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Abstract

Echocardiography is one of the most commonly used imaging systems for assessing

heart anatomy and function. It provides valuable information about the function

and structure of the left ventricle (LV), the accurate quantification of which is

important for the diagnosis and management of various cardiovascular conditions.

In clinical practice, these tasks are performed manually which is time-consuming

and prone to inter-observer and intra-observer variability due to human involve-

ment. Additionally, echocardiogram studies often involve multiple videos, creating

a large volume of complex data that is challenging to analyze. This highlights the

need for automated machine learning methods to process such extensive datasets

and identify intricate patterns in the quantification of heart structure and func-

tion that skilled observers might overlook, paving the way for computer-assisted

diagnostics in this field.

In the first part of this study, ejection fraction (EF) is estimated from end-systolic

and end-diastolic frames by extracting multiple features from the segmented im-

ages. These features are analyzed using both neural networks and machine learning

algorithms. Results show that machine learning techniques not only automate the

process but also deliver consistent and more accurate results, compared to clini-

cal methods. The evaluations are performed on the publicly available EchoNet-

Dynamic echocardiogram dataset.

To streamline and automate the process, a fully automated multitask network,

the EchoFused Network (EFNet), is introduced, which simultaneously performs

LV segmentation and EF estimation through cross-module fusion. The proposed

model employs semi-supervised learning to estimate EF from the entire cardiac

cycle, providing more reliable estimations and eliminating the need to identify end-

systolic and end-diastolic frames. To optimize LV segmentation and EF estimation

jointly, losses from task-specific modules are combined using a normalization tech-

nique, ensuring commensurability on a comparable scale. The proposed model is

evaluated on two distinct datasets, EchoNet-Dynamic and CAMUS, demonstrating



x

its effectiveness in achieving superior outcomes, surpassing current state-of-the-art

methods.

Lastly, expanding on the previous work, methods were explored to enhance LV

segmentation based on insights from previous joint EF estimation and LV seg-

mentation. To improve the quality and accuracy of LV delineation, it is proposed

to include edge information through a multitask network that employs a common

encoder for shared feature extraction from echocardiogram data. Separate decoder

modules for semantic segmentation and edge prediction are utilized, each with its

own cost function, which are combined to perform joint optimization within the

network. The proposed method exhibits enhanced accuracy across multiple met-

rics, demonstrating the effectiveness of the proposed approach in overcoming the

challenges associated with LV delineation.
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Chapter 1

Introduction

1.1 Background

Cardiovascular disease (CVD) stands as the primary global cause of mortality,

contributing to over 17.9 million fatalities in 2019, with projections indicating

an anticipated increase to more than 23.6 million by the year 2030 [1]. In a

recent investigation targeting individuals aged 35 to 70, it was revealed that 40%

of worldwide fatalities resulted from CVD, primarily affecting low- and middle-

income nations [2]. The majority of these fatalities are linked to strokes and heart

attacks. Heart disease encompasses a variety of disorders impacting both the

function and structure of the heart. There is a growing interest in the detection

of heart disease at an early stage as obesity, hypertension and metabolic disorders

like diabetes are on the rise. A delay in diagnosis might result in a poor prognosis,

which is frequently linked to permanent pathophysiologic alterations that develop

over time.

Imaging modalities that have found use in cardiology include Cardiovascular Mag-

netic Resonance Imaging (CMR), Fundus Photography, Computerized Tomogra-

phy (CT), Echocardiography, Intravascular Ultrasound (IVUS), and others. De-

spite the high imaging quality of CMR and CT, one of the most commonly utilized

imaging systems for assessing heart anatomy and function is echocardiography,

1
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mainly due to its mobility, availability, and cheaper cost as compared to other tech-

niques. Echocardiography makes it possible to evaluate the structure and function

of the heart without exposing patients to radiation or invasive treatments.

1.2 Artificial Intelligence in Echocardiography

Echocardiography presents challenges that are not straightforward to achieve for

multiple reasons. Rather than comprising a single still image, an echocardiogram

study can consist of several videos collected from multiple views. This vast amount

of multidimensional data generated in each study is difficult to comprehend and,

hence, not fully utilized. Additionally, measurements can differ from one video

to another due to beat-to-beat inconsistency and variability resulting from the

estimation of a three-dimensional object using two-dimensional images. Operator-

dependent data acquirement, device inconsistency, and low image quality further

restrict echocardiography. Given the presence of these constraints, it appears that

echocardiography could benefit from the implementation of automated learning

methods to aid human interpretation.

Progress in echocardiogram interpretation, standardization, and workflow, fa-

cilitated by automated monitoring and analytic techniques, holds considerable

promise in minimizing variability in outcomes and providing high-quality, cost-

effective healthcare, especially to individuals in resource-limited settings. Auto-

mated quantification and the identification of pathological features such as valve

disease, regional wall motion abnormalities, and cardiomyopathies, coupled with

rapid application at the point of care, will become feasible through these ad-

vancements [3]. These advancements not only enhance diagnostic accuracy and

efficiency but also ensure that critical cardiac care becomes accessible to a broader

population, ultimately improving overall health outcomes. Artificial intelligence

(AI) techniques, which include machine learning (ML) and deep learning (DL), can

play an effective role in achieving these objectives by providing precise, automated

analysis and improving diagnostic accuracy.
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1.3 Automation Tools in Echocardiography

Several automation tools and technologies have emerged to streamline and enhance

the diagnostic process. These tools include software applications and platforms

designed to automate tasks such as image acquisition, analysis, and interpreta-

tion. Some platforms offer workflow optimization solutions specifically designed

for echocardiography departments. These tools streamline the entire echocardiog-

raphy process, from appointment scheduling to image acquisition, interpretation,

and reporting, optimizing resource utilization and improving patient throughput.

Telemedicine platforms with integrated echocardiography capabilities enable re-

mote consultations and monitoring of patients with cardiovascular conditions.

These platforms allow clinicians to perform echocardiographic exams remotely,

review images in real-time, and provide timely interventions and recommenda-

tions, expanding access to cardiac care.

Point-of-care ultrasound (POCUS) devices equipped with automated features for

image acquisition and analysis are becoming increasingly popular in clinical set-

tings. These handheld devices offer portability, ease of use, and rapid imaging ca-

pabilities, making them suitable for point-of-care assessments in various healthcare

settings. For example, a laptop-based echocardiography system has practically all

2D echocardiographic applications, although a pocket-sized ultrasound frequently

lacks spectral Doppler and color flow features. A laptop-based and a pocket-size

device are shown in Fig. 1.1.

POCUS has the potential to revolutionize bedside medicine and make physical

examinations obsolete. Numerous investigations have conclusively demonstrated

that POCUS is equally efficient and effective as traditional equipment. POCUS

can also be utilized in more scenarios and by a broader spectrum of users than

normal echocardiograms due to its availability. The handheld imaging devices,

however, have restricted function with several challenges for their clinical applica-

tion. The most important of them is the need for widespread standardization of

training for extensive use of POCUS. AI can be used to address such limitations
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Figure 1.1: Handheld ultrasound machines; (A): a laptop-based equipment,
(B): a pocket-size ultrasound [4].

by providing automated guidance and diagnostic support, thereby enhancing the

accuracy and reliability of these portable tools in clinical settings. For instance,

an AI-based automated left ventricle ejection fraction analysis program for PUS

images has been created (“LVivo by DiA Imaging Analysis Ltd.”, and “Vscan by

GE Healthcare”). Recently, various devices the size of a smartphone have been

made available. These devices employ AI based methods in order to assess cardiac

function. Some of these gadgets are said to be inexpensive and useful to physicians

in practice (e.g. “Vscan GE Healthcare”, “Butterfly IQ”, “Philips Lumify”).

Zhang et al. [5] proposed that those who are not even experts in this field could

use portable devices at point-of-care settings and then upload images to a cloud

computing system which could perform a comparison with earlier studies. In this

way, AI could prove to be useful in detecting early indicators of cardiac disorder

in a cost-effective manner leading to a reduction of CVD-related morbidity and

mortality. Furthermore, integrating these technologies into routine clinical practice

could pave the way for more personalized and preventive cardiac care, significantly

transforming the landscape of cardiovascular health management.
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1.4 Echocardiography Principles and Methods:

An Overview

Echocardiography is a non-invasive test in which high-frequency sound waves (ul-

trasounds) are used to produce an image of the heart. An echocardiogram is the

name for such an image. Echocardiography can provide information to doctors

regarding blood clots in the heart, difficulties with the aorta; the heart’s major

artery, problems with the function of heart valves, problems with the heart’s con-

tracting or relaxing function, and pressures in the heart. Fig. 1.2 depicts certain

measurements that are generally obtained from echocardiograms during the oc-

currence of heart failure (HF).

Figure 1.2: Role of echocardiography in heart failure [6].

1.4.1 Transthoracic Echocardiography (TTE)

There are several different kinds of echocardiograms which include Transthoracic

Echocardiography (TTE), Transesophageal Echocardiography (TEE), Doppler,

Stress, and the three-dimensional echocardiography depending on the method of

obtaining them. The most frequent type of echocardiogram is a TTE, which

involves placing a transducer on the chest wall, which emits sound waves (ultra-

sounds) that bounce off the heart structures and create still or moving images
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of the internal regions of the heart. This allows healthcare providers to visualize

the heart in real-time and evaluate its pumping ability, valve function, chamber

size, and overall cardiac health. The TTE plays a crucial role in diagnosing a

wide range of cardiac conditions, including coronary artery disease, heart valve

disorders, heart failure, congenital heart defects, and pericardial diseases. It helps

healthcare providers make informed decisions about treatment plans, monitor dis-

ease progression, and assess the effectiveness of interventions.

1.4.2 The Echocardiographic Views

Since an echocardiogram view only produces a two-dimensional image of an organ

that is three-dimensional, various viewing angles are required to adequately visu-

alize all cardiac components. Fig. 1.3 shows different scanning planes of the heart.

Figure 1.3: Different planes to scan the heart during an echocardiogram test.
PLAX - Parasternal long axis, PSAX - Parasternal short axis, A2C - Apical
two-chamber, A4C - Apical four-chamber, A5C - Apical five-chamber, SC -

Subcostal[7]

Images obtained in the Parasternal long axis (PLAX) perspectives are shown in

the long-axis plane. The images taken in the Parasternal short axis (PSAX) views

are represented in the short-axis plane and the apical plane corresponds to images
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(a) Anatomic Image (b) Echocardiographic Image

Figure 1.4: Apical four-chamber view [7]

acquired from the apical window. The major positions of the transducer include

the apical, parasternal, suprasternal, and subcostal. Various tomographic images

can be obtained by rotating and tilting the probe. Each will provide orientation

information depending upon the scanning planes.

The data studied in this research comprises an apical four-chamber view (A4C), a

critical perspective in echocardiography that provides comprehensive visualization

of the heart’s chambers and valves. For the acquisition of the A4C view, the apical

window is placed beneath the left breast tissue and is where the apical impulse

can be felt. The heart is shown upside down on the screen, as seen through the

apically positioned transducer. The apex is at the top of the screen, while at the

bottom are the atria. The interventricular septum (IVS) and interatrial septum

(IAS) separate the left ventricle (LV) and left atrium (LA) on the right and the

right ventricle (RV) and right atrium (RA) on the left. The tricuspid valve (TV)

can also be seen located between the RA and RV, whereas the mitral valve (MV)

is located between the LA and LV. This comprehensive view allows for detailed

examination of the heart’s structure and function, providing crucial insights into

both the right and left sides of the heart. The A4C view, shown in Fig. 1.4, is one

of the most appropriate for assessing ventricular function, making it invaluable in

diagnosing and monitoring various cardiac conditions. The Fig. 1.4 (a) shows the

anatomic view whereas Fig. 1.4 (b) shows its echocardiographic view, illustrating

the practical application of this imaging technique in a clinical setting.
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1.5 Quantification of Cardiac Chamber through

Echocardiography

One of the most significant outcomes obtained from an echocardiogram is the

quantification of the cardiac chamber which is fundamental in cardiac imaging.

Consistency in chamber quantification methodology is upheld by the establishment

and widespread dissemination of official guidelines. Adhering to these recommen-

dations ensures consistency among practitioners and enhances effective communi-

cation. These standardized practices are crucial for comparing patient data across

different healthcare settings and for longitudinal patient monitoring. The most re-

cent recommendations for echocardiographic chamber quantification were jointly

issued by the American Society of Echocardiography (ASE) and the European As-

sociation of Cardiovascular Imaging (EACVI) in 2015 [8]. These guidelines provide

recommendations for the performance, interpretation, and clinical application of

echocardiographic chamber quantification, ensuring uniformity in clinical practice.

1.5.1 The Left Ventricle

An important aspect of left ventricular structure quantification is the measurement

of LV size. LV dimensions, which comprise linear internal dimensions, volumes,

and wall thickness, are among the quantitative data generated from echocardio-

graphy that can influence patient therapy and serve as powerful predictors of

outcomes. End-diastole and end-systole measurements are typically reported, and

these are subsequently utilized to calculate global LV function parameters. There

is a strong association between heart size and outcomes in people with stable is-

chemic heart disease (SIHD). LV size and ejection fraction (EF) are important

indicators of survival not only in patients with HF but are also a salient feature

for those who do not have any history of heart attack, according to data from

the Framingham Heart Study. Moreover, accurate assessment of LV size can help

guide clinical decisions, such as the timing of interventions and the adjustment of

medical therapies, thus improving patient prognosis.
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1.5.1.1 LV Size Assessment

LV size measurements include LV linear measurements and LV volume measure-

ments. LV linear measurements include LV internal diameter at diastole (LVIDd)

and LV internal diameter at systole (LVIDs). LV internal diameter (LVID) is the

length taken from inner edge to inner edge, orthogonal to the major LV axis, at

or proximately under the margin of tips of the MV leaflet. LVIDd is measured at

end-diastole (specified as the frame with the greatest LV dimensions or volume or

the first frame after the closure of the mitral valve.). LVIDs is measured at end-

systole (specified as either the frame with the smallest LV dimensions or volume

or the one after the closure of the aortic valve) [8].

For LV volume measurements, 2D echocardiography estimations are established

on geometric techniques that use quantification of LV dimensions to compute

volume. A preferred technique is the biplane method of disks, which is the modified

Simpson’s method [8]. There is an alternative area-length technique as well, which

is seldom used. The endocardial-blood pool interface is traced on images with clear

endocardial boundary delineation at end-diastole and end-systole using apical two-

and four-chamber views (ideally an LV-focused view). When reaching the MV

plane, the contour is completed by a straight line that joins the two opposing

parts of the MV ring. The bisector between this line and the apex of the LV is the

LV length. The volume measurements are calculated using these volume tracings

and lengths. A brief description of these techniques is given below.

Area–Length Method The area-length method is a straightforward method

to calculate LV volume. The area (A) of the LV in a four-chamber view and the

length (L) of the ventricle (between MV and the apex) are used to determine

volume, given by Eq. (1.1);

V =
0.85× A2

L
. (1.1)

This method assumes LV to be a bullet-like shape. However, it may encounter

limitations since this assumption is not always applicable.
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Biplane Method of Disks The ASE and the EACVI both recommend the

use of the biplane method of disks (modified Simpson’s method) [8]. This method

manually delineates endocardial borders at the end-systole and end-diastole in two

orthogonal views; apical four-chamber (A4C) and apical two-chamber (A2C). The

LV is divided into a row of elliptical disks aligned perpendicular to the ventri-

cle’s major axis, and their respective volumes are added. A cross-section of one

such disk is illustrated in Fig. 1.5. The end-diastolic volume (EDV) is determined

from the end-diastolic (ED) frame. The end-systolic volume (ESV) is determined

from the end-systolic (ES) frame.

Figure 1.5: Simpson’s Biplane Method ( ai—disk diameters in A4C view,
bi—disk diameters in A2C view, L—length of major axis, l—height of a single

disk).

The Volume of each disk shown in Fig. 1.5 is given by Eq. (1.2);

V olume of each disk =
π(ai × bi)l

4
. (1.2)

where ai and bi are the semi-axis lengths of a disk, obtained from an A4C and

A2C, respectively, and l is the height of the disk. Adding the volumes of these

disks gives the total volume of the left ventricle. These volumes are then used to

find an estimate of LV function.
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The stroke volume (SV) can be calculated as given by Eq. (1.3);

SV = EDV − ESV (mL). (1.3)

Because images must be optimized and endocardial borders must be precisely

detected and traced according to standards, a lot of sonographer experience is

necessary. This approach can be hampered by poor endocardial border character-

ization, foreshortened images, and inappropriate techniques.

1.5.1.2 LV Function Assessment

To measure global LV function for any 1-dimensional, 2D, or 3D parameter, the

difference between the respective values at the end of diastole and systole is nor-

malized by the end-diastolic value.

LV Ejection Fraction EF measures the percentage of blood given out of the

LV during each cardiac cycle. EF is calculated from estimates of LV volumes

obtained at the end of systole and diastole, using the formula in Eq. (1.4). LV

volume estimates are derived either from Simpson’s method of disks or the area-

length method, the former being the preferable one.

The EF is given by;

EF =
EDV − ESV

EDV
× 100%. (1.4)

Table 1.1 shows biplane LV EF generated from two-dimensional echocardiography

(2DE), showing different ranges of values for normal, mild, and severely abnormal

EF (%) per gender.

Fractional Shortening The heart’s muscular contractility is measured by Frac-

tional Shortening (FS). By the end of systole, the dimensions of the end-diastolic

diameter have decreased substantially. The effectiveness of the heart in ejecting

blood is reduced if the diameter does not shorten by at least 28 percent. In a
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Table 1.1: Ranges of values for 2DE-derived LV EF and LA volume [8].

Male Female

EF (%)
Max LA vol*

EF (%)
Max LA vol*

BSA* (mL/m2) BSA* (mL/m2)

Normal range 52 - 72 16 - 34 54 -74 16 - 34
Mildly abnormal 41 - 51 35 - 41 41 - 53 35 - 41
Moderately abnormal 30 - 40 42 - 48 30 - 40 42 - 48
Severely abnormal < 30 > 48 < 30 > 48

*Max: Maximum, vol: Volume, BSA: Body Surface Area

symmetrically contracting ventricle, it is defined as the percentage change in the

LV minor axis and can be obtained using the formula given in Eq. (1.5);

FS =
LV IDd− LV IDs

LV IDd
× 100%. (1.5)

The normal range of FS is from 25% to 45%.

Global Longitudinal Strain Global longitudinal strain (GLS) is a measure

used in echocardiography to assess the longitudinal deformation of the LV of the

heart. Its use is increasingly recommended in clinical practice to improve the

early diagnosis and management of various cardiac conditions. It is calculated by

tracking the movement of specific points within the LV myocardium throughout

the cardiac cycle. GLS represents the percentage change in the length of the LV

myocardium from end-diastole to end-systole and provides information about the

overall contractile function of the heart, given by Eq. (1.6);

GLS(%) =
MLs−MLd

MLd
. (1.6)

where ML is the myocardial length at end-systole (MLs) and end-diastole (MLd).

Because MLs is smaller than MLd, peak GLS is a negative number.

Other measurements made as part of cardiac chamber quantification include RV

size and function, RA and LA area and volume measurements, and Inferior Vena

Cava (IVC) diameter measurements. These aspects are out of the scope of this

research and will not be discussed in detail here.
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1.6 Heart Failure and Cardiomyopathy

Heart failure can occur in two main forms: systolic failure, characterized by a

weakened heart muscle, and diastolic failure, marked by stiffness impairing nor-

mal relaxation. Among the various causes contributing to HF, cardiomyopathy

is one of the main causes. It refers to a group of diseases that affect the heart

muscle, leading to abnormalities in its structure and function. These conditions

can weaken the heart and impair its ability to pump blood effectively to the rest

of the body. Cardiomyopathy can be caused by various factors, including genetic

predisposition, infections, certain medications, toxins, and systemic diseases. It

can result in symptoms such as shortness of breath, fatigue, swelling of the legs,

and an irregular heartbeat. Depending on the type and severity, cardiomyopathy

can lead to complications such as HF, arrhythmias, and even sudden cardiac death.

Treatment typically focuses on managing symptoms, slowing disease progression,

and reducing the risk of complications.

1.6.1 Role of Echocardiography in Detecting Cardiomy-

opathy

Echocardiography plays a crucial role in detecting cardiomyopathy by provid-

ing detailed images of the heart’s structure and function in real-time. Through

echocardiography, healthcare professionals can visualize the heart’s chambers,

walls, valves, and blood flow, providing insights into the condition of the heart

muscle. This imaging technique allows for the identification of various features

indicative of cardiomyopathy, such as chamber enlargement, wall thickness alter-

ations, and impaired contractility. Additionally, echocardiography aids in assess-

ing cardiac function, including ejection fraction, diastolic function, and myocardial

strain, which are crucial parameters in diagnosing and monitoring cardiomyopa-

thy. By capturing detailed images of the heart and providing quantitative data on

its function, echocardiography assists clinicians in making accurate diagnoses and

guiding treatment decisions for individuals with cardiomyopathy.
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1.6.2 EF Based Classification of HF

The classification of HF based on left ventricular EF holds significance due to

variations in prognosis, treatment response, and its role in patient selection for

clinical trials, as most trials rely on EF criteria. HF with reduced EF (HFrEF), also

known as systolic HF, occurs when the heart muscle fails to contract effectively,

resulting in inadequate pumping of oxygen-rich blood to the body. An EF ≤35%

or ≤40% is commonly referred to as HFrEF [9].

HF with preserved EF (HFpEF) accounts for at least half of the HF cases, and

its incidence is on the rise [10]. HFpEF is classified based on different thresholds

for EF, including >40%, >45%, or ≥50%. Since some patients in this category

exhibit an EF that isn’t entirely normal but doesn’t show a significant reduction

in systolic function, they are described as having preserved EF [11].

Patients whose EF falls between the ranges of HFrEF and HFpEF have been la-

beled as “HF with mid-range EF” or “HF with mildly reduced EF” [12]. They are

classified as HF with mid range EF (HFmrEF) due to their lower-than-normal EF.

Patients with HFmrEF typically exhibit a dynamic trajectory, either improving

from HFrEF or deteriorating to HFrEF. Therefore, a single EF measurement may

not suffice for these patients, and assessing the trajectory of EF over time and

its underlying cause is crucial. Diagnosing HFmrEF and HFpEF can pose chal-

lenges. While classic signs and symptoms of HF, coupled with EF values of 41% to

49% or ≥50%, are essential for diagnosis, additional objective measures of cardiac

dysfunction can enhance diagnostic specificity. Therefore, due to the complexities

involved in diagnosing HFmrEF and HFpEF, in this study, we considered the case

of HFrEF only for the classification of absence or presence of cardiomyopathy.

HFrEF, which leads to morbidity and mortality, poses a significant public health

concern. In recent years, there have been important scientific advancements in

the management of HFrEF, resulting in better outcomes for patients. Some of

the recent developments include SGLT2 inhibitors, vericiguat, and transcatheter

mitral valve repair. These treatments have been shown to improve the prognosis

of patients beyond the use of standard neurohormonal therapies. However, despite
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these advancements, the morbidity and mortality rates associated with the disease

remain high. After being hospitalized for HFrEF, the 5-year survival rate remains

only 25% [13].

Fig. 1.6 illustrates EF based cardiomyopathy classification according to the guide-

lines provided by [11]. It also outlines a general diagnostic process, detailing sub-

sequent clinical actions specifically for cases of HFrEF.

