extrusion parameter the velocity and

heat transfer rate increases. Engmann et al. [9] presented the squeeze flow theory

and applications to rheometry. The investigation illustrated the impact of differ-

ent boundary conditions and how these interact with different types of materials.

Squeezing fluid flow problem for the case of viscous and incompressible fluid using

the perturbation method was concluded by Ghori et al. [10]. The obtained results

exhibit that the homotopy perturbation method is efficient and easy to implement.

Saif et al. [11] studied the heat and mass transfers in the unsteady squeezing flow,

using a perturbation iteration algorithm. It was found that an increase in Pr and

Ec lead to an increase in the temperature. Variable magnetic field effect on the

squeezing flow was observed by Khan et al. [12]. The parametric continuation

method has been adopted to get the solutions. The results exhibit that as the

magnetic and squeezing parameter grow, the fluid temperature increases.

1.1.1 Nanofluid

The homogeneous mixture of nanoparticles and a conventional fluid is known as

the nanofluid [13]. The nano-sized particles encompass metals, non-metals, ox-

ides, carbides, etc. Nanoparticles have higher thermal conductivity than the base

fluid. The heat transfer in the base fluids can be enhanced by magnification of

the thermal conductivity. Nanofluids have various applications including paper

and printing, paints and coating, power generation, drugs, cancer therapy and

food products [14]. Buongiorno [15] proposed a model based on two mechanisms,

namely, the Brownian motion and thermophoresis for the convective transport

in nanofluids. The solution of entropy generation and MHD flow of nanofluid

over a rotating circular permeable plate was explored by Rashidi et al. [16]. It

was shown that the temperature boundary layer enhance with an increases in the

nanoparticles volume fraction. The unsteady squeezing flow of five different kinds
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of nanofluids was analyzed by Sheikholeslami et al. [17]. The adomian decompo-

sition method has been utilized to acquire the results. The results showed that

with increasing volume fraction of nanoparticles, temperature is elevated. Simi-

larly, Domairry and Hatami [18] presented the impact of Copper water nanofluid

on the flow between two parallel plates by adopting the DTM and Pade approx-

imation. The study reported that for the increasing squeezing parameter and

Eckert number, the Nusselt number also increases. Singh et al. [19] evaluated the

squeezing flow with the impact of magnetic field and slip velocity by using the

shooting technique. The results indicated that the heat and mass transfers rate

are inversely proportional to the volume fraction of nanoparticles. Atlas et al. [20]

explored the squeezing flow of nanofluid. This study concluded that the temper-

ature decreases and concentration enhances for passive control of nanoparticles.

Sheikholeslami et al. [21] attained the solution of unsteady nanofluid flow by us-

ing DTM. It was noticed that the Nusselt number rises as the Hartmann number

increases. Buongiorno’s mathematical model was studied by Kafayati [22], who

also considered the effects of mixed convection of non-Newtonian nanofluid. The

results were acquired with the help of finite difference Lattice Boltzmann scheme.

It was also noticed that rise in the Brownian motion and thermophoretic param-

eter increases the mass transfer and decreases the heat transfer. Five different

shapes of nanoparticles, on unsteady flow between two sheets is examined by Ah-

mad et al. [23]. NDsolve technique has been utilized to obtain the solution. It is

proved, by inspection, that temperature depends directly on nanoparticles volume

fraction. Hosseinzadeh et al. [24] reviewed the hydrothermal analysis on squeezing

nanofluid flow. The homotopy perturbation and collocation methods were ap-

plied to achieve the results. They also concluded that the temperature enhances

with the rise in Brownian motion parameter. Ullah et al. [25] studied the mag-

neto nanofluid flow. They found that the Brownian motion and thermophoresis

have direct link with the temperature. Unsteady squeezing nanofluid flow with

the characteristics of melting heat transfer is determined by Farooq et al. [26].

Homotopy analysis technique was used to compute the results, which show that
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temperature and concentration values escalate as Brownian motion parameter in-

creases. Ahmed and Rashed [27] used the Buongiorno mathematical model to

investigate the magnetohydrodynamic free convection of nanofluid and solution

was obtained by using the FDM. The obtained results exhibit an increase in heat

transfer and the wavy contraction ratio. Derakhshan et al. [28] discovered the

influence of thermophoresis and Brownian motion in the abovementioned model

and applied the Akbari-Ganji’s method to obtain the solutions. In these results,

enhancement in the Nusselt number was seen for greater Brownian motion and

thermophoresis parameter. The method of variation of parameters was applied for

analyzing the unsteady squeezing flow of water based nanofluid. The results from

this study revealed that temperature profile shows enhancement as buoyancy pa-

rameter rises. Krishna and Chamka [29] performed the study of MHD nanofluid

flow in a porous medium under the Hall effect, adopting the Galerkin optimal

homotopy asymptotic method. The graphs show that as the values of Brownian

motion and thermophoresis grow, the temperature and concentration increase.

1.1.2 Cattaneo-Christov Model

Heat transfer occurrence is the natural phenomena in which heat transfer from

one object to another or in same object due to temperature difference. It has

many applications in engineering, for example, nuclear reactors, energy produc-

tion, fuel cells and micro electronics [30]. From the past two decades, to study

the mechanism of heat transfer, Fourier’s law [31] for heat conduction has been

applied. This law represents the instant reaction of an initial disturbance with the

system under consideration. Cattaneo [32] added the relaxation time to modify

the Fourier’s law. In Cattaneo model, temperature field yielded hyperbolic energy

equation. Furthermore, Christov [33] refined this model, by adjoining the Oldroyld

upper convected derivatives instead of material derivative. Ali and Sandeep [34]

applied the Runge-Kutta Fehlberg integration method on the above mentioned

model for MHD radiative ferrofluid flow. The study stated that in comparison to

the flow over a cone and plate, heat transfer was found greater in case of a wedge.
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Numerical solution of MHD Maxwell fluid flow, for the same model, is consid-

ered by Shah et al. [35]. Also, this study extrapolated that temperature field

increases for increasing radiation parameter and Eckert number. Sui et al. [36]

presented heat and mass flux model of Cattaneo-Christov for a stretchable sheet

under the combined effect of upper convected Maxwell nanofluid. The study con-

cluded that for the increasing temperature relaxation parameter, the temperature

profile decreases. Hayat et al. [37] discussed the Cattaneo-Christov double dif-

fusion for three dimensional nanofluid flow on a linear stretching sheet. It was

depicted that as the thermal and concentration relaxation parameter enhanced,

temperature and concentration were decreased. Muhammad et al. [38] developed

mathematical model for squeezed nanofluid flow with double diffusion. The results

showed that both the concentration and temperature gradients were decreased as

the thermal and solutal relaxation parameters increased. Dogonchi and Ganji [39]

used the Daun-Rach approach to explore the MHD nanofluid flow. The outcome

exhibits a low temperature distribution in case of Cattaneo-Christov model in-

stead of Fourier’s law. Akmal et al. [40] applied Keller box method to study

the Cattaneo-Christov model for squeezing flow of nanofluid. The observations

showed that at lower plate, entropy is greater as compared to the upper plate.

The squeezing nanofluid for unsteady flow is analyzed by Dogonchi et al. [41].

They applied Duan-Rach approach to achieve results, which demonstrated a di-

rect relation of Nusselt number to the shrinking parameter while an inverse relation

for the stretching parameter. The combined effect of Cattaneo-Christov and ho-

mogeneous and heterogenous reaction on unsteady squeezing flow were examined

by Dianchen et al. [42]. They reported that for squeezing parameter skin fric-

tion and Nusselt number show opposite behavior. Zubair et al. [43] discussed the

Cattaneo-Christov model in squeezing nanofluid flow. This investigation reveled

that temperature gradient was increased for increasing squeezing parameter and

Eckert number. The influence of Carreau fluid subject to the squeezing flow was

inquired by Ramadevi et al. [44]. The results showed that an increase in the

thermal relaxation parameter resulted in decay of temperature and concentration

profiles. Shankar et al. [45] worked on the features of flow between parallel plates
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in case of an unsteady Casson fluid. The results obtained from the study exhibit

that the temperature and concentration distribution are less for double diffusivity

as compared to classical Fourier’s law.

1.1.3 Non-Newtonian Fluid

Some of the fluids related to the engineering and industrial applications can not be

examined through the traditional Navier-Stokes equations. These fluids include

paint, polymer, solutions, oils, coating of clay etc [46]. To discuss all the important

constituent of the non-Newtonian fluids, a single relation is not adequate. Non-

Newtonian fluid is described by different models and studied in literature. Several

models like Casson, Maxwell, Jeffrey, Oldroyd, Sisko etc, have been recommended.

Maxwell model is the most trivial example of the rate type fluid in which the es-

sential attributes of the relaxation time are described. Maxwell model excludes

the effect of shear depending viscosity and, thus, is helpful in focusing the im-

pact of fluid elasticity on the properties of boundary layer. The flow of Maxwell

nanofluid in the coaxial cylinder with shear stress was presented by Jamil and

Fetecua [47]. Awais et al. [48] calculated that the presence of stretching sheet

implies the unsteady flow of Maxwell fluid in three dimensions. It was seen that

the impact of the Deborah number reduces the velocity. Ibrahim [49], numerically

analyzed the nanoparticles with convective heating on a stretchable sheet, when

upper convected Maxwell fluid is present. Their results show that as the Deborah

number escalates, profiles for skin friction and rates of heat and mass transfer

increase. Reddy et al. [50] obtained the numerical solution for the above men-

tioned flow with convective boundary conditions. The momentum boundary layer

declines as magnetic parameter increases. The effect of Maxwell nanofluid flow

using Buongiorno’s model is deliberated by Farooq et al. [51]. Homotopy analy-

sis method was applied to acquire the results. It is worthwhile to note that for

greater material parameter, the cross flow variation of velocity is observed. Kumar

et al. [52] deliberated the features of magnetohydrodynamic UCM in a channel.

The Runge-Kutta method of fourth order was applied to obtain the solution. The
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results exhibit that the temperature increases as the thermal and solutal disper-

sion enhance. Rashid et al. [53] applied the homotopy analysis method to find

the solution for the Maxwell fluid along with the activation energy and thermal

radiation. It was concluded that for higher Deborah number results in decreasing

velocity.

One of the prominent mathematical model which expresses the rheological fluid

flow properties is the Casson fluid. The formulation of this fluid is provided

in [54, 55]. Shashikumar et al. [56] explored the influence of radiative heat flux

on unsteady Casson fluid flow. They acquired results by Runge-Kutta-Fehlberg

method. Kumar et al. [57] applied the MATLAB builtin function bvp4c for the

study of proposed fluid flow for the unsteady case. The observation indicated

that for increasing squeezing parameter the temperature field declines. Patel [58]

presented a heat generation and Hall current on MHD Casson fluid flow. It was

seen that the heat generation and Hall current have a tendency to improve the

motion. Saif et al. [59] explored the MHD fluid flow of Casson fluid and found

that the velocity profile enhances as the squeeze number grows. Ahmadpour et

al. [60] acquired the numerical solution for convective heat transfer of Casson fluid

flow between squeezing disks. It was noticed that for higher heat generation,

temperature is enhanced.

1.1.4 Micropolar Fluid

Micropolar fluids are the fluids containing the rotating micro constituents. Mi-

cropolar fluids contain a suspension of the rigid particles. Animal blood and liquid

crystals are the typical examples of micropolar fluids. Polymer solutions, lubricant

fluids, colloidal expansions and complex biological structures are also the appli-

cations of micropolar fluids [61]. At first, Eringen [62] formulated the theory of

micropolar fluid, introducing a new constitutive equation for the fluids with mi-

crostructures. The flow of micropolar fluid with suction and injection by using Van

Dyke perturbation technique is studied by Ramachandran et al. [63]. It was con-

cluded that a rise in injection parameter results in increase in the velocity. Kelson
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and Farrel [64] analyzed the boundary layer flow of a micropolar fluid in a porous

sheet. Ashraf et al. [65] conducted the numerical study for two dimensional flow

of micropolar fluid and observed that microrotation profile changes from asym-

metric shape to symmetric shape as the permeability parameter increases. Joneidi

et al. [66] inquired into the micropolar fluid in a porous channel and concluded

that for increasing dimensionless parameter N1, the microrotation profile rises.

Gibanov et al. [67] observed the laminar steady convectional flow of micropolar

fluid in a trapezoidal cavity. It was confirmed that as the vortex viscosity enhances

the heat transfer decreases. Bilal et al. [68] presented the micropolar fluid flow un-

der the Hall and ion-slip effects. The results indicated that the coupling parameter

has decreasing impact on microrotation profile. The MHD micropolar nanofluid

flow in a channel was explored by Alizadeh et al. [69]. Applying Duan–Rach Ap-

proach (DRA), the nonlinear ordinary differential equations were solved. As the

values of micropolar parameter grow the temperature was enhanced.

1.1.5 Stratification

In heat and mass transfer, stratification has considerable recognition and has been

investigated by many researchers. The variation in temperature and concentration

gradients and presence of different fluids with different densities, cause the strat-

ification. The application of stratification in engineering includes heat rejection

into the environment such as ocean, rivers etc. Rashad et al. [70] looked into the

natural convection flow through a vertical cylinder with stratified nanofluid. The

study reported an enhancement in heat and mass transfer rates for an increasing

buoyancy ratio parameter. Ibrahim and Makinde [71] studied this flow in an up-

right plate with double stratification. Also, the study reported that Nusselt and

Sherwood number decay with the augmentation of the stratification parameter.

Srinivasacharya and Surrender [72] presented the mixed convection flow over a

vertical plate, having porous and double stratification. It is highlighted that as

the stratification parameter increases, the temperature declines.
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1.1.6 Entropy Generation

When heat is transferred, the fluid looses its energy due to the resulting scatter-

ing process and frictional forces. For improving the performance of heat transfer

entropy is a substantial property. It is described as an estimate of chaos of the

system. Entropy production is zero for reversible processes. Only in an irreversible

process, the entropy generation is observed. Examples of irreversible processes in-

clude diffusion, chemical reaction, liquid flow and fluid viscosity. Air separators,

reactors, chillers, fuel cells and solar panels are the examples of entropy genera-

tion. In recent years, second law of thermodynamics is utilized to analyze this

irreversibility phenomenon. Recently, many researchers used the second law of

thermodynamics for thermal engineering systems. At first, Bejan [73] deliberated

the entropy generation minimization. Sheikholeslami and Ganji [74] discussed

how the entropy generation affects in presence of magnetic field. Applying the

Lattic-Boltzmann method, a numerical solution was obtained. Butt and Ali [75]

inspected the entropy generation of a viscous fluid in a revolving channel and

applied Runge-Kutta-Fehlberg method for obtaining the solution. Abolbashari

et al. [76] illustrated the entropy generation for the non-Newtonian fluid flow

due to a stretching sheet. It was anticipated that for greater values of Biot and

Reynolds numbers, entropy generation enhances. Srinivasacharya and Bindu [77]

examined the influence of entropy generation due to micropolar fluid through an

inclined channel and found that the entropy generation increases for an increas-

ing Brinkman number. Hussain et al. [78] analyzed the entropy generation and

mixed convection in a partially heated square cavity by applying finite element

procedure. It was highlighted that enhancement in Reynolds number indicates an

increase in entropy generation and Bejan number. Zeeshan et al. [79] discussed

the entropy generation for the various shaped nanoparticles on mixed convection

flow over a rotating disk. Their study reported that by using the nanoparticles

the irreversibility process reduced. Radiative flow and entropy generation was

strengthen by Khan et al. [80]. By applying the shooting method, the numerical

solution was obtained. The results exhibit that the entropy generation and Be-

jan number behave opposite to Prandtl number. Ojjela et al. [81] analyzed the
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MHD and entropy generation on squeezing Casson fluid by utilizing the shooting

method. The results concluded that entropy decreases when suction parameter

increases. Khan et al. [82] found the solution of entropy generation for flow of

Carreau nanofluid, by employing the homotopy analysis method. It was delib-

erated that greater Brinkman number reults in higher entropy generation rate.

