
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Evaluation of Metamorphic

Relations of Image Processing

Operations using Mutation

Testing
by

Fakeeha Jafari
A dissertation submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2024

www.cust.edu.pk
www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Evaluation of Metamorphic Relations of Image

Processing Operations using Mutation Testing

By

Fakeeha Jafari

(DCS 163001)

Dr. Radu Prodan, Profeessor

University of Klagenfurt, Austria

(Foreign Evaluator 1)

Dr. Seifedine Kadry, Professor

Noroff University College, Norway

(Foreign Evaluator 2)

Dr. Aamer Nadeem

(Research Supervisor)

Dr. Abdul Basit Siddiqui

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2024

ii

Copyright © 2024 by Fakeeha Jafari

All rights reserved. No part of this dissertation may be reproduced, distributed,

or transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

Alhamdolilah

vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this dissertation:-

1. Jafari, F., Nadeem, A., and Zaman, Q.u. “Evaluation of Metamorphic

Testing for Edge Detection in MRI Brain Diagnostics,” Appl. Sci, vol. 12,

no. 17, pp. 8684, 2022.

2. Jafari, F., Nadeem, A. “Measuring Effectiveness of Metamorphic Relations

for Image Processing Using Mutation Testing,” J.Imaging, vol. 10, no. 4,

pp. 87, 2024.

(Fakeeha Jafari)

Registration No: DCS 163001

viii

Acknowledgement

I want to start by expressing my gratitude to Allah, the most Gracious and Mer-

ciful, for all of His blessings bestowed upon me and for providing the strength I

needed to complete this task.

I want to sincerely thank my supervisor, Professor Dr. Aamer Nadeem, for his in-

tellectual guidance and suggestions. He is an incredibly motivating professor who

helped me out with my PhD studies. He gave me moral and technical support

throughout this difficult journey, and kept me motivated. His incisive feedback

encourages me to sharpen my abilities and critical reasoning in order to reach my

research objectives. Without his invaluable assistance, I would not be able to fin-

ish this dissertation. I can’t express enough gratitude for the support he gave me

and the belief he had in my ability to complete this difficult and tiring expedition.

I consider it a great honour to have finished my PhD research under his guidance.

My appreciation also extends to my CSD members, Dr. Mudassir Sindhu, and

Dr.Qamar-uz-Zaman for valuable suggestions and guidance. Additionally, I want

to thank my friends who supported and encouraged me throughout this journey.

I dedicate this work to my parents who supported and stood by me throughout

this journey. I would like to thank my husband who supported me financially and

morally to pursue my PhD study, without him I would not be able to accomplish

this work. I would also thank my sisters for their support, wise counsel and sym-

pathetic ears. I would also thank my brother in law for being a great support

throughout this journey. I also thank my father in law and mother in law for their

support. In addition, a special note to my kids, they sacrificed a lot,thank you for

your love and support.

Finally, I want to express my gratitude for the chance to study at the esteemed

Capital University of Science and Technology. This opportunity has given me the

chance to learn from and work with some of the most talented people.

(Fakeeha Jafari)

ix

Abstract

Testing of an intricate plexus of advanced software system architecture of im-

age processing applications is quite challenging due to the absence of test oracle.

Metamorphic testing is a popular technique to improve the test oracle problem. Ef-

fectiveness of metamorphic testing is dependent on metamorphic relations (MRs),

a necessary property of system under test. One of the important metrics to evalu-

ate MRs is their fault detection capability as a low fault detection rate shows that

the faults in the system under test are not fully identified.

Even though, various metamorphic testing approaches have been applied to eval-

uate IPAs, but there has been no substantial work performed for the evaluation of

metamorphic testing itself. In this work, we have evaluated effectiveness of meta-

morphic testing on edge detection and morphological image operations of MRI

images for the evaluation of metamorphic relations of image processing operations

using mutation testing. The existing techniques of edge detection and morpho-

logical image operations for the evaluation of MRs are not comprehensive for two

reasons; firstly, the source test cases are generated randomly from an incomplete

sample population which is missing many image properties leading to a false pos-

itive error in testing results and secondly, a very smaller number of mutants is

generated through very few mutation operators which have affected their fault

detection capability to kill significant number of mutants.

A solution is proposed for the generation of source test cases by combining both

black-box testing and white-box testing techniques. In the black-box testing tech-

nique, source test cases are divided into five classes based on image properties

through strong equivalence class testing: image resolution, image bit depth, im-

age horizontal dimension, image vertical dimension, and image type (T1-weighted

images, T2-weighted images and flair-type images). In white-box testing, the se-

lected test cases are further checked through code coverage to ensure complete

coverage.

In our proposed framework we have used nine applicable mutation operators and

determine the effectiveness of these operators. By using these applicable opera-

tors, we have ensured that all the possible numbers of mutants are generated for

x

our optimal fault detection rate. We have also proposed six new MRs for dilation

and erosion operation. The fault detection capability of six newly proposed MRs

and four existing edge detection MRs is determined through mutation testing.

We have compared the results of our proposed framework with the results of ex-

isting techniques. Results of evaluation of the proposed framework of four MRs of

edge detection show an improvement in all the respective MRs especially in MR1

and MR4 with a fault detection rate of 76.54% and 69.13% respectively which is

32% and 24% improved than the existing technique. The fault detection rate of

MR2 and MR3 is also improved by 1%. Similarly, results of dilation and erosion

are compared with the existing technique. Results show that out of 8 MRs, the

fault detection rate of four MRs are improved than the existing technique. In pro-

posed framework, MR1 is improved by 39%, MR4 is improved by 0.5%, MR6 is

improved by 17%, and MR8 is improved by 29%. While comparing our proposed

MRs with the existing MRs of dilation and erosion operations, we have come to

the conclusion that the proposed MRs complement the existing MRs effectively as

the proposed MRs are are able to find those faults which are not identified by the

existing MRs.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xv

List of Tables xvii

Abbreviations xix

Symbols xx

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Scope . 4

1.4 Objectives . 5

1.5 Research Questions . 6

1.6 Contributions . 7

1.7 Thesis Organization . 8

2 Background 9

2.1 Testing of Image Processing Applications 9

2.2 Challenges in Testing Image Processing Applications 10

2.2.1 Generation of Test Cases . 11

2.2.2 Evaluation of Output Images 11

2.2.3 Oracle Problem . 12

2.3 Methods to Alleviate Oracle Problem 13

2.4 Metamorphic Testing . 13

xi

xii

2.4.1 Example of Metamorphic Testing 14

2.5 Metamorphic Testing In Image Processing Applications 15

2.6 Metamorphic Relations . 16

2.6.1 Generation of Source and Follow-up Test Cases Using MR . 19

2.6.2 Evaluation of Metamorphic Relations 19

2.6.3 Fault Detection Rate of Metamorphic Relations 21

2.7 Summary . 23

3 Literature Review 25

3.1 Evaluation of Metamorphic Relations 25

3.1.1 Evaluating Effectiveness of MT on Edge Detection Programs 25

3.1.2 Addreessing Test Oracle Problem in IPAs 27

3.1.3 MT of Image Region Growth Programs in IPAs 30

3.1.4 Models for Random Input Generation 31

3.1.5 Testing Imaging Software Automatically 34

3.1.6 Evaluation of Partial Oracles using MT 36

3.1.7 Evaluation of Partial Oracles 37

3.1.8 Framework for Evaluating MT 38

3.2 Metamorphic Testing and Machine Learning 43

3.2.1 Mechanism to Automate Test Oracle using SVM 43

3.2.2 Framework of Automatic Testing of IPAs 45

3.2.3 Identification of Failures in Mesh Simplification Programs
using MT . 46

3.3 Enhancements of Metamorphic Testing 47

3.3.1 Self Checked MT Approach 47

3.3.2 Application of MT for Testing Scientific Software 49

3.4 Research Gaps . 50

3.5 Summary . 52

4 A Framework for Evaluation of Metamorphic Relations 53

4.1 Proposed Framework for MR Evaluation 53

4.1.1 Generation of Source Test Cases 54

4.1.2 Test Case Adequacy through Equivalence Class Testing and
Code Coverage . 55

4.1.3 Generation of Follow-up Test Cases 56

4.1.4 Evaluation of Metamorphic Relations 57

4.1.5 Composition of Metamorphic Relations 59

4.2 Summary . 60

5 Proposed Metamorphic Relations 61

5.1 Image Processing Operations . 61

5.1.1 Edge Detection . 61

5.1.2 Morphological Image Operations 63

5.1.3 Image Segmentation . 63

5.1.4 Image Reconstruction . 64

xiii

5.1.5 Euclidean Distance Transform 65

5.2 Metamorphic Relations . 65

5.3 Existing Metamorphic Relations . 66

5.3.1 MRs for Edge Detection . 66

5.3.2 Existing MRs for Dilation and Erosion 67

5.3.3 Proposed MRs for Dilation and Erosion 68

5.3.3.1 Counter Clock Wise Rotation at 90 degree 68

5.3.3.2 Transposition . 69

5.3.3.3 Enhanced Associative Property 69

5.3.3.4 Image Translation 70

5.4 Summary . 71

6 Evaluation of Proposed MRs 72

6.1 Experiment Design . 72

6.1.1 Subject Program . 72

6.1.1.1 Sobel Edge Detection 73

6.1.1.2 Dilation and Erosion 73

6.1.1.3 Improved Canny Edge Detection 74

6.1.2 Source Code . 75

6.1.3 Dataset . 77

6.1.4 Source Test Cases . 78

6.1.5 Code Coverage . 80

6.2 Effectiveness of Mutation Operators 81

6.2.1 Effectiveness of Mutation Operators used in Edge Detection 81

6.2.2 Effectiveness of Mutation Operators used in Dilation and
Erosion Operations (Proposed Framework) 85

6.3 Effectiveness of Metamorphic Relations 88

6.3.1 Effectiveness of Edge Detection MRs 88

6.3.2 Effectiveness of Dilation and Erosion MRs 90

6.3.3 Effectiveness of Proposed MRs 91

6.4 Comparison of Proposed Framework with Existing Techniques . . . 93

6.4.1 Comparison Results of Edge Detection 94

6.4.2 Comparison Results of Dilation and Erosion 95

6.4.3 Comparison Results of Proposed MRs with Existing MRs
for Dilation and Erosion . 97

6.5 Composition of Metamorphic Relations 102

6.6 MR Evaluation using SSIM . 109

6.6.1 Proposed Framework . 109

6.6.1.1 Generation of Source Test Cases 110

6.6.1.2 Identification of Metamorphic Relations 111

6.6.1.3 Generation of Follow-Up Test Cases 111

6.6.1.4 SSIM Based Output Comparison 112

6.6.2 Results and Discussion . 112

6.7 Threats to Validity . 125

xiv

6.8 Summary . 126

7 Conclusion and Future Work 127

7.1 Answers to Research Questions . 127

7.2 Conclusion . 130

7.3 Future Directions . 131

Bibliography 132

List of Figures

1.1 Metamorphic Testing Application Domains [20]. 3

2.1 Process of Software Testing. 10

2.2 Test Oracle Problem. 12

2.3 Process of Metamorphic Testing. 14

2.4 (a) Input Image Before edge Detection (b) Input Image After Computing

the Edges. 16

2.5 (a) Source Test Case; (b) Follow-up Test Case 20

2.6 (a) Output of source test case E(Im); (b) output of follow-up test case

E(C(Im)). 20

2.7 (a) C(E(Im); (b) E(C(Im)). 20

2.8 Process of Mutation Testing [63] . 22

4.1 Proposed Framework for MR Evaluation. 54

5.1 Probing an Image with Structuring Element [98]. 63

5.2 (a) Original Image (b) Distance Transform [69]. 65

6.1 (a) Input Image (b) Output of Edge Detection. 73

6.2 (a) Input Image (b) Output of Dilation (c) Input Image (d) Output of

Erosion. 74

6.3 Output of Improved Canny Edge Detection. 75

6.4 (a) T1 weighted image (b) T2 weighted image (c) Flair Image. 77

6.5 Percentage of Killed Mutants Used in Edge Detection. 84

6.6 Percentage of Generated Mutants used in Edge Detection. 84

6.7 Percentage of Killed Mutants Used in Dilation and Erosion. 87

6.8 Percentage of Generated Mutants used in Dilation and Erosion. 88

6.9 Graphical Representation of FDR of Edge Detection MRs. 89

6.10 Graphical Representation of FDR of Dilation and Erosion MRs. 91

6.11 Graphical Representation of FDR of Proposed MRs. 92

6.12 FDR of Existing Technique and Proposed Framework. 95

6.13 Graphical Representation of FDR of Existing Technique and Proposed

Framework. 96

6.14 Flowchart of Proposed Framework. 110

6.15 No. of Test Cases Violating MR1 For T1, T2, and Flair Images. 123

6.16 No. of Test Cases Violating MR2 For T1, T2, and Flair Images. 123

6.17 No. of Test Cases Violating MR3 For T1, T2, and Flair Images. 124

xv

xvi

6.18 No. of Test Cases Violating MR4 For T1, T2, and Flair Images. 124

6.19 FDR of MRs on T1, T2 and Flair Type Images. 125

List of Tables

2.1 IP Operations and their Relative MRs 17

2.1 IP Operations and their Relative MRs 18

2.2 Basic Five Mutation Operators Proposed by Offutt et al. [64] . . . 23

3.1 Summary of Section 3.1 . 41

3.1 Summary of Section 3.1 . 42

3.2 Summary of Section 3.1 . 43

3.3 Summary of Section 3.2 . 47

3.4 Summary of Section 3.3 . 51

4.1 Mutation Operators Used in Existing Techniques and in Proposed
Framework . 58

5.1 MRs for Edge Detection . 67

5.2 Existing MRs for Dilation and Erosion Operations 68

5.3 Proposed MRs for Dilation and Erosion Operations 70

5.4 Proposed MRs for Dilation and Erosion Operations 71

6.1 Sources of Source Codes . 76

6.2 Classification of Dataset. 77

6.2 Classification of Dataset. 78

6.3 Classes Using Strong Equivalence Class Testing. 79

6.4 Code Coverage Summary. 80

6.5 Effectiveness of Mutation Operators used in Edge Detection 81

6.5 Effectiveness of Mutation Operators used in Edge Detection 82

6.6 Effectiveness of Mutation Operators used in Edge Detection 83

6.7 Effectiveness of Mutation Operators used in Dilation and erosion . . 85

6.7 Effectiveness of Mutation Operators used in Dilation and erosion . . 86

6.7 Effectiveness of Mutation Operators used in Dilation and erosion . . 87

6.8 Fault Detection Rate of Edge Detection MRs 89

6.9 Fault Detection Rate of Dilation and Erosion MRs 90

6.10 Fault Detection Rate of Proposed MRs 91

6.10 Fault Detection Rate of Proposed MRs 92

6.11 Statistics of Existing Techniques and Proposed Framework 93

6.12 Comparison of Existing Technique and Proposed Framework 94

6.13 Comparison of Existing Technique and Proposed Framework 96

6.14 Mutants Generated against each Mutation Operator 97

xvii

xviii

6.15 Mutants Generated against each Mutation Operator 98

6.16 Mutants Killed by Existing MRs 98

6.16 Mutants Killed by Existing MRs 99

6.17 Killed and Alive Mutants in Existing MRs 100

6.18 Mutants Killed by Proposed MRs 100

6.19 Mutants Killed by Proposed MRs 101

6.20 Killed and Alive Mutants in Existing MRs 101

6.21 Composition of Two MRs . 103

6.22 Composition of Three MRs . 104

6.23 Composition of Three MRs . 105

6.24 Composition of Three MRs . 106

6.25 Composition of Four MRs . 107

6.25 Composition of Four MRs . 108

6.26 SSIM Value of T1 Weighted Images 113

6.26 SSIM Value of T1 Weighted Images 114

6.27 SSIM Value of T1 Weighted Images 115

6.28 Fault Detection Rate of T1 Weighted Images. 116

6.29 SSIM Value of T2 Weighted Images 116

6.29 SSIM Value of T1 Weighted Images 117

6.30 SSIM Value of T2 Weighted Images 118

6.31 Fault Detection Rate of T2 Weighted Images. 119

6.32 SSIM Value of Flair Images . 119

6.32 SSIM Value of Flair Images . 120

6.33 SSIM Value of Flair Images . 121

6.34 SSIM Value of Flair Images . 122

6.35 Fault Detection Rate of Flair Type Images. 122

Abbreviations

AOD Arithmetic Operator Deletion

AOR Arithmetic Operator Replacement

COI Conditional Operator Insertion

IPAs Image Processing Applications

RIL Reverse Iteration Loop

FDR Fault Detection rate

IUT Implementation Under Test

MR Metamorphic Relation

MT Metamorphic Testing

OIL One Iteration Loop

ROR Relational Operator Replacement

SDL Statement Deletion

SIR Slice Index Remove

SUT System Under Test

ZIL Zero Iteration Loop

xix

Symbols

δ Dilation operation

ε Erosion Operation

⊕ Dilation operation

c Complement of image

⊖ Erosion operation

θ Threshold Value

s Structuring Element

mt Mutant

xx

Chapter 1

Introduction

The importance of image processing applications (IPAs) is growing fast in our daily

lives [1]. IPAs utilize algorithms to analyze the characteristics of an image using

various methods and techniques. Digital images can be rotated, scaled, translated,

and sheared by using geometric transformations. Also, in binary and grayscale im-

ages, different morphological operations such as erosion, dilation, skeletonization,

opening and closing operations are used that are further used for filtering, thin-

ning, and pruning of the images [2].

Nowadays, IPAs are widely used in safety, and mission critical systems such as

medical radiology, biometric systems, surveillance systems etc. [1]. Testing of the

software used in these critical systems is vital to ascertain the credibility of the

results produced by these systems. Software testing is a common method to test

and verify the quality of IPAs software [3]. In software testing, an oracle is a mech-

anism that ascertains that whether a software has successfully executed for a test

case or not [4]. The Software is run for a specific test case, and the result (actual

output) is compared with the anticipated result (expected output). If the output

differs from what was anticipated, the program is said to be faulty [3]. In real life

scenarios, the term ”oracle problem” occurs when the oracle is either unavailable

or it is very difficult or impossible to verify the test result of a specific test case

[5]. Testing of IPAs is especially challenging due to the test oracle problem.

Among many solutions of test oracle problem, Metamorphic Testing (MT) is the

1

Introduction 2

most popular testing technique that tackles the oracle problem in software testing

of IPAs [6]. MT was first proposed by Chen at al. in 1998 [7]. Instead of focusing

on ensuring that each distinct output is verified, MT looks at the relationships

between the inputs and outputs of various iterations of the program under test.

These relationships are called Metamorphic Relations (MRs), and they are the nec-

essary properties of the intended program’s functionality [8]. Additionally, source

test cases are needed to check the functionality of SUT [9]. The source test cases

are generated through traditional test case generation techniques such as random

test case generation, coverage criteria based etc. From these source test cases, a

set of new test cases known as follow-up test cases are constructed using MRs [10].

Afterwards, the source and follow-up test cases are given to the SUT. After the

execution, if the output results of source and follow-up test cases obtained from

SUT does not satisfy the output relation, then it shows that the program is faulty

[11].

1.1 Motivation

Software testing is a crucial technique that is frequently used during development

to find faults in a program [12]. This typically involves choosing a set of input

data (test cases), running the program under test, and then examining the corre-

sponding output data [13]. Test case consists of test value, action, or event and

expected result [14]. The expected result is a predetermined outcome of the test

cases, and the test case only passes if the actual result matches the expected result

[15]. The test failure occurs if the actual result is different from the expected result

[16]. The mechanism used to determine whether a test has succeeded or failed is

known as the (test) oracle [17]. In many programs such as IPAs, search engines,

simulators, or compilers, test oracle is not often well defined and the expected

results are not obvious. This is the well-known test oracle problem. When the

chosen test case fails to yield the expected output, oracle problem occurs [18]. It

is common to refer to programs that have the Oracle Problem as ”untestable,” as

testing is hardly ever beneficial when it is impossible to detect a program’s output

Introduction 3

as (in)correct [17].

A quarter of a century ago, MT was first developed by Tsong Yueh Chen to ad-

dress the oracle problem. It is becoming more and more recognised as a helpful

testing method by academics and business professionals [19]. In many domains,

MT has shown to be effective for creating test cases and finding errors. Figure 1.1

shows the applications of MT to specific problem domains. Figure 1.1 shows twelve

Figure 1.1: Metamorphic Testing Application Domains [20].

different application domains in MT. It is observed that the most popular domain

is web services and applications (16%) followed by computer graphics (12%) and

simulation and modeling (12%). In computer graphics, image processing (IP) is

a crucial area because it can be extremely challenging to determine whether an

IP system’s behaviour satisfies its stated requirements or not [21]. Additionally,

IPAs are becoming more and more popular for tasks like surveillance, medicine,

bio-metrics etc,.

In MT, MRs are the intrinsic properties of the software being tested [22]. The MRs

used for testing have a significant impact on how well MT works. According to

studies, the effectiveness of MRs is related to their fault detection rate. Therefore,

a good method for calculating the MR fault detection rate can somewhat increase

the efficacy of MT [23]. The higher the fault detection rate, the higher is the

chances to reveal faults [24]. For the detection of different faults, the effectiveness

of various MRs varies because every MR is not capable to detect faults or for bug

Introduction 4

manifestation. It’s essential to use MRs with high fault-detection effectiveness to

save time and resources [25].

Early research on MT has primarily focused on how to use this novel testing strat-

egy to solve oracle problems using MRs. Efforts have been made to increase the

effectiveness of failure detection in MT through evaluation of MRs and test case

diversity. Studies in this thesis concentrate on evaluating the fault detection rate

of MRs.

1.2 Problem Statement

The problem this thesis work addressing are as follows:

In existing literature, the method of generating random test cases is widely used

because of its simplicity and un-biased nature. However, generating the test cases

using this method (randomly) could lead to inadequate representation of paramet-

ric values because the sample population is not all-inclusive and complete itself.

In existing techniques, the evaluation of MRs is performed through mutation test-

ing using a very few mutation operators such as ROR and LOR. This evaluation

is not comprehensive because the fewer the mutation operators, the fewer the mu-

tants generated which are not quite sufficient for comprehensive testing to measure

the fault detection rate of MRs.

In the field of IP, the MRs are not adequate. Also, the fault detection rate of

some of the MRs are very low and low fault detection rate implies the presence of

the hidden bugs/faults in the program which are not detected.

1.3 Scope

MT is typically a highly and simply automatable testing approach to address the

oracle problem [26]. MT is dependent on the fault detection rate of an MR. The

Introduction 5

higher the fault detection rate, the higher the fault detection capability. The pri-

mary focus of this thesis work is to establish a comprehensive criterion to assess the

effectiveness of an MR. Also the scope of our newly proposed framework includes

the evaluation of the effectiveness of currently available MRs of IP operations such

as edge detection, dilation, erosion, etc, using the use of newly developed criteria.

Additionally, an assessment is performed in this thesis work for the adequacy of

all currently available MRs collectively and to propose new MRs if needed.

1.4 Objectives

The core objectives of this thesis are as follows:

1. To improve the evaluation method of fault detection rate of MRs in MT.

One of the objective of this research is to assess the effectiveness of fault

detection rate of MRs in MT. In existing literature, to assess the fault de-

tection rate of MRs, very few mutation operators (ROR, LOR) are used in

mutation testing for the generation of mutants. These smaller number of

mutants will affect the fault detection capability to kill significant number of

mutants. Additionally, source test cases are generated randomly and random

test case generation could lead to unfair distribution of parametric values.

This unfair distribution, being non-comprehensive, may provide inaccurate

results of the evaluation process.

2. To propose new MRs in the field of IP.

In the existing literature, there are not enough MRs in the field of IP for

comprehensive testing.

3. To compare fault detection effectiveness of existing MRs and proposed MRs

in MT.

The last objective is to evaluate the fault detection rate of existing MRs using

our proposed methodology. Additionally, the proposed MRs are compared

with the existing MRs for any improvement.

Introduction 6

1.5 Research Questions

The research questions of this thesis are as follows:

1. How to assess and improve the evaluation of fault detection rate of MRs for

MT ?

RQ1 focuses to measure the evaluation of fault detection rate of MRs for

MT. In existing techniques, the evaluation of MRs is performed through

mutation testing using a very few mutation operators such as ROR and

LOR. This evaluation is not comprehensive because the fewer the mutation

operators, the fewer the mutants generated which are not quite sufficient for

comprehensive testing to accurately measure the fault detection rate of MRs.

We have used all possible nine mutation operators to evaluate the MRs of

edge detection and dilation and erosion operations. This RQ is addressed in

Chapter 6.

2. How to create new MRs for MT ?

RQ2 emphasis on the creation of new MRs in the field of IP as the existing

MRs are not adequate for comprehensive testing. In existing literature,

there are eight MRs for dilation and erosion operations. We have created

six new MRs for dilation and erosion operations as well. Additionally, some

more MRs are constructed after composing the composite MRs. This RQ is

addressed in Chapter 5.

3. How do existing and proposed MRs compare with respect to fault detection

effectiveness in MT ?

RQ3 emphasis on the evaluation of existing MRs as well as the evaluation

of proposed MRs as the evaluation of existing MRs is not comprehensive

with respect to their fault detection rates. The evaluation is performed

on both the edge detection MRs and dilation and erosion MRs.The fault

detection rates of proposed MRs and existing MRs are evaluated through

mutation testing. Lastly, the effectiveness of proposed MRs and existing

MRs is compared and analyzed. This RQ is addressed in Chapter 6.

Introduction 7

1.6 Contributions

The contributions of this thesis work are listed below:

1. Currently, the method of generating random test cases is widely used be-

cause of its simplicity and un-biased nature. However, generating the test

cases using this method (randomly) could lead to inadequate representa-

tion of parametric values because the sample population is not all-inclusive

and complete itself. The contribution of my thesis work is to define an all-

inclusive sample population ready for a true sample to be selected from with

every parametric value having equal probability of selection. Source test

cases are generated through a systematic way to ascertain that the gener-

ated test cases are truly random from an all-inclusive sample population.

The proposed method uses strong equivalence class testing along with code

coverage for the generation of source test cases.

2. In existing techniques, the evaluation of MRs is performed through mutation

testing using a very few mutation operators such as ROR and LOR. This

evaluation is not comprehensive because the fewer the mutation operators,

the fewer the mutants generated which are not quite sufficient for compre-

hensive testing to accurately measure the fault detection rate of MRs . All

possible nine mutation operators to evaluate the MRs of edge detection and

dilation and erosion operations.

3. For dilation and erosion operations, we have proposed six new MRs (four

general and two specific). The effectiveness of proposed MRs is determined

through mutation testing.

4. In addition, we have constructed new MRs by composing the MRs. In the

field of IP, composition has not been performed to-date.