Figure 1.6: EF based disease classification [11]. HFrEF represents HF with
reduced EF; HFmrEF, HF with mid range EF; HFpEF, HF with preserved EF;
HFimpEF, HF with improved EF; DCM, Dilated Cardiomyopathy; CAD, Coro-
nary Artery Disease. *Depends on the threshold suggested by the cardiologist

1.7 Echocardiography Datasets

1.7.1 EchoNet-Dynamic Dataset

In this study, the EchoNet-Dynamic dataset [14] is used, which contains over

10,000 A4C (2D B-mode) echocardiography recordings from individuals under-

going imaging between 2016 and 2018 during routine clinical care at Stanford

University Hospital. The average age of the patients is 68 ± 21, and 49 percent of

them are female. The training, validation, and testing sets have 7460, 1288, and

1277 patients, respectively. Each video includes a boundary tracing, also known

as volume tracing, of the LV border at the end of systolic and diastolic frames.



Introduction 16

Additionally, cardiac parameters such as EF, EDV, and ESV are provided for each

video. These human expert annotations are derived from assessments conducted

by a skilled cardiac sonographer, further reviewed by an imaging cardiologist,

and considered as the ground truth values. This comprehensive dataset supports

robust training and evaluation of machine learning models. The high-quality an-

notations ensure the reliability of the derived models for clinical application. The

label variables included with the dataset are listed in Table 1.2 below.

Table 1.2: Dataset label variables

Variable Description

FileName Hashed file name used to link videos, labels and annotations
EF Ejection fraction calculated from ESV and EDV
ESV End systolic volume calculated by method of discs
EDV End diastolic volume calculated by method of discs
Height Video height
Width Video width
FPS Frames per second
NumFrames Number of frames in whole video
Split Classification of train/validation/test sets used for benchmarking

1.7.1.1 Volume Tracings

The tracings of the LV are obtained at the endocardial boundary at end-systole

and end-diastole for each clip. An estimate of ventricular volume is obtained by

using the tracings to integrate the ventricular area along the length of its main

axis. A set of paired coordinates is used to represent expert tracings as shown in

Fig. 1.7. The first pair of coordinates associated with each clip gives LV length

(major axis length), while the rest of the coordinate pair set represents the minor

axis lengths between the apex and the mitral valve. The file name and frame

number from which the volume tracings are obtained are given with the volume

tracings.

1.7.1.2 Dataset Statistics

The summary of statistics of the EchoNet-Dynamic dataset is given in Table 1.3.
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Figure 1.7: Human expert tracings [14]

Table 1.3: Dataset statistics [14]

Metric Total Training Validation Test

Number of Videos 10, 036 7, 465 1, 289 1, 282
Female (%) 4885 (48%) 3662 (49%) 611 (44%) 612 (44%)
Age (Years) 68 (21) 70 (22) 62 (18) 62 (17)
Frames Per Second 50.9 (6.8) 50.8 (6.7) 51.0 (6.5) 51.3 (7.3)
Number of Frames 175 (57) 175 (57) 176 (52) 176 (60)
Ejection Fraction (%) 55.7 (12.5) 55.7 (12.5) 55.8 (12.3) 55.3 (12.4)
End Systolic Volume (mL) 43.3 (34.5) 43.2 (36.1) 43.3 (34.5) 43.9 (36.0)
End Diastolic Volume (mL) 91.0 (45.7) 91.0 (46.0) 91.0 (43.8) 91.4 (46.0)

1.7.2 CAMUS Dataset

The second dataset employed in this study is the CAMUS (Cardiac Acquisitions

for Multi-Structure Ultrasound Segmentation) dataset. This dataset comprises

two and four-chamber view data from 500 patients acquired at the University

Hospital of St Etienne (France). The training dataset is composed of 450 patients

whereas the testing dataset comprises 50 patients. The dataset is provided with

manual annotations from cardiologists for the LV endocardium and epicardium

contour, and the LA [15].

The CAMUS dataset allows for robust training and evaluation of segmentation

algorithms by providing well-annotated echocardiographic images. These annota-

tions enable precise localization and measurement of cardiac structures, which are

crucial for developing and validating methods for accurate cardiac assessment.
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Fig. 1.8 illustrates some example frames from the datasets, showcasing the variety

of data and annotations provided.

Figure 1.8: Left: End-diastolic and end-systolic A4C sample frames from
EchoNet-Dynamic and CAMUS datasets. Right: EF distribution corresponding

to the datasets

1.8 Research Objectives

The main challenge in employing ML methods to quantify the structure and func-

tion of the left ventricle lies in the exploitation of temporal information from

echocardiogram data for precise LV EF estimation. Additionally, establishing

consistency with recommended clinical methods to ensure transparency and relia-

bility presents a significant challenge. Moreover, integrating interconnected infor-

mation poses another problem. This entails combining various tasks with differing

objective functions across different scales and ensuring convergence during joint

training.

The main objectives of this research are:

• Development of a model for the quantification of LV structure and function

that adheres to clinically recommended methods, ensuring transparency and

reliability of results.
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• Development of a model capable of simultaneously performing LV segmen-

tation and EF regression from echocardiogram videos using multitask opti-

mization. This involves integrating the objective functions from two distinct

tasks with varying scales in a way that ensures convergence during joint

training.

• Addressing the challenge of scarcity of medical data in training DL mod-

els by exploring techniques such as data augmentation and semi-supervised

learning.

• Development of a robust segmentation method by integrating boundary in-

formation. This includes decoupling the mask and edge processing and fusing

them in a way that complements the performance of each other to enhance

the accuracy compared to traditional segmentation methods.

1.9 Research Contributions

The main contributions of this work are:

• Development of an ML-based method for estimating left ventricular EF from

ED and ES frames. It performs LV segmentation followed by feature extrac-

tion using Simpson’s method. To effectively leverage the temporal informa-

tion present in the frames of an echocardiogram, the proposed method uti-

lizes Simple Recurrent Neural Network (RNN) and Long Short-Term Mem-

ory Network (LSTM). Our contributions have been published in [16].

• A DL-based multitask model; EFNet is developed which enables concurrent

LV segmentation and EF regression from echocardiogram videos, employing

joint optimization of the objective function and leveraging their interconnect-

edness to enhance overall performance. Effective strategies are devised to

seamlessly combine these objective functions, ensuring coherence and con-

sistency in the model’s training process. The proposed model undergoes

training and evaluation using a larger dataset, enabling robust learning from
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a diverse range of samples. Furthermore, the model is fine-tuned on a smaller

dataset, investigating the potential benefits of leveraging DL techniques to

train effectively on limited data resources. To enhance the dataset’s size and

diversity, data augmentation methods are utilized. Our contributions from

this work have been published in [17].

• Amultitask DL model featuring a common encoder for shared feature extrac-

tion from input data is developed to improve LV segmentation. This model

integrates two distinct modules—the Mask Generation Decoder for mask

segmentation and the Edge Predictor for boundary prediction. The incor-

poration of edge supervision from the Edge Predictor significantly improved

the network’s capability to preserve spatial boundary details, resulting in

an enhancement in semantic segmentation performance. Additionally, the

multitask model optimizes through joint training by combining losses from

both the Mask Generation Decoder and Edge Predictor. Furthermore, ex-

tensive research on the structure of the Edge Predictor leads to the proposal

of the optimal architecture, which demonstrates superior performance in the

regression of edge coordinates.

1.10 Organization of the Dissertation

The first chapter of this dissertation provides an overview of the role of artificial

intelligence in Echocardiography, followed by its principles and methods in clinical

settings. It then outlines the aims and objectives of this research and a summary

of the research contributions.

Succeeding this introductory chapter, a relevant literature review and established

methodologies are presented in Chapter 2. Various aspects of automating echocar-

diography are discussed, with a focus on LV segmentation and EF estimation. A

section on current studies involving multitask learning is also included. The de-

tailed discussion on established work led to a comprehensive analysis of the gaps



Introduction 21

within existing techniques, and subsequently the formulation of the problem state-

ment for the dissertation.

Chapter 3 presents the estimation of left ventricular EF from ED and ES frames.

This is accomplished by exploring different techniques such as polynomial regres-

sion and LSTM networks on features derived from segmented LV, adhering to

clinical methods. The chapter explores both neural networks and traditional ML

techniques investigated within the study.

Chapter 4 presents the simultaneous quantification of LV segmentation and EF

estimation from the echocardiographic videos. The presented model utilizes mul-

titask optimization based on DL techniques. The chapter begins with a brief

overview of deep networks for segmentation and regression, followed by a detailed

explanation of the proposed multitask model. Various experiments on normaliza-

tion techniques used to combine the objective functions are analyzed in detail.

Since the performance of the multitask network in Chapter 4 relies heavily on ac-

curate LV segmentation, Chapter 5 introduces a method to enhance segmentation

by decoupling edge and mask information. It details the Decoupled Edge Guided

Module’s architecture, presents qualitative and quantitative results, and includes

an analysis of ablation experiments with various encoders, loss functions, and edge

module layers. Chapter 6 marks the final chapter of the dissertation, providing

conclusions drawn from the research and discussing possible future extensions of

the work done in this study.

1.11 Summary

This chapter provides an introduction to echocardiography, emphasizing its clin-

ical significance and widespread adoption due to its non-invasive nature, cost-

effectiveness, and ease of accessibility. It explores the potential of artificial intelli-

gence to streamline various tasks within echocardiographic tests. It also provides



Introduction 22

an overview of the TTE test, one of the most commonly utilized echocardiographic

procedures, which will be employed in this research.

A comprehensive overview of the recommended clinical methods for quantification

of cardiac chambers is presented with a main focus on left ventricular structure

and function. A description of the datasets utilized in this research is also pro-

vided. Challenges encountered in automating echocardiogram analysis are dis-

cussed, leading to the formulation of research objectives. Finally, the chapter

outlines the main contributions stemming from this research.



Chapter 2

Literature Review

AI plays a significant role in automating various aspects of echocardiography, en-

hancing efficiency, accuracy, and clinical decision-making in the evaluation and

management of CVDs. It can provide image interpretation by analyzing echocar-

diographic images to identify anatomical structures, quantify cardiac function

parameters such as EF, and detect abnormalities or pathology. Measurements

traditionally performed manually by clinicians, such as chamber dimensions, wall

thickness, and blood flow velocities, can be automated using AI. This reduces the

time required for analysis and minimizes the risk of human error. Further, the qual-

ity of echocardiographic images can be assessed in real-time, flagging images with

suboptimal quality for re-acquisition or further review. Moreover, AI-powered de-

cision support systems can assist clinicians in interpreting echocardiographic find-

ings, providing recommendations for diagnosis, risk stratification, and treatment

planning based on established guidelines and evidence-based practices. AI can

also aid in personalizing treatment plans by integrating echocardiographic data

with patient-specific information, enhancing individualized patient care. Among

these tasks, the primary focus of this research is the segmentation of the LV and

the measurement of cardiac structural and functional parameters, leading to the

early detection and diagnosis of cardiovascular diseases. The role of AI in the

automation of different tasks performed by human experts in clinical investigation

is illustrated in the flow diagram in Fig. 2.1.

23
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Figure 2.1: Role of AI in automation of echocardiography [14, 15, 18]

2.1 Quality Assessment and View Classification

In the automation of echocardiography, a lot of initial work has been done to

assess the quality of the echocardiographic frame, which makes future jobs easier

to analyze. According to studies, providing cardiologists with real-time feedback

can help them improve image quality[19].

In [20], convolutional neural networks are used on the A4C view to do the echo

quality assessment. The evaluation only used ES frames and did not take advan-

tage of the information provided in sequential echo images. The authors further

built on their previous work in [21] by assessing the quality of echo cine loops

in five common imaging planes that improved the accuracy and gave real-time

feedback to the user.

In [22], the authors proposed a “Quality Metric for Cardiac Ultrasound Videos

(CUQI metric)” as a metric for assessing the quality. The CUQI metric assessed

the quality of the cardiac video and measured motion information distortion and

edge distortions between the reference and distorted footage.
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View classification is another essential step in making an automated pipeline for

interpreting an echocardiogram. An echocardiogram is obtained from a variety of

angles, each of which reveals different aspects of the heart structure. In the past

few years, a lot of work has been done on automatic classification of echocardiog-

raphy views. For the categorization of echocardiographic videos of eight viewpoint

classes, Gao [23] proposed a CNN architecture that included the fusion of selective

as well as automatic DL networks. Notably, this two-strand CNN design gave a

considerably good performance. To make the application of a DL approach in

POCUS systems easier, view classification models must be able to be executed

in real-time on mobile computing platforms (e.g., Android phones) with minimal

computing capability. The work by Vaseli et al. [24] described a lightweight clas-

sification model six-fold faster than deep networks for echo view classification over

twelve common views to fulfill the demand for speedy mobile apps for real-time

POCUS diagnostics. In this work, knowledge distillation is used to train a series

of lightweight models utilizing the learned knowledge of various DL architectures

(teacher networks) based on the three most prevalent designs: VGG-16, DenseNet,

and Resnet (student networks).

Madani et al. in [25] proposed a CNN model that classified 12 video views us-

ing cluster analysis. The dataset, which comprised still images as well as cines,

was obtained from patients with different diseases. They trained their network to

concurrently classify 15 standard views (12 B-mode clips, 3 stills). The previous

Figure 2.2: View classification performed on 15 standard echocardiographic
views [25]

work [25] is expanded to automate cardiovascular disease prediction in [18] by em-

ploying both semi-supervised and supervised learning. They categorized different

views as well as segmented out key characteristics in echocardiography images.
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2.2 Segmentation of Cardiac Chambers

The current standard for border segmentation in an echocardiogram requires spe-

cialists to manually delineate before generating structural and functional indices

using the traced boundaries. This procedure is time-consuming, prone to errors,

and subject to significant intra- and inter-reader variance. Automating this proce-

dure saves time by providing rapid, precise, and objective segmentation through-

out the cardiac cycle. Following that, characteristics or cardiac indicators can be

extracted from the segmented region, followed by CVD categorization.

To perform segmentation, certain conventional methods for image processing have

been proposed, including a watershed algorithm for LV border segmentation [26],

and K-means clustering [27]. These techniques are computationally efficient but

have a high signal-to-noise ratio and fail to produce acceptable results when there

are unclear borders and non-uniform regional intensities.

2.2.1 Spatial Segmentation

In ML techniques for segmentation, each pixel is labeled as a background or part

of a chamber. By labeling each pixel with its respective class, semantic CNNs split

the image into distinct regions. In [5], the structure of the heart chambers in four

different perspectives are segmented using four different semantic UNet models

[28]. The trained models performed with IoU values ranging from 73 to 92. The

geometric dimensions, longitudinal strain, mass, volumes, and LV EF of each

image are computed using the segmented heart chambers. These indicators are

then utilized to evaluate the anatomy and function of the heart. As described in the

study, the suggested automated system outperformed manual measurements across

the board for all cardiac indicators. This improvement in accuracy underscores

the potential of AI in providing reliable cardiac assessments. FCN and UNet

were also employed for chamber segmentation in studies by Yue et al. [29] and

Silva et al. [30]. In 2019, Leclerc et al. [15] made a significant contribution to

echocardiographic segmentation by introducing the CAMUS dataset. This dataset
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consists of 500 patients, with 450 patients allocated for training purposes, featuring

publicly available expert annotations. Additionally, there are 50 testing patients.

Each patient in the training dataset includes images and expert annotations of

the LV, myocardium, and LA for both ED and ES frames of the cardiac cycle,

captured in both A4C and A2C views. Alongside releasing the CAMUS dataset

to the public domain, the authors also presented competitive results with various

versions of a UNet [28] fine-tuned specifically for the task.

More recently, Leclerc et al. [31] introduced LU-Net, a segmentation network

composed of two steps, influenced by the principles of Mask R-CNN. In this ap-

proach, the first network predicts a region of interest (ROI) around the heart,

while the second network focuses on predicting accurate segmentations within the

ROI. LU-Net demonstrated enhanced results compared to the authors’ previous

UNet architecture, even surpassing intra-observer accuracy for epicardial segmen-

tation. Other studies have proposed modifications to the base UNet architecture

to enhance its performance in 2D echocardiographic segmentation. For example,

Moradi et al. [32], drawing inspiration from feature pyramid networks (FPN),

developed MFP-Unet, which incorporates dilated convolutions to expand the re-

ceptive field and upscales feature maps to maximize the information available in

the final layers.

Ouyang et al. released their dataset named EchoNet-Dynamic [33]. This dataset

is designed specifically for assessing the EF and segmenting the LV in A4C se-

quences. In their next paper, the authors introduced a DL system [14] that first

performed the segmentation of the LV using weak supervised learning. The la-

bels provided by the clinical experts were taken as the ground truth. As a next

step, the segmentation results were combined with predictions produced at frame

level to provide an estimation of EF over every cardiac cycle. In a recent study

by Jafar et al.[34], the authors used a combination of two CNNs, the YOLOv7

algorithm, and a UNet for performing segmentation of the LV endocardium, LV

epicardium, and LA. Another work by Liao et al. [35] proposed two models using

a Swin Transformer combined with K-Net and Segformer, for LV segmentation

in echocardiography, aiming to address the limitations of CNNs’ receptive fields.
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For chamber segmentation, ML based techniques (both traditional and contem-

porary) beat human expertise. Building powerful ML based approaches, on the

other hand, needs a big and well-annotated dataset.

2.2.2 Spatio-Temporal Segmentation

In addition to the above mentioned studies that have performed 2D segmentation,

some studies have exploited the use of temporal information inherent in echocar-

diograms.

PV-LVNet, introduced by Ge et al. [36], instead of providing intermediate segmen-

tation, focuses on predicting multiple indices associated with cardiac function. By

leveraging temporal information through a recurrent network, PV-LVNet aims to

accurately localize and isolate the LV across entire echocardiographic sequences.

Subsequently, another recurrent network is employed to predict more precise in-

dices, similar to LU-Net’s approach to segmentation. Additionally, PV-LVNet

incorporates multi-view information by providing cropped sequences from both

A2C and A4C views to a single network for LV volume prediction. This ap-

proach highlights the integration of temporal dynamics and multi-view data to

enhance the accuracy of LV volume estimation and cardiac functional assessment

in echocardiography.

In another study by Li et al. [37], temporal information is utilized for segmenta-

tion from multi-view images in MV-RAN. They extracted multiscale features by

utilizing dilated convolutions in the encoder. Two branches of the network, a 3D

CNN and an LSTM are used. The 3D CNN classifies the cine’s view and LSTM

is used to perform segmentation based on spatial along with temporal informa-

tion. While the 2D segmentation performance was reported for the ES and ED

frames of the CAMUS dataset, the results regarding temporal consistency were

only provided on a private dataset.

Recently, Wei et al. [38] presented CLAS, a 3D segmentation network designed to

ensure temporal coherence using only ES and ED frames. CLAS achieves this by
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predicting deformation fields and utilizing them for annotations during training.

Their study demonstrated enhanced consistency between ES and ED predictions,

aligning closely with intra-observer variability. However, for the temporal consis-

tency across the cines, they provided only qualitative evaluations on a small patient

cohort. Future studies could benefit from larger-scale quantitative assessments to

validate the robustness of CLAS in clinical settings.

2.2.3 Edge Enhanced Segmentation

To delineate LV boundary, most studies have been primarily centered on using

mask-based semantic segmentation techniques. There are a few studies in do-

mains other than echocardiography that have also explored the concept of multi-

task learning by integrating edge detection along with mask detection into neural

networks. Such methodologies leverage image edge information to enhance the

quality of segmentation in various domains. In a study by Lin G et al. [39], Re-

fineNet is proposed, which aims to refine semantic segmentation results by exploit-

ing multi-scale features at different levels. It utilizes boundaries as intermediate

representations to refine segmentation results.

The work by [40] introduces a segmentation network for remote sensing. It inte-

grates numerous weighted edge supervisions to preserve spatial boundary details.

Their network accomplishes both semantic segmentation and edge detection si-

multaneously. By leveraging encoder edge loss to benefit from deep supervision

in shallow layers and decoder edge loss to assist high-level semantic parsing, they

demonstrate the significance of edge supervision in semantic segmentation. An-

other model, Gated-SCNN by Takikawa et al. [41], incorporates shape informa-

tion into feature maps by incorporating the shape stream along with the regular

stream. The gate mechanisms were used to define the information flow between

the regular semantic stream and the shape stream, allowing for the extraction

of targets and refinement of boundary predictions. In [42], the authors empha-

sized the decoupling of edge and mask prediction in the Mask R-CNN architecture.

This highlighted the relevance of decoupling in the context of instance boundaries.
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Their approach involved employing conventional edge detection filters on both pre-

dicted and ground truth masks to align them, ensuring rapid convergence during

training. Similarly, in a study by Chang et al. [43], mask localization accuracy is

improved by using object boundary information in the prediction process within

the network. Zuo et al. in [44] used single-layer edge supervision to enhance the

backbone network’s perception of edge information, leading to improved segmen-

tation accuracy, and further emphasizing the importance of edge information in

segmentation tasks. Sui et al. [45] also integrated edge features into the network

to optimize the loss function and enhance the segmentation results, aligning with

the focus on leveraging edge information for guiding semantic segmentation tasks.

To the best of our knowledge, edge guided multitasking has not been explored for

enhancing LV segmentation from echocardiographic data. Previous studies involv-

ing echocardiographic data predominantly concentrated on acquiring knowledge

for semantic segmentation solely from ground truth masks. Employing multitask

learning strategies to address semantic segmentation and boundary prediction si-

multaneously can enable models to leverage shared information, leading to im-

proved performance and more accurate results.

2.3 EF Estimation

Zhang et al. in [5] developed a completely automated and extensible echocardio-

graphy interpreting process. As a part of their approach, they performed prepro-

cessing complete echo studies, view classification, image segmentation, and detec-

tion of the cardiac cycle using CNNs. Using the segmentation output, LV length,

area, volume, and mass were estimated, leading to the calculation of EF. The

longitudinal strain was also calculated using particle tracking, followed by disease

detection. It has been observed that automated algorithms overstate structural

estimates, such as LV and LA volumes, whereas measures of function, such as EF

showed better accuracy. While the results demonstrated convincing median abso-

lute differences, large deviations could be seen in the results because of outliers.
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The main reason behind extreme failure cases can be attributed to underlying

complex segmentation tasks, where subtle variations and ambiguous boundaries

challenge algorithmic precision, particularly in challenging clinical scenarios or

unusual anatomical presentations.

The deep learning model based on echocardiography videos by Ouyang et al. in

[14], automates the processes of segmentation of the LV, calculating EF, and eval-

uating cardiomyopathy. They used labels from human experts for weak super-

vised learning to conduct semantic segmentation of the LV for each frame of the

video. Then, from native echocardiography recordings, a three-dimensional CNN

is trained to estimate the EF for each frame. Finally, the segmentation findings

are coupled with frame-level estimates of EF to generate a final evaluation for

each cardiac cycle. Furthermore, heart failure with a low EF is detected. The

dataset used in this research consisted of around ten thousand echocardiography

recordings which are made publicly accessible by the authors.

However, EchoNet-Dynamic did not agree with the original expert labeled ground

truth in a few videos. These films had incorrect human labeling, low visual quality,

or arrhythmias and heart rate fluctuations. To prevent bias in measurements,

several preprocessing procedures could be done to such videos to either increase

their quality or automatically eliminate them from the training set. As a result,

more research in a variety of clinical settings is required.