Siavashi et al. [83] found the numerical solution of natural convection and entropy

generation inside a cavity. It was shown that enhancement in number of fins results

in decay of entropy generation. Dawar et al. [84] studied MHD Carbon nanofluid

flow with the entropy generation and results are obtained by Homotopy analysis

method. The result discloses that the entropy generation escalates when Prandtl

and Eckert numbers increase.

Considering aforementioned literature survey, it is substantial to observe that the

unsteady squeezing flow between parallel plates have a great interest in several

engineering and biomedical. It is observed from the available literature that the

squeezing behavior of non-Newtonian fluid is paid less attention. The author

has made an attempt to analyze the squeezing fluid flow for the non-Newtonian

fluid models. Some non-Newtonin fluid models such as Maxwell and Casson are

adopted. Stratification and convective boundary conditions are taken into account.

Instead of Fourier’s and Fick’s laws of heat and mass transfer, Cattaneo-Christov

heat and mass fluxes are considered. To enhances the thermal conductivity of the

fluid the model for nanofluid is adopted.

1.2 Thesis Contributions

In this thesis, numerical simulation of unsteady fluid flow between two parallel

plates has been preformed. The solutions are obtained by employing the the shoot-

ing method. Initially, we consider the influence of entropy generation and Casson

fluid on the unsteady squeezing flow. Then the impact of entropy generation and
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Cattaneo-Christov heat flux past through a Riga plate was examined. Further-

more, upper convected Maxwell and Cattaneo-Christov double diffusion has been

analyzed. At the end, micropolar nanofluid is discussed. The tables for Nusselt

number, skin friction and Sherwood number are presented against different values

of the governing parameters. The behaviour of different governing parameters are

exhibited through the graphs for velocity, temperature and concentration. Fur-

thermore, the behaviour of the entropy generation and Bejan number have been

investigated under the impact of different physical parameters.

1.3 Thesis Outline

This thesis is further subdivided in the following way.

The basic definitions, governing laws for fluid flows, continuity equation, momen-

tum equation, concentration equation, Fourier’s law, Cattaneo Christov heat and

mass flux are discussed in Chapter 2. For upper convected Maxwell fluid, tensor

analysis is carried out. The shooting method is discussed in detail, with the help

of an example.

The unsteady Casson fluid flow and Cattaneo-Christov heat and mass flux with the

convective boundary conditions have been discussed in Chapter 3. The govern-

ing PDEs are formulated into ODEs by similarity transformation. The formulated

boundary value problem is solved by applying the shooting technique. This work

is published in “The European Physical Journal Plus”, Vol. 134, No. 1, Pages

33-43, 2019.

Unsteady squeezing flow past a Riga plate with entropy generation and Cattaneo

Christov heat flux is considered in Chapter 4. Similarity transformations are used

to change the system of partial differential equations into ordinary one. Then we
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applied the shooting technique to solve the system. This work has been published

in “Bulletin of the Polish Academy of Sciences, Technical sciences”, Vol. 66, No. 3,

2018.

Squeezing flow of upper convected Maxwell nanofluid is investigated in Chapter 5.

Cattaneo-Christov double diffusion is employed. Entropy generation is also dis-

cussed. The partial differential equations are converted into ordinary system of

equations to obtain the numerical solution. This work is published in “Journal of

Nanofluids”, Vol. 8, No. 2, Pages, 420-429, 2019.

The unsteady squeezing micropolar nanofluid flow between two parallel plates with

the Buongiorno’s model is studied in Chapter 6. The laws of fluid motions are

in the form of PDEs. These PDEs are converted into ODEs by similarity trans-

formation. The solution of the ODEs is obtained through the shooting method.

The conclusion along with a discussion for the future work is presented in Chap-

ter 7.



Chapter 2

Basic Governing Laws and

Solution Methodology

The basic laws governing the mathematical models are discussed in this chapter.

Heat flux models along with the non-Newtonian fluid models are presented. So-

lution methodology is briefly discussed. The shooting method has been explained

through an example.

2.1 Fundamental Laws

2.1.1 Law of Conservation of Mass

The expression for law of conservation of mass according to [85] is as follows: “For

any fluid, conservation of mass is expressed by the scalar equation,

∂ρ

∂t
+∇. (ρV) = 0, (2.1)

where ρ is the density and V is the velocity of the fluid. Hence a velocity pro-

file represents an admissible (real) flow, if and only if it satisfies the continuity

13
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equation. For incompressible fluids, Eq. (2.1) reduces to

∇.V = 0, (2.2)

In Cartesian coordinates

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.3)

Here, u, v and w are the velocity components along x, y and z direction respec-

tively.”

2.1.2 Law of Conservation of Momentum

Momentum equation is stated as [85] “For any fluid, the momentum equation is,

ρ
DV

Dt
= ∇.τ + ρb, (2.4)

The Cauchy stress tensor for an incompressible flow is τ = −pI + S in which p is

the pressure, I is the identity tensor, S is the extra stress tensor, b is the body

force and D
Dt

is the material time derivative. The Cauchy stress tensor and the

velocity field are 
σxx τxy τxz

τyx σyy τyz

τzx xzy σzz

 ,

V = [u(x, y, z, t) , v(x, y, z, t), w(x, y, z, t)] ,

where σxx, σyy and σzz are the normal stresses, τxy, τxz, τyx, τyz, τzx τzy are shear

stresses and u, v, w are the velocity components along the x, y and z direction

respectively. Eq. (2.4) in component form yields

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
=
∂(σxx)

∂x
+
∂(τxy)

∂y
+
∂(τxz)

∂z
+ ρbx, (2.5)
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ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=
∂(τyx)

∂x
+
∂(σyy)

∂y
+
∂(τyz)

∂z
+ ρby, (2.6)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=
∂(τzx)

∂x
+
∂(τzy)

∂y
+
∂(σzz)

∂z
+ ρbz, (2.7)

where, bx, by and bz show the components of body force along the x, y and z-axes,

respectively. The above equations for two dimensional flow become

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
=
∂(σxx)

∂x
+
∂(τxy)

∂y
+ ρbx, (2.8)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
=
∂(τyx)

∂x
+
∂(σyy)

∂y
+ ρby.” (2.9)

2.1.3 Energy Equation (Conservation Law of Energy)

Conservation of thermal energy is expressed by [85]:

“ρ

[
∂U

∂t
+ V.∇U

]
= [τ : ∇V + p∇.V] +∇(k1∇T )± Ḣr, (2.10)

where U is the internal energy, Ḣr is the heat of reaction and : is the double dot

product. According to the internal energy, dU = CvdT , Eq. (2.10) becomes,

ρCv

[
∂T

∂t
+ V.∇T

]
= [τ : ∇V + p∇.V] +∇(k1∇T )± Ḣr, (2.11)

For heat conduction in solids, when V = 0, ∇V = 0, and Cv = C, the resulting

equation is

ρC
∂T

∂t
= ∇(k1∇T )± Ḣr.

For phase change, the latent heat rate per unit volume must be added as a source

term to the energy equation.”

2.1.4 Mass Transfer with Chemical Reaction

According to [86], “the general equation of mass transfer when accompanied by a

chemical reaction is an unsteady state mass transport equation, that incorporates
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not only diffusion but also the convective mass transport and chemical reaction

contribution. In the two dimensional form, the equation for mass transfer can be

written as follows:

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

(
∂2C

∂x2
+
∂2C

∂y2

)
+Ri, (2.12)

where

u
∂C

∂x
+ v

∂C

∂y
, (2.13)

is the convective transport contribution and D
(
∂2C
∂x2

+ ∂2C
∂y2

)
is the molecular con-

tribution, Ri is the chemical reaction contribution, andD is the diffusion coefficient

of the liquid.”

2.2 Heat Flux Models

2.2.1 Fourier’s Law

According to [87], “Governing rate equation for conduction is given by Fourier’s

law. This is an empirical law based on the experimental observation of Biot, but

formulated by the French mathematician and physicist, Fourier in 1822. It states

that the rate of heat flow by conduction in a given direction is proportional to the

area normal to the direction of the heat flow and to the gradient of temperature

in the direction. Mathematically,

q1x = −k1A
dT

dx
. (2.14)

here q1x is the rate of heat transfer in the x-direction, A is the area normal to the

direction of heat flow, dT
dx

is the temperature gradient in the x-direction.”
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2.2.2 Cattaneo-Christov Heat Flux [32, 88]

“To resolve the paradox associated with Fourier’s law. Cattaneo proposed the

model in 1948 known as Maxwell-Cattaneo (MC) model. Cattaneo inserted re-

laxation time in Fourier’s relation which characterizes the time necessitated for

heat conduction to establish in a volume element when temperature gradient is

imposed across it. Mathematical expression is:

q1 + λ1
∂q1

∂t
= −k1∇T, (2.15)

where λ1 is the thermal relaxation time, q1 is the heat flux and k1 is the thermal

conductivity.

In 2009 Christov done incredible modification in Cattaneo-Maxwell model. He

replaced the ordinary derivative with upper convected derivatives. After this mod-

ification of MC model, the main advantage is that one can eliminate q1 in order to

obtain one equation of temperature. Cattaneo-Christov heat flux theory for fluids

is defined as

q1 + δE1

[
∂q1

∂t
+ V.∇q1 − q1.∇V

]
= −k1∇T.” (2.16)

2.3 Classification of Fluids

According to the [89] “An important parameter that characterizes the behavior of

fluids is viscosity because it relates the local stresses in a moving fluid to the rate

of deformation of the fluid element. When a fluid is sheared, it begins to move at

a rate of deformation inversely proportional to viscosity.

To better understand the concept of shear viscosity we assume the model consists

of two solid parallel plates are set on the top of each other with a liquid film of

thickness Y between them. The lower plate is at rest and the upper plate can be

set in motion by a force F resulting in velocity V. The movement of the upper

plate first sets the immediately adjacent layer of liquid molecules into motion, this
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layer transmits the action to the subsequent layers underneath it because of the

intermolecular forces between the liquid molecules.

The applied force act on an area, A, of the liquid surface, inducing a shear stress(
F
A

)
. The displacement of liquid at the top plate, ∆x, relative to the thickness of

the film is called shear strain ∆x
L

, and the shear strain per unit time is called the

shear rate U
Y

. If the distance Y is not too large or the velocity V is too high, the

velocity gradient will be a straight line. For large class of fluid,

F ∼ AV

Y
,

From above V
Y

can be replaced by the velocity gradient dV
dy

. If a constant of

proportionality is introduced, the shearing stress between any two thin sheets of

fluid may be expressed by:

τ =
F

A
= µ

V

Y
= µ

dV

dy
, (2.17)

In transposed from it serves to define the proportionality constant

µ =
τ
dV
dy

. (2.18)

which is called the dynamic coefficient of the viscosity. The dimension of dynamic

viscosity is force per unit area divided by velocity gradient or shear rate. In

the metric system, the dimension of dynamic viscosity is Pa.s. In general, fluids

are classified into two main types, namely, Newtonian and non-Newtonian fluids.

These two types of fluids cover most of the applications of industry, engineering,

and biomedical sciences.

2.3.1 Newtonian Fluid

A fluid for which the constant of proportionality (the viscosity) does not change

with rate of deformation is said to be a Newtonian fluid and represented by a
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straight line. The slope of this line is determine by the viscosity. Examples of

Newtonian fluids include water, air, glycerol, oils, alcohol, etc.

2.3.2 Non-Newtonian Fluid

There is a certain class of fluids, called non-Newtonian fluids, in which the viscos-

ity varies with the shear rate. Typical representation of non-Newtonian fluids are

liquids which are formed either partially or wholly of polymers or two phase mate-

rials. Examples of non-Newtonian fluids include salt solutions, molten polymers,

ketchup, custard, starch suspensions, honey, paints, blood, and synovial fluid, etc.

There are various types of non-Newtonian fluid. Pseudoplastic fluids are those

fluids for which viscosity decreases by increasing the shear rate and hence are of-

ten referred to as shear thinning fluids. These fluids are found in many real fluids

such as polymer melts and solutions. When the viscosity increases with shear rate

the fluid are referred to as dilatant or shear thickening fluids. Some fluids do not

flow unless the stress applied exceeds a certain value referred to as the yield stress.

These fluid are termed fluids with yield stress or viscoplastic fluids. There are

numerous non-Newtonian fluid models that have been developed and studied in

the literature. However, two of the commonly used and related to our thesis is the

Maxwell and Casson fluid models.”

2.3.2.1 Upper Convected Maxwell Fluid

“It is a simple subclass of the rate type fluids which elaborates the features of

linear viscoelastic fluids having only the relaxation time [90]. The extra stress

tensor S for a Maxwell fluid and the Cauchy stress tensor τ are given by

(
1 + λ1

D

Dt

)
S = µA1, (2.19)

τ = −pI + S, (2.20)
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in which λ1 is the relaxation time, D
Dt

the covariant differentiation, µ denotes

the dynamic viscosity and A1 the first Rivlin-Erickson tensor. The first Rivlin-

Erickson tensor and contravariant convected derivative D
Dt

are respectively defined

as

A1 = ∇V + (∇V)∗ , (2.21)

DS

Dt
=
dS

dt
− SL− SL∗, (2.22)

The equations which governs the incompressible flow are

∇.V = 0, (2.23)

ρ
dV

dt
= −∇p+∇.S, (2.24)

where ρ is the density, V is the velocity. We have to eliminate the extra stress

tensor S from Eq. (2.19) and Eq. (2.24). From Eq. (2.24) one can write

ρ

(
1 + λ1

dV

dt

)
DV

Dt
= −

(
1 + λ1

D

Dt

)
∇p+

(
1 + λ1

D

Dt

)
(∇.S) , (2.25)

ρ

(
1 + λ1

D

Dt

)
DV

Dt
= −

(
1 + λ1

D

Dt

)
∇p+∇.

(
1 + λ1

D

Dt

)
S, (2.26)

ρ

(
1 + λ1

D

Dt

)
DV

Dt
= −

(
1 + λ1

D

Dt

)
∇p+ µ∇.A1, (2.27)

Component form of the two dimensional steady flow of Maxwell fluid can be rep-

resented by the following expression:
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u
∂u

∂x
+ v

∂u

∂y
+ λ1

(
u2∂

2u

∂x2
+ v2∂

2u

∂y2
+ 2uv

∂2u

∂x∂y

)
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2.28)

u
∂v

∂x
+ v

∂v

∂y
+ λ1

(
u2 ∂

2v

∂x2
+ v2∂

2v

∂y2
+ 2uv

∂2v

∂x∂y

)
= ν

(
∂2v

∂x2
+
∂2v

∂y2

)
.” (2.29)

2.3.3 Casson Fluid [91]

“Among enormous mathematical models of blood rheology proposed in the past,

the Casson fluid has been widely used as the non-Newtonian fluid model to rep-

resent the suspension of RBCs in the core region of blood flow in small vessels

since the Casson fluid model can predict satisfactorily the flow behavior of a non-

Newtonian fluid with yield stress using only a single model parameter. The Casson

fluid model could be the best description of blood when flows through narrow ar-

teries at low shear rate and it can be applied to human blood over a wide range

of hematocrits and shear rates. The mathematical expression of the Casson fluid

model is as follows:

√
τij =

0 for τ ≤ τ0,

√
τ0 +

√
µ
√
γ̇ij for τ > τ0,

(2.30)

where τij is the deviatoric stress tensor, τ0 is the yield stress, µ is the dynamic

viscosity of the Casson fluid and γ̇ij is the shear rate.”

2.4 Principle of Entropy Generation [92]

“The concepts of entropy generation and irreversibility, derived from the second

law of thermodynamics, were introduced by the German physicist Rudolf Clausius
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in 1856. According to the second law of thermodynamics, the entropy of a closed

system always increases with the time. It is constant in the case when a process

is reversible or in equilibrium. The enhancement in the entropy elucidates the

irresponsibility of the natural processes.

Entropy is the thermodynamic characteristics just like pressure and temperature.