5. For medical images such as MRI, CT scan, ultrasound, x-rays etc., MT has

not been applied to-date. We have studied the implications of MT applied

on MRI brain images. It has been suggested that which of the MRI image

Introduction 8

(T1 weighted images, T2 weighted images, and flair images) is more useful

for the diagnostic purpose.

1.7 Thesis Organization

The thesis’ remaining chapters are organised as follows:

Chapter 2 presents a brief introduction about the challenges in testing IPAs such

as oracle problem. Different methods have been discussed to alleviate the oracle

problem. The chapter also discusses MT in detail, a method to handle oracle

problem in IPAs is discussed in detail.

Chapter 3 presents the review of literature for MT in IPAs. It includes the papers

related to the evaluation of MRs to improve the effectiveness of MT, the use of

machine learning for output evaluation of images, and the enhancements in MT.

Chapter 4 presents the proposed framework to evaluate the MRs of IP operations

such as edge detection and morphological image operations (dilation and erosion).

The chapter also discusses the existing and proposed MRs of IP operations.

Chapter 5 discusses the results related to evaluation of MRs and mutation opera-

tors. The chapter also discusses the composition results in detail. The comparison

of proposed framework with the existing techniques are also discussed in detail.

Chapter 6 derives from our published work where an improved canny edge de-

tection algorithm is used to evaluate the metamorphic relations of edge detection.

Furthermore, the output comparison is made using structure similarity image mea-

sure.

Chapter 7 concludes this research and summarises the main contributions made

by the research. Finally, the proposed work’s future prospects are discussed.

Chapter 2

Background

It is a challenging and expensive task to evaluate the output of those programs

that involve a huge amount of data. For example, many aspects of our daily lives

depend on IPAs, including biometrics, surveillance, and medical imaging etc,.

These IPAs handle large amount of data and produce complex outputs [27]. As

we all know that the software systems are error prone and their failure results

in massive disaster [28]. So, the reliability and quality of these systems can be

measured through testing [29].

2.1 Testing of Image Processing Applications

Software testing is a fundamental approach to determine the bugs in implemen-

tation under test (IUT) [30]. Testing is an evaluation process that determines

whether the system is able to meet its specification or not. A test case in software

testing is a written document with a set of test data, preconditions, anticipated

outcomes, and post-conditions created for a particular test scenario in order to

verify compliance with a specified requirement [31]. Expected result is the best

result that can be achieved once a test case has been executed. For example, in

the case of a calculator application, if you enter 4+8 and the actual result is 10,

your test case fails because the expected result obtained for the same test case

9

Background 10

is 12 [32]. Figure 2.1 shows the whole process of software testing. In case of IP,

if we apply the operations (edge detection, dilation, erosion, segmentation, image

region growth etc,.) on the images then we get the original output and we need

expected output for comparison to see whether the original output generated is

correct or not.

Figure 2.1: Process of Software Testing.

Figure 2.1 shows that every test case has its expected and actual results com-

pared, and any discrepancy is labelled as a defect. Testing IPAs requires a lot

more time and resources than testing traditional software because these applica-

tions are typically tested manually. As test inputs, those images are used whose

expected output is already determined [33]. For example, in IP, edge detection is

an operation which is used to compute the edges of an image. If we want to check

whether the output edges computed by the edge detection operator is correct or

not then we do not have a reference image (expected output) for comparison. This

is the well known oracle problem where the expected results are not obvious.

2.2 Challenges in Testing Image Processing Ap-

plications

Testing of IPAs is a very challenging task due to its complications and visual

semantics. Some of the challenges of testing the IPAs are given below:

Background 11

2.2.1 Generation of Test Cases

Dijkstra emphasised that testing reveals faults, not their absence [34]. In software

testing, generation of test cases is a vital and tedious task [35]. Finding test inputs

that reflect the unexpected performance behaviour in the program under test is

necessary for fault detection through testing, but this can be quite challenging [36].

The first challenge is to generate test cases (images) that are significant enough to

explore individual parts of program under test and to check the presence of bugs

in the implementation [30].

In literature, multiple methods have been discussed for the generation of input

images e.g. random input generation, Boolean model, combinatorial techniques,

symbolic evaluation method etc. Random input generation is considered unbiased

and less complex as compared to other input generation methods or techniques.

However, generating the test data randomly could lead to unfair distribution of

parametric values. Also, the sample population is not comprehensive. Therefore,

sample selected is also not true representation of sample population.

In literature, the image libraries, from where the test cases are selected, have

images with same attribute values. For example, in one library, all the images

which are used for testing have same resolution of 96dpi and in another library all

the images have same horizontal and vertical dimensions. This unfair distribution,

being non-comprehensive, may provide inaccurate results of the testing process.

2.2.2 Evaluation of Output Images

The second challenge is to correctly evaluate the output images. In literature,

several image quality measures are used that provide accurate and close to per-

ceived quality of the tested image such as peak signal to noise ratio (PSNR), root

mean square error (RMSE), signal to noise ratio (SNR), structure similarity index

measure (SSIM), and feature similarity index measure (FSIM) etc, [37]. The last

two measures are comparatively new measures as compared to the others. Since

subjective human evaluation is inconvenient, time-consuming, and expensive in

Background 12

practise, these are substitute methods for quantifying the quality of visual images

[38]. However, it is quite challenging to correctly evaluate the output images pixel

by pixel [39]. For example, it is difficult to perform a pixel by pixel comparison of

two images which seem alike visually but are in fact different [27]. When pixel by

pixel comparison is not possible due to large pixel differences then it is difficult to

compare the images at structure as well as at the semantic level. [40].

2.2.3 Oracle Problem

The third challenge in testing IPAs is the test oracle problem. In the field of

IP, test oracle (a decision, whether a test case passes or fails) is not often well

defined and the expected results are not obvious. This is the well-known test

oracle problem. Test oracle problem is a mechanism to determine the ability to

distinguish between correct and incorrect behavior of the system under test for

a given input [41]. An oracle problem occurs when it is challenging to get the

expected results from a chosen test case [27]. Because of oracle problem, testers

use input images that can be handcrafted or images with well-defined expected

output results [42]. The concept of oracle problem is depicted in Figure 2.2.

Figure 2.2: Test Oracle Problem.

In IPAs, there are different methods to alleviate the oracle problem. We have

discussed these methods in the next section.

Background 13

2.3 Methods to Alleviate Oracle Problem

Some of the methods to alleviate oracle problem are given below:

• According to Davis and Weyuker (1981), in pseudo-oracle, we can have several

implementations working on the same issue and verifying one another. All the

outputs of the implementations are compared, and if one of them differs, it may

be a sign that the algorithm has flaws. But this method is time consuming as

it is difficult to make a program of same nature and it is also quite probabilistic

that different people can commit the same error [43]. Therefore, in literature this

method is not recommended for the testing purpose.

• Partial oracle is another method to address the oracle problem. In this method,

there may still be a small number of unique and straightforward input values for

which the output values are known or can be easily determined in the absence

of an oracle. The software being tested uses this group of special input values

as a partial oracle. However, it has been demonstrated that the failure detection

capability of this small range of special and simple input values is extremely limited

[44].

• Metamorphic Testing (proposed by Chan et al.) is a useful strategy for solving

the oracle problem. The testing method verifies all the outputs of the system

rather than checking the individual outputs [45]. Metamorphic relations can be

checked between source and follow up test cases to verify the property of system

under test (SUT) [46].

The survey indicates that MT is an effective and efficient way to address the IPAs’

oracle problem rather than using pseudo-oracle or partial oracle. As a result, we

are using MT to solve the IPA’s oracle problem.

2.4 Metamorphic Testing

Currently, the most effective method to handle test oracle problem in IPAs is

Metamorphic testing (MT) [47]. MT is a software testing paradigm which identi-

fies the properties of the SUT, called metamorphic relations, to either verify the

Background 14

test results, or to generate new test cases (follow-up test cases) [48]. Instead of

only constructing the follow-up test cases from source test cases, MT verifies the

test results by checking the relationship between the outputs of source and follow-

up test cases [49]. Figure 2.3 shows the process of metamorphic testing.

Figure 2.3: Process of Metamorphic Testing.

The steps in MT process are given below:

• Based on the domain knowledge about the proposed algorithm, one or multiple

metamorphic relations can be identified.

• Source test cases are generated after MRs have been identified using some conven-

tional test generation techniques, like random generation through random model

or Boolean model, structural or program based test generation techniques, behav-

ioral or specification based, symbolic evaluation method, combinatorial techniques

and fault based test generation techniques etc,.

• The source test cases are then transformed by an MR into new test cases called

follow-up test cases [50].

• Now run both the source and follow-up test cases to determine whether their

results correspond to the change that the MR has projected.

• During the testing process, if there is an MR violation, then it shows that the

SUT is faulty [51].

2.4.1 Example of Metamorphic Testing

The concept of MT can be explained through an example in which a sin function

of a program can be computed. The metamorphic relation in this case is the

Background 15

property of sin function given below:

sin(x) = sin(180− x)

According to the above MR, x is the source test case for any arbitrary value e.g.,

57.3. After the execution of sin function, suppose we got the output 0.8415. The

verification of this output is not easy if we do not have the test oracle. In MT,

follow up test cases can be generated which is (180-x) in case of above MR. The

follow-up test case is given to SUT for execution. Suppose the output produced is

0.8402. The results of the source and the follow-up test cases can now be compared.

As we see, both the outputs have different results and are not satisfying the relevant

MR. It shows that the SUT is faulty [20] [52].

2.5 Metamorphic Testing In Image Processing

Applications

As discussed earlier, IPAs are more difficult to test than traditional software be-

cause of their complexity and the visual semantics that are involved. In the field of

IP, there are several algorithms such as sobel edge detection, canny edge detection,

robert’s algorithm to calculate the edges of the algorithm. Figure 2.4 shows the

original image and the image after applying the edge detection algorithm. If we

need to verify the accuracy of the output edges calculated by the edge detection

algorithm we do not have a reference image for comparison. This is well known

oracle problem in IPAs. As an example, consider Figure 2.4 where edges are cal-

culated by edge detection algorithm. But, we do not have a reference image for

comparison that whether the output is correct or incorrect.

MT is used in IPAs to alleviate the oracle problem. In IPAs, MT entails trans-

forming the input images and determining whether the resultant image preserves

specific anticipated characteristics or not. For example, if an IP algorithm is

designed to calculate the edges of the images, MT helps ensure that the edge de-

tection algorithm is invariant to certain transformations and consistently produces

Background 16

accurate results, even if the input undergoes changes. This method (MT) uses ex-

pected relationships between input and output transformations to help validate

the accuracy and dependability of IP algorithms.

Figure 2.4: (a) Input Image Before edge Detection (b) Input Image After
Computing the Edges.

2.6 Metamorphic Relations

Metamorphic Relations (MRs) are the properties of the functionality of the soft-

ware which involves multiple executions of the software [53]. These properties may

include inequalities, periodicity properties, convergence properties, subsumption

relationships, and other properties. The MR relates two or more inputs with their

expected outputs after execution of each property of the target program [42]. Do-

main experts study the problem related to the target function and then formulate

the MRs respectively. The primary function of MR is to produce and validate test

results in the absence of a test oracle [54].

In the field of IP, there are different operations such as edge detection, dilation,

erosion, image region growth, segmentation, enhancement, restoration, and Eu-

clidean distance transform etc to perform specific operations. In existing litera-

ture, the authors have presented various MRs (both general and specific) which

are derived from the properties of these operations. Some of the IP operations

and their relative MRs are given in Table 2.1

Background 17

Table 2.1: IP Operations and their Relative MRs

IP Oper-

ations
MRs

Edge

Detection

MR1 : Counter clock-wise rotation at 90 degree

C(E(Im)) = E(C(Im))

MR2 : Reflection at the ordinate

Mx(E(Im)) = E(Mx(Im))

MR3 : Reflection at abscissa

My(E(Im)) = E(My(Im))

MR4 : Image Transpose

T (E(Im) = E(T (Im))

Erosion

and

Dilation

R1: Reflection at the ordinate

Reford(Output(I)) = Output(Reford(I)

R2: Reflection at abscissa

Refabs(Output(I)) = Output(Refabs(I))

R3: Duality

δs(I) = εs(I
c)

εs(I) = δs(I
c)

R4: Non Inverses

δs(εs(I)) ̸= I ̸= εs(δs(I))

R5: Image objects size changes

Sizeobj(δs(I)) ≥ Size(I)&Pixlist(I) ⊂ Pixlist(δs(I))

R6: Number of objects in an image changes

Numberobj(δs(I)) ≤ Numberobj(I)

R7: Commutative

δs(I) = I ⊕ S = S ⊕ I = δI(S)

εs(I) = εI(S)

R8: Translation Invariance

δs+x(I) = δs(I) + x

Background 18

Table 2.1: IP Operations and their Relative MRs

IP Oper-

ations
MRs

Image

Region

Growth

MR1:

(r, rf)|(r(I, I ′) = (I ′ = Reftsp))) ⇒

(rf(I), f(I)) = (RG(r) = Reftsp(RG(I)))

MR2:

{(r, rf)|(r(I, I ′) = (I ′ = I ∗ k, graythd′ = graythd ∗ k)) ⇒

(rf (f(I), f(I
′)) = (RG(I) = RG(I ′)))}

MR3:

{(r, rf)|(r(I, I ′) = (I ′Iseed1→seed2)) ⇒ (rf (f(I), f(I’))

= (RG (I’) = RG (I)))}(seed 2 ∈ RG(I))

MR4: {(r, rf)|(r(I, I ′) = (I ′Iseed1→seed2)) ⇒

(rf (f(I), f(I
′)) = (RG(I ′) ∩RG(I) = ϕ))}

(seed2 ∈ RG(I))

Euclidean

Distance

Transform

R1 : 90 degree Rotation (counter clock-wise)

C(D(A)) = D(C(A))

R2: Reflection at the Ordinate

MX(D(A)) = D(MX(A))

R3: Reflection at the Abscissa

My(D(A)) = D(My(A))

R4: Image Transpose

T (D(A)) = D(T (A))

R5: Image Enlargement

LetD(A) = (di,j)andD(E(A)) = (ei,j).then

3di,j = e3i+2,3j+2for each0 ≤ i ≤ nyand0 ≤ j ≤ nx

R6: Image Intersection

D(A ∩B) = min(D(A), D(B))

R7: Image Union

D(A ∪B) ≥ max(D(A), D(B))

Background 19

2.6.1 Generation of Source and Follow-up Test Cases Us-

ing MR

In IP, edge detection is a very meticulous process that serves as a chief tool for

the detection of edges in the image with variations in its luminosity or incoherence

[55]. The authors in [56] have presented four MRs for the edge detection operation.

We have used one of the MR (counter clock-wise rotation at 90 degree) presented

by Sim et al. and shows how source and follow-up test cases are generated using

an MR. The MR is given below:

MR : C(E(Im)) = E(C(Im))

In above MR,

C(.) is the counter clock-wise rotation at 90 degree.

E is the edge detection operation and also the SUT of the above given MR.

Im is the image as well as the source test case.

C(Im) is the follow-up test case of the above given MR.

For input image Im, the output of edge detection followed by counter clock-wise

rotation at 90 degree should be equal to the output of counter clock-wise rotation

at 90 degree followed by edge detection.

2.6.2 Evaluation of Metamorphic Relations

The evaluation of MR is performed by comparing the outputs of source and follow-

up test cases, generated after the execution of implementation under test. As each

MR consists of more than one input, so, multiple executions are required to check

the satisfaction of MR [57]. If the relation holds between the outputs of source

and follow-up test cases then it show a bug free SUT else the SUT is faulty [58].

However, if the MR satisfies all the test cases, then it is too weak to find the

violation [55].

Consider the same MR depicted in section 2.5.1 to show the evaluation process of

Background 20

MR. Figure 2.5 shows the original and follow-up test case generated for the MR

of edge detection i.e., counter clock-wise rotation at 90 degree.

Figure 2.5: (a) Source Test Case; (b) Follow-up Test Case .

Both the test cases (source and follow-up) are applied to SUT as inputs. Here,

edge detection is the SUT. So, after the execution of SUT, the outputs of both

the test cases are observed. Figure 2.6 shows the output results of source and

follow-up test cases.

Figure 2.6: (a) Output of source test case E(Im); (b) output of follow-up test
case E(C(Im)).

Afterwards, counter clock-wise rotation is applied to E(Im). Figure 2.7 shows the

output of both the test cases after balancing the MR.

Figure 2.7: (a) C(E(Im); (b) E(C(Im)).

Now, the outputs of both the test cases are compared for MR violation. If we

Background 21

obtain a full black image after pixel by pixel comparison, then it shows that the

outputs of both the test cases are similar and there is no MR violation. However, if

both the outputs of both the test cases are different then it shows an MR violation.

2.6.3 Fault Detection Rate of Metamorphic Relations

MT is dependent on the fault detection rate of the MR. The higher the fault de-

tection rate, the higher the fault detection capability. Let a program P have a set

of test cases T, and R be a metamorphic relation for P. Let t’ denote follow-up

test case of t w.r.t R, and P(t) denote the output of P on test case t. A test

case t is said to satisfy R if metamorphic relation R holds between P(t) and P(t’).

Metamorphic relation R is said to be satisfiable w.r.t. T if all test cases in T

satisfy R, otherwise R is said to be violative w.r.t. T. The fault detection rate

(FDR) of an MR with respect to a program P is the ratio of the size of the MR’s

set of violative source inputs to the size of the MR’s set of source inputs [59]. If

R is satisfiable for a given program P and a given test set T, then it means either

R has 0 or low fault detection rate or there is no bug in P. If R is violative for a

given program P and a given test set T, then it means R has high fault detection

rate.

In existing literature, the FDR of MRs is calculated using mutation testing. Mu-

tation testing is a software testing technique which is used to identify the faults in

a program by changing the program [60]. It is a white box testing method (code

based testing) where the aim is to inject artificial changes based on real faults to

assess the quality of test suites in order to reveal faults [61]. It is a process that

produces semantic program variants by changing the program’s syntax. These

program variants (faults) are called mutants. Each mutant contains a single fault.

When a test case can tell the difference between the behaviour of the original

program and the mutant program, we say the mutant has been killed [62]. The

process of mutation testing is given in Figure 2.8. According to the above dia-

gram, there are many steps that are involved in the mutation testing process but

the three main steps of mutation testing process are as follows: [63]:

Background 22

• Selection of mutation operators that is relevant to the faults.

• Generation of mutants

• Executing the original program and analysing each mutant produced using the

test cases will help distinguish between different mutants.

Figure 2.8: Process of Mutation Testing [63]

After the execution of test cases on the mutated programs, mutation score is

computed. If the behaviour of the modified program (mutated) differs from the

behaviour of the original program, then the mutant is killed; otherwise, it remains

alive [64]. The mutant program is equivalent if it behaves in the same way as the

original program [63]. The mutation score is calculated by excluding the equivalent

mutants. The formula to calculate the mutation score is given in Equation 2.1.

Mutation Score =
Number of killed mutants × 100

Total no. of mutants
(2.1)

In MT, using mutation testing, the source and follow-up test cases are given to the

original program for execution. The outputs of both the test cases are recorded

for comparison. The same two test cases are given to the mutated program for

execution. The outputs of these two test cases are also recorded for comparison.

The mutant is said to be alive if the outputs from the original and mutated pro-

grams satisfy their respective MRs; otherwise, the mutant is killed. Afterwards,

mutation score is calculated to check the FDR of each MR. If the mutation score

is near to 1 then it shows that the MR is strong else the MR is weak enough to

Background 23

find the violation.

The effectiveness of mutation testing technique is computed using the mutation

score formula. If the mutation score is low then it shows that the mutation testing

is not effective [65]. In mutation testing, mutation operator is the key component

[66]. The process of creating mutants involve injecting faults through a variety of

predefined rules called mutation operators that help to measure the adequacy of a

test suite detecting these faults [67]. For example, an arithmetic mutant operator

changes the arithmetic programming language operator from ‘+’ to ‘-‘, ‘*’, and ‘/’

etc., [62]. The basic five mutation operators proposed by [68] are given in Table

2.2.

Table 2.2: Basic Five Mutation Operators Proposed by Offutt et al. [64]

Operator Description Mutation Operators

ABS Absolute Value Insertion {(e,0),(e,abs(e)), (e,-abs(e))}

AOR
Arithmetic Operator
Replacement

{((a op b), a), ((a op b), b), (x, y)
— x, y ∈{+, -, ×, /, %} ∧ x 6= y}

LCR
Logical Connector
Replacement

{((a op b), a), ((a op b), b), ((a op b)
, false), ((a op b), true), (x, y) — x, y ∈
{&, —, ∧, &&, ——} ∧ x 6= y}

ROR
Relational Operator
Replacement

{((a op b), false), ((a op b), true),
(x, y) — x,y ∈{>, >=, <=, ==, !=}
∧ x 6= y}

UOI Unary Operator Insertion
{(cond, !cond), (v, -v), (v, v), (v, –v),
(v, v–), (v, ++v), (v, v++)}

2.7 Summary

In this chapter we have covered the background knowledge of the basic concepts

and terminologies used in our research. This chapter lists the concepts of soft-

ware testing, oracle problem, some of the challenges are also discussed to alleviate

the oracle problem, metamorphic testing, and evaluation of metamorphic testing.

Background 24

The concepts of mutation testing is also discussed. These concepts are useful to

understand the problem focused in this thesis.

Chapter 3

Literature Review

We have divided the papers selected for literature review into three categories.

The first category of papers covers the topics where MRs are evaluated to improve

the effectiveness of MT. The second category discusses the use of machine learn-

ing for output evaluation of images. The third and last category discusses the

enhancements of MT.

3.1 Evaluation of Metamorphic Relations

In this category, the authors have selected different IP operators such as edge

detection, image region growth, dilation and erosion, Euclidean distance transform

and used their properties as MRs. The effectiveness of these MRs are checked

through mutation testing.

3.1.1 Evaluating Effectiveness of MT on Edge Detection

Programs

The authors in [56] have studied Sobel edge detection program in C programming

language in order to examine the efficiency of MT. Here, MT is used to spot the

bugs in edge detection programs. The authors have presented four MRs for edge

25

Literature Review 26

detection. All the four MRs are general and can be applicable to most of the IP

operations. The metamorphic relations described in this paper are as follows:

MR1 : Counter clock-wise rotation at 90 degree

C(E(Im)) = E(C(Im))

Where,

C: Counter clock-wise rotation at 90 degree

E: Edge detection

Im: Input image

MR2 : Reflection at the ordinate

Mx(E(Im)) = E(Mx(Im))

Where,

Mx: Reflection at the ordinate

MR3 : Reflection at abscissa

My(E(Im)) = E(My(Im))

Where,

My: Reflection at abscissa

MR4 : Image Transpose

T (E(Im) = E(T (Im))

Where,

T: Image transpose

To conduct the experiments, collections of images are needed for the generation of

test inputs. Unlike model generated images, camera captured images (real images)

Literature Review 27

from published image libraries are selected randomly. MT is used to evaluate

the fault detection capability of MRs. Two types of faults are seeded into the

program of Sobel edge detection. First fault is the Single operator fault in which

a single fault is seeded at a time. In single operator faults two types of operators

are used i.e., logical operators (AND, OR, NOT) and the relational operators

(<,>,≤,≥,=, ̸=). The stride implementation fault constitutes the second error.

A failure in the stride implementation occurs when the image is processed up to

the visible horizontal width rather than the ”stride” width. Stride width is the

image data array’s real horizontal dimension. For efficiency, when an image is

stored, the horizontal dimension will be padded until the next multiple of four.

Fault detection effectiveness is measured against every MR using mutation testing.

In experiments, thirty one (31) faulty programs are used where 30 programs are

related to single operator fault and one is related to stride implementation fault. It

is observed that relation MR2 is the most effective MR in terms of fault detection

having a mutation score of 77% trailed by MR3 with a mutation score of 68%.

The fault detection ratio of MR1 and MR4 is 45% each. It is also observed that

stride implementation fault is the subtle fault and is detected only when certain

features of input images are used.

3.1.2 Addreessing Test Oracle Problem in IPAs

the authors in [27] have discussed the oracle problem in IPAs and used the proper-

ties of IP operations as MRS. The authors have studied some specific and general

properties of dilation and erosion operations. The effectiveness of each MR is an-

alyzed through mutation testing. The author’s approach is given below:

• Original test cases are selected from image libraries.

• After the test case selection, the properties of IP operations are used as MRs.

• Follow up test cases are generated through source test cases and MRs.

• The outputs of source and follow up test cases are calculated.

• Verification of MRs can be done after the output generation of source and follow

up test cases.

Literature Review 28

•The SUT is considered faulty if there is any violation of MR. The process of

testing can be repeated after debugging.

• If there is no violation of MR then the testing process can be tested against the

stopping criteria.

• The testing process is considered complete, if the stopping criteria can be suc-

cessfully met, otherwise, the testing objectives can be achieved by redefining the

MRs.

The authors have presented eight metamorphic relations; two are generic and the

remaining six are specific to the morphological operations (dilation and erosion).

The MRs are given below:

R1: Reflection at the ordinate

Reford(Output(I)) = Output(Reford(I)

Where,

I: Input image

Output: Image output

Reford: Reflection at the ordinate

R2: Reflection at the abscissa

Refabs(Output(I)) = Output(Refabs(I))

Where,

Refabs: Reflection at abscissa

R3: Duality

δs(I) = εs(I
c)εs(I) = δs(I

c)

Where,

δs: Dilation with structuring element s

εs: Erosion with structuring elemnent s

c: Image complement

Literature Review 29

R4: Non Inverses

δs(εs(I)) ̸= I ̸= εs(δs(I))

R5: Image objects size changes

Sizeobj(δs(I)) ≥ Size(I)&Pixlist(I) ⊂ Pixlist(δs(I))

Where,

Sizeobj: Size of object

Pixlist: List of pixels

R6: Number of objects in an image changes

Numberobj(δs(I)) ≤ Numberobj(I)

Where,

Numberobj: Number of objects

R7: Commutative

δs(I) = I ⊕ S = S ⊕ I = δI(S)εs(I) = εI(S)

Where,

⊕: Dilation operation

S: Structuring element

R8: Translation Invariance

δs+x(I) = δs(I) + x

Where,

x: 2D factor

To conduct the experiments, input images are selected randomly. Single operator

faults are seeded into the Mex C code deliberately. The authors have used only

Literature Review 30

relational operators and have generated 33 mutants against each MR. The number

of mutants that have been killed is indicated by the mutation score. The mutant

is said to be killed if an MR is able to detect the bug. It is observed that the mu-

tation score of R3 i.e. (duality) is highest i.e. 97%. The second-highest mutation

score is 73 percent for Relation R7 (commutative property). On the other hand,

R1 (reflection at the ordinate) has the lowest (15 percent) mutation score. One

interesting aspect is that, the mutants can be killed by only specific images while

other images failed to kill the mutants. Therefore, it is concluded that for bug

identification, instead of using general input images such as Lena, specific images

are needed.