In [46] the authors extended previous analyses of [14] and used the same deep

learning model EchoNet-Dynamic developed using echocardiography images in

[14]. Their model was shown to be capable of classifying local cardiac structures

as well as estimating volumetric measures and heart performance metrics. Left

ventricular hypertrophy, an aberrant size of the left atrial, and the existence of

devices like defibrillators and pacemakers were also identified. In addition, their

model also gave predictions of certain demographic information from echocardiog-

raphy images. The dataset used contained more than 2.6 million A4C view images

from 2850 patients. When the model was trained to estimate EF directly, the find-

ings were more accurate than when it was estimated using predicted volumes. In
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this work, the prediction of EDV and ESV doesn’t give promising results with low

R2 resulting in a higher bias in EF, which is calculated from ESV and EDV as is

done in the clinical convention. To properly evaluate cardiac mobility and corre-

lation in cardiac structures, future studies will require improved use of temporal

information across frames.

In [47], an ML algorithm was developed to estimate EF without measuring LV

volumes. The approach assumed that the ventricle contracts throughout the sys-

tole simultaneously along its long axis and in the radial direction, allowing the

calculation of EF from the estimated contraction coefficients in the longitudinal

and radial directions without measuring the volumes using Eq. (2.1).

EF = 1− [CL−min]× [CR−min]. (2.1)

where;

CL =
ld
ls

and CR =
Dd

Ds

.

Here, ls and ld represent lengths of the LV, while Ds and Dd represent diameters of

the LV during systole and diastole, respectively. For example, if during systole, the

ventricle shortens by 14%, CL (contraction coefficient in the longitudinal direction)

would reach a minimum value of 0.86, and if at the same time, its radial dimension

shortens by 30%, corresponding to the minimum CR (contraction coefficient in the

radial direction) value of 0.70, this would result in EF of 40%. The proposed ML

algorithm is designed to train the computer to estimate the minimum values of

the above-mentioned two contraction coefficients, CL−min, and CR−min, at the

end of a contraction. To produce automated estimations of LV EF, the system

is trained on a dataset of over 50,000 echocardiographic recordings, comprising

numerous apical two and four-chamber views.

In [48], Liu et al. proposed a segmentation approach in which they improved

the characteristics of regions with low contrast based on adjacent contexts while

decreasing the detrimental influence of noise. Also, instead of independently pre-

dicting the class of each pixel, the results of neighboring pixels are also taken into
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account explicitly. To achieve that, they presented the “deep pyramid local atten-

tion neural network (PLANet)” as a deep learning model in which they used su-

pervised learning to make the FCN explicitly learn the pairwise interdependencies

of labels. The learned label correlation is used as a weight to update segmentation

by the adjacent prediction. They used the dataset of CAMUS and a subset of

EchoNet-Dynamic to test their model. In a more recent work by Tokodi et al.

[49] DL based network for estimation of RV EF from 2D echocardiographic videos

without performing segmentation was proposed. In another study by Zeng et al.,

[50], LV segmentation was performed followed by EF estimation which required

the identification of ES and ED frames.

2.4 CVD Classification

The identification or prediction of a particular heart illness based on visual char-

acteristics or computed cardiac indices is known as CVD classification. The de-

velopment of a CVD classification system that results in a completely automated

diagnostic facility based on ML can pave the way for low-cost, high-grade medical

care for patients in settings with limited resources. Such advancements can signif-

icantly improve early detection and treatment of cardiovascular diseases, thereby

enhancing patient outcomes globally.

2.4.1 WMA and Cardiomyopathy Detection by Echocar-

diography

Two-dimensional echocardiography is widely used to identify and analyze wall

motion abnormalities (WMA). Four terms are usually used in echocardiography

to describe different types of WMA; Hypokinetic (reduced movement), akinetic

(lack of movement), dyskinetic (abnormal movement), and aneurysm (abnormal

wideness). Several heart disorders, such as cardiomyopathy and coronary artery

disease (CAD), show these anomalies [7].
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Cardiomyopathy is a heart muscle disorder that causes abnormal dilatation, stiffen-

ing, or loss of function of the heart’s principal sectors. The three major cardiomy-

opathy disorders are dilated cardiomyopathy (DCM), hypertrophic cardiomyopa-

thy (HCM), and ischemic cardiomyopathy (IC). DCM is a heart muscle condition

that produces aberrant global motion by enlarging the LV wall. HCM is a mus-

cular condition in which the heart muscle (myocardium) thickens, resulting in

LV stiffness along with global and localized motion abnormalities. Ischemic car-

diomyopathy (IC) results in heart muscle weakening [7]. CAD develops when the

coronary arteries constrict or get clogged. Myocardial infarction (MI) is a danger-

ous heart condition caused by a severely constricted or blocked coronary artery.

Automated CVD classification systems leveraging ML can enhance early detec-

tion and tailor treatment strategies for these complex cardiac conditions, thereby

improving patient outcomes and optimizing healthcare resource allocation.

2.4.2 WMA and Cardiomyopathy Detection by ML Tech-

niques

Several ML-based techniques have been reported in the literature that use auto-

matically derived B-mode parameters (e.g., LV volume) or characteristics related

to disease derived straight from the data to detect WMA, CAD, and cardiomy-

opathy disorders. Leung and Bosch [51], for example, presented an automated

technique for assessing WMA. The proposed method is developed and evaluated

on A2C and A4C echocardiographic images. The annotated contours are used to

build an LV shape model, which is then analyzed with PCA to derive statistical

parameters for anomaly categorization. The classifier is trained using a variety

of PCA shape modes and parameters. In all circumstances, having fewer shape

parameters results in a better classification rate. The trained binary classifier

obtained an average accuracy of 91.1%. Similarly, Qazi et al. [52] employed a

shape-based technique to determine the LV border in each frame automatically.

The defined LV shape is then used to extract various cardiac structural and func-

tional parameters, including circumferential and radial strains, as well as local,
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segmental, and global Simpson volumes. The retrieved features are then reduced

to the optimal features for training the classifier (Kolmogorov-Smirnov test). The

trained classifier, which was evaluated on 220 instances, has a sensitivity of be-

tween 80% and 90% in identifying cases as normal or abnormal (hypokinetic,

akinetic, dyskinetic, and aneurysm).

Shalbaf et al. in [53] established a quantitative regional index for WMA identi-

fication and CAD prediction. The ground truth labels comprised the LV area,

landmarks, and levels of abnormalities. To define LV and produce a novel index

for WMA classification, the proposed technique combines affine transformation

and B-spline snake. The suggested index is calculated using the control points of

the B-spline snake model. Two threshold values are used for classification, which

are computed using the quantitative regional indices of all images in the training

set. The established thresholds are used to classify the 125 instances in the testing

set as normal or abnormal (hypokinetic, akinetic, dyskinetic, aneurysm). The pro-

posed index’s abnormality score and the ground truth had an absolute agreement

of 83% and a relative agreement of 99%.

For CAD risk assessment, Araki et al. [54] introduced a method for classify-

ing patients as high or low risk. The method begins by extracting 56 different

grayscale features from the image that represent the coronary texture. Gray-level

co-occurrence matrix, grey-level run length matrix, intensity histogram, grey-level

difference statistics, neighborhood grey-tone difference matrix, invariant moment,

and statistical feature matrix are some examples of these features. After that, six

feature combinations are created, and the best one is selected based on classifica-

tion accuracy. For CAD risk assessment, the best set is used to train a Support

Vector Machine (SVM). A total of 2865 B-mode frames were gathered from 15

patients to test the method. In classifying patients as low-risk or high-risk, the

suggested technique had an average accuracy of 94.95% and an AUC of 0.95. Other

ML methods for CAD detection and risk assessment can be found in [55] (first-

order statistical features, ANOVA for reduction, and NN classifier), [56] (trace

transform and fuzzy texture), [57] (discrete wavelet transform and marginal fisher

analysis), and [58] (GLCM and SVM).
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In [59] and [60] automated techniques for identifying and diagnosing dilated car-

diomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are proposed. The

automated approach in [59] uses Fuzzy c-means (FCM) to perform frame-level

segmentation which is then used to extract cardiac characteristics such as vol-

ume and EF. Principal component analysis (PCA) and discrete cosine transform

(DCT) techniques are employed to extract features that are used with NN, SVM,

and combined K-NN for DCM and HCM diagnosis. The PCA features with the

NN classifier had the best performance in identifying normal and afflicted hearts,

according to the experimental data. It also revealed that PCA characteristics were

superior to DCT and cardiac indices (e.g., EF) for diagnosing DCM and HCM.

To discriminate hypertrophic cardiomyopathy (HCM) from physiological hyper-

trophy in athletes (ATH), Narula et al. [60] utilized three ML classifiers. Random

forests (RF), SVM, and neural networks were employed as part of a classification

ensemble. Using commercial software, many geometric and mechanical indices

were retrieved from the defined chamber. The information gain method was then

used to reduce this information further. It was found that mid-left ventricular

segmental, volume, and longitudinal strain were the important characteristics or

predictors for distinguishing between HCM and ATH, according to the results of

the IG algorithm. The authors claimed that ML algorithms can reliably distinguish

between healthy and pathological hypertrophic remodeling patterns. However, the

dataset used in this study for testing purposes was relatively small. In addition,

only systolic frames were utilized, thus restricting the exploitation of complete

information that could have been done by including diastolic frames as well.

Table 2.1 summarizes the objectives, techniques employed, datasets, and results

of the current work using ML and DL in echocardiography.

2.5 Multitask Learning

In computer vision, multitask learning has been widely employed to learn multiple

related tasks simultaneously. Recently, a lot of work has been done in multitask
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Table 2.1: ML and DL in echocardiography

Author Objective Technique Used Dataset Results

Abdi et al. [20] QA on A4C DCNN using Particle Swarm

Optimization

A4C images, Train

6916, Test 1386

MAE 0.71 ± 0.58

Abdi et al. [21] QA on 5 Views DNN including LSTM Train 4675, Test 1144 Accuracy 85%

View Classification

Gao et al. [23] 8 View Classification DNN incorporating Spatial

and Temporal info

Train 280, Test 152 Accuracy 92.1%

Madani et al. [25] Classification of 15 views and

LV Hypertrophy

Ensemble of 3 CNN Models A4C 267 and 455

cases

Accuracy 80%

Accuracy 92.3%

Vaseli et al. [24] 12 View Classification Lightweight models from

distillation of VGG-16,

DenseNet and ResNet

Train 9967

Validation 3322

Test 3322

Accuracy 88.1%

Segmentation & EF Prediction

Melo et al. [26] Segmentation Watershed Algorithm 4C long axis 900

frames

RMSD 2.14

Corr 0.985

Zhang et al. [5] View Classification VGG Network 7168 videos Accuracy 84%
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Table 2.1 continued from previous page

LV Segmentation UNet 791 images IoU 72% - 90%

LV Size and Function 8666 cases MAD 15% - 17%

EF Prediction 6407 cases MAD 9.7%

Asch et al. [47] EF Prediction Algorithm devised using

CNNs

A2C, A4C 50,000

cases, Test 297 cases

Accuracy 0.92

MAD 2.9%

Ouyang et al. [14] LV Segmentation EchoNet-Dynamic A4C videos DSC 0.92

EF Prediction Train 7465 MAE 4.1%

HF Classification Test 1288 AUC 0.97

Leclerc et al. [31] LV Segmentation UNet based multitask net-

work

CAMUS MAE 1.5mm

HD 5.1 mm

Li et al. [37] Multiview Segmentation Multiview recurrent aggre-

gate network

CAMUS

Curated data

DSC 0.92

Ghorbani et al. [46] Pacemaker DCNNs A4C AUC 0.89

Enlarged LA Data 2.6 Million AUC 0.86

LVH Train 2546 cases AUC 0.75

EDV,ESV Test 337 cases R2 0.74, R2 0.70

EF

EF from volumes

R2 0.50

R2 0.33
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Table 2.1 continued from previous page

Liu et al. [48] LV Segmentation

EF Estimation

Pyramid local attention CAMUS

sub EchoNet-

Dynamic

DSC 0.956

Corr 0.882

Corr 0.869

CVD Classification

Leung et al. [51] WMA Classification PCA Train 65, Test 64 Accuracy 91.10%

Qazi et al. [52] WMA Classification Bayesian Network 220 cases Accuracy 80%-

90%

Shalbaf et al. [53] WMA Classification

CAD Prediction

Affine transformation and B-

spline snake

125 cases Accuracy 83%

Araki et al. [54] CAD risk assessment SVM 2865 B-mode frames

15 cases

Accuracy 94.95%

AUC 0.95

Balaji et al. [59] DCM, HCM Classification PCA with BPNN Normal 20 videos

DCM 30 videos

HCM 10 videos

Accuracy 92.04%

Narula et al. [60] DCM, ATH Classification Ensemble of SVM, RF &

ANN

HCM 62 cases

ATH 77 cases

AUC 0.80

Smitha et al. [58] Plaques Classification SVM Carotid B-mode Accuracy 97.92%
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learning in different domains, such as image classification, pose estimation, and

action recognition. By jointly learning related tasks, multitask learning enhances

the model’s performance, enables knowledge transfer, and promotes a deeper un-

derstanding of visual data. A detailed review of multitask learning in deep neural

networks is given in [61]. It discusses different learning strategies, which include

task-specific layers, hard parameter sharing, and soft parameter sharing. Hard

parameter sharing involves sharing the network’s lower layers among all tasks,

but each task has its own output layer. Soft parameter sharing allows tasks to

share parts of the layers while still maintaining their individual sets of parameters.

Another work by Zhang et al. [62] also discusses both traditional and DL-based

approaches for multitask learning, including problem formulation, optimization

methods, and evaluation metrics.

In work by Amyar et al., [63] a method is proposed for the detection of COVID-

19 pneumonia from chest CT scan. The proposed method uses a multitask DL

architecture that integrates segmentation, classification, and reconstruction tasks.

Other works which have utilized multitask in medical imaging include [64], [65] and

[66] for Alzeihmer’s disease prediction and progression,[67] in ECG, [68], [69],[70]

and [71] in cardiac imaging.

In multitask optimization, task-specific models with distinct weights are employed,

and a combined cost function is utilized. This allows the models to jointly op-

timize a single objective function while ensuring similarity in their parameters.

Multitask optimization provides various benefits, including efficient data utiliza-

tion, accelerated model convergence, and mitigation of model overfitting through

shared representations.

2.6 Gap Analysis

Recent research on echocardiograms has emphasized the utilization of indepen-

dent DL models for various tasks, including view classification, LV segmentation,

and EF estimation. The accuracy attained by these methods depends on several
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factors, including the clarity and quality of the data, the volume of available data,

and the accuracy of the clinical ground truth. In automated pipelines designed

to accomplish different tasks, the accuracy of each task is significantly influenced

by the accuracy of the preceding one. For instance, in much of the existing liter-

ature, EF estimation relies heavily on the precise delineation of the LV boundary

and the accurate identification of ES and ED frames. Moreover, the scarcity of

publicly available medical data limits the achievable accuracy with data-intensive

DL techniques.

The main limitations of earlier work are summarized as follows:

• Among the techniques commonly employed in clinical practice for assess-

ing LV volumes and left ventricular EF, Simpson’s method stands out as

the preferred choice for evaluating LV EF [8]. However, most studies that

have utilized clinical methods to determine LV volumes and EF from seg-

mented LV have relied on the area-length method due to its simplicity. This

method assumes the shape of the LV to be bullet-shaped, which may not

always hold true [8]. Limited research has been conducted on exploration

of Simpson’s method for extracting LV features from segmented chambers

and leveraging these features in conjunction with ML techniques to estimate

LV volumes and EF. Therefore, scant attention has been given to the de-

velopment of automated approaches based on the underlying principles of

Simpson’s method.

• Some methods may lack interpretability or transparency in their decision-

making process, making it challenging to understand and trust the generated

segmentations and predictions. Furthermore, there is a lack of emphasis on

aligning with clinical workflow in existing methods. Adapting methodologies

or techniques to match clinical practices not only ensures clinical relevance

but also improves visibility, interpretability, and the ability to trace errors

back more easily.

• Existing LV segmentation algorithms utilizing DL predominantly concen-

trate on pixel classification within the object’s body, prioritizing low-level
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features such as color, shape, and texture. However, they often overlook

high-level details like edges and boundaries, leading to less accurate detection

of LV borders. The commonly utilized encoder-decoder based architectures,

known for their efficiency in generating semantic segmentations, suffer from

the loss of important spatial information necessary for segmentation. The

down-sampling and up-sampling operations in these architectures may re-

sult in the loss of fine-grained details, making it difficult to precisely outline

object boundaries. Consequently, segmentation outputs from these methods

may exhibit fuzzy or imprecise object boundaries. In delineating the LV,

it is important to establish clear demarcations between adjacent structures,

minimizing pixel ambiguity near the LV border. This includes accurately

identifying specific boundary points such as the LV apex and the mitral valve

annulus [8]. Furthermore, echocardiographic data present further challenges

such as low signal-to-noise ratio, indistinct borders, low contrast, and organ

variation. Ensuring accurate delineation of the LV boundary is essential for

cardiologists to obtain precise clinical insights.

• Estimating EF necessitates measurements from systolic and diastolic frames

within the cardiac cycle. Existing literature predominantly requires the iden-

tification of these specific frames for evaluation, which involves additional

processing steps. This approach can be time-consuming and prone to inac-

curacy, especially when conducted from a single view without the comple-

mentary orthogonal view. The exploration of utilizing the entire echocardio-

graphic cine (video) for both LV segmentation and EF estimation, aiming

to eliminate the need for frame identification and encompass the variations

throughout the entire cardiac cycle, remains largely unexplored in existing

research.

• Lastly, in the majority of existing studies on echocardiograms, LV segmenta-

tion, and EF regression have typically been addressed as separate tasks. The

concept of simultaneous feature learning from segmentation and regression

models is relatively novel and has not been extensively investigated. Training
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these tasks concurrently allow models to leverage shared information, poten-

tially leading to enhanced performance and more accurate results. Despite

their distinct objectives and outcome requirements, LV segmentation and

EF estimation tasks are closely interconnected and mutually reliant. There-

fore, exploiting their interdependencies holds significant potential. However,

cross-module learning via multitask optimization to exploit this shared in-

formation remains unexplored in this specific context.

Overall, the gap analysis highlights the need for more robust, standardized, and

clinically validated automated methods for EF estimation from echocardiographic

videos, addressing challenges related to performance variability, cardiac dynamics

modeling, and clinical translation.

2.7 Problem Statement

Despite recent advancements in echocardiogram analysis, there remains a criti-

cal need for automated methods capable of precisely estimating left ventricular

EF from echocardiographic videos. Existing approaches often lack consistency

with clinical workflow and may overlook crucial temporal information inherent in

echocardiographic frames. Furthermore, most studies treat LV segmentation and

EF estimation as independent tasks, neglecting the potential benefits of simultane-

ous feature learning. Simultaneous training of segmentation and regression models

could leverage shared information and lead to enhanced performance and accuracy.

However, cross-module learning via multitask optimization remains unexplored in

this context.

The deficiency in the existing literature highlights the imperative for a compre-

hensive and standardized approach that integrates LV segmentation, feature ex-

traction, and ML methods to accurately estimate LV EF from echocardiographic

videos. The incorporation of clinical methods, such as the preferred Simpson’s



Literature Review 44

method, into the underlying principles of automated methodologies, would en-

hance transparency, reliability, and traceability, which are essential for seamless

integration into clinical settings.

Moreover, the inherent relationship between LV segmentation and EF estimation

emphasizes the need to explore the potential of jointly exploiting their intercon-

nectedness using DL models to enrich the content and quality of information. In

this regard, exploring segmentation and regression techniques beyond the tradi-

tional approaches may further contribute to enhancing accuracy.

2.8 Research Methodology

The research methodology used in this study, as depicted in Fig. 2.3, offers a

systematic framework to develop an efficient and accurate model for automating

tasks integral to an echocardiographic test. By following this methodology, the aim

is to streamline and enhance the process of echocardiographic analysis, particularly

in tasks related to LV segmentation and EF estimation.

Through the utilization of basic neural networks and traditional ML techniques,

this research explores the feasibility of automating clinical methods using AI. This

initial phase involves extracting pertinent features from segmented LV images

based on Simpson’s method, fundamental for quantifying cardiac function.

Moreover, the temporal information inherent in echocardiogram is exploited through

the employment of LSTMs for EF estimation. Central to this investigation is the

evaluation of the ML model’s accuracy based on the recommended Simpson’s

method, contrasted against the direct application of this method as traditionally

practiced by cardiologists in clinical settings. Through iterative refinement and

validation against clinical standards, this study aims to establish the reliability

and scalability of AI-driven cardiac assessments.

Building upon the insights gained from this foundational research, the subsequent

objective is to advance toward the development of a more robust and automatic
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Figure 2.3: Research methodology

model capable of operating seamlessly on entire video sequences, thus circumvent-

ing the need for laborious detection of ES and ED frames. To address this, a

multitask model named EchoFused Network (EFNet) is developed, which simulta-

neously performs LV segmentation and EF estimation. It used a semi-supervised

DL approach, followed by cardiomyopathy detection. Integral to this task is the

implementation of various normalization techniques aimed at scaling the objec-

tive functions from distinct tasks before training, ensuring smooth convergence of

disparate components.

Additionally, a refinement in LV segmentation is pursued by decoupling edge and

mask information. This involves employing an encoder-decoder based model with
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separate decoders dedicated to edge-based and mask-based segmentation. By com-

bining outcomes from both decoders, a final improved output is achieved. Rigorous

evaluation through ablation experiments validates the reliability and effectiveness

of the proposed methodology in automating echocardiographic tasks, promising

significant strides in clinical efficiency and diagnostic precision.

In conclusion, the methodology used in this research provides a comprehensive

and systematic framework for the development of an efficient and accurate auto-

matic model for echocardiogram analysis. By automating key tasks involved in

echocardiographic testing, the clinical workflows are enhanced, improving diag-

nostic accuracy, and ultimately, optimizing patient care.

2.9 Summary

This chapter provides a detailed literature review on the use of AI in automating

different tasks performed as a part of an echocardiographic test. The existing

studies such as view classification, quality assessment, cardiac segmentation, EF

estimation, and CVD detection are investigated in detail. Furthermore, the chap-

ter examines the utilization of multitask learning in medical imaging, providing

insights into its relevance and applications. A detailed analysis of gaps in the

current methodologies is presented followed by the problem statement. Finally,

the chapter outlines the research methodology to address the identified gaps and

challenges.



Chapter 3

Quantification of LV Function

from Segmented Frames

This chapter describes the first contribution of this work; the quantification of LV

function (EF estimation) based on features extracted from segmented LV frames

using ML techniques. EF is an important clinical variable assessed from echocar-

diography via the measurement of LV parameters. Significant inter-observer and

intra-observer variability is seen when EF is quantified by cardiologists using huge

echocardiography data. ML algorithms can analyze vast datasets and detect com-

plex patterns in the structure and function of the heart. This ability is valuable as

it allows for computer-assisted diagnostics, supplementing the expertise of skilled

human observers.

In this section of the research, LV segmentation is performed on ES and ED

frames, followed by feature extraction from the LV based on clinical methods.

Various approaches were explored to estimate the EF from these extracted features.

Initially, we investigated different methods of combining diverse sets of features

to create unified features. These consolidated features were then subjected to

polynomial regression to estimate EF, along with end-systolic and end-diastolic

volumes. The proposed feature functions included the Systolic-Diastolic Cross

Ratio (SDCR) and Simpson’s Systolic-Diastolic Cross Ratio (SDCRsimp).

