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Abstract

Drug-resistant tuberculosis poses the most significant challenge to the global eradi-

cation efforts against tuberculosis. Healthcare institutions possess extensive repos-

itories of data, which can prove highly valuable in forecasting the implications of

drug responses. TB Portals is a huge data consortium comprising clinical demo-

graphic, bacterial genomic data and drug resistance data from TB patient cases

from 15 countries throughout Europe, Asia, and Africa. The acquired data was

of three types i.e demographic data, drug resistance data and genomic data. This

study also utilized explanatory data analysis to investigate the impact of demo-

graphics, treatment outcomes, and genomic mutations on drug-resistant TB using

patterns in data. The dataset consisting of 2,602 entries was filtered using pattern

recognition techniques to identify significant features. The drug resistance data

was clinical/phenotypic results of invitro drug susceptibility testing. The clinical

isolated were tested against 18 anti TB first line and second line drugs. The aim

of this study is to apply association rule mining on drug susceptibility data and

identify the interesting pattern and further validate the patterns through genomic

data. After preprocessing the association rule mining was applied 1970 entries. A

whole genome sequence pipeline (ARIBA) was applied on genomic data to identify

the variants. These variants were relevant to the patterns derived from clinical

and demographic data. Around 1041 genomes sequences of drug resistant TB

isolates were acquired from NCBI. Furthermore, the identified genes were sub-

jected to functional enrichment analysis and hub gene identification techniques.

Drug-resistant TB strains, including multidrug-resistant (MDR) and extensively

drug-resistant (XDR) types. The results revealed that XDR and MDR non-XDR

TB were prevalent types of drug resistance. Males exhibited a higher susceptibility

to both XDR and MDR non-XDR TB. The association rules representing MDR

were ranked highest which means Rifamipicin and isoniazid resistance was most

abundant.Among XDR isolates fluoroquinolones, capreomycin (CAP) and strep-

tomycin (STR) and ethambutol(EMB) resistance was most prevalent in addition

to isoniazid and rifampicin’s .The study aimed to identify novel gene variants

in XDR and MDR strains associated with drug resistance. ARIBA identified 47



x

genes involved in antimicrobial resistant pathways ,6 were exclusively MDR unique

novel variants, 28 among the observed variants in 31 commonly occurring genes.

for XDR and MDR. Around 12 variants were associated with XDR/MDR strains,

lacks literature evidence for their involvement in antimicrobial pathways specific to

M. tuberculosis . Enrichment analysis revealed their association with antimicrobial

resistance, RNA binding, ribosomal proteins, cell wall biogenesis/degradation, and

enzymatic activities. Specific novel mutations in the rpoC gene, such as G332R,

F452C, V864I, Q887K, and A898T were identified which were associated with

enhanced fitness and drug resistance, suggesting further research on genes like

rpoB, rpoC, rpoZ, and rpoA with demonstrated relevance to M.tuberculosis drug

resistance and novel variants.These findings introduce a novel set of therapeutic

targets specific to MDR and XDR TB types.
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Chapter 1

Introduction

1.1 Introduction

Tuberculosis (TB) is an ancient disease that has affected mankind for more than

4,000 years. TB is characterized as the one of the most virulent disease with highest

death toll among other infections worldwide [1]. Mostly TB would affect people

in their reproductive age, but other age groups are at risk too. The incidence

of infection is followed by vigorous progression of the disease. It mainly affects

lungs but other organs such as kidney, spine, and brain may get infected. In

most of cases the bacteria remain dormant, but among one tenth of the cases it

causes infection which is called active TB. The causative agent of this disease,

Mycobacterium (M. tuberculosis), is capable of retaining its activity in tissues of a

strong person, which results in a delayed diagnosis until it is transmitted to other

hosts. It is pertinent to mention that late diagnosis also delays the treatment of the

disease. The disease spreads from a person to another via air through inhalation of

contaminated droplets. The pathogen propels into the air when a lung TB career

cough, sneeze or spit and the other person who inhale these germs, will become

infected [2].

M. tuberculosis is a pathogenic bacteria that belongs to the family of Mycobac-

teriaceae distinguished by lipid rich cell walls which help protect it from host

1



Introduction 2

immune responses and survive stressful environments [3]. Mainly, M. tuberculosis

attacks the lungs where it can be retained throughout the lifetime as an inac-

tive latent form; however, upon reactivation it drives active transmission of the

infection causing active TB [4]. M. tuberculosis first disarms the innate immune

response as first line of defense by disrupting the activity of its major players in-

cluding neutrophils, natural killer (NK) cells, macrophages, mast cells, dendritic

cells, and airway epithelial cells (AECs) [5]. Genome size of M. tuberculosis is

around 4.4 million base pairs containing over 4,000 genes, which is relatively large

in comparison with other bacterial species [6]. However, the progression of TB is

majorly associated with PE/PPE family genes, enoyl-CoA hydratases, and mce3

genes of M. tuberculosis, which play pivotal roles in host-pathogen interactions [7].

According to the WHO’s Global TB Report 2022, 10.6 million people were diag-

nosed with TB in 2021 with a rise in the incidence rate of TB as compared to the

past years [8]. TB is most common in developing countries reporting over 80% of

cases and deaths. Recent reports estimated the largest number of new TB cases

in the South-East Asian region leads with 46% of cases followed by African region

and Western Pacific regions with 23%, 18% reported cases respectively. Thirty

countries are considered as high TB burdened countries, as they have a total of

87% of cases reported. Among those thirty, eight countries are leading with two-

third of the TB cases including Pakistan at fifth position with 5.8% of cases .

Around the world, in total 10.6 million people suffered from TB disease in 2021

with 6 million men, 3.4 million women and 1.2 million children [1].

Prevention from fatal infectious diseases like TB depends on the antibiotics that

are the antimicrobial drugs used to fight against pathogens causing deadly diseases.

Antibiotics have played a critical role in revolutionizing the healthcare industry by

treating a number of pathogenic infections and reducing the overall mortality rate

[9]. However, inappropriate use of antibiotics carry widespread adverse effects,

inducing antibiotic resistance by altering the composition of the pathogen which

gives rise to new resistant strains against commonly used antibiotics [10]. More-

over, bacterial resistance occurs when bacterial cells acquire resistance against

bactericidal effects for infections caused by bacteria including M. tuberculosis [11].
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The effective and permanent treatment of TB can last from 6 to 9 months during

which various antibiotics are prescribed to the patient. Ten drugs are globally ap-

proved for TB treatment by the U.S. Food and Drug Administration (FDA).The

antibiotics which are considered as first-line drugs in treatment regimens are iso-

niazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB) are

taken for about 2 months. In this phase of treatment, the rapidly growing bacteria

are targeted and a successful first line treatment leads to eradication of clinical

symptoms. But some of the bacteria develop resistance against drugs resulting

in relapse and the spread of the disease. The advent of multidrug resistance TB

(MDR-TB), i.e. which is resistant to at least isoniazid (INH) and rifampicin (RIF),

is major concern, because it involves the usage of second-line drugs that are com-

paratively problematic to procure and are much more toxic and expensive than

first line drugs (FLDs). The second, yet essential stage of TB treatment, is the 4

months continuation phase, in order to kill the stubborn or slow growing strains

M. tuberculosis, which has produced resistance against FLDs. Common second

line drugs (SLDs) are Fluoroquinolones and some injectable anti TB drugs [12].

There are numerous strains of M. tuberculosis that are drug resistant, majorly

F15/LAM4/KZN and Beijing strains reported to be most common in MDR (multi-

drug resistant) and XDR (extensively drug resistant) outbreaks [13]. A recent

study confirmed that MDR and XDR being the most frequent types of drug re-

sistance in TB, are linked with poor treatment success rates which is around 30%

for XDR and 54% for MDR [14]. Mainly, there are seven distinct lineages of

M. tuberculosis worldwide. However, F15/LAM4/KZN and Beijing sublineages

are the most dominant and significantly associated with drug resistance, majorly

targeting younger ages [13, 15]. Bacterial antibiotic resistance in M. tuberculosis

strains is predominantly linked to chromosomal mutations of the selected genes

typically harboring various mechanisms including target disruption via enzymatic

modification, changes in efflux pumps, and overexpression of the target [16]. RIF

resistance is a public health dilemma that occurs due to the mutated rpoB gene.

Most frequent mutations inducing RIF resistance occur at codons 435, 445, and

450 [17]. Similarly, anti-TB drug isoniazid (INH) inhibits mycoloic acid present in
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bacterial cell walls. S315T mutation occurring at codon 315 of katG gene is the

most common mutation causing INH resistance in patients with TB [18]. When

TB becomes MDR, which means resistant to the two most potent drugs i.e. ri-

fampin and isoniazid, the risk of treatment failure also increases [19]. Second line

injectable drugs known as fluoroquinolones are used to treat such cases by pre-

venting the synthesis of bacterial DNA. However, resistance of TB isolate against

rifampin, isoniazid, and fluoroquinolones corresponds to XDR which is the most

dangerous version of MDR linked with an increased mortality rate [20]. Moreover,

mutated pncA gene has been reported to be crucial in determining the clinical

outcomes when studied with other factors such as age and the utilized treatments

procedures [21].

To get a deeper insight into the underlying genomic patterns associated with drug-

resistant TB, various demographic features majorly lineage, outcome, age, gender,

and type of resistance serve as key determinants [22]. Analysis of gender distri-

bution among TB patients showed that the majority of reported cases were males

with 52-53% higher risk in comparison with females, which increases with age [23].

TB remains a major health problem worldwide. It has been reported that MDR

being the most common type of resistance is frequently found in the new cases

of TB yet the available therapies only provide 55−65% of survival rate despite

completing a tedious and time-consuming treatment [24]. Moreover, the currently

existing TB treatments have certain limitations including treatment complexity,

time duration, toxicity, and the increasing resistance to the anti-TB drugs. Ad-

ditionally, it is difficult to eliminate TB, as M. tuberculosis has the ability to

persist within the host for a lifetime without causing the infection [25]. The avail-

able therapies for such cases including isoniazid monotherapy carry detrimental

effects for instance, isoniazid may induce polyneuropathy, hepatitis, and jaundice

[26]. Although, several solutions have recently emerged to target TB with lesser

complexities; unfortunately, clinical research related to the therapies is still un-

der process and might take a long time in declaring those treatments as clinically

useful regimens [27]. To eradicate the epidemic of TB and its drug resistance,

an intensified research with novelty and innovation and extensive genome-wide
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association studies (GWAS) are required to be done to understand and develop

more effective interventions to detect, cure and prevent it [28]. Since the new

anti-TB drug candidates that are already in preclinical development phase are

lesser in number and due to the emerging resistant strains, there is a dire need

to introduce new drugs by considering the genomic patterns responsible for drug

resistance [29]. This can be facilitated through exploratory data analysis (EDA)

which uses pattern recognition as a fundamental activity to search for the patterns

and trends in the isolated samples, in order to shortlist them based on their clinical

features followed by visual inspection of the selected features [30]. Moreover, it

will provide an insight for determining the antimicrobial resistance (AMR) genes

that are specific to each subtype of the isolated samples or strains of M. tubercu-

losis, in turn helping to investigate novel anti-tubercular therapeutic biomarkers

that can be targeted to each specific subtype of resistant M. tuberculosis strain in

TB patients [31].

The field of medical science is considered full of information but still it lacks in

terms of knowledge. A huge amount of healthcare data is present online or in

systems of medical facilities. Nevertheless, there is a shortage of active tools to

determine concealed yet useful relations and patterns in data. Data Mining (DM)

have many applications in business and science. Significant knowledge is derived

by applying of data mining techniques in clinical datasets [32].

Data Mining is the field of computer science in which we discover information from

huge datasets and derive patterns and models. Datamining also referred Knowl-

edge Discovery in Database (KDD), as involves techniques from other areas as ma-

chine learning, statistics, artificial intelligence, database sets, pattern recognition

and visualization. There are different tasks which are performed in datamining

enlisted as: classification, estimation, prediction, association rule mining, clus-

tering, description, and visualization [33]. The latest in vivo techniques for pre-

dicting, patterns and deriving propositions in bioinformatics have been evolved.

The data mining process has a lot of applications in bioinformatics comprising

of gene finding, protein function domain detection, function motif detection and

protein function inference. The bioinformatics data banks such as the Protein
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Data Bank (PDB) have millions of records besides this a large amount of clinical

data is generated on daily basis and is available on public and private platforms.

The data mining methods like clustering, classification, association rules mining

(ARM) have been successfully applied on public health data to discover interesting

patterns [34]

The purpose of this study is to apply pattern identification and data mining tech-

niques to a clinical dataset of M. tuberculosis in order to analyze the impact of

gender, age of onset, lineage, type of resistance, and treatment outcomes on the

identification of specific types of drug resistance associated with treatment failure.

Additionally, the study employs the whole genome sequencing (WGS) pipeline

to identify single nucleotide polymorphisms (SNPs) that result in new mutations

in drug-resistant M. tuberculosis strains, specifically those leading to multidrug-

resistant (MDR) and extensively drug-resistant (XDR) types. This analysis aims

to discover novel therapeutic targets that can effectively combat these resistant

and pathogenic strains of M. tuberculosis, particularly MDR and XDR types A

major challenge in TB treatment is prediction of the clinical response to antibi-

otics for each individual due to bacterial resistance against specifically first line

antimicrobial drugs. Data mining techniques can be used to identify patterns

from clinical databases. These patterns will be useful in reviewing the mutations

responsible for the resistance.

1.2 Research Problem

The ongoing challenge of drug-resistant tuberculosis (TB) poses a considerable

hurdle in global TB eradication efforts. Despite the presence of extensive data

archives within healthcare institutions encompassing clinical, genomic, and drug

resistance data, there is a notable absence of reliable tools for precisely forecast-

ing the consequences of drug treatments, including drug resistance patterns. This

knowledge gap constrains our capacity to create customized therapies and effec-

tively address the proliferation of drug-resistant TB variations.
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1.3 Research Objectives

This study was intended to:

1. To understand demographic characteristics of TB patients and their associa-

tion with treatment outcomes, lineage, and drug resistance using Exploratory

Data Analysis (EDA).

2. To uncover significant MDR and XDR patterns in antimicrobial susceptibil-

ity testing data with association rule mining.

3. To analyze genomic sequences of drug-resistant TB isolates and identify ex-

isting and unique mutations to establish relationship with pattern through

datamining.

4. To perform Functional Enrichment Analysis to understand gene functions

and assess their functional significance in TB drug resistance.

5. To identify hub genes and construct a network to explore molecular interac-

tions related to TB drug resistance.

1.4 Research Philosophy

A number of potentially curative antibiotics are present but still, TB continues to

cause sickness and mortality at alarming rates globally , particularly in developing

countries. The instances of MDR-TB or XDR-TB arises in one of two ways: (1)

firstly, when a person gets infected with MDR or XDR TB strain. Secondly

resistance may develop in TB patients from misuse or mismanagement of anti-

TB drugs. MDR-TB and XDR-TB typically demands a significantly prolonged

treatment period (up to two years), in contrast to the standard regimen for drug-

susceptible TB. Normal drug sensitive TB infections can be cured with the first-

line anti-TB drug regimen. However, managing DR-TB is challenging and less
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promising, resulting in the ongoing persistence of the TB pandemic. The second-

line anti-TB drugs, recommended for MDR- and XDR-TB, are toxic, costly and

are relatively less effective as compared to the first-line drugs. Moreover, the

battle against TB is complicated due to factors like HIV co-infection, the influence

of COVID-19, patient compliance issues, and suboptimal treatment approaches

across different regions of the globe.

Since the completion of sequencing of M. tuberculosis genome in 1998, which is

complex as it contains approximately 4000 genes making is challenging to under-

stand molecular biology of the bacterium. Approaches utilizing whole genome

sequencing offer more advanced insights into mutations-based genotyping, profil-

ing drug resistance, and detecting patterns of transmission. Comparative genomics

analysis have effectively identified numerous new mutations inM. tuberculosis that

are associated with resistance or adaptations. Although it is believed that all mu-

tations leading to drug resistance would result in a competitive fitness cost relative

to susceptible strains. research has revealed that clinical strains frequently harbour

mutations with low or no fitness cost and that the fitness cost of other mutations

can be offset by compensatory mutations. The comprehensive understanding of

the M. tuberculosis genome has helped researchers to identify a subset of genes

that are crucial for both in vitro and in vivo contexts. Since M. TB genome

is sequenced, numerous small molecules possessing strong efficacy against both

drug-susceptible (DS) and drug-resistant (DR) M. TB strains have been revealed,

along with the elucidation of their particular targets. Certainly, many researchers

have shifted their focus towards newly identified drug targets in M. tuberculosis,

moving away from the traditional targets of current TB antibiotics to overcome

drug resistance. However, a few of the drugs that target these newly identified

targets have shown problems like toxicity, limited effectiveness in vivo, or short

elimination half-life. Despite significant efforts made to introduce more effective

anti-TB drugs, only three new medications with novel mechanisms have been ap-

proved since 2013, over a span of more than fifty years, and these are associated

with serious side effects. Therefore, introducing new, potent anti-TB compounds
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into the drug development pipeline could potentially accelerate the discovery of

groundbreaking TB treatments.

The sequence analyses of M. tuberculosis strains are also providing new insights

into the ongoing evolution of M. tuberculosis during infection, treatment and the

acquisition of drug resistance. These results can also be used to develop more ef-

fective strategies for deploying existing drugs, such as by analysing drug resistance

mutations in patient-derived populations of M. tuberculosis to predict the drugs

that might be most clinically effective for a particular patient. In conclusion, sys-

tems mapping uncovers complex regulatory systems that have evolved to aid the

organism in surviving within the host. Disturbing these systems could potentially

open novel paths for drug discovery.

1.5 Research Hypothesis

As the worldwide health crisis posed by multidrug-resistant (MDR) and exten-

sively drug-resistant (XDR) TB strains persists. The objective of the study is

to reveal previously undiscovered genetic variants that contribute to antimicro-

bial resistance.By utilizing of data mining techniques and conducting a genomic

analysis of clinical datasets containing MDR and XDR TB strains, it is aimed

to elucidate the genetic underpinnings of resistance mechanisms. This hypothesis

suggests that, within the genetic profiles of these dreadful TB strains, undiscov-

ered and distinct gene variants exist that contribute significantly to antimicrobial

resistance. These variants may encompass various genetic alterations, including

single-nucleotide polymorphisms, insertions, deletions, and structural variations,

collectively shaping the resistance patterns of the disease. The significance of this

research extends beyond identification, as it lies in the potential of these variants as

therapeutic targets. Such insights hold the promise of tailoring interventions and

treatments specific to MDR and XDR TB types. The goal is to make substantial

progress in effectively addressing the challenge posed by drug resistant TB strains,

with the ultimate aim of improving global public health outcomes significantly.
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1.6 Research Methodology

The methodology that has been adopted to carry out this research work is di-

vided into four phases from data retrieval to mining significant patterns from the

database and then from antimicrobial resistance gene identification to network

analysis and hub genes identification.

1.6.1 Data Retrieval from NIAIDS TB Portal

� Data retrieval files, covering demographic details, DST results, and genomics

(NCBI accession numbers).

� Acquisition of genomic data in fasta format from NCBI using python script.

1.6.2 Feature Selection and Data processing

� Feature selection and data preprocessing were carried out separately. Demo-

graphic data was utilized for explanatory data analysis, genomic data were

employed for variant identification through ARIBA, and drug susceptibility

data were analyzed for data mining purposes.

� Subseting the initial dataset by removing the cured cases, proceeding with

drug resistant isolates.

� Removing the features which were not required for the analysis and deleting

empty rows.

� Converting DST dataset in binary format.

1.6.3 Pattern Identification using Explanatory Data Anal-

ysis

� Writing a Python script for explanatory analysis using Matplotlib and Seaborn

packages.
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� Using the python script to create histograms from the demographic data.

� Analyzing gender distribution in relation to treatment outcome, type of re-

sistance, and lineage, utilizing color palettes for clarity in Seaborn’s hue

parameter.

� Visualizing Frequent resistance types (XDR, MDR non XDR) in conjunction

with gender, age, and disease outcome.

1.6.4 Drug Resistance Pattern Identification using Datamin-

ing Through Association Rule Mining

� Writing a python script for association rule mining employing aproiri algo-

rithm.

� Selecting appropriate values for support, confidence and lift.

� Performing association rule mining on drug susceptibility dataset.

� Filtering the meaningless association rules.

� Classifying the rules with respect to type of resistance.

1.6.5 Identification of Novel AMR Genes in Multi and Ex-

tensively Drug-Resistant TB using ARIBA Tool

� Writing a python script to load raw fasta files to ARIBA software

� Aligning the sequences with M.tuberculosis reference genome.

� Using ARIBA to identify antimicrobial resistance genes.

� Analyzing tabular results provided by ARIBA containing gene names, vari-

ant types, novelty of the variants, and the effects of the variants on the gene

sequence.
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� Writing a python script to perform comparative analysis of genes with vari-

ants identified by ARIBA within each sample of XDR and MDR strains.

� Identifying common and unique genes with variants among XDR and MDR

strains separately.

1.6.6 Functional Enrichment Analysis using String Database

� Using STRING database for functional enrichment analysis to identify over-

represented functions or pathways associated with drug-resistant TB among

the antimicrobial genes identified using ARIBA.

� Uploading the list of genes and select Mycobacterium TB H37Rv organism

and perform the search.

� Selecting the candidate genes and optimizing analysis parameters to generate

a graph representing the functional enrichment analysis results within the

STRING platform.

� Downloading the graph and TSV (Tab-Separated Values) files containing

the results of the functional enrichment analysis from STRING.

1.6.7 Hub Gene Identification Through Cytoscape

� Using cytoscape on the output from functional enrichment analysis to iden-

tify hub genes.

� Analyzing the identified hub genes which are highly connected and central

within the network.

� Downloading the ranked list of the genes.



Chapter 2

Literature Review

2.1 Background

TB is one of the most fetal diseases around the world and was considered as the

leading cause of death during 20th century and still scientists and physicians are

facing new challenges like antimicrobial resistance to combat this deadly infectious

disease [35]. Pakistan is the fifth most affected country of MDR-TB. TB occurs

in every part of the world but about 80 percent of the majority of TB-related

deaths occur in countries with economies classified as low and middle income [1].

It is a Gram-positive bacterium and its genome comprises about 4.4 megabase

pairs. M.tuberculosis is also an acid-fast organism which contains large amounts

of mycolic acids within their cell walls contains around 4,000 genes and has a

very high guanine + cytosine content that is reflected in the biased amino-acid

content of the proteins [36]. Inactive TB is not vigorous, does not exhibit any

symptoms and is resistible, while active TB shows symptoms and is profoundly

irresistible. Such individuals are immune compromised due to various reasons

including insufficient diet or comorbidity of HIV [37]. Lungs are affected in 90%

of the cases and causes pneumonic TB. The patient develops various symptoms,

for example, a cough for 14-21 days, bloody sputum, chest discomfort, weight loss,

short breath, loss of appetite, fever at night [38].

13
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2.2 Extra-Pulmonary TB (EPTB)

Extrapulmonary TB develop when the bacilli attacks organs other than lungs.