3.1.3 MT of Image Region Growth Programs in IPAs

The authors in [46] have worked on image region growth program and applied MT

on image region growth program. Mutation testing is used to find the effectiveness

of MRs. The MRs presented in this paper are given below:

MRs of Geometric Properties:

MR1 :

(r, rf)|(r(I, I ′) = (I ′ = Reftsp))) ⇒

(rf(I), f(I)) = (RG(r) = Reftsp(RG(I)))

Where,

I: Input image

I’: Image transpose

(r, rf): Starting seed points

MRs of Numerical Property:

MR2 :

{(r, rf)|(r(I, I ′) = (I ′ = I ∗ k, graythd′ = graythd ∗ k)) ⇒

(rf (f(I), f(I
′)) = (RG(I) = RG(I ′)))}

Literature Review 31

Where,

graythd: threshold value

k: adjacent pixels

MRs of Algorithmic Properties

MR3 :

{(r, rf)|(r(I, I ′) = (I ′ = Iseed1→seed2)) ⇒

(rf (f(I), f(I
′)) = (RG(I ′) = RG(I)))}

(seed2 ∈ RG(I))

MR4 :

{(r, rf)|(r(I, I ′) = (I ′ = Iseed1→seed2)) ⇒

(rf (f(I), f(I
′)) = (RG(I ′) ∩RG(I) = ϕ))}

(seed2 ∈ RG(I))

In this paper, MT is applied to test the aerospace IP software. A total of five test

cases are generated using segmental symbolic evaluation method. The original

program is implemented in C language and is executed sequentially with three

mutant programs. The program is said to be faulty if MR violation can be seen

after the validation of output relations. The authors have drawn some conclusions

after performing the experiment: first, if a certain MR is used to test the mutant

program then the same MR and test case can be used to test the original program

as well. In this way the results satisfy the corresponding MR while the correct-

ness of the original program can also be confirmed. Second, The experiment also

confirms the effectiveness of the MT technology in resolving the oracle issue in

the region growth program. Finally, each metamorphic relation’s error detecting

ability is different from the other relation.

3.1.4 Models for Random Input Generation

The authors in [69] have proposed an idea to randomly generate the test data

(images) using two models i.e. random model and Boolean model. Euclidean

Literature Review 32

An IP operation called Euclidean distance transform turns a binary image into a

greyscale image. The implementation of Euclidean distance transform is used to

compare the results of both the models using mutation testing. To evaluate the

test results, the Euclidean distance transform also identifies the MRs, necessary

properties, and special values in addition to the random test data. The above

criteria’s are also compared through mutation testing. The MR proposed in this

paper is given below:

R1: 90 degree Rotation (counter clock-wise)

C(D(A)) = D(C(A))

Where,

A: Input image

C: Counter clockwise rotation at 90 degree

D: Euclidean distance transform

R2: Reflection at the Ordinate

MX(D(A)) = D(MX(A))

Where,

MX : Reflection at ordinate

R3 Reflection at Abscissa

My(D(A)) = D(My(A))

Where,

My: Reflection at abscissa

R4: Image Transpose

T (D(A)) = D(T (A))

Literature Review 33

Where,

T: Image transpose

R5: Image Enlargement

LetD(A) = (di,j)andD(E(A)) = (ei,j).then

3di,j = e3i+2,3j+2for each0 ≤ i ≤ nyand0 ≤ j ≤ nx

Where,

E: Image enlargement

R6: Image Intersection D(A ∩B) = min(D(A), D(B))

Where,

B: Input image

min: minimum distance

R7: Image Union

D(A ∪B) ≥ max(D(A), D(B))

Where,

Max: Maximum distance

The implementation is done in java whereas mujava tool is used for mutation

testing. The mutation operators used in mutation testing are: AOR and ROR,

variables or constants replacement. Instead of only comparing the test data gener-

ating models using mutation testing, the size of the image as well as the proportion

of the pixels in the images are also analyzed. The image sizes used in this paper

are: 10 x 10, 20 x 20, 30 x 30, 50 x 50 and 60 x 60. The percentage of black

pixels in the chosen Boolean model is 10%, 20%, 50%, 80% and 90% respectively.

Whereas additionally 99% in random model. The relations R1 to R7, along with

necessary properties is examined through random model with size of image 30 x

Literature Review 34

30 and 99% of black pixel proportion. The MRs in Boolean model is analyzed

with image size 30 x 30 and 90% black pixel proportion respectively. The study’s

findings indicate that the percentage of black pixels has the greatest impact on

the killing rate of mutants. It is only necessary to choose an image size that is

sufficiently large, or at least 30. The number of mutants killed increases with

the percentage of black pixels. Results show that the best metamorphic relations

are those that exchange coordinates, specifically R1 and R4. Only when used in

conjunction with the relation R1, S1 kills 1218 mutants. So, The most effective

combination for distance transforms appears to be R1 and S1.

3.1.5 Testing Imaging Software Automatically

In this paper [29], the authors have presented an approach that test the imaging

software automatically. The authors have proposed several models such as Boolean

model, grayscale Boolean model, random model and grayscale random model to

generate the test data randomly. Implementation of Euclidean distance transform,

labeling of connected components, and Lipschitz are used to evaluate the testing

approach. The implementation is done in java whereas mujava tool is used for

mutation testing. The mutation operators used in mutation testing are: AOR or

ROR operators, variables and constants replacement. MRs are used to evaluate

the test results. Mutation analysis is used to compare oracle solutions and test

data generation models. The authors have used the same metamorphic relations

as described in their previous work i.e. [69].

R1: 90 degree Rotation (counter clock-wise)

R(O(A)) = O(R(A))

Where,

A: Input image

R: Rotation at 90 degree

O: operators

Literature Review 35

R2: Reflection at the Ordinate

MX(O(A)) = O(MX(A))

MX : Reflection at ordinate

R3 Reflection at Abscissa

My(O(A)) = O(My(A))

My: Reflection at abscissa

R4: Image Transpose

(O(A))T = O(AT)

Where,

T: Image transpose The four MRs listed above are universal and apply to various

IP operators O(.). the MRs specific to Euclidean distance transform is given below:

R5: Image Enlargement

LetD(A) = (di, j)andD(E(A)) = (ei, j).Then

3di, j = e3i+ 2, 3j + 2foreach0 ≤ i < nyand0 ≤ j < nx

R6: Image Intersection

D(A ∩B) = min(D(A), D(B))

R7: Image Union

D(A ∪B) ≥ max(D(A), D(B))

These metamorphic relations are used for the generation of follow up test cases as

well for the evaluation of test results. The authors presume some indications about

Literature Review 36

the test generation models that both Boolean and random models are equally

effective to generate the test images. Since, it is easy and simple to generate

random binary images so they should be preferred. Furthermore, it has been

found that random binary images are more sensitive to the percentage of black

pixels than the Boolean model. In greyscale models, Boolean grayscale model is

preferable over random grayscale model. The MRs are used for the generation

of follow up test cases as well for the evaluation of test results. Relation R1 and

R4 is considered the best for killing maximum number of mutants. Relation R1

has killed 1211 mutants in EuclidDT, 459 in Connected C8, and 825 in Lipschitz

implementation. While combining the MRs, only in case of EuclidDT, combining

relation R1 and R8 gives better results than R1 otherwise all the other combined

relations are not effective than R1. S1 is more effective than R1 by killing 1218

mutants. All of the mutants are killed when R1 and S1 are combined.

3.1.6 Evaluation of Partial Oracles using MT

In this paper [42], the authors have presented an approach to assess the testing

strategies using mutation testing which determine the test inputs and evaluate

the partial oracles. In this approach, MRs are used as partial oracles for graphic

(imaging) software. Random image generation for imaging software is quite non

trivial task. Input values in imaging software are complex because of their different

sizes and the color depth. So, the authors have divided the assessment of testing

strategy into two parts. First, determine the input values carefully. For the

selection of suitable input values, random greyscale model is protracted for the

creation of color images. Second, evaluate the quality of partial oracle. The

complete process is given below:

• Create mutants using appropriate implementation under test (IUT)

• Choose any model for generating input values.

• Using the generated mutants and the original implementation as the perfect

oracle, determine the input domains that are the most effective. Apply the input

values that have been determined to be appropriate to all mutants, then check the

Literature Review 37

results using the partial oracle that will be assessed.

The authors have presented four MRs in this paper. Metamorphic relations used

in this paper are given below:

R1: Add a constant value to each component of the color values.

R2: Using a constant, multiply each component of the colour values.

R3: Take transpose of each color component.

R4: Image enlargement with zero padding.

In this paper, authors have used two image sizes i.e., 128 x 10 and 10 x 128 for input

data. The implementation should be done in object oriented language preferably

in java in order to apply class based mutants. This implementation generates

463 conventional/traditional mutants and 120 class-based mutants. It is observed

from the results that class-based mutants should be preferred over traditional

mutants because they represent structural faults. It is preferable to use object

oriented mutants along with traditional ones in order to improve the reliability of

testing strategies while using partial oracles. Furthermore, for making the best

testing strategy, earlier determination of input values are also very important.

Results show that the effectiveness of MRs is difefrent with regard to the employed

mutants. For traditional mutants, the relation R2 is rather ineffective, but it works

fine for class-based mutants. However, the relation R3 kills all traditional mutants

while being obviously insufficient for class-based mutants.

3.1.7 Evaluation of Partial Oracles

An approach in this paper [70], uses a partial oracle to automatically test a

jpeg2000 encoder. Jepeg2000 encoder is used as an example for a system that

consists of several integrated components. The paper focuses on the possible

improvements regarding efficiency and effectiveness of partial oracles. Mutation

testing is used to evaluate the effectiveness of partial oracle. A mutant must

meet three requirements in order to be killed. (1) The implemented code which

is mutated should be grasped and executed (2) the state of program should be

Literature Review 38

changed by the mutation and (3) the output must show the propagated change.

The workflow of the system after taking a colored image (uncompressed) as its

input (through random model) is given below:

• RGB (red, green, blue) are the three colour components that make up the colour

image.

• The color values of color components are shifted.

• Red, green and blue color components are transformed into YCbCr components.

• Two dimensional wavelet transformations are used to decompose the color com-

ponents.

In this paper, partial oracle is used to avoid the oracle problem. The oracles which

are chosen for this system are given below:

R1: Add a constant value to each component of the color values.

R2: Using a constant, multiply each component of the colour values.

R3: Take transpose of each color component.

R4: Image enlargement with zero padding.

R5: reverse the color values of the image

In this paper, the authors have used partial oracle to investigate the efficiency of

a complete system as well as the fault revealing capability in each transformation.

It is observed that traditional mutants throw more exceptions (due to illegal array

indexes) at run time than the mutants generated by class. The approximate ratio

is 40%: 20%. Among all the MRs, the relation R3 is regarded as the best with a 9

mutation score (in case of traditional mutants). The above mentioned oracle is not

good or appropriate for killing class-based mutants with a mutation score of about

58%. Hence, combining the partial oracles will produce better results. Combining

partial oracle gives effective results for unit testing as well as for integration testing.

3.1.8 Framework for Evaluating MT

The authors in this paper [71] have proposed a framework to evaluate the effec-

tiveness of MT. They have developed an iterative method to check the adequacy

Literature Review 39

of MRs which is controlled by MT adequacy evaluation. The effectiveness of MT

is checked through code coverage criterion (function coverage, branch coverage,

and definition-usage coverage), mutation analysis and testing MRs using muta-

tion tests. The proposed framework is explained through an IP program that

is used to create a 3D model of a biological cell. The effectiveness of proposed

scheme is demonstrated through a case study that tests an intricate Monte Carlo

program. The MRs used in this research is given below:

MR1 Inclusive: Each cluster of mitochondria contains one or more mitochondria.

The program draws an outline in each section of mitochondrial cluster and then

constructs a three-dimensional biological cell by joining the lines of similar mi-

tochondrial cluster in the neighboring sections. By adding a new mitochondrial

cluster in an original image section, the number of clusters should be increased by

1. Therefore, an increase in the volume of mitochondria is expected.

MR2 Exclusive: In the second MR, remove a cluster of mitochondria from the

original image section. As discussed earlier, multiple sections contain the same

cluster therefore; the cluster should be removed from all the sections of the image.

Now the processed or reconstructed image does not contain the removed cluster.

Hence, a 1 cluster decreased should be seen. Because of the above decrease in the

cluster, the expected volume should also be decreased.

MR3 Multiplicative: The same cluster of mitochondria is appeared in adjacent

image section; therefore, every section of the image is increased by the same per-

centage. The mitochondrial clusters should remain same in the reconstructed

image but the volume may be increased.

MR4 Additive: Add a mitochondrial cluster into an image section. With this

addition, the original cluster of mitochondria extends in multiple image sections.

The original cluster spreads alongside the artificial one because it is connected to

the new cluster. The number of clusters in in the processed image remains con-

stant but the volume of mitochondria may increase.

MR5 Permutative: Change the positions of two clusters simultaneously in all the

sections of the image. In the reconstructed image, the cluster’s amount remains

constant whereas the volume of the cluster also remains constant.

Literature Review 40

MR6 Invertive: Select a cluster of mitochondria that exists in multiple adjacent

sections. Then, rotate all the images to 180 degree altogether. In the reconstructed

image, the cluster’s amount remains constant whereas the volume of the cluster

also remains constant.

MR7 Lengths: In the same image section, mitochondria with a small cluster may

appear, but a larger mitochondrial cluster may appear in 1 or more neighboring

sections of the image. By adding a new mitochondria in a single image section

then the processed image should contain the newly added mitochondria and it is

anticipated that the mitochondria’s volume will increase. On the other hand, it

is significant to remember that if the same mitochondrion is added to multiple

image sections then the reconstructed image is processed on the basis of multiple

sections of the image.

MR8 Shapes: The cluster gains additional mitochondria with various shapes. The

processed image should contain these new constructed mitochondria’s as expected.

MR9 Locations: Add new mitochondria in different locations i.e. near nuclear or

cell membrane. The processed image should recognize these new constructed mi-

tochondria’s as expected.

Test adequacy evaluation is required in MT in order to produce suitable tests for

evaluation purposes. If sufficient test cases are not generated through existing

MRs then there is a need to develop more MRs, so that new test cases can be

developed. The steps involved in test adequacy evaluation are given below:

• Generation of initial tests and MRs: A set of MRs are identified based on the

knowledge of domain experts. Source test cases are generated using test generation

technique such as random generation, category based, combinatorial technique etc.

source test cases can also be generated for each MR accordingly.

• Evaluation: When the SUT passes all the tests, then the quality of MR is

checked by the tests created for mutations of MRs. Mutation testing and the

coverage criterion are used to verify the test’s effectiveness. A test should kill or

weakly kill a mutant.

• MRs Refinement: If the test case does not fulfill the coverage criterion against

the expected threshold value, it means new MRs is required. The MR is very weak

Literature Review 41

if it can satisfy a mutation test. Therefore, MRs should be refined, or new MRs

should be generated that are sufficiently strong to find the violation.

The proposed framework is validated by testing scientific software system i.e. an

IP program implemented in Matlab and a Monte Carlo simulation program . An

iterative test adequacy evaluation is done for the refinement of test cases and MRs.

The outcomes of MT on the Monte Carlo program show that test coverage results

can be used to evaluate the calibre of tests and MRs, as well as a guide for choos-

ing suitable MRs and developing tests. If more complex test coverage criteria,

like state transition coverage or path coverage, are taken into consideration, the

results of the coverage analysis may be more useful in evaluating the quality of

MRs and their tests. It is observed that the five MRs selected for the Monte Carlo

program testing are found to be effective after being tested with mutation tests.

Additionally, it has been found that the suggested approach is helpful for testing

other scientific software. We have summarized some of the important parameters

used in the papers. The summary of this section is given in Table 3.2

Table 3.1: Summary of Section 3.1

Ref

Papers

SUT
Image

Generation

Method

Testing

Method

Mutation

operators

Prog.

Lang

2013 [56] Sobel

Edge

Detection

Program

Randomly

selected

Mutation

Testing

LOR,

ROR

C

2015 [27] Dilation,

Erosion

Program

Randomly

Selected

Mutation

Testing

ROR Mex

C

Literature Review 42

Table 3.1: Summary of Section 3.1

Ref

Papers

SUT
Image

Generation

Method

Testing

Method

Mutation

operators

Prog.

Lang

2018 [46] Image

Region

Growth

program

Segmental

symbolic

evaluation

method

Mutation

Testing

Milu tool C

2006 [69] Euclidean

distance

transform

Random binary

model & Boolean

model

Mutation

Testing

AOR, ROR,

replacement

of variables,

constants

Java

2007 [29] Euclidean

distance

transform,

lipschitz

Random model,

Boolean model,

Mutation

Testing

AOR, ROR,

replacement

of variables,

constants

Java

2009 [42] Program

with

image

processing

application

Random

binary

model

Mutation

Testing

Traditional

and class

based

operators

Java

2011 [70] Program

with

image

processing

application

Random

binary

model

Mutation

Testing

Traditional

and class

based

operators

Java

Literature Review 43

Table 3.2: Summary of Section 3.1

Ref

Papers

SUT
Image

Generation

Method

Testing

Method

Mutation

operators

Prog.

Lang

2017 [56]
Monte

Carlo

Program,

3D

structure

reconstruct

program

Random,

Category

based

Selection

Mutation

Testing,

Structural

Testing

AOR, COR,

Constant

addition,

CRP,

SDL

Mtlab

3.2 Metamorphic Testing and Machine Learning

In this category, the authors have automated the test oracle using a classifier in

order to avoid the manual effort. For this purpose, several correct and incorrect

images are required for training and then classify the correct and incorrect output

images correctly. In some cases the correct output images are given to MT for

further checking and in some cases the results of classifiers are compared with MT

and statistical test oracle in terms of classification error.

3.2.1 Mechanism to Automate Test Oracle using SVM

In this paper [72], the authors have proposed a framework that automates the

test oracle by using support vector machine (SVM). Some correct and incorrect

output images are required along with their labels for training the model that is

responsible for the classification of valid and invalid output images. The steps

involved in this scheme are given below:

• Training Data Availability: SVM training requires output images and their

Literature Review 44

associated labels. Here, ground truth (GT) images are used to train support

vector machine.

• Training: The main step of this scheme is to train data that involves data pre-

processing to make it a valid input for the machine learning algorithms. In IPAs,

different types of features are used to interpret the images i.e. Hough features,

binary features, statistical features, wavelet-based features, etc. Careful selection

of features is required in order to represent a certain class.

• Testing: Using some of the feature extraction technique as discussed in training

phase, features are extracted from the output images. The class for this feature

vector is determined that either the image is passed or failed. A comparative

study is made by the authors to compare their scheme with the MT oracle and

the statistical oracle (contains parameters like mean and standard deviation of the

images) for morphological operators such as dilation and erosion. 35 versions of

dilation program are created in C language by seeding the errors intentionally one

at a time.

For the evaluation purpose, the output images are generated from the generated

versions of image dilation program. It is concluded that some of the output images

give correct results while the other versions give incorrect results. The output

images are categorized into four categories i.e. valid output image, little variation

from valid output images, no change with respect to the input image and fully

invalid image. Two labels are used for the output images i.e. passed and failed.

50% of the images are used to train SVM. Different features (wavelet features,

binary features, hough features, statistical features) of dilated images are used to

analyze their effectiveness.

Experimental result shows that the wavelet-based features are the best with 2.69%

classification error. As discussed earlier that the results of proposed scheme are

compared with metamorphic test oracle and statistical oracle. 17% classification

error is observed for statistical oracle. MR5 presented in [27] is used in this paper.

This MR is specific to image dilation operator and produced 11% classification

error. Therefore, it is concluded that SVM produced better results in term of

lowest classification error than statistical oracle as well as metamorphic test oracle.

Literature Review 45

3.2.2 Framework of Automatic Testing of IPAs

In this paper [30], the authors have proposed an automatic testing process for IPAs.

The framework consists of: integration of test image generation, execution of test

cases, measures the effectiveness of test cases, stopping criteria and evaluation of

test output. The authors have checked their approach through experiments and

come to the conclusion that the proposed framework helps to reduce the manual

work and gives effective output results through automatic input generation. The

steps of proposed framework are given below:

(1) At the start, numbers of test cases are generated using symbolic evaluation

method. (2) Source code is analyzed statically to specify the interested code parts

such as branches, functions, loops, conditions etc. The interested code parts of

IUT are appended by introducing analysis code to generate instrumented code

version IUT’. When IUT’ is executed, the analysis code identifies the executed

code areas during a test run. During this process, if any unexpected program

behavior is observed then it is considered as bug. (3) The correctness of output

images are evaluated using MT and machine learning. The applications where

outputs of different algorithms are available then we use SVM based classifier else

test oracle is generated by MT.

The above three steps are implemented using Matlab. A mechanism is proposed

where binary classifier is generated using SVM. Output images along with their

labels are required to train the classifier. Here, ground truth (GT) images are used

for training purpose. Features are extracted from images produced by IUT and

then sent to the classifier. The classifier refers the feature vector to its closest class.

Accuracy of classifier is checked through its classification error. In MT based test

oracle, general property of image smoothing algorithms is used as MR to evaluate

the correctness of output images. Smoothing property states that if the images

contains noise then after applying the smoothing operation the variance in the

output images decreases. The variance of a given image is given below:

σ =
∑

(Irc−I
′)2

(r∗c)−1

Literature Review 46

Where, I
′
is the mean of the pixel values and Irc is the value of current pixel.

To demonstrate the machine learning based test oracle, the authors have used

implementation of twenty different edge detection algorithms. Results show that

canny edge detection produces accurate result as compare to other edge detection

algorithms. The framework integrates a mechanism to evaluate the correctness of

output images in the absence of test oracle.

3.2.3 Identification of Failures in Mesh Simplification Pro-

grams using MT

In this paper [73], the authors have suggested a testing method that combines the

pattern classification technique and MT. Mesh simplification is an algorithm that

transforms a polygon into another with fewer faces, edges and vertices. During

testing, the output of graphical images faces test oracle problem. C4.5 classifier

is used to label the test cases as passed and failed. The outputs from the passed

test also include failures because the classifier is statistical in nature. If the input

data cannot reveal failures by statistical classifier then the test cases along with

their test outputs can be pipelined to an analytical MT component for additional

testing. Three MRs that are proposed are: (1) After each iteration, verification

is done to check the size of bounding box. (2) In the input file (.PLY), change

(reverse) the order of polygon vertexes. (3) The rendered image can be changed

by changing the input values.

Four algorithms of mesh simplification (implemented in Java) are used as subject

program. The trained images for the passed class are obtained by executing a

set of 44 3D polygonal models in each reference system. A subset is selected

randomly as source test cases. Similarly, the trained images for the failed class

are obtained by generating the mutants from the reference system (total 3,060

mutants are generated).The authors have generated follow-up test cases and then

check to see if failures are revealed using the implementation to exercise MT. The

implementation results show that 29.4% failure causing test cases of Melax and

34.1% for Quadric are detected. The summary of section 3.2 is given in Table 3.3

Literature Review 47

Table 3.3: Summary of Section 3.2

Ref
Papers

SUT
Image
Generation
Method

Testing
Method

Programing
Language

Classifier

2015 [72] Dilation
Program

Randomly
selected

Mutation
Testing

C SVM

2016 [30] Dilation &
Erosion

Program

Segmental
symbolic
evaluation
method

Mutation
Testing

Matlab SVM

2007 [73] Mesh &
simplificati-
on Program
of image
rendering

Randomly
selected

Mutation
Testing

Java C4.5

3.3 Enhancements of Metamorphic Testing

In this category, the authors have used mutation testing as well as structural test-

ing (branch coverage, path coverage, def-use coverage) to make MT more effective.

3.3.1 Self Checked MT Approach

A method of self-checked testing has been suggested [74] for the detection of subtle

faults in the implementation. To guarantee the quality of testing, the suggested

strategy incorporates structural testing into MT. By evaluating a cellular IP pro-

gram, the efficacy of MT is investigated. The program is implemented in Fortran

90 language which is later verified by test coverage criterion. The steps involved

in this approach are given below:

Defining MRs:

The first step is to identify the MRs and then MT is applied on the SUT for the

verification of the relations. The MRs used in this paper are given below:

• R1: Add mitochondria to the processed image. By adding new mitochondria,

Literature Review 48

the expected output result shows new mitochondria along with the original one.

So, it is anticipated that the mitochondria’s volume will increase.

• R2: Add mitochondria in adjacent images. By adding new mitochondria in ad-

jacent images, the expected output result shows new mitochondria along with the

original one. So, it is anticipated that the mitochondria’s volume will increase.

• R3: Different shapes of mitochondria are added into the images.The mitochon-

drial structure should be constructed as anticipated without altering the structure

of the original mitochondria by the addition of new mitochondria with various

shapes. So, it is anticipated that the mitochondria’s volume will increase.

• R4: Add mitochondria to different locations of the images. By adding new

mitochondria in different locations of the images, it is anticipated that the mito-

chondria’s volume will increase.

• R5: Remove some of the mitochondria from the images. After removing the

mitochondria from the processed image, those mitochondria will not appear in the

output. So, it is anticipated that the mitochondria’s volume will decrease.

Generate Data for MT:

After the identification of MRs, source test cases are generated. Initially, 36 im-

ages of B16 cell are chosen as test inputs.

Selection of Coverage Criteria:

Statement coverage, function coverage, and definition-use coverage criteria is used

to check the coverage of the code.

Code Instrumentation:

A code line is instrumented manually in SUT to test the coverage criterion. For

example, each statement is followed by a checking statement to check the state-

ment coverage. A checking statement is added right before the function’s first

statement to verify the function coverage. In def-use coverage, the statement of

definition is followed by a checking statement, and another checking statement is

added after each paired use statement.

An un-testable IP program is used to recreate or rebuild a 3D structure of a biolog-

ical cell. The processing of each image results in the identification of the nucleus,

cytoplasm, and mitochondria. The volume of a cell, its nucleus, cytoplasm, and

Literature Review 49

mitochondria is calculated using a 3D structure file. The reconstructed image is

compared with the original image through pattern recognition component. The

three-coverage criterion discussed earlier, are used to check the coverage of the

code. 100% coverage criterion is observed against each test input. Furthermore,

the effectiveness of proposed approach is validated by adding mutants into the

source code. It has been noted that the coverage information kills the mutants

as soon as the coverage time of each criterion is taken into account for each test

input.