The change in a closed system subject to entropy is expressed by the ratio q1

T
, where

q1 is net heat transfer and T is temperature. Entropy increases as T decreases

or q1 increases. In a reversible process, a small increase in the entropy dS of a

system is defined as a ratio of the small transfer of heat δq1 to a closed system

divided by the common temperature T of the system and the surroundings which

supply the heat, i.e.,

dS =
δq1

T
, (2.31)

Eq. (2.31) is valid for an ideal, closed and reversible process. For an actually

possible small process in an isolated system, the second law requires that the

above equation changes to an inequality given by

dS >
δq1

T
”. (2.32)

2.5 Solution Methodology

2.5.1 Shooting Method [93]

“In a shooting method, the missing initial condition at the initial point of the

interval is assumed, and the differential equation is then integrated numerically as

an initial value problem. The accuracy of the assumed missing initial condition is

then checked by comparing the calculated value of the dependent variable at the

terminal point with its given value here. If a difference exist, another value of the

missing initial condition must be assumed and the process is repeated. This process

is continued until the agreement between the calculated and the given condition
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at the terminal point is within the specified degree of accuracy. One naturally

inquires whether or not there is a systematic way of finding each succeeding value

of the missing initial point. Consider the second order differential equation

d2y

dx2
= f

(
x, y,

dy

dx

)
, (2.33)

subject to the boundary conditions

y (0) = 0, y (L) = A. (2.34)

First, Eq. (2.33) is written in terms of a system of two first order differential

equations. By denoting y by y1 and y′1 by y2.

y′1 = y2, y1 (0) = 0,

y′2 = f (x, y1, y2) y1 (L) = A.

 (2.35)

We denote the missing initial condition y2 (0) by s, to have

y′1 = y2, y1 (0) = 0,

y′2 = f (x, y1, y2) y2 (0) = s.

 (2.36)

Now the problem is to find s such that the solution of Eq. (2.35) satisfies the

boundary condition y (L) = A. In other words, if the solutions of the initial value

problem are denoted by y1 (x, s) and y2 (x, s), one searches for the value of s such

that

y1 (L, s)− A = φ (s) = 0. (2.37)

For Newton’s method, the iteration formula for s is given by

sn+1 = sn − φ (sn)

dφ (sn)/ds
, (2.38)
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sn+1 = sn − y1 (L, sn)− A
∂y1 (L, sn)/∂s

. (2.39)

To find the derivative of y1 with respect to s, Eqs. (2.35), (2.33), and (2.36) are

differentiated with respect to s, and we get

dy1

ds
= y3,

dy2

ds
= y4. (2.40)

This process results in the following initial value problem.

y′3 = y4, y3 (0) = 0,

y′4 =
∂f

∂y1

y3 +
∂f

∂y2

y4, y4 (0) = 1.

 (2.41)

Now solving the Eq. (2.41), the value of y3 at L can be computed. This value is

actually the derivative of y1 with respect to s computed at L. Setting the vale of

y3 (L, s) in Eq. (2.39), the modified value of s can be achieved. This new value of

s is used to solve the Eq. (2.36) and the process is repeated until the value of s is

within a described degree of accuracy.”

2.5.2 Example [94]

“Let us consider the boundary value problem having order four.

yiv − 2yy′′ = 0, 0 ≤ x ≤ 1, (2.42)

with the boundary conditions

y (0) = 1, y′ (0) = 0, y (1) = 0, y′ (1) = 0. (2.43)

To convert Eq. (2.42), into a system of first order equations, the following notations

have been introduced

y = y1, y′ = y2, y′′ = y3, y′′′ = y4. (2.44)
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The given boundary value problem is then converted to the following form

y′1 = y2, y1 (0) = 0,

y′2 = y3, y2 (0) = 0,

y′3 = y4, y1 (1) = 0,

y′4 = 2y1y3, y2 (1) = 0.


(2.45)

Denote the missing initial conditions y3 (0) and y4 (0) by Γ and Λ respectively, to

have the following initial value problem

y′1 = y2, y1 (0) = 0,

y′2 = y3, y2 (0) = 0,

y′3 = y4, y1 (1) = Γ,

y′4 = 2y1y3, y2 (1) = Λ.


(2.46)

Now, solving the above initial value problem by using the RK-4 method over the

interval [0, 1] . The solution obtained by the RK-4 method is then analyzed for

y1 and y′1. If these solutions meet the boundary condition given in Eq. (2.42),

then the problem is solved. However, usually this does not happen in the first

go. So, we have to refine the initial guesses iteratively. For this purpose we use

the Newtons method to solve the following system of nonlinear algebraic equations.

y1 (x,Γ,Λ) = 0,

y2 (x,Γ,Λ) = 0.

 (2.47)

The iterative scheme for the Newton’s method for the system of non-linear equa-

tions (2.46), is given by

Γn+1

Λn+1

 =

Γn

Λn

−
 ∂
∂Γ
y1 (1,Γn,Λn) ∂

∂Λ
y1 (1,Γn,Λn)

∂
∂Γ
y2 (1,Γn,Λn) ∂

∂Λ
y2 (1,Γn,Λn)

−1 y1 (1,Γn,Λn)

y2 (1,Γn,Λn)

 .
(2.48)

For simplification, use the following notations,
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∂y1

∂Γ
= y5,

∂y2

∂Γ
= y6,

∂y3

∂Γ
= y7,

∂y4

∂Γ
= y8,

∂y1

∂Λ
= y9,

∂y2

∂Λ
= y10,

∂y3

∂Λ
= y11,

∂y4

∂Λ
= y12.


(2.49)

To find the Jacobin matrix, differentiating the system of Eqs. (2.46) first with

respect to Γ and then with respect to Λ and using the new notations, we get

y′5 = y6, y5 (0) = 0,

y′6 = y7, y6 (0) = 0,

y′7 = y8, y7 (0) = 1,

y′8 = 2 (y1y7 + y3y5) , y8 (0) = 0,

y′9 = y10, y9 (0) = 0,

y′10 = y11, y10 (0) = 0,

y′11 = y12, y11 (0) = 1,

y′12 = 2 (y1y11 + y3y9) , y12 (0) = 1.



. (2.50)

Solve the above system of equations (2.50) by the RK-4 method and put the

computed values of y5, y9, y6 and y10 in (2.48). This gives the modified initial

guesses. This procedure is repeated until we achieve the solutions with required

accuracy”.



Chapter 3

Entropy Generation and

Unsteady Casson Fluid Flow

Squeezing between Two Parallel

Plates Subject to

Cattaneo-Christov Heat and

Mass Flux

3.1 Introduction

In this chapter, unsteady two-dimensional Casson fluid flow that influences entropy

generation on the squeezing flow is numerically investigated. Instead of Fourier’s

and Fick’s laws, Cattaneo-Christov model for heat and mass flux is adopted. Con-

servation laws for mass, momentum, energy and concentration describe attributes

of fluid flow. The nonlinear PDEs are non-dimensionalized to the ODEs by using

a suitable similarity transformation. Shooting method is employed to get the nu-

merically solutions of system of ODEs. A built-in MATLAB function bvp4c has

27
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been utilized to validate the results. The numerical values of mass transfer rate

and the skin friction coefficient are analyzed by collecting them in tabular form.

The profiles for temperature, velocity and concentration are plotted against the

influential parameters used in the study. A comparison for the present and already

published results has been shown in the form of tables.

3.2 Problem Formulation

3.2.1 The Problem Configuration

This portion includes the mathematical model of unsteady, two-dimensional, vis-

cous, incompressible, Casson fluid flow between two parallel plates (see Figure 3.1).

The plate at lower surface is located at y = 0, having stretchable velocity Uw =

ax
1−γ1t . Furthermore, the upper plate is situated at y = h (t) =

√
ν(1−γ1t)

a
, squeezing

with the velocity vh = dh
dt

. Heat and mass flux through Cattaneo-Christov model

[33] have been considered. Heat flux q1 and mass flux J1 [95] are described by

q1 + δE1

[
∂q1

∂t
+ V.∇q1 + (∇.V) q1 − q1.∇V

]
= −k1∇T, (3.1)

J1 + δC1

[
∂J1

∂t
+ V.∇J1 + (∇.V) J1 − J1.∇V

]
= −DB∇C. (3.2)

In Eqs. (3.1) and (3.2) when δE1=δC1=0, classical Fourier’s and Ficks’s laws are

presented. Using ∇.V = 0 in the above equations, the Eqs. (3.1) and (3.2) are

converted into the following forms

q1 + δE1

[
∂q1

∂t
+ V.∇q1 − q1.∇V

]
= −k1∇T, (3.3)

J1 + δC1

[
∂J1

∂t
+ V.∇J1 − J1.∇V

]
= −DB∇T. (3.4)
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Figure 3.1: Schematic illustration of the squeezing flow.

3.2.2 Governing Equations

The governing equations of continuity, momentum, energy and concentration are

given as follows [21]

ux + vy = 0, (3.5)

ut + uux + vuy =
1

ρ
Px + ν

(
1 +

1

γ

)
(uxx + uyy) , (3.6)

vt + uvx + vvy =
1

ρ
Py + ν

(
1 +

1

γ

)
(vxx + vyy) , (3.7)

Tt + UTx + V Ty + λE1ΩE1 = αTxx + Tyy −
1

(ρcp)
q̂ry, (3.8)

Ct + UCx + V Cy + λC1ΩC1 = DB (Cxx + Cyy)−K1 (C − Cf ) . (3.9)

In Eqs. (3.8)-(3.9) ΩE1 and ΩC1 , are formulated as

ΩE1 = Ttt + uuxTx + vvyTy + U2Txx + v2Tyy + utTx + 2uvTxy

+ 2uTxt + uvxTy + vtTy + vUyTx + 2V vTyt. (3.10)

ΩE1 = Ctt + uuxCx + vvyCy + u2Cxx + v2Cyy + utCx + 2uvCxy

+ 2uCxt + uvxCy + vtCy + vUyCx + 2V Cyt. (3.11)
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The corresponding boundary conditions for the governing PDEs are given as:

u (x, y, t) =
ax

1− γ1t
, v (x, y, t) = 0,

− k1Ty = h2(Th − T ), −DBCy = h3(Ch − C), at y = 0,

u (x, y, t) = 0, v (x, y, t) = vh = ht, T = Tf , C = Cf at y = h (t) .

 (3.12)

The thermal radiation heat flux [96] is stated according to the Rosseland approx-

imation,

q̂r =
−4δ̂e

3β̂R
T 4
y , (3.13)

where δ̂e represents Stefan-Boltzmann constant and β̂R represents as absorption

coefficient. Taylor’s series is applied to expand T 4 about temperature Th. Omitting

higher terms, one obtains

T 4 = 4TT 3
h − 3T 4

h . (3.14)

3.2.3 Dimensionless Equations

Following transformations [56] have been introduced to convert Eqs. (3.5)-(3.9)

into the nondimensional form:

Ψ =

√
aν

1− γ1t
xf (η) , θ(η) =

T − Tf
Th − Tf

, u = Ψy = Uwf
′(η)

v = −Ψx = −
√

aν

1− γ1t
f (η) , η =

y

h(t)
, φ(η) =

C − Cf
Ch − Cf

.

 (3.15)

Equivalently, Eq. (3.5) is fulfilled and the other Eqs. (3.6)-(3.9) acquire the form

(
1 +

1

γ

)
f ′′′′ + ff ′′′ − f ′f ′′ − Sq

2
(3f ′′ + ηf ′′′) = 0, (3.16)

(1 +Rd) θ′′ + Pr(fθ′ − η

2
Sq θ′)− Prβe(ff ′θ′ + f 2θ′′ − ηSq fθ′′)

− Pr

4
ηβeSq

2(3θ′ + η2θ′′) +
Pr

2
ββe(ηf

′θ′ + 3fθ′) = 0,

 (3.17)
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φ′′ + Pr Sc

(
fφ′ − Sq

2
ηφ′ −Krφ

)
− Pr Scβc

(
ff ′φ′ + f 2φ′′ − Sqηfφ′′

)
− η

4
Sc PrβcSq

2 (3φ′ + ηφ′′) +
Pr

2
Scβc Sq (3fφ′ + f ′φ′η) = 0.


(3.18)

By using the similarity transformation Eq. (3.15), the boundary conditions Eq. (3.12)

are as follows:

f(0) = 0, θ′(0) = Bi1 (1− θ(0)) ,

f ′(0) = 1, φ′(0) = Bi2 (1− φ(0)) ,

f(1) =
Sq

2
, f ′(1) = 1, θ(1) = 0, φ(1) = 0.

 (3.19)

Different dimensionless parameters occurring in Eqs. (3.16)-(3.19), are expressed

as

Sq =
γ1

a
, Rd =

16T 3
h σ̂e

3β̂Rk1

, P r =
ν

α
, Kr =

K1(1− γ1t)

a
,

Sc =
α

DB

, Bi1 =
−h2

k1

√
ν(1− γ1t)

a
, Bi2 =

−h3

k1

√
ν(1− γ1t)

a
,

βe =
aλE1

1− γ1t
, βc =

aλC1

1− γ1t
.

3.2.4 Physical Quantities

The important quantities of interest, heat and mass transfer rate, the skin friction

coefficient, are constructed as:

Cf =
τw
ρU2

w

, Shx =
xqm

D(Ch − Cf )
, Nux =

xqw
k1(Th − Tf )

,

where τw represents the skin friction, qm denotes concentration flux and qw denotes

the heat flux. The above mentioned quantities are stated as

τw = µ (uy)y=h(t) , qm = −D (Cy)y=h(t) , qw = −
(
k1 +

16T 3
h σ̂e

3β̂R

)
(Ty)y=h(t) .
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By employing appropriate similarity transformation, the dimensionless forms of

the skin friction, heat and mass transfer rates are:

CfRe
1/2
x = f ′′(1), ShxRe

−1/2
x = −φ′ (1) , NuRe−1/2

x = −(1 +Rd)θ′ (1) .

The local Reynolds number is interpreted as Rex =
xUw
ν

.

3.2.5 Entropy Generation Analysis

According to [76], the entropy generation is defined as

S ′′′gen =
k1

T 2
h

[
(Ty)

2 +
16T 3

h σ̂e

3β̂Rk1

(Ty)
2

]
+

(
1 +

1

γ

)
µ

Th
(uy)

2 +

[
RD

Ch
(Cy)

2 +
RD

Th
(TyCy)

]
.

(3.20)

From above, the first term indicates heat transfer (also known as heat transfer

irreversibility HTI), second term describes fluid friction (also known that fluid

friction irreversibility FFI) and the third term is due to mass transfer (also known

as the mass transfer irreversibility MTI). The characteristic entropy generation is

described as

S ′′′0 =
k1 (Tf − Th)2

h2T 2
h

. (3.21)

The non dimensional form of the entropy generation is obtained after using the

similarity transformation

NG = Re (1 +Rd) θ′2 (η) +

(
1 +

1

γ

)
ReBr

Ω
f ′′2 (η) +Reλ1

(χ
Ω

)2

φ′2 (η)

+Reλ1

(χ
Ω

)
θ′ (η)φ′ (η) , (3.22)

where

Re =
µh2

ν
,Br =

µUw
2

k1 (Tf − Th)
,Ω =

(Tf − Th)
Th

, χ =
(Cf − Ch)

Ch
, λ1 =

RDCh
k1

.
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Another dimensionless parameter, Bejan number [97] is considered. It gives the

ratio of heat and mass transfer irreversibility to the total entropy generation

Be =
HTI +MTI

NG
.

3.3 Solution Methodology

To solve the Eqs. (3.16)-(3.18) along with the boundary conditions (3.19), a nu-

merical scheme named as shooting method [93] is used. We denote f → Γ1, Γ′1 →

Γ2, Γ′2 → Γ3, Γ′3 → Γ4, θ → Γ5, θ′ → Γ6, φ → Γ7 and φ′ → Γ8. The boundary

value problem (3.16)-(3.19) is converted to the following initial value problem.