47



Quantification of LV Function from Segmented Frames 48

In the subsequent part of the research, the features extracted from segmented LV

underwent analysis using both NNs and traditional ML algorithms to estimate the

EF. The findings from this approach suggest that employing ML techniques on

the extracted features from the LV yields higher accuracy compared to utilizing

Simpson’s method for estimating the EF. The evaluations are performed on a

publicly available echocardiogram dataset, EchoNet-Dynamic.

3.1 LV Volume and EF Estimation using Area-

Length and Simpson’s Method

As a first step, the two conventional methods most widely used by cardiologists to

find the volume of the chambers; namely the area-length and Simpson’s method of

disks were employed. In order to accurately quantify volumes using these methods,

the foremost and essential step is to find the length and diameter of the chambers

correctly. The length of the LV is taken as the distance between the mitral annulus

to the apex in the A4C view, whereas the diameter is the width at the mid-

cavity level in the A4C view. Finding accurate LV length is found to play a very

vital role in finding the end-systolic and end-diastolic LV volumes and hence the

EF accurately. Therefore, several experiments were performed to find optimum

accuracy in the estimation of LV length. The most accurate results were obtained

by using a rectangular bounding box around the LV as shown in Fig. 3.1. The

length and width of the bounding box served as the length and diameter of the

LV, respectively.

LV volumes (EDV, ESV) are then found using the area and the length. The first

approach employed is the area-length method, which is based on Eq. (1.1). The

second approach used Simpson’s method, which is the most widely used method

in routine clinical practice to find LV volume from the volume tracings [8]. This

method, also known as the biplane method of disks, divides LV into a number

of elliptical disks and sums up their volumes to find the total volume of LV as

described in section 1.5.1.1.
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Figure 3.1: Minimum area rectangular bounding box

Finally, the volumes computed using both methods are employed to determine

the LV EF using Eq. (1.4). The flow diagram depicted in Fig. 3.2 illustrates

the procedural steps of this approach. It begins with the input of ES and ED

frames, which are processed to derive an estimated EF as the output. This sys-

tematic framework underscores the integration of volumetric data analysis into EF

assessment.

3.2 LV Volume and EF Estimation using Poly-

nomial Regression

Polynomial regression is employed to explore the relationship between different

features extracted from LV and LV measurements such as EF, ESV, and EDV

using the EchoNet-Dynamic dataset. These features include the area, diameter,

and length of the LV. Three models are trained by applying polynomial regression

on a combination of the above mentioned features to;

(i) Predict EF from ESV and EDV,

(ii) Predict EF directly

Different sets of features were used in polynomial regression which include
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Figure 3.2: EF estimation using area-length and Simpson’s method

(i) Multiple features,

(ii) SDCR and

(iii) SDCRsimp

where the multiple features include respective areas, lengths, and diameters of

end-systolic and end-diastolic frames to be used as features in polynomial regres-

sion. SDCR stands for the Systolic – Diastolic Cross Ratio; the proposed feature

function obtained from the area-length method and SDCRsimp stands for the

Simpson’s Systolic – Diastolic Cross Ratio; the second proposed feature function

derived from Simpson’s method. The trained models are also tested against the

CAMUS dataset.
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3.2.1 Polynomial Regression on SDCR

SDCR, a new feature function that we have proposed, has been derived using the

basic area-length formula and by studying the cross-correlation between different

features and the ground truth EF and is defined by Eq. (3.1);

SDCR ≡ A2
s × ld

A2
d × ls

. (3.1)

Here, As and Ad indicate the areas obtained at the end-systole and end-diastole

respectively, and ls and ld denote the LV lengths. This ratio simplified the regres-

sion process and its interpretation when used as a feature in polynomial regression

in comparison to when multiple features were used.

3.2.2 Polynomial Regression on SDCRsimp

SDCRsimp has been derived using Simpson’s biplane method of disks. According

to this method, the LV is divided into a row of n elliptical disks aligned perpen-

dicular to the ventricle’s major axis. Adding the respective volumes of these disks

gives the total volume of the LV. The volume of a single disk in Simpson’s biplane

method is given by Eq. (1.2). We define k as the ratio between the semi-axes

of the disks. For this work, we assume that k is some constant for a particular

patient. Therefore;

Let
bi
ai

≡ k.

Using this assumption in Eq. (1.2) and integrating over n-disks, we find the LV

volume as given by Eq. (3.2);

vi =
π(a2i × k)l

4
,

V =
πkL

4n

n∑
i=1

a2i . (3.2)
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Here, we also make another assumption that the constant kD; defined as the ratio

between semi-axes in end-systolic, remains the same as kS; the ratio between

semi-axes in end-diastolic i.e.

kS = kD.

Using this assumption in (1.4) yields;

EF =

(
πkDLD

4n

∑n
i=1 a

2
Di

)
−
(
πkSLS

4n

∑n
i=1 a

2
Si

)(
πkDLD

4n

∑n
i=1 a

2
Di

) × 100%,

EF = (1− LS

∑n
i=1 a

2
Si

LD

∑n
i=1 a

2
Di

)× 100%.

where we define SDCRsimp as;

SDCRsimp ≡
LS

∑n
i=1 a

2
Si

LD

∑n
i=1 a

2
Di

. (3.3)

where LS and LD are the lengths of LV in the end-systolic and end-diastolic frames

respectively. Similarly, aSi and aDi are the semi-axes lengths of an ith disk shown

in Fig. 1.5 in end-systolic and end-diastolic frames, respectively. Polynomial

regression is then employed on these feature functions to find estimates of EF.

The results obtained are presented in section 3.4.

3.3 EF Estimation using ML and NN Techniques

The subsequent part of the chapter describes the use of Simpson’s method for the

extraction of structural features of the LV. ML techniques are then employed on

these features to estimate EF.

The proposed method first performs LV segmentation on an A4C view of an

echocardiogram, then extracts pertinent features based on Simpson’s method from
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segmented images. This approach not only provides detailed insights into the in-

termediate steps involved but also remains consistent with the workflow of the

methods used in clinical settings. By explicitly incorporating the segmentation and

feature extraction steps, we can better understand and interpret the underlying

processes, enhancing the transparency and interpretability of the EF estimation

process. To estimate the EF, ML methods are applied to features obtained from

the LV, and their efficacy, in this case, is investigated. Simple Recurrent Neural

Networks (RNNs) and Long Short-Term Memory Networks (LSTMs) are employed

to leverage the temporal information present in the frames of an echocardiogram

effectively.

3.3.1 Traditional Machine Learning Techniques

Traditional ML techniques for regression that are used in this study to estimate

EF include Support Vector Regression (SVR), random forest (RF), decision tree

(DT), and linear regression (LR). These traditional ML methods each have their

strengths and weaknesses and are suitable for different types of regression prob-

lems.

3.3.1.1 Linear Regression

LR is a basic and widely used regression method that models the relationship

between the independent variables and the dependent variable as a linear function.

It assumes a linear relationship between the input features and the target variable,

with the goal of minimizing the difference between the predicted values and the

actual values. This simplicity and interpretability make LR particularly valuable

for initial modeling and understanding the directional impact of predictors on the

target variable.
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3.3.1.2 Support Vector Regression

SVR is a supervised learning algorithm that aims to find the best hyperplane that

maximizes the margin between the predicted values and the target variable. It

finds a subset of training examples, called support vectors, that are used to define

the hyperplane. SVR can handle linear and non-linear relationships using different

kernel types, such as linear, polynomial, or radial basis function (RBF) kernels.

This flexibility allows SVR to effectively model complex datasets and improve

prediction accuracy across diverse applications.

3.3.1.3 Decision Trees

DTs represent a flowchart-like structure where each internal node represents a

feature or attribute and each leaf node represents a predicted value. The DT splits

the data based on the values of the features, aiming to minimize the variance within

each resulting subset. DTs are easy to interpret and can handle both numerical and

categorical data. However, DTs can be susceptible to overfitting, meaning they

may not generalize well to unseen data and may instead memorize the training

data. To mitigate this issue, the maximum depth of the DT can be set. If the

maximum depth is set too high, the tree can become overly complex and capture

noise or irrelevant patterns in the training data, leading to overfitting. In this

study, the maximum depth of the DT was carefully selected to achieve a balance

between capturing important relationships in the data and avoiding overfitting.

3.3.1.4 Random Forest

RF is an ensemble learning method that combines multiple DTs to make predic-

tions. It works by creating a set of DTs using random subsets of the training

data and random subsets of features. Each tree in the RF independently predicts

the target variable and the final prediction is obtained by averaging or voting
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on the predictions of individual trees. RFs are known for their ability to han-

dle high-dimensional data along with non-linear relationships and provide feature

importance measures.

3.3.2 Neural Network-Based Techniques

Neural networks (NN) are computational models inspired by the human brain.

They consist of interconnected nodes called neurons organized into layers. The

network receives input signals, processes them using activation functions, and

produces output signals. By adjusting the connections between neurons, known

as weights, NNs can learn patterns and make predictions. They are commonly

used in ML and have been successful in tasks such as classification and regression.

RNNs and LSTMs are popular neural network architectures used in ML for re-

gression tasks involving sequential data. These networks are effective in capturing

temporal patterns and dependencies in sequential data, making them valuable

tools for regression tasks involving time series or other sequential data formats.

3.3.2.1 RNN

RNNs are designed to handle sequential data by maintaining a hidden state that

captures information from previous time steps. This allows them to capture tem-

poral dependencies and model the dynamics of the sequence. In the context of

regression, RNNs can learn to predict the next value in a sequence based on the

previous values.

3.3.2.2 LSTM

LSTM is a variant of RNN that addresses the issue of vanishing gradients, which

can occur with RNNs. LSTM introduces a memory cell that can retain information

over long periods of time, allowing the network to capture dependencies over longer



Quantification of LV Function from Segmented Frames 56

sequences. It achieves this by using gates that control the flow of information into

and out of the memory cell.

For regression tasks, RNNs and LSTM networks are trained to predict continuous

values based on the input sequence. The input sequence is represented as a time

series, where each element corresponds to a specific time step. The network pro-

cesses the sequence iteratively, updating its hidden state and producing an output

at each time step. The final output can be used as the regression prediction.

3.3.3 Proposed EF Estimation from LV Features

Figure 3.3: Proposed Method; (a) ES, ED input frames; (b) LV segmenta-
tion performed with DeepLab; (c) Simpson’s diameters extracted from LV; (d)

Regression performed using ML and NN algorithms.

The proposed method for estimating EF from the LV involves two main steps.

Firstly, LV segmentation is performed on the A4C views of the dataset using

DL techniques. The resulting segmented LV masks are then utilized for feature

extraction based on monoplane Simpson’s method. Regression techniques are

subsequently applied to these extracted features in order to estimate EF. These

techniques encompass both traditional ML approaches, chosen for their simplicity

and ease of implementation, as described in section 3.3.1, as well as NNs outlined

in section 3.3.2. The overall framework of the proposed method is illustrated in
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Fig. 3.3. The different blocks of the framework are described in detail in sections

3.3.3.1–3.3.3.3.

Traditional ML algorithms present certain advantages. They offer interpretabil-

ity, require fewer computational resources, and exhibit reliable performance even

on smaller datasets with simpler relationships. These algorithms can provide in-

sights and understanding into the underlying patterns within the data. NNs, on

the other hand, demonstrate their strength in capturing intricate patterns and

modeling non-linear relationships. They offer the advantage of requiring less ex-

plicit feature engineering and exhibit strong performance on large and complex

datasets. NNs have showcased exceptional performance across various domains

and exhibit good generalization capabilities when appropriately trained, albeit

with the caveat of potential overfitting if the model capacity is not effectively

controlled. By employing both NNs and traditional ML algorithms, the aim is to

leverage the respective strengths of each approach and explore their effectiveness

in addressing the research objectives.

3.3.3.1 LV Segmentation

The input to the LV segmentation module, as shown in Fig 3.3, consists of the ES

and ED frames. These frames are processed by the LV segmentation module to

extract the left ventricle region of interest. In this work, DeepLab is employed for

the semantic segmentation of the LV chamber from an echocardiographic image.

The use of atrous convolutions, commonly referred to as dilated convolution, is

the primary component of the DeepLab model [72]. They enable the model to

effectively capture features at different scales. By using the DeepLab model with

the ResNet architecture as its backbone, the approach employs atrous convolution

in a cascading or parallel manner. This allows for the capturing of multi-scale

context by utilizing different atrous rates [72]. Additionally, the inclusion of the

Atrous Spatial Pyramid Pooling module, along with image-level features, further

enhances the performance of the model.
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For the segmentation training, the PyTorch framework with pre-trained weights

for DeepLabv3 was utilized. Resnet50 was used as the backbone. The model

underwent training for a total of 45 epochs, employing a batch size of 16. The

SGD optimizer was utilized with an initial learning rate set to 10−3. To facilitate

learning rate decay, a ‘Reduce Learning Rate On Plateau’ strategy was employed,

decreasing the learning rate when no improvement was observed for a consecutive

number of epochs known as ‘patience’. In our case, the ‘patience’ value was set

to 3.

During the segmentation process, the input image size was standardized to 112 ×

112 pixels. The models were trained for A4C views from the EchoNet-Dynamic

dataset by using the training, validation, and testing sets as mentioned in sec-

tion 1.7. The model implementation was carried out using Python version 3.10.10

and PyTorch version 2.0.0, respectively. The experiments were conducted on a

server equipped with an NVIDIA Tesla P100 GPU.

3.3.3.2 Feature Extraction

After LV segmentation, feature extraction is performed on segmented LV based on

the monoplane Simpson’s method. The EDV and ESV found using this method

are used to calculate EF using Eq. (1.4), given in Chapter 1.

In our case, only A4C measurements are available; hence, the monoplane Simpson’s

method is utilized, which uses measurements obtained from A4C only. To extract

features from the segmented images, the contour points (volume tracings) are

derived from the segmented mask representing the LV at the ES and ED frames,

respectively. The localization process identifies the mitral valve and apex points,

which enable the determination of the major axis of the LV. The major axis is the

length between these two points. Subsequently, the disks are positioned orthogonal

to the major axis, spaced at the positions obtained by dividing the major axis into

20 equal parts. At each disk position, a region of interest (ROI) is defined as a

disk shape centered at that position, and the pixels within this ROI are extracted.

To calculate the diameter of each disk, the maximum distance between any two
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Figure 3.4: LV segmentation and feature extraction on systolic frames. Top:
LV segmentation masks. Bottom: Diameter tracings.

Figure 3.5: LV segmentation and feature extraction on diastolic frames. Top:
LV segmentation masks. Bottom: Diameter tracings.

points within the ROI is computed. Figs. 3.4 and 3.5 show the segmented images

and their corresponding feature extraction at the end-systole and end-diastole,

respectively.
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3.3.3.3 EF Estimation

The features extracted from the dataset are utilized as the training set for both

ML algorithms, discussed in section 3.3.1 and NNs, described in section 3.3.2.

To evaluate the performance of the model and optimize hyperparameters, a k-

fold cross-validation is conducted on a validation set. The trained model is then

assessed on a separate test set, employing various metrics, including the correla-

tion coefficient (Corr), mean absolute error (MAE), and root mean squared error

(RMSE).

Recognizing the significance of temporal information encompassing the ES and

ED frames in echocardiogram outcomes, RNNs and LSTMs are employed to cap-

ture such temporal dependencies and investigate whether this method could yield

improved results compared to the traditional ML techniques.

The RNN is a variant of neural networks that is created to effectively handle

sequential data. RNNs exhibit remarkable suitability for tasks involving the anal-

ysis and generation of sequences, owing to their unique ability to retain internal

memory or context. A distinguishing characteristic of RNNs lies in their recurrent

connections, which facilitate the transmission of information from one step in the

sequence to the subsequent step. This mechanism empowers the network to cap-

ture dependencies and discern patterns that unfold over time or sequence. During

each time step, the RNN receives an input, which is processed alongside the inter-

nal memory derived from the preceding step. The network subsequently produces

an output, along with an updated internal memory. This iterative process con-

tinues throughout each step in the sequence, establishing a temporal relationship

that links the inputs and outputs. The internal memory of an RNN assumes the

form of a hidden state, evolving as the network traverses each element of the se-

quence. This hidden state acts as a repository, preserving pertinent information

related to prior inputs and their influence on the current step.

The LSTM network is a common version of RNNs. When propagating information

over lengthy sequences, ordinary RNNs may have the issue of vanishing gradients.
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To manage information flow and solve the vanishing gradient issue, LSTMs em-

ploy specialized memory cells and gating systems. This makes LSTM a preferred

choice when exploiting both spatial and temporal information from the ES and

ED frames.

3.3.3.4 Hyperparameter Tuning

In this study, the best hyperparameters and the corresponding model were ob-

tained using a grid search with five-fold cross-validation.

Table 3.1: Hyperparameters of neural networks.

Hyperparameter Simple RNN LSTM

Model Layers 3 3
Dense Layer 1 1
Nodes in Layers 1, 2 and 3 128, 32, 16 units 64, 32, 16 units
Loss Function MSE MSE
Optimizer Adam SGD
Batch size 32 32
Epochs 70 100
Learning Rate 0.001 0.001
Activation Function tanh tanh

Table 3.1 gives the hyperparameter values for the neural networks. For both

simple RNNs and LSTMs, sequential models were constructed using the Keras

library, comprising three layers of each followed by a dense layer. To determine the

optimal number of hidden units, different configurations were tested. The models’

hyperparameters were fine-tuned to optimize their performance. The models were

then compiled using the loss function and optimizer as mentioned for each NN

in Table 3.1. This hyperparameter configuration was chosen based on the goal of

minimizing the mean squared error (MSE) between the predicted and the ground

truth values.

The hyperparameter values for the ML models along with their descriptions are

provided in Table 3.2. For each model, various hyperparameters are listed, in-

cluding kernel type, degree, gamma, C (regularization parameter), and epsilon
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(tolerance around the ground truth) for SVR; number of estimators, maximum

depth, and features to consider for best split for RF; and maximum depth of the

tree, minimum samples required at a leaf node, and minimum samples to split at

an internal node for DT. The table also specifies the values for grid search and

the values ultimately selected for each hyperparameter. This information aids

in understanding the parameter configurations utilized for training the respective

machine learning models.

3.4 Results

3.4.1 Evaluation Metrics

The dice similarity coefficient (DSC) is used to evaluate the performance of the

segmentation tasks by finding the similarity or overlap between the segmented

image and the ground truth mask [28, 73, 74]. It is particularly useful for evaluat-

ing the accuracy of binary segmentation masks, as is the case in this study. The

formula for calculating the DSC is given in Eq. (3.4).

DSC =
2|ŷ ∩ y|
|ŷ|+ |y|

. (3.4)

where ŷ and y represent the estimate of the segmented mask and the ground truth,

respectively. |ŷ| and |y| represent the sizes of these masks, and ŷ ∩ y represents

the intersection of these masks. The DSC ranges from 0 to 1, where 0 indicates

no overlap or dissimilarity between the sets, and 1 indicates a perfect match or

complete overlap between the sets.

To evaluate how accurately features have been extracted from LV masks based on

monoplane Simpson’s method, the Hausdorff Distance (HD) and MAE between

contour points are used. The HD between sets U and V can be calculated as

follows:

hausdorff(U, V ) = max

(
max
u∈U

min
v∈V

∥u− v∥,max
v∈V

min
u∈U

∥u− v∥
)
. (3.5)
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Table 3.2: Hyperparameters of ML algorithms.

Model Hyperparameter Definition Values for Grid Search Values Selected

SVR

Kernel type The kernel function [Linear, RBF] RBF

Degree Degree of the kernel function [2–6] -

Gamma Kernel Coefficient [0.001, 0.01, 0.1, 1] 0.01

C Regularization Parameter [0.1, 1, 10] 10

Epsilon Tolerance around the ground truth [0.1, 0.01, 0.001] 0.1

RF

n estimators Number of trees in the Forest [100–500] 400

max depth Maximum depth of the tree [None, 5, 10] None

max features Features to consider for best split [auto, sqrt, log2] Auto (40)

DT

max depth Max depth of the tree [5–10] 9

min samples leaf Minimum samples required at a leaf node [5–20] 17

min samples split Minimum samples to split at internal node [5–20] 15



Quantification of LV Function from Segmented Frames 64

where U represents the set of contour points obtained from the ground truth LV

mask and V represents the set of contour points obtained from the predicted LV

mask. The HD and MAE in this case are given in millimeters (mm).

The accuracy of the regression estimates is measured using MAE and RMSE, which

are the percentage errors in the case of EF. MAE serves as a metric to compute

the aggregate of errors between estimated and actual values. It is calculated by

taking the average of the absolute differences between predicted and actual values.

MAE provides a measure of the average prediction error without considering the

direction of the errors. RMSE gives comparatively large weight to big errors

because the errors are squared before being averaged. In our case, undesirably

larger errors are present mostly because of a few erroneous files in the data. Hence,

MAE in this case is a more desirable metric from an interpretation point of view.

The MAE and RMSE are given in Eqs. (3.6) and (3.7).

MAE =
1

N

N∑
i=1

|ẑi − zi|, (3.6)

RMSE =

√√√√ 1

N

N∑
i=1

(ẑi − zi)2. (3.7)

where ẑ and z represent estimated and ground truth EF respectively and N is the

total number of data points.

To access the agreement between the estimated EF and the ground truth value of

EF, the Pearson correlation coefficient is used, which is given in Eq. (3.8).

Corr =

∑N
i=1(zi − z̄)(ẑi − ¯̂z)√∑N

i=1(zi − z̄)2
∑N

i=1(ẑi − ¯̂z)2
. (3.8)

where zi and ẑi are the individual data points and z̄ and ¯̂z are the averages of the

estimated and ground truth EFs, respectively. A perfect correlation has a value

of 1, whereas 0 indicates no correlation between z and ẑ.
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3.4.2 Results of Area-Length and Simpson’s Method

As a first step; area-length and Simpson’s method were employed on Echonet-

Dynamic dataset to find the end-systolic and end-diastolic volumes. EF is then

calculated from these volumes using Eq. (1.4). Table 3.3 shows the results for

RMSE and MAE obtained for EF on both Echonet-Dynamic and CAMUS dataset.

As can be seen from Table 3.3, minimum MAE was achieved using Simpson’s

method, indicating that it models the geometry of LV better than the area-length

method.

Table 3.3: Area-length and Simpson’s method for EF prediction.

Dataset
Area-length Simpson’s Method

MAE RMSE Corr MAE RMSE Corr

EchoNet-Dynamic 11.304 14.209 0.548 9.492 13.300 0.638
CAMUS 13.271 15.687 0.432 10.707 14.989 0.487

RMSE gives comparatively large weight to big errors because the errors are squared

before being averaged. In our case, undesirably larger errors are present mostly

because of a few erroneous files in the data, which the introduction of some pre-

processing step could easily remove. Hence, in this case, larger RMSE is neither

particularly undesirable nor is it affecting the result much. Also, MAE in our case

is a more desirable metric from an interpretation point of view.

3.4.3 Results of Polynomial Regression

Table 3.4 shows the results of applying polynomial regression to estimate EF using

various combinations of LV features as well as proposed feature functions. The

results are obtained on the EchoNet-Dynamic dataset. As can be seen from Table

3.4; the best MAE is obtained by applying second-order polynomial regression to

the proposed feature function; SDCRsimp.