3.3.2 Application of MT for Testing Scientific Software

In this ppaer [75], the authors have presented a method for MR development and

refinement. They have used discrete dipole approximation program (ADDA) pro-

gram implemented in Fortran and C++ to assess MT’s effectiveness. Due to the

absence of test oracle, testing of ADDA is a tedious task. Testing of ADDA can be

done using some special inputs like sphere scatterer. As output, ADDA contains

thousands of datum items. On the inputs and outputs of ADDA, MR identifica-

tion is very challenging. So, the images that are produced from the ADDA output

are used as MRs.

MR1: The first MR describes the relation between the sphere size and the tex-

tual pattern of an image (diffraction image) that is generated from the output of

ADDA. Image pattern changes by changing the sphere size. Similarly, the lines of

the pattern become slimmer whenever the sphere’s size increases.

MR2: As discussed earlier, there is a relation between sphere size and the diffrac-

tion image pattern. Therefore, if the shape of the scatterer is regular i.e. sphere

or ellipsoid, then an association occur between the shape and the pattern. On the

other hand, if the shape of the scatterer is irregular then the pattern of diffraction

image is affected by changing the shape of the scatterer. The relationship between

the sphere’s shape and the textural pattern of the diffraction image is still un-

known.

MR3: The third MR explains how the scatterer’s orientation and the diffraction

Literature Review 50

image’s textural pattern relate to one another. For a sphere (at any orientation),

the pattern of diffraction image should remain same. According to this MR, when

changing the orientation, the diffraction image pattern should also change.

MR4: This MR states the association between the scatter’s refractive index and

the images pattern. The MR describes the relationship between the scatterer’s

refractive index and the textural pattern of the diffraction image. The values

of refractive index have diverse patterns. The relation exists between the ho-

mogeneous and heterogeneous scatterer. For all diploes, the scatterer which is

homogeneous has same refractive index while the heterogeneous scatterer has not

similar values for refractive index.

MR5: The final MR discusses the relationship between the diffraction image pat-

tern and the irregular morphology of heterogeneous scatterers. By changing the

shape, orientation and size of cell, the image textual pattern also changes.

In this paper, statement coverage is used to check the effectiveness of tests. The

effectiveness of MT is validated through mutation testing. The authors have ap-

plied mutation testing to only one module of ADDA program. The mutants are

manually instrumented into the program rather than creating mutants with a tool.

Total 20 mutants are instrumented in ADDA program. Out of 20, 17 mutants are

killed due to exception handling or by crashing a program. The remaining 3 mu-

tants are killed through MRs. It is observed that the MRs defined in this program

is weak because the test output relation is unknown. Therefore, more MRs is

required to adequately test the ADDA program. the summary of this section is

given in Table 3.4.

3.4 Research Gaps

After the review of literature, we have identified the following gaps:

1. In existing literature, numerous methods have been used to generate the test

cases such as random binary model, grayscale random model, Boolean model,

and grayscale Boolean model. The method of random generation of test cases

Literature Review 51

Table 3.4: Summary of Section 3.3

Ref
Papers

SUT
Image
Generation
Method

Testing
Method

Mutation
Operators

Programing
language

2010 [74] Cellular
IP
program

Randomly
selected

Mutation
Testing &
Structural
testing

AOR, SDL Fortran 90

2016 [75] Discrete
Diploe
Approxima-
tion
Program

Random
selected

Mutation
Testing &
Structural
testing

ABS, ROR Fortran &
C++

is widely used because of its perceived un-biased nature. However, gener-

ating the random test data could lead to unfair distribution of parametric

values. Also, the sample population is not comprehensive. Therefore, sample

selected is also not true representation of sample population. In literature,

the image libraries, from where the test cases are selected, have images with

same attribute values. For example, in one library all the images are of same

resolution i.e., 96dpi. This unfair distribution, being non-comprehensive,

may provide inaccurate results of the testing process. So, there should be

a systematic way to generate the test cases to ensure completeness of all

properties with equal chances to be selected in the sample for evaluation.

2. In existing techniques, MR evaluation is done through mutation testing using

mutation operators. This evaluation is not comprehensive as only a few

selected mutation operators are used to measure the FDR of MRs. The

resultant mutants generated through these fewer mutation operators are also

quite low which makes the comprehensive testing impossible.

3. In existing literature, no work has been done to gauge the effectiveness of

mutation operators to find out which operator is more valuable to generate

maximum number of mutants and through which operator maximum number

of mutants can be killed.

Literature Review 52

4. In literature, in the field of IP, not enough MRs have been proposed for

comprehensive testing. We need more relevant MRs for further studies.

3.5 Summary

This chapter discusses the evaluation methods of MRs to improve the effectiveness

of MT. The MRs related to IP operations are discussed in details. In the evalua-

tion methods, generally, the source test cases are generated randomly and for the

evaluation of MRs, mutation testing is used. Moreover, integration of MT with

machine learning algorithms are also discussed where machine learning is used for

the output evaluation of images.

Chapter 4

A Framework for Evaluation of

Metamorphic Relations

In this chapter, we have discussed our proposed framework to evaluate the MRs

of IP operations such as edge detection an dilation and erosion operations. In pro-

posed framework, source test cases are selected through black box testing (strong

equivalence class testing) and white box testing (code coverage) techniques. For

the evaluation of MRs, mutation testing is used by seeding mutants into the pro-

gram. The FDR of MRs is calculated through mutation score. In the end, new

MRs are constructed by composing the MRs.

4.1 Proposed Framework for MR Evaluation

The steps of proposed framework are given below whereas the flowchart of proposed

framework is shown in Figure 4.1.

1. Generation of Source Test cases

2. Test Case Adequacy through Equivalence Class Testing and Code Coverage

3. Generation of Follow-up Test Cases

53

A Framework for Evaluation of MRs 54

4. Evaluation of Metamorphic Relations

5. Composition of Metamorphic Relations

Figure 4.1: Proposed Framework for MR Evaluation.

4.1.1 Generation of Source Test Cases

Software test cases are defined as the set of circumstances under which a tester

must test and determine whether the SUT accurately produced the expected re-

sult [76]. In the domain of software testing, a set of test cases are determined

according to some testing techniques such as white box testing, black box testing,

error based testing etc., [7]. The software is then tested using these test cases to

find out the internal structure and function of the system along with some of its

common faults [77]. For example, let us suppose that we have a program p(x)

having a function f(x) on domain d. T shows the set of input values or test cases;

T = (t1, t2, ,, tn) ⊂ d. The program p can be tested by running p on T. The

output values of the program p(t1), p(t2), p(t3)...p(tn) are then verified against the

expected results f(t1), f(t2), f(t3). . . , f(tn). If p(ti) = f(ti) then it shows that test

case t1 is successful test case but if p(ti) ̸= f(ti) then it means that t1 is a failure

causing test case. The mechanism that decides that whether p(ti) = f(ti) for i=

1, 2, 3,. . . , n is called the oracle [8].

A Framework for Evaluation of MRs 55

In MT, after the identification of MRs, the next step is to generate the test cases

known as source test cases. In literature, the source test cases are generated

using some traditional test case generation techniques such as random test gen-

eration through random model or Boolean model, structural or program based

test generation techniques, behavioral or specification based, symbolic evaluation

method, combinatorial techniques and fault based test generation techniques etc.,

[69], [29], [42] or through some tool i.e., EvoSuite (it generates source test cases

automatically through coverage criterion) [6].

4.1.2 Test Case Adequacy through Equivalence Class Test-

ing and Code Coverage

After the generation of source test cases, the next step is to check the adequacy of

test cases. Adequacy criterion describes the selection of test cases and determines

that whether the test suite is adequate during the testing process or not [78]. Ad-

equacy of test cases can be checked either through black box testing techniques

(boundary value analysis, equivalence partitioning, state transition testing etc,.)

or through white box testing techniques (branch testing, control flow testing, loop

testing, data flow testing etc,.) [79].

In this research, first the test cases are generated through equivalence class test-

ing. In equivalence class testing, the program’s input and output domains are

partitioned into finite number of classes in such a way that all the cases in each

partition follow the same functionality [80]. We have divided our dataset into five

distinct classes based on the properties of images such as horizontal dimension,

vertical dimension, bit depth, resolution, and type of image (T1 weighted image,

T2 weighted image, and flair image).

Further, the test cases selected through equivalence class testing is checked through

program coverage criterion (branch coverage, statement coverage). Code coverage

shows the completeness of testing and can be used to evaluate the effectiveness

of the test [81]. If the test suite does not fulfill the coverage criterion against the

expected threshold value (suppose the expected threshold value is to achieve 100

A Framework for Evaluation of MRs 56

percent coverage criterion), then it means new test cases are required. The reason

of creating new test cases is to improve the coverage criteria, not achieved through

previous test cases.

We have selected 95 test cases through equivalence class testing. Afterwards, the

adequacy of source test cases is checked through program coverage (statement

coverage and branch coverage). If the test cases (accumulatively) do not achieve

100% coverage then we need more test cases to achieve 100% branch coverage.

4.1.3 Generation of Follow-up Test Cases

The purpose of MT is to extract valuable information from the successful test

cases that do not reveal faults [19]. MT introduced the generation of new test

cases (aka follow-up test cases) from the existing test cases (aka source test cases)

using MRs [82]. The follow-up test cases are generated by applying transformation

to the source test cases [83]. Suppose we have a program P that does not have a

test oracle. Let test suite of source test cases (STC) and source test cases (stc)

are defined as: STC = {stc1, stc2, stc3.stcn} with n stc. A follow-up test case

(ftc) is generated by applying transformation against each source test case using

an MR. Hence, the test suite of follow-up test cases after transforming the source

test cases using MR be FTCMR = {ftc1, ftc2, ftc3.ftcn} [84]. The program P

is executed with the source test cases {stc1, stc2, stc3.stcn} and follow-up test

cases {ftc1, ftc2, ftc3.ftcn}. The outputs of source and follow-up test cases are

recorded. The outputs of both the source and follow-up test cases are compared

to check the satisfaction of relevant MR. If MR is violated then it shows that the

program P is faulty otherwise P passes the test [36].

As discussed earlier, we have used the MRs of edge detection and morphological

image operation. The follow-up test cases of edge detection are discussed in [85].

Here, we will discuss the follow-up test cases generated through source test cases

and MRs. The follow-up test cases of proposed MRs are given below:

MR1:C(δs(Im)) = δs(C(Im))

MR2:C(εs(Im)) = εs(C(Im))

A Framework for Evaluation of MRs 57

In MR1 and MR2, C(Im) is the follow-up test case.

MR3:T (δs(Im)) = δs(T (Im))

MR4:T (εs(Im)) = εs(T (Im))

In MR3 and MR4, T(Im) is the follow-up test case.

MR5: (A⊕B)⊕ C = (A⊕ C)⊕B

Where (A⊕ C) is the follow-up test case.

MR6:Trans(εs(Im)) = εs(Trans(Im))

Where, Trans(Im) is the follow-up test case of the above MR.

4.1.4 Evaluation of Metamorphic Relations

Evaluation of MRs is an indication of their fault detection capabilities. The greater

the fault detection capabilities, the greater the abilities to detect more faults from

a program. We have checked the fault detection capability of these MRs through

mutation testing. In mutation testing, Mutation operators play an important role

to generate the mutants. Previously, very few mutation operators are used which

even did not highlight the effectiveness of these operators. We have used nine

mutation operators to check that which operator is most effective to generate the

maximum number of mutants and through which operator maximum number of

mutants can be killed. Our work is relevant to [56] and [27] so we have compared

the mutation operators used in our proposed framework with these two techniques.

The mutation operators used in the existing techniques ([56] , [27]) and in pro-

posed framework are given in Table 4.1.

If the output of source and follow-up test cases satisfies the relation then muta-

tion testing can be performed by seeding the faults into the original program to

check for MR violation. The process to check the original and mutated program

A Framework for Evaluation of MRs 58

Table 4.1: Mutation Operators Used in Existing Techniques and in Proposed
Framework

Mutation Operators in
Existing Techniques

Mutation Operators in
Proposed Framework

ROR-
Relational operator
replacement
LOR-
Logical operator
replacement

AOD- Unary arithmetic operator deletion
AOR- Arithmetic operation replacement
LOR- Logical operator replacement
ROR- Relational operator replacement
OIL- One iteration loop
RIL- Reverse iteration loop
SIR- Slice index remove
SDL- Statement deletion
ZIL – Zero iteration loop

is explained through an example. Suppose we have two test cases t1 (source test

case) and t′1 (follow-up test case) that have to be tested under the original program

p. The outputs of test t1 and t′1 can be recorded as r1 and r′1. Afterwards, the

same test cases t1 and t′1 can be executed on the modified program p
′
with mutant

M. The outputs should be saved as r2 and r′2. The mutant ’M’ is not killed if

both (r1, r
′
1) and (r2, r

′
2) satisfy their related MR [46]. Otherwise the mutant is

killed. After mutation testing, mutation score is to be calculated. Mutation score

indicates the fault detection capability of each MR. In existing literature, i.e.,

[56] , [27], [71], [46], all the MRs are evaluated by seeding faults manually in the

code or through a tool that calculates the mutation score automatically through

traditional mutation testing approach. We have seeded the faults manually and

checked the relation manually on both the programs (original and mutated) for

the calculation of mutation score.

Mutation score indicates the fault detection capability (FDC) of MR. For the cal-

culation of mutation score; we have examined the mutants manually and have

removed all the equivalent mutants. The formula of fault detection rate is given

in 4.1

FDR =
Number of killed mutants × 100

Total no. of mutants - No. of equivalent mutants
(4.1)

According to the formula, if the mutation score is 1 then it shows that MR is

strong (high fault detection rate) whereas a 0 score would show MR is weak (low

A Framework for Evaluation of MRs 59

fault detection rate). We can also say that if the mutation score is near to 0, the

MR is weak enough to find the violation.

4.1.5 Composition of Metamorphic Relations

If the MR satisfies the mutation tests for all the cases, then it shows that the MR

is too weak to find the violation. Therefore, MRs should be refined or new MRs

should be generated that are strong enough to find the violations. Composition

of metamorphic relation is an idea proposed in [28] for the construction of MRs.

The concept is to merge multiple MRs into a single MR. The composited relation

contains all the properties of the original MR. Suppose, we have two MRs: MR1

and MR2. The relation MR2 is compositable to MR1 if and only if for any source

test case of MR1, its corresponding follow up test case is always used as a source

test case for MR2. This process of composition reduces the number of test cases

(cost effective) and embeds several properties into a single MR [86]. After the

composition of metamorphic relations, new source test cases and follow up test

cases are generated to check the strength of MR through metamorphic testing

process. According to [59], fault detection rate of MR12 is not smaller than MR1

or MR2, and MR12 is very likely to be at least equal to the maximum of MR1 and

MR2. Now we consider the two MRs of edge detection to see how composition of

two MRs take place.

MR1 : C(E(Im)) = E(C(Im))

MR2 : T (E(Im)) = E(T (Im))

Where,

Im: Source test case

C: Counter clock-wise rotation at 90 degree

T: Transposition

E: Edge detection Program

After composing the above two MRs, the resultant composed MR is given below:

A Framework for Evaluation of MRs 60

MR12 : E(T (C(Im))) = T (E(C(Im)))

We have composed the four MRs of edge detection proposed in [56]. First, we have

composed two MRs and make 12 new MRs. Then we have composed three MRs

and make 24 new MRs and in the end we have composed four MRs and make 24

new MRs. The detail is given in Chapter 6, section 6.5.

Now we discuss the pros of using our framework. In literature, mostly, the source

test cases are generated randomly and there was no systematic way to generate

the test cases.. In our framework, we have proposed a systematic way to generate

the source test cases using equivalence class partitioning and code coverage. We

have constructed new MRs by using composition. The composed MRs contain the

properties of component MRs.

4.2 Summary

This chapter discusses our proposed framework for the evaluation of MRs. Each

and every step of the proposed framework is discussed in detail such as generation

of source and follow-up test cases, test case adequacy through strong equivalence

class testing, evaluation of MRs, and composition of MRs.

Chapter 5

Proposed Metamorphic Relations

This chapter is divided into two sections. The first section describes several IP

operations and the IP operations which we have considered in our research. The

second section discusses the proposed MRs for dilation and erosion and the existing

MRs for edge detection and dilation and erosion operations in detail.

5.1 Image Processing Operations

As discussed earlier, there are several IP operations such as edge detection, mor-

phological image operations, image segmentation, image enhancement, euclidean

distance transform, image region growth, image restoration etc,. to perform spe-

cific tasks on the images. The details of some of the common IP operations are

given below:

5.1.1 Edge Detection

In IP, edge detection plays a vital role for identifying the immediate changes in

grayscale images [87]. The goal of spotting abrupt changes in picture brightness is

to record significant occurrences and modifications to the world’s characteristics.

The edge detection technique is divided into two parts i.e,. first derivative edge

61

Proposed Metamorphic Relations 62

detection (Sobel, Canny, Roberts) and second derivative edge detection (LoG)

[88]. Some of the common first derivative edge detection algorithms are as follows:

• Canny Edge Detection: Canny edge detection was created by John Canny in

1983. It is designed to identify the low intensity edges. The steps of canny

edge detection algorithm is given below: [89]

1. Image smoothing using Gaussian filter.

2. Image smoothing using Gaussian filter.

3. Calculates the de-noising image’s gradient’s magnitude and direction.

4. Uses non-maxima suppression in accordance with gradient direction to

produce a unilateral edge response.

5. In the end, performs double thresholding to identify and connect the

edges.

• Sobel Edge Detection: In 1970, sobel edge detection algorithm was first pro-

posed by Sobel [90]. A noise-free image’s edges can be quickly and precisely

detected by the Sobel operator [91]. The Sobel operator calculates the edges

in two directions i.e,. horizontal direction and vertical direction. When X

filter is applied on the image, it will highlight the vertical edges whereas the

Y filter highlights the horizontal edges of an image [92].

• Prewitt Edge Detection: Prewitt edge detection algorithm was created by

Prewitt in 1970. A suitable method for determining the magnitude and

orientation of an edge is the Prewitt edge detector. There are only 8 possible

orientations for the Prewitt operator. This gradient-based edge detector has

estimates for eight directions in the 3x3 neighbourhood. Calculations have

been made for all eight convolution masks. Afterward, one convolution mask

is chosen, specifically the one with the largest module [93].

• Roberts Edge Detection: In Roberts operator, a 2 by 2 convolution kernel

is used. Gx is a straightforward kernel whereas Gy is rotated by 90 degree.

When using Robert’s cross operator, at each point, pixel value corresponds

to the input image’s current absolute magnitude [94].

Proposed Metamorphic Relations 63

5.1.2 Morphological Image Operations

Morphological operations explain how an image interacts with a structuring ele-

ment S [95]. In comparison to the input image, the structural element is typically

a small binary image, either with zero or one values [96]. Erosion, dilation, open-

ing, closure, filtering, skeletonization, top-hat, edge-off, and watershed transforms

are useful methods of morphological image processing [97]. Dilation and erosion

are the main morphological operations that increases or decreases the region of

the image according to the structuring element [2]. Figure 5.1 shows probing an

image with the structuring element.

Figure 5.1: Probing an Image with Structuring Element [98].

According to Figure 5.1, a structuring element is said to fit an image if each of its

pixels is set to 1, and the corresponding pixel in the image is also set to 1.If at

least one of the pixels in a structuring element is set to 1 and the corresponding

pixel in the image is also 1, then the structuring element also ”hits” or ”intersects”

the image.

5.1.3 Image Segmentation

Image segmentation is a crucial and challenging step in the field of IP. It has grown

in popularity in the area of image understanding [99]. Segmentation plays a vital

role in a broad range of applications such as medical imaging, surveillance (video),

navigation system etc,. In image segmentation, the entire image is divided into a

number of regions that share some characteristics such as colour, grayscale, spatial

Proposed Metamorphic Relations 64

texture, and geometric shapes etc., [100]. Some of the types of image segmentation

are as follows:

• Region Based Segmentation: For object detection and recognition, region-

based segmentation techniques are effective tools. The goal of region based

segmentation is to separate the various entities in the image by dividing it

into homogeneous zones [101].

• Edge Based Segmentation: Edge-based segmentation uses edge detection

operators to locate edges in an image. These edges identify the locations of

grey-level discontinuities in the image [102].

• Thresholding: Thresholding is the main technique for image segmentation

that converts a greyscale image into a binary image using a single threshold

value. The most crucial step in this procedure is selecting the threshold value

(T), pixels whose intensities are above the threshold value for the foreground

region, and all other pixels in the background region [103].

• Clustering: Clustering is the process of assembling homogeneous data into

groups based on analogy criteria. The primary clustering segmentation al-

gorithm is K-means clustering, in which each component of the dataset can

only belong to one cluster at a time [103].

5.1.4 Image Reconstruction

In the field of IP, image reconstruction is a common technique [104]. Reconstruc-

tion of an image is the process of creating a two- or three-dimensional image from

fragmented or insufficient data, such as radiation readings obtained during a med-

ical imaging study. To create a readable and usable image or to sharpen an image

to make it useful, a mathematical formula may need to be applied when using

certain imaging techniques. For instance, image reconstruction can assist in creat-

ing a three-dimensional image of the body from a collection of individual camera

images during CT scanning [105].

Proposed Metamorphic Relations 65

5.1.5 Euclidean Distance Transform

One of the important operation of IP is Euclidean distance transform D(A), which

translated a binary image A into a real-valued grayscale image. Each grayscale

pixel has a distance from the nearest white binary pixel (pixel having 0 value) asso-

ciated with it [69]. Figure 5.2 shows the original image and its distance transform.

Figure 5.2: (a) Original Image (b) Distance Transform [69].

There are many more IP operations but we have covered only a few. In MT

literature, the authors have used some of the operations such as edge detection,

euclidean distance transform, image region growth, dilation and erosion, and image

reconstruction and used the properties of these operations as MRs. In this research,

we have considered only two operations of IP i.e,. edge detection (Sobel and

Canny) and morphological image operations (dilation and erosion).

5.2 Metamorphic Relations

In the field of software testing, MT is the practical solution to oracle problem. In

MT, the foremost step is the identification of MRs [106]. These properties include

various forms such as equalities, inequalities, periodicity properties, convergence

constraints, subsumption relationships etc., [107]. The MRs can be identified

based on the guidance provided by the experiences ([69], [27]) and the domain

Proposed Metamorphic Relations 66

knowledge in the specific field such as IP, web applications, networks, machine

learning etc. So, based on the domain knowledge about the proposed algorithm or

the SUT functionality, one or multiple MRs can be identified. The significant role

of MR is to generate test cases as well as to verify the test results in the absence

of test oracle [108]. An MR defines a logical connection between a source test case

with its observed output [109]. If there is a discrepancy between how the output

changes and what the anticipated MR implies, it is termed a violation of the MR

[110]. If an MR is violated then it shows the presence of bugs in the SUT [107].

The effectiveness of MT is dependent on the selection of MRs with high FDR. The

higher the FDR of the MR, the higher is the fault detection capability.

5.3 Existing Metamorphic Relations

In existing literature, different MRs have been proposed in the field of IP such as

MRs for edge detection operation, dilation and erosion operations, image region

growth, and euclidean distance transform. In this research, we have used the

existing MRs of edge detection presented in [56] and dilation and erosion MRs

presented in [27] for the evaluation purpose because we have used a case study of

MRI brain images and in diagnosis process, edge detection and dilation and erosion

operations are used as pre-processing step. Furthermore, we have proposed six new

MRs for dilation and erosion operations and evaluated them using our proposed

framework.

5.3.1 MRs for Edge Detection

The MRs of edge detection [56] is given in Table 5.1.

According to Table 5.1,

Im is the source test case

E is the edge detection program

C(.) is the counter clock wise rotation at 90 degree

Proposed Metamorphic Relations 67

Table 5.1: MRs for Edge Detection

MR Mathematical Property

MR1 : Counter clock wise rotation at 90o C(E(Im)) = E(C(Im))

MR2 : Transposition T (E(Im)) = E(T (Im))

MR3 : Reflection at the ordinate Mx(E(Im)) = E(Mx(Im))

MR4 : Reflection at abscissa My(E(Im)) = E(My(Im))

T(.) is the transpose of an image Im

Mx(.) is the reflection at the ordinate

My(.) is the reflection at abscissa.

5.3.2 Existing MRs for Dilation and Erosion

The MRs of dilation and erosion [27] are given in 5.2.

According to Table 5.2,

I: Input image

Reford: Reflection at the ordinate

Refabs: Reflection at abscissa

Output: Output of the image after applying dilation and erosion operations

δs: Dilation operation with structuring element s

εs: Erosion operation with structuring element s

c: Complement of an image I. In image processing, complement means the back-

ground of the image

Sizeobj: Size of image object. Size of image object increases in dilation whereas

decreases in erosion

Pixlist: Pixel list

Numberobj: Number of objects. Number of objects decreases in dilation whereas

increases in erosion

⊕ : Dilation operation

x: 2D factor

Proposed Metamorphic Relations 68

Table 5.2: Existing MRs for Dilation and Erosion Operations

MR Mathematical Property

R1 : Reflection at the
ordinate

Reford(Output(I)) = Output(Reford(I)

R2 : Reflection at
abscissa

Refabs(Output(I)) = Output(Refabs(I))

R3 : Duality δs(I) = εs(I
c)

εs(I) = δs(I
c)

R4 : Non-inverses δs(εs(I)) ̸= I ̸= εs(δs(I))

R5: Size of image
object changes

Sizeobj(δs(I)) ≥ Size(I) and
Pixlist(I) ⊂ Pixlist(δs(I))

R6 : No. of objects in
image changes

Numberobj(δs(I)) ≤ Numberobj(I)

R7 : Commutative δs(I) = I ⊕ S = S ⊕ I = δI(S)
εs(I) ̸= εI(S)

R8 : Translation
invariance

δs+x(I) = δs(I) + x

5.3.3 Proposed MRs for Dilation and Erosion

We have proposed six new MRs for dilation and erosion operation (four general

and two specific). The details of these MRs are given below:

5.3.3.1 Counter Clock Wise Rotation at 90 degree

MR1:C(δs(Im)) = δs(C(Im))

MR2:C(εs(Im)) = εs(C(Im))

Where,

Im is the input Image

C(.) is the counter clockwise rotation at 90 degree

Proposed Metamorphic Relations 69

δs is the dilation operation with structuring element s

εs is the erosion operation with structuring element s.

The image output of counter-clock wise rotation at 90 degree followed by morpho-

logical operations should be similar to image output of morphological operations

followed by counter-clock wise rotation at 90 degree.

5.3.3.2 Transposition

MR3:T (δs(Im)) = δ(T (Im))

MR4:T (εs(Im)) = εs(T (Im))

Where,

Im is the input Image

T(.) is the transpose of an image

δs is the dilation operation with structuring element s

εs is the erosion operation with structuring element s.

The image output of transposition followed by dilation and erosion should be

similar to image output of dilation and erosion followed by transposition.