Patients with HIV are at high risk of developing EPTB. EPTB constitutes about

fifteen to twenty five percent of all the cases in susceptible patients. It includes TB

of lymph nodes, cutaneous membranes, genitourinary tract infection, pericardial

TB, TB in the joint and bones, radiation in the pleural cavity, TB in the larynx

and the TB of meningitis [39]. The respiratory tract of individuals is contaminated

and then the tubercle bacilli spreads through the lymphatic frame- work and then

through circulation system to various organs. The advancement of tubercular

sickness is partitioned into essential aspiratory TB, inactive TB contamination

and dynamic TB illness, comprising tuberculo-meningitis, scrofulous TB, skin TB,

cordis TB, pleurisy TB, urinary fundamental TB, stomach related foundational

TB, skeletal TB, and so on [40, 41]

2.3 Transmission

The causative pathogen of TB, spreads by contaminating the environment. When

infected person cough or sneeze. The microorganisms are pushed outside body,

where these can be inhaled in by others. It never spreads by other physical contact

like holding hands or usage of the same objects. The spread of the disease is

elevated when these microbes unleased in the air can remain there for long it

happens due to poor ventilation. It is possible that disease spread even if the

carrier is long gone from the particular location the highly populated areas have

high risk of the infection spread [42].

2.4 Pathogenesis

The dispersion of contaminated aerosols in the air derives the infection cycle of TB.

even with presence of one to 10 bacilli can lead to disease transmission. As soon
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as the bacilli enters the patient’s lung, the alveolar macrophage cells engulf them,

facilitating their invasion to the underlying epithelium. Here the granuloma is

formed as the host immune system attempts to destroy the bacterial cells with the

help of monocytes from surrounding blood vessels in host immune system [43]. The

structure of granuloma comprises foamy macrophages, mononuclear phagocytes,

and lymphocytes encapsulating infected macrophages and necrotic tissues debris.

The formation is seemingly deceiving as the caseous core liquefies and cavitate

and drains a large quantity of bacilli into the bronchi. The inflammation destroys

lung tissue and result in, cough that, once again, contaminates the surrounding of

the individual. This is one of the stages of TB [44, 45].

Infected macrophages use lymphatic system to travel the other extrapulmonary

sites like lymph nodes, kidneys, epiphyses of the long bones even in the blood of

an immunocompromised host such as HIV [40, 43].

The second stage is the growth stage where the bacilli continue to reproduce for

three weeks, During the fourth week of onset, the infection enters the third stage

known as the immune control stage. Now the bacilli progression and macrophages

destruction are balanced [46]. In majority of cases the pathogens become dormant,

they may reactivate after a while if the immune system gets compromised and en-

ters the fourth stage which is the lung cavitation stage. The reactivated bacteria

reproduce rapidly and develop a cavity in the tissue, where they are safe from the

patient’s immune cell. Then the bacteria rapidly spread throughout the tissues

and patient begin to show the symptoms of active TB. The disease is extremely

contagious at this phase [47]. Figure 2.1 illustrates the events initiating a complex

interplay of immune responses and pathogens. Active infection/clearance, where

macrophages and Th1 cells release TNF-α and IFN-γ to recruit immune cells, po-

tentially clearing the infection or allowing bacilli multiplication.Active infection is

followed by the formation of solid granulomas, composed of various immune cells,

fibroblasts, and calcification, which Mtb manipulates for its survival by induc-

ing the release of crucial chemokines and factors.The final stage is reactivation,

where Mtb reactivates and exits the granuloma, typically under conditions of com-

promised immunity, such as poor nutrition or HIV coinfection, spreading to new
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Figure 2.1: Overview of Pathogenesis

infection sites. This dynamic interaction between the host and Mtb shapes the

course of TB infection. Patients with dynamic TB infection can be treated when

they seek medicinal help. However, people with inactive TB can take prescription

so they would not suffer from dynamic TB illness [48].

2.5 Symptoms

The signs and symptoms of TB refers to part of body it manifests. The infection

grows slowly and gradually. The symptoms can show up after months or even years

of the incident of infection. Latent TB do not develop any symptoms as compared

to active TB and is apparently non-contagious. The most visible symptoms of

active pulmonary TB include severe cough for at least 3 weeks, discomfort in the

chest and spitting blood or sputum with cough leading to breathlessness. Some
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other symptoms include weakness or fatigue, noticeable reduction in body weight,

loss of appetite, chills, fever, and sweating [49].

The extra pulmonary TB has wide range of symptoms depending upon the site of

infection. Whereas some common symptoms include swelling in glands or joints,

fatigue, abdominal pain, constipation ,abnormal color of urine , headache, stiff

neck a rash may appear on different parts of body [39].

Immediate medical consultancy is suggested if in case of prolonged cough, chest

pain or any of the mentioned symptoms.

2.6 Latency

Inactive TB is where tests of individuals are positive for TB and have no clinical

indications. It is thought that inactivity may contain a range of states, people

free from the malady, to the untreated one, sub-clinical illness. M.tuberculosis can

be contained inside granuloma for a considerable length of time. This capacity of

M.tuberculosis to lie lethargic might be a transformative technique [50].

In majority of patients the infection stops here without showing any symptoms.

In their lungs, the TB bacilli and macrophages that swallowed them build a round

complex – with TB bacilli and infected macrophages in the middle and healthy

macrophages surrounding them. Often TB bacilli also infect the surrounding

lymph nodes which is called primary complex [51].

Some unlucky patients enter the stage four when the primary complex does not

settle, and the bacteria is re-activated after a period of one to two years after the

onset of infection. In this stage, the person is highly contagious because his or

her sputum contains active TB bacteria. Reactivation of TB bacillus mostly takes

place when the immune system is compromised, such as with HIV infection or

malnutrition [46, 52].
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2.7 Activation

Microorganisms’ successful replication can overpower the immune system and

break down granuloma barriers, leading to the release of M.tuberculosis into the

lungs and resulting in illness. When the immune system is compromised, as in the

case of an HIV infection, the risk of disease occurrence increases. [50].

Various factors contribute to the likelihood of M. tuberculosis activation. These

factors include the individual’s susceptibility and the infectiousness of a person

with TB, determined by the quantity of tubercle bacilli they release into the air.

Another critical factor is environmental conditions, encompassing factors such as

the concentration of infectious aerosol particles, spatial arrangements, ventilation,

air circulation, and more. Lastly, exposure plays a pivotal role, accounting for

proximity, frequency, and duration of contact or exposure to the bacterium. [53]

2.8 Diagnosis of TB

The diagnostic methods have a vast range of depending upon the equipment and

availability of assays at a particular medical facility. Initial diagnostic methods can

be breath examination through stethoscope, susception for swollen lymph nodes

and inquiring for the other symptoms. In case of suspicion the first diagnostic

test is performed on the skin. A drug called tuberculin is injected in the epithelial

tissues and the body’s reaction to the drug detects the presence of Mycobacterium

TB regardless of it is latent or active stage. Moreover, blood culture examination

can be used to specify latent or active infection. Such blood tests are called

interferon-gamma release assays or IGRAs. Another common diagnostic approach

is getting a posterior-anterior chest radiograph or X-ray (CXR). This Xray is used

to detects any kind of chest abnormality. The appearance of lesions of different

dimensions and appearance can be observed anywhere in the lungs may indicate

the presence of pulmonary TB infection. Actually, the chest radiograph is not the

specific diagnostic approach for TB but may be used to rule out the possibility
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of pulmonary TB in a person who has had a positive reaction to a TST or TB

blood test and no symptoms of chest disease. In many cases sputum samples is

also observed to confirm the presence of mycobacterium TB [54].

Diagnostic tests designed for drug-resistant TB aim to identify strains of TB bac-

teria that are resistant to commonly used antibiotics. These tests play a crucial

role in assisting healthcare providers in determining the most effective treatment

options for patients. Various methods are employed to diagnose drug-resistant TB

include Drug Susceptibility Testing (DST), Genotypic methods utilizing molecular

approaches like Line probe assay and XpertMTB/RIF. Drug Susceptibility Testing

(DST)is a significant approach widely utilized method for evaluating the sensitiv-

ity or resistance of TB bacteria to different antibiotics. DST involves cultivating

bacteria from patient samples and subjecting them to various drug exposures to

observe their reactions. This process aids in tailoring treatment plans according

to observed antibiotic resistance patterns [55].

Another approach is Genotype Testing, utilizing molecular tests to investigate

the genetic material of TB bacteria and identify specific mutations associated

with drug resistance. These tests offer rapid identification of resistance to drugs,

providing valuable guidance for treatment decisions. Phenotypic Tests analyze

bacterial growth under specific drug conditions. These tests provide insights into

resistance levels and are particularly useful for detecting MDR-TB and XDR-TB

[56].

Line Probe Assays (LPAs), operating at a molecular level, directly identify drug-

resistant mutations in TB bacteria within patient samples. LPAs yield swift

results, excelling particularly in identifying MDR-TB and rifampicin resistance.

Molecular advancements have notably impacted TB diagnostics. Nucleic-acid am-

plification tests (NAATs), such as Line Probe Assays, have revolutionized the

landscape with their high specificity and sensitivity [57].

Line Probe Assays were the first molecular tests recommended by the World Health

Organization. These assays have significantly reduced the time required for diag-

nosing multidrug-resistant and rifampicin-resistant TB (MDR/RR-TB) compared
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to culture testing. A significant step followed with the WHO’s endorsement of

the Xpert MTB/RIF assay in 2010. This, along with the Xpert Ultra assay, has

markedly enhanced TB and RR-TB diagnosis compared to sputum smear mi-

croscopy, even at peripheral health system levels.The Xpert MTB/RIF Assay is a

molecular test that concurrently detects TB and rifampicin resistance in a mat-

ter of hours. Rifampicin resistance often serves as a useful indicator of MDR-TB

[56, 58].

For comprehensive insights, Whole Genome Sequencing takes the spotlight—an

advanced technique that deciphers the complete genetic code of TB bacteria. This

intricate method allows the identification of resistance mutations against a broad

spectrum of drugs. It delivers a high degree of accuracy but requires specialized

equipment and expertise [59].

These diagnostic tests play a critical role in managing TB, particularly drug-

resistant forms. They ensure that patients receive suitable treatments to enhance

outcomes and prevent the dissemination of resistant strains.

2.9 Treatment of TB and Drug Resistance

The treatment of TB depends on the effectiveness of drug regimen or vaccination.

It is necessary to have an insight of the pathogen and immune response dynamics

in order to understand the drug and vaccine efficacy.

However, the Bacillus Calmette Guerin (BCG) antibody is commonly used vac-

cine over the world. It is about 80 percent successful to shield youngsters from

extreme type of TB meningitis which influences the cerebrum. BCG immunization

likewise offers slight insurance in adults. The cure of tuberculous illness cannot

be conceivable without an enhanced antibody [60].

More or less all of the antibiotic drugs of TB are effective while the bacteria are

actively dividing. In this intensive phase of treatment, the drugs primarily kill

quickly dividing bacteria, which soon results in rapid decrease of pathogens from
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sputum, and the clinical symptoms disappears. The antibiotics used in this stage

are called first line drugs (FLD). Nevertheless, for the eradication of stubborn or

slow growing strains of M.tuberculosis, treatment enters the continuation phase

which means the introduction of second line drugs [61].

2.9.1 First-Line Drugs (FLD)

The use of first line drugs (FLD) has resulted in the successful treatment of TB

to some extent but, in some cases, it is perceived that these drugs unable to treat

TB hence result in drug resistance due to several reasons [62]. The main FLDs

are listed below:

2.9.1.1 Isoniazid

Isoniazid (INH) was discovered in 1952 as specific anti TB drug, since then it

is being used as one of the main cure for the latent TB infection. It is a small

molecule which is soluble in water hence is easily diffused in mycobacterium. It

acts most effectively on frequently reproducing bacteria, but unfortunately, not so

effective for non-dividing bacteria [63].

INH is a prodrug which is activated by mycobacterial catalase peroxidase encoded

by katG.Then this activated INH suppresses two bacterial enzymes which are acyl

protein carrier reductase which is encoded by inhA and acyl protein carrier kinase

encoded by KasA [64]. These enzymes are responsible for mycolic acid synthesis

which is a major component of mycobacterial cell wall. This way INH arrests

bacterial cell wall formation and inhibits the disease [65].

Its resistant strain has been reported immediately after the discovery of the drug.

The resistance is caused due to a number of factors but the major cause of re-

sistance is mutations in the above mentioned genes i.e,KatG, inhA and KasA.

Among these KatG mutation is the most severe mechanism and is also associated

with its analog drug ethionamide (ETH) which is used as a second line drug [66].
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Gene is not actually mutated but overexpressed due to various factors resulting in

resistance to isoniazid [67].

The adverse effects of INH are associated with multiple neuropsychiatric symptoms

like memory loss, hallucinations and even epilepsy because it crosses the blood

brain barrier [66, 68].

2.9.1.2 Rifampicin

After isoniazid, rifampicin was second specified drug for TB, and it was reported

in 1972 and is very effective. It basically targets the transcription of the bacteria

by binding to the β-subunit of RNA polymerase encoded by the gene rpoB and

plays leading role in transcription of bacilli [69]. Unlike isoniazid, it acts on slowly

dividing bacteria beside rapidly dividing bacilli.

The most of M. tuberculosis samples from the patients who developed resistance

against rifampicin had mutated gene rpoB which is codes for the β-subunit from

RNA polymerase. This mutation results in structural changes in protein decreas-

ing the affinity for drug, which hinders the bonding of drug and its target and

consequence is drug resistance [70, 71].

2.9.1.3 Ethambutol

In 1966, the drug ethambutol was first presented as the cure of TB and still re-

mains to be a part of first-line routine. Drug ethambutol is much dynamic against

the effectively increasing bacilli, by targeting the arabinogalactan biosynthesis in

dividing cell. The mycobacterial arabinosyl transferase catalyst is encoded by em-

bCAB operon. Resistance from ethambutol is based on mutations in the gene

embB [67]. Particularly the mutation in the multiple codons of embB gene is

the cause of ethambutol resistance [72]. Ethambutol affects the formation of a

structural unit of bacterial cell wall the arabinogalactan [73]. It hinders the poly-

merization of arabinogalactan and lipoarabinomannan in cell wall by accumulating

D-arabinofuranosyl-P-decaprenol [74, 75].
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2.9.1.4 Streptomycin

Streptomycin (SM), is an aminocyclitol anti-toxin, was used as the main medica-

tion for the treatment of TB. Streptomycin is aggressively dynamic against the

moderate developing bacill. It binds with 16S ribosomal rRNA proteins; segments

of the subunit bacterial 30s ribosomal subunit [76].

The two genes responsible for the resistance are; rpsL and rrs. S12 protein of

ribosome and the 16S rRNA, are produced by rpsl and rrs genes separately, rep-

resenting 60% 70% of streptomycin resistance [77, 78].

2.9.2 Second-Line Drugs

2.9.2.1 Fluoroquinolones (FQs)

These drugs are used against a wide range of bacterial infections including respira-

tory, gastrointestinal and urinary tracts, as well as sexually transmitted diseases.

This category of drug includes ciprofloxacin, ofloxacin, levofloxacin, and moxi-

floxacin and are being used as second-line drugs in the treatment of TB.

The FQs mainly acts on DNA gyrase of M. tuberculosis. A type II topoisomerase

protein which is made up of two subunits A and B which are encoded by gyrA and

gyrB genes, respectively [79]. A small region of gyrA, called quinolone resistance-

determining region (QRDR). Primary QRDR mutations responsible for of FQ

resistance in M. tuberculosis are gyrB whereas gyrA are less frequent [80].

2.9.2.2 Second-line Injectable Agents

There are three injectable agents used in treatment of multidrug-resistant TB

i.e., the cyclic polypeptide capreomycin (CAP), and the aminoglycosides amikacin

(AMK) also a similar drug kanamycin (KAN). Both of the aminoglycosides (AMK,

KAN) show elevated levels of cross-resistance between each other [81]. To counter
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this situation the structurally different cyclic polypeptide CAP is a candidate that

can be used as a substitute if resistance against AMK or KAN is observed [82].

AMK/KAN and CAP mainly acts on the protein synthesis of the bacterium and

mutation in the 16S rRNA (rrs) cause resistance to these drugs [83]. There are

different mutations nullifying the results of these drugs firstly the mutation C1402T

primarily cause resistance against CAP and occasionally against KAN. Secondly

the mutation G1484T results in high resistance against all three drugs [84].

Some other mutations in gene tlyA gene cause resistance against capreomycin. The

gene tlyA codes for 2’-O-methyltransferase (TlyA) its mutation hinders mRNA

tRNA translocation during protein synthesis [85].

2.9.2.3 Ethionamide/Prothionamide

Ethionamide (ETH, 2-ethylisonicotinamide) has been used against TB since 1956.

There is another analogous drug prothionamide, both of these drugs are actually

prodrugs, resembling isoniazid. These drugs are activated by a mono-oxygenase

EtaA/EthA and share their target with INH. After entering the bacterium, ethion-

amide modifies itself. The drug is converted into 2-ethyl-4-aminopyridine after

oxidation of its sulfo group by flavin monooxygenase. The transitional products

formed before the synthesis of 2-ethyl-4-aminopyridine are lethal to the bacteria

[86, 87].

2.9.2.4 P-Amino Salicylic Acid

The p-Amino salicylic acid (PAS) is among first antibiotics used against TB activ-

ity and was given in combination with isoniazid and streptomycin as FLD. Soon

after the discovery of drugs such as rifampicin, it was placed in second line reg-

imens. PAS is a worthwhile treatment of drug resistance TB, despite its limited

benefits and high toxicity [88]
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2.9.2.5 Cycloserine (CS)

Cycloserine is a medication used to treat TB, particularly in cases of drug-resistant

TB like multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB

(XDR-TB). It works by inhibiting the growth of TB bacteria by affecting their cell

wall synthesis. Often considered a second-line drug, Cycloserine is combined with

other medications to improve treatment efficacy and reduce the risk of further drug

resistance. Its use comes with potential side effects, particularly neurological, and

is typically reserved for situations where other treatments have failed or when the

TB bacteria are susceptible to it. Decisions about its use are made by healthcare

professionals based on the patient’s condition and medical history [89, 90].

2.10 Drug Resistance

Treatments of TB with anti-TB drugs have been used for decades and strains

that are resistant to one or more of these antibiotics have been very well docu-

mented and studied. M. tuberculosis develops drug resistance when an anti-TB

drug is used improperly, through inaccurate direction by health care providers,

and patients stop medication before completion of treatment.

Patients might develop resistance to a single first-line anti-TB medication (iso-

niazid, rifampicin, ethambutol, or pyrazinamide), such resistance is called mono-

resistant TB [91]. People also develop MDR-TB against a form of TB that does

not respond to first-line anti-TB drugs INH and RIF. People with MDR-TB are

treatable and curable by using second-line drugs that includes fluoroquinone and

aminoglydins. Though, second-line treatment requires extensive chemotherapy for

at least 2 years which is too expensive and toxic. In some cases, people also develop

more severe drug resistance i.e., extensively drug-resistant TB (XDR-TB) which

is a more serious form of MDR-TB. XDR-TB does not respond even to the most

effective second-line anti-TB drugs, hence, leaving patients without any further

treatment options [20]. Extensive drug resistance is divided into two cetagories
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. Pre-extensively drug-resistant TB (Pre XDR TB) and XDR TB. Pre XDR TB

arises from a strain that displays resistance to isoniazid, rifampicin, and either

fluoroquinolones or injectable agents (amikacin, kanamycin, or capreomycin), but

not both simultaneously. XDR TB is an exceptional type of MDR-TB that is

resistant to isoniazid and rifampicin as well as to any fluoroquinolone and at least

one out of the three injectable agents (amikacin, kanamycin, or capreomycin).

Approximately 9% of the MDR-TB patients have extensively drug-resistant TB

[91].

In 2023 according to WHO, the resistance to all first line anti-TB drugs (INH,

RIF, Pyrazinamide (PZA) and EMB) was 26%, making MDR-TB as a public

health crisis and a health security threat. Approximately, 450,000 new cases were

reported by WHO to be resistance to the most effective first line anti-TB drug RIF,

out of which 82% already had MDR-TB. It is estimated that only 55% of MDR-

TB patients are currently successfully treated globally. M. tuberculosis strains

comprises of seven lineages. Out of seven, four lineages are predominant in humans

which includes lineage 1-4, i.e Indo-Oceanic, East Asian, East African–Indian and

Euro-American [92]. Genomic studies have shown significant insights into the

evolution of the M. tuberculosis and its resistance against anti-TB drugs. In 2021,

191,000 cases (from INH resistance strains) and 250,000 (from RIF resistance

strains) cases of deaths, worldwide (WHO,2022). These resistant straints show

the initial acquisition of INH resistance, followed by the resistance to RIF or

EMB, then resistance to PZA and in the end, resistance to second line and third

line drugs [93–95]. Recent studies report that the attainments of resistance, by

spontaneous mutation have been estimated as 1 in 108 bacilli for RIF, 1 in

106 bacilli for INH, streptomycin and EMB, however, the rate of mutations in

drug resistance strains is M. tuberculosis lineage-specific [96]. Among 7 lineages,

the lineage 2 (for example Beijing lineage family) is highly associated with drug

resistance in M. tuberculosis and has verified higher mutation rates in vitro studies

[97, 98].

Many recent studies have shown information regarding the variation in the gene

or genes encoding drug targets specific to resistant strains against the first line
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drugs. Like other bacteria’s, resistance in M. tuberculosis is acquired via vertical

or horizontal gene transfer in fact it is mainly conferred by nucleotide variations

[92, 99]. Thus, the basic mechanism for resistance in M. tuberculosis is the ac-

cumulation of point mutations (SNPs) in coding region of genes for drug targets

and drug resistant disease arises through selection of mutants during insufficient

treatment [100–103]. The frequently reported classical genes that are known to be

linked with resistance against INH, RIF, EMB and streptomycin includes katG,

inhA, rpoB, embB, rpsL, rrs and gidB, have shown mutation frequency of 70%,

10%, 95%, 70%, 6%, <10% and uncertain respectively in resistantM. tuberculosis

strains efpA, rpsL, katG, rpoB, blaC [99] [104].

Where as in literature so far, there are nine known genes that have been identi-

fied in connection with resistance to the primary first-line TB drugs. These genes

are associated with different drug resistances: katG and inhA are linked to resis-

tance against isoniazid (INH), aphC and kasA are connected to INH resistance as

well. rpoB is associated with resistance to rifampicin (RIF) [105, 106], while rpsL

and rrs are genes linked to resistance against streptomycin (STR). Additionally,

embB plays a role in resistance to ethambutol (EMB), and pncA is associated

with resistance to pyrazinamide.These genes play pivotal roles in the development

of drug resistance within Mycobacterium TB, the bacterium responsible for TB.

Mutations or alterations in these genes can result in resistance to specific anti-TB

drugs, complicating the treatment of TB infections [107]. An enhanced percep-

tive and knowledge of these resistant M. tuberculosis strains is urgently needed to

direct recommendations for treatment of patients with first line drugs resistance.

2.11 Mechanisms of Drug Resistance

2.11.1 Antibiotic Modification or Degradation

Bacteria often become resistant to antibiotics by altering or breaking down the an-

tibiotic molecules. This is especially common with antibiotics like aminoglycosides
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(e.g., kanamycin, gentamycin, streptomycin), chloramphenicol, and β-lactams. For

aminoglycosides, bacteria produce enzymes such as N-acetyl transferases (AAC),

O-phosphotransferases (APH), and O-adenyltransferases (ANT) that modify the

antibiotic, making it ineffective. These enzymes were first discovered in Strep-

tomyces bacteria in the 1970s. An example of this mechanism is seen in Strep-

tomyces griseus, where the enzyme streptomycin 6-phosphotransferase changes

streptomycin into an inactive form, providing resistance [108]. Other antibiotics

like bleomycin, tallysomycin, and chloramphenicol are also modified by specific

enzymes to prevent their effectiveness [109].