Here, multiple features include: As – systolic area, Ad – diastolic area, Ds – systolic

diameter, Dd – diastolic diameter, Ls – systolic length and Ld – diastolic length.
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Table 3.4: Polynomial regression for EF prediction.

Features Degree MAE RMSE Corr

Multiple Features
1 12.691 14.139 0.552
2 11.112 12.911 0.635
3 9.189 11.577 0.648

SDCR
1 15.392 16.371 0.332
2 10.342 12.309 0.525
3 9.436 12.149 0.527

SDCRsimp

1 13.065 15.950 0.406
2 8.715 10.446 0.655
3 9.042 11.042 0.651

For the combination of multiple features, the MAE decreases from 12.691 to 9.189

as the polynomial degree increases from 1 to 3. Using SDCR as a single feature,

the MAE decreases from 15.392 to 9.436 as the polynomial degree increases from

1 to 3. This suggests that higher-order polynomial regression provides better

accuracy in EF prediction using multiple features as well as SDCR. However, for

the case of SDCRsimp, the MAE decreases from 13.065 to 8.715 as the polynomial

degree increases from 1 to 2. However, there is a slight increase in MAE to

9.042 when the polynomial degree is further increased to 3. This suggests that

the optimal polynomial degree for SDCRsimp is 2, providing the lowest MAE

compared to degrees 1 and 3. This phenomenon could be attributed to overfitting

when using a polynomial degree of 3, leading to a degradation in accuracy.

For second order polynomial, using SDCR as a feature function, the best fit is

given by Eq. (3.9);

EFest = 2.22(SDCR)2 − 83.7(SDCR) + 92. (3.9)

For second order polynomial, the best fit using SDCRsimp is given by Eq. 3.10;

EFest = 37.91(SDCRsimp)
2 − 128.13(SDCRsimp) + 104.13. (3.10)

The models given in Eqs. (3.9) and (3.10) using proposed features SDCR and
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SDCRsimp respectively, are also evaluated against the CAMUS dataset. The re-

sults are shown in Table 3.5.

Table 3.5: EF prediction using proposed models on CAMUS.

Features MAE RMSE Corr

SDCR 11.669 14.243 0.479
SDCRsimp 9.744 12.828 0.603

Here too, as shown in Table 3.5 the best results are obtained by employing second-

order polynomial using the proposed feature; SDCRsimp.

To provide a comprehensive comparison of the performance of different methods,

Fig. 3.6 presents a plot that visually contrasts the MAE and RMSE values of

various estimation techniques using distinct markers.

Figure 3.6: A comparison of MAE and RMSE of clinical methods with poly-
nomial regression on different sets of features.

Another set of tests was run using two sets of features and varying polynomial

degrees to estimate ESV and EDV, respectively. The results are given in Table 3.6.

In this case, it can be seen from the results that the RMSE and MAE obtained are

high in value showing that polynomial regression failed to capture the underlying

distribution for the volumes. One of the main reasons is that it is not sufficient to
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predict the volume of a 3D shape (LV) from 2D data that is available to us from

the A4C view. Availability of an orthogonal view i.e. A2C in addition to A4C is

a necessary requirement to provide a better prediction of the volumes. However,

we were able to estimate EF with quite a reasonable accuracy as shown in Table

3.4 since it depends on the ratio of volumes rather than their absolute value.

Table 3.6: Polynomial regression for volume prediction.

Features Degree
RMSE MAE

ESV EDV EF EF

As, Ad, Ds,
Dd, Ls, Ld

1 42.7 25.3 21.6 20.3
2 38.6 24.3 20.7 17.9
3 40.3 22.6 16.9 15.8

As, Ad, Ds,
Dd,

1
Ls
, 1
Ld

1 43.6 26.1 21.1 19.3
2 41.5 25.7 19.0 17.6
3 43.5 24.2 16.4 15.3

3.4.4 Results of ML and NN Techniques

The overall DSC obtained for LV segmentation is 0.92, which indicates a consid-

erably reasonable similarity index. The DSCs for segmentation of systolic and

diastolic frames are given in Table 3.7. The table also includes the HD and MAE

for extracted features (volume tracings) in systolic and diastolic frames.

Table 3.7: LV segmentation and feature extraction.

DSC HD (mm) MAE (mm)

Segmentation—Systolic 0.930 - -
Segmentation—Diastolic 0.911 - -

Volume Tracings—Systolic - 6.324 6.704
Volume Tracings—Diastolic - 7.280 5.716

To estimate EF, the set of features derived from monoplane Simpson’s method

comprises the diameters of the disks, along with the length of LV. A combination

of regression techniques was applied to this set of features. LSTM and RNN were

also used to estimate EF. Table 3.8 shows the results obtained.
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Table 3.8: EF estimation from the extracted features.

Regressors MAE RMSE Corr

LSTM 5.736 7.726 0.777
Simple RNN 6.489 9.180 0.746

SVR 6.727 8.908 0.689
RF 6.799 9.022 0.677
DT 6.865 9.084 0.671
LR 6.736 8.954 0.683

Simpson’s Method 9.492 13.300 0.638

LSTM demonstrates the lowest MAE and RMSE among all models, indicating

superior accuracy in EF estimation. The correlation coefficient of 0.777 suggests

a strong linear relationship between the predicted and ground truth EF values.

Simple RNN exhibits slightly higher MAE and RMSE compared to LSTM, indi-

cating slightly inferior performance. However, it still maintains a relatively strong

correlation with the ground truth EF values (Corr = 0.746). SVR, RF, DT,

and LR show similar performance in EF estimation, with moderate MAE and

RMSE values and correlation coefficients ranging from 0.671 to 0.689. While they

may not achieve the same level of accuracy as LSTM and Simple RNN, they still

demonstrate reasonable predictive capability. In contrast to the machine learning

models, Simpson’s method yields higher MAE and RMSE values, indicating lower

accuracy in EF estimation. This is further illustrated in Fig. 3.7, which visually

compares the MAE and RMSE obtained from both clinical and machine learning

methods.

Overall, the results highlight the effectiveness of LSTM and other machine learning

approaches in accurately estimating EF from extracted features, offering promising

prospects for clinical applications in cardiac health assessment.

Fig. 3.8 displays the correlation and Bland-Altman plots for RNN, SVR, and LR,

illustrating the relationship between the ground truth and predicted values of EF.

Fig. 3.9 shows the comparison between the utilization of LSTM as a regression

technique and the direct application of Simpson’s method for calculating EF.
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Figure 3.7: A comparison of MAE and RMSE of clinical methods with differ-
ent ML methods.

The Bland-Altman plot is a method used to assess the agreement between two

different methods of measurement; the estimated and the ground truth EF values

in our case. It is often employed in medical research and clinical studies to compare

the agreement between two techniques that measure the same quantity. In a Bland-

Altman plot, the differences between the two measurements are plotted against

the averages of the measurements. This graphical representation assesses whether

there is any systematic bias between the two methods and whether the differences

between them are consistent across the range of measurements. Additionally, it

provides insights into the limits of agreement, which represent the range within

which 95% of the differences between the two measurements are expected to fall.

As shown in Fig. 3.9; the EF data within 95% confidence interval for clinical

Simpson’s method is spread more than the data estimations obtained from LSTM.

The correlation plot reinforces this observation, with EF values estimated from

LSTM more concentrated around the line of perfect correlation as compared to the

estimations obtained from the direct application of Simpson’s method. Similarly,

Fig. 3.8, which presents the plots for other ML methods such as RNN, SVR,

and LR, demonstrates a better agreement between the estimated EF and the
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(a) RNN

(b) SVR

(c) LR

Figure 3.8: Left: Bland–Altman plot for RNN, SVR, and LR - The blue line
shows the line of perfect average agreement, and the red lines show the limit of
agreement bounds at ±1.96 standard deviation. Right: Correlation plot - The

red line shows the line of perfect fit.

ground truth EF in comparison to the results from the Simpson’s method. These

findings highlight the superior accuracy and reliability of ML based approaches

over traditional clinical methods for EF estimation.
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(a) LSTM

(b) Simpson’s method

Figure 3.9: Left: Bland–Altman plot for LSTM and Simpson’s method - The
blue line shows the line of perfect average agreement, and the red lines show
the limit of agreement bounds at ±1.96 standard deviation. Right: Correlation

plot - The red line shows the line of perfect fit.

3.5 Discussion

We initiated this research by investigating simpler and computationally less inten-

sive methods, which are grounded in clinical principles. This initial exploration

aimed to grasp the process of feature extraction and the relationship between fea-

tures and various structural and functional parameters of the LV. As part of this

exploration, we introduced two feature functions for use in polynomial regression.

These functions not only streamlined the regression process but also yielded results

that were comparable to more complex techniques.

In this part of the research, when EF was estimated using direct clinical methods on

both EchoNet-Dynamic and CAMUS datasets, the monoplane Simpson’s method
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produced the best results; as indicated in Table 3.3. The proposed feature func-

tions were then used to perform polynomial regression on the EchoNet-Dynamic

data, resulting in the two models for EF estimation presented in Eqs. (3.9) and

(3.10). The best results were achieved using the model of Eq. (3.10) based on

the feature SDCRsimp. The models developed in Eqs. (3.9) and (3.10) were also

applied on CAMUS to evaluate EF. The effectiveness of the suggested models is

demonstrated by the comparable MAE achieved for CAMUS, even though the

models had never been exposed to this data previously.

Building upon this foundation, the research progressed to employ ML and NN

techniques on the extracted features for estimating EF. This proposed method once

again aligns with the clinical workflow of the EF estimation and gives insight into

the intermediate steps undertaken by cardiologists in the process of EF calculation,

including LV segmentation and finding volume tracings. By incorporating these

essential components, the proposed method not only ensures interpretability but

also maintains consistency with the established clinical workflow.

In clinical practice, LV segmentation is typically obtained from the end-diastole

and end-systole frames of an echocardiogram. The LV is divided into disks, which

are used to calculate the left ventricular end-diastolic and end-systolic volumes.

EF is then derived using these volumes obtained from both the A2C and A4C

views. In this part of the study, the main focus was on the limitations caused

by the unavailability of orthogonal views of data. This limitation restricts the

use of Simpson’s biplane method, which relies on having orthogonal views. In

such a case, using ML regression algorithms for EF estimation provided improved

outcomes as compared to clinical Simpson’s method.

In this study, both NNs and traditional ML algorithms have been utilized. A key

consideration in this research revolves around the intrinsic need to leverage the

temporal information embedded within the data. The EF, which quantifies the

difference between the volume of blood pumped into the LV during systole and

the volume pumped out during diastole, heavily relies on the temporal informa-

tion encapsulated between these two consecutive frames. The utilization of RNN
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and LSTM models enables the exploitation of this information between systolic

and diastolic frames. These network architectures are specifically designed to han-

dle sequential data and capture the temporal dependencies between consecutive

inputs, enabling them to learn from the contextual information across time.

Table 3.9: Comparative analysis with other studies for EF estimation.

Model MAE RMSE Corr

MC3 * [33] 5.91 6.80 -
R2 + 1D * [33] 6.87 7.55 -
LSTM [75] 8.08 11.98 0.35
DL Based Workflow [76] 6.50 - 0.76
Proposed 5.73 7.72 0.78

* MC3: Mixed Convolution 3, R2 + 1D: Spatiotemporal Convolutional block.

The minimum MAE for estimating EF was obtained when LSTM was employed

for regression with Simpson’s diameters and LV length taken as a set of features.

In Table 3.9, a comparative analysis was conducted for EF estimation using various

existing methods on the EchoNet-Dynamic dataset. The proposed method out-

performed the estimates by other studies, demonstrating its superior performance

in EF estimation.

3.6 Summary

The objective of this chapter was to estimate the LV function utilizing echocar-

diographic frames from the EchoNet-Dynamic dataset, comprising the A4C views.

The initial phase entailed the segmentation of the LV from the videos, followed

by the extraction of relevant features from the obtained segmentation results.

Subsequently, various regression algorithms were employed to estimate the left

ventricular EF based on these extracted features.

Among the regression techniques employed, the LSTM network gave the best

results with the least MAE. Additionally, the SVR algorithm demonstrated com-

parable outcomes while offering the advantage of lower computational complexity.
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The evaluation of EF is limited when relying solely on the A4C view, as its accuracy

is heavily dependent on the selection of a single imaging plane. If the chosen plane

does not adequately represent the entire LV volume, the measurements may not

accurately reflect the true LV function. However, tracing the endocardial border in

multiple phases of the cardiac cycle can be a time-consuming and labor-intensive

process, especially in challenging scenarios such as poor image quality or fast

heart rates. As a result, the proposed techniques offer a valuable alternative by

yielding results of acceptable accuracy even when measurements are based on a

single imaging plane. This simplifies the analysis process and provides a practical

solution for clinical applications.



Chapter 4

Quantification of LV Structure

and Function from

Echocardiogram Videos

The accurate quantification of both LV structure and function directly from the

echocardiogram videos is important for the diagnosis and management of various

cardiovascular conditions. Numerous studies have utilized DL techniques in the

quest to develop automated methods that can reliably and precisely quantify both

the structural and functional aspects of the LV. For the quantification of LV struc-

ture, Leclerc et al. [15] used variations of a UNet fine-tuned for LV segmentation

on their publicly released dataset, CAMUS. Later, they [31] developed LU-Net, in-

fluenced by Mask R-CNN principles, which first predicts an ROI around the heart

and then accurately segments within the ROI. This approach demonstrated im-

proved results over their previous UNet architecture. Moradi et al. [32] proposed

MFP-Unet, inspired by feature pyramid networks (FPN), incorporating dilated

convolutions to expand the receptive field and upscale feature maps, enhancing

2D echocardiographic segmentation performance. Ouyang et al. [14] who released

the EchoNet-Dynamic [33] dataset for assessing EF and segmenting the LV in A4C

sequences, introduced a DL system for weak supervised learning segmentation of

the LV and EF estimation across cardiac cycles. Their results showed that ML

76
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techniques outperformed human expertise in chamber segmentation. They high-

lighted the importance of preprocessing to improve data quality and avoid biases.

Ghorbani et al. [46] extended this work by introducing a model capable of clas-

sifying cardiac structures and estimating volumetric measures. Their model also

predicted demographic information from echocardiography images. Zhang et al.

[5] developed an automated echocardiography interpreting process that involved

preprocessing, view classification, segmentation, and cardiac cycle detection using

CNNs, estimating LV length, area, volume, mass, EF, and longitudinal strain,

followed by disease detection. Liu et al. [48] proposed PLANet, a DL based seg-

mentation approach that improves low-contrast regions and reduces noise impact

by considering neighboring pixel results. They introduced a deep pyramid local at-

tention neural network to learn pairwise label interdependencies, which was tested

on CAMUS and EchoNet-Dynamic subsets.

Typically, these algorithms perform these tasks in a pipeline, i.e., performing seg-

mentation initially, and identifying ES and ED frames based on segmentation

outcomes, upon which EF estimation is conducted. Extending the work presented

in Chapter 3, a single fully automated multitask network, the EchoFused Network

(EFNet) is introduced that simultaneously addresses both LV segmentation and

EF estimation tasks through cross-module fusion. The proposed approach makes

use of semi-supervised learning to estimate the EF from the entire cardiac cycle,

yielding more dependable estimations and obviating the need to identify specific

frames. To facilitate joint optimization, the losses from task-specific modules are

combined using a normalization technique, ensuring commensurability on a com-

parable scale.

4.1 EF Quantification from Cardiac Cycle

The current recommended clinical method to find EF estimates i.e. biplane

method of disks (modified Simpson’s rule), requires the extraction of ES and ED

frames from an echocardiogram video. The LV tracings are derived from these
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frames through manual labeling, which leads to the computation of EF. This pro-

cedure is time-consuming and prone to variability due to human involvement. The

ground truth labeling for LV segmentation is typically limited, often available only

for ES and ED frames due to the impracticality of labeling the entire video se-

quence encompassing numerous frames. However, accurate estimation of EF relies

on capturing temporal information from a video sequence containing at least one

complete cardiac cycle.

In the majority of existing studies on echocardiograms, the tasks of LV segmenta-

tion and regression of EF have been treated as independent tasks. Simultaneous

feature learning from segmentation and regression models is a relatively novel

concept that hasn’t been extensively explored before. By training these tasks si-

multaneously, the models can exploit the mutually shared information, leading to

improved performance and more accurate outcomes. In this study, we attempt to

address two important tasks: LV segmentation and EF estimation. Despite their

distinct nature and varying outcome requirements, these tasks are intricately in-

terconnected and rely heavily on each other. Exploiting the interdependencies be-

tween them holds great potential for achieving our research objectives efficiently.

Therefore, we aim to use cross-module learning through multitask optimization

to utilize this shared information. In multitask optimization, task-specific models

with distinct weights are employed, and a combined cost function is utilized. This

allows the models to jointly optimize a single objective function while ensuring

similarity in their parameters. Multitask optimization provides various benefits,

including efficient data utilization, accelerated model convergence, and mitigation

of model overfitting through shared representations.

The proposed multitask model EFNet, enables concurrent segmentation and re-

gression from echocardiogram videos, employing joint optimization of the objective

function and leveraging their interconnectedness to enhance overall performance.

The integration of objective functions from two distinct tasks, each with varying

scales, is carefully examined and addressed systematically. Effective strategies are

devised to seamlessly combine these objective functions, ensuring coherence and
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consistency in the model’s training process. The proposed model undergoes train-

ing and evaluation using a larger dataset, enabling robust learning from a diverse

range of samples. Furthermore, the model is fine-tuned on a smaller dataset, in-

vestigating the potential benefits of leveraging DL techniques to train effectively

on limited data resources. This additional step aims to explore the model’s adapt-

ability and performance optimization when dealing with smaller datasets. Data

augmentation methods are utilized to enhance the dataset’s size and diversity.

4.2 Background on ML Techniques: Segmenta-

tion

Semantic segmentation creates a pixel-wise mask that identifies and delineates

different objects or regions in the image. Delineating the LV through semantic

segmentation can be achieved through DL models that generate pixel-wise masks

of the LV region, enabling quantitative analysis of its size, shape, and function.

However, it is a challenging task due to variations in heart anatomy, image quality,

and potential artifacts. The different DL architectures used for segmentation in

this study include DeepLabv3, DeepLabv3+, FCN, and UNet models, which are

state-of-the-art models. Different versions of the ResNet architecture, ranging

from ResNet18 to ResNet101, have been employed as the backbone architecture

for these models. Varied depths were explored to determine the optimal network

configuration that exhibits the minimum depth required while maintaining an

acceptable level of accuracy.

4.2.1 DeepLabv3

The fundamental element of the DeepLab model is the utilization of atrous convo-

lutions, also known as dilated convolutions. By adopting DeepLabv3 with ResNet

as its foundation, the approach incorporates atrous convolution in a parallel fash-

ion. This enables the model to capture contextual information across multiple
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scales by employing different atrous rates [72]. Moreover, the model’s perfor-

mance is augmented through the inclusion of the Atrous Spatial Pyramid Pooling

module in conjunction with image-level features. In DeepLabv3+, the inclusion of

the Feature Pyramid Pooling (FPP) module enhances segmentation accuracy by

integrating feature maps from multiple levels of the network hierarchy. This mod-

ule specifically addresses the challenge of capturing fine-grained details, resulting

in improved segmentation performance.

4.2.2 Fully Connected Neural Network

The fundamental concept behind Fully Convolutional Networks (FCNs) is to re-

tain the spatial information across the network, allowing for pixel-wise predictions

in semantic segmentation tasks. FCN architectures commonly integrate skip con-

nections to merge features from multiple levels of the network hierarchy. These

connections play a crucial role in capturing both local and global contexts, thereby

improving the accuracy of segmentation results.

4.2.3 UNet

UNet was originally introduced for biomedical image segmentation by Olaf Ron-

neberger et al. [28]. In the UNet architecture, the encoder plays a crucial role in

capturing high-level features from the input data. It consists of multiple down-

sampling blocks, comprising convolutional layers followed by max-pooling. On

the other hand, the decoder part, known as the expanding path, consists of up-

sampling blocks that utilize up-convolutional layers. These blocks are then con-

catenated with skip connections originating from the corresponding contracting

path. This mechanism facilitates accurate object localization by combining both

low-level and high-level features. UNet++ is an extension of the original UNet

architecture, proposed by Zongwei Zhou et al. [77]. It further improves the per-

formance of UNet by capturing comprehensive contextual information at multiple

scales through nested skip connections, enhancing the segmentation results.
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4.3 Background on ML Techniques: Regression

For quantification of the LV function, the regression module utilized in this study

is the R2Plus1D model available in the torchvision library. This model is a vari-

ant of the two-stream 3D CNN architecture, originally designed for video action

recognition tasks. The (2+1)D convolution, also referred to as spatiotemporal

convolution, plays a crucial role in capturing both spatial and temporal features

in video data. In our case, the temporal information is contained in the echocar-

diogram multiple-frame video sequence, which captures the variation in left ven-

tricular volumes. During the (2+1)D convolution operation, filters are applied

across the spatial dimensions of each frame as well as the temporal dimension of

the sequence. This allows the filters to capture spatial patterns within individual

frames and temporal patterns across the cardiac cycle. The resulting feature maps

are then flattened and fed into fully connected layers to learn complex relation-

ships between the extracted features and the regression target. The final layer of

the model produces the regression output, representing the predicted values for

the EF estimation. By leveraging the spatiotemporal capabilities of the R2Plus1D

model, we can achieve a more accurate and robust assessment of LV function.

This approach enhances the precision of EF estimations, ultimately contributing

to improved diagnostic capabilities in clinical practice.

4.4 Proposed Model: EFNet

The proposed EFNet simultaneously performs LV segmentation and EF estimation

on echocardiogram videos by performing cross-module fusion. EFNet comprises

two modules: a segmentation module and a regression module. The objective of

the segmentation module is to delineate the LV’s boundary by creating a pixel-wise

mask. The regression module aims to estimate the EF from the video. The cross-

module fusion integrates embeddings extracted from the segmentation module

into the regression module, allowing for simultaneous training of both modules



Quantification of LV Structure and Function from Echocardiogram Videos 82

through joint loss optimization. Fig. 4.1 illustrates an example input consisting

of a sequence of frames from a cardiac cycle.

Figure 4.1: Example video frames extracted from a cardiac cycle.

Before providing data to EFNet, it undergoes a few preprocessing steps to enhance

model performance. Data augmentation is employed to enhance the diversity of

the dataset and to add robustness to the model. The transformations that are

employed include rotation, shearing, translation, and composite transformations

(sequence of translation, rotation, and shear). Details of data augmentation tech-

niques are provided in section 4.4.3. After augmentation, the data is normalized

to ensure consistent scales and facilitate convergence during training.

Figure 4.2: Proposed model: The EchoFused Network (EFNet). Input is
echocardiogram videos with f frames, ẑi is the EF estimate. ŷi is the segmen-

tation estimate. L is the loss function

The proposed methodology of the EFNet is illustrated in Fig. 4.2. An echocardio-

gram video sequence consisting of f frames is given as an input to the EFNet. The
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dataset, as described in section 1.7, has limited labels for the segmentation of LV,

available only for the ES and ED frames; no labels are available for the remaining

frames in the video sequence. Due to the limited availability of labels, segmen-

tation training is conducted in a semi-supervised manner to obtain embeddings

from the video data. While the sparse ground truth labels are utilized to assess

the losses in the segmentation module, the segmentation embeddings derived from

the entire video sequence are employed in the training of the regression module.