Γ′1 = Γ2,

Γ′2 = Γ3,

Γ′3 = Γ4,

Γ′4 =
γ
[
Γ2Γ3 − Γ1Γ4 + Sq

2
(3Γ3 + ηΓ4)

]
1 + γ

,

Γ′5 = Γ6,

Γ′6 =

pr

 (
Sq
2
ηΓ6 − Γ1Γ6

)
+βe

(
3
4
Sq2ηΓ6 + Γ1Γ2Γ6 − Sq

2
ηΓ2Γ6 − 3

2
SqΓ1Γ6

)


1 +Rd− 1
4
PrβeSq2η2 − PrΓ2

1βe + PrSqβeηΓ1

,

Γ′7 = Γ8,

Γ′8 =

PrSc

 (
−Γ1Γ8 + Sq

2
ηΓ8 +KrΓ7

)
+βc

(
3
4
ηSq2Γ8 + Γ1Γ2Γ8 − Sq

2
ηΓ2Γ8 − 3

2
SqΓ1Γ8

)


1− 1
4
Pr Sc βc Sq2η2 − Pr Sc Γ2

1βc + Pr Sc η Sq βc Γ1

.

subject to the initial conditions

Γ1 (0) = 0, Γ2 (0) = 1, Γ3 (0) = ξ0, Γ4 (0) = ξ1, Γ5 (0) = ξ2,

Γ6 (0) = −Bi1 (1− Γ5 (0)) , Γ7 (0) = ξ3, Γ8 (0) = −Bi2 (1− Γ7 (0)) .


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The system of initial value problem is solved by adopting the RK4 method after

the missing initial conditions are chosen. To refine the above missing conditions

ξ0, ξ1, ξ2 and ξ3, we employ the Newton’s method. The procedure is repeated

as long as we meet the specified convergence criteria. The numerical results are

achieved with ε = 10−6.

max
{∣∣∣Γ1 (1)− Sq

2

∣∣∣, ∣∣∣Γ2 (1)
∣∣∣, ∣∣∣Γ5 (1)

∣∣∣, ∣∣∣Γ7 (1)
∣∣∣}< ε

3.3.1 Code Validation

Pourmehranet al. [98] Present results
Pr Ec −θ′ (1) bvp4c Shooting
1 1 3.026324 3.02632992 3.02632355

0.5 1.522368 1.52236785 1.52236746
2 5.980530 5.98053038 5.98053038
5 14.439413 14.43941311 14.43941313

1.2 3.631595 3.63159591 3.63158856
2 6.052647 6.05265985 6.05264709
5 15.131617 15.13161775 15.13161774

Table 3.1: The Comparison of Nusselt number when S = 0.5, φ = 0.0 and
δ = 0.1.

To validate the MATLAB code for the shooting method, the numerical results

have also been computed by the MATLAB built-in function bvp4c. For further

reliability of our results, we have also reproduced the Nusselt number reported by

Pourmehran et al. [98]. The present computed results in Table 3.1 reveals a good

agreement with those of [98].

3.4 Results and Discussions

Numerical solution of mathematical model (3.16)-(3.19) is demonstrated in this

section for different emerging parameters. We first present the numerical results

for some parameters of interest in the form of tables followed by the discussion on
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the graphical behavior of certain profiles.

Shooting method bvp4c

Sq Sc Rd Kr γ −f ′′(1) −φ′(1) −f ′′(1) −φ′(1)

0.5 0.5 0.2 0.2 0.8 4.657236 0.151922 4.657236 0.151922

1.0 3.173596 0.151922 3.173596 0.151922

1.2 2.560514 0.151943 2.560514 0.151943

1.5 1.620368 0.151975 1.620368 0.151975

1 4.657236 0.138337 4.657236 0.138337

1.5 4.657236 0.125959 4.657236 0.125959

2 4.657236 0.114647 4.657236 0.114647

0.5 4.657236 0.151873 4.657236 0.151873

1 4.657236 0.151873 4.657236 0.151873

1.5 4.657236 0.151873 4.657236 0.151873

0.3 4.657236 0.145029 4.657236 0.145029

0.5 4.657236 0.132209 4.657236 0.132209

1.0 4.657236 0.104712 4.657236 0.104712

0.7 4.637727 0.151873 4.637727 0.151873

0.5 4.598584 0.151873 4.598584 0.151873

0.3 4.559275 0.151872 4.559275 0.151872

Table 3.2: Values of skin friction and Sherwood number, when Pr = 1, βe = 0.1,
βc = 0.1, Bi1 = Bi2 = 0.2.

The impact of squeezing parameter Sq, Schmidt number Sc, Radiation parameter

Rd, chemical reaction Kr and Casson parameter γ on the skin friction and mass

transfer rate is displayed in Table 3.2. It demonstrates that as squeezing param-

eter Sq enhances, the skin friction grows and Sherwood number decreases. As

the values of squeezing parameter increase, fluid at the boundary near the upper

wall gets accelerated, thus a decreasing behavior in the skin friction coefficient is

observed. With the augmentation of squeezing parameter, the rate of mass trans-

fer reduces. This exhibits that the concentration of nanofluid particles increases
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as the fluid is squeezed. Sherwood number shows a decline behavior as Sc rises.

Higher Schmidt number leads to higher dynamic viscosity. This dynamic viscos-

ity has a negative influence on the mass transfer rate of nanofluid as Sherwood

number decreases. Table 3.2 demonstrated that Sherwood number is reduced at

higher rate of chemical reaction. This is consistent with physical explanation that

during the greater chemical reaction more mass is consumed. Table 3.2 exhibits

that as Casson fluid parameter γ increases, the values of skin friction decrease.

The physical explanation to this attitude is that for developing values of Casson

parameter, viscosity of fluid increases which in return halts the flow, thus less

friction is generated at the surface.

3.4.1 Outcome of Various Parameters on Velocity and Tem-

perature

Figures 3.2-3.9, demonstrate the influence of different parameters on velocity and

temperature. In Figure 3.2 the velocity profile demonstrates the influence of

squeezing parameter Sq > 0. As squeezing parameter escalates, the top plate

shifts more quickly towards the bottom plate, which consequently enhances the

velocity profile. Figure 3.3 displays the variation in squeezing parameter Sq < 0
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Figure 3.2: Impact of positive Sq on f ′.

on velocity profile. The figure demonstrates that as the values of Sq grow, the
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top plate moves away from the bottom one. This motion of plate leaves a gap

which is filled due to upward fluid movement, resulting in decline in velocity. Fig-
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Figure 3.3: Impact of negative Sq on f ′.

ure 3.4 depicts the impact of Casson fluid parameter γ on velocity. As γ grows,

velocity graph shows the decreasing behavior in the interval 0 ≤ η ≤ 0.3, whereas

the velocity in interval 0.3 ≤ η ≤ 0.7 escalates. The impact of thermal radiation
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Figure 3.4: Impact of γ on f ′.

parameter Rd on temperature is discussed in Figure 3.5, which demonstrates that

as Rd increases, an escalation in temperature occurs. Figure 3.6 exhibits the in-

fluence of Prandtl number Pr on the temperature profile, higher prandtl number

causes a decline in temperature profile. For higher Prandtl number, convection is

dominated in transferring energy from the channel. As a result, temperature de-

clines. Figure 3.7 demonstrates the impact of Biot number Bi1 on the temperature.
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Figure 3.5: Impact of Rd on θ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(
)

Rd=0.2, =0.8, Kr=0.2,
Sq=0.2, 

c
=

e
=0.1,

Bi
1
=Bi

2
=0.2, Sc=0.5.

Pr=0.0, 3.0, 6.0, 9.0.

Figure 3.6: Impact of Pr on θ.

An increment in temperature is observed as Biot number escalates. Physically for

growing Biot number, there is a depletion in thermal resistance. Due to an increase

in convection, surface temperature rises. In Figure 3.8 the impact of temperature

relaxation parameter βe on temperature is displayed, this figure exhibits that as

thermal relaxation parameter enhances, temperature exceeds. Physically, this hap-

pens because as this parameter βe increases, fluid particles transfer heat to the

neighboring particles, which results an enhancement in temperature. Figure 3.9

exhibits the influence of squeezing parameter Sq on the temperature profile. The

squeezing of the fluid escalates the flow temperature which the graph clearly shows.
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Figure 3.7: Impact of Bi1 on θ.
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Figure 3.8: Impact of βe on θ.
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Figure 3.9: Impact of Sq on θ.
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3.4.2 Influence of Various Parameters on Concentration

Figure 3.10-3.14 exhibits the impact of different parameters on concentration. The

consequence of Schmidt number Sc on concentration is displayed in Fig. 3.10. Con-

centration profile decays with rising Schmidt number. Increase in Schmidt number
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Figure 3.10: Impact of Sc on φ.

causes less mass diffusivity. Due to this, concentration profile decays. Figure 3.11

gives a view of the change in concentration with respect to Biot number Bi2. It is

witnessed that greater Biot number causes an increase in the concentration. Phys-

ically, greater Biot number recommends a deeper penetration of concentration. In
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Figure 3.11: Impact of Bi2 on φ.

Figure 3.12 concentration profile is plotted against the relaxation parameter βc.

A decrease in concentration is observed for higher βc. The effect of chemical reac-

tion Kr on the concentration is plotted through Figure 3.13. It is visualized from
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Figure 3.12: Impact of βc on φ.

figure that with increment in values of chemical reaction, the molecular diffusivity

reduces, which results in decrease of concentration profile. In Figure 3.14 concen-
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Figure 3.13: Impact of Kr on φ.

tration profile declines as the Prandtl number Pr exceeds.

3.4.3 Impact of Different Parameters on Entropy Genera-

tion

In Figures. 3.15-3.22 impact of different parameters on the entropy generation and

Bejan number for Re = 0.1, Ω = 1.0, χ = 0.2, λ1 = 0.2 and βr = 1.0 is displayed.

Figure 3.15 exhibits the impression of the squeezing parameter Sq on NG. The
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Figure 3.14: Impact of Pr on φ.
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Figure 3.15: Impact of Sq on NG.

figure reveals that with an increment in the squeezing parameter, the entropy gen-

eration NG decreases. The entropy is more significant when fluid is closer to the

walls of the channel. Variation in entropy profile NG, with the changing Brinkman

number βr, is observed through Figure 3.16. The figure discloses that Brinkman

number is directly related to NG.

The irreversibility of the fluid friction produces an escalation in entropy. The

influence of Reynolds number Re on NG is demonstrated in Figure. 3.17. It is

witnessed that as Re grows, the entropy generation parameter NG also enhances.

From figure, it can be visualized that there is more disturbance in the fluid move-

ment. An increment in the entropy due to contribution of fluid friction and heat

transfer is observed. Figure 3.18 gives a view of the variation of Casson fluid

parameter γ on NG. For an increasing γ, entropy generation NG is found to
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Figure 3.16: Impact of βr on NG.
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Figure 3.17: Impact of Re on NG.

experience a prominent decay.

Figure 3.19 exhibits the impression of thermal radiation Rd on Bejan number.
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Figure 3.18: Impact of γ on NG.
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As the values of Rd escalate Bejan number also increases.
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Figure 3.19: Impact of Rd on Be.
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Figure 3.20: Impact of γ on Be.
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Figure 3.21: Impact of βr on Be.
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Figure 3.20 represents how the Casson fluid parameter γ affects Bejan number.

Bejan number and Casson fluid parameter are directly related. Figure 3.21 reveals

the impact of the Brinkman number βr on Bejan number. Increment in Brinkman

number is inversely related to Bejan number. Figure 3.22 demonstrates the effect of

temperature parameter Ω on Bejan number. The profile of Bejan number decreases

when values of Ω increase.
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Figure 3.22: Impact of Ω on Be.

3.4.4 Effect of Various Parameters on Nusselt Number

Figures. 3.23-3.27 exhibits the impact of different parameters on Nusselt num-

ber. Figure 3.23 is plotted for Nu against squeezing Sq and thermal radiation

Rd. The graph shows that thermal radiation and squeezing parameters have an

inverse relationship with the Nusselt number. Figure 3.24 examines the impact

of squeezing parameter Sq and Prandtl number Pr on Nu. From the figure it

is demonstrated that Nusselt number is in direct relation with Prandtl number

and squeezing parameter. Impact of squeezing parameter Sq and temperature

relaxation parameter βe on Nu is presented in Figure 3.25. Nusselt number rises

as temperature relaxation parameter escalates. Figure 3.26 depicts the effect of

squeezing parameter Sq and thermal radiation parameter Rd on Nusselt number.

According to this figure, both Prandtl number and thermal radiation parameter

yield an increase in the profile. Figure 3.27 is shown to exhibit effect of Biot num-

ber Bi1 and squeezing parameter Sq on Nusselt number. It can be observed that
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Figure 3.23: Impact of Sq on Nu.
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Figure 3.24: Impact of Pr on Nu.
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Figure 3.25: Impact of βe on Nu.

Nusselt number increases for increasing values of squeezing parameter and Biot

number.
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Figure 3.26: Impact of Rd on Nu.
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Figure 3.27: Impact of Bi1 on Nu.

3.5 Conclusion

This chapter investigated the squeezing flow of Casson nanofluid with the effect

of Cattaneo-Christov heat and mass flux. Entropy generation is also discussed.

Shooting method is used to obtain the solution of the governing equations. Main

findings of analysis are given below:

• An increment in velocity field is observed for greater squeezing parameter

Sq.

• Temperature field is reduced as Prandtl number Pr increases.

• Temperature profile enhances for temperature relaxation parameter βe.
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• A decline in concentration is noticed for greater chemical reaction Kr.

• By increasing the mass relaxation parameter βc, the concentration profile is

increased.

• An enhancement in Schmidt number Sc exhibits a decay in the concentra-

tion.

• Entropy generation NG exhibits decaying behavior as squeezing parameter

Sq increases.

• Casson fluid parameter γ demonstrates decreasing behavior for the velocity

in the region 0 ≤ η ≤ 0.2 whereas, velocity enhances in interval 0.2 ≤ η ≤ 0.7

.



Chapter 4

Entropy Generation and

Squeezing Flow Past a Riga Plate

With Cattaneo-Christov Heat

Flux

4.1 Introduction

The study conducted in this chapter focuses on the effect of two-dimensional un-

steady squeezing flow past a Riga plate with convective heat transfer. Cattaneo-

Christov heat flux model has been considered to examine the heat transfer. Im-

pact of entropy generation on heat transfer has been investigated numerically. The

nonlinear PDEs are non-dimensionalized to ODEs by using a suitable similarity

transformation. To solve the mathematical model, a numerical scheme known

as shooting method is applied. To check the reliability of the obtained results

a built in MATLAB function bvp4c has been utilized. The numerical values of

mass transfer and skin friction under the influence of emerging parameters are an-

alyzed through tables. Velocity, concentration and temperature graphs are plotted

against emerging parameters used in the study. It can be concluded from the study

49
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that as the values of thermal relaxation parameter expand, temperature escalates

and concentration decreases.

4.2 Problem Formulation

4.2.1 The Problem Configuration

We examine the squeezing flow of unsteady, viscous and incompressible two di-

mensional electromagnetohydrodynamic fluid flow between two Riga plates (see

Figure 4.1). The bottom plate which is located at y = 0 has the stretching veloc-

ity Uw = ax
1−γ1t . The top Riga plate is situated at y = h (t) =

√
ν(1−γ1t)

a
. Fluid

is squeezing with the velocity vh = dh
dt

. Cattaneo-Christov model [33] has been

considered instead of Fourier’s law of heat conduction. Here Tf and Th denote the

wall and ambient temperature respectively. Heat flux q1 is taken as [38]

q1 + δE1

[
∂q1

∂t
+ V.∇q1 + (∇.V) q1 − q1.∇V

]
= −k1∇T. (4.1)

Putting δE1 = 0 in Eq. (4.1) reduces it to classical Fourier’s law. By using the

continuity equation ∇.V = 0, the Eq. (4.1) reduces to the following form

q1 + δE1

[
∂q1

∂t
+ V.∇q1 − q1.∇V

]
= −k1∇T. (4.2)

Figure 4.1: Diagram of flow model.
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4.2.2 Governing Equations

The governing partial differential equations for continuity, velocity, temperature

and concentration are given as follows [99]

ux + uy = 0, (4.3)

ut + uux + vuy =
1

ρ
Px + ν (uxx + uyy) +

πj0M0Exp
(−π
b
y
)

8ρ
(4.4)

vt + uvx + vvy =
1

ρ
Py + ν (vxx + vyy) (4.5)

Tt + uTx + vTy + λE1ΩE1 = α (Txx + Tyy)−
1

(ρcp)
q̂ry, (4.6)

Ct + uCx + vCy = DB (Cxx + Cyy)−K1 (C − Ch) . (4.7)

The appropriate boundary conditions subject to the model problem are

y = 0 : u (x, y, t) =
ax

1− γ1t
, v (x, y, t) = 0,

− k1Ty = h2(Tf − T ), −DCy = h3(Cf − C),

y = h (t) : u (x, y, t) = 0, v (x, y, t) = vh = ht,

T = Th, C = Ch.