2.11.2 Antibiotic Efflux

Another way bacteria resist antibiotics is by pumping them out of their cells using

efflux pumps. This method is often used along with other resistance strategies.

A well-studied example is found in Streptomyces peucetius, which produces the

anticancer drugs daunorubicin and doxorubicin. These antibiotics are expelled

from the bacteria by the DrrAB transporter system, an ABC transporter made up

of the proteins DrrA and DrrB. This pump not only removes these specific drugs

but can also expel various other drugs, similar to how the human P-glycoprotein

pump works in cancer cells [110, 111]

2.11.3 Antibiotic Sequestration

Some bacteria resist antibiotics by sequestering, or trapping, the drug using specific

binding proteins, preventing it from reaching its target. This mechanism is seen

in the producers of the bleomycin family of antibiotics. In these bacteria, proteins

such as TlmA, BlmA, and ZbmA bind to the antibiotics, either with or without

metal, to stop them from working. These producers also have genes for ABC

transporters in their antibiotic biosynthesis clusters, which likely help remove the

sequestered antibiotics [112].
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2.11.4 Target Modification/Bypass/Protection

Bacteria can also resist antibiotics by altering the target that the antibiotic aims

to attack. For β-lactams, bacteria may produce more of the target proteins

(penicillin-binding proteins or PBPs) or create PBPs that the antibiotic cannot

easily bind to. For glycopeptides, resistance occurs when the bacteria change their

cell wall precursors from D-Ala-D-Ala to D-Ala-D-Lac or D-Ala-D-Ser, reducing

the antibiotic’s binding ability. Other strategies include producing alternative ver-

sions of target proteins or enzymes, like DNA gyrase or RNA polymerase, which

the antibiotic cannot effectively target [113]. Some bacteria also protect them-

selves by removing antibiotics from their targets, as seen with DrrC in Strepto-

myces peucetius, which removes daunorubicin and doxorubicin from DNA to allow

normal cell function [114].

2.11.5 Pan Genomic Drug Resistance in Tuberculosis

Using comparative genomic analysis, particularly through pangenome construc-

tion, can help identify differences in how tuberculosis (TB) presents clinically.

The pangenome includes all genes found in a species, split into a core genome

(genes present in all strains) and an accessory genome [113].The accessory genome

is crucial for phenotypic variation and evolution [115]. Though these genes are not

essential for survival, they help bacteria adapt to different environments [116].

Several studies have examined the Mycobacterium tuberculosis pangenome. How-

ever, these studies have not compared the pangenome to differentiate between

pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) strains.

This study aims to analyze the accessory genome in PTB and EPTB strains to

find genomic markers linked to differences in disease presentation. Understand-

ing these markers can reveal drug resistance mechanisms and aid in developing

targeted treatments for TB [117].
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2.12 Drug Resistance Data and Bioinformatics

As the amount of biological data is increasing, there is a dire need to analyze

that data and drive conclusions. This data analysis can be either performed on

DNA sequences, gene expression data, clinical data of some disease or any kind

biological data.

In the world of bioinformatics, drug research data or drug resistance data can

be handled in several ways. Some of the approaches applied on complex datasets,

such as gene expression datasets, pan-genomes, metabolomics and biological path-

ways. Mostly genomic sequencing produces data for such applications. In terms

of drug resistance this type of research questions is biased towards discovery and

analysis of drug resistance genes, epistatic interactions related to antibiotic re-

sistance, study of underlying regulatory mechanisms that results in resistance, or

discovery of drug targets. The other applications deal with meaningful predictions

of drug resistance based on clinical datasets. Such study is imitative from previous

information of antimicrobial resistance mechanisms, and useful in finding gener-

alize patterns and trends of genotype–phenotype relationships. Combinations of

current molecular methods and powerful machine learning algorithms can be used

for the understanding of antimicrobial resistance and improved clinically relevant

predictions [118].

These predictions can manifest as patterns, figures, or facts, playing crucial roles

in addressing various biological challenges, such as drug development or pathway

design and analysis. [119].

2.13 Data Mining Techniques used in Bioinfor-

matics

In the field of Data mining meaningful information is discovered, like associations,

changes, anomalies, patterns and different structures, from outsized data which
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stored information repository such as databases and data warehouses [120]. The

arena of datamining has the abilities to determine unknown patterns and relations

within the items in the biological data. In past few years, a rise in utilization of

these techniques on clinical data is observed. The purpose is to identify convenient

patterns which can be further applied for data analysis ultimately using it in

decision making. In Data mining interesting information can be extracted from

dataset by using one or more DM techniques which are clustering, classification,

prediction, association learning etc. [121].

2.13.1 Classification

Classification is a categorization of data in a particular number of classes. The

purpose is to recognize the categories or classes in which a fresh data can be

placed. This process can be done automatically using algorithms. There are

a number of classification algorithms some popular are logistic regression, Näıve

Bayes, stochastic Gradient, K-Nearest Neighbours, Decision Tree, Random Forest,

support vector machine [122].

In all classification algorithms, it is done in two steps, first training the dataset

secondly testing. Training shapes the basic classification model on the using train-

ing data previously collected for producing classification rules. Most of the time,

IF-THEN prediction rule is used which results in significantly useful abstraction.

The accuracy of derived model pivot on the notch to which classification rules

proved to be accurate, this is calculated by test data [123]. In terms of biology,

we can say as ”if Family History (for a particular disease) = yes & Consumption

of Cholesterol = yes THEN Possibility of Disease = High”, Such classification is

beneficial.

Recently Pratik Sinha and colleagues developed a classifier which accurately iden-

tified acute respiratory distress syndrome (ARDS) from clinical dataset using a

gradient-boosted machine algorithm [124].
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2.13.2 Clustering

Unlike Classification, clustering does not construct classes instead large data sets

are grouped in numerous of trivial subgroups known as clusters. This is done on

the bases of similarities in dataset. Clustering algorithms determines assemblies

of the facts e.g., items placed in same cluster could be more identical as compared

to the ones in the other groups [125]. Famous clustering algorithms are K-Means

Clustering, Mean-Shift Clustering, DBSCAN, Agglomerative Hierarchical Cluster-

ing, Gaussian Mixture Models. Clustering Algorithms have been used to scan the

gene expression data [126].

In 2016 Kausar Noreen used K Means clustering and Support Vector Machines

(SVM) algorithms on heart disease data successfully [127].

2.13.3 Association Rule Mining (ARM)

Association Rule Mining is an area of datamining which leads to the detection of

associative relations or even correlations in a bunch of objects. There are many

algorithms used for mining association rules, named as apriori, FP growth, IS al-

gorithm, STEM algorithm and some variations of these. For biological data, these

rules are proved reasonably convenient because they result in opportunity to con-

duct smart diagnosis and remove unimportant material and construct significant

knowledge bases [120].

Basically, ARM is used to find the association rules that meets some predefined

criteria. These conditions are minimum support, confidence, Lift and are decided

by analyzing the nature of data. [128]. Association rule mining constitutes of

solving two issues; finding all the frequent item sets and generating rules derived

from frequent item sets.
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Table 2.1: Brief overview of datamining usage in Health Science.

Area in Data Mining Algorithm Ref.

medicine Task Used

Pathology Data Classification Neural Networks [129]

Coronary/Cardiac Prediction and Decision Tree [130]

Diseases Classification Algorithms [131]

Näıve Bayes [132]

Random Forest [133]

Pulmonary diseases Association Rule
Mining

Aprori Artificial [134]

Classification Neural Networks [135]

Psychiatric Classification ANN [136]

diseases Prediction and
Classification

BBN Bayesian Net-
works

[137]

Hepatic Illness Association Rule
mining

GP Growth [138]

Dermatological Categorization
and

Decision Tree [139]

Disease Classification Artificial Neural Net-
works

[140]

Näıve Baysian Algo-
rithm

Diabetes Classification
Association
Rule

Support Vector Ma-
chine

[121]

Mining FP-growth [141]

Clustering K-Means [142]

Cancer/Breast Can-
cer

Classification
Association
Rule Mining

K-means, Apriori [143–145]

Näıve

Bayes

Parkinson Disease Clustering K-means, [146].

classification Näıve Baysian Algo-
rithm

[147]
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2.14 Related Work

2.14.1 Applications of Machine Learning Techniques on

Healthcare Datasets

Several techniques have been applied to biological data, including drug resistance

data to predict different aspects. Data mining methods, like association rule min-

ing, have been applied on public health data in the past and effectively resulted

in the discovery of interesting patterns. In [148], presented a framework which

incorporated data from several clinics, discovered association rules, warehoused

then for future use and provided the data is publicly available at an intuitive web

interface.

In 2009 [149] discussed methods in data mining that can be applied in classifica-

tion of data. She predicted the survival rate of a patient by selecting three data

mining methods Decision tree, Naives Bayes and logistics regression on hospitals’

data. Focusing on antibiotic resistance data in 2011, Mary Gerontini and fellows

worked on predictions of associations in AMR and hospital borne infections. They

presented an architecture in which they integrated data from multiple hospitals

and discovers association rules stored in a data warehouse and used it as a source

for extracting interesting and valid predictions by applying techniques such as

regression and classification [150].

In 2017, Hayderpur and fellows worked on Nosocomial infections and antibiotic

resistance Patterns from hospital in Iran. They collected data for antimicrobial

resistance and analyzed it using SPSS and successfully identified useful patterns.

In 2019, Cazer analyzed MDR patterns in chicken-associated escherichia coli -

linked multidrug-resistance dataset with association rule mining, also called market-

basket analysis and they identified strong associations in antibiotics .In 2019 Kon-

stantinos Vougas present a pipeline for screening AMR using association rule min-

ing and predicted drug response [151].
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2.14.2 Applications of Machine Learning Techniques on

TB Datasets

Machine learning methods have been widely applied for timely predicting resis-

tance of M. tuberculosis given a specific drug and identifying resistance markers

[152]

In 2011 Tamer Uçar proposed the use of Sugeno-type “adaptive-network-based

fuzzy inference system” (ANFIS) to predict the presence of TB on 667 different

patient records consisting of clinical data [153].

In 2015 Ashwini performed a survey of machine learning approaches to detect TB

in patients with or without HIV co-infection. In her work she discussed the main

challenges in analysis and classification of clinical data. She finally classified the

data into two classes first HIV with TB and second having HIV without traces of

TB disease [154].

In 2018 Seelwan and krit, presented a Deep Convolutional Neural Network (DCNN)

model, analyzing TB Chest X-ray (CXR) dataset of a population and compares

it with non-TB CXR dataset of another population. The model forecasted that

36.51% of atypical radiographs in the CXR dataset were associated with TB [155].

In 2018, Srajan Kulshrestha applied various machine learning algorithms using an-

tibiotic susceptibility test results as datasets. Patterns were identified using trends

identified from results of dataset and were used to predict resistance towards var-

ious drugs [156]. Carly Bobak (2018) proposed a data analysis framework which

directly integrated multiple expression array datasets in order to identify a more

reliable gene signature for the diagnosis of TB. The method was successfully ap-

plied and diagnosed disease in 4 distinct datasets spanning a total of 1164 samples

and 4 countries [157].

In 2019, Kamela from Belgium developed a tool in python 3 which give an alter-

native approach for attaining rifampicin-resistant TB diagnostic test results with

whole genome sequencing instead of rapid diagnostic tests in laboratories [158].
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Recently in 2020, Aytan-Aktug successfully predicted anti-microbial resistance

using artificial neural networks on whole genome sequences of different bacterial

specie [159]. Salma Jamal (2020) presented a computational framework that uses

artificial intelligence (AI) based machine learning (ML) approaches such as näıve

bayes, K nearest neighbor, support vector machine, and artificial neural network,

for predicting resistance in the genes rpoB, inhA, katG, pncA, gyrA and gyrB for

the drugs rifampicin, isoniazid, pyrazinamide and fluoroquinolones [160].

2.14.3 Use of Clinical Features to Determine Association

Rules

During past few years clinical and demographic features are utilized through ma-

chine learning techniques for predicting patterns in order to understand different

aspects of disease such as multi drug resistance. In Indonesia a pipeline was pre-

sented for medication selection process using rule mining clinical data on patients

of 10 different diseases. The prescriptions of patients were used as clinical fea-

ture to recognize the relationship between the disease and the drugs advised by

the physician. The analytical pipeline works in three phases first patient prescrip-

tion data collection following the classification of the top 10 diseases using k-means

algorithm and finally mining association rules using Apriori algorithm. The associ-

ation rules provide the relation between the medicines and diseases. The medicines

were prescribed on basis of support, confidence, and lift values [161]. Recently in

2021 Symptoms patterns of covid 19 patients were analyzed using association rule

mining. Based on association rules, they concluded the repeatedly occurring were

fever, cough, pneumonia, and sore throat. Whereas 1% of the patients exhibited

severe symptoms, like septic shock, respiratory distress syndrome, and respira-

tory failure. The rules showed deviation in age and sex. Patients suffering from

with chronic diseases had severe symptom rules such as, cardiovascular-related

symptoms escorted by pneumonia, fever, and cough as consequents [162].

In another recent research association rule mining was used on the clinical fea-

tures of 143 patients and established association patterns between three chronic
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inflammatory diseases. A few patients affected by a combination of given 3 chronic

inflammatory diseases which are: Type 2 diabetes mellitus (T2DM), Dyslipidemia

(DLP) and Periodontitis (PD). This study considers almost 30 clinical features

which are involved in these diseases. Then ARM was performed in order to derive

consistent patterns among clinical features and diseases. Patients were divided

into five groups based upon diabetic, dyslipidemic and periodontal conditions (in-

cluding a healthy-control group).

At least 5 patients from each group were nominated to assess the gene expression

analysis. ARM was performed on only CFs; and CFs+DEGs (Differentially ex-

pressed genes) to identify impactful associations. Then Gene expression validation

was performed by running qPCR on Identified DEGs, specific to each group of pa-

tients. ARM proved to be an effective mining approach to analyze gene expression

with the advantage of including patient’s Clinical Features [163].

In Most of the research on drug resistant TB, considering the clinical features is an

important for the treatment of disease. The clinical features being used commonly

in drug resistant TB are weight loss, DST Profile, whether lungs are involved or

not, age, gender, co-occurrence with HIV,smoking history and history of relapse.

[164–166]. Recently in 2020, indian researchers associated clinical features and

radiographic findings with drug resistant against the drug linezolid in 343 MDR

TB patients. The symptoms they considered were weight loss, DST Profile against

populat anti-TB drugs, Radiographs, and previous treatment history. They con-

clude that, DST is an important tool to identify linezolid resistance [167].

2.15 Gap Analysis

MDR and XDR TB is a crucial issue currently in management of MTB. Accord-

ing to a recent study, Asian countries such as Korea and the Philippines had

significantly increased prevalence rates of approximately 600 TB cases per 100,000

persons annually in the past years while in Japan, incidence rates elevated due to

a large number of people migrating to Japan from high burden TB areas for work
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[168]. However, the highest incidence rate of MDR is found in China account-

ing for around 24% among treated cases [21]. A number of ML techniques like

clustering, decision trees have been implemented to clinical datasets, even these

techniques were used to investigate drug resistance but drug resistance of TB is not

analyzed in order to extract resistance trends and patterns [148]. The majority of

statistical techniques are limited because mostly the nature of MDR data happens

to be non-Gaussian and sparse. Association rule mining (ARM) overcomes such

limitations as it derives the interesting rules and patterns despite data distribution

[169]. ARM have not been considered as an innovative tool for identifying patterns

and trends of any kind of drug resistance [155].Bioinformatics can contribute in

analyzing the patients using efficient machine learning algorithms to predict dif-

ferent patterns. Such Algorithms have provided positive results on clinical data of

different diseases but TB. Hence applying machine learning techniques to clinical

data pertaining to multi-drug-resistant TB is significant.



Chapter 3

Methodology

3.1 Introduction

In this study, dataset retrieved from TB portal was analyzed on the basis of mul-

tiple features to search for the existing patterns by utilizing pattern identification

and datamining techniques. These patterns are further used to shortlist pathogenic

isolates of XDR and MDR (non XDR) types of TB by employing WGS pipeline

in order to identify novel antimicrobial resistant (AMR) genes that are specific to

MDR and XDR strains of TB from United States National Institute of Allergy

and Infectious Diseases (NIAID) TB Portals database. These gene/variants were

annotated for their functional enrichment analysis to explore the role of drug re-

sistance. After that the genes were further processed to identify the Hub genes

using protein-protein interaction network that were significantly represented in

some biological processes.

39
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Figure 3.1: Overview of Research Methodology.

3.2 Tools and Equipment

3.2.1 Hardware specifications

The system used in the research was 11th Gen DELL with 8.00 GB RAM and

Intel(R) core(TM) i5-1135G7 CPU. The processor specifications were 2.40GHz

and 1.38 GHz.

3.2.2 Software

3.2.2.1 Windows Platform

Windows 10 Pro Version 22H2 with 64 bits Operating system, x64-based processor

was used for experimental work.
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3.2.2.2 Language Used In Project

The Pipeline used in this project was written in python 3.0. Specific scripts were

written for a respective tasks. In Python the mlxtend library to perform asso-

ciation rule mining. With submodule ‘frequent patterns.Moreover the functions

‘apriori’, and ‘association rules’ were in imported from the library.For Explana-

tory data Analysis the library ‘matplotlib’ was imported using pyplot module.

Moreover ‘seaborn library was also utilized.

3.2.3 Biological Databases

3.2.3.1 NIAID TB Portals Program

The data used in this project was acquired in collaboration with the NIAID TB

Portals Program, (https://TBportals.niaid.nih.gov/). The permission to use

the data was granted through MOU with the mutual consents and agreement

signed by the scholar, supervisor and NAIB TB portals representative.The NIAID

TB Portals Program is a multi-national collaboration for TB data sharing and

analysis for advance TB research. The TB portals contain data of TB patient

cases that have been contributed by multiple institutions from different clinical and

research contexts. The TB Portals is an open-source web-based data repository

containing a wide range of TB data and tools for analysis. There is no particular

protocol for data collection. The information is submitted as part of usual practice

by TB clinics, research studies, and clinical trials.

3.2.3.2 Sources of Data

The TB Portals has variety of data including socioeconomic/geographic, clini-

cal (including MDR-TB data), laboratory, radiological, and genomic data col-

lected from over 11000 TB cases from 18 sites in 15 countries throughout Eastern

Europe, Asia, and Sub-Saharan Africa. (https://TBportals.niaid.nih.gov/).

There are two types of data sources utilized by TB portals, one the TB Portals

https://TBportals.niaid.nih.gov/
https://TBportals.niaid.nih.gov/
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Consortium cases and second the external cases submitted to TB portals. The

TB Portals Consortium includes international allies in a direct collaboration with

the TB Portals Program that assemble data and publicly shares with TB portals.

The list of the institutions sharing data on TB portal is available in Appendix A.

3.2.3.3 NCBI GenBank

The NCBI GenBank, is a comprehensive and publicly accessible database that

contains an extensive collection of genetic sequence data and supporting biblio-

graphical and biological annotation maintained managed by the National Center

for Biotechnology Information. Each GenBank entry includes a concise descrip-

tion of the sequence, the scientific name and taxonomy of the source organism,

bibliographic references and a table of features (http://www.ncbi.nlm.nih.gov/

collab/FT/index.html) that identifies coding regions and other sites of biological

significance. GenBank serves as a valuable resource for researchers worldwide to

access and analyze genetic information.

3.2.3.4 STRING

STRING is a biological database and web resource of known and predicted pro-

tein–protein interactions (https://string-db.org/).Several resources, including

public literature, experimental data and the data acquired via computational pre-

diction contributes to the information present in STRING database. It is publicly

accessible, and it is consistently updated. The search engine also emphasizes func-

tional enrichments in query lists of genes/proteins, using a variety of functional

classification systems and databases such as GO, Pfam and KEGG.

3.2.3.5 GO (Gene Ontology)

The Gene Ontology (GO) is a knowledgebase globally renowned as the most exten-

sive reservoir of insights regarding gene functions (http://geneontology.org/).

http://www.ncbi.nlm.nih.gov/collab/FT/index.html
http://www.ncbi.nlm.nih.gov/collab/FT/index.html
https://string-db.org/
http://geneontology.org/
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The Gene Ontology (GO) stands as a significant bioinformatics endeavor aimed

at standardizing the depiction of attributes associated with genes and gene prod-

ucts across various species, provides annotations for genes and gene products, as

well as gather and distribute annotation data and contains user-friendly tools to

access all dimensions of the data present in the database /Additionally, enable the

functional interpretation of experimental data through the use of Gene Ontology

(GO), such as enrichment analysis.

3.2.3.6 PFAM

PFAM (Protein Families Database) is a database containing information about

protein families and their annotations. It is a bioinformatics resource for identi-

fying conserved regions and functional domains within protein sequences. PFAM

classifies proteins into families based on shared sequence alignment and provides

understanding of structural and functional characteristics of proteins. This data

bases implements various algorithms including hidden Markov models.The PFAM

database is constantly updated with new protein sequences and domain annota-

tions as more genomic and proteomic data becomes available. The most recent

version, PFAM 35.0, was released in November 2021 and contains 19,632 families.

(http://pfam.xfam.org/)

3.2.3.7 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a prominent bioinfor-

matics database offering insights into molecular interactions, pathways, and gene

functions. KEGG is a collection of databases dealing with genomes, biological

pathways, diseases, drugs, and chemical substances. (https://www.genome.jp/

kegg/pathway.html). It provides pathway maps depicting relationships among

genes, proteins, and metabolites.

KEGG aids in functional analysis, disease research, drug development, and evo-

lutionary studies. Its tools enable sequence analysis and pathway mapping, while

http://pfam.xfam.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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also serving as an educational resource. KEGG is essential for understanding

biological complexities and their applications in various fields.

3.2.4 Bioinformatics Tools

3.2.4.1 ARIBA

ARIBA (Antimicrobial Resistance Identification by Assembly) is a bioinformatics

tool designed to detect antimicrobial resistance genes in bacterial genomes using

whole-genome sequencing data. It utilizes a reference database of known resis-

tance gene sequences for identification and employs a sensitive alignment-based

approach to achieve high accuracy. ARIBA’s automated workflow streamlines the

process, and its reports offer insights into detected resistance genes, their locations,

and related information. This tool aids in research and surveillance efforts, con-

tributing to our understanding of antimicrobial resistance mechanisms and guiding

treatment decisions. ARIBA is open-source and customizable, making it an asset

for researchers and clinicians in the fight against antibiotic resistance.

3.2.4.2 Bowtie2

Bowtie2 is a software package commonly used for sequence alignment and sequence

analysis in bioinformatics. It is a bioinformatics tool for aligning DNA sequencing

data to a reference genome. It efficiently maps short DNA sequences to a target

genome, supporting end-to-end and local alignments. It handles paired-end and

mate-pair reads, reports multi-mapping, and balances sensitivity and specificity.