The UNet++ encoder is utilized as a common encoder to extract features from the

input data. Skip paths are used to connect the encoder and decoder in UNet++

[77] to minimize the gap between the feature maps from the two in advance of their

fusion. The ResNet50 architecture is used as the backbone for feature extraction.

Fig. 4.3 gives the detailed architecture of the segmentation module.

The skip connection between the encoder and the decoder consists of a dense

convolutional block. Let xm,n represent the output from the node Xm,n where m

represents the downsampled layer along the encoder and n represents the layer

of the dense block along the skip connection. The feature maps are combined to

obtain an estimate ŷi according to Eq. (4.1);

ŷi = fReLU

(
conv

(
concat(xm,0, xm,1 . . . , xm,n),

E(xm+1,n−1)
))

,
(4.1)

where:

E(xm+1,n−1) = fReLU

(
upconv

(
xm+1,n−1

))
. (4.2)

Here ŷi is the output feature map, fReLU(·) is the non-linear activation function,

concat(·) represents the concatenation layer and upconv(·) represents the trans-

posed convolutional layer for upsampling. The loss function for segmentation is

computed from the dissimilarity between the predicted masks and the ground

truth masks obtained from ES and ED frames.

The embeddings obtained from the segmentation module on the video sequence are

processed by the regression module to estimate the EF. This regression module is
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the R2Plus1D model, which is a variant of the two-stream 3D convolutional neural

network architecture, originally designed for video action recognition tasks.

The R2Plus1D spatiotemporal convolutions in the regression module decompose

3D convolutions into separate spatial and temporal components. The first con-

volutional layer performs 2D spatial convolution on each frame embedding ŷi of

the video sequence obtained from the segmentation module, given by Eq. (4.3).

The 1D temporal convolution is then applied to the spatial tensors zs of the entire

video, yielding the output tensor zt, which is given by Eq. (4.4).

zs = conv2d (ŷi,Ws, bs) , (4.3)

zt = conv1d (zs,Wt, bt) . (4.4)

Here, Ws, bs, Wt, and bt are weights and biases for spatial and temporal convolu-

tions, respectively. The output from each residual block of R2Plus1D, represented

by zr, is given by Eq. (4.5);

zr = f (conv (zt,W, b)) . (4.5)

Finally, the output zi from the fully connected layer is given by Eq. (4.6);

zi = f

(∑
j

(Wijzr + bi)

)
. (4.6)

4.4.1 Joint Loss Function

The training of cross-module EFNet depends on effectively combining and opti-

mizing the segmentation and the regression loss functions, which are binary cross-

entropy (BCE) and mean squared error (MSE), respectively. The BCE loss func-

tion computes the binary cross-entropy loss for each element in the input tensor

and then calculates the mean of these individual losses. This ensures that the

returned loss value represents the average loss across all elements in the input

tensor. The reduction operation aggregates these individual losses into a single
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scalar value, reflecting the overall loss of the entire batch or dataset. By taking

the mean, the loss value becomes normalized and independent of the batch size or

dataset size, facilitating easier comparison and interpretation. This normalization

is crucial for maintaining consistency and comparability across different training

iterations and data samples. On the other hand, the MSE loss function assigns a

higher penalty to large differences between predicted and true values by squaring

the differences. Consequently, larger errors contribute more significantly to the

overall loss. By taking the mean, the MSE loss yields a scalar value represent-

ing the average squared difference between the predicted and true values. In our

case, since the EF value is a percentage, the MSE range lies between 0 and 100.

This range provides a clear and interpretable measure of the model’s predictive

accuracy, making it easier to assess performance improvements during the training

process.

To enable simultaneous learning, joint optimization is employed using various

strategies to ensure that losses from both networks are on a compatible scale.

These strategies are thoroughly investigated and discussed in detail in section

4.4.2, to find the most effective combination of loss functions. The combined loss

function from the segmentation and regression modules, given by Eq. (4.7), is

backpropagated to update both the models’ weights. This approach leverages

shared features and encourages the model to find a balance between both tasks.

L(y, ŷ, z, ẑ) = 1

Nρ

√∑
i

(zi − ẑi)
2 −

∑
i

yi log(ŷi), (4.7)

where

ρ = zmax − zmin. (4.8)

Here, z and ẑ are ground truth and estimated values from the regression mod-

ule, while y and ŷ are ground truth and estimated values from the segmentation

module, respectively. N represents the sample size.

The training steps for our proposed model, EFNet, are outlined in Algorithm 1.
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Algorithm 1 Cross-Module Regression and Segmentation Training

1: Input:
Video Data: {{Xij}fi=1}Nj=1 , (f frames, N samples)
Ground truth for regression: {EF}Ni=1

Pairs of frames (Segmentation): {Fs}Ni=1, {Fd}Ni=1

Ground truth Masks (Segmentation): {Ms}Ni=1, {Md}Ni=1

Other Parameters: Number of epochs; nepochs, Learning rate for Regression,
Learning rate for Segmentation.

2: Initialization:
Select backbone ResNet architecture for both regression and segmentation
modules.
Initialize both modules with pretrained ImageNet weights.

3: Training Loop:
4: for epoch = 1 to nepochs do
5: Sample input and ground truth video data for both regression and segmen-

tation modules.
6: Sample Fs, Fd along with Ms and Md for segmentation loss
7: Segmentation:
8: Generate Segmentation feature maps ŷi from Fs and Fd frames using Eq.

(4.1).
9: Compute Segmentation loss by comparing with Ms and Md.
10: Cross-Module Fusion:
11: Pass video sequence {{Xij}ni=1}Nj=1 through segmentation module and ob-

tain resulting embedding z.
12: Pass this embedding to the regression module.
13: Regression:
14: Obtain spatial and temporal embeddings; zs and zt on z using Eqs. (4.3)

and (4.4). Find output zi from the fully connected layer using Eq. (4.6).
15: Compute regression loss from the ground truth EF and estimated EF.
16: Combine Losses:
17: Normalize the regression loss.
18: Combine the normalized Regression and Segmentation losses using Eq.

(4.7).
19: Backpropagation:
20: Backpropagate the combined loss to update the weights of both modules

simultaneously.
21: end for

4.4.2 Loss Function Normalization Techniques

To combine loss functions, it becomes essential to normalize the MSE loss ob-

tained from the regression module to make it comparable with the segmentation

loss. The methods explored and experimented in this study to normalize the re-

gression loss include normalization of the RMSE by i) the standard deviation, ii)
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the interquartile range, iii) the difference between the maximum and minimum

values, and iv) the mean of the ground truth values [78], which are given as under;

NRMSE =
RMSE

σ
, (4.9a)

NRMSE =
RMSE

Q3−Q1
, (4.9b)

NRMSE =
RMSE

zmax − zmin

. (4.9c)

NRMSE =
RMSE

z̄
. (4.9d)

where NRMSE is the normalized root mean squared error, however, determining

the most suitable normalization method is not straightforward as there is no evi-

dent superiority of one over the other. There are a few implications that we need to

consider when computing normalized RMSE. While scaling by mean and standard

deviation is commonly used, it may not always be the optimal approach. Normal-

ization by standard deviation alters the original data scale and range, making it

susceptible to the influence of outliers and skewness. Consequently, this method

can lead to misleading results if the data follows a different distribution or if out-

liers hold significance in the analysis.

In our study, outliers are typically undesirable and arise due to cardiac cham-

ber foreshortening or certain abnormalities in the heartbeat. When dealing with

such cases, utilizing the interquartile range also tends to obscure the underlying

patterns, making it necessary to opt for robust alternatives. On the other hand,

max-min normalization maintains the relative order and distance of data points,

in contrast to mean, standard deviation, and interquartile range normalization.

This was also validated through experiments conducted on these normalization

schemes, and it was determined that the most accurate results were obtained by
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normalizing the RMSE by the difference in maximum and minimum EF values as

given in Eq. (4.9c).

Figure 4.4: Comparison of different RMSE normalization methods. Loss sam-
ples are obtained on the validation set from EchoNet-Dynamic with a batch-size

of 20. SD: Standard deviation, IQR: Interquartile range

A comparison of NRMSE using different normalization techniques is illustrated in

Fig. 4.4. The losses are obtained on the validation set with a batch size of 20. The

model used is FCN with resnet50 backbone architecture. Notably, normalization

by mean and interquartile range has spread the range of losses, preventing their

direct comparison with the BCE losses from segmentation.

4.4.3 Data Augmentation

Image augmentation techniques are used in this study to expand the training

dataset in order to address the challenge of limited data availability. We per-

formed an in-depth analysis by applying commonly used augmentation techniques

to our training data and selected the most suitable ones based on both qualitative

and quantitative analyses. It was found that geometric transformations produced

better results as compared to intensity-based transformations. The techniques
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applied include rotation, translation, shear, and composite transformations. The

values for different parameters required for respective augmentation techniques

are chosen based on experimental analysis. For rotation, a random rotation angle

ranging from 0 to 25 degrees is selected. The translation operation is applied on

both the horizontal and vertical axes using values sampled randomly from the

range of 0 to 0.15, which is the maximum absolute fraction for horizontal and

vertical translations. The horizontal shift is randomly sampled within the range [-

image width * 0.15, -image width * 0.15] and the vertical shift is randomly sampled

within the range [-image height * 0.15, -image height * 0.15]. The shear transfor-

mations can be applied both horizontally and vertically. They help improve the

model’s ability to recognize objects from different viewpoints and orientations. In

this method, a shearing angle, which is selected randomly within the range of 0

to 10 degrees, is used to apply the shearing operation along the x and y axes.

Lastly, a composite transformation comprising a sequence of translation, shearing,

and rotation is applied to the data. The translation was carried out as previously

described. For shearing, we selected shear angles from the range of -5 to 5 de-

grees. As for rotation, we randomly chose angles from -15 to 15 degrees. These

combined transformations allowed us to create diverse and augmented datasets for

our experiments. Each augmentation technique replicated the entire dataset once;

hence, the total dataset size was increased five times after applying augmentation,

bringing the training size from 7,460 to 37,300 videos.

The augmentation is performed simultaneously on the ES and ED frames along

with their respective masks, in order to train the segmentation module. It is also

performed on the sequence of video frames selected for training the regression

module. Fig. 4.5 shows an example frame for each augmentation technique.

4.4.4 Model Evaluation

The input frames to EFNet from the echocardiogram videos are scaled to 128 ×

128 pixels. The model was implemented using Python version 3.10.12 and PyTorch

version 2.0.0. The experiments were performed on a server featuring an NVIDIA
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Figure 4.5: Example frames with their respective masks showing results of
various augmentation techniques applied to EchoNet-Dynamic

Tesla P100 GPU. The proposed model undergoes training and evaluation using a

larger dataset known as EchoNet-Dynamic. The model is initially trained on this

sizable dataset, enabling it to capture a comprehensive range of cardiac dynamics

and variations. Subsequently, the model is fine-tuned using a smaller dataset

called CAMUS and subjected to evaluation. This approach leverages the benefits

of both datasets, harnessing the richness and diversity of EchoNet-Dynamic during

initial training and refining the model’s performance by adapting it to the specific

characteristics of the CAMUS dataset. Through this two-step process, the model

achieves a robust and adaptable performance across these two different datasets.

4.5 Results

4.5.1 Evaluation Metrics

The DSC is used to evaluate the accuracy of segmentation performance using the

formula given in Eq. 3.4.

Other metrics used to evaluate the performance of segmentation models are Pixel

Accuracy and Intersection over Union (IoU). Pixel Accuracy quantifies the ratio
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of accurately categorized pixels in the predicted output and is given in Eq. 4.10.

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
, (4.10)

where TP is True Positive, TN is True Negative, FP is False Positive and FN is

False Negative.

To find the overlap between the ground truth and the estimated segmentation

masks, the IoU metric has also been utilized. It is given by Eq. 4.11;

IoU =
|ŷ ∩ y|
|ŷ ∪ y|

. (4.11)

where ŷ and y represent the estimate of the segmented mask and the ground truth,

respectively.

The metrics used to access the estimation of EF include MAE, RMSE, r-squared

(R2), and Pearson correlation coefficient. The Receiver Operating Characteristic

(ROC) curve provides insight into the discriminatory ability of our model across

various decision thresholds for the detection of cardiomyopathy. The (ROC) curve

is a fundamental tool for evaluating the performance of binary classification mod-

els.

4.5.2 Quantitative Analysis

4.5.2.1 EF Estimation

The experimental results for EF estimation obtained from video-based joint learn-

ing performed on EchoNet-Dynamic and CAMUS datasets through EFNet are

given in Table 4.1.

In an independent test dataset from EchoNet-Dynamic unseen during model train-

ing, the EFNet demonstrated an EF prediction with an MAE of 4.35%, an RMSE

of 5.83%, and an R2 value of 0.88 when compared to human expert annotations
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Table 4.1: EF estimation

Dataset MAE∗ RMSE∗ R2 Corr

EchoNet-Dynamic 4.35 5.83 0.78 0.88
CAMUS 5.69 6.99 0.73 0.87

∗MAE and ∗RMSE results are presented in percentage (%) values

(ground truth values). These metrics comfortably align with the usual measure-

ment discrepancies seen among different clinicians, known as inter-observer varia-

tion, which may reach up to 13.9% [8].

Figure 4.6: Bland-Altman and EF correlation plot (EchoNet-Dynamic)

The Bland-Altman plot and correlation graphs illustrating the true and predicted

EF for EchoNet-Dynamic are depicted in Fig. 4.6. A comparison between these

graphs and those presented in Fig. 3.8 and Fig. 3.9, which display the EF es-

timations derived from the method introduced in Chapter 3, reveals evident im-

provements resulting from cross-module training on video data. In the correlation

plot shown in Fig. 4.6, the EF estimations exhibit a more uniform distribution

around the ground truth as compared with the distribution seen in Fig. 3.9(a).

Similarly, for the Bland-Altman plot in Fig. 4.6, the data is comparatively more

concentrated within the 95% confidence interval.

The bar graph in Fig. 4.7 depicts the comparison between actual and predicted

values categorized into different ranges of EF as suggested by ASE and EACVI and

given in Table 1.1. It offers a visual representation of how accurately the model

predicts EF across various ranges. The x-axis represents the EF ranges, while the

y-axis indicates the frequency of samples falling within each range. The graph
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reveals insights into the model’s performance, highlighting areas of accurate pre-

diction and those where discrepancies occur. This analysis aids in evaluating the

model’s effectiveness in capturing the subtleties of EF estimation across different

ranges.

Figure 4.7: Comparison of ground truth and predicted EF categorization in
different ranges of EF given by [8]

4.5.2.2 LV Segmentation

Table 4.2: Segmentation (EchoNet-Dynamic)

DL Model
DSC IoU Pixel Accuracy

ED ES ED ES ED ES

DeepLabv3 0.9254 0.9012 0.8612 0.8202 0.9854 0.9824
DeepLabv3+ 0.9190 0.9006 0.8501 0.8192 0.9843 0.9800
FCN 0.9233 0.9041 0.8575 0.8250 0.9859 0.9821
UNet 0.9163 0.8978 0.8455 0.8146 0.9841 0.9795
EFNet 0.9309 0.9135 0.8707 0.8408 0.9878 0.9844

The results for LV segmentation on EchoNet-Dynamic for ES and ED frames

are given in Table 4.2. We also compared the results of segmentation obtained

from EFNet with existing state-of-the-art segmentation networks which include

DeepLabv3, DeepLabv3+, FCN, and UNet. We replicated the model proposed
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in [14] for LV segmentation, employing DeepLab with a ResNet50 backbone. We

independently implemented their model with our selection of hyperparameters.

Notably, our proposed multitask network with cross-module fusion surpassed these

state-of-the-art segmentation networks and yielded enhanced results. Across all

utilized metrics, EFNet consistently demonstrated improved performance.

The DSC was computed individually for both ES and ED frames, providing in-

sights into the segmentation accuracy at different phases of the cardiac cycle.

Aggregating these DSC values allowed for the determination of an overall per-

formance metric as depicted in Fig. 4.8. The histogram in the figure illustrates

a predominance of DSC values ranging from 0.8 to 1.0, indicating a consistently

high level of segmentation accuracy across the dataset.

Furthermore, the histogram reveals that approximately 80% of the segmentation

predictions achieved a DSC greater than 90%, underscoring the model’s proficiency

in delineating the left ventricular boundaries accurately. A closer examination of

the segmentation accuracy between ES and ED frames reveals notable differences,

Table 4.3 further confirms this, illustrating that the accuracy for ED frames ex-

ceeds that of ES frames.

This discrepancy in segmentation accuracy between ES and ED frames suggests

potential challenges or complexities associated with segmenting the LV during dif-

ferent phases of the cardiac cycle. The higher accuracy observed for ED frames

may be attributed to factors such as clearer delineation of anatomical structures or

reduced motion artifacts compared to ES frames. During end-systole, the LV con-

tracts, leading to more complex motion patterns and deformation of the ventricular

walls. This motion can result in blurring or distortion of the LV boundaries, mak-

ing segmentation more challenging. Similarly, end-systolic frames may have lower

image quality compared to end-diastolic frames due to increased motion artifacts

or reduced contrast between the LV and surrounding tissues. This poorer image

quality can make it harder for segmentation algorithms to accurately delineate the

LV boundaries.
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Figure 4.8: Histogram showing DSC values obtained for ES and ED frames,
along with the overall DSC for EchoNet-Dynamic.

For evaluation on the CAMUS dataset, EFNet pre-trained on a larger dataset i.e.

EchoNet-Dynamic was fine-tuned for several epochs. The results for LV segmen-

tation on this dataset are given in Table 4.3.

Table 4.3: Segmentation (CAMUS)

DL Model
DSC IoU Pixel Accuracy

ED ES ED ES ED ES

DeepLabv3 0.9275 0.8866 0.8648 0.7962 0.9881 0.9874
DeepLabv3+ 0.9079 0.8700 0.8313 0.7699 0.9843 0.9832
FCN 0.9062 0.8897 0.8285 0.8013 09879 0.9841
UNet 0.9247 0.8968 0.8600 0.8128 0.9885 0.9866
EFNet 0.9366 0.9154 0.8807 0.8440 0.9905 0.9886
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Another comparative analysis was conducted between the EF estimation results

obtained by EFNet and those derived without cross-module fusion. The same

regression model was used in both for comparison. It became evident that inte-

grating cross-modules within EFNet led to a substantial 36.7% enhancement in EF

estimation accuracy. Comparison of EFNet results with independent regression

and segmentation results are given in Table 4.4.

Table 4.4: Comparison of EFNet with segmentation and regression networks
trained without joint optimization

Model MAE RMSE ED ES

Segmentation (UNet++) - - 0.91 0.89
Regression (R2Plus1D) 6.87 7.55 - -
EFNet 4.35 5.83 0.93 0.91
Improvement 36.6% 22.8% 2.19% 2.24%

4.5.2.3 Cardiomyopathy Detection

Fig. 4.9 illustrates receiver-operating characteristic curves for diagnosing heart

failure with reduced ejection fraction using the test dataset.

In our analysis, we iterated over different threshold values, ranging from 35 to 50,

representing the cutoff points at which the model classifies instances as positive

or negative for cardiomyopathy. For each threshold value, the True Positive Rate

(TPR) and False Positive Rate (FPR) are computed.

The TPR, also known as sensitivity, measures the proportion of actual positive

cases correctly classified by the model as positive. Conversely, the FPR represents

the proportion of actual negative cases incorrectly classified as positive by the

model. By plotting these rates against each other, the ROC curve illustrates the

trade-off between sensitivity and specificity (1 - FPR) across different threshold

values.

Additionally, the Area Under the Curve (AUC) is calculated for each threshold,

providing a single metric to summarize the model’s discriminatory performance.

The AUC quantifies the probability that the model will rank a randomly chosen
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Figure 4.9: Receiver operating curve for the diagnosis of cardiomyopathy
based on different thresholds for detection boundary.

positive instance higher than a randomly chosen negative instance. Higher AUC

values indicate better discriminatory ability of the model.

Each curve on the ROC plot corresponds to a specific threshold value, with the

label for each curve indicating the threshold value along with the corresponding

AUC score. By analyzing the ROC curve and AUC scores, we gain insights into

how well the model distinguishes between positive and negative cases of cardiomy-

opathy across different decision thresholds.

4.5.3 Qualitative Analysis

Fig. 4.10 shows a few samples of ground truth segmentation masks compared to

the predicted segmentation masks obtained when EFNet was trained on EchoNet-

Dynamic. Visually, it is evident that the results are of high quality, indicating the

effectiveness of the models in accurately predicting the segmentation masks. The

close alignment between the ground truth and predicted masks demonstrates the
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robustness of EFNet in handling real-world echocardiographic data, showcasing

its potential for reliable clinical application.

Figure 4.10: Predicted segmentation masks from EFNet. The red masks show
the ground truth. Yellow masks show the predictions obtained from EFNet. (a-

d) ES frames. (e-h) ED frames.

In our analysis, we conducted a qualitative comparison between the segmentation

results obtained from EFNet, which incorporates cross-module fusion, and the re-

sults obtained when segmentation was carried out as an independent task without

fusion with a regression module. The comparative analysis, as illustrated in Fig.

4.11, demonstrates the superior performance achieved when segmentation is inte-

grated into the EFNet framework compared to its independent implementation.

The DSC values are also provided with each frame, which further supports our

assertion.

Furthermore, there were instances where the ground truth labels had discrepancies

due to incorrect labeling, chamber foreshortening, or poor image quality [14].

EFNet exhibited the ability to accurately delineate the LV boundary in these

cases too, demonstrating its robustness. A few such cases are shown in Fig. 4.12.
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Figure 4.11: Illustrative frames with ground truth: EFNet vs. segmentation
model predictions without cross-module fusion. Blue masks represent ground
truth segmentation, with EFNet’s segmentation boundary in red and without

multitasking in yellow

4.6 Discussion

Due to inherent limitations in the imaging principle of echocardiography, speckle

noise is often prominent, leading to blurred boundaries and the presence of ar-

tifacts in the cardiac tissue. These factors make it challenging for physicians to

accurately trace the left ventricular endocardium. As a result, the clinical cal-

culation of the left ventricular EF is highly dependent on empirical assumptions,

leading to substantial errors and compromising the reliability of the results. Au-

tomating the procedure of EF calculation using AI can offer significant advantages

in such scenarios. By leveraging AI algorithms, it becomes possible to overcome

the limitations of manual tracing and improve the accuracy of EF estimation.

To achieve this objective, a multitask network employing cross-module fusion has

been devised in this chapter, enabling simultaneous training of segmentation and

regression tasks through joint optimization. By incorporating a cross-module
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Figure 4.12: Illustrative frames with erroneous ground truth: EFNet predic-
tions outperform ground truth. Blue masks show the ground truth segmenta-
tion. The segmentation boundary obtained through EFNet is shown in red.

framework, the model ensures compatibility with the clinical workflow while ef-

fectively integrating and leveraging the interdependencies between segmentation

and regression processes. Moreover, within our proposed model, the prior knowl-

edge obtained from the segmentation task enables the regression model to focus

specifically on the delineated candidate areas for feature generation.