5.3.3.3 Enhanced Associative Property

MR5: (A⊕B)⊕ C = (A⊕ C)⊕B

Where,

A is the input image

B and C are the structuring elements

⊕ is the dilation operation.

Image dilated with structuring element B and then dilated with structuring ele-

ment C should give same results when we first dilate the image with structuring

element C and then dilated with structuring element B. This property is specific

to dilation as erosion does not fulfill this property.

Proposed Metamorphic Relations 70

5.3.3.4 Image Translation

A translation operation moves an image in either the x- or y-direction, or both,

by a predetermined number of pixels [111]. The MR of image translation is given

below:

MR6:Trans(εs(Im)) = εs(Trans(Im))

Where,

Im is the input image

Trans(.) is the image translation

εs is the erosion operation with structuring element s.

The output of image translation followed by erosion should be similar to the out-

put of erosion followed by image translation. This property is not applicable on

dilation operation.

The tabular representation of proposed MRs are given in Table 5.4

Table 5.3: Proposed MRs for Dilation and Erosion Operations

MR Mathematical Property

MR1 : Counter clock
wise rotation at 90o

(for dilation)

C(δs(Im)) = δs(C(Im))

MR2 : Counter clock
wise rotation at 90o

(for erosion)

C(εs(Im)) = εs(C(Im))

MR3 : Transposition
(for dilation)

T (δs(Im)) = δ(T (Im))

MR4 : Transposition
(for erosion)

T (εs(Im)) = εs(T (Im))

MR5 : Enhanced
Associative Property

(A⊕B)⊕ C = (A⊕ C)⊕B

Proposed Metamorphic Relations 71

Table 5.4: Proposed MRs for Dilation and Erosion Operations

MR Mathematical Property

MR6 : Image
Translation

Trans(εs(Im)) = εs(Trans(Im))

5.4 Summary

This chapter discusses several IP operations such as edge detection, morphological

image operations, euclidean distance transform etc,. in detail. The existing MRs

of edge detection and morphological image operations (dilation and erosion) are

discussed. The MRs proposed for the dilation and erosion operations are also

discussed in detail.

Chapter 6

Evaluation of Proposed MRs

This chapter is divided into six sections. The first section discusses the experi-

mental data used in our experiments. The second section discusses the detailed

discussion on the results related to the evaluation of mutation operators. The

third section discusses the results related to the evaluation of Existing and pro-

posed MRs. The fourth section describes the comparison results of our proposed

MRs with the existing MRs as well as the comparison results of our proposed

framework with the existing techniques. the fifth sections shows the composition

results in detail, and the last section discusses the evaluation of MRs using SSIM.

6.1 Experiment Design

In this section, we have discussed the details about SUT used for our experiment;

dataset, original test cases, and coverage criterion used.

6.1.1 Subject Program

In this section, we will discuss the subjeect programs we have used for our exper-

iments. The subject program in this research consists of the following:

• Sobel edge detection program

72

Evaluation of Proposed MRs 73

• Dilation and erosion programs

• Improved Canny edge detection program

6.1.1.1 Sobel Edge Detection

Sobel is a convolution process that goes from the designated window to the tar-

get image. In the Sobel convolution with a 3x3 window, the predicted gradient

should be exactly at the center of the window in the image [112]. The horizontal

and vertical direction templates Gx and Gy are calculated for the image matrix’s

convolution. As a result, we obtain the gradients in the X and Y direction as an

approximation of the brightness difference [113]. On the basis of arrangements of

adjacent pixels, the gradient size determined by the Sobel operator is:

|G| =
√
G2

x +G2
y

|G| = |Gx|+ |Gy|

The input and output of Sobel edge detection program after calculating horizontal

and vertical edges is given in Figure 6.1

Figure 6.1: (a) Input Image (b) Output of Edge Detection.

6.1.1.2 Dilation and Erosion

• Dilation: The dilation process increases the size of an object. The type and

shape of the structuring element determine how much it grows. The dilation of

an image A with structuring element B is defined as: [114]

Evaluation of Proposed MRs 74

A⊕B = {Z(B) ∩ A ̸= ∅}

• Erosion: The erosion operation is a complement to the dilation operation when

considering the operation effect. The object loses size as a result of that erosion

operation [115]. The erosion of an image A with structuring element B is defined

as: [114]

A⊖B = {Z|(B)z ⊆ A}

The sample inputs of MRI brain images and their expected output images after

performing dilation operation and erosion operation are shown in Figure 6.2.

Figure 6.2: (a) Input Image (b) Output of Dilation (c) Input Image (d) Output
of Erosion.

6.1.1.3 Improved Canny Edge Detection

The improved cannay edge detection algorithm [55] consists of seven steps for

identification of brain tumor. We have implemented our algorithm of detection of

edges of the soft tissues in the MRI of a brain image by using first five of the seven

steps given below:

• Apply a fast local Laplacian filter on the original image for the enhancement of

Evaluation of Proposed MRs 75

contrast and texture.

• Convert the image into a grayscale image.

• Apply K-means clustering and fuzzy C-Means clustering.

• Apply traditional Canny edge detection to identify the edges in the MRI of a

brain image.

• Apply median filter to smooth out the lines detected in step four.

The input and output of Sari ’s improved edge detection algorithm using our

dataset is given in Figure 6.3

Figure 6.3: Output of Improved Canny Edge Detection.

6.1.2 Source Code

As discussed earlier, we have used four source codes (Sobel edge detection, dila-

tion, erosion, and improved canny edge detection) to validate our experiments.

The detail of each source code is given below:

• Sobel Edge Detection Program:

We have used a well-structured code of Sobel edge detection written in Python

version 3.8.3 for our implementation. The code consists of 41 statements and 10

branches.

• Dilation and Erosion Programs:

We have used a well-structured code of Dilation and Erosion written in Python

version 3.8.3 for our implementation. The code consists of 46 statements and 12

Evaluation of Proposed MRs 76

branches.

• Improved Canny edge Detection program:

The algorithms of all five steps mentioned above are taken from GitHub or Geeks-

forGeeks and are consolidated in a single Python file which has 347 statements

and 110 branches. The sources of above given codes are given in Table 6.1.

Table 6.1: Sources of Source Codes

Operation Source

Sobel Edge

Detection

https://towardsdatascience.com/

edge-detection-in-python-a3c263a13e03

Dilation https://python.plainenglish.io/

image-dilation-explained-easily-e085c47fbac2

Erosion https://medium.com/analytics-vidhya/

2d-convolution-using-python-numpy-43442ff5f381

Fast Local

Laplacian

https:

//github.com/qq491577803/fast-local-laplacian-filter/

blob/main/myFastLocalLaplacian.py

K-Means https://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_

opencv.html

Canny

Edge

Detection

https://www.geeksforgeeks.org/

implement-canny-edge-detector-in-python-using-opencv/

Median

Filter

https://codereview.stackexchange.com/questions/191974/

median-filter-implementation-in-python

https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03
https://towardsdatascience.com/edge-detection-in-python-a3c263a13e03
https://python.plainenglish.io/image-dilation-explained-easily-e085c47fbac2
https://python.plainenglish.io/image-dilation-explained-easily-e085c47fbac2
https://medium.com/analytics-vidhya/2d-convolution-using-python-numpy-43442ff5f381
https://medium.com/analytics-vidhya/2d-convolution-using-python-numpy-43442ff5f381
https://github.com/qq491577803/fast-local-laplacian-filter/blob/main/myFastLocalLaplacian.py
https://github.com/qq491577803/fast-local-laplacian-filter/blob/main/myFastLocalLaplacian.py
https://github.com/qq491577803/fast-local-laplacian-filter/blob/main/myFastLocalLaplacian.py
https://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_opencv.html
https://docs.opencv.org/3.4/d1/d5c/tutorial_py_kmeans_opencv.html
https://www.geeksforgeeks.org/implement-canny-edge-detector-in-python-using-opencv/
https://www.geeksforgeeks.org/implement-canny-edge-detector-in-python-using-opencv/
https://codereview.stackexchange.com/questions/191974/median-filter-implementation-in-python
https://codereview.stackexchange.com/questions/191974/median-filter-implementation-in-python

Evaluation of Proposed MRs 77

6.1.3 Dataset

In this research, we have used the dataset of MRI brain images. A diversified col-

lection of images in jpg format, as source test cases, is taken from kaggle: https://

www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=

download for our study. The dataset consists of 3000 images (T1 weighted images,

T2 weighted images and flair images) with 1500 images having brain tumor and

1500 images with no brain tumor. The basic three types of images, used as test

cases are shown in Figure 6.4.

Figure 6.4: (a) T1 weighted image (b) T2 weighted image (c) Flair Image.

The dataset comprises of 1,500 images with no brain tumor and 1,500 images with

brain tumor with multiple properties such as horizontal and vertical dimensions,

resolution in dpi, image type (T1 weighted, T2 weighted, Flair), and bit depth. We

have discussed the range against each property as well as the number of images

in the dataset against each property. The total number of image against each

category is described in Table 6.2

Table 6.2: Classification of Dataset.

Properties Range No. of images

Horizontal Dimension

h1: 1 - 300

h2: 301 - 650

h3: 651+

2081

623

296

https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download
https://www.kaggle.com/datasets/abhranta/brain-tumor-detection-mri?resource=download

Evaluation of Proposed MRs 78

Table 6.2: Classification of Dataset.

Properties Range No. of images

Vertical Dimension

v1: 1 - 350

v2: 351 - 700

v3: 701+

1488

1192

320

Resolution

r1: 1 - 90 dpi

r2: 91 - 99 dpi

v3: 100 - 450 dpi

28

2905

67

Bit Depth
b1: 8

b2: 24

106

2894

Type of Image

t1: T1 weighted images

t2: T2 weighted images

t3: Flair iamges

1223

781

996

Table 6.2 shows the selected five image properties (attributes) along with their

ranges (classes) and 3000 images (1500 having brain tumor and 1500 having no

brain tumor) against each class.

6.1.4 Source Test Cases

We have selected source test cases using strong equivalence class testing and

grouped the properties of MRI images into five attributes: horizontal dimension,

vertical dimension, bit depth, resolution, and the image type. Each attributes is

further divided into multiple classes as shown in Table 6.3. Each attribute has

three classes except ”bit depth”, as it has only two classes. We have generated

the source test cases automatically, by writing a program in python. The program

will make thee folders of these attributes and put the images into their relevant

Evaluation of Proposed MRs 79

class. For example, when we execute the program it will create two folders for the

attribute ”bit depth”. One folder contains 8 bit depth images whereas the second

folder contains the 24 bit depth images.

Table 6.3: Classes Using Strong Equivalence Class Testing.

Attributes Classes

Horizontal Dimension

h1: 1 – 300

h2: 301 – 650

h3: 651+

Vertical Dimension

v1: 1 – 350

v2: 351 – 700

v3: 701+

Resolution

r1: 1 – 90 dpi

r2: 91 – 99 dpi

r3: 100 – 450 dpi

Bit Depth
b1: 8

b2: 24

Type of Image

t1: T1 weighted images

t2: T2 weighted images

t3: Flair images

According to Table 6.3, “Horizontal Dimension” is a class which is further divided

into three sub classes. “Vertical Dimension” is divided into three classes as well.

“Resolution” and “Type of Image” has three sub classes each. “Bit Depth” is a

class which is further divided into two sub classes.

As discussed earlier, we have used strong equivalence class testing for the gener-

ation of source test cases. In strong equivalence class testing, we will make all

possible combination from these classes for the generation of source test cases.

The total numbers of classes generated through these combinations are: 3 x 3 x

3 x 2 x 3 = 162. Out of 162 classes, only 95 classes (33-T1, 29-T2, 33-Flair) are

obtained with a few with 8-bit depth value and resolution between 1 to 90 range.

Evaluation of Proposed MRs 80

There are few images in each image type (T1, T2, flair) with 8-bit depth as well

as resolution between the range 1 to 90 that are selected. All missing 67 classes

with 8-bit depth value and resolution having range from 1 to 90 are unavailable.

The results of 8-bit depth value or lower show either very dark (T1 and flair) im-

ages or very bright (T2) images which make it very difficult to detect the lesions

accurately.

6.1.5 Code Coverage

The adequacy of these 95 test cases is checked through white box testing which

validates code coverage for branch coverage and statements coverage. The test

suite should cover 100 percent branch coverage for the initialization of our proposed

testing process; otherwise, new test cases would be required to complete the branch

coverage to 100 percent. Our test suite covers 100 percent for branch coverage and

statement coverage respectively. The summary of code coverage is given in Table

6.4

Table 6.4: Code Coverage Summary.

Sobel Edge Dilation Erosion Improved canny

No. of Test Cases 95 95 95 95

Total No. of Statements 41 46 46 341

No. of Covered Statements 41 46 46 341

Statement Coverage (%) 100% 100% 100% 100%

Total No. of Branches 10 12 12 110

No. of Covered Branches 10 12 12 110

Branch Coverage (%) 100% 100% 100% 100%

As shown in Table 6.4, 95 test cases (accumulative) cover 100% statement coverage

as well as branch coverage in all the three programs. So, we do not need more test

cases for our test suite.

Evaluation of Proposed MRs 81

6.2 Effectiveness of Mutation Operators

In this section, we have assessed the effectiveness of mutation operators by cal-

culating the percentage of mutants generated by each mutation operator and the

number of mutants killed by each operator. Mutation score of each operator shows

the FDR of each mutation operator. The formula of mutation score is described

in Chapter 2. The formula to calculate the FDR of each mutation operator is

depicted in Equation 2.1. The percentage of generated mutants is calculated by

the formula given in Equation 6.1.

V =
No. of mutants generated by V operator × 100

Total no. of mutants generated by all the operators
(6.1)

Where,

V: any mutation operator

6.2.1 Effectiveness of Mutation Operators used in Edge

Detection

Table 6.6 shows the effectiveness of mutation operators in terms of mutants gener-

ated and mutants killed by using each operator for edge detection operation. Each

operator shows the total number of mutants it has generated and the number of

mutants killed through each of the operator.

Table 6.5: Effectiveness of Mutation Operators used in Edge Detection

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

AOD 6 3.70%

MR1: 6

MR2: 6

MR3: 6

MR4: 6

MR1: 100%

MR2: 100%

MR3: 100%

MR4: 100%

Evaluation of Proposed MRs 82

Table 6.5: Effectiveness of Mutation Operators used in Edge Detection

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

AOR 98 60.49%

MR1: 73

MR2: 74

MR3: 62

MR4: 62

MR1: 74.48%

MR2: 75.51%

MR3: 63.26%

MR4: 63.26%

COI 2 1.23%

MR1: 2

MR2: 2

MR3: 2

MR4: 2

MR1: 100%

MR2: 100%

MR3: 100%

MR4: 100%

ROR 30 18.51%

MR1: 22

MR2: 22

MR3: 22

MR4: 22

MR1: 73.33%

MR2: 73.33%

MR3: 73.33%

MR4: 73.33%

OIL 2 1.23%

MR1: 1

MR2: 1

MR3: 1

MR4: 1

MR1: 50%

MR2: 50%

MR3: 50%

MR4:50%

RIL 2 1.23%

MR1: 1

MR2: 2

MR3: 0

MR4: 0

MR1: 50%

MR2: 100%

MR3: 0%

MR4: 0%

SIR 4 2.46%

MR1: 4

MR2: 4

MR3: 4

MR4: 4

MR1: 100%

MR2: 100%

MR3: 100%

MR4: 100%

Evaluation of Proposed MRs 83

Table 6.6: Effectiveness of Mutation Operators used in Edge Detection

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

SDL 16 9.87%

MR1: 13

MR2: 13

MR3: 13

MR4: 13

MR1: 81.25%

MR2: 81.25%

MR3: 81.25%

MR4: 81.25%

ZIL 2 1.23%

MR1: 2

MR2: 2

MR3: 2

MR4: 2

MR1: 100%

MR2: 100%

MR3: 100%

MR4: 100%

In the existing technique [56], a total of 31 mutants have been generated by using

only two mutation operators, i.e., ROR, and LOR. In our proposed framework,

we have employed nine mutation operators to generate a total of 162 mutants.

It is observed that AOR operator has generated the highest number of mutants

i.e., 98 mutants and killed 74 mutants in MR2 and 62 mutants in MR3 and MR4

respectively. ROR operator has generated 30 mutants and killed 22 mutants in

each MR followed by SDL operator that has generated 16 mutants and killed 13

mutants in each MR. Though the mutation operators such as AOD, COI, SIR,

and ZIL have achieved 100% mutation score in all respective MRs but on the

other hand they have generated very less number of mutants i.e., 6, 2, 4, and 2

respectively. The percentage of mutants killed and mutants generated by each

mutation operator is depicted in Figure 6.5 and Figure 6.6.

It is observed from Figure 6.5 and Figure 6.6 that the mutation operators such

as AOD, COI, ZIL, and SIR have shown 100% mutation score in all the four

MRs. But, their percentage with respect to generated mutants is very low i.e.,

3.70%, 1.23%, 2.46%, and 1.23% respectively. The effectiveness is dependent on

two factors i.e., mutation score and number of mutants generated. The operator

Evaluation of Proposed MRs 84

Figure 6.5: Percentage of Killed Mutants Used in Edge Detection.

Figure 6.6: Percentage of Generated Mutants used in Edge Detection.

that scores high percentage in one of the two factors and scores very low in other

is not as effective as the one having moderate scores in both the factors. So,

AOR operator is the most effective operator because its lowest mutation score is

63% (MR4) and the highest mutation score is 74% (MR1) whereas its percentage

to generate mutants is 60.49%. RIL is the least effective operator because its

lowest mutation score is 0% (MR4) and the highest mutation score is 100% (MR2)

whereas its percentage to generate mutants is only 1.23%. SDL operator has

achieved a good mutation score of 81.25% followed by ROR having a mutation

score of 73.33% against each MR whereas their percentage to generate mutants

is 9.87% and 18.51% respectively. The effectiveness of SDL and ROR is almost

similar because the mutation score of SDL is 12% higher than ROR whereas the

percentage of ROR operator in terms of mutation generation is 10% higher than

the SDL operator.

Evaluation of Proposed MRs 85

6.2.2 Effectiveness of Mutation Operators used in Dilation

and Erosion Operations (Proposed Framework)

Table 6.7 shows the FDC (mutation score) and percentage of mutants generated

by each mutation operator used in dilation and erosion operation. We have calcu-

lated the effectiveness of mutation operators used in our proposed MRs only.

Table 6.7: Effectiveness of Mutation Operators used in Dilation and erosion

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

AOR 95 73.07%

MR1: 51

MR2: 50

MR3: 51

MR4: 53

MR5: 56

MR6: 56

MR1: 53.68%

MR2: 52.63%

MR3: 53.68%

MR4: 55.78%

MR5: 58.94%

MR6: 58.94%

COI 4 3.07%

MR1: 1

MR2: 1

MR3: 1

MR4: 2

MR5: 1

MR6: 2

MR1: 25%

MR2: 25%

MR3: 25%

MR4: 50%

MR5: 25%

MR6: 50%

ROR 20 15.38%

MR1: 3

MR2: 3

MR3: 3

MR4: 6

MR5: 3

MR6: 5

MR1: 15%

MR2: 15%

MR3: 15%

MR4: 30%

MR5: 15%

MR6: 25%

Evaluation of Proposed MRs 86

Table 6.7: Effectiveness of Mutation Operators used in Dilation and erosion

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

OIL 1 0.76%

MR1: 1

MR2: 0

MR3: 1

MR4: 1

MR5: 0

MR6: 0

MR1: 100%

MR2: 0%

MR3: 100%

MR4: 100%

MR5: 0%

MR6: 0%

RIL 1 0.76%

MR1: 0

MR2: 0

MR3: 0

MR4: 0

MR5: 0

MR6: 1

MR1: 0%

MR2: 0%

MR3: 0%

MR4: 0%

MR5: 0%

MR6: 100%

SIR 2 1.53%

MR1: 1

MR2: 1

MR3: 1

MR4: 1

MR5: 1

MR6: 2

MR1: 50%

MR2: 50%

MR3: 50%

MR4: 50%

MR5: 50%

MR6: 100%

SDL 6 4.61%

MR1: 1

MR2: 1

MR3: 1

MR4: 1

MR5: 1

MR6: 1

MR1: 16.6%

MR2: 16.6%

MR3: 16.6%

MR4: 16.6%

MR5: 16.6%

MR6: 16.6%

Evaluation of Proposed MRs 87

Table 6.7: Effectiveness of Mutation Operators used in Dilation and erosion

Mutation

Operators

No. of Mutants

Generated

% of Generated

Mutants

No.of Killed

Mutants

FDC of Mutation

Operations

ZIL 1 0.76%

MR1: 1

MR2: 1

MR3: 1

MR4: 1

MR5: 1

MR6: 1

MR1: 100%

MR2: 100%

MR3: 100%

MR4: 100%

MR5: 100%

MR6: 100%

In the literature, the authors [27] have used only one mutation operator for the

generation of mutants and created only 33 mutants whereas, we have used eight

mutation operators and produced 130 mutants in total. It is observed from Table

6.7 that AOR has generated maximum number of mutants, i.e., 95 and killed more

than 50 mutants in each MR which is the second highest mutation score. ROR

operator has generated 20 mutants but it does not kill a significant number of

mutants. OIL, RIL, and ZIL operators have produced only one mutant though

many of the MRs achieves a mutation score of 100%. The percentage of mutants

killed and mutants generated by each mutation operator is depicted in Figure 6.7

and Figure 6.8.

Figure 6.7: Percentage of Killed Mutants Used in Dilation and Erosion.

Evaluation of Proposed MRs 88

Figure 6.8: Percentage of Generated Mutants used in Dilation and Erosion.

It is observed from Figure 6.7 and Figure 6.8 that AOR operator is the most

effective operator because it has generated maximum number of mutants i.e., 95

and its fault detection rate is greater than 50% against each MR. Though FDC of

ZIL operator is 100% but it has generated only one mutant and having a percentage

of 0.76. ROR has a better percentage to generate the mutants i.e., 15% and also

a mutation score lies between 15 to 30%.

It is concluded from this section that AOR operator is the most effective operator

in terms of mutants killed and mutants generated in both the subject programs of

edge detection and dilation and erosion.

6.3 Effectiveness of Metamorphic Relations

The effectiveness of MRs is determined through mutation testing. FDR depicted in

Equation 4.1 shows the effectiveness of each MR. We have assessed the effectiveness

of existing MRs (edge detection and dilation and erosion) and proposed MRs

(dilation and erosion).

6.3.1 Effectiveness of Edge Detection MRs

Fault detection rate (mutation score) defines the strength of each MR. FDR is

calculated through mutation testing. The FDR of edge detection MRs is given in

Evaluation of Proposed MRs 89

Table 6.8.

Table 6.8: Fault Detection Rate of Edge Detection MRs

MR Total No. of Mutants No. of Killed Mutants FDR(%)

MR1 162 124 76.54%

MR2 162 126 77.77%

MR3 162 112 69.13%

MR4 162 112 69.13%

We have generated a total of 162 mutants for edge detection manually by intro-

ducing one fault at a time. It is observed from Table 6.8 that MR2 has killed

maximum number of mutants i.e., 126 followed by MR1 which has killed 124 mu-

tants. MR3 and MR4 have killed same number of mutants i.e., 112 mutants each.

Figure 6.9 shows the FDR (in percentage) of each MR.

Figure 6.9: Graphical Representation of FDR of Edge Detection MRs.

Figure 6.9 shows that MR2 is the most effective MR having FDR of 77.77%

followed by MR1 with FDR of 76.54%. MR3 and MR4 have same FDR of 69.13%

each.

Evaluation of Proposed MRs 90

6.3.2 Effectiveness of Dilation and Erosion MRs

We have also assessed the effectiveness of morphological image operations (dilation

and erosion).The FDR of existing operations of dilation and erosion using our

proposed framework are given in Table 6.9.

Table 6.9: Fault Detection Rate of Dilation and Erosion MRs

MR Total No. of Mutants No. of Killed Mutants FDR (%)

R1 130 70 53.84%

R2 130 68 52.30%

R3 130 60 46.15%

R4 130 67 51.53%

R5 130 52 40.00%

R6 130 45 34.61%

R7 130 68 52.30%

R8 130 65 50.00%

We have generated a total of 130 mutants for dilation and erosion operation. Table

6.9 shows that R1 has killed maximum number of mutants i.e., 70 followed by R2

and R7 with 68 killed mutants each. R6 has killed least number of mutants i.e.,

45. The FDR of dilation and erosion MRs are depicted in Figure 6.10

After calculating the mutation score, it is observed from Figure 6.10 that R1 has

the highest FDR of 53.84% thus making R1 most effective MR. R2 and R7 have

second highest FDR of 52.30% each. R6 has the lowest FDR of 34.61% thus

Evaluation of Proposed MRs 91

Figure 6.10: Graphical Representation of FDR of Dilation and Erosion MRs.

making this MR least effective. The FDR of remaining MRs are neither too high

nor too low thus making them to identify some of the faults effectively.

6.3.3 Effectiveness of Proposed MRs

For the dilation and erosion operation, we have suggested six MRs (two specific

and four general). We have also assessed the effectiveness of our proposed MRs

using our proposed framework. The FDR of proposed MRs are given in Table

6.10.

Table 6.10: Fault Detection Rate of Proposed MRs

MR Total No. of Mutants No. of Killed Mutants FDR(%)

MR1 130 59 45.38%

MR2 130 57 48.46%

MR3 130 59 43.84%

MR4 130 65 50.00%

Evaluation of Proposed MRs 92

Table 6.10: Fault Detection Rate of Proposed MRs

MR Total No. of Mutants No. of Killed Mutants FDR(%)

MR5 130 63 48.46%

MR6 130 68 52.30%

Table 6.10 shows that we have generated a total of 130 mutants. It is observed

that MR6 has the highest FDR by killing 68 mutants followed by MR4 that has

killed 65 mutants. MR1 and MR3 have killed 59 mutants each. The FDR of MR2

is the lowest because it has killed 57 mutants. The graphical representation of

FDR of proposed MRs is shown in Figure 6.11.

Figure 6.11: Graphical Representation of FDR of Proposed MRs.

It is observed from Figure 6.11 that the FDR of our proposed MRs are neither

too high nor too low but are significant enough to find the violations in all the

respective MRs. However, the most effective MR among the proposed MRs is

MR6 (image translation) which has the highest FDR of 52.30% followed by MR4

(transposition in erosion operation) with FDR of 50%. MR2 (counter clock-wise

rotation at 90 degree in erosion operation) is the least effective with FDR of

43.84%.

Evaluation of Proposed MRs 93

6.4 Comparison of Proposed Framework with Ex-

isting Techniques

In this section, we have compared the results of our proposed framework with

the existing techniques. The proposed framework is compared with the existing

techniques where edge detection and dilation and erosion MRs are used. We have

compared the results of our proposed framework with [56] and [27]. Table 6.11

shows the statistics of existing techniques and proposed framework.