Bowtie 2 is crucial for tasks like variant calling and gene expression analysis due to

its speed and accuracy. Bowtie aligns short DNA sequences (reads) to the human

genome at a rate of over 25 million 35-bp reads per hour.
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3.2.4.3 SAMtools

SAM stands for ”Sequence Alignment/Map.” It’s a file format used in bioinfor-

matics to store alignment data from DNA/RNA sequencing reads to a reference

genome. SAM files provide details about read alignments. SAMtools is a software

package for working with SAM/BAM files, offering tools for conversion, sorting,

indexing, visualization, and quality control. It’s essential for processing high-

throughput sequencing data. Within the ARIBA (Antimicrobial Resistance Iden-

tification By Assembly) workflow, SAM tools like SAMtools are utilized to process

and analyze Sequence Alignment/Map (SAM) files. These tools filter reads, cal-

culate coverage, and perform quality control, aiding in the accurate detection of

antimicrobial resistance genes within bacterial genomes. SAM tools enhance the

reliability and effectiveness of the ARIBA analysis pipeline.

3.2.4.4 CARD Database

The Comprehensive Antibiotic Resistance Database (CARD) (https://card.

mcmaster.ca/) is a vital bioinformatics resource dedicated to antibiotic resistance

in bacteria. It contains curated information about antibiotic resistance genes, as-

sociated proteins, and resistance mechanisms. Researchers use it to study and

combat antibiotic resistance. CARD offers tools for searching and analyzing re-

sistance data, follows standardized nomenclature, and is regularly updated by

experts.

3.2.4.5 Cytoscape

Cytoscape is a open-source software platform used for visualizing, analyzing, and

exploring complex networks, particularly in biology and systems biology. It offers

tools for creating network graphs, conducting network analysis, integrating various

data types, and benefits from a rich ecosystem of plugins. CytoHubba, is a plugin

designed specifically for Cytoscape. It specializes in identifying and visualizing

important hub nodes within biological networks. CytoHubba provides various

https://card.mcmaster.ca/
https://card.mcmaster.ca/
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hub detection algorithms and allows users to customize their criteria for identifying

these critical network components, making it a valuable tool for network analysis

in biology.

3.3 Pattern Identification

The motivation of this study was to investigate the drug resistance patterns asso-

ciated with M. tuberculosis and to determine the risk factors for XDR and MDR.

Risk factor association was performed using explanatory data analysis techniques

and for pattern identification of XDR and MDR datamining technique association

rule mining was used.

3.3.1 Data Retrieval

TB portal provided different types of data including clinical, imaging, and bac-

terial genomic information, from both drug-sensitive and resistant cases. Data

was retrieved in the form of csv files including data about demographic features,

drug sensitivity test (DST) results, and genomic data. The DST data is clinical

drug resistance data with 9000 entries, the sputum samples of patients were tested

27 drugs in vitro recorded in a single csv file. The samples which were declared

resistant after DST testing were further subjected to genomic sequencing and the

sequences were published in NCBI. Demographic data consisted of 19 features

against 2602 fields. However, these features included the NCBI accession number

of the pathogenic genomic sequence against each record. Python script was writ-

ten to download the sequences for further analysis. Table 3.1 provides the details

about drugs with the genomic targets according to the literature. The features

and attributes used for analysis are mentioned in Annexure 2.

Two approaches to pattern identification were utilized: the first one was thorough

explanatory data analysis while the second involved data mining. Two Distinct

CSV files were employed for each method; for instance, demographic features were
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Table 3.1: Anti TB drugs used for phenotypic drug susceptibility testing
available in TB portal Data.

Sr.
No.

Drug Name Type Target
Genes

Ref.

1 Isoniazid (INH) First Line Drug katG, inhA [66]

2 Rifampicin (RIF) First Line Drug rpoB [71]

3 Streptomycin
(STR)

First Line Drug rpsL, rrs [78]

4 Ethambutol
(EMB)

First Line Drug embA,
embB,
embC

[75]

5 Pyrazinamide
(PZA)

First Line Drug pncA, rpsA,
panD

[170]

6 Ofloxacin (OFL) Second
Line Fluo-
roquinolones

gyrA, gyrB [171]

7 Capreomycin
(CAP)

Second Line In-
jectable Agents

TlyA [172]

8 Amikacin (AMK) Second Line In-
jectable Agents

Rrs [173]

9 Kanamycin (KAN) Second Line In-
jectable Agents

Rrs [173]

10 Levofloxacin (LVX) Second
Line Fluo-
roquinolones

gyrA, gyrB [174]

11 Moxifloxacin
(MOX)

Second
Line Fluo-
roquinolones

gyrA, gyrB [175]

12 p-aminosalicylic
acid (PAS)

Second Line
Drug

DHFR [101]

13 prothionamide
(PTH)

Second Line
Drug

ethA, InhA [87]

14 Cycloserine (CS) Second Line
Drug

Ddl [176]

15 Ethionamide
(ETH)

Second Line
Drug

ethA, InhA [87]

16 Linezolid (LZD) Second Line
Drug

RplC [177]

17 Fluoroquinolones
(FQs )

Second Line
Drug

gyrA, gyrB [178]

18 Aminoglycosides
injectable agents
(AGs)

Second Line
Drug

whiB7 [179]
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employed in the EDA pipeline, while drug sensitivity data was used for the data

mining approach. Feature selection and preprocessing was performed separately

for each dataset.

3.3.2 Explanatory Data Analysis

3.3.2.1 Data Preprocessing and Feature Selection for Explanatory Data

Analysis

The collected dataset contained a total number of 2,602 observations and 19 dif-

ferent features against each observation. Subsequently, 1,140 observations were

initially subset by omitting those which showed sensitivity towards the drugs and

the ones that were cured. Afterwards, the dataset was further subset according

to the most common types of resistance (XDR, MDR non-XDR) found among all

the samples. After this sub setting,1,040 observations were obtained that were

next used for further analysis. Demographic Features selected for next step were

gender, age of onset, type of resistance, outcome, and lineage. The remaining fea-

tures were utilized for further genomic analysis as they contain the NCBI sequence

accession information and snp information.

3.3.2.2 Identification of Multidrug Resistant Isolates with Respect to

Age, Gender, and Outcome Through Explanatory Data Anal-

ysis

The TB dataset, which includes various features such as gender, age of onset,

type of resistance, outcome, and lineage, was analyzed using data analysis and

visualization techniques. Explanatory data analysis was carried out to summarize

the main characteristics of dataset to understand and explore the relationship of

clinical descriptors with XDR and MDR. For this analysis EDA was performed us-

ing a customized python script which utilized matlib and seaborn packages which

are the basic tool for explanatory data analysis. The script is available in annex-

ure 3. Each descriptor was utilized separately using data visualization technique
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available in seaborn. To achieve this, each feature was visualized separately using

appropriate data visualization methods For instance, age distribution was eluci-

dated by using optimal binning while visualizing its patterns through histogram

[180]. Subsequently, some patterns and trends were obtained by the set of combi-

nations, involving any two distinct features. Depending on the observed patterns,

age of onset was compared with outcome of the disease, type of resistance, and

lineage by using box plots to determine which age group has majorly faced the

worst outcome, which type of bacterial resistance was responsible, and how lineage

was being influenced in various age groups respectively. Similarly, gender distri-

bution was compared with the treatment outcome, type of resistance, and lineage

by utilizing the parameter hue, which uses color palette to visualize the recognized

patterns with more clarity while comparing two or more than two features at the

same time [181]. Moreover, through bar charts, the type of resistance was first

compared with the disease outcome to understand how resistance of the bacteria

influences the outcome of disease followed by its comparison with the lineage to

analyze which lineage is significantly being affected by the bacterial resistance.

Furthermore, most frequent types of resistance (XDR, MDR non XDR) were then

visualized in combination with gender, age, and outcome of the disease.

3.3.3 Drug Pattern Identification using Datamining

3.3.3.1 Data Preprocessing and Feature Selection for Data Mining

The raw data sheet contained almost 9000 records and 127 columns. The multiple

sputum samples were tested against different 18 TB drugs. Since data present in

TB portals is sourced from diverse laboratories, each adhering to specific proto-

cols for antimicrobial testing.These may include Bactec, Lowenstein–Jensen (LE),

Line-Probe Assay (LPA), LPA-Hain, and GeneXpert. Consequently, variations

emerge in drug names and dosages due to diverse lab practices. However the ta-

ble follow a standardized structure, evaluating 18 drugs across all five DST test

typed. It is noteworthy that not all columns contained data. The table contained
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3 types of values, ‘R’, ‘S’, ‘NULL. Drug resistant was denoted with R, sensitivity

was denoted with ‘S’ and undocumented data was denoted as ‘NULL’. Data was

preprocessed into a binary dataset. In order to do so R was replace with 1 and

both other values were replaced with ‘0’. Further duplications were removed and

empty cells were deleted. The binary data was organized as items and transac-

tions, with one transaction per row and one item per column. The preprocessing

was performed through python script available in Appendix C and further verified

manually.

3.3.3.2 Pattern Identification of Multidrug Resistant Isolates Through

Data Mining

The approach of data mining used for pattern identification was association rule

mining. This step was carried out to find out most frequent patterns of drug

resistance in terms of drug. Association rule learning is a rule-based machine

learning method for discovering interesting relations between variables in large

databases Association rules can expose biologically significant associations between

diverse components such as drugs and drug target, genes and gene expression or

drug’s resistance with other factors. An association rule is represented in the form

[L.H.S] => [R.H.S] where [L.H.S] and [R.H.S] are actually disjoint items sets, the

[R.H.S] set has chances to occur whenever the [L.H.S] set occurs. There are two

main steps for pruning association rules:

� Finding Frequent item sets

� Association Rule generation

3.3.3.3 Quality Measures

Quality measures in association rule mining are used to assess the significance

and reliability of discovered association rules. These measures help determine
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Figure 3.2: Association Rule Mining Methodology.

which rules are interesting, meaningful, and worth further investigation. The Two

important quality measures considered in this study are support and confidence.

3.3.3.4 Support and Support Count

Support Count is the frequency of transactions that contains a particular Item

set. Support measures the proportion of transactions that contain a particular

item or rule in the dataset. It indicates how many transactions contain both the

antecedent and consequent of the rule. Support calculation in association rule

mining is essential to discover frequent itemsets in the data. It is the quality

measure that plays a crucial role to filter out infrequent or uninteresting itemsets,

prune less significant rules, prioritize significant associations, and provide insights

into data patterns. Support is an important quality measure that warrants the

significant discovery of associations in large datasets. High support suggests that

the rule is frequent in the dataset. Support is calculated as follows:

Support(X) = (Number of transactions containing X) / (Total number of trans-

actions)

Here ’X’ is an itemset,

’Number of transactions containing X’ means the count of transactions in which
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the itemset X is observed. ’Total number of transactions’ means overall number

of transactions in your dataset.

3.3.3.5 Confidence

Confidence measures the strength of association between the antecedent and conse-

quent of a rule. It is calculated as the ratio of the support of the combined itemset

(antecedent and consequent) to the support of the antecedent alone. Confidence

in association rule mining quantifies the strength of the association between items

in a rule. It calculates the frequency of the consequent item appears when the

antecedent is present. High confidence indicates a strong relationship between

these items, making the rule more reliable and meaningful. This is also called

conditional probability. The pre-defined minimum confidence (minconf) is used to

select reliable rules from all possible rules. confidence is a measure of the strength

of an association between two itemsets, X and Y, in a rule of the form ”if X, then

Y.” It quantifies the probability that itemset Y will be present in a transaction

given that itemset X is present in the same transaction. The formula for calculat-

ing confidence is as follows:

Confidence(X => Y) = Support(X ∪ Y) / Support(X)

Here, Support(X ∪ Y) means the support of the combined itemset (X ∪ Y), mean-

ing the number of transactions where both X and Y are present.

3.3.3.6 Lift

Lift is another important measure in association rule mining that assesses the

strength of association between items while taking into account the expected fre-

quency of their co-occurrence. The formula for calculating lift is as follows:

Lift(X => Y)=( Support(X)×Support(Y))/Support(X ∪ Y)

Lift values greater than 1 indicate a positive association, suggesting that the pres-

ence of one item is likely to increase the presence of the other item, meaning they

are associated or correlated. Lift values equal to 1 indicate independence, meaning
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that the presence of one item does not affect the presence of the other item. Lift

values less than 1 indicate a negative association, suggesting that the presence

of one item is likely to decrease the presence of the other item, meaning they are

mutually exclusive. Lift is a useful metric because it not only measures association

but also provides information about whether the association is significant or just

due to chance.

3.3.3.7 Association Rule

An association rule is a pattern or relationship discovered in a dataset that shows

the statistical association between items. Association rules are typically expressed

in the form of ”if A, then B” .Where A and B are sets of items or attributes.

The strength of the association is measured by quality measures like support and

confidence. Association rule mining in drug resistance data is essential for iden-

tifying trends of co-resistance patterns of XDR and MDR in patients. A dataset

can contain 3n – 2n + 1 + 1 potential rules where n is the is the total number of

transactions in the dataset.

3.3.3.8 Frequent Itemset Generation

If the support of an item set is equal to or more than predefined support value

then that particular item set is frequent item set otherwise infrequent item set.

In context to drug resistant data.An itemset is a group of 0 or more items (i.e.

drugs). If all the items in the itemset are present in a transaction then we can say

the transaction has that itemset. The number of possible item sets, excluding the

null set of zero items, is 2n - 1, where n is the number of items in a dataset.

3.3.3.9 Rule Generation

The Apriori algorithm was employed to identify association rules using a custom

written python script (see Appendix C) . This algorithm is capable of discover-

ing frequent item sets by choosing candidate itemsets on the basis of minimum
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support threshold. The support of an itemset should be rather less than or equal

to the support of its subset.To calculate association rules using the Apriori algo-

rithm in Python, the mlxtend package was utilized for Apriori implementation.

Additionally, the pandas package played a role in efficient data manipulation, es-

pecially when working with data in DataFrame format. The process involved the

preparation of the dataset, specification of a minimum support threshold to find

frequent item sets using Apriori, and the subsequent generation of association rules

based on these frequent item sets. The algorithm considers the smallest itemsets

(with one item) and eliminate the set which does not meet the minimum support

requirement. Consequently, all candidate item sets with infrequent items were

eliminated because they cannot not meet the minimum support. The algorithm

generates all possible two-item item sets and removes the candidates with their

support less than or equal to minimum criteria. Similarly, the supports of the rest

two-item itemsets were calculated and compared to the min support criteria. The

algorithm repeated this procedure to the point where all item sets of a assumed

size were discovered to be infrequent or the algorithm reaches the largest candidate

item set. In this way aproiri successfully recognized the frequent itemsets without

calculating the support of each possible itemset.

Once the frequent item sets had been established, association rules were generated

from these sets. These rules were formulated under a condition that ensured

the support of each rule exceeded or equaled the minimum support threshold.

Following this step, the frequent item sets are partitioned into two distinct and

non-overlapping subsets: the antecedent and the consequent. This partitioning

effectively outlines the connections and dependencies among the items within the

rule. This method allows for the extraction of significant associations within the

data, thereby aiding in the comprehension of drug resistance patterns and their

implications. Once the frequent item sets had been established, association rules

were generated from these sets. These rules were formulated under a condition

that ensured the support of each rule exceeded or equaled the minimum support

threshold. Following this step, the frequent item sets were partitioned into two

distinct and non-overlapping subsets: the antecedent and the consequent. This
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partitioning effectively outlined the connections and dependencies among the items

within each rule. This approach facilitated the extraction of significant associations

within the data, contributing to a better understanding of past drug resistance

patterns and their implications.

3.4 Identification of Novel AMR Genes in Multi

and Extensively Drug-Resistant TB using

ARIBA Tool

Antimicrobial Resistance Identification by Assembly (ARIBA) is a tool used to

detect Antimicrobial Resistance (AMR) genes by analyzing paired read data. It

takes raw sequencing FASTA files as input and aligns the reads to a reference

genome.

These raw sequences were downloaded from NCBI. For downloading the sequences,

the SRA number provided in NAIDS data was used for accession number. These

1041 raw FASTA files were retrieved and used as the input for ARIBA software

and was loaded through a python script. The reference genome used was the M.

tuberculosis reference genome obtained from the NCBI Genomes database. Once

the reads were aligned, ARIBA identified variants for each gene in the sample.

It provided tabular results that include information such as gene names, variant

types, novelty of the variants, and the effects of the variants on the gene sequence.

The analysis aimed to investigate the presence of novel coding gene variants that

could potentially be linked to antimicrobial resistance in two types of M. tubercu-

losis strains, namely extensively XDR and MDR strains. Custom Python scripts

(Appendix C) were written to perform comparative analysis of genes with variants

identified by the ARIBA tool within each sample of XDR and MDR strains.(Fig.
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Figure 3.3: AMR genes identification using ARIBA Pipeline

3.3)This task involved reading each CSV report generated by ARIBA and com-

paring among each of the isolate to identify the common genes that have variants

among XDR and MDR strains, separately. Moreover, through this process, com-

mon novel variants shared by both XDR and MDR strains were also identified.

Furthermore, Venny tool was employed to identify unique genes that were exclusive

to either XDR or MDR strains, based on the common novel variants previously

identified.

These unique genes represented genetic variations that were specific to either XDR

or MDR strains. The common novel variants as well as the unique variants spe-

cific to each strain type were then selected for functional enrichment analysis.

Ariba aligned query sequences based on homology and similarity, regardless of

the bacterial species. Following manual inspection and a literature review, certain

genes were identified that were either unrelated to M. tuberculosis or not typically

associated with resistance mechanisms. After applying filters, the results were cat-

egorized into three groups of genes: 1) Unique novel variants specific to XDR TB

and MDR TB, (??) 2) Common novel variants shared by XDR TB and MDR TB,

(4.5)) and 3) Novel unidentified variants that have not been previously reported

in the context of TB drug resistance.
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3.5 Functional Enrichment Analysis

The MDR and XDR novel variants were classified into two categories: common and

unique. Both the unique and common variant genes of MDR and XDR were sub-

jected to functional enrichment analysis. To perform this analysis, the STRING

database was utilized, which provides a comprehensive list of genes involved in

various pathways. String provides a number of gene sets which can be used for

enrichment analysis. Enrichment analysis is used to characterize a gene list by

looking for classes of gene representing functions that are overrepresented on the

gene list to associate with the drug resistant TB. String has a user-friendly inter-

face. First of all the candidate genes/proteins were searched by organism name,

”Mycobacterium TB H37Rv” was chosen from the provided list. A graph was gen-

erated after further optimization of the parameters provided in string functional

enrichment analysis. The TSV files were downloaded and analyzed manually. For

further analysis and insights the result was subjected to cytoscape.

3.6 Hub Gene identification

Through the utilization of STRING analysis, an examination of the common genes

shared by MDR and XDR strains revealed distinct clusters of interactions. Cy-

toscape, a powerful tool in systems biology and network analysis, was used to

identify hub genes. The input was the TSV files imported from functional en-

richment analysis conducted on the list of MDR and XDR TB genes, revealing

the biological processes, pathways, or functions significantly linked to these genes.

Subsequently, within Cytoscape, a network is constructed where each gene is repre-

sented as a node, and edges symbolize known interactions or relationships between

these genes. The CytoHubba plugin for Cytoscape was employed to identify hub

genes within the network. Hub genes are typically genes that are highly con-

nected or central within the network.. The network from string was subjected

to cytoscape and the degree centrality algorithm was selected to identify the hub

genes which was based on the number of connections they possess. CytoHubba
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provided a ranked list of these crucial genes, which was be further visualized within

the network, making them distinguishable from other nodes. The direct and in-

direct interaction of gene was revealed as the on the basis of placement of genes

in a specific cluster. Furthermore, a comprehensive network of interactions was

observed among all other genes, forming an intricate map. Notably, each gene ex-

hibited the capability to receive and transmit signals while interacting with other

proteins. These hub genes are potentially fundamental in the context of MDR

and XDR TB, acting as crucial regulators or central players within the biological

processes associated with drug resistance in TB.
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Results and Discussion

4.1 Identification of Multidrug Resistant Isolates

with Respect to Age, Gender, and Outcome

In order to identify drug resistant isolates of TB, various demographic features

present in the dataset (2,602 observations) were analyzed and shortlisted by us-

ing pattern recognition techniques. The patient with treatment outcome ’cured’

were omitted as they were sensitive to the treatment, remaining 1041 observations

were subjected to explanatory data analysis. Type of resistance which refers to

the resistance exhibited by TB strain, age of onset which corresponds to the age

at which TB was diagnosed, gender of the patient, and outcome of the patient’s

treatment were the selected features as they were identified with some prominent

patterns and regularities in the data. In order to evaluate the most prevalent type

of drug resistance among all the types of resistance present in the dataset(pre-

XDR, XDR, sensitive, mono DR, poly DR, and MDR non XDR), a bar graph was

plotted between the count of patients on y axis and x axis represented the type of

resistance.(Fig. 4.1)Among 1041, 741 were XDR,48 were mono DR, 4 were pre-

XDR, 311 were XDR and 38 were poly DR.The graph showed that most common

and highest occurring type of resistance is MDR (71%) followed by XDR(29.8%),

mono DR (4.6%), poly DR(3.6%) and pre-XDR(0.3%) . In order to influence on

59
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drug resistance type on outcome of the disease (failure, lost to follow up, still on

treatment, completed, and unknown), another bar chart was plotted to visual-

ized bacterial resistance type with respect to all possible outcomes of the disease

mentioned in database shown in (Fig. 4.2). It was noted that all corresponding

outcomes were comparatively higher for MDR then XDR. Subsequently, isolates

with XDR and MDR non XDR were separately plotted with outcome of the disease

to visualize and analyze outcomes associated with these types of resistance by bar

chart plot (Fig. 4.3). After final subsetting of the dataset, it was observed that the

outcomes were Death (MDR 110/741 - 14.86%, XDR 100/311 - 32.16%), Treat-

ment failure (MDR 150/741 - 20.24%, XDR 77/311 - 24.76%), lost to follow up

(MDR 178/741 - 24.00%, XDR 30/311 - 9.65%), still on treatment (MDR 96/741 -

12.97%, XDR 47/311 - 15.11%), completed (MDR 182/741 - 24.56%, XDR 41/311

- 13.20%), and unknown (MDR 13/741 - 1.75%, XDR 16/311 - 5.14%). Analy-

sis was also conducted to examine the distribution of resistance types based on

gender. It was revealed from the bar chart that males are significantly being in-

fluenced by both types of resistance, as compared to females. XDR TB is present

in around 220 males out of 311 while the count of females is less than 100 out of

311 observations.

Around 570 out of 741 males were found with MDR non-XDR TB, whereas only

160 out of 741 females possessed MDR non XDR TB.(Fig. 4.4) How ever male

and female resistance type was analyzed separately which showed that over all

resistance type ratio remains same for each gender. To achieve this, the initial

dataset, comprising 2602 observations, was utilized. The dataset was then divided

into two subsets: one for males and one for females, allowing for separate analysis

of resistance patterns in each gender.Out of 2602, 736 (28%)were females that out

of which 141 were sensitive and did not faced the worst outcomes, so these isolates

were omitted leaving 594 observation. Among these 594 observations 351 (59%)

were MDR, 175(29%) were XDR, 41(6.8%) were Mono DR,24(4%) were Poly DR

and 3 (0.5%)were Pre-XDR .Total males were 1868 (72%).Similarly after excluding

the cured observation which were 337(18%),Total 1531 observation were carried for

futher analysis .Among these 1531 observations 998 (65%) were MDR, 391(25%)
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Figure 4.1: Bar chart demonstrating types of resistance against the count of
patients after subsetting.

were XDR, 93(6%) were Mono DR,56(3.6%) were Poly DR and 2 (0.13%)were

Pre-XDR .The percentage ratios of the resistance type remained almost the same.