The simultaneous training of multiple tasks in multitask learning can sometimes

result in a decline in overall performance. Smaller independent networks often

outperform the multitask approach in such cases. This decrease in performance

can be attributed to various factors. One possible reason is that the tasks being

learned may require different rates of learning, making it challenging to find an

optimal balance. Additionally, one task may dominate the learning process, lead-

ing to limited progress on the other tasks and an imbalance in performance. The

gradients of the different tasks can also interfere with each other during training,
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further affecting the overall performance. Moreover, combining multiple loss func-

tions can create a more complex optimization problem, posing challenges for the

learning process. To address these issues, we have focused on finding appropriate

ways to combine the losses and optimize the objective function jointly. Equal

weighting is assigned to both losses, ensuring that both tasks are optimized with

equal importance. To ensure that the tasks are learned at similar rates, the losses

are scaled to the same range. The two tasks at hand here are disjoint but depen-

dent on each other and by leveraging their shared characteristics we were able to

optimize the loss function and achieve satisfactory results. The overall results ob-

tained through EFNet demonstrated improved accuracy as compared to previous

studies that performed these two tasks independently.

In Tables 4.5 and 4.6, a comparative analysis is conducted for EF estimation

using various existing methods on both EchoNet-Dynamic and CAMUS datasets,

respectively. The proposed method of jointly optimizing segmentation with a

regression module in a cross-module fusion model outperformed the estimates by

other studies and yielded significantly improved results.

Table 4.5: Performance of EFNet against existing methods for EF estimation
(EchoNet-Dynamic)

Model MAE RMSE Corr

R3D [33] 5.44 6.16 -
MC3 [33] 5.91 6.80 -
R2+1D [33] 6.87 7.55 -
LSTM [75] 8.08 11.98 0.348
DL Based Workflow [76] 6.5 - 0.76
UVT (R*) [79] 6.76 8.70 0.48
UVT (M*) [79] 5.95 8.38 0.52
UltraSwin-small [80] 5.72 7.63 0.58
UltraSwin-base [80] 5.59 7.59 0.59
EchoGNN [81] 4.45 0.76 -
DL, LSTM [16] 5.73 7.72 0.78
MAEF-Net [50] 6.29 - -

Proposed Method 4.35 5.83 0.879

R3D: 3D ResNet, MC3: Mixed Convolutional Networks, R2+1D: ResNet 2+1D, LSTM: Long
Short-Term Memory, UVT: Ultrasound Vision Transformer, *R indicates random sampling, *M

indicates mirror sampling of video sequences.
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Table 4.6: Performance of EFNet against existing methods for EF estimation
(CAMUS)

Model MAE RMSE Corr

SRF [15] 12.8 - 0.465
BEASM-fully [15] 10.7 - 0.731
BEASM-semi [15] 10.0 - 0.790
UNet [15] 5.6 - 0.791
ACNN [15] 5.7 - 0.799
SHG [15] 5.7 - 0.770
UNet++ [15] 5.6 - 0.789
Automated EF [82] 6.7 - -

Proposed Method 5.54 8.02 0.822

SRF: Structured Random Forest, BEASM: B spline Explicit Active Surface Model, ACNN:
Anatomically Constrained Neural Networks, SHG: Stacked Hourglass

In this study, EF estimation played a crucial role in the classification of cardiomy-

opathy based on different thresholds. By applying various thresholds to the EF

values obtained from echocardiographic data, we were able to classify patients into

different categories, ranging from severely abnormal to normal cardiac function.

This classification was instrumental in identifying individuals with cardiomyopa-

thy, allowing for early intervention and appropriate management strategies.

However, it’s essential to acknowledge that while this study presents a method for

diagnosing cardiomyopathy based on specific criteria, the final decision regarding

the classification of cardiomyopathy is often dependent on the expertise and judg-

ment of cardiologists. Cardiologists consider a multitude of factors, including but

not limited to ejection fraction, symptoms, medical history, and additional diag-

nostic tests, to make an accurate diagnosis and classification. Therefore, while the

criteria presented in this study may aid in the diagnostic process, they should be

interpreted in conjunction with clinical expertise and patient-specific information

for accurate classification and treatment planning.

4.6.1 Time-Space Complexity Analysis

Table 4.7 gives the time-space complexity of EFNet and compares it with other

semantic segmentation models. EFNet exhibits the highest number of parameters



Quantification of LV Structure and Function from Echocardiogram Videos 104

(80.28 million) among all models listed in the table. Despite its complexity, EFNet

maintains a reasonable model size of 374.48 MB, indicating efficient parameter

utilization and potentially robust feature representation.

Table 4.7: Time-Space complexity analysis.

EFNet DLv3 DLv3+ FCN UNet

Parameters (m)↓ 80.28 73.30 57.98 85.62 63.82
Model Size↓ 374.48 321.13 204.21 415.60 248.78
GFLOPs↓ 131.01 123.95 148.12 130.51 155.57
MACs↓ 65.41 61.88 73.91 65.15 77.63
FPS↑ 17.32 15.23 17.08 13.31 16.42
Time (sec)↓ 0.0578 0.0657 0.0585 0.0752 0.0609
Memory (GB)↓ 0.95 0.75 1.37 0.78 1.32
DSC 0.9309 0.9254 0.9190 0.9233 0.9163

DLv3 - DeepLabv3. DLv3+ - DeepLabv3+. GFLOPs - Giga-floating-point operations. MACs -
Multiply-accumulate operations. FPS - Frames per second. m - millions. Time and Memory

per prediction are given.

Figure 4.13: Trade-off between accuracy and computational efficiency based
on GLOPs

When considering computational efficiency, EFNet demonstrates a lower or a com-

parable number of floating-point operations per second (GFLOPs) at 131.01 and

multiply-accumulate operations (MACs) at 65.41 as compared to DeepLabv3+,

FCN and UNet. DeepLabv3, on the other hand, has the lowest values of GFLOPs
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Figure 4.14: Trade-off between accuracy and computational efficiency based
on MACs

Figure 4.15: Trade-off between accuracy and processing speed measured in
FPS

and MACs. In terms of inference speed, EFNet achieves a competitive Frames

per Second (FPS) rate of 17.32 and a relatively low time per prediction of 0.0578

seconds. These values indicate EFNet’s ability to process predictions swiftly, con-

tributing to efficient real-time performance. Although EFNet requires slightly
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more memory per prediction (0.95 GB) compared to some models, it remains

within reasonable limits, ensuring compatibility with various hardware configura-

tions.

The figures 4.13, 4.14 and 4.15 illustrate the efficiency of EFNet by comparing

its DSC performance against MACs, GFLOPs, and FPS, respectively. The size

of the circles in the plot represents the model sizes. From the plots, it is evident

that EFNet achieves the highest accuracy among all models while maintaining a

balanced tradeoff in terms of speed and computational efficiency.

4.7 Summary

In this study, the proposed model; EFNet, enables simultaneous quantification of

cardiac chamber structure and function, resulting in a workflow consistent with the

clinical evaluation of EF. It automates the procedure of volume tracing to obtain

EF, which reduces the burden of human labeling. The evaluation in this work relies

on a single imaging plane i.e. the A4C view whereas, in clinical practice, both A4C

and A2C views are utilized for EF calculation. However, the process of manually

tracing the endocardial border during various phases of the cardiac cycle can be

demanding and time-consuming, especially in challenging situations characterized

by inadequate image quality or elevated heart rates. Hence, the method proposed

in this chapter offers an alternative by providing acceptable accuracy even with

measurements from a single imaging plane. This simplifies analysis, making it a

practical solution for clinical applications.



Chapter 5

Improved Quantification of LV

Structure Through a Decoupled

Edge Guided Module

Building upon the work laid out in the previous chapter, the significance of precise

LV delineation in enhancing LV quantification remains paramount. This prompted

an investigation into methods aimed at refining LV segmentation. This chap-

ter delves deeper into improving LV segmentation techniques, leveraging insights

gained from the joint EF estimation and LV segmentation performed previously.

Various segmentation algorithms utilizing DL techniques have been developed for

the quantification of the LV structure. These algorithms focus on pixel classifi-

cation within the object’s body, emphasizing high-level features while overlooking

low-level details such as edges and boundaries of the objects in context, leading to

less precise detection of LV borders. Moreover, this task remains challenging due

to the low signal-to-noise ratio, unclear borders, and organ variability in echocar-

diogram data. Precise delineation of the LV is essential in carrying out an accurate

diagnosis of various cardiac conditions, highlighting the need for advanced tech-

niques to improve segmentation accuracy.

107
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This chapter introduces a multitask network designed to improve the quality and

accuracy of LV delineation by including boundary information. The network em-

ploys a common encoder for shared feature extraction from echocardiogram data.

It utilizes separate decoder modules for semantic segmentation and edge predic-

tion, each with its individual cost function, combined to perform joint optimization

within the network. Our proposed method exhibits enhanced accuracy across mul-

tiple metrics compared to existing state-of-the-art semantic segmentation models

that do not include edge prediction. This improvement demonstrates the effective-

ness of our approach in overcoming the challenges associated with LV delineation.

5.1 Limitations of Semantic Segmentation

Recently, there has been considerable work done in the field of semantic segmen-

tation, specifically on the use of encoder-decoder-based neural networks to predict

labels for each pixel within an input image. Semantic segmentation involves iden-

tifying specific image class pixels and isolating them from other image classes by

applying a segmentation mask overlay. Employing classification architectures for

pixel-level categorization has several limitations [83–85]. An encoder typically

comprises a backbone network like VGG [86], ResNet [87], and MobileNet [88],

among others. A widely used encoder-decoder architecture, UNet [28] is known

for its efficiency in producing semantic segmentations. UNet was originally intro-

duced for biomedical image segmentation by Olaf Ronneberger et al. [28]. In the

UNet architecture, the encoder generates low-level features from the input data by

convolving it through layers of filters. The downsampled feature maps are upsam-

pled by the decoders to the original size of the input data. These reconstructed

features provide pixel-level labels that provide semantic segmentation. However,

during the process, important spatial information that is necessary for segmen-

tation is lost. Fully Convolutional Networks (FCNs) are also considered effective

for semantic segmentation; however, downsampling and upsampling operations in

FCNs may also lead to the loss of fine-grained details, which might cause FCNs to
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struggle to precisely delineate object boundaries. This can result in fuzzy or impre-

cise object boundaries in the segmentation output. These existing methods with

reduced spatial resolution emphasize solely low-level semantic attributes like color,

shape, and texture within a single deep architecture. As a result, these methods

may lack understanding of attributes extending beyond pixel-level classification,

particularly key low-level information like boundary details.

Figure 5.1: LV segmentation outcomes derived from SOTA semantic seg-
mentation models. The images display pixel values, where 0s signify detected
background and 1s represent detected LV. The yellow background pixels within
the segmented images indicate the ground truth boundary. The enlarged re-

gions highlight some of the undetected LV areas.

In LV delineation, it is important to establish distinct demarcations between adja-

cent structures by minimizing pixel ambiguity near the LV border. The inclusion

of particular boundary points is important, particularly the LV apex and the mi-

tral valve annulus [8]. Moreover, echocardiogram data encounter issues like low

signal-to-noise ratio, noise, low contrast, and organ variation. Ensuring a pre-

cise LV boundary is crucial for cardiologists to derive accurate clinical insights

[36, 89, 90]. Illustrated in Fig. 5.1 are outcomes of LV segmentation obtained

from state-of-the-art (SOTA) semantic segmentation models. These images de-

pict pixel values, where 0s indicate the detected background (blue-colored region)
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and 1s signify the detected LV (gray-colored region). The yellow background

within the segmented images represents the ground truth border. Observing the

segmented images reveals that a considerable portion of border pixels, including

adjacent areas, primarily register as 0s, indicating undetected segments within

the LV region. The image size has been reduced to 50x50 to enhance pixel-level

visibility.

5.2 Decoupled Mask and Edge Processing Tech-

niques

The precision and quality of LV delineation can be enhanced by integrating bound-

ary information through the decoupled mask and edge processing techniques. By

decoupled processing, we mean separately carrying out the prediction of object

masks (semantic segmentation) and the prediction of object boundaries (edge pre-

diction) and fusing them in a way that enhances the performance of each other to

obtain better accuracy. In contrast to semantic segmentation, which offers high-

level details, the edge prediction component provides low-level information. De-

coupling facilitates the development and integration of dedicated modules specif-

ically designed for edge processing. This approach extends beyond conventional

segmentation networks, enabling more flexibility and diversity in network design.

Separate learning objectives and loss functions for edges and masks might also

reduce overfitting as the model learns distinct features for different tasks.

In order to achieve these objectives, a multitask DL model featuring a common

encoder for shared feature extraction from input data is introduced. This model

also includes two distinct modules; the Mask Generation Decoder for mask seg-

mentation and the Edge Predictor for boundary prediction. By incorporating

edge supervision from the Edge Predictor the network’s ability to preserve spatial

boundary details is significantly improved, resulting in enhanced semantic seg-

mentation performance. The multitask model optimizes through joint training

by combining losses from both the Mask Generation Decoder and Edge Predictor
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Thorough research on the structure of the Edge Predictor led to the proposal of

the one that exhibited the best performance in the regression of edge coordinates.

5.3 Proposed Decoupled Edge Guided Module

We introduce a multitask model aimed at: i) conducting semantic segmentation to

derive LV masks, and ii) performing regression for edge prediction. By leveraging

both tasks collaboratively, our approach optimizes the multitask model to enhance

segmentation accuracy, exploiting the combined information from these tasks. A

common encoder is created for the two tasks in order to extract common features

and share parameters between them. The inputs to the encoder are the ES and ED

echocardiogram frames. The encoder output is used to perform semantic segmen-

tation through the Mask Generation Decoder and boundary estimation through

the Edge Predictor. The losses from both heads are combined to generate one

combined loss to update the weights of the model during training. The proposed

model is illustrated in detail in Fig. 5.2.

Figure 5.2: The proposed encoder-decoder based model. Input comprises ES
and ED frames from echocardiogram data. Mask Generation Decoder produces
semantic segmentation masks, Edge Predictor produces coordinates of edges.
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The model architecture adopts the UNet framework combined with the ResNet34

backbone, which is integrated into the encoder to enhance feature extraction ca-

pabilities. The U-Net architecture consists of two main parts: the contracting

path (encoder) and the expansive path (decoder). The contracting path extracts

features through convolutional layers while reducing spatial dimensions. The ex-

pansive path gradually upsamples the features to produce a segmentation map.

The ResNet34 architecture employs residual blocks consisting of skip connections

to mitigate vanishing gradient problems and facilitate deeper network training.

The architecture of the proposed model is illustrated in Fig. 5.3.

The encoder based on the ResNet34 backbone comprises five convolutional blocks

(ConvBlockk, k is the layer number). Each ConvBlock comprises M feature maps.

The feature maps extracted from each layer of a ConvBlock are created according

to the equation given by Eq. (5.1);

yki = f(bki +W k
i ∗ x) where i = 1, . . . ,M. (5.1)

Where W k
i is the weight, bk is the bias, and f is a non-linear activation function.

5.3.1 Mask Generation Decoder

The Mask Generation Decoder mirrors the encoder’s architecture but performs up-

sampling operations to recover the spatial resolution by utilizing skip connections

from the encoder to maintain fine-grained details. The outputs from the decoder

are the segmentation masks for both ES and ED frames. For the mask-based seg-

mentation head, BCE loss is used, which measures the dissimilarity between the

predicted probabilities and the true binary labels. It is mathematically defined in

Eq. (5.2) as;

Lmask = − (y log(ρ) + (1− y) log(1− ρ)) . (5.2)

In the equation, y represents the true binary label (0 or 1), ρ denotes the predicted

probability of the positive class, and log denotes the natural logarithm.
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5.3.2 Edge Predictior

The data for regression comprises coordinate pairs representing the edge points

of the LV boundary. The coordinate pairs are transposed to convert them into a

linear array, as shown in Fig. 5.4. In order to perform regression on these points,

Figure 5.4: Range of ground truth values of boundary points for regression of
edge prediction for ES and ED frames, respectively.

a regression head is designed. The regression head comprises fully connected

(FC) layers designed to transform the encoded features into predictions for the

regression task. The feature maps from the encoder of UNet are flattened out

using the Adaptive Average Pooling layer to reduce the spatial dimensions of

the input feature maps to a predefined output size of 1x1. This is followed by

connecting two FC layers. The first FC layer has 512 input features and 256

output features. The last FC layer has the number of linear activations equal to the

number of dimensions of the target space, allowing it to produce continuous values

for regression tasks. The two FC layers create a deeper network structure. The first

FC layer (512 to 256) extracts and transforms the features from a high-dimensional

space to an intermediate space, reducing the dimensionality. The second FC layer

(256 to 80) further processes these intermediate features to generate the final

output. Using two FC layers allows for hierarchical feature extraction, potentially

enabling the network to capture more intricate and abstract relationships between

the input and output spaces. The outputs from the regression head are predicted

continuous values for the coordinates of the edge of the LV.

For the Edge Predictor, the MSE loss function is used in the regression head. This

loss function measures the average squared difference between the predicted values

(x̂) and the true values (x). The MSE loss is calculated by taking the mean of the
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squared differences across the dataset, as given in Eq. (5.3);

Ledge =
1

N

N∑
i=1

(xi − x̂i)
2. (5.3)

In the equation, N represents the total number of samples in the dataset, and the

summation is performed over all the samples.

5.3.3 Joint Loss Function

During training, a combined loss function is formulated to jointly train both the

segmentation and regression components of the model. The joint loss function

is formed by a combination of losses from both the segmentation and regression

tasks, given by Eq. (5.4);

LJoint = Lmask + Ledge. (5.4)

The joint loss function, combining both segmentation and regression losses, is

backpropagated through the network during training. The model’s parameters

are updated to minimize the overall loss, ensuring that both the segmentation and

regression components are optimized simultaneously.

5.4 Results

5.4.1 Evaluation Metrics

To have a comprehensive evaluation of the segmentation model’s performance, the

metrics used include the DSC, IoU, F1-score, F2-score, Accuracy, and Recall.

To assess the accuracy of binary segmentation masks, the DSC is used. The for-

mula for calculating the DSC is provided in Eq. (3.4), as previously discussed. In

addition to DSC, Accuracy, and Recall are also used to evaluate the segmentation
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performance. Accuracy evaluates the proportion of correctly classified pixels to

the total number of pixels in the image and is given previously in Eq. (4.10). In

the context of binary segmentation, Recall or Sensitivity measures the proportion

of true positive predictions of the target class out of all actual positive instances

present in the ground truth data, given by Eq. (5.5).

Recall =
TP

TP + FN
. (5.5)

Here, TP represents the number of correctly predicted positive instances. FN

represents the number of positive instances that were incorrectly predicted as

negative and FP represents the number of negative instances that were incorrectly

predicted as positive.

F1 score, taken as the harmonic mean of precision and recall, balancing both

measures; is given by Eq. (5.6);

F1 score =
TP

TP + 0.5(FP + FN)
. (5.6)

F2 measure is obtained by using weighted mean, given in simplified form in Eq.

(5.7). The F2 score places more emphasis on Recall as compared to the F1 score.

F2 score =
TP

TP + 0.2FP + 0.8FP
. (5.7)

To evaluate the accuracy of edge prediction, the HD and MAE between ground

truth and the predicted edge coordinates are used.

5.4.2 Quantitative Results

The outcomes for both semantic segmentation and edge prediction are detailed in

Table 5.1. The results are given for both the ES and ED frames. The first two rows

depict the outcomes of mask prediction and edge prediction obtained using our

proposed multitask network, which integrates a decoupled edge detection module.

In contrast, the last two rows present the results of semantic segmentation without
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the inclusion of the edge detection module. The comparison highlights that the

incorporation of edge information improves segmentation accuracy.

Table 5.1: Mask segmentation and edge prediction.

Mask Prediction Edge Prediction

DSC HD (mm) MAE (mm)

Diastolic 0.910 6.33 2.05
Systolic 0.930 5.88 1.72
Diastolic (w/o Edge) 0.894 – –
Systolic (w/o Edge) 0.912 – –

For comparison with various SOTA segmentation models, we utilized well-known

segmentation networks: FCN with a ResNet50 backbone, UNet with ResNet34

and ResNet50 backbones, and UNet++ with a ResNet50 backbone. We have also

replicated the model proposed in [14] for LV segmentation, employing DeepLabv3

with a ResNet50 backbone.

Table 5.2: Comparison of the proposed model with SOTA semantic segmen-
tation models.

Models DSC IoU F1 F2 Accuracy Recall

UNet 34 0.905 0.818 0.900 0.892 0.982 0.886
UNet 50 0.903 0.818 0.900 0.893 0.983 0.889
UNet++ 50 0.909 0.826 0.905 0.896 0.983 0.890
FCN 0.910 0.813 0.897 0.871 0.981 0.854
DeepLabv3 0.914 0.823 0.903 0.882 0.982 0.869

Proposed 0.920 0.834 0.910 0.930 0.984 0.942

We independently implemented their model with our selection of hyperparameters.

Notably, our proposed network, which integrates a decoupled edge prediction mod-

ule, surpassed these SOTA networks and yielded enhanced results. The evaluation

encompassed multiple metrics outlined in section 5.4.1. The comprehensive out-

comes for an aggregate of ES and ED frames are summarized in Table 5.2. Across

all utilized metrics, our proposed model consistently demonstrated improved per-

formance. The comparison is also illustrated in Fig. 5.5.

The validation loss curve, shown in Fig. 5.6, illustrates the trend of the model’s

loss function on a validation dataset across multiple epochs during the training
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Figure 5.5: Comparison of the proposed model results with SOTA segmenta-
tion models.

Figure 5.6: Validation loss curve for the proposed model and other SOTA
segmentation models.

process. This curve shows the proposed model’s superior performance compared

to that of other SOTA models.

Detailed results for both the ES and ED frames are shown in Table 5.3.
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Table 5.3: Comparison of LV Segmentation results for ES and ED frames.

Models
DSC IoU F1 F2 Accuracy Recall

ED ES ED ES ED ES ED ES ED ES ED ES

UNet 34 0.894 0.912 0.801 0.836 0.889 0.911 0.891 0.893 0.985 0.980 0.892 0.881

UNet 50 0.892 0.911 0.798 0.839 0.887 0.912 0.889 0.896 0.984 0.981 0.892 0.887

UNet++ 50 0.896 0.918 0.807 0.846 0.893 0.916 0.890 0.902 0.985 0.981 0.887 0.893

FCN 0.894 0.921 0.795 0.831 0.886 0.907 0.865 0.877 0.984 0.979 0.848 0.859

DeepLabv3 0.897 0.924 0.809 0.838 0.894 0.911 0.880 0.883 0.985 0.980 0.871 0.868

Proposed 0.910 0.930 0.808 0.861 0.894 0.925 0.921 0.934 0.985 0.983 0.942 0.942
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5.4.3 Qualitative Results

To offer a qualitative analysis, we’ve shown segmentation results obtained on a

few samples of both ES and ED frames in Fig. 5.7 and Fig. 5.8. The ground truth

segmentation is depicted in red, while the segmentation results from the proposed

model are shown in yellow. The yellow segmentation overlays the red ground truth

to facilitate comparison. We have also presented outcomes derived from various

SOTA models on these frames for comparison. The visual depictions indicate

that models lacking boundary information struggle to achieve accurate segmenta-

tion near the edges. In contrast, our proposed approach offers precise boundary

delineation, as the visual comparisons show. These representations highlight the

superior performance of the proposed method compared to alternative approaches.

The edge prediction results obtained from these frames are also shown in Fig. 5.9.

In the figure, the positions of the ground truth coordinates are marked by red dots,

while the yellow marks show the positions of the predicted coordinates. The visual

results illustrate the close alignment between the predicted coordinate values and

the ground truth coordinates.