(4.8)

The boundary conditions describe that bottom plate at y = 0 is stretched in x-

direction with velocity Uw = ax
1−γ1t and in y-direction with the velocity V = 0 [99].

We establish the convective boundary conditions at lower surface for temperature

and concentration [100]. The conditions describe energy balance at fluid-solid

interface. Velocity in x-direction is zero at top plate and velocity in y-direction is

squeezing velocity of fluid.

In the Eq. (4.6) ΩE is formulated as [38]

ΩE1 = Ttt + uuxTx + vvyTy + u2Txx + v2Tyy + utTx + 2uvTxy

+ 2uTxt + uvxTy + vtTy + vuyTx + 2vTyt. (4.9)
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Thermal radiation heat flux, according to Rosseland approximation [20], is con-

sidered

q̂r =
−4δ̂e

3β̂R
T 4
y , (4.10)

Expanding T 4 about temperature Th, using Taylor’s series and ignoring higher

order terms, the following form is obtained

T 4 = 4TT 3
h − 3T 4

h . (4.11)

4.2.3 Dimensionless Equations

Similarity transformations [99] introduced to convert the Eqs. (4.3)-(4.7) into

nondimensional form are as follows:

Ψ =

√
aν

1− γ1t
xf (η) , θ(η) =

T − Tf
Th − Tf

, u = Ψy = Uwf
′(η)

v = −Ψx = −
√

aν

1− γ1t
f (η) , η =

y

h(t)
, φ(η) =

C − Cf
Ch − Cf

.

 (4.12)

Eq. (4.3) is identically satisfied and the other Eqs. (4.4)-(4.7) get the following

form:

f ′′′′ + ff ′′′ − f ′f ′′ − Sq

2
(3f ′′ + ηf ′′′)− ZBe−Bη = 0, (4.13)

(1 +Rd) θ′′ + Pr
(
fθ′ − η

2
Sq θ′

)
− Prβe

(
ff ′θ′ + f 2θ′′ − Sq η fθ′′

)
− Pr

4
βe Sq

2
(
3ηθ′ + η2θ′′

)
+
Pr

2
Sq βe (ηf ′θ′ + 3fθ′) = 0,

 (4.14)

φ′′ + Sc

(
fφ′ − Sq

2
ηφ′ −Kr φ

)
= 0. (4.15)

By using the similarity transformation (4.12) into Eq. (4.8), the boundary condi-

tions take the following form:

f(0) = 0, f ′(0) = 1, θ′(0) = −Bi1 (1− θ(0)) , φ′(η) = −Bi2 (1− φ(0)) ,

f(1) =
Sq

2
, f ′(1) = 1, θ(1) = 0, φ(1) = 0.


(4.16)
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Dimensionless parameters appearing in Eqs. (4.13)-(4.16) are

Sq =
γ1

a
, B =

πh(t)

b
, Z =

πjM0x

8ρU2
w

, Rd =
16T 3

h σ̂e

3β̂Rk1

, Kr =
K1(1− γ1t)

a
,

Pr =
ν

α
, Sc =

α

DB

, Bi1 =
h2

k1

√
ν(1− γ1t)

a
, Bi3 =

h3

k1

√
ν(1− γ1t)

a
.

4.2.4 Physical Quantities

The important parameters skin friction and Sherwood number, are formulated as

follows:

Cf =
τw
ρU2

w

, Shx =
xqm

D(Ch − Cf )
,

where τw represents the skin friction and qm denotes the concentration flux. The

above mentioned quantities are stated as

τw = µ (uy)y=h(t) , qm = −D (Cy)y=h(t) .

Skin friction and Sherwood number are formulated into dimensionless form which

is given below:

CfRe
1/2
x = f ′′(1), ShxRe

−1/2
x = −φ′ (1) .

4.2.5 Entropy Generation Analysis

According to [101], entropy generation is given by

S ′′′gen =
k1

T 2
h

[
(Ty)

2 +
16T 3

h σ̂e

3β̂Rk1

(Ty)
2

]
+

µ

Th
(uy)

2 +

[
RD

Ch
(Cy)

2 +
RD

Th
(TyCy)

]
.

(4.17)

From above, the first term on right hand side is HTI, second term is FFI and the

third term is MTI. The characteristic entropy generation is described as

S ′′′0 =
k1 (Tf − Th)2

h2T 2
h

. (4.18)
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By using the similarity transformation, the entropy generation in the dimensionless

form, can be written as

NG =
S ′′′gen
S ′′′0

= Re (1 +Rd) θ′2 (η) +
ReBr

Ω
f ′′2 (η) +Reλ1

(χ
Ω

)2

φ′2 (η)

+Reλ1

(χ
Ω

)
θ′ (η)φ′ (η) . (4.19)

where

Re =
µh2

ν
, Br =

µUw
2

k1 (Tf − Th)
, Ω =

(Tf − Th)
Th

, χ1 =
(Cf − Ch)

Ch
, λ1 =

RDCh
k1

Another dimensionless parameter Bejan number [97] is also considered.

Be =
HTI +MTI

NG
.

4.3 Solution Methodology

The numerical scheme, Shooting method [93], is used to obtain the solution of the

system. The boundary value problem (4.13)-(4.16) are converted to 8 first order

differential equations of the initial value problem.

Λ′1 = Λ2,

Λ′2 = Λ3,

Λ′3 = Λ4,

Λ′4 = Λ2Λ3 − Λ1Λ4 +
Sq

2
(3Λ3 + ηΛ4) + ZBe−Bη,

Λ′5 = Λ6,

Λ′6 =

Pr

 (
Sq
2
ηΛ6 − Λ1Λ6

)
−βe

(
3
4
Sq2ηΛ6 + Λ1Λ2Λ6 + Sq

2
ηΛ2Λ6 + 3

2
SΛ1Λ6

)


1 +Rd− 1
4
PrβeSq2η2 − PrΛ2

1βe + PrSqβeηΛ1

Λ′7 = Λ8,

Λ′8 = −Sc
[
Λ1Λ8 −

Sq

2
ηΛ8 +KrΛ7

]
,
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correspond to the initial conditions

Λ1 (0) = 0, Λ2 (0) = 1, Λ3 (0) = ξ0, Λ4 (0) = ξ1, Λ5 (0) = ξ2,

Λ6 (0) = −Bi1 (1− Λ5 (0)) , Λ7 (0) = ξ3, Λ8 (0) = −Bi2 (1− Λ7 (0)) .


We denote f → Λ1, Λ′1 → Λ2, Λ′2 → Λ3, Λ′3 → Λ4, θ → Λ5, θ′ → Λ6, φ → Λ7

and φ′ → Λ8. After choosing the missing initial conditions ξ0, ξ1, ξ2 and ξ3, the

RK4 method is employed to solve the above problem. For refinement of ξ0, ξ1,

ξ2 and ξ3, Newton’s method is employed, until we meet the following convergence

criterion. Numerical results of the mentioned problem are achieved with ε = 10−6.

max
{∣∣∣Λ1 (1)− Sq

2

∣∣∣, ∣∣∣Λ2 (1)
∣∣∣, ∣∣∣Λ5 (1)

∣∣∣, ∣∣∣Λ7 (1)
∣∣∣}< ε,

4.3.1 Code Validation

To validate our code for the shooting method, we have computed the numerical

results by the bvp4c. For further reliability of our results, we reproduce the skin

friction coefficient reported by Hayat et al. [99]. The comparison is presented in

Table 1 indicates a strong agreement between our results and those of Hayat et al.

For this comparison, we have chosen βe = 0, Kr = 0.2, Sc = 0.5, Bi1 = 0.2 = Bi2,

Pr = 1.5.

Present results Hayat et al. [99]

Sq Z Shooting bvp4c HAM Numerical

0.1 1.5 1.69643 1.69643 1.69635 1.69634

0.3 1.08549 1.08549 1.08543 1.08543

0.5 0.46756 0.46756 0.46751 0.46751

0.5 0.0 0.42215 0.42215 0.42215 0.42215

1.0 0.45243 0.45243 0.45239 0.45239

1.5 0.46756 0.46756 0.46751 0.46751

Table 4.1: Comparison of skin friction cofficient CfRe
1/2
x .
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4.4 Results and Discussions

Influence of different physical parameters on velocity, temperature and concentra-

tion are demonstrated in this section. We first present the numerical results for

some parameters of interest in the form of tables, followed by the discussion on

the graphical behavior of certain important profiles.

Table 4.2 describes the effect of chemical reaction Kr and Schmidt number Sc on

mass transfer rate. The table exhibits that Sherwood number declines for higher

chemical reaction Kr and Schmidt number Sc.

ShxRe
−1/2
x

Sc Kr Shooting bvp4c

1.0 0.2 0.16598 0.16598

2.0 0.14395 0.14395

3.0 0.12571 0.12571

4.0 0.11044 0.11044

4.0 0.3 0.17513 0.17513

0.5 0.16825 0.16825

1.0 0.15288 0.15288

1.2 0.14737 0.14737

Table 4.2: Numerical values of ShxRe
−1/2
x when βe = 0.1, B = 10.0, Bi1 =

0.2 = Bi2, Z = 1.5, Sq = 0.2, P r = 1.5.

4.4.1 Outcome of Different Parameters on Velocity and

Temperature

Outcome of velocity and temperature is displayed in Figs. 4.2-4.9 for values of

different parameters. Fig. 4.2 is an illustration of the impact of positive values

of squeezing parameter Sq on the velocity of the fluid. For higher squeezing pa-

rameter, the velocity profile increases. The graph exhibits that as the top plate
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moves towards the bottom plate and exerts more pressure on the fluid, the velocity

of fluid increases. Fig. 4.3 exhibits the behaviour of velocity profile for negative
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Figure 4.2: Influence of positive Sq on f ′.

squeezing parameter Sq. Figure shows that the velocity graph declines for decreas-

ing values of squeezing parameter. Negative values of squeezing parameter are due

to motion of top plate away from the bottom plate. Consequently, in the middle

of the channel, vacuum is created. As a result, fluid starts moving in the upward

direction to fill the gap, which react as the velocity profile declines. The outcome
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Figure 4.3: Influence of negative Sq on f ′.

of modified Hartmann number Z on velocity is discussed in Fig. 4.4. The fluid

velocity increases near bottom plate for growing Hartmann number, whereas the

velocity near top plate declines. Physically, higher values of modified Hartmann

number are responsible for greater intensity of external electric field, which results
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in the production of Lorentz force parallel to wall. Variation in the temperature
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Figure 4.4: Influence of Z on f ′.

showed the changing with respect to thermal radiation parameter Rd by the way

of Fig. 4.5. By visualization of figure, it is witnessed that higher thermal radiation

escalates the temperature. Fig. 4.6 exhibits the decreasing trend in temperature
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Figure 4.5: Influence of Rd on θ.

for greater Prandtl number Pr. The increasing Prandtl number has less thermal

diffusivity. Due to this reason large Prandtl number results in decline in the tem-

perature. Growing tendency of Biot number Bi1 on temperature is deliberated in

Fig. 4.7. Increase in Biot number enhances the temperature profile. For greater

Biot number, there is a reduction in the thermal resistance. Due to increase in

convection, higher surface temperature is attained. Temperature is plotted in the

Fig. 4.8, to exhibit the influence of squeezing parameter Sq. Greater squeezing
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Figure 4.6: Influence of Pr on θ.
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Figure 4.7: Influence of Bi1 on θ.
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Figure 4.8: Influence of Sq on θ.
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temperature relaxation parameter βe on temperature. Figure exhibits that as ther-

mal relaxation parameter expands, temperature decreases. As thermal relaxation

parameter expands, more time is required for the fluid particles to transfer heat

to the adjoining particles. Due to this fall in the temperature occurs.
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Figure 4.9: Influence of βe on θ.

4.4.2 Significance of Various Parameters on Concentration

Figs. 4.10-4.14 demonstrate the impact of numerous parameters on concentra-

tion. Concentration profile is demonstrated in Fig. 4.10, to exhibit the influence

of Schmidt number Sc. A decline in the concentration profile is seen for higher

Schmidt number. The greater Schmidt numbers are expected to cause less mass

diffusivity. Due to this, concentration decreases. Fig. 4.11 displays the impact

of Biot number Bi2 on concentration. For greater values of Bi2, concentration

increases. This gives a reason that bigger Biot number recommends a deeper

penetration of concentration. The impact of relaxation parameter βe on the con-

centration is demonstrated in Fig. 4.12. For an increasing thermal relaxation

parameter, the concentration increases. Fig. 4.13 is plotted to exhibits the influ-

ence of chemical reaction parameter Kr on concentration. Concentration declines

for higher chemical reaction. The reason behind this decrease is that for higher

chemical reaction, molecular diffusivity reduces. Fig. 4.14 is portrayed to exam-
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Figure 4.10: Influence of Sc on φ.
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Figure 4.11: Influence of Bi2 on φ.
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Figure 4.12: Influence of βe on φ.

ine the influence of Prandtl number Pr on concentration. The boundary layer

thickness strengthens for growing Prandtl number.
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Figure 4.13: Influence of Kr on φ.
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Figure 4.14: Influence of Pr on φ.

4.4.3 Consequences of Different Parameters on Entropy

Generation

Figs. 4.15-4.21 show the effect of different parameters on entropy generation for

Re = 0.1, Ω = 1.0, χ = 0.2, λ1 = 0.2 and βr = 1.0. Fig. 4.15 shows the impact

of squeezing parameter Sq on entropy generation NG. The figure exhibits that as

squeezing parameter enhances, the entropy generation NG declines. As compared

to the center, the entropy is more prominent near the walls. Influence of Brinkman

number βr on entropy profile NG is presented in Fig. 4.16. As Brinkman number

escalates, the entropy generation NG enhances. The irreversibility of fluid friction

results in escalation of the entropy. Fig. 4.17 shows the impact of Re on entropy
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Figure 4.15: Influence of Sq on NG.
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Figure 4.16: Influence of βr on NG.

generation NG. As Re increases the entropy generation parameter NG increases.

From the figure, it can be visualized that there is the more disturbance in the

movement of the fluid. The fluid friction and heat transfer contribute to an increase

in entropy generation. Variation of Biot number Bi1 on entropy generation NG

is displayed in Fig. 4.18. From the figure, it is concluded that for growing Biot

number, the entropy profile increases. The influence of squeezing parameter Sq

on Bejan number Be is displayed in Fig. 4.19. For increasing Sq the graph of

Be increases. Figure exhibits that near the lower wall of channel the graph is

restricted in the region 0 ≤ Be < 0.7 which exhibits that the entropy is dominant.

Fig. 4.20 exhibits the impact of Brinkman number βr on Be. The profile of Be

strengthen, as the values of the βr escalate. Fig. 4.21 exhibits the influence of Biot

number Bi1 on Be. The profile of Be increases as the values of Bi1 escalates.
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Figure 4.17: Influence of Re on NG.
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Figure 4.18: Influence of Bi1 on NG.
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Figure 4.19: Influence of Sq on Be.
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Figure 4.20: Influence of βr on Be.

Figure 4.21: Influence of Bi1 on Be.