So It was concluded that gender has no specific impact on drug resistance.(Fig.

4.5)

Additionally, the patient’s age of onset was then compared with the resistance

of bacteria by visualizing through a comparative box plot (Fig. 4.6). This was

done to analyze the onset age distribution among the isolates of the patient having

MDR non XDR and XDR as the types of resistance. Age around 40 is the median,

corresponding to both MDR non XDR and XDR TB. Moreover, the age of patients
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Figure 4.2: Bar chart demonstrating types of resistance against the disease
outcome.

with XDR TB ranges from 18-75 years while the age for MDR non XDR TB

patients ranges from 13-82 years. Majorly, both types of resistance range from ages

between 32-52 years as demonstrated by the box plot. There was no significant

difference in onset of resistance with respect to the age that indicates that age has

no relation with the onset of any type of resistance.

In order to assess the type of resistance with respect to lineage another bar graph

was plotted depicting that Beijing lineage following H3 and T1 showed higher

prevalence of MDR as compared to other reported lineages. Bar graph was plot-

ted that illustrates the relationship between different lineages of M. tuberculosis
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Figure 4.3: Bar chart demonstrating types of resistance against the disease
outcome after subsetting.

and the types of drug resistance.(Fig. 4.7) While working with the DR-TB data,

generation these bar plots were fundamental. The visual representation of the re-

lationships between patient characteristics, drug resistance types, treatment out-

comes, age, and TB lineage, provided valuable insights into DR-TB dynamics.

These insights are essential for tailoring treatments, understanding treatment out-

comes, identifying potential risk factors, and guiding public health strategies. The

analysis revealed that XDR and MDR non-XDR were the most prevalent types of

TB resistance and were associated with unfavorable outcomes. Specifically, signif-

icant number of patients with MDR non-XDR TB experienced death or treatment

failure. Age of onset analysis through box plots demonstrated that the median

age for both types of resistance was around 40, with the age range varying slightly

between XDR and MDR non-XDR TB cases. In a study conducted in Sudan, the

25-44 and 45-64 age groups were more likely to be infected with MDR-TB than

the other age groups (18-24 years and 65+ years). A case-control study conducted
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Figure 4.4: Bar chart illustrating gender distribution against the types of
resistance (MDR non XDR, XDR) after subsetting.

Figure 4.5: Box plot illustrating types of resistance (MDR non XDR, XDR)
against the gender.
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Figure 4.6: Box plot illustrating types of resistance (MDR non XDR, XDR)
against the age of onset.

in Bangladesh confirmed this finding in the 25-44 age group, among whom MDR-

TB was significantly more common [182]. Similarly, it has been found in an other

study that (63.5%) of the MDR-TB cases were from 15 to 44 years of age and was

marginally statistically associated with MDR-TB [183]. Several studies showed the

absence of statistically significant difference in the proportion of any resistance by

age [184]. Moreover gender does not appear to make any significant difference on

drug resistance TB. Numerous studies have reported that females had a higher

risk than males for MDR-TB [185, 186]. Analysis in one of the study showed that

there was no evidence of an association between sex and risk of MDR/RR-TB in

TB patients both globally and nationally in the majority (81%, 86 out of 106) of

countries, with an overall random-effects weighted M:F risk ratio of 1.04 (95% CI

0.97–1.11) [187]. Supplementary files in Appendix D provide additional graphs for

reference. These findings contribute to understanding the demographic patterns

and outcomes associated with different types of drug-resistant TB.
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Figure 4.7: Bar chart demonstrating frequency of each type of resistance
against the lineage.

4.2 Pattern Identification of Multidrug Resistant

Isolates with Respect to Drug Susceptibility

Through Data Mining

Drug susceptibility test results dataset from TB portal consisted of 1970 records

and more then 4500 rules were generated by implementing aproiri algorithm in

python script. The optimum combination for threshold values of minimum support

and confidence was 0.01 and 1. The Most rules had high confidence ,indicating

that the antecedent nearly perfectly predicted the consequent. The confidence

threshold for pruning the rules was set at 0.9 to include rules with a reliability
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of 90%. The support of most rules was small ,which is consistent with the low

frequency of resistance to most antimicrobials other than isoniazid and rifampin.

Pruning with confidence 0.9, support >0.01, results around 500 best-rules in the

dataset. Lift compares the support of a rule in a dataset to the support expected

if the antecedent and consequent were independent.

A lift of 1 indicates that the antecedent and consequent are independent; a lift

1 is a positive association. 70% of rules across all datasets had a negative as-

sociation between the antecedent and consequent means 70% of resistance were

dependent and 30% was dependent. The generated ruleset was visualize and fil-

tered manually as it contained a lot of vague and meaningless rules. A rule is

considered meaningless with respect to the study if it contain more than 3 items

in antecedent.For example the rule shown in Table 4.1 is insignificant as it depicts

the in combination [KAN, INH, CAP, OFL, STR, PTH, RIF, EMB] exist when

the combination [ RIF, OFL, LVX, AMK ] will show up. This does not make any

sense as most of drugs are overlapping in both rules. Another fact that support of

such rules were really low hence a number of such rules did not meet the criteria.

Moreover, the rules with zero antecedent and consequent were eliminated. Any-

how some of the itemset are were important with respect to the nature of the data.

Meaningful rules were filtered and classified according to the drugs and types of

resistance. The selected rules were with highest support, with antecedent having

not more items than 3,with no or minimal overlap of items in antecedent and con-

sequent. The most frequent rule was with the maximum support of 0.5 was [RIF

to INH].This reflects the high degree of coexistence rifampicin [RIF] and isoniazid

[INH] resistance in the dataset.(Table 4.2).This rule complemented the definition

of multidrug resistance. The target genes responsible for INH resistance katG

and inhA are significantly related to mutations in rpoB that is responsible for RIF

resistance. The second most credible rules were those representing extensive drug

resistance i.e the MDR paired with one or more of the second line drugs (SLD)

resistance. These rules had RIF,INH in antecedent and two or more SLD in con-

sequents with the support ranging from 0.01 to 0.08. The association rules with
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Table 4.1: Eliminated association rule due to low support value.

Antecedents Consequent Support Conf.

KAN, INH, CAP,
OFL, STR, PTH,
RIF, EMB

RIF, OFL, LVX,
AMK

0.011 1

Table 4.2: Eliminated association rule due to low support value.

Antecedents Consequent Support Lift

RIF INH 0.5 1

two and three drugs in consequents are enlisted in table below. Rest of the rules

are given in Appendix E.

The rules with support equal or greater than 0.05 contained the second line drugs

Capreomycin (CAP), Ofloxacin (OFL), Ethambutol (EMB) Amikacin (AMK) and

Kanamycin (KAN) in the consequent. The targets genes against these drugs are

g.TlyA, g.gyrA, g.gyrB, g.embA, g.embB, g.embC and g.rrs are closely related in

terms of mutation and developing resistance.

In conclusion the EDA was followed by datamining technique on the DST data of

the same patients. The association rule mining was applied to drive association

in the context of drug resistance in TB treatment. An extensive set of over 4500

association rules was generated, with the objective of understanding drug resis-

tance patterns, particularly within the context of TB treatment with minimum

support of 0.01 and confidence of 0.9. The rules were filtered eliminating vague

and irrelevant rules, focusing only on those of significance. These significant rules

were then classified based on the drugs involved and the types of resistance they

represented. The most frequent and impactful rule, with boasting the highest sup-

port value of 0.5 was representing the correlation between resistance to isoniazid

(INH) and rifampicin (RIF). Two basic first-line drugs in the against TB. This
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Table 4.3: Top 20 association rules complementing XDR.

Antecedents Consequent Support

RIF, INH CAP, OFL, STR 0.076142132

RIF, INH CAP, OFL, STR 0.076142132

RIF, INH CAP, EMB, OFL, STR 0.070050761

RIF, INH OFL, AMK, STR 0.059898477

RIF, INH OFL, EMB, AMK, STR 0.055837563

RIF, INH OFL, EMB, AMK, STR 0.055837563

RIF, INH KAN, CAP, OFL, STR 0.052791878

RIF, INH STR, CAP, AMK, OFL 0.052284264

RIF, INH KAN, CAP, OFL, STR, EMB 0.050761421

RIF, INH AMK, CAP, OFL, STR, EMB 0.049238579

RIF, INH KAN, OFL, AMK, STR 0.041624365

RIF, INH KAN, AMK, OFL, STR, EMB 0.040609137

RIF, INH KAN, AMK, CAP, OFL, STR 0.039593909

RIF, INH KAN, AMK, CAP, OFL, STR, EMB 0.039086294

RIF, INH CAP, EMB, PTH, STR 0.025888325

RIF, INH CS, EMB 0.022335025

RIF, INH EMB, PTH, AMK, STR 0.022335025

RIF, INH CAP, LVX, STR 0.021827411

RIF, INH KAN, PZA, EMB 0.021319797

RIF, INH KAN, PTH, STR 0.021319797

RIF, INH CAP, PTH, OFL, STR 0.020812183

RIF, INH LVX, AMK, STR 0.020304569



Results and Discussion 70

rule essentially serves as phenotypic evidence, providing empirical proof of the

link between INH and RIF resistance. The other frequent associations TB drugs,

particularly rifampicin (RIF) and isoniazid (INH) in the antecedents, and multi-

ple second-line drugs (SLD) (Capreomycin (CAP), Ofloxacin (OFL), Ethambutol

(EMB), Amikacin (AMK), and Kanamycin (KAN) in the consequents. These

drugs are essential in treating drug-resistant TB strains.The target genes as per

literature associated with these second-line drugs, including TlyA, gyrA, gyrB,

embA, embB, embC and rrs were expected to be somehow related to each other .

Furthermore, the outcomes of data mining laid the foundation for next genotypic

analysis, which involved identifying resistance genes within the genomic sequences

of patients, previously identified as having phenotypic resistance through data

mining and exploratory data analysis (EDA). The association rules supported the

statistical trends observed in EDA, with the highest proportion of cases being

multidrug-resistant (MDR), followed by extensively drug-resistant (XDR) cases

and other types of resistances. Additionally, association rules generated from the

data also provided insights into the specific drug combinations associated with

MDR and XDR cases. These resistant drug combinations basically corresponded

to their targeted genes developed resistance to the drugs due to some mutation

mechanisms.

4.3 Identification of Novel AMR Genes in MDR

and XDR TB

Utilizing XDR and MDR isolates samples, an investigation was conducted to

identify the genetic elements responsible for antibiotic resistance using the whole

genome sequencing pipeline, Ariba. The output was csv files results that include

information such as gene names, variant types, novelty of the variants, and the

effects of the variants on the gene sequence. The purpose of analysis was explor-

ing the presence of novel coding gene variants that could potentially be linked
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to antimicrobial resistance in two types of M. tuberculosis strains, namely exten-

sively XDR and MDR strains. This analysis unveiled previously known and newly

discovered variants of these resistance genes. The novel variants were specifically

selected for further scrutiny .A comparative analysis performed to identify the

shared novel variants in XDR and MDR novel resistance genes, revealing a set

of unique novel variants exclusive to each category. Notably, one unique novel

variant was exclusively found in the XDR samples, while 16 were exclusively iden-

tified in the MDR and XDR .Moreover, 29 variants were common between the

XDR and MDR samples as given. After literature verification it was revealed that

12 of the genes were not from M. tuberculosis. Such genes were place in another

cetagory. After this filteration 6 Unique novel variants genes in MDR TB were

left and 27 common XDR TB/MDR TB novel variants’ genes while 12 were Novel

unidentified variants gene not reported for TB drug resistance As given in Table

4.6.

4.3.1 Unique Novel Variants Conferring MDR Resistance

The results from ARIBA revealed the presence of six frequently occurring novel

variants in the data, namely g.msrA, g.inhA, g.rpoC, g.mfpA, g.fusA, and g.qac,

which confer either MDR exclusively. Other genes have also been reported in

literature but these six were found on the Genomic sequences from the TB Portals.

Table 4.4 contains the genes functions and type of resistance from each gene.

g.msrA helps repair proteins that have been damaged by oxidative stress, including

those targeted by reactive oxygen species such as hydrogen peroxide. By restoring

the functionality of these proteins, MsrA contributes to the bacterium’s ability to

adapt to and survive in the presence of oxidative stress [194].

Involvement of msrA is in drug resistance is not frequently reported in litera-

ture anyhow It was reported that msrA was one of the genes that reduced INH

susceptibility.A mutation in g.msrA, could impact the g.inhA binding [195].
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Resistance mechanisms associated with the inhA gene play a significant role in

multidrug-resistant TB typically involve genetic mutations that undermine the

efficacy of INH.One primary mechanism involves changes in the INH binding site

on the InhA enzyme, encoded by the g.inhA gene. These mutations result in

reduced affinity between INH and InhA, diminishing the drug’s ability to inhibit

the synthesis of mycolic acids, vital components of the mycobacterial cell wall.

Some INH-resistant strains of M. tuberculosis exhibit mutations in the promoter

region of the inhA gene.

Notably, the substitution at position -15 in the inhA promoter can lead to the over-

expression of the InhA enzyme. Although this mutation doesn’t directly modify

the drug’s binding site, increased inhA enzyme levels compensate for the reduced

affinity of INH, rendering the drug less effective [44, 196]. Mutations in the rpoC

gene are important in making TB resistant to multiple drugs. TB can become

resistant to a drug called rifampin because of changes in the rpoB gene. But these

changes can affect how well the bacteria can survive. To balance this, the bacteria

can also change other genes like rpoA or rpoC. A study in China looked at these

gene changes in TB samples from patients.

They found that in a certain type of TB, around 28% of the samples that were

resistant to rifampin had changes in the rpoA or rpoC gene. These changes were

more common in new cases and when combined with another change. The TB

strains with changes in rpoC were also connected to specific patterns. These

findings show that these gene changes play a big role in making TB resistant to

drugs and in how it spreads [197]. mfpA is associated with the bacterium’s cell

wall structure and may play a role in biofilm formation. The modification in the

cell wall structure and components like mfpA can possibly alter drug susceptibility.

Anyhow the main mechanisms of drug resistance in M. tuberculosis imply muta-

tions in genes directly related to drug targets and activation. mfpA interacts with

the DNA gyrase enzyme, crucial for DNA replication. This interaction prevents

fluoroquinolone antibiotics from binding to the enzyme, potentially contributing
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to drug resistance. The mfpA gene is present in both drug-sensitive and drug-

resistant M. tuberculosis strains, with a higher frequency in drug-resistant strains,

as it can be acquired through horizontal gene transfer. fusA is involved in protein

synthesis. It is associated with elongation factor G (EF-G), which facilitates the

translocation of ribosomes during translation.

Mutations in the fusA gene can lead to resistance to fusidic acid, an antibiotic

that inhibits bacterial protein synthesis by binding to elongation factor G (EF-G)

[192].

Multiple invitro testing proved that fusidic acid is potential anti TB drug that

can be included in first line treatment regime for TB treatment [198]. Lim et

al.performed a study in 2014 to show that rpoB and fusA causes resistance against

rifampcin and fusidic acid in bacteria [199, 200].

4.3.2 Common Novel Variants Conferring MDR/XDR Re-

sistance

The List with samll l comprises 27 frequently occurring common variants in the

data, including g.thyA, g.embR, g.embB, g.embC, g.folC, g.kasA, g.aac, g.mshA,

g.iniA, g.rpsA, g.gyrA, g.gidB, g.iniC, g.pncA, g.ethA, g.Rv1258c, g.embA, g.murA,

g.iniB, g.ribD, g.gyrB, tlyA, efpA, rpsL, g.katG, g.rpoB, and g.blaC.

These genes are associated with both MDR and XDR TB. Table 4.5 provides

details of the gene functions and the type of resistance they confer.

A literature survey was conducted to verify the involvement of each gene in an-

timicrobial drug resistance TB.

Mutations in the g.embA, g.embB, g.embC, g.embR, g.katG, g.pncA, g.thyA and

g.rpsL genes that are associated with phenotypic resistance in various anti-TB

drugs [38].
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A study using transposon mutagenesis identified mutations in the thyA gene asso-

ciated with resistance to PAS that were also present in clinical isolates resistant to

PAS. thyA gene gene encodes thymidylate synthase, a which act as a key enzyme

in DNA synthesis.Mutations in thyA can lead to reduced enzyme activity, altering

the balance of nucleotides necessary for DNA replication [226]. Mutations in the

embR gene play a role in resistance to Ethambutol (EMB) in drug resistant TB.

as encodes a transcriptional regulator thatregulates the expression of the embCAB

operon, which is involved in the biosynthesis of arabinogalactan, an essential com-

ponent of the mycobacterial cell wall. Arabinogalactan is crucial for the structural

integrity of the cell wall, and disrupting its synthesis can lead to cell wall abnor-

malities and drug resistance.Mutations in embR can lead to upregulate expression

of the embCAB operon, which can result in changes to the cell wall structure.This

affacts the permeablility cell wall to EMB or altering the target sites of the drug

[227].

The embA, embB and embC genes collectively form the embCAB operon in My-

cobacterium TB which is integral to the biosynthesis of the mycobacterial cell

wall. Each of these genes plays a distinct yet interconnected role in this crucial

process. embA and embC are involved in the synthesis of arabinogalactan, a vi-

tal component of the mycobacterial cell wall, while embB plays a central role in

the incorporation of arabinogalactan into the cell wall structure. Mutations in

these genes can lead to resistance to ethambutol (EMB), an essential anti-TB

drug. Specifically, mutations in embB are most associated with EMB resistance,

affecting the drug’s binding site and inhibitory action on cell wall synthesis. embA

and embC mutations can also contribute to EMB resistance by disrupting ara-

binogalactan synthesis. Collectively, these genes are pivotal in maintaining the

structural integrity of the mycobacterial cell wall and are key players in the devel-

opment of drug resistance in TB. Understanding their functions and mutations is

critical for diagnosing and addressing drug-resistant TB effectively [227].

In para-aminosalicylic acid (PAS)-resistant strains of M. tuberculosis, specific mu-

tations in the folC gene have been reported , such as I43T, I43A, and E40G.These
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mutations are responsible for resistance to PAS, as they increases MIC (Minin-

mum inhibitory concentrations) to inhibit bacterial growth. Structural studies of

FolC reveal that these mutations alter the substrate-binding pocket of the enzyme.

exhibit reduced enzymatic activity. When the wild-type folC gene is reintroduced

into these PAS-resistant strains, their susceptibility to PAS is restored, confirming

the role of folC mutations in PAS resistance [16].

KasA enzyme involved in mycolic acid synthesis.Mycolic acids contribute to the

impermeability and structural integrity of the bactaium cell wall. KasA shares

some similarities with InhA. Mutations in kasA consequently, changes in the my-

cobacterial cell wall structure and permeability. These alterations could affect

drug permeability and susceptibility.

It has been proposed that kasA might serve as a secondary target of INH, with

the primary target being the enzyme InhA [228].

Aminoglycoside 2’-N-acetyltransferase (AAC) enzymes are involved in modifica-

tion of aminoglycoside antibiotics, such as kanamycin and amikacin. Bacterial

strains of M. tuberculosis that produce AAC enzymes can acetylate these antibi-

otics, making them ineffective. This result in the structural changes in the drug,

reducing its ability to bind to the ribosomal target in the bacterial cell, where it

normally interferes with protein synthesis. As a result, the modified antibiotic is

less effective at inhibiting bacterial growth [229].

The mshA gene in encodes an enzyme involved in mycothiol synthesis. In M.

tuberculosis, Mycothiol is involved in tolerance against oxidative stress and toxic.

Mutations in mshA have been associated with drug resistance in TB, particularly

isoniazid (INH) resistance. These mutations can disrupt mycothiol synthesis, af-

fecting the bacterium’s ability to neutralize reactive oxygen species generated by

INH. MshA mutations contribute to INH resistance and may play a role in drug

tolerance and multidrug resistance in M. tuberculosis [230].
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In Mycobacterium TB, Isoniazid inductible gene protein iniA may play a role in

a naturally occurring tolerant phenotype in clinical M. tuberculosis infections, po-

tentially affecting the duration of TB treatment. IniA, IniB, and IniC are integral

components of the iniBAC operon. IniA functions as a pump component and

may help M. tuberculosis survive antibiotic exposure by preserving cellular func-

tions or removing toxic components of the cell wall. Colangeli et al. [208], IniB

also participates in the bacterial response to antibiotic stress and contributing to

antibiotic resistance. IniC, another component of the operon, similarly plays a

role in drug resistance by responding to antibiotic stress, including INH exposure,.

Collectively, these three genes are crucial in understanding the mechanisms un-

derlying antibiotic resistance in M. tuberculosis, particularly against INH, aiding

in the development of diagnostic and treatment strategies for TB [231].

Ribosomal protein S1 (RpsA) plays a role resistance to the antibiotic pyrazinamide

(PZA) in TB. Mutations in the rpsA gene, can lead to modifications in the en-

zyme pyrazinamidase (PZase) activity. PZA requires activation into pyrazinoic

acid (POA) to be effective against M. tuberculosis. rpsA mutations can affect

PZase activity, reducing PZA activation, and resulting in PZA resistance. How-

ever, not all PZA-resistant M. tuberculosis strains have rpsA mutations, as resis-

tance can also involve mutations in the pncA gene, which directly affects PZase

production. Mutations in pncA can reduce or eliminate PZase activity, rendering

PZA ineffective and contributing to drug-resistant TB [232].

Mutations in the gyrA and gyrB genes are associated with resistance to fluoro-

quinolone drugs in TB . gyrA mutations can prevent the fluoroquinolone from

binding effectively to the DNA gyrase,. Mutations in gyrB can lead to structural

changes in the DNA gyrase complex, making it less susceptible to fluoroquinolones.

DNA gyrase is essential for DNA replication and repair in M. tuberculosis, the bac-

terium causing TB. Mutations in gyrA and gyrB can result in cross-resistance to

multiple fluoroquinolone drugs, limiting treatment options for drug-resistant TB

patients. drug- to fluoroquinolone antibiotics. Detecting these mutations is cru-

cial for diagnosing drug resistance and guiding treatment decisions in TB patients

[233].
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The gidB gene encodes a methyltransferase enzyme that plays a crucial role in

bacteria by methylating a specific nucleotide position within the 16S ribosomal

RNA (rRNA). This modification helps regulate the structure and function of the

ribosome, which is essential for protein synthesis. GidB’s function is to fine-tune

ribosomal activity, ensuring efficient protein production and adaptation to different

environmental conditions in bacteria. Streptomycin is an antibiotic that binds to

the ribosome during protein synthesis in bacteria. It interacts with the 16S rRNA

of the ribosomal subunit, specifically at a site where gidB-mediated methylation

typically occurs [234].

ethA and ethR are key components of drug-resistant TB. ethA, encoded by the

enzyme is responsible for activating the antibiotic ethionamide(ETH). ethA con-

verts ethionamide into an active form that disrupts the TB bacterium’s cell wall

synthesis, ultimately leading to bacterial cell death.whereas ethR acts as a tran-

scriptional repressor that regulates the expression of ethA. When EthR binds to

the ethA promoter region, it inhibits ethA transcription, reducing ethionamide

activation. Mutations or alterations in these genes and their associated proteins

can influence the efficacy of ethionamide and contribute to drug resistance in TB.

Understanding the roles of ethA and ethR is essential for planning strategies to

combat drug-resistant TB effectively [235].