Table 6.11: Statistics of Existing Techniques and Proposed Framework

Ref

Papers SUT No. of

Test cases

Mutation

operators

No. of

Mutants

Generated

Lang.

[56] Edge

Detection

30 test cases

are selected

randomly.

LOR,

ROR
31 C

[27] Dilation

and Erosion

Randomly

Selected

ROR 33 Mex C

Prop-

osed

Frame-

work

Edge Detection

and Dilation

and Erosion

95 MRI brain

images are

selected

AOD, AOR,

ROR, COI,

ZIL, SIR,

SDL, OIL,

RIL

162: Edge

detection

130: dilation

and erosion

Python

According to the statistics given in Table 6.11, Sim et al. have selected 30 images

as source test cases from different image libraries given in [56]. The images used

by the authors are very limited and not diverse in nature. The Kodak site has

24 images and the image compression site has only 15 images. All the images

Evaluation of Proposed MRs 94

have same bit depth of 24 and resolution of 96dpi. All the images have only two

dimensions such as 768 by 512 or 512 by 768 (Kodak site) and a single dimension

of 700 by 525. Jameel et al. have not mentioned the source as well as the number

of test cases selected for their experiments. We have used the data set of MRI

brain images taken from Kaggle.com. The complete source is given section 5.1.3.

The dataset compromises of 3000 images having diverse image properties. From

3000 images, we have selected 95 images using equivalence class testing and code

coverage.

The authors [56] have used two mutation operators and generated only 31 mutants

whereas the authors in [27] have used only one operator and generated 33 mutants.

Whereas, we have used nine mutation operators in edge detection program and

eight operators in dilation and erosion program to generate 162 and 130 mutants

respectively.

6.4.1 Comparison Results of Edge Detection

We have compared the results of our proposed framework for thee evaluation of

MRs with [56]. The FDR results are compared against each MR.The comparison

results are given in Table 6.12.

Table 6.12: Comparison of Existing Technique and Proposed Framework

MR
FDR of Existing

Technique

FDR of Proposed

Framework

MR1 45% 76.54%

MR2 77% 77.77%

MR3 68% 69.13%

MR4 45% 69.13%

Evaluation of Proposed MRs 95

Table 6.12 shows that in existing technique [56]MR2 has the highest FDR followed

by MR3. Whereas in proposed framework MR2 has the highest FDR followed by

MR1. In existing technique, the FDR ofMR1 andMR4 are same i.e., 45% whereas

in proposed framework the FDR of MR3 and MR4 are same i.e., 69.13%. The

graphical representation of both the techniques are depicted in Figure 6.12.

Figure 6.12: FDR of Existing Technique and Proposed Framework.

Figure 6.12 shows that in existing technique, MR1 and MR4 have achieved FDR

of 45% each. The FDR of MR2 is highest, i.e., 77% followed by MR3 with FDR

of 68%. In proposed framework, the FDR of MR1 and MR4 is far better than the

existing technique, i.e., 76.54% and 69.13% respectively. The FDR of MR2 and

MR3 is also improved by 1%.

6.4.2 Comparison Results of Dilation and Erosion

The authors in this paper [27], have evaluated eight MRs of dilation and erosion

operations. We have also evaluated the same eight MRs using our proposed frame-

work. The FDR results are checked against each MR. The effectiveness of each

MR is checked using it’s FDR value. The comparison results of existing MRs of

dilation and erosion are given in Table 6.13.

Evaluation of Proposed MRs 96

Table 6.13: Comparison of Existing Technique and Proposed Framework

MRs
FDR of Existing

Technique

FDR of Proposed

Framework

R1 15% 53.84%

R2 58% 52.30%

R3 97% 46.15%

R4 51% 51.53%

R5 58% 40%

R6 18% 34.61%

R7 73% 52.30%

R8 21% 50%

Table 6.13 shows that out of eight MRs, four MRs i.e., R1, R4, R6, and R8 have

improved FDR using our proposed framework. The FDR of R1 (53.84%), R6

(34.61%), and R8 (50%) are far improved than the existing technique having FDR

of 15%, 18%, and 21% respectively. In existing technique, R2,MR3, R5, and R7

have high FDR i.e., 58%, 97%, 50% and 73% because they have used only one

mutation operator and consider only one type of faults. The comparison results

are depicted in Figure 6.13

Figure 6.13: Graphical Representation of FDR of Existing Technique and
Proposed Framework.

Evaluation of Proposed MRs 97

It is observed from Figure 6.13 that in existing technique, R3 has the highest FDR

of 97% followed by R7 having FDR of 73%. The FDR of R1, R6, andR8 is very

low i.e., 15%, 18%, and 21% respectively. In proposed framework, the FDR of all

the MRs are moderate, neither too high nor too low thus making them effective to

find the violations in all respective MRs. In proposed framework, R1 is improved

by 39%, R4 is improved by 0.5%, R6 is improved by 17%, and R8 is improved by

29%.

6.4.3 Comparison Results of Proposed MRs with Existing

MRs for Dilation and Erosion

In this section, we have compared the results of our proposed MRs with the exist-

ing MRs of dilation and erosion operations. As described earlier, we have proposed

six new MRs for morphological image operations (dilation and erosion) whereas

there are eight existing MRs of dilation and erosion operations in literature. By

using mutation testing, we have used eight mutation operators for the evaluation

of dilation and erosion MRs and have generated 130 mutants in total whereas in

existing technique, the authors have generated only 33 mutants against each muta-

tion operator. The number of mutants which are generated against each mutation

operator is depicted in Table 6.15.

Table 6.14: Mutants Generated against each Mutation Operator

Mutation

Operators

No. of

Mutants

Generated

Mutant Labels

AOR 95 mt1,mt2,mt3,mt4,mt5,,mt95

COI 4 mt96,mt97,mt98,mt99

ROR 20 mt100,mt101,mt102,mt119

Evaluation of Proposed MRs 98

Table 6.15: Mutants Generated against each Mutation Operator

Mutation

Operators

No. of

Mutants

Generated

Mutant Labels

OIL 1 mt120

RIL 1 mt121

SIR 2 mt122,mt123

SDL 6 mt124,mt125,,mt128,mt129

ZIL 1 mt130

Table 6.15 shows 130 mutants (mt1,mt2,,mt130) generated by eight mutation

operators. The mutant is denoted by ”mt”. Now Table 6.16 shows the existing

MRs and the mutants killed by each MR.

Table 6.16: Mutants Killed by Existing MRs

MRs Mutants Killed

R1

mt11, ...,mt30,mt36,mt37,mt39,mt40,,mt43,mt45,mt47,

..., mt49,mt54,mt76,,mt85,mt87,,mt90,mt94, ...,mt97,

mt99,mt101,mt102,mt104, ...,mt107,mt109,mt116,mt117,

mt118,mt120,mt122,mt123,mt125, ...,mt130

R2

mt1, ...,mt5,mt21, ...,mt30,mt37,mt38,mt40,mt44,mt46,

...,mt55,mt77, ...,mt81,mt83,,mt96,mt98,mt99,mt101,

mt102,mt104,mt106,mt107,mt109,mt116, ...,mt118,mt120,

mt121,mt122,mt125, ...,mt130

Evaluation of Proposed MRs 99

Table 6.16: Mutants Killed by Existing MRs

MRs Mutants Killed

R3

mt16, ...,mt30,mt76, ...,mt81,mt83, ...,mt91,mt93, ...,mt99,

mt101,mt102,mt104, ...,mt107,mt109,mt111,mt112,mt113,

mt116, ...,mt117,mt118,mt120, ...,mt123,mt125, ...,mt130

R4

mt1, ...,mt5,mt21, ...,mt30,mt37,mt38,mt40,mt44,mt46, ...,

mt55,mt77, ...,mt81,mt83, ...,mt96,mt98,mt99,mt101,mt102,

mt104,mt106,mt107,mt109,mt116,mt117,mt118,mt121,mt122,

mt125, ...,mt130

R5

mt16, ...,mt30,mt77,mt78,mt80,mt81,mt83, ...,mt88,mt90,

mt94,mt96, ...,mt99,mt101,mt102,mt104, ...,mt107,mt109,

mt111,mt112,mt113,mt116,mt117,mt118,mt120, ...,mt123,

mt125, ...,mt130

R6

mt16, ...,mt30,mt77,mt78,mt80,mt81,mt83, ...,mt88,mt90,

mt94,mt96, ...,mt99,mt101,mt102,mt104, ...,mt107,mt109,

mt111,mt112,mt113,mt116,mt117,mt118,mt120, ...,mt123,

mt125, ...,mt130

R7

mt1, ...,mt5,mt21, ...,mt30,mt37,mt38,mt40,mt44,mt46, ...,

mt55,mt77, ...,mt81,mt83, ...,mt96,mt98,mt99,mt101,mt102,

mt104,mt106,mt107,mt109,mt116,mt117,mt118,mt120,mt121,

mt122,mt125, ...,mt130

R8

mt1, ...,mt5,mt21, ...,mt30,mt37,mt38,mt40,mt44,mt46, ...,

mt55,mt77, ...,mt81,mt83, ...,mt96,mt98,mt99,mt101,mt102,

mt104,mt106,mt107,mt109,mt116,mt117,mt118,mt122,

mt125, ...,mt129

Evaluation of Proposed MRs 100

Table 6.16 shows the existing MRs of dilation and erosion and the mutants killed

by these MRs respectively. To summarize Table 6.16, we have generated another

table, Table 6.17, that shows the statistics of total number of mutants killed by

these MRs as well as total number of alive mutants(the mutants that are not killed

by any of the MR). Hence, it is concluded from the above table that the ratio of

killed mutants are greater than the alive mutants. The alive mutants can be killed

by some other MRs or we need some new mutation operators that will identify

the faults not identified by the respective mutation operators used in the existing

literature.

Table 6.17: Killed and Alive Mutants in Existing MRs

Mutants Killed Mutants Alive

mt1, ...,mt5,mt11, ...,mt30,mt36, ...,

mt55,mt76, ...,mt99,mt101,mt102,

mt104, ...,mt107,mt109,mt111, ...,

mt113,mt116, ...,mt123,mt125, ...,

mt130

mt6, ...,mt10,mt31, ...,mt35,mt56,

...,mt75,mt100,mt103,mt108,mt110,

mt114,mt115,mt124

After calculating the number of mutants killed by the existing MRs of dilation

and erosion, we have also calculated the number of mutants killed by the proposed

MRs. Table 6.19 shows the proposed MRs (dilation and erosion) and the mutants

killed by each of the MR.

Table 6.18: Mutants Killed by Proposed MRs

MRs Mutants Killed

MR1

mt1, ...,mt5,mt11, ...,mt20,mt36, ...,mt55,mt76,mt77,

mt79, ...,mt82,mt84, ...,mt87,mt89, ...,mt92,mt94, ...,mt96,

mt105,mt111,mt116,mt120,mt123,mt129,mt130

MR2

mt1, ...,mt5,mt11,mt12, ...,mt19,mt36, ...mt55,mt76,mt77,

mt79, ...,mt82,mt84, ...,mt87,mt89, ...,mt91,mt94, ...,mt96,

mt105,mt111,mt116,mt123,mt129,mt130

Evaluation of Proposed MRs 101

Table 6.19: Mutants Killed by Proposed MRs

MRs Mutants Killed

MR3

mt1, ...,mt5,mt11, ...,mt20,mt36, ...,mt55,mt76,mt77,

mt79, ...,mt82,mt84, ...,mt87,mt89, ...,mt92,mt94, ...,mt96,

mt105,mt111,mt116,mt120,mt123,mt129,mt130

MR4

mt8, ...,mt45,mt76,mt79, ...,mt82,mt84, ...,mt87,mt89, ...,

mt92,mt94, ...,mt96,mt99,mt101,mt102,mt105,mt111,mt116,

mt118,mt120,mt122,mt129,mt130

MR5

mt16, ...,mt55,mt76,mt77,mt79, ...,mt83,mt85, ...,mt87,

mt89, ...,mt93,mt95,mt96,mt102,mt105,mt116,mt123,mt129,

mt130

MR6

mt3,mT6,mt8, ...,mt45,mt76,mt77,mt79, ...,mt82,mt84, ...,

mt87,mt89, ...,mt92,mt94, ...,mt96,mt99,mt101,mt102,

mt105,mt111,mt116,mt121, ...,mt123,mt129,mt130

The above table shows the number of killed mutants by each MR. But, it is diffi-

cult to see the number of alive mutants from the above table. So, the statistics of

Table 6.19 is summarized in Table 6.20 which shows the number of killed mutants

as well as alive mutants in proposed MRs.

Table 6.20: Killed and Alive Mutants in Existing MRs

Mutants Killed Mutants Alive

mt1, ...,mt6,mt8, ...,mt10, ...,mt55,

mt76,mt77,mt79, ...,mt87,mt89, ...,

mt96,mt99,mt101,mt102,mt105,

mt111,mt116,mt118,mt120, ...,mt123,

mt129,mt130

mt7,mt56, ...,mt75,mt78,mt88,mt97,

mt98,mt100,mt103,mt104,mt106, ...,

mt110,mt112, ...,mt115,mt117,mt119,

mt124, ...,mt128

Evaluation of Proposed MRs 102

Table 6.17 and 6.20 shows the number of mutants killed and mutants alive by

existing MRs and proposed MRs. In mutation testing, we have used eight mu-

tation operators for the evaluation of dilation and erosion MRs. In AOR op-

erator, we have used six type of faults such as addition (+), subtraction (-),

multiplication (*), division (/), exponent/power (**), and floor division (//).

It is observed from Table 6.17 and 6.20 that there are nine arithmetic faults

(mt6,mt8,mt9,mt10,mt31,mt32,mt33,mt34,mt35) which are identified by the pro-

posed MRs and are not identified by any of the existing MR. Among these faults,

eight faults (mt8,mt9,mt10,mt31,mt32,mt33,mt34,mt35) are identified by MR4,

five faults (mt31,mt32,mt33,mt34,mt35) are identified by MR5, and nine faults

(mt6,mt8,mt9,mt10,mt31,mt32,mt33,mt34,mt35) are identified by MR6. So, we

can say that MR4, MR5, and MR6 are more effective operators as compared to

MR1, MR2, and MR3 because they have identified the additional faults not iden-

tified by the any of the existing MRs.

We have observed the presence of alive mutants in both existing and proposed

MRs. It is also observed that by combining both the MRs, the total number of alive

mutants was reduced. The remaining alive mutants are: mt7,mt56,mt57,,mt75,

mt100,mt103,mt108,mt110,mt114,mt115,mt124. Hence, it is concluded that the pro-

posed MRs of dilation and erosion complement the existing MRs effectively be-

cause the proposed MRs are able to detect those faults which are not identified

by any of the existing MRs of dilation and erosion operations.

6.5 Composition of Metamorphic Relations

Composition of MRs is done for the construction of new MRs. The composited

relation contains all the properties of the original MR [28]. Composition of MR

is cost effective as it reduces the number of executions considerably. For example,

if we use MR1 and MR2 for testing the program P, then we need four test cases

(two source test cases and two follow-up test cases). After composing the two MRs

we generate and execute three test cases (one common source test case plus two

follow-up test cases).

Evaluation of Proposed MRs 103

For the composition of MRs, we have selected four MRs of edge detection [56].

The composition results after combining the two MRs are given in Table 6.21

Table 6.21: Composition of Two MRs

S.No MRx MRy MRxy

1 MR1: 76.54 MR2: 77.77 MR12: 77.77

2 MR1: 76.54 MR3: 69.13 MR13: 69.13

3 MR1: 76.54 MR4: 69.13 MR14: 69.13

4 MR2: 77.77 MR1: 76.54 MR21: 76.54

5 MR2: 77.77 MR3: 69.13 MR23: 69.13

6 MR2: 77.77 MR4: 69.13 MR24: 69.13

7 MR3: 69.13 MR1: 76.54 MR31: 76.54

8 MR3: 69.13 MR2: 77.77 MR32: 77.77

9 MR3: 69.13 MR4: 69.13 MR34: 69.13

10 MR4: 69.13 MR1: 76.54 MR41: 76.54

11 MR4: 69.13 MR2: 77.77 MR42: 77.77

12 MR4: 69.13 MR3: 69.13 MR43: 69.13

It is observed from Table 6.21 that at one execution (MR12), the value of composite

Evaluation of Proposed MRs 104

MR is equal to the value of greatest component MR and when we reverse the

execution i.e.,MR21, then the value of composite MR is equal to the value of lowest

component MR. We have also composed three MRs. The process of composing

three MRs is given below:

Composed MR (MR1 and MR2):

MR12 : T (E(C(Im))) = E(T (C(Im)))

Third MR:

MR3 : Mx(E(Im)) = E(Mx(Im))

After Composition:

MR123 : Mx(E(T (C(Im)) = E(Mx(T (C(Im))

Where,

T(C(Im)) = follow-up test case of MR12 as well as source test case of MR3.

Mx(T (C(Im)) = follow-up test case of MR3.

We have four MRs of edge detection as discussed earlier. So, we have made all

possible combinations to composed the MRs by composing the three MRs man-

ually. We have made 24 new MRs from composing three MRs. The results are

given in Table 6.24.

Table 6.22: Composition of Three MRs

S.No MRxy MRz MRxyz

1 MR12: 77.77 MR3: 69.13 MR123: 69.13

2 MR12: 77.77 MR4: 69.13 MR124: 69.13

3 MR13: 69.13 MR2: 77.77 MR132: 77.77

Evaluation of Proposed MRs 105

Table 6.23: Composition of Three MRs

S.No MRxy MRz MRxyz

4 MR13: 69.13 MR4: 69.13 MR134: 69.13

5 MR14: 69.13 MR2: 77.77 MR142: 77.77

6 MR14: 69.13 MR3: 69.13 MR143: 69.13

7 MR21: 76.54 MR3: 69.13 MR213: 69.13

8 MR21: 76.54 MR4: 69.13 MR214: 69.13

9 MR23: 69.13 MR1: 76.54 MR231: 76.54

10 MR23: 69.13 MR4: 69.13 MR234: 69.13

11 MR24: 69.13 MR1: 76.54 MR241: 76.54

12 MR24: 69.13 MR3: 69.13 MR243: 69.13

13 MR31: 76.54 MR2: 77.77 MR312: 77.77

14 MR31: 76.54 MR4: 69.13 MR314: 69.13

15 MR32: 77.77 MR1: 76.54 MR321: 76.54

16 MR32: 77.77 MR4: 69.13 MR324: 69.13

17 MR34: 69.13 MR1: 76.54 MR341: 76.54

Evaluation of Proposed MRs 106

Table 6.24: Composition of Three MRs

S.No MRxy MRz MRxyz

18 MR34: 69.13 MR2: 77.77 MR342: 77.77

19 MR41: 76.54 MR2: 77.77 MR412: 77.77

20 MR41: 76.54 MR3: 69.13 MR413: 69.13

21 MR42: 77.77 MR1: 76.54 MR421: 76.54

22 MR42: 77.77 MR3: 69.13 MR423: 69.13

23 MR43: 69.13 MR1: 76.54 MR431: 76.54

24 MR43: 69.13 MR2: 77.77 MR432: 77.77

Table 6.24 shows that the value of composite MR (MRxyz) is not less than the

lowest value of component MR (MRz) and the composite MR (MRxy). For ex-

ample, in case of MR214, the value of composite MR is 69.13 which is the lowest

value among the component MR (MR4) and the composite MR (MR21) but not

less than the lowest MR i.e., MR4.

In the end, we have also composed four MRs. The process of composing four MRs

is given below:

Composed MR:

MR123 : Mx(E(T (C(Im)) = E(Mx(T (C(Im))

Fourth MR:

MR4 : My(E(Im)) = E(My(Im))

Evaluation of Proposed MRs 107

After Composition:

MR1234 : My(E(Mx(T (C(Im)) = E(My(Mx(T (C(Im))

Where

Mx(T (C(Im)) = follow-up test case of MR123 as well as source test case of MR4.

My(Mx(T (C(Im)) = follow-up test case of MR4.

We have made 24 new MRs from composing four MRs. The results are given in

Table 6.25.

Table 6.25: Composition of Four MRs

S.No MRxyz MRw MRxyzw

1 MR123: 69.13 MR4: 69.13 MR1234: 69.13

2 MR124: 69.13 MR3: 69.13 MR1243: 69.13

3 MR132: 77.77 MR4: 69.13 MR1324: 69.13

4 MR134: 69.13 MR2: 77.77 MR1342: 77.77

5 MR142: 77.77 MR3: 69.13 MR1423: 69.13

6 MR143: 69.13 MR2: 77.77 MR1432: 77.77

7 MR213: 69.13 MR4: 69.13 MR2134: 69.13

8 MR214: 69.13 MR3: 69.13 MR2143: 69.13

9 MR231: 76.54 MR4: 69.13 MR2314: 69.13

10 MR234: 69.13 MR1: 76.54 MR2341: 76.54

Evaluation of Proposed MRs 108

Table 6.25: Composition of Four MRs

S.No MRxyz MRw MRxyzw

11 MR241: 76.54 MR3: 69.13 MR2413: 69.13

12 MR243: 69.13 MR1: 76.54 MR2431: 76.54

13 MR312: 77.77 MR4: 69.13 MR3124: 69.13

14 MR314: 69.13 MR2: 77.77 MR3142: 77.77

15 MR321: 76.54 MR4: 69.13 MR3214: 69.13

16 MR324: 69.13 MR1: 76.54 MR3241: 76.54

17 MR341: 76.54 MR2: 77.77 MR3412: 77.77

18 MR342: 77.77 MR1: 76.54 MR3421: 76.54

19 MR412: 77.77 MR3: 69.13 MR4123: 69.13

20 MR413: 69.13 MR2: 77.77 MR4132: 77.77

21 MR421: 76.54 MR3: 69.13 MR4213: 69.13

22 MR423: 69.13 MR1: 76.54 MR4231: 76.54

23 MR431: 76.54 MR2: 77.77 MR4312: 77.77

24 MR432: 77.77 MR1: 76.54 MR4321: 76.54

Evaluation of Proposed MRs 109

It is observed from Table 6.25 that the value of composite MR (MRxyzw) is not less

than the lowest value of component MR (MRw) and the composite MR (MRxyz).

For example, in case of MR214, the value of composite MR4321 is 76.54 which is

the lowest value among the component MR1 and the composite MR432 but not

less than the lowest MR i.e., MR1. So, we have two observations from Table 6.21,

6.24, and 6.25. First, the result of composed MR is not less than the lower value of

component MR and second, after the execution, the composite MR has always the

value of the MR on second placeholder. Hence, it can be concluded that we have

to choose that composite MR which has highest value of the MR at the second

place.

6.6 MR Evaluation using SSIM

This section is derived from our published framework [85], where an improved

canny edge edge detection algorithm is used to evaluate the MRs of edge detection

operation using MRI brain images. We have selected all four MRs of edge detection

[56], from the literature of MT. Instead of testing the conventional edge detection

programs, we have assessed the accuracy of these MRs on an improved canny edge

detection program, proposed for MRI brain diagnostics [55]. Conventional edge

detection algorithms are already tested using the conventional software testing

techniques. However, the edge detection algorithms that are proposed by medical

researchers themselves are not tested by any software testing technique. So, our

primary concern is to validate these type of un-tested edge detection algorithms.

The proposed framework for the evaluation of MRs using SSIM is given in next

section.

6.6.1 Proposed Framework

For our proposed framework, we have selected the Sari’s edge detection algorithm

because our data set comprises of MRI brain images and amongst all the arti-

cles, this is the latest research article to detect brain tumor in MRI images. The

Evaluation of Proposed MRs 110

flowchart of the proposed framework is shown in Figure 6.14. The basic steps of

proposed framework are similar to the steps depicted in Figure 4.1 for the evalu-

ation of MRs except the evaluation process is different. Previously in Chapter 4,

the evaluation of MR is performed using mutation testing where in this methodol-

ogy the evaluation is performed through SSIM, structure similarity measure that

will verify the correctness of images. Here, we have discussed the issue narrated in

section 2.2.2 about the evaluation of output images as it is difficult to perform a

pixel by pixel comparison of two images which seem alike visually but in fact are

different.

Figure 6.14: Flowchart of Proposed Framework.

6.6.1.1 Generation of Source Test Cases

The first step is to generate source test cases to test the algorithm from the selected

dataset of MRI of brain. We have performed MT on an improved algorithm of edge

Evaluation of Proposed MRs 111

detection (as the algorithm does not have built-in functions such as conventional

edge detection algorithms Canny, Sobel, Prewitt, Robert, etc.) that shows the

fault detection capability of MR in terms of satisfying each relation. A solution

is proposed for the generation of source test cases by using strong equivalence

class testing and code coverage criterion. The classes and sub classes using strong

equivalence class testing are shown in Table 5.2. The selected test cases are further

checked through code coverage to ensure complete coverage. The coverage results

are shown in Table 6.4.

6.6.1.2 Identification of Metamorphic Relations

In MT, testers define MRs which are used to generate new test cases (referred as

follow-up test cases) from the available test cases (referred as original/source test

cases) [116]. The key role of MR is to generate new test cases and to verify test

results in the absence of a test oracle [22]. For verification of test results, there are

only two possible outcomes: a high FDR or a low FDR. Greater FDR shows higher

fault detection capabilities and vice versa. We have selected four MRs [56], and

we have assessed the FDR of these four MRs through an edge detection program

using edge detection as a SUT.

6.6.1.3 Generation of Follow-Up Test Cases

Follow-up test cases are generated from source test cases using MRs [82]. After the

generation of source test cases through our proposed criterion, follow-up test cases

are generated through source test cases and MRs. Source test cases and follow-up

test cases are given to an edge detection program used as SUT to generate outputs,

respectively. In the MT process, first, the source test cases are given to the original

program. The outputs of source test cases are recorded as O1. Then, the follow-up

test cases are given to the same original program. The outputs of follow-up test

cases are also recorded as O2. The outputs of both source and follow-up test cases

are compared and if (O1, O2) satisfy their related MR for all the test cases then

it shows that the related MR is satisfiable.

Evaluation of Proposed MRs 112

6.6.1.4 SSIM Based Output Comparison

Image quality assessment is an important parameter of assessing the quality be-

tween two images. Usually, MSE (mean square error) and PSNR (peak signal-

to-noise ratio) are used to assess the quality of images by giving absolute errors.

However, these two measures are not normalized, and therefore, it is difficult to

understand them. Recently, two new metrics, SSIM and FSIM (feature similarity

index measure), have been developed to check the structure and feature similarity

between two images [117].