4.5 Conclusion

The unsteady squeezing flow is investigated numerically in the existence of mag-

netic field. Cattaneo-Christov model is incorporated for heat transfer. The system

of ODEs was solved numerically with the shooting technique and the comparison

is made with bvp4c, a MATLAB built-in function. Main findings of the chapter

are listed as:

• Velocity profile grows for positive squeezing parameter Sq and declines for

negative squeezing parameter Sq.
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• An enhancement in temperature is observed as the thermal radiation Rd es-

calate and temperature profile has inverse relation with the increasing ther-

mal relaxation parameter βe.

• Increasing chemical reaction parameter Kr exhibits that the concentration

profile declines.

• Entropy generation declines for greater squeezing parameter Sq and increases

for growing mean observation constant βR.



Chapter 5

Squeezing Flow of Upper

Convected Maxwell Nanofluid

Subject to Entropy Generation

and Cattaneo-Christove Double

Diffusion

5.1 Introduction

In this chapter, two dimensional squeezing flow is investigate with the effect of up-

per convected Maxwell fluid. Impact of Cattaneo-Christov model is considered to

analyze the heat and mass flux. For modeled problem, entropy generation analysis

is also considered. The flow characteristics are explored with temperature and con-

centration stratification phenomena. The governing partial differential equations

are transformed into the ordinary differential equations by using a suitable simi-

larity transformation. The numerical scheme, shooting method, has been applied

to solve the mathematical model. The results obtained from the shooting method

is compared with those computed by the bvp4c, a built-in MATLAB function.

67
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Impact of emerging parameters on concentration, velocity, and temperature are

analyzed and discussed through graphs. To check the reliability of the computed

results, a comparison with the previous published results is also included. It is

concluded that the squeezing parameter enhances the velocity field and thermal

stratified parameter decreases the temperature profile.

5.2 Problem Formulation

5.2.1 Problem Configuration

Figure 5.1: Schematic illustration of the squeezing flow.

Two-dimensional unsteady, viscous, incompressible, Maxwell nanofluid flow be-

tween two parallel plates (see Figure 5.1) is considered in this section. The lower

plate which is positioned at y = 0 has the stretching velocity Uw = ax
1−γ1t along the

x-axis. The top plate is situated at y = h (t) =
√

ν(1−γ1t)
a

. Fluid is squeezing with

the velocity vh = dh
dt

. Heat and mass flux through the Cattaneo-Christov model

[33] have been incorporated instead of Fourier’s and Fick’s laws. The variable

temperature Tw = T0 + d1x at the bottom plate and Th = T0 + d2x at the top

plate, are also under consideration along with the concentration Cw = C0 + d3x

at the lower plate and Ch = C0 + d4x at the upper plate. Heat flux q1 and mass

flux J1 [38], are taken as

q1 + δE1

[
∂q1

∂t
+ V.∇q1 + (∇.V) q1 − q1.∇V

]
= −k1∇T, (5.1)
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J1 + δC1

[
∂J1

∂t
+ V.∇J1 + (∇.V) J1 − J1.∇V

]
= −DB∇C. (5.2)

When δE1 = 0 = δC1 , classical Fourier’s and Fick’s law are obtained from Eqs.

(5.1) and (5.2) respectively. Using the continuity equation ∇.V = 0, the Eqs.

(5.1) and (5.2) are converted into the following form

q1 + δE1

[
∂q1

∂t
+ V.∇q1 − q1.∇V

]
= −k1∇T, (5.3)

J1 + δC

[
∂J1

∂t
+ V.∇J1 − J1.∇V

]
= −DB∇T. (5.4)

5.2.2 The Governing Equations

The governing partial differential equations for continuity, velocity, temperature

and concentration [38], are given as follows

ux + vy = 0, (5.5)

ut + uux + vuy + λ1

[
u2uxx + v2uyy + 2uvuxy

]
= −1

ρ
Px + ν (uxx + uyy) , (5.6)

vt + uvx + vvy + λ1

[
v2vxx + v2vyy + 2uvvxy

]
= −1

ρ
Py + ν (vxx + vyy) , (5.7)

Tt + uTx + vTy + λE1ΩE1 = α (Txx + Tyy) + τ

[
DBCyTy +

DT

Th
(Ty)

2

]
, (5.8)

Ct + uCx + vCy + λC1ΩC1 = DB (Cxx + Cyy) +
DT

Th
(Txx + Tyy) . (5.9)
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For unsteady squeezing flow, the corresponding boundary conditions are

y = 0 : u (x, y, t) =
ax

1− γ1t
, v (x, y, t) = 0,

T (x, y, t) = Tw = T0 + d1x, C (x, y, t) = Cw = C0 + d3x,

y = h (t) : u (x, y, t) = 0, v (x, y, t) = vh = ht,

T = Th = T0 + d2x, C = Ch = C0 + d4x.


(5.10)

In Eqs. (5.8)-(5.9), ΩE1 and ΩC1 [38] are formulated as

ΩE1 = Ttt + uuxTx + vvyTy + U2Txx + V 2Tyy + utTx + 2uvTxy

+ 2uTxt + uvxTy + vtTy + vuyTx + 2vTyt. (5.11)

ΩC1 = Ctt + uuxCx + vvyCy + u2Cxx + v2Cyy + utCx + 2uvCxy

+ 2uCxt + uvxCy + vtCy + vuyCx + 2vCyt. (5.12)

5.2.3 Dimensionless Governing Equations

Following transformations [38] have been introduced to convert Eqs. (5.5)-(5.9)

into the nondimensional form:

Ψ =

√
aν

1− γ1t
xf (η) , θ(η) =

T − Th
Tw − T0

, u =
ax

1− γ1t
f ′(η),

v = −
√

aν

1− γ1t
f(η), η =

√
a

ν(1− γ1t)
y, φ(η) =

C − Ch
Cw − C0

.

 (5.13)

Eq. (5.5) is verified and the other Eqs. (5.6)-(5.9), get the following form

f ′′′′ + ff ′′′ − f ′f ′′ − Sq

2
(3f ′′ + ηf ′′′)−De

(
2f ′

2
f ′′ + 2ff ′′

2 − f 2f ′′′′
)

= 0,

(5.14)
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θ′′ + Pr
(
fθ′ − η

2
Sq θ′

)
− Prβe

(
ff ′θ′ + f 2θ′′ − Sqηfθ′′

)
− Pr

4
βeSq

2
(
3ηθ′ + η2θ′′

)
+
Pr

2
Sqβe (ηf ′θ′ + 3fθ′) + Pr

(
Nbθ′φ′ +Ntθ′

2
)

= 0,


(5.15)

φ′′ + PrSc

(
fφ′ − Sq

2
ηφ′
)

+
Nt

Nb
θ′′ − PrScβc

(
ff ′φ′ + f 2φ′′ − Sqηfφ′′

)
− η

4
ScPrβcSq

2 (3φ′ + ηφ′′) +
Pr

2
ScβcSq (3fφ′ + f ′φ′η) = 0.


(5.16)

By using the similarity transformation (5.13) the boundary conditions (5.10) re-

duced as:

f(0) = 0, f ′(0) = 1, θ(0) = 1− S1, φ(0) = 1− S2,

f(1) =
Sq

2
, f ′(1) = 0, θ(1) = 0, φ(1) = 0.

 (5.17)

Some emerging parameters in equations (5.14)-(5.17), are defined as follows

Sq =
γ1

a
, Pr =

ν

α
, Nb =

τDB

ν
(Ch−Cf ) ,

Nt =
DT

Tf

τ

ν
(Th−T f ) , Sc =

ν

DB

, S1 =
d2

d1

,

S2 =
d4

d3

, De =
λ1Sq

2

ρ
, βe =

aδE1

1− γ1t
, βc =

aδC1

1− γ1t
.

5.2.4 Physical Quantities of Interest

The important physical parameters of interest, the skin friction coefficient and the

Sherwood number, are formulated as:

Cf =
τw
ρU2

w

, Shx =
xqm

D(Cf − Ch)
,

The above quantities are listed as

τw = µ (uy)y=0 , qm = −D (Cy)y=0 .



Squeezing Flow of Upper Convected Maxwell Fluid 72

After using the similarity transformation, the skin friction and the Sherwood num-

ber take the following form

CfRe
1/2
x = f ′′(0), ShxRe

−1/2
x = −φ′ (0) .

5.2.5 Entropy Generation Analysis

According to [101], the entropy is given by

S ′′′gen =
k1

T 2
h

[
(Tx + Ty)

2]+
µ

Th

[
2
(
(Ux)

2 + (Vy)
2)+ (Uy + Vx)

]
+
RD

Ch

[
(Cx)

2 + (Cy)
2]+

RD

Th
[(TxCx) + (TyCy)] .

 (5.18)

The characteristic entropy generation is defined as

S ′′′0 =
k (Tf − Th)2

h2T 2
h

. (5.19)

In dimensionless form, the entropy generation can be written as

NG =
S ′′′gen
S ′′′0

= Reθ′2 (η) +
ReBr

Ω
f ′

2

(η) +
ReBr

Ω
f ′′

2

(η) +Reλ1

(χ
Ω

)2

φ′2 (η)

+Reλ1

(χ
Ω

)
θ′ (η)φ′ (η) , (5.20)

where

Re =
µh2

ν
,Br =

µUw
2

k (Tf − Th)
,Ω =

(Tf − Th)
Th

, χ =
(Cf − Ch)

Ch
, λ1 =

RDCh
k1

.

5.3 Solution Methodology

The shooting method [93] is adopted to solve the system of ordinary differential

Eqs. (5.14)-(5.16) with the boundary conditions (5.17). We denote f → Γ1, Γ′1

→ Γ2, Γ′2 → Γ3, Γ′3 → Γ4, θ → Γ5, θ′ → Γ6, φ → Γ7 and φ′ → Γ8. The system

of nonlinear ordinary differential Eqs.(5.14)-(5.16) is converted to eight first order
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differential equations. The initial value problem can be written as

Γ′1 = Γ2,

Γ′2 = Γ3,

Γ′3 = Γ4,

Γ′4 =

[
Γ2Γ3 − Γ1Γ4 + Sq

2
(3Γ3 + ηΓ4) +De (2Γ3Γ2

2 + 2Γ1Γ2
3)
]

1 +DeΓ2
1

,

Γ′5 = Γ6,

Γ′6 =

Pr

 (
Sq
2
ηΓ6 − Γ1Γ6

)
− (NbΓ6Γ8 +NtΓ2

6)

+βe
(

3
4
Sq2ηΓ6 + Γ1Γ2Γ6 − Sq

2
ηΓ2Γ6 − 3

2
SqΓ1Γ6

)


1− 1
4
PrβeSq2η2 − PrΓ2

1βe + PrSqβeηΓ1

,

Γ′7 = Γ8,

Γ′8 =

PrSc

 (
−Γ1Γ8 + Sq

2
ηΓ8

)
+βc

(
3
4
ηSq2Γ8 + Γ1Γ2Γ8 − Sq

2
ηΓ2Γ8 − 3

2
SqΓ1Γ8

)
− Nt

Nb
Γ6
′

1− 1
4
PrScβcSq2η2 − PrScΓ2

1βc + PrScηSqβcΓ1

.

subject to the initial conditions

Γ1 (0) = 0, Γ2 (0) = 1, Γ3 (0) = ξ0, Γ4 (0) = ξ1, Γ5 (0) = 1− S1,

Γ6 (0) = ξ2, Γ7 (0) = 1− S2, Γ8 (0) = ξ3.


After choosing the missing conditions, the above initial value problem has been

solved by the RK4 method by choosing some appropriate values for ξ0, ξ1, ξ2 and

ξ3. For the refinement of ξ0, ξ1, ξ2 and ξ3, the Newton’s method has been used

until we meet the following convergence criteria:

max
{∣∣∣Γ1 (1)− Sq

2

∣∣∣, ∣∣∣Γ2 (1)
∣∣∣, ∣∣∣Γ5 (1)

∣∣∣, ∣∣∣Γ7 (1)
∣∣∣}< ε,
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ε > 0 represents the small positive real number. Numerical results of the above

mention problem is achieved with ε = 10−6.

To validate the MATLAB code for the shooting method, the numerical results

have also been computed by the bvp4c, a built-in MATLAB function. For further

reliability of numerical results, the skin friction coefficient reported by Noor et

al. [38] has been reproduced. The comparison presented in Table 5.1 indicates a

strong agreement between the present results and those of Noor et al.. For this

comparison, different parameters are given the following values βe = 0.1, βc = 0.1,

De = 0, S1 = 0.1, S2 = 0.1, Nt = 0.5, Nb = 0.3.

Present results Noor et al. [38]

Sq Sc Pr Shooting bvp4c HAM BVPh2

1.0 1.1 2.0 1.17039 1.17039 1.17039 1.170381

1.1 0.86900 0.86900 0.86900 0.869032

1.2 0.56585 0.56585 0.56585 0.565647

1.0 1.1 2.0 1.17039 1.17039 1.17039 1.170381

Table 5.1: Comparison of the skin friction cofficient CfRe
1/2
x .

5.4 Results and Discussions

Impact of the different important physical parameters is illustrated in this section.

Numerical results for emerging parameters are displayed in the form of tables fol-

lowed by the discussion on the graphical behavior of certain important profiles.

Table 5.2 exhibits the effect of squeezing parameter Sq, thermophoresis parame-

ter Nt and Brownian motion parameter Nb on mass transfer rate. As squeezing

parameter Sq escalates, there is a less increasing effect on the Sherwood num-

ber. For higher thermophoretic Nt, the Sherwood number shows a prominent

increasing behavior whereas for the greater Brownian motion parameter Nb, the
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Sherwood number decreases.

ShxRe
−1/2
x

Sq Nt Nb Shooting bvp4c

0.5 0.5 0.3 1.78936 1.78936

1.0 1.79018 1.79018

1.1 1.79069 1.79069

1.2 1.79131 1.79131

1.2 0.5 0.3 1.58396 1.58396

1.0 3.27724 3.27724

1.5 5.08039 5.08039

2.0 6.96800 6.96800

1.2 0.5 0.3 1.58396 1.58396

1.0 1.39393 1.39393

1.5 1.30641 1.30641

2.0 1.25110 1.25110

Table 5.2: Numerical values of ShxRe
−1/2
x when βe = βc = 0.1, De = 0.0, S1 =

0.1, Sc = 1.1, S2 = 0.1, P r = 2.0.

5.4.1 Outcome of Velocity and Temperature for Different

Values

Figure 5.2 exhibits the influence of squeezing parameter Sq > 0 on the velocity.

Positive values of the Sq denote that the top plate shifts towards the bottom plate.

As the plate shifts towards bottom plate, there is a force which produces higher

velocity of fluid. It is noticeable that the higher squeezing parameter Sq increase

the velocity. The impact of squeezing parameter Sq < 0 on the velocity profile is

plotted in Fig. 5.3. When the top plate shifts far away from the bottom plate. It

leaves a gap and to fill up this gap, the fluid starts moving towards the upper plate.

Consequently, the velocity of fluid is decreased. Fig. 5.4 exhibits the behviour of
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Figure 5.3: Impact of negative Sq on f ′.

velocity under the impact of the Deborah number De. The velocity increases in

the region 0 ≤ η ≤ 0.5 near the bottom plate for greater Deborah number, whereas

the velocity in the region 0.5 ≤ η ≤ 1 declines. The influence of thermal relaxation

parameter βe on temperature is displayed in Fig. 5.5. The figure demonstrates a

decay in temperature as thermal relaxation parameter βe escalates. Physically,

as βe increases, the molecules attain more time to move the heat to neighbor-

ing particles. This exhibits decrease in the temperature. When βe = 0, reduces

the given model to the model of the classical Fourier’s law. Feature of Brown-

ian motion parameter Nb against temperature is discussed in Fig. 5.6. Figure

exhibits that as Nb escalates, temperature is enhanced. Large Brownian motion

parameter have higher diffusion and less viscous force which enhanced the temper-

ature profile. Fig. 5.7 is portrayed for temperature profile versus thermophoresis
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(
)

Nb=0.2, 0.3, 0.4, 0.6.

Sq=0.5, S
1
=0.1, S

2
=0.1,

Sc=1.1, Nt=0.5, Pr=2.0,

e
=

c
=0.1, De=0.1.