Rv1258c is associated with efflux-mediated drug resistance in TB, particularly

rifampicin resistance. Efflux pumps are cellular mechanisms that pump drugs

and antibiotics out of bacterial cells, reducing their effectiveness. It is involved

in pumping rifampicin out of bacterial cells, reducing the drug’s effectiveness .

Understanding the role of Rv1258c is important for developing strategies to combat

drug-resistant TB.

Mur enzymes (MurA-MurF) are involved in the peptidoglycan synthesis path-

way of M. tuberculosis which are building blocks the cell wall of M. tuberculosis.

inhibition Mur enzymes may lead to disruption of the cell wall synthesis of M. tu-

berculosis, making the it more vulnerable to antibiotics.So Mur enzymes potential
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as targets for drug development as these enzymes could be a promising strat-

egy for developing new drugs to combat drug-resistant TB. Anyhow the resistant

mechanism of these enzymes are not reported yet [236].

In M. tuberculosis ,ribD is involved in the folate metabolism pathway. Mutations

in ribD can cause resistance to the anti-TB drug para-aminosalicylic acid (PAS).

Some mutations, can lead to overexpression of ribD and increased production of

tetrahydrofolate (THF), which is a critical cofactor in various metabolic processes.

This overproduction of THF can reduce the inhibitory effects of PAS on folate

metabolism, contributing to drug resistance.

The tlyA gene in M. tuberculosis encodes a methyltransferase enzyme that is in-

volved methylation of ribosomal RNA (rRNA), particularly the 16S rRNA results

in functional regulation of ribosome.These alterations in tlyA-mediated methy-

lation can affect antibiotic resistance and the overall fitness of M. tuberculosis

strains. Methylation by tlyA can lead to resistance to certain antibiotics, such as

aminoglycosides, and may compensate for fitness costs associated with resistance

mutations [237].

efpA is a gene found in M. tuberculosis (the bacterium that causes TB) that

When exposed to drugs like isoniazid (INH) and other compounds, the expression

of efpA increases, indicating its potential role in drug resistance. contributes

to the bacterium’s ability to respond to antibiotic treatment [238]. The rpsL

gene encodes ribosomal protein S12, a vital component of the bacterial ribosome

involved in the translation of mRNA . Hence The rpsL gene in Mycobacterium

TB plays a vital role in protein synthesis. Mutations in rpsL are a common

mechanism of resistance to the antibiotic streptomycin in TB. These mutations,

reduce streptomycin’s binding affinity to ribosomal protein S12 [44].

katG in M. tuberculosis plays a pivotal role in activating isoniazid (INH), a critical

antibiotic used in TB treatment. This enzyme catalyzes the conversion of INH into

its active form, disrupting mycobacterial cell wall synthesis. Resistance to INH

often arises from mutations in the katG gene, hindering KatG’s ability to activate

INH effectively, reducing the drug’s potency against TB bacteria [237].
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The rpoB gene in Mycobacterium TB encodes the beta subunit of RNA poly-

merase, a key enzyme involved in bacterial transcription. It plays an important

role in initiating transcription, synthesizing RNA from DNA, and regulating gene

expression. Mutations in rpoB are a usual reason of resistance to the antibiotic

rifampicin (RIF) . These mutations interfere with RIF binding, leading to drug

resistance [239].

The blaC gene in M. tuberculosis encodes a β-lactamase enzyme, which is a major

mechanism of resistance to β-lactam antibiotics like penicillin [240].

4.3.3 Novel Unidentified Variants Not Reported For TB

Resistance

The ARIBA analysis for genomic data revealed 12 genes that have not been re-

ported in literature with respect to M. tuberculosis. However they have been

associated with resistance mechanisms in other bacterial species. The presence of

these sequences in TB isolates from TB portals suggests their potential involve-

ment in resistance mechanisms in M. tuberculosis. For this reason these genes are

also subjected to functional enrichment analysis.

The shortlisted XDR andMDR strains were then analyzed through ARIBA pipeline

to identify novel variants in each isolate. The study’s significant findings shed light

on the variants associated with MDR and XDR strains, potentially playing a cru-

cial role in TB drug resistance. The investigation successfully identified variants

specifically linked to MDR and XDR, suggesting their direct or indirect involve-

ment in the development of drug resistance.

A total of 27 common genes with variants were observed in MDR and XDR samples

including g.thyA, g.embR, g.embB, g.embC, g.folC, g.kasA, g.aac, g.mshA, g.iniA,

g.rpsA, g.gyrA, g.gidB, g.iniC, g.pncA, g.ethA, g.Rv1258c, g.embA, g.murA, g.iniB,

g.ribD, g.gyrB and g.tlyA. However the 6 MDR genes identified includingg.msrA,

g.inhA, g.rpoC, g.mfpA, g.fusA, g.qac. Certain genes which are associated with

XDR TB overlap with MDR ,as XDR-TB is characterized by resistance to both
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first-line and second-line anti-TB drugs, making it more complex. These genes are

associated with resistance to different drugs like g.katG, g.inhA, g.aphC, g.kasA,

g.rpsL, rrs, g.embB, g.pncA, g.gyrA, g.gyrB, g.eis, g.tlyA, g.whiB7, efflux pump

genes. Various genes related to efflux pumps can contribute to drug resistance in

TB, various other mutations and genes associated with resistance to second-line

drugs like capreomycin, moxifloxacin, and others.

It has been reported from multiple other studies that individuals who have pre-

viously undergone TB treatment are more likely to develop MDR-TB compared

to new TB cases. These findings emphasize the importance of ensuring treatment

completion rates for new cases and maintaining a vigilant approach to monitoring

drug resistance in individuals with a history of previous TB treatment. Further-

more, these insights underscore the critical need for rigorous implementation of

infection control measures to prevent the transmission and emergence of new cases,

including those with drug-resistant TB [253, 254].

The incidence of XDR-TB remained low and showed no significant change during

the study period, there was a notable increase in the incidence of pre-XDR TB.

This rise in second-line drug resistance is a matter of concern. It has the potential

to lead to important implications for case management, including the adjustment

of treatment regimens, the demand for new therapeutic agents, and the introduc-

tion of rapid diagnostic tools. Previous studies worldwide have also reported a

similar upward trend in second-line drug resistance [255].

Overall, this analysis provides valuable insights into the genetic factors contribut-

ing to drug resistance in TB, helping researchers and healthcare professionals bet-

ter understand and manage drug-resistant TB strains. It also sets the stage for

further genetic validation, where the identified associations will be scrutinized at

the genotypic level, offering deeper insights into the underlying genetic mechanisms

driving drug resistance in TB.

In order to understand the significance of association rules in previous step the

list of identified genes were compared with the specified targets of drugs present in

top rules and most frequent itemset from the association rules mining.For instance
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the coexistence of mutations in the rpoB, KatG and inhA genes, as listed in the

Table 3.1, is characteristic of MDR TB combinations. In accordance with the

first rule from table 4.3 [RIF, INH]=>[CAP, OFL, STR], these drugs target the

combination of resistance genes rpoB, KatG, and inhA, which subsequently leads

to resistance to g.tlyA, g.gyrA/g.gyrB, g.rrs, and g.rpsl. This combination of

resistance is associated with MDR/XDR TB, as it involves resistance to first-line

drugs (RIF and INH) as well as second-line drugs (STR, CAP, and OFL) all four

of these gene existed list of identified either common or unique variant genes from

ARIBA pipeline. Similar combinations found throughout the table 4.3 correspond

to various XDR mechanisms and the coexistence of these mutations. In this way

both results showed more than 70% similarity.

4.4 Functional Enrichment Analysis

Functional enrichment analysis was conducted using the gene symbols of these

novel variants in order to identify the pathways and functions that exhibited en-

richment. Two distinct functional enrichment analyses were carried out. The

first analysis focused on the common genes shared between MDR and XDR, while

the second analysis specifically targeted the unique genes associated with MDR.

The former analysis involved 31 common novel variant genes found in both MDR

and XDR, whereas the latter analysis considered the genes associated with novel

unique variants that distinguished MDR from XDR.

The functional enrichment analysis of common novel variant genes revealed that

15 genes were significantly associated with the antimicrobial resistance pathways.

These genes, namely g.gyrB, g.gyrA, g.aac, g.iniA, g.tap, g.rpoB, g.rpsL, g.katG,

g.pncA, g.blaC, g.floC, g.thyA, g.embC, g.embA, and g.embB, exhibited a strong

enrichment signal (strength = 1.6) and a very low false discovery rate (FDR =

1.53e-17). Through STRING network analysis it was elucidated that these genes

form a network of biological interactions as shown in Figure 4.8.
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Furthermore, several other functional terms were identified for the remaining 16

common genes through the enrichment analysis. For example, seven genes in-

volved in RNA-binding were found, including g.rpsF, g.rplI, g.rplK, g.rplA, g.rpsL,

g.rpsA, and g.tlyA. Additionally, six genes associated with ribosomal proteins were

detected, namely rpsF, rplI, rplK, rplA, rpsL, and rpsA. The analysis also revealed

five genes related to rRNA-binding (g.rpsF, g.rplI, g.rplK, g.rplA, and g.rpsL), five

genes associated with cell wall biogenesis/degradation (g.murB, g.murA, g.embC,

g.embA, and g.embB), two genes involved in topoisomerase activity (g.gyrB and

g.gyrA), four genes associated with glycosyltransferase activity (g.mshA, g.embC,

g.embA, and g.embB), and eleven genes related to transferase activity (g.aac,

g.mshA, g.rpoB, g.murA, g.tlyA, g.kasA, g.thyA, g.embC, g.embA, g.embB, and

g.gid).

The Gene Ontology analysis revealed, 11 genes were observed to be associated

with GO:0003676 (Nucleic acid binding), including g.gyrB, g.gyrA, g.rpsF, g.rplI,

g.rplK, g.rplA, g.rpoB, g.rpsL, g.embR, g.rpsA, and g.tlyA. The strength of the en-

richment signal was 0.61, with a false discovery rate (FDR) of 0.0069. GO:0003723

(RNA binding): 7 genes, namely g.rpsF, g.rplI, g.rplK, g.rplA, g.rpsL, g.rpsA, and

g.tlyA, were identified as being associated with RNA binding. The enrichment had

a strength of 0.89 and an FDR of 0.0069. GO:0003735 (Structural constituent of

ribosome): 6 genes (g.rpsF, g.rplI, g.rplK, g.rplA, g.rpsL, and g.rpsA) were found

to be associated with this term. The strength of the enrichment was 1.11, with

an FDR of 0.0069. GO:0019843 (rRNA binding): This term was associated with

5 genes, including g.rpsF, g.rplI, g.rplK, g.rplA, and g.rpsL. The strength of the

enrichment was 1.17, with an FDR of 0.0069. Additionally, several other terms

showed significant associations with the common novel variant genes. These in-

cluded GO:0052636 (Arabinosyltransferase activity), GO:0097159 (Organic cyclic

compound binding), GO:1901363 (Heterocyclic compound binding), GO:0034335

(DNA negative supercoiling activity), GO:0071949 (FAD binding), GO:0005488

(Binding), GO:0016740 (Transferase activity). Based on Gene Ontology Biologi-

cal Processes enrichment results for the common genes, it was found that 14 genes

were associated with the term ”Response to antibiotic” (GO:0046677).
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These genes include g.gyrB, g.gyrA, g.aac, g.iniA, g.rpoB, g.rpsL, g.tap, g.pncA,

g.blaC, g.folC, g.thyA, g.embC, g.embA, and g.embB. The strength of this en-

richment signal was 1.45, with a false discovery rate (FDR) of 1.61e-13. Fur-

thermore, 15 genes were identified to be associated with the term ”Response to

chemical” (GO:0042221), including g.gyrB, g.gyrA, g.aac, g.iniA, g.rpoB, g.rpsL,

g.tap, g.katG, g.pncA, g.blaC, g.folC, g.thyA, g.embC, g.embA, and g.embB. The

strength of this enrichment was 1.04, with an FDR of 1.46e-09.

Additionally, the analysis revealed that 29 genes were associated with the term

”Cellular process” (GO:0009987), including g.gyrB, g.gyrA, g.rpsF, g.rplI, g.aac,

g.iniA, g.murB, g.mshA, g.rplK, g.rplA, g.rpoB, g.rpsL, g.tap, g.embR, g.murA,

g.rpsA, g.tlyA, g.katG, g.pncA, g.blaC, g.kasA, g.folC, g.thyA, g.efpA, g.embC,

g.embA, g.embB, g.ethA, and g.gid. The strength of this enrichment was 0.42,

with an FDR of 1.14e-07. Other significant associations were found for terms

such as ”Response to stimulus” (GO:0050896), ”Cellular component organization

or biogenesis” (GO:0071840), ”Cellular metabolic process” (GO:0044237), and

”Cellular macromolecule biosynthetic process” (GO:0034645), among others (see

Table 4.8).

The MDR genes demonstrated enrichment in RNA polymerase, specifically involv-

ing the genes g.rpoB, g.rpoC, g.rpoZ, and g.rpoA Table 4.9. Furthermore, the func-

tional term GO:0006351 - Transcription, DNA-templated was enriched in the same

set of genes (g.rpoB, g.rpoC, g.rpoZ, and g.rpoA). Similarly, the term GO:0044260

- Cellular macromolecule metabolic process showed enrichment in multiple genes,

including g.msrA, g.rpoB, g.rpoC, g.fusA1, g.rpoZ, g.inhA, g.msrB, and g.rpoA.

Additionally, the term GO:0034645 - Cellular macromolecule biosynthetic process

was enriched in g.rpoB, g.rpoC, g.fusA1, g.rpoZ, g.inhA, and g.rpoA. Another term,

GO:0010467 - Gene expression, exhibited enrichment in the genes g.rpoB, g.rpoC,

g.fusA1, g.rpoZ, and g.rpoA. Moreover, the term GO:0003899 - DNA-directed 5-3

RNA polymerase activity was associated with the genes g.rpoB, g.rpoC, g.rpoZ,

and g.rpoA. Additionally, the term GO:0008113 - Peptide-methionine (S)-S-oxide

reductase activity was enriched in the genes g.msrA and g.msrB. Furthermore,
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Figure 4.8: Network analysis of the genes responsible for AMR pathway for
the common 15 genes between MDR and XDR.

the terms HSA-9639775 - Antimicrobial action and antimicrobial resistance in

M. tuberculosis and HSA-9635486 - Infection with Mycobacterium TB showed

enrichment in the genes g.rpoB, g.rpoC, g.rpoZ, and g.rpoA, while the latter term

also included g.msrA. Through the utilization of STRING analysis, an examination

of the common genes shared by MDR and XDR strains revealed distinct clusters

of interactions (see Table 4.8 and 4.9). Specifically, the genes blaC, aac, and iniA

formed a separate cluster, wherein blaC interacted with aac, aac interacted with

iniA, but no direct interaction was observed between blaC and iniA. This suggests

an indirect interaction between blaC and iniA through the involvement of the aac

gene.

The enrichment analysis aimed to identify enriched pathways and functions asso-

ciated with these variants, with a focus on differentiating between MDR and XDR

strains of M. tuberculosis. Two distinct analyses were performed: one targeting

the common genes shared between MDR and XDR strains, and the other specifi-

cally examining the unique genes associated with MDR strains. In the analysis of

common novel variant genes, a significant enrichment signal was observed for the

Antimicrobial resistance pathway. Fifteen genes, including gyrB, gyrA, aac, iniA,

tap, rpoB, rpsL, katG, pncA, blaC, floC, thyA, embC, embA, and embB, exhibited



Results and Discussion 91

T
a
b
l
e
4
.7
:
E
n
ri
ch
ed

p
at
h
w
ay
s
fo
r
th
e
M
D
R

n
ov
el

ge
n
es

in
T
B
.