SSIM calculates the similarity of two iamges which is a value betweeen +1 and

-1. We have used SSIM to compare the output of source and follow-up test cases

because SSIM compares the image based on luminance, contrast, and structure,

respectively. We are using a dataset of MRI brain images where correct identi-

fication of luminance, contrast and structure helps in the identification of edges

and lesions which helps in the correct diagnosis process. SSIM has also become a

default measure in the field of IP [118].

If the value of SSIM is 0, then both images are different, but if the value of SSIM

is 1, then the images are exactly similar. To check the satisfaction of MR, we have

compared the outputs of all the source and follow-up test cases and set a threshold

value of 0.95. If the value of SSIM is below this threshold values, then MR is in

violation. Afterwards, FDR is calculated for each MR. The formula to calculate

the FDR using SSIM based comparison is given in Equation 6.2.

FDR =
Number of test cases violating MR × 100

Total number of test cases
(6.2)

Where,

MR: Metamorphic Relation

6.6.2 Results and Discussion

We have checked the outputs of source and follow-up test cases for each MR against

the three image types: T1-weighted images, T2-weighted images, and flair images

Evaluation of Proposed MRs 113

by using SSIM. The SSIM value of each MR on 33 test cases (of 95 total test cases)

of T1-weighted images are shown in Table 6.27 as below:

Table 6.26: SSIM Value of T1 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC1 0.93 0.99 0.98 0.99

TC2 0.96 0.96 1 0.96

TC3 0.98 0.99 0.98 0.93

TC4 0.95 0.98 0.97 0.92

TC5 0.99 0.99 0.99 0.99

TC6 0.81 0.99 0.95 0.91

TC7 0.92 0.98 0.93 0.94

TC8 0.99 1 0.98 0.92

TC9 0.99 1 0.98 0.96

TC10 0.93 0.98 0.94 0.84

TC11 0.83 0.82 1 0.82

TC12 0.92 0.97 0.93 0.95

TC13 0.98 0.94 0.94 0.94

Evaluation of Proposed MRs 114

Table 6.26: SSIM Value of T1 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC14 0.79 0.97 0.97 0.89

TC15 0.89 0.96 0.95 0.84

TC16 0.94 0.98 0.92 0.9

TC17 0.94 0.82 0.91 0.89

TC18 0.98 0.99 0.98 0.97

TC19 0.94 0.98 0.94 0.95

TC20 0.98 0.99 0.96 0.95

TC21 0.96 0.97 0.97 0.96

TC22 0.87 0.99 0.87 0.9

TC23 0.95 0.98 0.84 0.93

TC24 0.88 0.94 0.72 0.78

TC25 0.98 0.99 0.89 0.94

TC26 0.95 0.97 0.96 0.92

TC27 0.95 0.99 0.96 0.92

Evaluation of Proposed MRs 115

Table 6.27: SSIM Value of T1 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC28 0.98 0.98 0.96 0.98

TC29 0.93 0.97 0.9 0.87

TC30 0.91 0.98 0.95 0.88

TC31 0.97 1 0.96 0.94

TC32 0.94 0.98 0.95 0.88

TC33 0.96 0.97 0.97 0.94

According to Table 6.27, if the value of SSIM is equal to 1, then both the outputs

of source and follow-up test cases are exactly similar. If the value of SSIM is

equal to 0, then both the outputs of source and follow-up test cases are exactly

dissimilar. The lower the values of SSIM, the more dissimilar the images are. We

have set a threshold value for comparison because we did not get exact match for

the images. Our reasoning for not getting an exact match is because the MRs are

designed for conventional edge detection algorithms and our algorithm consists of

many steps other than edge detection. Therefore, it is a high probability that the

images may loose their contrast and luminance after processing.

We know that the relation in MT satisfies when output of both source and follow-

up test cases are same. As we did not get the exact match between the outputs

of source and follow-up test cases therefore, we need test cases that would satisfy

the MR for calculating meaningful results. We have set the threshold value to

0.95 because the SSIM value greater than and equal to 0.95 shows the similarity

of output images closest to 1. If the SSIM value is less than the given threshold

Evaluation of Proposed MRs 116

value, then the MR does not satisfy the relation for that test case. The FDR of

MR is calculated by using the formula given in 6.1.

Let’s suppose threshold is denoted by θ. The total number of test cases that satisfy

the MR against θ value 0.95, and the FDR for all the MRs for T1 weighted images

are shown in Table 6.28.

Table 6.28: Fault Detection Rate of T1 Weighted Images.

MR θ = 0.95 FDR

MR1 15 54.54%

MR2 29 12.12%

MR3 21 36.36%

MR4 12 63.63%

As shown in Table 6.28, when the value of θ is set to 0.95, the FDR of MR4 is the

highest (63.63%) followed by MR1 (54.54%) by violating the MR on more than

50 percent test cases. The FDR of MR3 is 36.36% which is neither too high nor

too low to identify the faults. MR2 has the lowest (12.12%) FDR value. Hence

it is concluded that MR2 has the lowest FDR and is not a recommendable MR

to identify faults in T1 weighted images. MR4 has the highest FDR value and is

considered best to identify faults in T1 weighted images.MR1 and MR3 have also

high FDR and are recommendable for this type of images. The SSIM value of T2

weighted images are shown in Table 6.30.

Table 6.29: SSIM Value of T2 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC1 0.97 0.99 0.94 0.94

Evaluation of Proposed MRs 117

Table 6.29: SSIM Value of T1 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC2 0.94 0.89 0.97 0.93

TC3 0.75 0.75 0.93 0.92

TC4 0.92 0.76 0.76 0.76

TC5 0.92 0.99 0.92 0.96

TC6 0.94 0.84 0.96 0.95

TC7 0.98 0.99 0.99 0.97

TC8 0.93 0.96 0.95 0.93

TC9 0.88 0.99 0.95 0.88

TC10 0.85 0.99 0.93 0.96

TC11 0.95 0.97 0.91 0.85

TC12 0.97 0.99 0.94 0.93

TC13 0.97 0.86 1 0.91

TC14 0.97 0.99 0.9 0.97

TC15 0.96 0.88 0.87 0.95

Evaluation of Proposed MRs 118

Table 6.30: SSIM Value of T2 Weighted Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC16 0.95 0.96 0.96 0.91

TC17 0.95 0.98 0.96 0.89

TC18 0.93 0.95 0.94 0.87

TC19 0.98 0.86 0.98 0.85

TC20 0.9 0.96 0.93 0.9

TC21 0.95 0.97 0.97 0.93

TC22 0.94 0.98 0.96 0.84

TC23 0.91 0.83 0.93 0.93

TC24 0.86 0.98 0.92 0.9

TC25 0.83 0.97 0.95 0.91

TC26 0.98 0.98 0.97 0.95

TC27 0.96 0.98 0.98 0.96

TC28 0.95 0.97 0.96 0.92

TC29 0.95 0.98 0.98 0.94

Evaluation of Proposed MRs 119

Table 6.30 shows that we have 29 test cases in the category of T2 weighted images.

The test cases that satisfy the MR against the θ value 0.95 is depicted in Table

6.31.

Table 6.31: Fault Detection Rate of T2 Weighted Images.

MR θ = 0.95 FDR

MR1 15 48.27%

MR2 21 27.58%

MR3 16 44.82%

MR4 8 72.41%

Table 6.31 shows that considering θ as 0.95, FDR of MR4 is the highest that is

72.41% followed by MR1,MR3, andMR2 with FDR values 48.27%, 44.82%, and

27.58% respectively. Hence it is determined that all the MRs are useful for T2

weighted images when the θ is set to 0.95. The SSIM values of flair type images

are given in Table 6.34.

Table 6.32: SSIM Value of Flair Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC1 0.98 0.97 0.97 0.98

TC2 0.95 0.96 0.98 0.97

TC3 1 0.99 1 0.99

TC4 0.99 0.99 0.99 0.98

Evaluation of Proposed MRs 120

Table 6.32: SSIM Value of Flair Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC5 0.84 0.96 0.94 0.94

TC6 0.96 0.97 0.97 0.95

TC7 0.97 0.99 0.95 0.97

TC8 0.98 0.99 0.99 0.98

TC9 0.91 0.96 0.91 0.89

TC10 0.96 0.98 0.98 0.92

TC11 0.98 0.99 0.92 0.97

TC12 0.99 1 0.99 0.97

TC13 0.98 1 0.98 0.97

TC14 0.84 0.98 0.96 0.97

TC15 0.99 0.97 0.98 0.99

TC16 0.87 0.97 0.93 0.76

TC17 1 1 1 0.98

TC18 0.96 0.98 0.97 0.97

Evaluation of Proposed MRs 121

Table 6.33: SSIM Value of Flair Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC19 1 0.99 1 0.99

TC20 0.98 0.99 0.98 0.98

TC21 0.99 0.99 0.99 0.99

TC22 0.97 0.98 0.97 0.95

TC23 0.94 0.91 0.91 0.98

TC24 0.95 0.98 0.87 0.93

TC25 0.99 0.99 0.99 0.99

TC26 0.97 1 0.94 0.92

TC27 0.99 0.96 0.98 0.99

TC28 0.96 0.98 0.96 0.96

TC29 0.92 0.96 0.77 0.83

TC30 0.94 0.97 0.95 0.92

TC31 0.91 0.98 0.97 0.96

TC32 0.96 0.99 0.97 0.97

Evaluation of Proposed MRs 122

Table 6.34: SSIM Value of Flair Images

Test Cases

(TC)
MR1 MR2 MR3 MR4

TC33 0.92 0.99 0.99 0.94

The test cases that satisfy the MR against θ value 0.95 for flair type images with

their FDR is depicted in Table 6.35.

Table 6.35: Fault Detection Rate of Flair Type Images.

MR θ = 0.95 FDR

MR1 24 27.27%

MR2 32 3.03%

MR3 25 24.24%

MR4 24 27.27%

Table 6.35 shows that MR2 has the lowest FDR value of 3.03% whereas FDR

of MR1,MR3, and MR4 is 27.27%, 24.24%, and 27.27% respectively. Results

show that like T1 and T2 weighted images, FDR of MR4 is highest and MR2 is

lowest.Considering θ as 0.95, MR2 has lowest FDR and is not recommendable for

flair type images. FDR of MR1,MR3, and MR4 is neither too high nor too low

thus making them useful to identify faults. Figure 6.15 shows the statistics of first

MR (counter clock-wise rotation at 90 degree) for all the types of images.

In Figure 6.15, when the θ is set to 0.95, the capability of MR1 to detect faults

is high for T1 and T2 weighted images by violating 18 and 14 test cases respec-

tively. On the other hand, flair type images violate only 9 test cases. Hence it is

concluded that MR1 is more suitable for T1 and T2 weighted images rather than

flair type images.

Evaluation of Proposed MRs 123

Figure 6.15: No. of Test Cases Violating MR1 For T1, T2, and Flair Images.

Now, we consider the second MR (transpose of an image) and check the FDR of

MR2 on all three types of MRI images. Figure 6.16 shows the graphical represen-

tation of MR2.

Figure 6.16: No. of Test Cases Violating MR2 For T1, T2, and Flair Images.

Figure 6.16 shows that MR2 has lowest capability to identify faults for T1 and

flair type images. T1 images satisfy the relation on 29 test cases whereas the flair

type images satisfy the relation on 32 test cases respectively. MR2 is relatively

better MR to identify faults in T2 weighted images by satisfying 21 test cases. It is

concluded that MR2 is recommendable for only T2 weighted images by violating

the MR on 8 test cases. Now consider the third MR which is reflection at the

ordinate. The result of MR3 is given in Figure 6.17.

Evaluation of Proposed MRs 124

Figure 6.17: No. of Test Cases Violating MR3 For T1, T2, and Flair Images.

Figure 6.17 shows that the capability of MR3 to detect faults is low for flair type

images by violating only 8 test cases whereas the capability of MR3 to detect

faults is high for T1 and T2 weighted images by violating 12 and 13 test cases

respectively. It is concluded that MR3 is recommended for all the categories of

images. Fault detection capability of this MR is low for flair type images while

comparing with T1 and T2 weighted images but it is still able to detect faults.

The last MR is reflection at abscissa. Figure 6.18 shows the statistics of MR4.

Figure 6.18: No. of Test Cases Violating MR4 For T1, T2, and Flair Images.

Figure 6.18 shows that the FDR of MR4 is very high for T1 and T2 weighted

images when θ is set to 0.95. Both of the image types violate the relation on 21

test cases each. At the same θ value flair type images violate the relation on 9

Evaluation of Proposed MRs 125

test cases which is neither too low nor too high. Hence it is concluded that MR4

is useful for all the three types of images but highly recommended for T1 and T2

weighted images. The FDR of all four MRs against all the three type of images is

shown in Figure 6.19.

Figure 6.19: FDR of MRs on T1, T2 and Flair Type Images.

It is concluded from Figure 6.19 that for each image type, MR4 is considered

best among all the MRs by achieving highest FDR. The FDR of MR4 for T1,

T2, and flair type images are 63.63%, 72.41%, and 27.27% respectively. On the

other hand, FDR of MR2 is considered lowest in all three types of images with

FDR value 12.12%, 27.54%, and 3.03% respectively. The FDR of MR1 and MR3

are neither too high nor too low but they are able to find the faults. Hence, it is

observed that for T1, T2, and flair images, MR4 should be preferred to enhance

the credibility of MRI diagnostics. On the other hand, MR2 produced low FDR

and is not suggested for the diagnostics purpose specially in flair type images.

6.7 Threats to Validity

In this section, we have discussed the threats to validity of our experiment.

We have performed our experiment on a single dataset of MRI brain images. In

this way, we cannot generalized our results. So, more datasets should be used to

Evaluation of Proposed MRs 126

make the results more generalized.

In this dissertation, we have performed testing on a particular code of python.

It is recommended to perform testing on other languages as well. The reason is

that the mutation operators used in mutation testing are language dependent.

The mutation operators used in python may not be used in other programming

languages such java, C++, C sharp etc,. So, codes written in different languages

may reveal those faults which are not identified by the mutation operators used

in python language.

6.8 Summary

In this chapter, MR evaluation results are discussed in detail. We have discussed

the details about SUT used for our experiments, dataset, original test cases, and

coverage criterion used. Effectiveness of mutation operators as well as effectiveness

of MRs are discussed in detail. A comparison is made between the existing tech-

niques of edge detection and morphological image operations with the proposed

framework. Moreover, the effectiveness of proposed MRs over existing MRs are

also highlighted.

Results show that AOR operator is the most effective operators in terms of mutants

generated and mutants killed. Results of evaluation of the proposed framework

of four MRs of edge detection show an improvement in all the respective MRs.

Similarly, the dilation and erosion MRs have also shown improvement in four MRs

using our proposed framework. It is observed after comparing the proposed MRs

with the existing MRs that the proposed MRs are able to detect those faults which

are not identified by any of the existing MRs.

Chapter 7

Conclusion and Future Work

This chapter will wrap up our dissertation by summarising this research from the

angles of the earlier discussed research questions, aims and objectives. Future

work ultimately provides guidance for how to continue this work.

7.1 Answers to Research Questions

This research is initiated with a number of research questions to be answered. The

answers to these research questions are as follows:

1. RQ1: How to improve the evaluation of fault detection rate of MRs for MT

?

In literature, the evaluation of fault detection rate of MRs is ascertained

through mutation testing. For this evaluation, we need test cases. Test case

selection strategies are developed to reveal the better faults detection. Some

of the traditional test case generation techniques are random test genera-

tion through random model or Boolean model, behavioral or specification

based, symbolic evaluation method, and combinatorial techniques etc,. In

literature, the test cases are generated randomly and there is no systematic

way to ascertain that the generated test cases are actually random and have

127

Conclusion and Future work 128

diversity to represent all different type of properties or full coverage. If the

sample is not a full representation of the population then we would get bi-

ased results affecting the final outcome.

In proposed framework, the evaluation of fault detection rate of MRs for

MT is improved by two methods. In the first method we have defined an all-

inclusive sample population ready for a true sample to be selected from with

every parametric value having equal probability of selection. The proposed

method has used strong equivalence class testing along with code coverage for

the generation of source test cases. In the second method, we have used all

possible nine mutation operators to evaluate the MRs of edge detection and

morphological image operations (dilation and erosion) in order to improve

the fault detection rate of MRs rather than using a few mutation operators.

Results of evaluation of the proposed framework of four MRs of edge detec-

tion show an improvement in all the respective MRs especially in MR1 and

MR4 having FDR of 76.54% and 69.13% respectively which is 32% and 24%

improved than the existing technique. The FDR of MR2 and MR3 is also

improved by 1%. Similarly, the results of erosion and dilation operations

show that out of 8 MRs, the FDR of four MRs are improved than the exist-

ing technique. In proposed framework, MR1 is improved by 39%, MR4 is

improved by 0.5%, MR6 is improved by 17%, and MR8 is improved by 29%.

2. RQ2: How to create new MRs for MT ?

In the field of IP, there are four general MRs which are applicable to almost

all the IP operations. These general MRs are counter clock-wise rotation

at 90 degree, transposition, reflection at the ordinate, and reflection at ab-

scissa. The authors [69] have applied these four MRs on euclidean distance

transform, The authors in [56] have applied these MRs on edge detection

operation whereas the authors in [27] have applied two MRs i.e,. reflection

at the ordinate and reflection at abscissa on dilation and erosion operations.

An intriguing question arises that why they left the two (rotation at 90 de-

gree and transposition) MRs?. We have decided to explore that option and

apply these relations on dilation and erosion operations. In this way we have

Conclusion and Future work 129

proposed four general MRs for dilation and erosion operations.

Associative property (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) is specific to dilation

operation. We have changed the order of associative property ((A⊕B)⊕C

= (A ⊕ C) ⊕ B)) and checked whether the new arrangement satisfies the

dilation operation or not. This result leads us to propose a new MR for

dilation operation.

Image translation is an operation of IP. We have checked this operation on

both erosion and dilation operations. Image translation satisfies on only ero-

sion operation and we have proposed a specific MR for erosion operation.

Additionally, we have performed composition of MRs for the construction

of new MRs. Composition of MR is cost effective as it reduces the number

of executions considerably. Also, the value of composite MR (MRxy) is not

less than the lowest value of component MR (MRx) and (MRy). It is also

observed that after the execution, the composite MR has always the value of

the MR on second placeholder. Hence, it can be concluded that we have to

choose that composite MR which has highest value of the MR at the second

place.

3. RQ3: How effective are the proposed MRs in comparison with the existing

MRs ?

To ascertain the effectiveness of MRs, we have compared the total number of

mutants killed by existing and proposed MRs. In mutation testing, we have

used eight mutation operators (AOR, COI, ROR, RIL, OIL, SDL, SIR, and

ZIL) and generated 130 mutants from these operators. The effectiveness of

existing and proposed MRs is evident by the number of mutants killed by

each MR. Among the results, we have selected those faults that were not

detected by the eight existing MRs. But were identified by the proposed

MRs.

Following are the nine AOR faults (mt6,mt8,mt9,mt10,mt31,mt32,mt33,

mt34,mt35) which are identified by the proposed MRs but are not identi-

fied by any of the existing eight MRs. Among these faults, eight faults

(mt8,mt9,mt10,mt31,mt32,mt33,mt34,mt35) are identified byMR4, five faults

Conclusion and Future work 130

(mt31,mt32,mt33,mt34,mt35) are identified by MR5, and nine faults (mt6,

mt8,mt9,mt10,mt31,mt32,mt33,mt34,mt35) are identified by MR6. So, the

proposed MRs complement the existing MRs effectively as the proposed MRs

are are able to find those faults which are not identified by the existing MRs.

7.2 Conclusion

Testing of IPAs, of course, is a challenging task because of the absence of test

oracle. Metamorphic testing is an effective method to deal with the applications

with a test oracle problem. Metamorphic relations play an important role in meta-

morphic testing. A metamorphic relation relates two or more inputs with their

expected outputs after execution of the properties of the target program. Proper-

ties of different IP operations can also be used as metamorphic relations.

In our proposed framework, random source test cases are selected through the

strong equivalence class testing technique (black-box testing), and then, the ad-

equacy of the selected source test cases is verified through code coverage criteria

(white-box testing).

MT is widely used to handle the test oracle problem of the IPA as the related

and relevant MRs can identify the faults in the SUT used in the MT. However,

every MR is not suitable for bug manifestation. In the proposed framework, we

have proposed six new MRs of morphological image operations (dilation and ero-

sion). The fault detection rate of newly proposed algorithm along with existing

MRs of edge detection and dilation and erosion is determined through mutation

testing. A total of nine mutation operators are used to increase the total number

of mutants that improves the fault detection rate of MRs. The effectiveness of

mutation operators is also determined that which operator is more effective to kill

maximum number of mutants. AOR is considered the best operator in both the

subject programs as it generates maximum number of mutants. We have com-

pared the results of our proposed approach with the existing techniques of edge

detection and morphological image operations. Our results demonstrate that the

mutation score of all the MRs of edge detection has improved whereas the MRs

Conclusion and Future work 131

of dilation and erosion has shown improvement in four MRs (out of 8). While

comparing our proposed MRs with the existing MRs of dilation and erosion op-

erations, we have come to the conclusion that the proposed MRs complement the

existing MRs effectively as the proposed MRs are are able to find those faults

which are not identified by the existing MRs.

7.3 Future Directions

In future, the proposed framework for the evaluation of MRs can be strengthened

by using more coverage criterion for improved coverage. The future work involv-

ing coverage criterion may include multiple condition coverage (MCC) where every

combination of conditions’ outcomes is tested at least once in a decision, modified

condition/decision coverage (MCDC) where a decision’s potential outcomes are

determined by each condition contained within the decision, all def-use (definition-

usage) coverage where all-def coverage is attained when all defs of any variable are

covered and all-uses coverage is attained when a path from each def to each use of

that def has been exercised etc. The proposed framework can also be strengthened

by using additional mutation operators that will cover the fault types not used

in the proposed framework such as logical connector replacement (LCR), break

continue replacement (BCR), constant replacement(CRP), classmethod decorator

insertion (CDI) etc,.

In the proposed framework, we have ascertained the effectiveness of edge detection

MRs on Sboel edge detection algorithm and Canny edge detection algorithm. In

future, the effectiveness of these edge detection MRs can also be checked on other

edge detection algorithms such as Roberts, Prewitt, fuzzy logic methods etc,. A

comparison can be made to determine which of the edge detection algorithm is

most effective for fault identification.

Bibliography

[1] C. Bolchini, L. Cassano, A. Mazzeo, and A. Miele, “Usability-based cross-

layer reliability evaluation of image processing applications,” in 2021 IEEE

International Symposium on Defect and Fault Tolerance in VLSI and Nan-

otechnology Systems (DFT), pp. 1–6, IEEE, 2021.

[2] A. Raid, W. Khedr, M. El-Dosuky, and M. Aoud, “Image restoration based

on morphological operations,” International Journal of Computer Science,

Engineering and Information Technology (IJCSEIT), vol. 4, no. 3, pp. 9–21,

2014.

[3] F. U. Rehman and C. Izurieta, “An approach for verifying and validating

clustering based anomaly detection systems using metamorphic testing,”

in 2022 IEEE International Conference On Artificial Intelligence Testing

(AITest), pp. 12–18, IEEE, 2022.

[4] A. Memon, I. Banerjee, and A. Nagarajan, “What test oracle should i use for

effective gui testing?,” in 18th IEEE International Conference on Automated

Software Engineering, 2003. Proceedings., pp. 164–173, IEEE, 2003.

[5] D. Seca, “A review on oracle issues in machine learning,” arXiv preprint

arXiv:2105.01407, 2021.

[6] P. Saha and U. Kanewala, “Fault detection effectiveness of source test case

generation strategies for metamorphic testing,” in Proceedings of the 3rd

International Workshop on Metamorphic Testing, pp. 2–9, 2018.

132

Bibliography 133

[7] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” arXiv preprint arXiv:2002.12543,

2020.

[8] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software

quality assessment: A study of search engines,” IEEE Transactions on Soft-

ware Engineering, vol. 42, no. 3, pp. 264–284, 2015.

[9] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés, “Performance meta-

morphic testing: Motivation and challenges,” in 2017 IEEE/ACM 39th In-

ternational Conference on Software Engineering: New Ideas and Emerging

Technologies Results Track (ICSE-NIER), pp. 7–10, IEEE, 2017.

[10] Q.-H. Luu, H. Liu, T. Y. Chen, and H. L. Vu, “Testing ocean software with

metamorphic testing,” in 2022 IEEE/ACM 7th International Workshop on

Metamorphic Testing (MET), pp. 23–30, IEEE, 2022.

[11] T.-P. Hong, C.-C. Chiu, J.-H. Su, and C.-H. Chen, “Applicable metamorphic

testing for erasable-itemset mining,” IEEE Access, vol. 10, pp. 38545–38554,

2022.

[12] J. G. Adigun, L. Eisele, and M. Felderer, “Metamorphic testing in au-

tonomous system simulations,” in 2022 48th Euromicro Conference on Soft-

ware Engineering and Advanced Applications (SEAA), pp. 330–337, IEEE,

2022.

[13] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing

techniques: A literature review,” in 2016 6th international conference on

information and communication technology for the Muslim world (ICT4M),

pp. 177–182, IEEE, 2016.

[14] Rahul, “What Is Software Testing - Overview, Process, Impor-

tance and Terms — technotrice.com.” https://technotrice.com/

what-is-software-testing/. [Accessed 27-May-2023].

https://technotrice.com/what-is-software-testing/
https://technotrice.com/what-is-software-testing/

Bibliography 134

[15] “The expected results of the software are: - Manual

testing — careerride.com.” https://www.careerride.com/

question-29-Manual-testing. [Accessed 27-May-2023].

[16] K. Sugali, “Software testing: Issues and challenges of artificial intelligence

& machine learning,” International Journal of Artificial Intelligence and

Applications, vol. 12, no. 1, pp. 101–112, 2021.

[17] E. J. Weyuker, “On testing non-testable programs,” The Computer Journal,

vol. 25, no. 4, pp. 465–470, 1982.

[18] G. Jahangirova, “Oracle problem in software testing,” in Proceedings of

the 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis, pp. 444–447, 2017.

[19] T. Y. Chen and T. Tse, “New visions on metamorphic testing after a quarter

of a century of inception,” in Proceedings of the 29th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering, pp. 1487–1490, 2021.

[20] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey on

metamorphic testing,” IEEE Transactions on software engineering, vol. 42,

no. 9, pp. 805–824, 2016.

[21] M. Lindvall, A. Porter, G. Magnusson, and C. Schulze, “Metamorphic model-

based testing of autonomous systems,” in 2017 IEEE/ACM 2nd Interna-

tional Workshop on Metamorphic Testing (MET), pp. 35–41, IEEE, 2017.

[22] P. Saha and U. Kanewala, “Fault detection effectiveness of metamorphic

relations developed for testing supervised classifiers,” in 2019 IEEE Inter-

national conference on artificial intelligence testing (AITest), pp. 157–164,

IEEE, 2019.