Figure 5.6: Impact of Nb on θ.

parameter Nt. The graph exhibits that as Nt increases, temperature field also

increases. Physically, as a consequence of the increasing values of Nt, there is

a powerful thermophoretic force. This force permits an extensive movement of
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those nanoparticles in fluid, which are away from the surface. This delivers an
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Figure 5.7: Impact of Nt on θ.

increased in temperature and stratification of thermal layer. Fig. 5.8 exhibits that

for greater Pr, the temperature profile declines. Physically, the Prandtl number

Pr is natural part of thermal diffusivity. Higher Pr creates lower thermal diffusiv-

ity which relates to lower temperature field and less thickness in boundary layer.

Fig. 5.9 demonstrates the impact of thermal stratification S1 on the temperature.
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Figure 5.8: Impact of Pr on θ.

A decrease of the temperature profile is seen for higher S1. The reduction in

temperature field is responsible for temperature difference.
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Figure 5.9: Impact of S1 on θ.

5.4.2 Effect of Various Parameters on Concentration

Fig. 5.10 illustrates the impact of concentration relaxation parameter βc on con-

centration. It is witnessed from the figure that for greater βc, the thickness of

concentration profile declines. For βc = 0, given model reduces to the Fick’s law.

Impact of Brownian motion Nb on concentration profile is displayed in Fig. 5.11. It
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Figure 5.10: Impact of βc on φ.

is remarked that concentration declines for higher Nb. Greater Brownian motion

produces a weaker concentration. Fig. 5.12 depicts the impact of thermophoretic

parameter Nt on concentration profile. For enlarging Nt the concentration pro-

file declines. The figure exhibits that greater values of Nt generate a stronger

concentration. Fig. 5.13 highlights the impact of the Prandtl number Pr on con-

centration. Greater Pr exhibits the increase in concentration profile. It is noted
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Figure 5.11: Impact of Nb on φ.
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Figure 5.12: Impact of Nt on φ.

that concentration profile increases for higher Pr. Fig. 5.14 demonstrates the
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Figure 5.13: Impact of Pr on φ.

effect of solutal stratification S2 on concentration profile. Concentration profile
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declines for higher S2. Fig. 5.15 exhibits the impact of Schmidt number Sc on the
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Figure 5.14: Impact of S2 on φ.

concentration profile. For higher Sc, the concentration profile grows.
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Figure 5.15: Impact of Sc on φ.

5.4.3 Consequence of Different Parameters on Entropy Gen-

eration

Figs. 5.16-5.19 show the effects of Brinkman number Br, thermal stratification

parameter S1 and squeezing parameter S on entropy generation for Re = 0.1, Ω =

1.0, χ = 0.2, λ1 = 0.2 and βr = 1.0. Fig. 5.16 shows the influence of Brinkman

number Br on entropy NG. For higher Brinkman number, entropy generation

NG increases. An increment in entropy is produced by the irreversibility of fluid
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friction. Fig. 5.17 exhibits the impact of the thermal stratification S1 on entropy
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Figure 5.16: Impact of Br on NG.

NG. The figure shows that the entropy NG decreases, as the stratification pa-

rameter for temperature increases. The entropy is more distinguished near the

walls of the channel as compared to the center. Fig. 5.18 explains the influence of
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Figure 5.17: Impact of S1 on NG.

the squeezing parameter Sq on the entropy generation NG. It can be visualized

from the figure that due to an increment in the squeezing parameter, the entropy

generation NG declines. The entropy is more prominent near the walls of the

channel than at the center. Fig. 5.19 exhibits the impact of Reynolds number Re

on entropy generation NG. The figure exhibits that as Reynolds number escalates,

the entropy NG also increases.
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Figure 5.18: Impact of Sq on NG.
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Figure 5.19: Impact of Re on NG.

5.5 Conclusion

In this chapter, a two dimensional squeezing flow along with Cattaneo-Christov

double diffusion is examined. The main findings of the present analysis are sum-

marized as follows:

• Increasing values of Deborah number De, cause an increasing behaviour in

the region 0 ≤ η ≤ 0.5 , whereas the velocity in the region 0.5 ≤ η ≤ 1

decreases.

• Temperature decreases for higher Brownian motion parameter Nb.

• As thermophoresis parameter arises, an enhancement is observed in temper-

ature profile whereas a decline is seen in concentration profile.
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• Increasing values of thermal relaxation βe cause decreasing behavior in tem-

perature profile.

• As Prandtl number Pr grows, decreasing trend is observed in the tempera-

ture.

• The increasing concentration relaxation parameter βc, causes a decrease in

concentration profile.

• The entropy generation has a decreasing behaviour for increasing values of

the squeezing parameter Sq.



Chapter 6

Squeezing Flow of Micropolar

Nanofluid between Two Parallel

Plates

6.1 Introduction

Present study deals with the unsteady micropolar nanofluid squeezing between two

parallel plates. Impact of viscous dissipation and thermal radiation is also con-

sidered. The modeled nonlinear differential equations are solved numerically. The

governing partial differential equations are transformed into ordinary differential

equations by using a similarity transformation. Further, numerical solution is ob-

tained by using the shooting method. The reduced ordinary differential equations

with the boundary conditions are solved by the shooting method. For verification

of numerical results, bvp4c a MATLAB built in function, has been invoked. The

presently computed results are validated with already published results. The influ-

ence of different parameters on velocity, temperature, concentration and entropy

generation is presented in the form of graphs.

85
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6.2 Problem Formulation

6.2.1 The Physical Configuration

Let us consider the unsteady, viscous, two dimensional, incompressible, micropolar

nanofluid squeezed flow between two parallel plates. The plates are placed in such

a way that the bottom plate is fixed at y = 0 and the top plate is moving with the

velocity y = h (t). The distance between the two plates is h (t) = l (1− γ1t)
1
2 . The

two plates are squeezed until they touch each other at t = 1
γ1

, when γ1 > 0. The

two plates are separated for γ1 < 0. Thermal radiation and viscous dissipation

impacts are included. Thermophoresis diffusion and Brownian motion impact are

also considered. The temperature of the bottom plate is T1 while the temperature

of the top plate is T2. C1 and C2 are the concentration of the lower and upper

plate respectively.

Figure 6.1: Schematic illustration of squeezing flow.

6.2.2 The Governing Equations

Equations reflecting the physical aspects of the problem in the sense of [102, 103],

are as follows

ux + vy = 0, (6.1)

ut + uux + vuy = −1

ρ
Px + (ν +

kf
ρ

) (uxx + uyy) +
kf
ρ
Ny, (6.2)
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vt + uvx + vuy = −1

ρ
Py + (ν +

kf
ρ

) (vxx + vyy)−
kf
ρ
Nx, (6.3)

ρj (Nt + UNx + V Ny) = γn (Nxx +Nyy)− kf (2N + Uy − Vx) , (6.4)

Tt + uTx + vTy = α (Txx + Tyy)−
1

(ρcp)f
q̂ry +

µ+
kf
2

(ρcp)f
(uy)

2

+
(ρcp)p
(ρcp)f

[
DB (CyTy + CxTx) +

(
DT

T2

)(
(Tx)

2 + (Ty)
2)],

 (6.5)

Ct + uCx + vCy = DB (Cxx + Cyy) +
DT

T2

(Txx + Tyy) . (6.6)

Here the formulation of γn [104] has been taken as

γn =

(
µ+

kf
2

)
j. (6.7)

According to the Rosseland approximation, the radiation heat flux [20] is defined as

q̂r =
−4δ̂e

3β̂R
T 4
y . (6.8)

Using the Taylor’s series, T 4 is expanded about the temperature T2 and omitting

higher order terms, one obtains

T 4 = 4TT 3
2 − 3T 4

2 . (6.9)

The appropriate boundary conditions are

y = 0 : u (x, y, t) = 0, v (x, y, t) = 0,

N = −nUy, T (x, y, t) = T2, C (x, y, t) = C2,

y = h (t) : u (x, y, t) = 0, v (x, y, t) = ht,

N = −nUy, T (x, y, t) = T1, C (x, y, t) = C1.


(6.10)
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6.2.3 The Dimensionless Governing Equations

The following similarity transformation [20] is used to convert the Eqs. (6.1)-(6.6)

along with the boundary conditions (6.10) into dimensionless form:

η =
y

l
√

1− γ1t
, θ(η) =

T − T2

T1 − T2

, u =
γ1x

2 (1− γ1t)
f ′(η),

v = − γ1l

2
√

1− γ1t
f(η), N =

γ1x

2l (1− γ1t)
3
2

g (η) , φ(η) =
C − C2

C1 − C2

.

 (6.11)

By making use of (6.11) in Eqs. (6.1)-(6.6), the continuity equation is identically

satisfied, whereas Eqs. (6.2)-(6.6) take the following form

(1 +K) f ′′′′ − Sq (3f ′′ + ηf ′′′ + f ′f ′′ − ff ′′′) +Kg′′ = 0, (6.12)

(
1 +

K

2

)
g′′ − Sq (3g + ηg′ + f ′g − fg′)−N1 (2g + f ′′) = 0, (6.13)

(
1 +

4

3
Rd

)
θ′′+SqPr (ηθ′ − fθ′)+PrNbθ′φ′+PrNt (θ′)

2
+

(
1 +

K

2

)
PrEcf ′′ = 0,

(6.14)

φ′′ +
Nt

Nb
θ′′ + SqSc (fφ′ − ηφ′) = 0. (6.15)

The boundary conditions (6.10) in the dimensionless form are

f(0) = 0, f ′(0) = 0, θ(0) = 0, φ(0) = 0, g(0) = −nf ′′(0),

f(1) = 1, f ′(1) = 0, θ(1) = 1, φ(1) = 1, g(1) = −nf ′′(1).

 (6.16)

6.2.4 Physical Quantities of Interest

The parameters appearing in equations (6.12)-(6.16), are defined as follows

Sq =
αl2ρ

2µ
, Pr =

ν

α
, Nb =

(ρcp)pDB (C1−C2)

(ρcp)f
,

Nt =
(ρcp)pDB (T1−T 2)

(ρcp)f
, Sc =

ν

DB

, Rd =
4T 3

h σ̂e

3β̂Rkf
,

Ec =
1

cp

(
γ1x

2(1− γ1t)

)2

, K =
kf
µ
, N1 = kf l

2(1− γ1t).
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The important physical parameters of interest, Nusselt and Sherwood number, are

formulated as follows.

Nu =
−l(Ty)y=0

k1(T1 − T2)

(
k1 +

16T 3
h σ̂e

3β̂R

)
, Shx =

−l(Cy)y=0

(C1 − C2)
.

The heat and mass transfer take the following dimensionless form after using the

similarity transformation (6.11)

√
1− γ1t Nu = −

(
1 +

4

3
Rd

)
θ′ (0) ,

√
1− γ1t Sh = −φ′ (0) .

6.2.5 Entropy Generation Analysis

Entropy generation is given by [105, 106]

S ′′′gen =
k1

T 2
∞

[
(Tx + Ty)

2]+
4T 3

h σ̂e

3β̂Rk1

[Ty]
2 +

RD

C∞

[
(Cx)

2 + (Cy)
2]+

kf
T∞

[uy + 2N ]2

+
µ+ kf
T∞

[
2
(
(ux)

2 + (vy)
2)+ (uy + vx)

2]+
RD

T∞
[(TxCx) + (TyCy)] +

γ1

T∞
[Ny]

2 .

(6.17)

The characteristics entropy generation is written as

S ′′′0 =
k1 (T1 − T2)2

h2T 2
∞

. (6.18)

The dimensionless form of the entropy generation can be written as

NG = Re(1 +
4

3
Rd)θ′2 +

(
1 +

1

K

)
ReBr

Ω

(
f ′

2

+ f ′′
2
)

+Reλ1

(χ
Ω

)2

φ′2 (η)

+Reλ1

(χ
Ω

)
θ′ (η)φ′ (η) +

ReBr

Ω
(f ′′ + g)

2
+
ReBr

Ω
δ2g′

2

,

where

Re =
µh2

ν
, Br =

µh2

kf (T ∗1 − T ∗2 )
, Ω =

(T1 − T2)

T∞
, χ =

(C1 − C2)

C∞
, λ1 =

RDC∞
kf

.
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6.3 Solution Methodology

The system of equations (6.12)-(6.15) and boundary conditions (6.16) have been

solved numerically by using the shooting technique [93]. We denote f → Γ1, Γ′1

→ Γ2, Γ′2 → Γ3, Γ′3 → Γ4, g → Γ5, g′ → Γ6, θ → Γ7,θ′ → Γ8, φ → Γ9 → and φ′

→ Γ10. The system of nonlinear ODEs (6.12)-(6.15) is converted to ten first order

differential equations. The initial value problem can be written as

Γ′1 = Γ2,

Γ′2 = Γ3,

Γ′3 = Γ4,

Γ′4 =
Sq

1 +K
[3Γ3 + ηΓ4 + Γ2Γ3 − Γ1Γ4]− K

1 +K
(Γ6
′),

Γ′5 = Γ6,

Γ′6 =
2Sq

2 +K
[3Γ5 + ηΓ6 + Γ2Γ5 − Γ1Γ6] +

2N1

2 +K
[2Γ5 + Γ3] ,

Γ′7 = Γ8,

Γ′8 =
3Pr

3 + 4Rd

 Sq (Γ1Γ8 − ηΓ8)−NbΓ8Γ10

−Nt(Γ8
′)2 − 1

2
(2 +K)PrEcΓ3

2

 ,
Γ′9 = Γ10,

Γ′10 = SqSc (ηΓ10 − Γ1Γ10)− Nt

Nb
(Γ8
′) .



(6.19)

subject to the initial conditions

Γ1 (0) = 0, Γ2 (0) = 0, Γ3 (0) = ξ0, Γ4 (0) = ξ1, Γ5 (0) = −nΓ3 (0) ,

Γ6 (0) = ξ2, Γ7 (0) = 0, Γ8 (0) = ξ3, Γ9 (0) = 0, Γ10 (0) = ξ4.


After chosen the missing condition, the above system of initial value problem is

solved by using the RK4 method. To refine the above missing conditions ξ0, ξ1, ξ2, ξ3

and ξ4, we employ the Newton’s method. The procedure is repeated as far as we

meet the specified convergence criteria:

max
{∣∣∣Γ1 (1)− 1

∣∣∣, ∣∣∣Γ2 (1)
∣∣∣, ∣∣∣Γ5 (1) + nΓ3 (1)

∣∣∣, ∣∣∣Γ7 (1)− 1
∣∣∣, ∣∣∣Γ9 (1)− 1

∣∣∣}< ε.
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From above ε is a small positive real number. Numerical results of above mention

problem are achieved with ε = 10−6.

The MATLAB code for the shooting method is validated, by the bvp4c, a MAT-

LAB built-in function. For further reliability of numerical results, the numeri-

cal values of Nusselt number reported by [107] and [20] have been reproduced.

The comparison presented in Table 6.1 indicates a strong agreement between the

present results and those reported by Sheikholeslami and Ganji [107], and Atlas

et al. [20].