T
e
rm

ID
T
e
rm

d
e
sc
ri
p
ti
o
n

O
b
se
rv

e
d

g
e
n
e

co
u
n
t

S
tr
e
n
g
th

F
a
ls
e

d
is
-

co
v
e
ry

ra
te

G
e
n
e
s

m
tv
03
02
0

R
N
A

p
ol
y
m
er
as
e

4
2.
51

3.
26
E
-0
7

rp
oB

,
rp
oC

,
rp
oZ

,
rp
oA

G
O
:0
00
63
51

T
ra
n
sc
ri
p
ti
on

,
D
N
A
-

te
m
p
la
te
d

4
1.
85

0.
00
05
5

rp
oB

,
rp
oC

,
rp
oZ

,
rp
oA

G
O
:0
04
42
60

C
el
lu
la
r

m
ac
ro
m
ol
ec
u
le

m
et
ab

ol
ic

p
ro
ce
ss

8
0.
89

0.
00
05
5

m
sr
A
,
rp
oB

,
rp
oC

,
fu
sA

1,
rp
oZ

,
in
hA

,
m
sr
B
,
rp
oA

G
O
:0
03
46
45

C
el
lu
la
r

m
ac
ro
m
ol
ec
u
le

b
io
sy
n
th
et
ic

p
ro
ce
ss

6
1.
02

0.
00
19

rp
oB

,
rp
oC

,
fu
sA

1,
rp
oZ

,
in
hA

,
rp
oA

G
O
:0
01
04
67

G
en
e
ex
p
re
ss
io
n

5
1.
05

0.
00
83

rp
oB

,
rp
oC

,
fu
sA

1,
rp
oZ

,
rp
oA

G
O
:0
00
38
99

D
N
A
-d
ir
ec
te
d

5-
3
R
N
A

p
ol
y
-

m
er
as
e
ac
ti
v
it
y

4
2.
43

3.
14
E
-0
6

rp
oB

,
rp
oC

,
rp
oZ

,
rp
oA

G
O
:0
00
81
13

P
ep
ti
d
e-
m
et
h
io
n
in
e

(S
)-
S
-

ox
id
e
re
d
u
ct
as
e
ac
ti
v
it
y

2
2.
6

0.
00
52

m
sr
A
,
m
sr
B

H
S
A
-9
63
97
75

A
n
ti
m
ic
ro
b
ia
l
ac
ti
on

an
d

an
-

ti
m
ic
ro
b
ia
l
re
si
st
an

ce
in

M
.
tu
-

be
rc
u
lo
si
s

4
2.
6

3.
71
E
-0
8

rp
oB

,
rp
oC

,
rp
oZ

,
rp
oA

H
S
A
-9
63
54
86

In
fe
ct
io
n
w
it
h
M
.
tu
be
rc
u
lo
si
s

5
1.
59

1.
57
E
-0
6

m
sr
A
,
rp
oB

,
rp
oC

,
rp
oZ

,
rp
oA



Results and Discussion 92

T
a
b
l
e
4
.8
:
E
n
ri
ch
ed

p
at
h
w
ay
s
fo
r
th
e
M
D
R

an
d
X
D
R

co
m
m
on

ge
n
es

in
T
B

T
e
rm

ID
T
e
rm

D
e
sc
ri
p
ti
o
n

G
e
n
e

C
o
u
n
t

S
tr
e
n
g
th

F
D
R

G
e
n
e
s

G
O
:0
03
43
35

D
N
A

n
eg
at
iv
e
su
p
er
co
il
-

in
g
ac
ti
v
it
y

2
2.
09

0.
03
35

gy
rB

,
gy
rA

G
O
:0
05
26
36

A
ra
b
in
os
y
lt
ra
n
-s
fe
ra
se

ac
ti
v
it
y

3
1.
96

0.
00
69

em
bC

,e
m
bA

,e
m
bB

G
O
:0
00
62
65

D
N
A

to
p
ol
og
ic
al

ch
an

ge
2

1.
91

0.
03
06

gy
rB

,g
yr
A

G
O
:0
01
70
01

A
n
ti
b
io
ti
c
ca
ta
b
ol
ic

p
ro
-

ce
ss

2
1.
91

0.
03
06

aa
c,
bl
aC

K
W

-0
79
9

T
op

oi
so
m
er
as
e

2
1.
91

0.
02
28

gy
rB

,g
yr
A

G
O
:0
01
71
44

D
ru
g
m
et
ab

ol
ic

p
ro
ce
ss

4
1.
73

0.
00
04
2

aa
c,
pn

cA
,b
la
C
,
et
hA

K
W

-0
04
6

A
n
ti
b
io
ti
c
re
si
st
an

ce
15

1.
6

1.
53
E
-

17
gy
rB

,g
yr
A
,a
ac
,

in
iA

,r
po
B
,r
ps
L
,

ta
p,
ka
tG

,p
n
cA

,
bl
aC

,f
ol
C
,t
hy
A
,

em
bC

,e
m
bA

,e
m
bB

G
O
:0
04
66
77

R
es
p
on

se
to

an
ti
b
io
ti
c

14
1.
45

1.
61
E
-

13
gy
rB

,g
yr
A
,a
ac
,

in
iA

,r
po
B
,r
ps
L
,

ta
p,
pn

cA
,b
la
C
,

fo
lC
,t
hy
A
,e
m
bC

,
em

bA
,e
m
bB

G
O
:0
07
19
49

F
A
D

b
in
d
in
g

3
1.
36

0.
03
35

m
u
rB

,R
v1
26

0,
et
hA

G
O
:0
00
63
64

rR
N
A

p
ro
ce
ss
in
g

3
1.
31

0.
02
95

rp
lA
,t
ly
A
,g
id

G
O
:0
04
22
54

R
ib
os
om

e
b
io
ge
n
es
is

4
1.
18

0.
01
12

rp
lK

,r
pl
A
,t
ly
A
,
gi
d

G
O
:0
01
98
43

rR
N
A

b
in
d
in
g

5
1.
17

0.
00
69

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L



Results and Discussion 93

T
e
rm

ID
T
e
rm

D
e
sc
ri
p
ti
o
n

G
e
n
e

C
o
u
n
t

S
tr
e
n
g
th

F
D
R

G
e
n
e
s

K
W

-0
69
9

rR
N
A
-b
in
d
in
g

5
1.
17

0.
00
14

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L

G
O
:0
00
37
35

S
tr
u
ct
u
ra
l
co
n
st
it
u
en
t
of

ri
b
os
om

e
6

1.
11

0.
00
69

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L
,r
ps
A

K
W

-0
68
9

R
ib
os
om

al
p
ro
te
in

6
1.
11

0.
00
07
4

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L
,r
ps
A

m
tv
03
01
0

R
ib
os
om

e
6

1.
09

0.
00
16

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L
,r
ps
A

G
O
:0
07
15
55

C
el
l
w
al
l
or
ga
n
iz
at
io
n

5
1.
08

0.
00
57

m
u
rB

,m
u
rA

,e
m
bC

,
em

bA
,e
m
bB

K
W

-0
96
1

C
el
l

w
al
l

b
io
ge
n
e-

si
s/
d
eg
ra
d
at
io
n

5
1.
07

0.
00
34

m
u
rB

,m
u
rA

,e
m
bC

,
em

bA
,e
m
bB

K
W

-0
69
4

R
N
A
-b
in
d
in
g

7
1.
05

0.
00
04
1

rp
sF

,r
pl
I,
rp
lK

,
rp
lA
,r
ps
L
,r
ps
A
,
tl
yA

G
O
:0
04
22
21

R
es
p
on

se
to

ch
em

ic
al

15
1.
04

1.
46
E
-

09
gy
rB

,g
yr
A
,a
ac
,

in
iA

,r
po
B
,r
ps
L
,

ta
p,
ka
tG

,p
n
cA

,
bl
aC

,f
ol
C
,t
hy
A
,

em
bC

,e
m
bA

,e
m
bB

K
W

-0
32
8

G
ly
co
sy
lt
ra
n
sf
er
as
e

4
0.
97

0.
03
12

m
sh
A
,e
m
bC

,e
m
bA

,
em

bB

G
O
:0
04
40
85

C
el
lu
la
r
co
m
p
on

en
t
b
io
-

ge
n
es
is

9
0.
89

0.
00
03
9

m
u
rB

,r
pl
K
,r
pl
A
,

m
u
rA

,t
ly
A
,e
m
bC

,
em

bA
,e
m
bB

,g
id

G
O
:0
00
92
73

P
ep
ti
d
og
ly
ca
n
-b
as
ed

ce
ll

w
al
l
b
io
ge
n
es
is

5
0.
89

0.
02
61

m
u
rB

,
m
u
rA

,
em

bC
,
em

bA
,
em

bB

G
O
:0
00
37
23

R
N
A

b
in
d
in
g

7
0.
89

0.
00
69

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
sL

,
rp
sA

,
tl
yA

G
O
:0
00
64
12

T
ra
n
sl
at
io
n

6
0.
86

0.
01
12

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
sL

,
rp
sA

G
O
:0
04
36
03

C
el
lu
la
r
am

id
e
m
et
ab

ol
ic

p
ro
ce
ss

9
0.
84

0.
00
06
9

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
sL

,
rp
sA

,
pn

cA
,
bl
aC

,
fo
lC



Results and Discussion 94

T
e
rm

ID
T
e
rm

D
e
sc
ri
p
ti
o
n

G
e
n
e

C
o
u
n
t

S
tr
e
n
g
th

F
D
R

G
e
n
e
s

G
O
:0
07
18
40

C
el
lu
la
r
co
m
p
on

en
t
or
ga
-

n
iz
at
io
n
or

b
io
ge
n
es
is

11
0.
83

0.
00
01
2

gy
rB

,
gy
rA

,
m
u
rB

,
rp
lK

,
rp
lA
,
m
u
rA

,
tl
yA

,
em

bC
,
em

bA
,
em

bB
,
gi
d

G
O
:0
01
60
43

C
el
lu
la
r
co
m
p
on

en
t
or
ga
-

n
iz
at
io
n

8
0.
8

0.
00
26

gy
rB

,
gy
rA

,
m
u
rB

,
rp
lK

,
m
u
rA

,
em

bC
,
em

bA
,
em

bB

G
O
:0
04
36
04

A
m
id
e
b
io
sy
n
th
et
ic

p
ro
-

ce
ss

7
0.
8

0.
00
78

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
sL

,
rp
sA

,
fo
lC

G
O
:0
01
04
67

G
en
e
ex
p
re
ss
io
n

9
0.
79

0.
00
13

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
oB

,
rp
sL

,
rp
sA

,
tl
yA

,
gi
d

G
O
:0
03
46
45

C
el
lu
la
r

m
ac
ro
m
ol
ec
u
le

b
io
sy
n
th
et
ic

p
ro
ce
ss

11
0.
76

0.
00
03
9

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,m

u
rB

,r
pl
K
,

rp
lA
,r
po
B
,r
ps
L
,
m
u
rA

,r
ps
A

G
O
:0
05
08
96

R
es
p
on

se
to

st
im

u
lu
s

16
0.
69

1.
19
E
-

05
gy
rB

,
gy
rA

,
aa

c,
in
iA

,
rp
oB

,
rp
sL

,
ta
p,

em
bR

,
ka
tG

,
pn

cA
,
bl
aC

,
fo
lC
,

th
yA

,
em

bC
,
em

bA
,
em

bB

G
O
:0
00
36
76

N
u
cl
ei
c
ac
id

b
in
d
in
g

11
0.
61

0.
00
69

gy
rB

,
gy
rA

,
rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,

rp
oB

,
rp
sL

,
em

bR
,
rp
sA

,
tl
yA

G
O
:0
04
42
71

C
el
lu
la
r

n
it
ro
ge
n

co
m
-

p
ou

n
d

b
io
sy
n
th
et
ic

p
ro
-

ce
ss

11
0.
6

0.
00
41

rp
sF

,
rp
lI
,
rp
lK

,
rp
lA
,
rp
oB

,
rp
sL

,
m
u
rA

,
rp
sA

,
pn

cA
,
fo
lC
,
th
yA

G
O
:0
04
42
60

C
el
lu
la
r

m
ac
ro
m
ol
ec
u
le

m
et
ab

ol
ic

p
ro
ce
ss

13
0.
58

0.
00
13

gy
rB

,
gy
rA

,
rp
sF

,
rp
lI
,
m
u
rB

,
rp
lK

,
rp
lA
,
rp
oB

,
rp
sL

,
m
u
rA

,
rp
sA

,
tl
yA

,
gi
d



Results and Discussion 95

T
e
rm

ID
T
e
rm

D
e
sc
ri
p
ti
o
n

G
e
n
e

C
o
u
n
t

S
tr
e
n
g
th

F
D
R

G
e
n
e
s

G
O
:0
03
46
41

C
el
lu
la
r

n
it
ro
ge
n

co
m
-

p
ou

n
d
m
et
ab

ol
ic

p
ro
ce
ss

16
0.
52

0.
00
06
9

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,r
pl
K
,r
pl
A
,

rp
oB

,r
ps
L
,m

u
rA

,
rp
sA

,t
ly
A
,p
n
cA

,
bl
aC

,f
ol
C
,t
hy
A
,
gi
d

G
O
:1
90
15
66

O
rg
an

on
it
ro
ge
n

co
m
-

p
ou

n
d

b
io
sy
n
th
et
ic

p
ro
ce
ss

11
0.
52

0.
01
46

rp
sF

,r
pl
I,
m
u
rB

,
rp
lK

,r
pl
A
,r
ps
L
,

m
u
rA

,r
ps
A
,p
n
cA

,
fo
lC
,t
hy
A

G
O
:0
04
42
49

C
el
lu
la
r

b
io
sy
n
th
et
ic

p
ro
ce
ss

17
0.
49

0.
00
06
8

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,m

u
rB

,m
sh
A
,

rp
lK

,r
pl
A
,r
po
B
,

rp
sL

,m
u
rA

,r
ps
A
,

pn
cA

,k
as
A
,f
ol
C
,
th
yA

,e
m
bC

G
O
:1
90
15
76

O
rg
an

ic
su
b
st
an

ce
b
io
sy
n
th
et
ic

p
ro
ce
ss

17
0.
48

0.
00
08
3

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,m

u
rB

,m
sh
A
,

rp
lK

,r
pl
A
,r
po
B
,

rp
sL

,m
u
rA

,r
ps
A
,

pn
cA

,k
as
A
,f
ol
C
,
th
yA

,e
m
bC

G
O
:0
01
67
40

T
ra
n
sf
er
as
e
ac
ti
v
it
y

11
0.
47

0.
03
96

aa
c,

m
sh
A
,
rp
oB

,
m
u
rA

,
tl
yA

,
ka
sA

,
th
yA

,
em

bC
,
em

bA
,
em

bB
,
gi
d

K
W

-0
80
8

T
ra
n
sf
er
as
e

11
0.
45

0.
03
25

aa
c,

m
sh
A
,
rp
oB

,
m
u
rA

,
tl
yA

,
ka
sA

,
th
yA

,
em

bC
,
em

bA
,
em

bB
,
gi
d

G
O
:0
00
99
87

C
el
lu
la
r
p
ro
ce
ss

29
0.
42

1.
14
E
-

07
gy
rB

,
gy
rA

,
rp
sF

,
rp
lI
,
aa

c,
in
iA

,
m
u
rB

,
m
sh
A
,
rp
lK

,
rp
lA
,
rp
oB

,
rp
sL

,
ta
p,

em
bR

,
m
u
rA

,
rp
sA

,
tl
yA

,
ka
tG

,
pn

cA
,
bl
aC

,
ka
sA

,
fo
lC
,
th
yA

,
ef
pA

,
em

bC
,
em

bA
,
em

bB
,
et
hA

,
gi
d

G
O
:0
00
68
07

N
it
ro
ge
n

co
m
p
ou

n
d

m
et
ab

ol
ic

p
ro
ce
ss

17
0.
4

0.
00
6

gy
rB

,
gy
rA

,
rp
sF

,
rp
lI
,
m
u
rB

,
rp
lK

,
rp
lA
,
rp
oB

,
rp
sL

,
m
u
rA

,
rp
sA

,
tl
yA

,
pn

cA
,
bl
aC

,
fo
lC
,
th
yA

,
gi
d



Results and Discussion 96

T
e
rm

ID
T
e
rm

D
e
sc
ri
p
ti
o
n

G
e
n
e

C
o
u
n
t

S
tr
e
n
g
th

F
D
R

G
e
n
e
s

G
O
:0
09
71
59

O
rg
an

ic
cy
cl
ic
co
m
p
ou

n
d

b
in
d
in
g

16
0.
4

0.
02
04

gy
rB

,
gy
rA

,
rp
sF

,
rp
lI
,
m
u
rB

,
rp
lK

,
rp
lA
,

rp
oB

,
rp
sL

,
R
v1
26

0,
em

bR
,

rp
sA

,
tl
yA

,
ka
tG

,
fo
lC
,
et
hA

G
O
:1
90
13
63

H
et
er
o
cy
cl
ic

co
m
p
ou

n
d

b
in
d
in
g

16
0.
4

0.
02
04

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,m

u
rB

,r
pl
K
,

rp
lA
,r
po
B
,r
ps
L
,

R
v1
26

0,
em

bR
,r
ps
A
,

tl
yA

,k
at
G
,f
ol
C
,
et
hA

G
O
:0
04
42
37

C
el
lu
la
r

m
et
ab

ol
ic

p
ro
-

ce
ss

23
0.
39

0.
00
03

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,a
ac
,m

u
rB

,
m
sh
A
,r
pl
K
,r
pl
A
,

rp
oB

,r
ps
L
,m

u
rA

,
rp
sA

,t
ly
A
,k
at
G
,

pn
cA

,b
la
C
,k
as
A
,

fo
lC
,t
hy
A
,e
m
bC

,
et
hA

,g
id

G
O
:0
07
17
04

O
rg
an

ic
su
b
st
an

ce
m
et
ab

ol
ic

p
ro
ce
ss

21
0.
35

0.
00
25

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,a
ac
,m

u
rB

,
m
sh
A
,r
pl
K
,r
pl
A
,

rp
oB

,r
ps
L
,m

u
rA

,
rp
sA

,t
ly
A
,p
n
cA

,
bl
aC

,k
as
A
,f
ol
C
,

th
yA

,e
m
bC

,g
id

G
O
:0
00
54
88

B
in
d
in
g

19
0.
3

0.
03
69

gy
rB

,g
yr
A
,r
ps
F
,

rp
lI
,m

u
rB

,m
sh
A
,

rp
lK

,r
pl
A
,r
po
B
,

rp
sL

,R
v1
26

0,
em

bR
,

rp
sA

,t
ly
A
,k
at
G
,

pn
cA

,k
as
A
,f
ol
C
,

et
hA



Results and Discussion 97

Figure 4.9: Network analysis of the genes responsible for AMR pathway for
the common genes MDR.

strong enrichment in this pathway, with a very low false discovery rate (FDR).

Furthermore, several other functional terms were identified through enrichment

analysis. Genes involved in RNA-binding, ribosomal proteins, rRNA-binding, cell

wall biogenesis/degradation, topoisomerase activity, glycosyltransferase activity,

and transferase activity were found to be significantly associated with the com-

mon novel variant genes. Gene Ontology analysis revealed additional insights into

the functional annotations of the genes.

Notably, genes associated with Nucleic acid binding, RNA binding, Structural

constituent of ribosome, and rRNA binding exhibited enrichment signals. Various

other terms, including Arabinosyltransferase activity, Organic cyclic compound

binding, Heterocyclic compound binding, DNA negative supercoiling activity, FAD

binding, Binding, and Transferase activity, also showed significant associations.

The enrichment analysis of Gene Ontology Biological Processes highlighted the

involvement of the novel variant genes in specific biological processes. For instance,

the term ”Response to antibiotic” (GO:0046677) was significantly associated with

14 genes, while the term ”Response to chemical” (GO:0042221) was associated

with 15 genes.

In the MDR strains, specific genes related to RNA polymerase, such as rpoB,

rpoC, rpoZ, and rpoA, demonstrated enrichment. These genes were also associ-

ated with terms like Transcription, DNA-templated and Cellular macromolecule

metabolic process. Furthermore, the genes msrA and msrB were enriched in the
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term Peptide-methionine (S)-S-oxide reductase activity. Enrichment was also ob-

served for terms related to antimicrobial action and resistance in M. tuberculosis,

including HSA-9639775 (Antimicrobial action) and HSA-9635486 (Infection with

M. tuberculosis).

These results provide valuable insights into the functional characteristics of the

common novel variant genes, highlighting their involvement in nucleic acid bind-

ing, RNA binding, ribosome structure, and other important molecular activities.

These associations provide insights into the functional roles of the identified genes

in various cellular processes and metabolic pathways. These results provide valu-

able insights into the potential molecular mechanisms and pathways involved in

the development of antibiotic resistance and cellular processes related to ribo-

somal functions, RNA-binding, cell wall biogenesis/degradation, and enzymatic

activities. These findings suggest that these genes play crucial roles in conferring

resistance to antibiotics.

A total of 15 genes were involved in antibiotic resistance pathways. These 15 genes

were categorized based on gene families, and their functions, including aac, gyrB,

and gyrA, are antibiotic resistance-related genes. Aac is involved in antibiotics

to modify aminoglycoside, while gyrA and gyrB encode the A and B subunits of

DNA gyrase, respectively, and confer antibiotic resistance [256]. It is reported that

rpoB, rpsL, and iniA are drug resistance-related genes in which iniA isoniazid is

the resistance inM. tuberculosis [257]. The rpoB synthesizes the B subunit of RNA

polymerase and is involved in the resistance of rifampicin, an important antibiotic

in TB. Rpsl encodes the ribosomal protein S12 and is involved in streptomycin

resistance [258]. The cell wall-related genes embC, embA, and embB are major

components of the mycobacterial cell wall involved in the biosynthesis of arabino-

galactans [202]. Furthermore, the remaining 6 genes were categorized based on

their function in which the tap gene was involved in synthesizing antigenic pep-

tide transporter, which is involved in antigens of the immune system [259]. katG

is used to activate the drug isoniazid, which is anti- [260]. pncA is involved in the

pyrazinamide drug activation in anti-TB [232]. In contrast, blaC is involved in
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resistance to B lactam antibiotics, and folC and thyA are folate metabolism and

DNA synthesis enzymes, respectively [261, 262].

In addition, the remaining 16 genes were not involved in the antimicrobial path-

way in our study. embR is also a component of the mycobacterial cell wall. It

is involved in the biosynthesis of arabinogalactan by encoding a transcriptional

regulator [263]. kasA synthesized the beta ketoacyl ACP synthase involved in

mycolic acid biosynthesis, an important component of the mycobacterial cell wall

[264]. The mshA gene synthesizes mycothiol, an important thiol oxidant in my-

cobacterium species [265]. The rpsA gene encodes the S1 protein of the ribosome,

which plays an important role in translation and ribosome assembly [266]. The

gidB codes a tRNA uracil methyltransferase involved in the molecules modification

of tRNA [267]. The iniC gene is involved in the resistivity against isoniazid in M.

tuberculosis [265], while ethA encodes an ethA enzyme that acts in activating the

antituberculosis prodrug ethionamide [268]. The Rv1258c is involved in multidrug

efflux pump in M. tuberculosis against isoniazid, Streptomycin, and pyrazinamide

but not to other drugs in M. tuberculosis [269].

The tet gene allows resistance against tetracycline by decreasing its accumulation

in the cell wall [246]. The erm gene acts to produce dimethylation at adenine

residue at position 2085 of 23S rRNA and minimize the affinity between ribosomes

and antibiotics [252]. The murA gene is responsible for cell wall formation by

adding enolpyruvyl to UDP-N-acetylglucosamine [216]. The Planobispora-rosea-

EF-Tu (tuf) is involved in GTPase activity and GTP binding [251]. The aac

gene involved in the catalysis of coenzyme-dependent acetylation of 2’ hydroxyl of

aminoglycosides [206]. The ribD gene performs diamino-hydroxy-phospho-ribosyl-

amino pyrimidine deaminase activity [218].

The rpoC gene encodes a subunit of RNA polymerase, and changes in amino acid

in rpoC alter RNA polymerase’s structure and function, decreasing the binding

affinity with rifampicin and is therefore involved in drug resistance [270]. Many

studies revealed that mutations in rpoC is associated with enhanced in vitro fitness

and were identified in higher proportion among MDR-TB isolates from countries
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with significant MDR-TB burdens [271]. The researchers identified mutations at

codon G332R in rpoC, which have high protein stability, lower flexibility, and

favorable compensatory effects reported in Khyber Pakhtunkhwa [272] and South

Africa isolates [271].

Eight different mutations in rpoC, including G332R, F452C, D485Y, V483A, V483G,

I491T, Q523E, and H525Q, were identified, which is previously reported as a phy-

logenetic marker for the Latin American Mediterranean family of M. tuberculosis

[273].

Researchers reported more frequent mutation at codon 452 (F452L) in rpoC for

the samples of South Korean patients [274]. In our study, mutations at codon 864,

887, and 898 (V864I, Q887K, and A898T) were identified, which was not reported

in the previous studies. Hence, these could be our potential targets for controlling

antimicrobial resistivity in M. tuberculosis.

The study revealed that MDR strains of M. tuberculosis exhibited enrichment in

genes related to RNA polymerase and peptide-methionine (S)-S-oxide reductase

activity, as well as terms associated with antimicrobial action and resistance Fur-

thermore, 15 genes participated in antibiotic resistance pathways, including amino-

glycoside modification, DNA gyrase, isoniazid resistance, ribosomal proteins, and

cell wall biosynthesis. The remaining 16 genes had diverse functions unrelated

to the antimicrobial pathway, such as cell wall formation, tRNA modification,

multidrug efflux pump, and enzyme activities.

The study also highlighted specific mutations in rpoC linked to enhanced fitness

and drug resistance. Genes such as rpoB,rpoC,rpoZ,rpoA which have shown rele-

vance to M. tuberculosis drug resistance and have gained novel variants, should be

studied further. These findings provide valuable insights into the genetic variants

and pathways associated with MDR and XDR drug resistance in M. tuberculosis,

potentially serving as targets for controlling antimicrobial resistivity in tuberculo-

sis. Further investigations are necessary to fully comprehend the mechanisms and

implications of these novel variants in drug resistance.
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Table 4.9: Hub genes involved in MDR and XDR.

Rank Name Score

1 KatG 20

1 RpoB 20

3 RpsL 18

3 PncA 18

3 ThyA 18

4.5 Hub Gene Identification

The identification of the top five hub genes, which exhibit the highest number of

interactions with other genes in the entire network, was performed using Cytoscape

and its module CytoHubba. This approach allowed for the identification of hub

genes based on degrees of connectivity. Remarkably, the analysis revealed that the

genes rpoB and katG displayed the most extensive interactions within this network

(Figure 4.3), indicating their significant involvement and functional mobility with

other genes. The remaining three out of the five hub genes were identified as rpsL,

thyA, and pncA (Table 4.5).

The genes associated with both XDR and MDR strains - roles in regulating biolog-

ical processes associated with the analyzed condition or disease. A comprehensive

network of interactions was observed among all other genes, forming an intricate

map. Notably, each gene exhibited the capability to receive and transmit signals

while interacting with other proteins.Rank indicates a gene’s position in the list

of hub genes, with the top-ranked genes having the highest connectivity to others

in the network. Score represents a numerical measure of a gene’s centrality or

importance within the network, with higher scores indicating greater connectivity

and significance. These parameters helped prioritize genes based on their network
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Figure 4.10: Top 5 hub genes among the genes that show the most AMR
functions.

interactions. The specific method for calculating scores for each of used for net-

work analysis in CytoHubba. The katG and rpoB showed highest score i.e. 20 as

compared to the other genes. This indicates that both of these genes plays highly

significant role in resistance against the drugs categorized as MDR and XDR. All

of these genes have also be revealed through genomic data analysis under common

novel variant in Table 4.5.

The katG and rpoB showed highest score i.e. 20 as compared to the other genes.

This indicates that both of these genes plays highly significant role in resistance

against the drugs categorized as MDR and XDR.All of these genes have also be

revealed through genomic data analysis under common novel variant in Table 4.5.

In association rule mining, it was found that the highest occurrences of drug

resistance were associated with the genes tlyA, gyrA, rrs, rpsl, inhA, rpoB, and
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katG. Notably, four out of the five identification hub genes are part of this list.

Consequently, the phenotypic results showa a similarity of 80% when compared

to the genotype-based results. The observed high similarity between phenotypic

and genotype-based results underscores the reliability of genetic information in

predicting drug resistance.



Chapter 5

Conclusions and Future

Directions

5.1 Conclusions

5.1.1 Understanding Demographic Characteristics of TB

Patients and Their Association with Treatment Out-

comes, Lineage, and Drug Resistance

The significance of this objective was to identify and assess cases of drug-resistant

TB (DR-TB) based on various demographic factors, including resistance type,

age at onset, gender, and treatment results. A dataset was subjected to pattern

recognition techniques to pinpoint important features. Resistance types, such as

pre-extensively drug-resistant (pre-XDR), extensively drug-resistant (XDR), sen-

sitive, single-drug resistant (mono DR), multi-drug resistant (poly DR), and MDR

non-XDR, were visually represented in relation to different treatment outcomes

using bar charts. The analysis unveiled that XDR and MDR non-XDR were the

most prevalent forms of TB resistance and were linked to unfavorable outcomes

like death or treatment failure. Age of onset analysis, as depicted in box plots,

revealed that the median age for both resistance types hovered around 40, with a

104
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slight variation between XDR and MDR non-XDR TB cases.Gender wise analy-

sis of drug resistant isolates revealed that gender has no specific impact on drug

resistance.Lineage relation with respect to drug resistance predicted that the Bei-

jing strain showed maximum resistance to antobiotics. The significance of this

work lies in its multifaceted approach to risk factor analysis within DR-TB. By

uncovering these relationships, the research can contribute to a the broader epi-

demiological understanding of DR-TB. These insights will undoubtedly aid in the

development of targeted interventions and policies to mitigate the risks associated

with MDR-TB.

5.1.2 To Uncover Significant MDR and XDR Patterns in

Antimicrobial Susceptibility Testing Data with As-

sociation Rule Mining

This objective was addressed by employing association rule mining to uncover

significant drug resistance patterns in TB treatment. Filtering through the TB

portals dataset of generated rules, meaningful associations were identified and cat-

egorized based on the drugs involved and the types of resistance. The minimum

support was 0.01 and the confidence was 0.9. The association rule with maximum

support of 0.5 was [RIF to INH] which represents a strong association between iso-

niazid (INH) and rifampicin (RIF) resistance, reinforced by genetic links between

INH target genes (katG and inhA) and RIF resistance mutations in rpoB.

5.1.3 To Analyze Genomic Sequences of Drug-Resistant

TB Isolates and Identify Existing and Unique Muta-

tions to Establish Relationship with Pattern Through

Data-mining.