[23] A. Ma, S. Yan, and X. Yang, “Calculation method of metamorphic relational

complexity for numerical computation programs based on scale complexity,”

https://www.careerride.com/question-29-Manual-testing
https://www.careerride.com/question-29-Manual-testing

Bibliography 135

in International Conference on Signal Processing, Computer Networks, and

Communications (SPCNC 2022), vol. 12626, pp. 588–593, SPIE, 2023.

[24] Y. Cao, Z. Q. Zhou, and T. Y. Chen, “On the correlation between the effec-

tiveness of metamorphic relations and dissimilarities of test case executions,”

in 2013 13th International Conference on Quality Software, pp. 153–162,

IEEE, 2013.

[25] M. Asrafi, H. Liu, and F.-C. Kuo, “On testing effectiveness of metamorphic

relations: A case study,” in 2011 fifth international conference on secure

software integration and reliability improvement, pp. 147–156, IEEE, 2011.

[26] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Application of

metamorphic testing to supervised classifiers,” in 2009 Ninth International

Conference on Quality Software, pp. 135–144, IEEE, 2009.

[27] T. Jameel, M. Lin, and L. Chao, “Test oracles based on metamorphic rela-

tions for image processing applications,” in 2015 IEEE/ACIS 16th Interna-

tional Conference on Software Engineering, Artificial Intelligence, Network-

ing and Parallel/Distributed Computing (SNPD), pp. 1–6, IEEE, 2015.

[28] H. Liu, X. Liu, and T. Y. Chen, “A new method for constructing metamor-

phic relations,” in 2012 12th international conference on quality software,

pp. 59–68, IEEE, 2012.

[29] R. Guderlei and J. Mayer, “Towards automatic testing of imaging software

by means of random and metamorphic testing,” International Journal of

Software Engineering and Knowledge Engineering, vol. 17, no. 06, pp. 757–

781, 2007.

[30] T. Jameel, L. Mengxiang, and L. Chao, “A framework of automatic testing

of image processing applications,” in 2016 13th International Bhurban Con-

ference on Applied Sciences and Technology (IBCAST), pp. 312–317, IEEE,

2016.

Bibliography 136

[31] “Test Case — tutorialspoint.com.” https://www.tutorialspoint.com/

software_testing_dictionary/test_case.htm. [Accessed 02-Jun-2023].

[32] “What is expected outcome in software testing? —

educative.io.” https://www.educative.io/answers/

what-is-expected-outcome-in-software-testing. [Accessed 02-

Jun-2023].

[33] J. Mayer, “On testing image processing applications with statistical meth-

ods,” Conferencee on Software Engineering, pp. 69–78, 2005.

[34] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing:

Testing the untestable,” IEEE Software, vol. 37, no. 3, pp. 46–53, 2018.

[35] G. Fraser and A. Arcuri, “Evosuite: On the challenges of test case generation

in the real world,” in 2013 IEEE sixth international conference on software

testing, verification and validation, pp. 362–369, IEEE, 2013.

[36] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés, “Performance metamor-

phic testing: A proof of concept,” Information and Software Technology,

vol. 98, pp. 1–4, 2018.

[37] M. H. Rasheed, H. N. Fadhel, and M. M. Siddeq, “Novel methods to measure

the quality of 2d images compression techniques,” Research Square Platform

LLC, 2023.

[38] M. I. Jaafar, S. W. Nawawi, and R. A. Rahim, “Improving measurement

bias of structural similarity index (ssim) using absolute difference equation,”

Applications of Modelling and Simulation, vol. 6, pp. 10–19, 2022.

[39] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.

Zhou, “Metamorphic testing: A review of challenges and opportunities,”

ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[40] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations for

enhancing system understanding and use,” IEEE Transactions on Software

Engineering, vol. 46, no. 10, pp. 1120–1154, 2018.

https://www.tutorialspoint.com/software_testing_dictionary/test_case.htm
https://www.tutorialspoint.com/software_testing_dictionary/test_case.htm
https://www.educative.io/answers/what-is-expected-outcome-in-software-testing
https://www.educative.io/answers/what-is-expected-outcome-in-software-testing

Bibliography 137

[41] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The ora-

cle problem in software testing: A survey,” IEEE transactions on software

engineering, vol. 41, no. 5, pp. 507–525, 2014.

[42] R. Just and F. Schweiggert, “Evaluating testing strategies for imaging soft-

ware by means of mutation analysis,” in 2009 International Conference

on Software Testing, Verification, and Validation Workshops, pp. 205–209,

IEEE, 2009.

[43] J. Chen, Y. Wang, Y. Guo, and M. Jiang, “A metamorphic testing approach

for event sequences,” Plos one, vol. 14, no. 2, p. e0212476, 2019.

[44] J. Bell, C. Murphy, and G. Kaiser, “Metamorphic runtime checking of ap-

plications without test oracles,” CrossTalk, vol. 28, no. 2, pp. 9–13, 2015.

[45] M. Jiang, T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Ding, “A metamorphic

testing approach for supporting program repair without the need for a test

oracle,” Journal of systems and software, vol. 126, pp. 127–140, 2017.

[46] C. Jiang, S. Huang, and Z.-w. Hui, “Metamorphic testing of image region

growth programs in image processing applications,” in 2018 IEEE Interna-

tional Conference on Software Quality, Reliability and Security Companion

(QRS-C), pp. 70–72, IEEE, 2018.

[47] M. Pu, C. Y. Chong, and M. K. Lim, “Robustness evaluation in

hand pose estimation models using metamorphic testing,” arXiv preprint

arXiv:2303.04566, 2023.

[48] H. Spieker and A. Gotlieb, “Adaptive metamorphic testing with contextual

bandits,” Journal of Systems and Software, vol. 165, p. 110574, 2020.

[49] C.-A. Sun, H. Dai, H. Liu, and T. Y. Chen, “Feedback-directed metamor-

phic testing,” ACM Transactions on Software Engineering and Methodology,

vol. 32, no. 1, pp. 1–34, 2023.

[50] Z. Ying, A. Bellotti, D. Towey, T. Y. Chen, and Z. Q. Zhou, “Using meta-

morphic relation violation regions to support a simulation framework for

Bibliography 138

the process of metamorphic testing,” in 2022 IEEE 46th Annual Comput-

ers, Software, and Applications Conference (COMPSAC), pp. 1722–1727,

IEEE, 2022.

[51] U. Kanewala, J. M. Bieman, and A. Ben-Hur, “Predicting metamorphic

relations for testing scientific software: a machine learning approach using

graph kernels,” Software testing, verification and reliability, vol. 26, no. 3,

pp. 245–269, 2016.

[52] X. Lin, M. Simon, and N. Niu, “Exploratory metamorphic testing for scien-

tific software,” Computing in science & engineering, vol. 22, no. 2, pp. 78–87,

2018.

[53] M. Jiang, T. Y. Chen, and S. Wang, “On the effectiveness of testing senti-

ment analysis systems with metamorphic testing,” Information and Software

Technology, vol. 150, no. 1, p. 106966, 2022.

[54] L. Jin, Z. Ding, and H. Zhou, “Evaluation of chinese natural language pro-

cessing system based on metamorphic testing,” Mathematics, vol. 10, no. 8,

p. 1276, 2022.

[55] C. A. Sari, W. S. Sari, and H. Rahmalan, “A combination of k-means and

fuzzy c-means for brain tumor identification,” Scientific Journal of Infor-

matics, vol. 8, no. 1, pp. 76–83, 2021.

[56] K. Sim, D. Wong, and T. Hii, “Evaluating the effectiveness of metamorphic

testing on edge detection programs,” International Journal of Innovation,

Management and Technology, vol. 4, no. 1, pp. 6–10, 2013.

[57] C.-A. Sun, A. Fu, P.-L. Poon, X. Xie, H. Liu, and T. Y. Chen, “Metric

{̂+}+: A metamorphic relation identification technique based on input plus

output domains,” IEEE Transactions on Software Engineering, vol. 47, no. 9,

pp. 1764–1785, 2019.

Bibliography 139

[58] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively does meta-

morphic testing alleviate the oracle problem?,” IEEE Transactions on Soft-

ware Engineering, vol. 40, no. 1, pp. 4–22, 2013.

[59] K. Qiu, Z. Zheng, T. Y. Chen, and P.-L. Poon, “Theoretical and empirical

analyses of the effectiveness of metamorphic relation composition,” IEEE

Transactions on software engineering, vol. 48, no. 3, pp. 1001–1017, 2020.

[60] M. Ojdanic, E. Soremekun, R. Degiovanni, M. Papadakis, and Y. Le Traon,

“Mutation testing in evolving systems: Studying the relevance of mutants to

code evolution,” ACM Transactions on Software Engineering and Method-

ology, vol. 32, no. 1, pp. 1–39, 2023.

[61] F. Tambon, V. Majdinasab, A. Nikanjam, F. Khomh, and G. Antonio, “Mu-

tation testing of deep reinforcement learning based on real faults,” arXiv

preprint arXiv:2301.05651, 2023.

[62] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,

“Mutation testing advances: an analysis and survey,” in Advances in Com-

puters, vol. 112, pp. 275–378, Elsevier, 2019.

[63] B. Tekinerdogan, H. G. Gurbuz, C. Catal, and N. P. Er, “Test suite assess-

ment of safety-critical systems using safety tactics and fault-based mutation

testing,” Authorea Preprints, 2023.

[64] V. H. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler, D. R.

Dias, and M. P. Guimarães, “Machine learning applied to software testing:

A systematic mapping study,” IEEE Transactions on Reliability, vol. 68,

no. 3, pp. 1189–1212, 2019.

[65] M. B. Kusharki, S. Misra, B. Muhammad-Bello, I. A. Salihu, and B. Suri,

“Automatic classification of equivalent mutants in mutation testing of an-

droid applications,” Symmetry, vol. 14, no. 4, p. 820, 2022.

[66] Q. Hu, L. Ma, X. Xie, B. Yu, Y. Liu, and J. Zhao, “Deepmutation++:

A mutation testing framework for deep learning systems,” in 2019 34th

Bibliography 140

IEEE/ACM International Conference on Automated Software Engineering

(ASE), pp. 1158–1161, IEEE, 2019.

[67] P. Delgado-Pérez, A. B. Sánchez, S. Segura, and I. Medina-Bulo, “Per-

formance mutation testing,” Software Testing, Verification and Reliability,

vol. 31, no. 5, p. e1728, 2021.

[68] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An experi-

mental determination of sufficient mutant operators,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 5, no. 2, pp. 99–118,

1996.

[69] J. Mayer and R. Guderlei, “On random testing of image processing ap-

plications,” in 2006 Sixth International Conference on Quality Software

(QSIC’06), pp. 85–92, IEEE, 2006.

[70] R. Just and F. Schweiggert, “Automating unit and integration testing with

partial oracles,” Software Quality Journal, vol. 19, no. 4, pp. 753–769, 2011.

[71] J. Ding and X.-H. Hu, “Application of metamorphic testing monitored by

test adequacy in a monte carlo simulation program,” Software Quality Jour-

nal, vol. 25, no. 3, pp. 841–869, 2017.

[72] T. Jameel, L. Mengxiang, and L. Chao, “Automatic test oracle for image

processing applications using support vector machines,” in 2015 6th IEEE

International Conference on Software Engineering and Service Science (IC-

SESS), pp. 1110–1113, IEEE, 2015.

[73] W. Chan, J. C. Ho, and T. Tse, “Piping classification to metamorphic test-

ing: An empirical study towards better effectiveness for the identification

of failures in mesh simplification programs,” in 31st Annual International

Computer Software and Applications Conference (COMPSAC 2007), vol. 1,

pp. 397–404, IEEE, 2007.

[74] J. Ding, T. Wu, J. Q. Lu, and X.-H. Hu, “Self-checked metamorphic testing

of an image processing program,” in 2010 Fourth International Conference

Bibliography 141

on Secure Software Integration and Reliability Improvement, pp. 190–197,

IEEE, 2010.

[75] J. Ding, D. Zhang, and X.-H. Hu, “An application of metamorphic testing for

testing scientific software,” in Proceedings of the 1st International Workshop

on Metamorphic Testing, pp. 37–43, 2016.

[76] R. Ibrahim, A. A. B. Amin, S. Jamel, and J. A. Wahab, “Epit: A soft-

ware testing tool for generation of test cases automatically,” arXiv preprint

arXiv:2007.11197, 2020.

[77] S. I. Khaleel and R. Anan, “A review paper: optimal test cases for regres-

sion testing using artificial intelligent techniques,” International Journal of

Electrical and Computer Engineering (IJECE), vol. 13, no. 2, pp. 1803–1816,

2023.

[78] V. Arnicane, “Complexity of equivalence class and boundary value testing

methods,” Int J Comput Sci Inform Techn, vol. 751, pp. 80–101, 2009.

[79] M. E. Khan and F. Khan, “A comparative study of white box, black box and

grey box testing techniques,” International Journal of Advanced Computer

Science and Applications, vol. 3, no. 6, pp. 12–15, 2012.

[80] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a

literature review,” International Journal of Embedded Systems and Applica-

tions (IJESA), vol. 2, no. 2, pp. 29–50, 2012.

[81] K. Burr and W. Young, “Combinatorial test techniques: Table-based au-

tomation, test generation and code coverage,” in Proc. of the Intl. Conf. on

Software Testing Analysis & Review, Citeseer, 1998.

[82] Z. Zhou, Z. Zheng, T. Y. Chen, J. Zhou, and K. Qiu, “Follow-up test cases

are better than source test cases in metamorphic testing: A preliminary

study,” in 2021 IEEE/ACM 6th International Workshop on Metamorphic

Testing (MET), pp. 69–74, IEEE, 2021.

Bibliography 142

[83] J. Ayerdi, S. Segura, A. Arrieta, G. Sagardui, and M. Arratibel, “Qos-aware

metamorphic testing: An elevation case study,” in 2020 IEEE 31st Interna-

tional Symposium on Software Reliability Engineering (ISSRE), pp. 104–114,

IEEE, 2020.

[84] A. Arrieta, “Multi-objective metamorphic follow-up test case selection for

deep learning systems,” in Proceedings of the Genetic and Evolutionary Com-

putation Conference, pp. 1327–1335, 2022.

[85] F. Jafari, A. Nadeem, and Q. u. Zaman, “Evaluation of metamorphic testing

for edge detection in mri brain diagnostics,” Applied Sciences, vol. 12, no. 17,

p. 8684, 2022.

[86] A. Arrieta, “On the cost-effectiveness of composite metamorphic relations

for testing deep learning systems,” in 2022 IEEE/ACM 7th International

Workshop on Metamorphic Testing (MET), pp. 42–47, IEEE, 2022.

[87] S. Israni and S. Jain, “Edge detection of license plate using sobel operator,”

in 2016 international conference on electrical, electronics, and optimization

techniques (ICEEOT), pp. 3561–3563, IEEE, 2016.

[88] M. Yasir, M. S. Hossain, S. Nazir, S. Khan, and R. Thapa, “Object identifi-

cation using manipulated edge detection techniques,” Science, vol. 3, no. 1,

pp. 1–6, 2022.

[89] R. Song, Z. Zhang, and H. Liu, “Edge connection based canny edge de-

tection algorithm,” Journal of Information Hiding and Multimedia Signal

Processing, vol. 8, no. 6, pp. 1228–1236, 2017.

[90] N. Mathur, S. Mathur, and D. Mathur, “A novel approach to improve sobel

edge detector,” Procedia Computer Science, vol. 93, pp. 431–438, 2016.

[91] R. Tian, G. Sun, X. Liu, and B. Zheng, “Sobel edge detection based on

weighted nuclear norm minimization image denoising,” Electronics, vol. 10,

no. 6, p. 655, 2021.

Bibliography 143

[92] A. Asmaidi, D. S. Putra, M. M. Risky, et al., “Implementation of sobel

method based edge detection for flower image segmentation,” Sinkron: jur-

nal dan penelitian teknik informatika, vol. 3, no. 2, pp. 161–166, 2019.

[93] G. M. H. Amer and A. M. Abushaala, “Edge detection methods,” in 2015

2nd World Symposium on Web Applications and Networking (WSWAN),

pp. 1–7, IEEE, 2015.

[94] “Concept of Edge Detection - Javatpoint — javatpoint.com.” https://

www.javatpoint.com/dip-concept-of-edge-detection. [Accessed 27-

Jun-2023].

[95] L. Najman and H. Talbot, Mathematical morphology: from theory to appli-

cations. John Wiley & Sons, 2 ed., 2013.

[96] M. Goyal, “Morphological image processing,” IJCST, vol. 2, no. 4, p. 59,

2011.

[97] R. A. Lotufo, R. Audigier, A. V. Saúde, and R. C. Machado, “Morphological

image processing,” in Microscope image processing, pp. 75–117, Elsevier,

2023.

[98] “Morphological Image Processing — cs.auckland.ac.nz.” https:

//www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/

ImageProcessing-html/topic4.htm. [Accessed 20-Apr-2023].

[99] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Ter-

zopoulos, “Image segmentation using deep learning: A survey,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 44, no. 7, pp. 3523–

3542, 2021.

[100] X. Liu, L. Song, S. Liu, and Y. Zhang, “A review of deep-learning-based

medical image segmentation methods,” Sustainability, vol. 13, no. 3, p. 1224,

2021.

https://www.javatpoint.com/dip-concept-of-edge-detection
https://www.javatpoint.com/dip-concept-of-edge-detection
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm

Bibliography 144

[101] L. Lalaoui and T. Mohamadi, “A comparative study of image region-based

segmentation algorithms,” International Journal of Advanced Computer Sci-

ence and Applications, vol. 4, no. 6, pp. 198–206, 2013.

[102] M. Habijan, D. Babin, I. Galić, H. Leventić, K. Romić, L. Velicki, and

A. Pižurica, “Overview of the whole heart and heart chamber segmenta-

tion methods,” Cardiovascular Engineering and Technology, vol. 11, no. 24,

pp. 725–747, 2020.

[103] K. Ramesh, G. K. Kumar, K. Swapna, D. Datta, and S. S. Rajest, “A review

of medical image segmentation algorithms,” EAI Endorsed Transactions on

Pervasive Health and Technology, vol. 7, no. 27, pp. e6–e6, 2021.

[104] S. Mirjalili, J. Song Dong, A. S. Sadiq, and H. Faris, “Genetic algo-

rithm: Theory, literature review, and application in image reconstruction,”

Nature-Inspired Optimizers: Theories, Literature Reviews and Applications,

vol. 811, pp. 69–85, 2020.

[105] “What Is Image Reconstruction? (with pictures) — easytechjunkie.com.”

https://www.easytechjunkie.com/what-is-image-reconstruction.

htm. [Accessed 28-Jun-2023].

[106] L. Fu, Y. Lei, M. Yan, L. Xu, Z. Xu, and X. Zhang, “Metafl: Metamor-

phic fault localisation using weakly supervised deep learning,” IET Software,

vol. 17, no. 2, pp. 137–153, 2023.

[107] X. Lin, M. Simon, and N. Niu, “Hierarchical metamorphic relations for test-

ing scientific software,” in Proceedings of the International Workshop on

Software Engineering for Science, pp. 1–8, 2018.

[108] T. Y. Chen, P.-L. Poon, and X. Xie, “Metric: Metamorphic relation iden-

tification based on the category-choice framework,” Journal of Systems and

Software, vol. 116, no. 2, pp. 177–190, 2016.

https://www.easytechjunkie.com/what-is-image-reconstruction.htm
https://www.easytechjunkie.com/what-is-image-reconstruction.htm

Bibliography 145

[109] D. Sobania, M. Briesch, P. Röchner, and F. Rothlauf, “Mtgp: Combin-

ing metamorphic testing and genetic programming,” in Genetic Program-

ming: 26th European Conference, EuroGP 2023, Held as Part of EvoStar

2023, Brno, Czech Republic, April 12–14, 2023, Proceedings, pp. 324–338,

Springer, 2023.

[110] E. Altamimi, A. Elkawakjy, and C. Catal, “Metamorphic relation automa-

tion: Rationale, challenges, and solution directions,” Journal of Software:

Evolution and Process, vol. 35, no. 1, p. e2509, 2023.

[111] “Translate an Image Using imtranslate Function - MATLAB amp;

Simulink — mathworks.com.” https://www.mathworks.com/help/

images/translate-an-image.html. [Accessed 17-May-2023].

[112] I. G. Prahmana and K. A. B. Sitepu, “Identification identification of land and

water centella asiatica leaf herbal plants using digital imagery with the sobel

edge detection algorithm,” Journal of Artificial Intelligence and Engineering

Applications (JAIEA), vol. 2, no. 2, pp. 48–52, 2023.

[113] R. A. AS and S. Gopalan, “Comparative analysis of eight direction sobel

edge detection algorithm for brain tumor mri images,” Procedia Computer

Science, vol. 201, pp. 487–494, 2022.

[114] M. A. Kumar, N. S. Goud, R. Sreeram, and R. G. Prasuna, “Image pro-

cessing based on adaptive morphological techniques,” in 2019 International

Conference on Emerging Trends in Science and Engineering (ICESE), vol. 1,

pp. 1–4, IEEE, 2019.

[115] R. Srisha and A. Khan, “Morphological operations for image processing: un-

derstanding and its applications,” NCVSComs-13, vol. 13, pp. 17–19, 2013.

[116] A. C. Barus, T. Y. Chen, F.-C. Kuo, H. Liu, and H. W. Schmidt, “The

impact of source test case selection on the effectiveness of metamorphic

testing,” in Proceedings of the 1st International Workshop on Metamorphic

Testing, pp. 5–11, 2016.

https://www.mathworks.com/help/images/translate-an-image.html
https://www.mathworks.com/help/images/translate-an-image.html

Bibliography 146

[117] U. Sara, M. Akter, and M. S. Uddin, “Image quality assessment through

fsim, ssim, mse and psnr—a comparative study,” Journal of Computer and

Communications, vol. 7, no. 3, pp. 8–18, 2019.

[118] K. Ding, K. Ma, S. Wang, and E. P. Simoncelli, “Image quality assessment:

Unifying structure and texture similarity,” IEEE transactions on pattern

analysis and machine intelligence, vol. 44, no. 5, pp. 2567–2581, 2020.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Scope
	1.4 Objectives
	1.5 Research Questions
	1.6 Contributions
	1.7 Thesis Organization

	2 Background
	2.1 Testing of Image Processing Applications
	2.2 Challenges in Testing Image Processing Applications
	2.2.1 Generation of Test Cases
	2.2.2 Evaluation of Output Images
	2.2.3 Oracle Problem

	2.3 Methods to Alleviate Oracle Problem
	2.4 Metamorphic Testing
	2.4.1 Example of Metamorphic Testing

	2.5 Metamorphic Testing In Image Processing Applications
	2.6 Metamorphic Relations
	2.6.1 Generation of Source and Follow-up Test Cases Using MR
	2.6.2 Evaluation of Metamorphic Relations
	2.6.3 Fault Detection Rate of Metamorphic Relations

	2.7 Summary

	3 Literature Review
	3.1 Evaluation of Metamorphic Relations
	3.1.1 Evaluating Effectiveness of MT on Edge Detection Programs
	3.1.2 Addreessing Test Oracle Problem in IPAs
	3.1.3 MT of Image Region Growth Programs in IPAs
	3.1.4 Models for Random Input Generation
	3.1.5 Testing Imaging Software Automatically
	3.1.6 Evaluation of Partial Oracles using MT
	3.1.7 Evaluation of Partial Oracles
	3.1.8 Framework for Evaluating MT

	3.2 Metamorphic Testing and Machine Learning
	3.2.1 Mechanism to Automate Test Oracle using SVM
	3.2.2 Framework of Automatic Testing of IPAs
	3.2.3 Identification of Failures in Mesh Simplification Programs using MT

	3.3 Enhancements of Metamorphic Testing
	3.3.1 Self Checked MT Approach
	3.3.2 Application of MT for Testing Scientific Software

	3.4 Research Gaps
	3.5 Summary

	4 A Framework for Evaluation of Metamorphic Relations
	4.1 Proposed Framework for MR Evaluation
	4.1.1 Generation of Source Test Cases
	4.1.2 Test Case Adequacy through Equivalence Class Testing and Code Coverage
	4.1.3 Generation of Follow-up Test Cases
	4.1.4 Evaluation of Metamorphic Relations
	4.1.5 Composition of Metamorphic Relations

	4.2 Summary

	5 Proposed Metamorphic Relations
	5.1 Image Processing Operations
	5.1.1 Edge Detection
	5.1.2 Morphological Image Operations
	5.1.3 Image Segmentation
	5.1.4 Image Reconstruction
	5.1.5 Euclidean Distance Transform

	5.2 Metamorphic Relations
	5.3 Existing Metamorphic Relations
	5.3.1 MRs for Edge Detection
	5.3.2 Existing MRs for Dilation and Erosion
	5.3.3 Proposed MRs for Dilation and Erosion
	5.3.3.1 Counter Clock Wise Rotation at 90 degree
	5.3.3.2 Transposition
	5.3.3.3 Enhanced Associative Property
	5.3.3.4 Image Translation

	5.4 Summary

	6 Evaluation of Proposed MRs
	6.1 Experiment Design
	6.1.1 Subject Program
	6.1.1.1 Sobel Edge Detection
	6.1.1.2 Dilation and Erosion
	6.1.1.3 Improved Canny Edge Detection

	6.1.2 Source Code
	6.1.3 Dataset
	6.1.4 Source Test Cases
	6.1.5 Code Coverage

	6.2 Effectiveness of Mutation Operators
	6.2.1 Effectiveness of Mutation Operators used in Edge Detection
	6.2.2 Effectiveness of Mutation Operators used in Dilation and Erosion Operations (Proposed Framework)

	6.3 Effectiveness of Metamorphic Relations
	6.3.1 Effectiveness of Edge Detection MRs
	6.3.2 Effectiveness of Dilation and Erosion MRs
	6.3.3 Effectiveness of Proposed MRs

	6.4 Comparison of Proposed Framework with Existing Techniques
	6.4.1 Comparison Results of Edge Detection
	6.4.2 Comparison Results of Dilation and Erosion
	6.4.3 Comparison Results of Proposed MRs with Existing MRs for Dilation and Erosion

	6.5 Composition of Metamorphic Relations
	6.6 MR Evaluation using SSIM
	6.6.1 Proposed Framework
	6.6.1.1 Generation of Source Test Cases
	6.6.1.2 Identification of Metamorphic Relations
	6.6.1.3 Generation of Follow-Up Test Cases
	6.6.1.4 SSIM Based Output Comparison

	6.6.2 Results and Discussion

	6.7 Threats to Validity
	6.8 Summary

	7 Conclusion and Future Work
	7.1 Answers to Research Questions
	7.2 Conclusion
	7.3 Future Directions

	Bibliography