Ref. [107] Ref. [20] Present

Rd Sc Shooting bvp4c

0 0.5 0.270410 0.270420 0.270420 0.270420

1 0.270421 0.270420 0.270420 0.270420

10 0.270507 0.270521 0.270521 0.270521

20 0.270602 0.270612 0.270612 0.270612

3 0.5 0.296127 0.296131 0.296131 0.296131

1 0.296127 0.296130 0.296130 0.296130

10 0.296130 0.296131 0.296131 0.296131

20 0.296133 0.296132 0.296132 0.296132

6 0.5 0.298606 0.298610 0.298610 0.298610

1 0.298607 0.298612 0.298612 0.298612

10 0.298607 0.298677 0.298677 0.298677

20 0.298608 0.298654 0.298654 0.298654

12 0.5 0.299542 0.299548 0.299548 0.299548

1 0.299543 0.299548 0.299548 0.299548

10 0.299543 0.299512 0.299512 0.299512

20 0.299544 0.299538 0.299538 0.299538

Table 6.1: Comparison of the Nusselt number in the absence of the micropolar
fluid with those of [107] and [20] by taking Nb = 0.1, Nt = 0.2, Pr, Sq = 0.5,

and Ec = 0.01 and in the absence of micropolar fluid.
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6.4 Results and Discussion

Shooting method bvp4c

Nb Nt Rd Sq Ec Pr Sc K Nu Sh Nu Sh

0.3 0.3 1 0.5 0.02 2 0.5 0.2 3.28375 0.58982 3.28376 0.58982

0.6 3.65605 0.71334 3.65604 0.71334

0.9 4.05245 0.75106 4.05245 0.75106

1 4.18975 0.75794 4.18976 0.75794

0.5 3.52940 0.14425 3.52940 0.14424

0.7 3.78601 0.45219 3.78602 0.452204

0.9 4.05331 1.20857 4.05332 1.20858

2 4.59172 0.74440 4.59172 0.74440

3 5.91318 0.81383 5.91318 0.81383

4 7.23964 0.85324 7.23964 0.85324

1 3.30517 0.57787 3.30517 0.57787

1.5 3.32632 0.56610 3.32632 0.56610

2.0 3.34722 0.55451 3.34721 0.55451

0.05 3.70097 0.41130 3.70098 0.41130

0.1 4.39635 0.11377 4.39636 0.113770

0.2 5.78715 0.48131 5.78717 0.48131

0.72 2.65939 0.85659 2.65939 0.85659

1 2.79109 0.83003 279109 0.8003

1.5 3.03307 0.69694 3.03307 0.69694

1 3.28383 0.58694 3.28383 0.58694

1.5 3.28391 0.58407 3.28391 0.58120

2 3.28399 0.58120 3.28399 0.58120

0.1 3.27107 0.59525 3.27107 0.59525

0.3 3.29643 0.58440 3.29643 0.58439

0.5 3.32177 0.57355 3.32178 0.57355

Table 6.2: Nusselt number Nu and Sherwood number Sh.
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This section is illustrated to the numerical solutions of the mathematical model

(6.12)-(6.16). We first present the numerical results for some parameters of inter-

est in the form of tables followed by the discussion on the graphical behaviour of

certain important profiles.

Table 6.2 exhibits the effect of Brownian motion parameter Nb, thermophoresis

parameter Nt, radiation parameter Rd, squeezing parameter Sq, Eckert number

Ec, Prandtl number Pr, Schmidt number Sc and micropolar prameter K on the

Nusselt and Sherwood numbers. It can be visualized from the table that the Nus-

selt number increases for increasing all the parameters and the Sherwood number

increases for Nt, Nb and Rd and decreases on Sq, Ec, Sc, K and Pr.

6.4.1 Influence of Various Parameters on Velocity and Tem-

peratures

Fig. 6.2 exhibits increasing impact of squeezing parameter Sq on velocity profile.

The figure exhibits that as squeezing parameter enhances, an increase in f ′(η) is

observed in the section 0 ≤ η ≤ 0.3. The velocity profile declines in the region

0.3 ≤ η ≤ 0.7 and an opposite behavior is seen in region 0.7 ≤ η ≤ 1. Fig. 6.3 is
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)

Sq=2, 4, 6, 8.

Sc=0.5, Ec=0.1, Pr=6,
Rd=2, Nb=0.1, Nt=0.1,
n=0.02, K=0.2, N

1
=0.1.

Figure 6.2: Influence of Sq on f ′(η).

sketched to exhibit the impact of micropolar parameter K on the velocity profile.

The velocity enhances as micropolar parameter arises. Influence of the squeezing

parameter Sq on the temperature profile is sketched in Fig. 6.4. Physically, as
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Figure 6.3: Influence of K on f ′(η).

the plates move away from each other, particles of nanofluid mixture disperse.

This dispersion causes a reduction in the collision of nanoparticles. As a result,

the influence of the inertial forces is declined. Fig. 6.5 exhibits the effect of mi-
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Figure 6.4: Influence of Sq on θ(η).

cropolar parameter K on the temperature. For higher micropolar parameter, the

temperature increases. Fig. 6.6 depicts the impact of Prandtl number Pr on tem-

perature profile. Momentum diffusitivity is greater than the thermal diffusitivity

when Pr > 1. As a result higher Prandtl number results in higher fluid viscosity.

In Fig. 6.7, the behaviour of temperature profile is examined for increased Eckert

number Ec. As Eckert number escalates the temperature profile also increases.

The temperature profile significantly increases due to viscous dissipation effects

between two plates. Fig. 6.8 presents the impact of Brownian motion parameter

Nb on temperature. For growing Brownian motion parameter, an enhancement in
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Figure 6.5: Influence of K on θ(η).
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Figure 6.6: Influence of Pr on θ(η).
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Figure 6.7: Influence of Ec on θ(η).

temperature is observed. Random motion of particles within base fluid is known

as the Brownian motion. Brownian motion creates collion of nanoparticles within

the base fluid. This phenomenon increases the temperature profile. Fig. 6.9 illus-
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Figure 6.8: Influence of Nb on fθ(η).

trates the influence of thermophoretic parameter Nt on temperature. Temperature

profile increases for higher thermophoretic parameter. The influence of radiation
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Figure 6.9: Influence of Nt on θ(η).

parameter Rd on temperature is visualized in Fig. 6.10. However, figure demon-

strates that higher thermal radiation parameter causes a decrease in temperature.

Physically, an enhancement in the thermal radiation leads to a decay in absorption

coefficient. As a results an enhancement of the radiative heat flux occurs. When

the rate of radiative heat transfer increases, the fluid temperature decreases.



Squeezing Flow of Micropolar Nanofluid 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

(
)

Rd=0, 2, 4, 6.

Sq=0.5, Sc=0.5, Ec=0.1,
Pr=6, N

1
=0.1, Nb=0.1,

Nt=0.1, n=0.02, K=0.1.

Figure 6.10: Influence of Rd on θ(η).

6.4.2 Outcome of Concentration for Numerous Parame-

ters

Fig. 6.11 exhibits the effect of Sq on concentration. Enhancement in the thickness

of concentration is examined for higher squeezing parameter. Fig. 6.12 visualizes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

(
)

Sc=0.5, Ec=0.1, Pr=6,
Rd=2, Nb=0.1, Nt=0.1,
N

1
=0.1, n=0.02, K=0.2.

Sq=0, 2, 4, 6.

Figure 6.11: Influence of Sq on φ(η).

the impact of the Prandtl number Pr on concentration. The concentration profile

declines for growing Prandtl number. Impact of thermal radiation Rd on concen-

tration profile is plotted in Fig. 6.13. As thermal radiation enhances, concentration

profile also increases. In Fig. 6.14, concentration is plotted to seen the influence

of thermophoretic parameter Nt. Here, for the greater thermophoretic parameter,

the concentration profile is found to decrease. Thermophoretic force tries to move

the nanoparticles from warmer to the colder temperature gradient. As a result, the
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Figure 6.12: Influence of Pr on φ(η).
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Figure 6.13: Influence of Rd on φ(η).

concentration distribution of the non uniform nanoparticles alters. Thus greater

the thermophoretic force is, lower is the concentration. In Fig. 6.15 influence of
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Figure 6.14: Influence of Nt on φ(η).
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the Brownian motion parameter Nb on concentration is demonstrated. Higher

values of Nb exhibits the greater concentration. Physically, the Brownian motion

makes the nanofluid more homogeneous and pushes the particles across from each

others. Hence concentration is attained for higher Brownian motion. Impact of
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Figure 6.15: Influence of Nb on φ(η).

micropolar parameter K on concentration is seen in Fig. 6.16. Increasing values

of micropolar parameter correspond to the decreasing behaviour of concentration.

Fig. 6.17 displayed the effect of Eckert number Ec on the concentration. The
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Figure 6.16: Influence of K on φ(η).

graph exhibits that decreasing behavior for greater Eckert number. The influence

of Schmidt number Sc on concentration is evident in Fig. 6.18. Higher Schmidt

number exhibits, decay in concentration profile.
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Figure 6.17: Influence of Ec on φ(η).
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Figure 6.18: Influence of Sc on φ(η).

6.4.3 Impact of Various Parameters on Microrotation Pro-

file

The impact of micropolar parameter K on microrotation profile g(η) is displayed

in Fig. 6.19. Higher values of micropolar parameter exhibit increasing behaviour

on the lower surface and decreasing on the upper surface. Fig. 6.20 is depicted to

exhibit the influence of the boundary parameter n on the microrotation. Figure

exhibits that the microrotation profile increases in 0 ≤ η ≤ 0.5 and decreases in

the region 0.5 ≤ η ≤ 1. The value n = 0 means that micro elements near the wall

do not rotate. The value n 6= 0 exhibits that the micro elements rotate near the

wall. At the lower wall, the microrotation profile increases, which means that there

is a strong rotation as the parameter n increases. The value of the microrotation
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Figure 6.19: Influence of K on φ(η).

at the center of the channel is zero. Fig. 6.21 displays the impact of coupling
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Figure 6.20: Influence of n on g(η).

parameter N1 on the microrotation profile. For higher coupling parameter, the

microrotation profile increases at the lower channel whereas at the upper channel

it decreases. The influence of squeezing parameter Sq on the microrotation profile

is displayed in Fig. 6.22. The grapg decreases in 0 ≤ η ≤ 0.1 and increases in the

region 0.1 ≤ η ≤ 0.5.

6.4.4 Outcome of Concentration for Varied Parameters

Figs. 6.23-6.27 show the effect of Brinkman number βr, Reynolds number Re and

squeezing parameter Sq and micropolar parameter K on the entropy generation
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Figure 6.21: Influence of N1 on g(η).
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Figure 6.22: Influence of Sq on g(η).

for Re = 0.1,Ω = 1.0, χ = 0.2, λ1 = 0.2 and βr = 1.0. The impact of Brinkman

number βr on entropy NG is plotted in Fig. 6.23. As Brinkman number increases,

entropy profile increases. The enhancement in entropy is produced by the irre-

versibility of fluid friction. Fig. 6.24 exhibits the impact of Reynolds number Re on

NG. The figure shows that NG increases as Reynolds number increases. Fig. 6.25

explains the impact of squeezing parameter Sq on NG. It can be visualized from

the figure that in the region 0 ≤ η ≤ 0.1, NG decreases whereas the entropy

generation enhances in the region 0.1 ≤ η ≤ 0.5. Fig. 6.26 displays the impact

of the micropolar parameter K on NG. The figure exhibits that for increasing

micropolar parameter, the entropy generation NG decreases. Fig. 6.27 exhibits

the influence of the boundary parameter n on NG. Increasing values of boundary

parameter exhibits that the entropy generation NG increases.



Squeezing Flow of Micropolar Nanofluid 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

NG

Sq=0.5, Sc=0.5, Ec=0.1,
Rd=2.0, N

1
=0.1, n=0.02,

Nb=Nt=0.1, K=0.2, Pr=6.0.

r
=1.0, 2.0, 3.0, 4.0.

Figure 6.23: Influence of βr on NG.
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Figure 6.24: Influence of Re on NG.
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Figure 6.25: Influence of Sq on NG.
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Figure 6.26: Influence of K on NG.
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Figure 6.27: Influence of n on NG.

6.5 Concluding remarks

In this chapter, a two dimensional unsteady micropolar nanofluid squeezing flow

with thermal radiation and viscous dissipation is considered. The numerical

method named as shooting technique is employed. The results are graphically

analyzed for different governing parameters. Concluding remarks of present anal-

ysis are summarized as follows:

• The velocity, thermal and concentration profiles increase with an increase in

the squeezing parameter Sq.

• For the increasing values of the radiation parameter Rd, the temperature

profile decreases and the concentration profile increases.
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• The thermal profile increases for increasing values of thermophoresis param-

eter Nt.

• For higher Brownian motion parameter Nb, a direct relation for temperature

and concentration is exhibited.

• An increment in micropolar parameter K exhibits the increasing behavior

of velocity and temperature profiles.

• An enhancement in the coupling parameter N , microrotation profile has an

increasing behaviour at bottom channel and decreasing at the top of channel.

• Entropy generation increases for increasing values of the Brinkman number

βr and Reynolds number Re.



Chapter 7

Conclusion and The Future Work

In this thesis, mathematical modeling for the squeezing flow problem in channel

is considered and numerical results are obtained. Initially, we consider the im-

pact of entropy generation on unsteady Casson fluid. Cattaneo-Christove heat

flux model is also employed. The entropy generation along with the aforemen-

tioned flux passing through a Riga plate is then examined. Furthermore, squeez-

ing flow of upper convected Maxwell nanofluid subject to entropy generation and

Cattaneo-Christov double diffusion are analyzed. At the end, this flow for the

case of micropolar nanofluid between two parallel plates is investigated. For all

the cases, shooting method, through the RK4 scheme, is applied to get numerical

results. Moreover, the graphs are plotted to exhibit the impact of skin friction,

heat and mass transfer rates. Influence of different parameters like entropy gener-

ation, squeezing flow, Casson fluid parameter, thermal radiation, relaxation time

of heat and mass fluxes, Prandtl and Schmidt numbers, thermal stratification,

solutal stratification, Brownian motion and thermophoretic parameters, Deborah

number, microrotation velocity, boundary parameter, modified Hartman number,

Biot number on velocity, temperature and concentration are displayed through

graphs. The final remarks on the whole study are mentioned here.
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7.1 Concluding Remarks

• An augmentation in the positive values of the squeezing flow parameter

causes an increase in the velocity for all the models which are discussed in

this thesis.

• It has been noticed that an increase in Prandtl number causes a decrease in

the temperature profile as discussed in Chapter 3 and 5.

• It is also observed that with the rise in temperature relaxation parameter,

the temperature profile declines in Chapter 4 and 5.

• As the chemical reaction parameter increases, the concentration is reduced

for the Maxwell and Newtonian fluid.

• A decline in concentration is perceived with an increment in mass relaxation

parameter in an upper convected Maxwell fluid in Chapter 5.

• The entropy generation exhibits a decreasing pattern in the case of Newto-

nian, Maxwell and Casson fluids for higher values of squeezing parameter.

• A reduction in the concentration is observed in presence of Schmidt number

in the Casson fluid flow.

• Temperature distribution depends directly on the radiation parameter in the

Casson and micropolar fluid flow.

• Bejan number demonstrates that fluid friction impact is stronger near lower

stretching wall while heat and mass transfer effects are prominent near the

upper wall in the case of Casson fluid.

• For Maxwell and micropolr fluid, when the thermophoresis parameter is

increased, the temperature is also increased and reverse behavior is observed

for concentration.

• The temperature profile reduces for higher Brownian motion.

• The temperature and velocity both increase as micropolar parameter in-

creases.
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7.1.1 Future Outlook

We have considered the squeezing flow problems with different types of fluids.

The impact of Cattaneo-Christov heat and mass fluxes with thermal radiation is

considered and analyzed. Non-Newtonian fluid flow models such as Maxwell fluid

and Casson fluid flow are taken into account. Thermal and solutal stratification

are also studied. For the problems given below further analysis can be conducted.

• Different types of Newtonian and non-Newtonian fluid models can be ex-

plored for the similar configurations.

• Impact of different boundary conditions can be studied for similar fluid flow

problems.

• Further attempt can be made to model the fluid flow problem in the case

of flow between two parallel disks or flow between two orthogonal moving

plates.

• Different numerical technique can be utilized to solve the fluid flow problems.
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Appendix A

The bvp4c Function

“The bvp4c, a MATLAB built-in function, which can be used to solve the system of

non linear boundary value problems. Lobatto IIIa, three-stage formula embedded

with a finite difference scheme, plays a vital role in the construction of built-

in coding process of bvp4c. Basically it is a collocation formula, C-1 continuous

solution is provided by the collocation polynomial and it is a fourth order accurate

in [a, b]. The residual of the continuous solution depends on the error control

and the mesh selection. The following MATLAB syntax is used for it: sol =

bvp4c (@odefun,@bcfun, solinit, options)”.
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