This study utilized the ARIBA pipeline to analyze MDR and XDR strains of TB,

focusing on identifying and validating variants associated with drug resistance in
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the strains available at TB portals. The research provided valuable insights into

the genetic variants contributing to the development of resistance in these TB

strains. A total of 27 frequently occurring common variants in the data were

observed, including genes such as thyA, embR, embB, embC, folC, kasA, aac,

mshA, iniA, rpsA, gyrA, gidB, iniC, pncA, ethA, Rv1258c, embA, murA, iniB,

ribD, gyrB, tlyA, efpA, rpsL, katG, rpoB, and blaC. These genes were associated

with both MDR and XDR TB.

Additionally, 12 other genes were characterized as novel variants conferring resis-

tance to MDR TB or XDR TB. Interestingly, a literature survey revealed that

these genes had not been previously reported for antimicrobial resistance in TB.

However, they have been associated with resistance mechanisms in other bacterial

species. The presence of these sequences in TB isolates from TB portals suggests

their potential involvement in resistance mechanisms in M. tuberculosis. The dis-

covery of common genes and novel variants associated with multi-drug resistance

(MDR) and extremely drug-resistant (XDR) TB enhances our ability to diagnose

and treat these challenging cases effectively. This newfound knowledge has the po-

tential to inform the development of more targeted and efficient diagnostic tools

and therapies, ultimately aiding in the global fight against drug-resistant TB.

5.1.4 To Perform Functional Enrichment Analysis to Un-

derstand Gene Functions and Assess the Functional

Significance in TB Drug Resistance.

The enrichment analysis conducted in this study aimed to identify significant

pathways and functions associated with genetic variants in MDR and XDR strains

ofM. tuberculosis. Two distinct analyses were performed, one focusing on common

genes shared between MDR and XDR strains, and the other examining unique

genes associated with MDR strains. The analysis of common novel variant genes

revealed a strong enrichment signal for the antimicrobial resistance pathway. the

term ”Response to antibiotic” (GO:0046677) was significantly associated with 14
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genes, while the term ”Response to chemical” (GO:0042221) was associated with

15 genes. These genes, namely gyrB, gyrA, aac, iniA, tap, rpoB, rpsL, katG, pncA,

blaC, floC, thyA, embC, embA, and embB, exhibited a strong enrichment signal

and a very low false discovery rate Additionally, several functional terms related to

RNA-binding, ribosomal proteins, cell wall biogenesis, glycosyltransferase activity,

and more were identified. Gene Ontology analysis highlighted the involvement of

novel variant genes in biological processes such as ”Response to antibiotic” and

”Response to chemical.”

In MDR strains, specific genes related to RNA polymerase demonstrated en-

richment, along with terms related to transcription and cellular macromolecule

metabolic processes. Additionally, terms related to antimicrobial action and resis-

tance in M. tuberculosis were observed.

For future directions, further research is needed to explore the functional impli-

cations of the identified genes and variants in drug resistance mechanisms. Un-

derstanding the specific roles of these genes in different pathways and processes

will contribute to the development of more effective strategies to combat antibiotic

resistance in M. tuberculosis.

5.1.5 To Identify Hub Genes and Construct a Network to

Understand Molecular Interactions Related to TB

Drug Resistance.

The network analysis using Cytoscape and CytoHubba identified the top five hub

genes with the highest degrees of connectivity within the network. Notably, rpoB

and katG emerged as the most extensively interconnected genes, highlighting their

crucial roles and functional interactions with other genes.

The remaining three hub genes, namely rpsL, thyA, and pncA, also exhibited sig-

nificant connectivity within the network. These findings provide valuable insights
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into the key genes that play pivotal roles in the genetic interactions associated

with the studied biological process.

The research emphasizes the need to uncover hidden pathways and mechanisms

underlying TB drug resistance. Further investigations should aim to identify novel

genetic variants and genes that may contribute to resistance, potentially unveiling

new targets for intervention. Lineage base genomic patterns must be analyzed

to enhance TB treatment efficacy, personalized medicine approaches should be

explored. Understanding how individual genetic variations, including those in hub

genes like rpoB and katG, impact treatment responses can guide the development

of tailored therapies for DR-TB patients.

Given the genetic diversity of TB strains in different regions, tailoring treatment

regimens based on regional genetic patterns is essential. Future research should

delve into region-specific genetic variations and their implications for treatment

outcomes. Novel variants identified can be subject to detailed analysis to explore

their role at molecular level in M. tuberculosis. Developing generic drug designs

capable of targeting multiple genes associated with TB drug resistance is cru-

cial. Investigating how different resistance mechanisms interact and exploring the

potential for broad-spectrum drugs can lead to more effective treatments.

5.2 Future Directions

5.2.1 Evaluation at Proteomic Level

To gain a comprehensive understanding of resistance mechanisms, it’s essential to

evaluate them at the proteomic level. This entails evaluating the proteins involved

in resistance pathways to gain a deeper understanding of how they contribute to

drug resistance. By examining changes in protein expression, modifications, and

interactions, researchers can uncover valuable insights into the underlying mech-

anisms driving resistance. This proteomic approach allows for a comprehensive
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analysis of the molecular landscape associated with resistance, providing a foun-

dation for the development of targeted therapies. Ultimately, by delving into

the proteomic level of resistance, researchers can unravel the complexities of drug

resistance and pave the way for more effective treatment strategies.

5.2.2 Pathway Analysis

Pathways involved in resistance must be targeted to understand the mechanism of

resistance and the area of drug target . To gain a comprehensive understanding

of resistance mechanisms and identify potential drug targets, it is imperative to

uncover the molecular mechanisms involved in resistance pathways. This explo-

ration can reveal critical points of vulnerability within these pathways, which may

serve as promising targets for therapeutic intervention., paving the way for the

development of more effective treatments against resistant infections.

5.2.3 Research on Model Organisms

Implication at Animal Model for Pharmacokinetic Studies to understand the drug

behavior after mutations. Implementation of findings from bioinformatics anal-

ysis to animal models to bridge the gap between computational predictions and

experimental validation.

5.2.4 Genomic Epidemiology

Utilize genomic epidemiology approaches to elucidate transmission dynamics and

population structure of drug-resistant Mycobacterium tuberculosis strains, inform-

ing targeted control measures and surveillance strategies.
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5.2.5 Precision Medicine

The understanding of drug-resistant TB is essential for the development and im-

plementation of precision medicine approaches that optimize treatment outcomes,

minimize the spread of resistance, and ultimately accelerate progress towards TB

elimination.

5.2.6 One Health Approach

Adopt a One Health approach by integrating data from animal models, human

clinical studies, and environmental surveillance to understand the interconnected-

ness of drug-resistant TB across different host species and environments. Identify

common risk factors, transmission routes, and intervention strategies to control

TB transmission and drug resistance emergence.

5.2.7 Real-Time Surveillance

The information derived through this research can be utilize to develop a system

that utilizes bioinformatics tools to monitor and track emerging drug resistance

mutations and patterns in Mycobacterium tuberculosis populations, facilitating

timely intervention and management strategies.

5.2.8 More Data Integration

The dataset should be expanded by incorporating genomic, clinical, and epidemio-

logical data from diverse geographic regions and populations to capture a broader

spectrum of drug resistance patterns in Mycobacterium tuberculosis.
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.1 The list of the institutions sharing data on TB

portals.

1. Scientific Research Institute of Lung Diseases, Ministry of Health, Baku

Azerbaijan

2. The United Institute of Informatics Problems, National Academy of Sciences

of Belarus, Minsk

3. Republican Research and Practical Centre for Pulmonology and Tuberculo-

sis, Minsk Belarus

4. Shenzhen Center for Chronic Disease Control, Shenzhen,China

5. Fondation Congolaise pour la Recherche Medicale Republic of the Congo

6. National Center for Tuberculosis and Lung Diseases, Ministry of Health,

TBilisi Georgia

7. Manipal Academy of Higher Education, Karnataka India

8. National Science Center of Phthisiopulmonology, Almaty Kazakhstan

9. National Tuberculosis Center, Bishkek Kyrgyzstan

10. University Clinical Research Center, Bamako Mali

11. Universidad Autónoma de Nuevo León, Monterrey Mexico
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12. Phthisiopneumology Institute, Chisinau Moldova

13. University of Ibadan, Ibadan Nigeria,

14. Marius Nasta Pneumophtisiology Institute, Bucuresti Romania

15. Hospital Center University De Fann, Senegal Senegal

16. Perinatal HIV Research Unit, Johannesburg South Africa

17. Kharkiv National Medical University, Kharkiv Ukraine

18. National Lung Hospital, Hanoi Vietnam
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.2 List of Demographic Features and Genomic

Information

Sr. No. Feature/ Description Feature

Attribute Selection

1 condition id Identification No. of patient
throughout Dataset

2 gender Demographic Feature YES

3 age of onset Demographic Feature YES

4 type of resis-
tance

Demographic Feature YES

5 outcome Treatment Results YES

6 specimen id ID used by the specific source

7 specimen identi-
fier

ID used by the specific source

8 specimen collec-
tion date

ID used by the specific source

9 specimen collec-
tion site

Type of Sample

10 sra id Record for entry in the Read
Archive (SRA) database.

11 ncbi sra Record identifier assigned by
NCBI for entry in the SRA
database

12 ncbi sourceor-
ganism

Record identifier for Mycobac-
terium tuberculosis organism
sample in the NCBI SRA
database
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Sr. No. Feature/ Description Feature

Attribute Selection

13 ncbi bioproject Record identifier assigned by
NCBI for entry in the BioProject
database.

14 ncbi biosample Record identifier assigned by
NCBI for entry in the BioSample
database.

15 lineage Localization/ Classification YES

16 sit designation Demographic Feature

17 gene snp muta-
tions

snp Identified

18 high confidence
snp mutations

Binary data

19 hain snp muta-
tions

SNP mutations identified using
Line-Probe Assay (LPA) test sys-
tems for Hain Lifescience molecu-
lar genetic diagnosis of mycobac-
teria.

20 Genexpert snp
mutations

SNP mutations identified using
Xpert MTB / RIF test
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.4 TB Bar Graphs
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Appendix E

.5 Association Rules above support 0.01

Antecedent Consequent Support Conf.

RIF, INH => CAP, OFL, STR 0.07614213 1

RIF, INH => CAP, EMB, OFL, STR 0.07005076 1

RIF,INH => OFL, AMK, STR 0.05989848 1

RIF,INH => OFL, EMB, AMK, STR 0.05583756 1

RIF,INH => KAN, CAP, OFL, STR 0.05279188 1

RIF,INH => STR, CAP, AMK, OFL 0.05228426 1

RIF,INH => KAN, CAP, OFL, STR, EMB 0.05076142 1

RIF,INH => AMK, CAP, OFL, STR, EMB 0.04923858 1

RIF,INH => KAN, OFL, AMK, STR 0.04162437 1

RIF,INH => KAN, AMK, OFL, STR, EMB 0.04060914 1

RIF,INH => KAN, AMK, CAP, OFL, STR 0.03959391 1

RIF,INH => KAN, AMK, CAP, OFL, STR, EMB 0.03908629 1

RIF,INH => CAP, EMB, PTH, STR 0.02588833 1

RIF,INH => CS, EMB 0.02233503 1

RIF,INH => EMB, PTH, AMK, STR 0.02233503 1

RIF,INH => CAP, LVX, STR 0.02182741 1

RIF,INH => KAN, PZA, EMB 0.0213198 1

RIF,INH => KAN, PTH, STR 0.0213198 1

RIF,INH => CAP, PTH, OFL, STR 0.02081218 1

RIF,INH => LVX, AMK, STR 0.02030457 1

RIF,INH => AMK, CAP, STR, PTH, EMB 0.02030457 1

RIF,INH => CS, EMB, OFL 0.01928934 1

RIF,INH => KAN, EMB, PTH, STR 0.01928934 1

RIF,INH => CS, STR 0.01878173 1

RIF,INH => LVX, EMB, AMK, STR 0.01878173 1

RIF,INH => CAP, EMB, LVX, STR 0.01878173 1

RIF,INH => CAP, OFL, STR, PTH, EMB 0.01878173 1

RIF,INH => KAN, CS, EMB 0.01827411 1

RIF,INH => LVX, EMB, OFL 0.01827411 1

RIF,INH => KAN, CAP, PTH, STR 0.01827411 1

RIF,INH => CS, EMB, STR 0.0177665 1

178



Appendix E 179

Antecedent Consequent Support Conf.

RIF,INH => LVX, EMB, OFL, STR 0.0177665 1

RIF,INH => OFL, PTH, AMK, STR 0.01725888 1

RIF,INH => KAN, CS, EMB, OFL 0.01675127 1

RIF,INH => AMK, OFL, STR, PTH, EMB 0.01675127 1

RIF,INH => KAN, CAP, STR, PTH, EMB 0.01675127 1

RIF,INH => CS, OFL, STR 0.01624366 1

RIF,INH => CAP, LVX, AMK, STR 0.01624366 1

RIF,INH => KAN, PTH, AMK, STR 0.01573604 1

RIF,INH => KAN, PTH, OFL, STR 0.01573604 1

RIF,INH => KAN, EMB, PAS 0.01522843 1

RIF,INH => CS, EMB, OFL, STR 0.01522843 1

RIF,INH => KAN, AMK, CAP, STR, PTH 0.01522843 1

RIF,INH => AMK, CAP, OFL, STR, PTH 0.01522843 1

RIF,INH => KAN, AMK, STR, PTH, EMB 0.01522843 1

RIF,INH => KAN, CS, STR 0.01472081 1

RIF,INH => KAN, PZA, STR 0.01472081 1

RIF,INH => AMK, CAP, STR, LVX, EMB 0.01472081 1

RIF,INH => KAN, OFL, STR, PTH, EMB 0.01472081 1

RIF,INH => KAN, AMK, CAP, STR, PTH, EMB 0.01472081 1

RIF,INH => AMK, CAP, OFL, STR, PTH, EMB 0.01472081 1

RIF,INH => OFL, LVX, AMK 0.0142132 1

RIF,INH => PAS, CAP, EMB 0.0142132 1

RIF,INH => CAP, LVX, OFL 0.0142132 1

RIF,INH => CAP, LVX, OFL, STR 0.0142132 1

RIF,INH => KAN, CS, EMB, STR 0.0142132 1

RIF,INH => KAN, PZA, EMB, STR 0.0142132 1

RIF,INH => KAN, CAP, OFL, STR, PTH 0.0142132 1

RIF, INH, STR => CAP, LVX, OFL 0.0142132 1

RIF, INH, STR => CAP, LVX, OFL 0.0142132 1

RIF, INH, STR => CAP, LVX, OFL 0.0142132 1

RIF,INH => CS, CAP, EMB 0.01370558 1

RIF,INH => OFL, LVX, AMK, STR 0.01370558 1

RIF,INH => KAN, CS, CAP, EMB 0.01370558 1

RIF,INH => KAN, CS, OFL, STR 0.01370558 1

KAN, RIF, INH => CS, CAP, EMB 0.01370558 1

KAN, RIF, INH => CS, CAP, EMB 0.01370558 1

KAN, RIF, INH => CS, CAP, EMB 0.01370558 1

RIF,INH => CS, EMB, AMK 0.01319797 1

RIF,INH => PZA, EMB, OFL 0.01319797 1

RIF,INH => LVX, PTH, STR 0.01319797 1

RIF,INH => LVX, OFL, EMB, AMK 0.01319797 1

RIF,INH => CS, CAP, EMB, OFL 0.01319797 1

RIF,INH => KAN, CAP, OFL, CS, EMB 0.01319797 1

RIF,INH => KAN, OFL, STR, CS, EMB 0.01319797 1

RIF,INH => KAN, CAP, OFL, STR, PTH, EMB 0.01319797 1

KAN, RIF, INH => CS, CAP, EMB, OFL 0.01319797 1

KAN, RIF, INH => CS, CAP, EMB, OFL 0.01319797 1

KAN, RIF, INH => CAP, OFL, CS, EMB 0.01319797 1
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Antecedent Consequent Support Conf.

RIF,INH => PZA, OFL, STR 0.01269036 1

RIF,INH => KAN, CS, EMB, AMK 0.01269036 1

RIF,INH => CS, OFL, EMB, AMK 0.01269036 1

RIF,INH => PZA, EMB, OFL, STR 0.01269036 1

RIF,INH => AMK, OFL, STR, LVX, EMB 0.01269036 1

EMB, RIF, INH => PZA, OFL, STR 0.01269036 1

RIF, EMB, INH => PZA, OFL, STR 0.01269036 1

RIF, INH, EMB => PZA, OFL, STR 0.01269036 1

RIF,INH => CS, CAP, EMB, AMK 0.01218274 1

RIF,INH => LVX, CAP, EMB, OFL 0.01218274 1

RIF,INH => PAS, CAP, EMB, OFL 0.01218274 1

RIF,INH => KAN, AMK, CAP, CS, EMB 0.01218274 1

RIF,INH => KAN, AMK, OFL, CS, EMB 0.01218274 1

RIF,INH => CAP, OFL, STR, LVX, EMB 0.01218274 1

KAN, RIF, INH => CS, CAP, EMB, AMK 0.01218274 1

RIF, INH, STR => LVX, CAP, EMB, OFL 0.01218274 1

KAN, RIF, INH => CS, CAP, EMB, AMK 0.01218274 1

KAN, RIF, INH => AMK, CAP, CS, EMB 0.01218274 1

RIF, INH, STR => LVX, CAP, EMB, OFL 0.01218274 1

RIF, INH, STR => CAP, OFL, LVX, EMB 0.01218274 1

RIF,INH => CS, AMK, STR 0.01167513 1

RIF,INH => CS, CAP, STR 0.01167513 1

RIF,INH => KAN, CAP, EMB, PAS 0.01167513 1

RIF,INH => KAN, EMB, PAS, STR 0.01167513 1

RIF,INH => AMK, CAP, OFL, CS, EMB 0.01167513 1

RIF,INH => KAN, AMK, OFL, STR, PTH 0.01167513 1

RIF,INH => KAN, AMK, CAP, OFL, CS, EMB 0.01167513 1

RIF,INH => KAN, AMK, OFL, STR, PTH, EMB 0.01167513 1

EMB, RIF, INH => KAN, AMK, OFL, STR, PTH 0.01167513 1

KAN, RIF, INH => AMK, CAP, OFL, CS, EMB 0.01167513 1

KAN, RIF, INH => AMK, CAP, OFL, CS, EMB 0.01167513 1

KAN, RIF, INH => AMK, CAP, OFL, CS, EMB 0.01167513 1

RIF, EMB, INH => KAN, AMK, OFL, STR, PTH 0.01167513 1

RIF, EMB, INH => KAN, AMK, OFL, STR, PTH 0.01167513 1

RIF,INH => CAP, LVX, AMK, OFL 0.01116751 1

RIF,INH => CS, EMB, AMK, STR 0.01116751 1

RIF,INH => CS, OFL, AMK, STR 0.01116751 1

RIF,INH => KAN, CS, CAP, STR 0.01116751 1

RIF,INH => CS, CAP, OFL, STR 0.01116751 1

RIF,INH => PAS, CAP, EMB, STR 0.01116751 1

RIF,INH => AMK, CAP, OFL, STR, LVX 0.01116751 1

RIF,INH => KAN, AMK, CAP, OFL, STR, PTH 0.01116751 1

RIF,INH => KAN, AMK, CAP, OFL, STR, PTH,
EMB

0.01116751 1

RIF, EMB, INH => KAN, AMK, CAP, OFL, STR, PTH 0.01116751 1

RIF, EMB, INH => KAN, AMK, CAP, OFL, STR, PTH 0.01116751 1

EMB, RIF, INH => KAN, AMK, CAP, OFL, STR, PTH 0.01116751 1

RIF, INH, STR => CAP, LVX, AMK, OFL 0.01116751 1
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Antecedent Consequent Support Conf.

RIF, INH, STR => CAP, LVX, AMK, OFL 0.01116751 1

RIF, INH, STR => AMK, CAP, OFL, LVX 0.01116751 1

RIF,INH => CS, EMB, PTH 0.0106599 1

RIF,INH => CS, CAP, AMK, STR 0.0106599 1

RIF,INH => KAN, CS, AMK, STR 0.0106599 1

RIF,INH => CS, CAP, EMB, STR 0.0106599 1

RIF,INH => LVX, EMB, PTH, STR 0.0106599 1

RIF,INH => KAN, AMK, STR, CS, EMB 0.0106599 1

RIF,INH => AMK, OFL, STR, CS, EMB 0.0106599 1

RIF,INH => KAN, CAP, STR, CS, EMB 0.0106599 1

RIF,INH => KAN, CAP, OFL, STR, CS 0.0106599 1

RIF, EMB, INH => KAN, CS, AMK, STR 0.0106599 1

RIF, EMB, INH => KAN, AMK, STR, CS 0.0106599 1

KAN, RIF, INH => CS, CAP, EMB, STR 0.0106599 1

KAN, RIF, INH => CAP, STR, CS, EMB 0.0106599 1

EMB, RIF, INH => KAN, CS, AMK, STR 0.0106599 1

KAN, RIF, INH => CS, CAP, EMB, STR 0.0106599 1

RIF,INH => PZA, EMB, AMK 0.01015228 1

RIF,INH => CAP, PZA, EMB 0.01015228 1

RIF,INH => PAS, CAP, OFL, STR 0.01015228 1

RIF,INH => KAN, EMB, PAS, OFL 0.01015228 1

RIF,INH => AMK, CAP, STR, CS, EMB 0.01015228 1

RIF,INH => KAN, AMK, CAP, STR, CS 0.01015228 1

RIF,INH => AMK, CAP, OFL, STR, CS 0.01015228 1

RIF,INH => AMK, CAP, OFL, LVX, EMB 0.01015228 1

RIF,INH => KAN, AMK, OFL, STR, CS 0.01015228 1

RIF,INH => CAP, OFL, STR, CS, EMB 0.01015228 1

RIF,INH => KAN, AMK, CAP, STR, CS, EMB 0.01015228 1

RIF,INH => AMK, CAP, OFL, STR, LVX, EMB 0.01015228 1

RIF,INH => KAN, AMK, OFL, STR, CS, EMB 0.01015228 1

RIF,INH => KAN, CAP, OFL, STR, CS, EMB 0.01015228 1

RIF, EMB, INH => KAN, AMK, CAP, STR, CS 0.01015228 1

RIF, EMB, INH => KAN, AMK, OFL, STR, CS 0.01015228 1

RIF, EMB, INH => KAN, AMK, CAP, STR, CS 0.01015228 1

RIF, EMB, INH => KAN, AMK, OFL, STR, CS 0.01015228 1

RIF, INH, STR => AMK, CAP, OFL, LVX, EMB 0.01015228 1

RIF, INH, STR => AMK, CAP, OFL, LVX, EMB 0.01015228 1

KAN, RIF, INH => AMK, CAP, STR, CS, EMB 0.01015228 1

KAN, RIF, INH => CAP, OFL, STR, CS, EMB 0.01015228 1

KAN, RIF, INH => AMK, CAP, STR, CS, EMB 0.01015228 1

KAN, RIF, INH => , CAP, OFL, STR, CS, EMB 0.01015228 1

KAN, RIF, INH => AMK, CAP, STR, CS, EMB 0.01015228 1

KAN, RIF, INH => CAP, OFL, STR, CS, EMB 0.01015228 1

RIF, INH, STR => AMK, CAP, OFL, LVX, EMB 0.01015228 1

EMB, RIF, INH => KAN, AMK, CAP, STR, CS 0.01015228 1

EMB, RIF, INH => KAN, AMK, OFL, STR, CS 0.01015228 1
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