Figure 5.7: Visual depiction illustrating the qualitative comparison between
our proposed model and other SOTA segmentation models for ED frames. Rows

(a-d) represent the evaluation obtained on different input samples.
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Figure 5.8: Visual depiction illustrating the qualitative comparison between
our proposed model and other SOTA segmentation models for ES frames. Rows

(a-d) represent the evaluation obtained on different input samples.

Figure 5.9: Edge prediction on ES and ED frames respectively. Red dots
show the positions of ground truth coordinates, and yellow crosses show the po-
sitions of predicted coordinates. Columns (a-d) represent evaluations obtained

on different samples.

5.4.4 Ablation Experiments

The ablation study systematically investigated the impact of various components

and configurations within the proposed multitask architecture. Our experimenta-

tion involved utilizing UNet-based encoders—specifically, UNet18, UNet34, UNet50,
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and UNet50++—each paired with different loss functions, including DICE and

BCE losses. For the regression ablation experiments, we explored different config-

urations of FC layers. This exploration aimed to assess how the depth of the FC

layers affected the model’s regression performance. Furthermore, we experimented

with different loss backpropagation techniques within our model. We conducted

experiments by simply adding losses from the Mask Generation Decoder and Edge

Predictor, evaluating their combined impact on the overall performance. Addition-

ally, we explored another approach involving loss backpropagation. This method

involved generating masks from the Edge Predictor and combining them with the

output from the segmentation mask through operations such as ANDing, ORing,

and averaging. We then calculated the loss on this combined output, subsequently

backpropagating it to understand its influence on the model’s performance. Fol-

lowing extensive experimentation, it was concluded that the optimal results were

achieved by combining the individual losses derived from the Mask Generation

Decoder and Edge Predictor rather than the loss from the combined masks.

Through these rigorous ablation experiments, we aimed to understand the con-

tributions and effects of different architectural components and loss propagation

methods on the overall performance and functionality of our proposed model. The

results of several ablation experiments are given in Table 5.4.

Table 5.4: Ablation experiment results.

Baseline LBCE LDICE FC2 FC4 DSC IoU F1 F2 Accuracy Recall

UNet 34 ✓ × ✓ × 0.920 0.834 0.910 0.930 0.984 0.942
UNet 34 ✓ × × ✓ 0.900 0.812 0.896 0.900 0.982 0.913
UNet 34 × ✓ ✓ × 0.917 0.836 0.910 0.931 0.984 0.965
UNet 34 × ✓ × ✓ 0.914 0.830 0.907 0.928 0.983 0.947
UNet 50 ✓ × ✓ × 0.917 0.836 0.911 0.926 0.984 0.939
UNet 50 ✓ × × ✓ 0.903 0.817 0.899 0.899 0.982 0.905
UNet 50 × ✓ ✓ × 0.918 0.839 0.912 0.933 0.984 0.949
UNet 50 × ✓ × ✓ 0.910 0.821 0.901 0.923 0.982 0.942

LBCE - BCE loss for segmentation training. LDICE - DICE loss for segmentation training. FC2

- Two FC layers in Edge Predictor. FC4 - Four FC layers in Edge Predictor.

After examining various ablation experiments, it is evident that utilizing two FC

layers yielded the most favorable outcomes. The increase in the number of FC



Improved Quantification of LV Structure 123

layers led to overfitting, resulting in a degradation in performance. Despite exper-

imenting with deeper ResNet architectures, there was no substantial enhancement

in accuracy. Consequently, UNet with ResNet34 backbone was selected as the

proposed encoder due to its computational efficiency while fulfilling the intended

purpose, in contrast to the ResNet50 backbone. The choice of loss function did

not have any considerable impact on training.

5.4.5 Time-Space Complexity Analysis

Table 5.5 provides a comprehensive comparison of the time-space complexity of

the proposed model with the SOTA models. In terms of the number of parameters,

the proposed model stands out with 24.59 million parameters, slightly surpassing

UNet 34 and falling short of UNet 50. Additionally, its model size of 93.96 MB

places it between UNet 34 and UNet 50, making it relatively compact compared

to UNet++ 50, which has the largest size at 187.24 MB. Regarding computational

requirements, the giga-floating-point operations per second (GFLOPs) required by

each model during inference, are compared.

Figure 5.10: Trade-off between accuracy and computational efficiency based
on GLOPs
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Figure 5.11: Trade-off between accuracy and computational efficiency based
on MACs

Figure 5.12: Trade-off between accuracy and processing speed measured in
FPS

The proposed model demands 6.31 GFLOPs, outstripping UNet 34 and UNet 50

but substantially less than UNet++ 50, which requires 28.74 GFLOPs. Similarly,

its requirement of 3.15 MACs, which represents the number of multiply-accumulate

operations required by each model during inference, places it ahead of UNet 34
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Table 5.5: Comparison of Time-Space complexity of the proposed model with SOTA models.

Proposed UNet 34 UNet 50 UNet++ 50 FCN DeepLabv3

Parameters (m)↓ 24.59 24.44 32.53 48.99 35.32 42.00

Model Size (MB)↓ 93.96 93.38 124.39 187.24 135.06 160.57

GFLOPs↓ 6.31 3.91 5.33 28.74 18.53 21.68

MACs↓ 3.15 1.95 2.66 14.36 9.25 10.83

FPS↑ 21.79 21.79 21.42 21.42 21.42 21.79

Time per prediction (sec)↓ 0.0459 0.0459 0.0467 0.0467 0.0467 0.0459

Memory per prediction (GB)↓ 0.20 0.27 0.39 0.76 0.52 0.38
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and UNet 50 but below UNet++ 50. The proposed model achieves frames per

second (FPS) of 21.79, matching the performance of UNet 34 and DeepLabv3.

The time per prediction is 0.0459 seconds, similar to UNet 34 and DeepLabv3.

Furthermore, its memory requirement per prediction is the most efficient among all

models listed, at 0.20 GB. These findings suggest that the proposed model strikes

a balance between complexity and efficiency, performing competitively in terms of

time-space complexity compared to established SOTA models. The figures 5.10,

5.11 and 5.12 illustrate this by plotting DSC performance against MACs, GFLOPs,

and FPS, respectively. The size of the circles in the plot represents the model sizes.

5.5 Summary

In this chapter, we introduced a novel multitask learning framework designed to

enhance the segmentation of the LV from echocardiogram data. Our architecture

involved extracting semantic features using shared layers, which were subsequently

decoupled into task-specific layers comprising a Mask Generation Decoder and an

Edge Predictor. By integrating boundary information with mask segmentation by

training the network through a joint objective function, we achieved an enhance-

ment in overall segmentation accuracy. The inclusion of an edge predictor within

the multitask network refined the mask segmentation process and helped in the

detection of near-border regions as well. Our experimental findings demonstrated

the method’s robustness and its substantial ability to improve segmentation per-

formance when compared to other SOTA segmentation models.

A limitation of the proposed approach is its sensitivity to variations in data qual-

ity or imaging conditions. Differences in echocardiogram resolution or artifacts

may impact the model’s performance. To enhance robustness for real-world appli-

cations, using a more diverse dataset with various echocardiogram perspectives,

beyond the A4C view used in this study, could be beneficial.



Chapter 6

Conclusion and Future Work

6.1 Conlusion

AI has the potential to expedite the delivery of care by accelerating diagnosis,

aiding healthcare systems in proactive population health management, and di-

recting resources to areas where they can make the most significant difference.

This heightened efficiency enables healthcare systems to offer improved care to

a larger population, enhancing the experience of healthcare professionals. With

AI’s assistance, practitioners can allocate more time to direct patient care, thereby

reducing burnout.

DL and ML have the potential to provide automatic measurements that are not

only consistent and accurate but also less time-consuming. Specifically, DL al-

gorithms, which support both supervised and semi-supervised learning, can be

particularly valuable in scenarios where data availability is limited. In fields like

echocardiography, where certain relationships or vital features remain undiscov-

ered, these self-learning methods hold the potential to uncover insights beyond

current knowledge. However, it’s essential to ensure that these algorithms remain

interpretable. Therefore, transparency in their design and decision-making process

is crucial for understanding and ultimately trusting the results they provide.

127
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Recent research in echocardiography has stressed the utilization of independent

DL models for tasks such as view classification, LV segmentation, and EF estima-

tion. However, the accuracy of these methods is contingent upon various factors

including data clarity, volume, and the accuracy of clinical ground truth. Notably,

the accuracy of each task in automated pipelines is heavily influenced by the ac-

curacy of the preceding one, as seen in the reliance of EF estimation on precise

LV boundary delineation.

Existing limitations include a lack of exploration of Simpson’s method for LV

feature extraction and a dearth of interpretability and alignment with clinical

workflow in current methodologies. Studies often rely on the area-length method

to determine LV volumes and EF from segmented LVs, despite Simpson’s method

being the preferred technique in clinical practice for LV EF evaluation. However,

the area-length method’s assumption of a bullet-shaped LV is not always accurate.

In studies that estimate EF directly using DL methods, the process often entails

identifying systolic and diastolic frames within the cardiac cycle, which is prone to

inaccuracies and time constraints. However, the exploration of the entire echocar-

diographic cine for both LV segmentation and EF estimation remains relatively

unexplored. Furthermore, the simultaneous training of LV segmentation and EF

regression, which are traditionally treated as separate tasks, has not been exten-

sively explored.

Additionally, prevalent LV segmentation algorithms often overlook high-level de-

tails like edges and boundaries, leading to inaccurate delineations. Addressing

these gaps necessitates the development of robust, standardized, and clinically

validated automated methods for EF estimation from echocardiogram videos.

This study was conducted in two phases to achieve the aims and objectives stated

in the first chapter of this thesis. Initially, we explored clinical methods for quan-

tifying LV structure and function. LV segmentation was performed using a deep

neural network, followed by feature extraction from the segmented LV based on
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Simpson’s method, a widely recommended clinical approach. Various ML tech-

niques and neural networks were then applied to these features for ejection frac-

tion estimation. After rigorous experimentation, we concluded that LSTM, with

its temporal memory capabilities, produced the most accurate results.

To fully automate the process, EFNet was proposed in Chapter 4, which aimed

to eliminate the need for manually crafting features from the segmented LV.

EFNet performed LV segmentation and EF estimation directly from echocardio-

gram videos, taking advantage of the interconnectedness between these processes.

Doing so eliminated the need to extract ED and ES frames from the video. EFNet

not only streamlined the entire process but also yielded improved results compared

to those obtained previously in Chapter 3 based on clinical methods.

During the training phase of the model introduced in Chapter 4, features are de-

rived from the embeddings acquired through the LV segmentation module. The

regression network then trains on these features to perform EF estimation. Con-

sequently, the accuracy of the segmentation network is conclusive for achieving

precise EF estimation. Hence, in Chapter 5, the work was further extended to ex-

plore the possible improvement in the segmentation process. This was achieved by

proposing the decoupling of edge and mask segmentation processes, which could

potentially provide better detection of edge coordinates.

To accomplish this, an encoder-decoder based architecture was employed. The

encoder resembled that of a UNet, while the decoder consisted of two modules:

a mask generation decoder that performed semantic segmentation based on mask

detection and an edge predictor module that performed boundary prediction. By

fusing the outcomes from both modules, their respective performances were com-

plemented, resulting in enhanced accuracy of LV segmentation. These conclusions

indicate that the aims outlined in section 1.8 have been addressed, aligning with

the initial objectives set at the beginning of this work.
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6.2 Implications in Clinical Practice

Using DL methods to estimate left ventricular ejection fraction brings numerous

benefits to everyday clinical practice. DL algorithms have the capability to auto-

mate LV segmentation and EF estimation, resulting in reduced time and effort for

clinicians. This streamlined process allows for faster and more efficient assessment

of cardiac function, enabling timely decision-making and patient management.

Additionally, DL based approaches provide uniform and consistent EF measure-

ments, significantly mitigating the inter-observer variability often encountered in

manual assessments. Consequently, the evaluation of cardiac function becomes

more accurate and reliable, fostering consistency across diverse healthcare settings

and among clinicians.

Automated EF estimation using ML and DL techniques also has significant appli-

cability in point-of-care ultrasound (POCUS) devices. These devices are typically

compact and portable, making them suitable for use in ambulances, remote clinics,

and far-flung areas. POCUS devices equipped with DL-based EF estimation algo-

rithms can be readily used by non-expert healthcare providers, such as paramedics

or clinicians in remote areas and enable real-time EF estimation, providing im-

mediate feedback to aid in diagnostic decision-making and patient management.

This enables remote consultation, where acquired ultrasound images and EF es-

timations can be shared with experts located in urban centers, facilitating expert

guidance.

It is important to note that while these advantages present promising prospects,

the integration of ML into daily clinical practice requires careful validation, stan-

dardization, and regulatory considerations. Moreover, the effectiveness and ap-

plicability of the DL based methods heavily rely on the quality and diversity of

the training data in order to generalize across different populations and imaging

conditions. Certain factors such as variations in imaging protocols, equipment and

anatomical variances among individuals can influence the accuracy and reliability

of the results. These limitations present opportunities for future research and im-

provements. Nonetheless, the potential benefits of DL based EF estimation make
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it an exciting and promising avenue for enhancing clinical decision-making and

patient care.

6.3 Limitations

There are several limitations to consider in this work. The performance and gen-

eralizability of the proposed method heavily rely on the availability and quality

of the training data. Limited access to diverse and representative datasets may

impact the model’s ability to generalize to different populations and imaging con-

ditions. The proposed method may also be sensitive to variations in imaging

protocols and equipment. Factors such as image resolution, image quality, and

anatomical variations among individuals can affect the accuracy and reliability of

the LV segmentation and EF estimation. These limitations provide opportunities

for future research and improvements to enhance the accuracy, interpretability,

and clinical applicability of the proposed EF estimation methods.

6.4 Future Work

There are various aspects that could be explored further to enhance the reliabil-

ity and applicability of the proposed algorithms to provide valuable directions for

future research, encompassing both technical advancements and clinical applica-

tions. By addressing these areas, the proposed algorithms can be further refined

and validated, ultimately contributing to advancements in cardiovascular imaging

and patient care.

• Incorporation of A2C View Data: Expanding the study to incorporate

data from the A2C view alongside the A4C view presents an opportunity to

improve the accuracy and reliability of EF estimation. This expansion allows
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for a more comprehensive assessment of cardiac function, considering differ-

ent imaging perspectives and potentially capturing additional information

that may complement the A4C view.

• Personalized EF Assessment: Utilizing ML techniques to incorporate

patient-specific information for EF estimation is a promising avenue for per-

sonalized medicine. By considering factors such as age, gender, comorbidi-

ties, and medical history, the algorithms can adapt to individual charac-

teristics, leading to more tailored treatment plans and improved patient

outcomes. This approach aligns with the growing trend towards precision

medicine and could significantly enhance the clinical utility of EF estimation.

• Data Augmentation and Diversification: Given the data-intensive na-

ture of DL techniques, incorporating more diverse datasets can enhance the

reliability and generalizability of the proposed algorithms. By including data

from different healthcare settings and diverse patient populations, the algo-

rithms can better accommodate variations in echocardiogram characteristics

across different demographics and ethnicities, leading to more robust models

with broader applicability.

• Integration of Improved Segmentation Module: Integrating the im-

proved segmentation module from Chapter 5 into the EFNet proposed in

Chapter 4 is a logical step towards enhancing the overall accuracy of LV

structure and function quantification. The improved segmentation module

is expected to provide a more precise delineation of LV boundaries, which

can directly contribute to more accurate EF estimation. This integration en-

sures that advancements made in one aspect of the algorithm are effectively

transferred to the overall system, maximizing performance gains.

• Use of Efficient Backbone Architectures: One potential avenue for

extending this work involves exploring the use of computationally more

efficient backbone architectures, such as EfficientNet. While the current

work has effectively utilized ResNet as the backbone, adopting a more ef-

ficient architecture like EfficientNet could enhance performance by offering
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a better trade-off between accuracy and computational cost. EfficientNet’s

compound scaling method enables it to maintain high accuracy with fewer

parameters and lower computational demands compared to ResNet. This

improvement would be particularly advantageous for deploying the model in

resource-constrained environments or when processing large-scale datasets,

ultimately leading to more practical and scalable solutions.

• Extension to Disease Classification: Beyond EF estimation and LV

segmentation, there is potential to extend the proposed algorithms to the

classification of various cardiovascular diseases. By leveraging the insights

gained from EF estimation and LV segmentation, the algorithms can con-

tribute to more comprehensive diagnostic workflows, aiding clinicians in ac-

curately identifying and classifying different cardiac pathologies. This ex-

tension aligns with the broader goal of improving clinical decision-making

and patient care in the field of cardiology.



Bibliography

[1] World Health Organization (WHO), “Global status report on noncommuni-

cable diseases 2010 Geneva, Switzerland,” World Health, 2010.

[2] G. R. Dagenais, D. P. Leong, S. Rangarajan, F. Lanas, P. Lopez-Jaramillo,

R. Gupta, R. Diaz, A. Avezum, G. B. Oliveira, A. Wielgosz, S. R. Parambath,

P. Mony, K. F. Alhabib, A. Temizhan, N. Ismail, J. Chifamba, K. Yeates,

R. Khatib, O. Rahman, K. Zatonska, K. Kazmi, L. Wei, J. Zhu, A. Rosengren,

K. Vijayakumar, M. Kaur, V. Mohan, A. H. Yusufali, R. Kelishadi, K. K. Teo,

P. Joseph, and S. Yusuf, “Variations in common diseases, hospital admissions,

and deaths in middle-aged adults in 21 countries from five continents (PURE):

a prospective cohort study,” The Lancet, vol. 395, no. 10226, pp. 785–794,

2020.

[3] K. Seetharam, N. Kagiyama, and P. P. Sengupta, “Application of mobile

health, telemedicine and artificial intelligence to echocardiography,” 2019.

[4] M. A. Chamsi-Pasha, P. P. Sengupta, and W. A. Zoghbi, “Handheld Echocar-

diography: Current State and Future Perspectives,” Circulation, vol. 136,

no. 22, 2017.

[5] J. Zhang, S. Gajjala, P. Agrawal, G. H. Tison, L. A. Hallock, L. Beussink-

Nelson, M. H. Lassen, E. Fan, M. A. Aras, C. R. Jordan, K. E. Fleischmann,

M. Melisko, A. Qasim, S. J. Shah, R. Bajcsy, and R. C. Deo, “Fully automated

echocardiogram interpretation in clinical practice: Feasibility and diagnostic

accuracy,” Circulation, vol. 138, no. 16, pp. 1623–1635, 2018.

134



Bibliography 135

[6] Q. Ciampi and B. Villari, “Role of echocardiography in diagnosis and risk

stratification in heart failure with left ventricular systolic dysfunction,” 2007.

[7] C. Mitchell, P. S. Rahko, L. A. Blauwet, B. Canaday, J. A. Finstuen,

M. C. Foster, K. Horton, K. O. Ogunyankin, R. A. Palma, and E. J. Ve-

lazquez, “Guidelines for Performing a Comprehensive Transthoracic Echocar-

diographic Examination in Adults: Recommendations from the American

Society of Echocardiography,” Journal of the American Society of Echocar-

diography, vol. 32, no. 1, 2019.

[8] R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande,

F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, P. Lancel-

lotti, D. Muraru, M. H. Picard, E. R. Rietzschel, L. Rudski, K. T. Spencer,

W. Tsang, and J. U. Voigt, “Recommendations for cardiac chamber quantifi-

cation by echocardiography in adults: An update from the American society

of echocardiography and the European association of cardiovascular imaging,”

European Heart Journal Cardiovascular Imaging, vol. 16, no. 3, 2015.

[9] C. W. Yancy, M. Jessup, B. Bozkurt, J. Butler, D. E. Casey, M. H. Drazner,

G. C. Fonarow, S. A. Geraci, T. Horwich, J. L. Januzzi, M. R. Johnson,

E. K. Kasper, W. C. Levy, F. A. Masoudi, P. E. McBride, J. J. McMurray,

J. E. Mitchell, P. N. Peterson, B. Riegel, F. Sam, L. W. Stevenson, W. H.

Tang, E. J. Tsai, and B. L. Wilkoff, “2013 ACCF/AHA guideline for the

management of heart failure: A report of the american college of cardiol-

ogy foundation/american heart association task force on practice guidelines,”

Circulation, vol. 128, no. 16, 2013.

[10] S. M. Dunlay, V. L. Roger, and M. M. Redfield, “Epidemiology of heart failure

with preserved ejection fraction,” 2017.

[11] P. A. Heidenreich, B. Bozkurt, D. Aguilar, L. A. Allen, J. J. Byun, M. M.

Colvin, A. Deswal, M. H. Drazner, S. M. Dunlay, L. R. Evers, J. C. Fang,

S. E. Fedson, G. C. Fonarow, S. S. Hayek, A. F. Hernandez, P. Khazanie,

M. M. Kittleson, C. S. Lee, M. S. Link, C. A. Milano, L. C. Nnacheta, A. T.



Bibliography 136

Sandhu, L. W. Stevenson, O. Vardeny, A. R. Vest, and C. W. Yancy, “2022

AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report

of the American College of Cardiology/American Heart Association Joint

Committee on Clinical Practice Guidelines,” 2022.

[12] J. E. Wilcox, J. C. Fang, K. B. Margulies, and D. L. Mann, “Heart Failure

With Recovered Left Ventricular Ejection Fraction,” Journal of the American

College of Cardiology, vol. 76, no. 6, 2020.

[13] S. P. Murphy, N. E. Ibrahim, and J. L. Januzzi, “Heart Failure with Reduced

Ejection Fraction: A Review,” 2020.

[14] D. Ouyang, B. He, A. Ghorbani, N. Yuan, J. Ebinger, C. P. Langlotz, P. A.

Heidenreich, R. A. Harrington, D. H. Liang, E. A. Ashley, and J. Y. Zou,

“Video-based AI for beat-to-beat assessment of cardiac function,” Nature,

vol. 580, no. 7802, 2020.

[15] S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, F. Cervenansky, F. Espinosa,

T. Espeland, E. A. R. Berg, P. M. Jodoin, T. Grenier, C. Lartizien, J. Dhooge,

L. Lovstakken, and O. Bernard, “Deep Learning for Segmentation Using an

Open Large-Scale Dataset in 2D Echocardiography,” IEEE transactions on

medical imaging, vol. 38, no. 9, 2019.

[16] S. Batool, I. A. Taj, and M. Ghafoor, “Ejection Fraction Estimation from

Echocardiograms Using Optimal Left Ventricle Feature Extraction Based on

Clinical Methods,” Diagnostics, vol. 13, no. 13, 2023.

[17] S. Batool, I. Taj, and M. Ghafoor, “Efnet: A multitask deep learning net-

work for simultaneous quantification of left ventricle structure and function,”

Physica Medica, vol. 125, p. 104505, 2024.

[18] A. Madani, J. R. Ong, A. Tibrewal, and M. R. K. Mofrad, “Deep echocardio-

graphy: data-efficient supervised and semi-supervised deep learning towards

automated diagnosis of cardiac disease,” npj Digital Medicine, vol. 1, no. 1,

dec 2018.



Bibliography 137

[19] S. R. Snare, H. Torp, F. Orderud, and B. O. Haugen, “Real-time scan assistant

for echocardiography,” in IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control, vol. 59, no. 3, 2012.

[20] A. H. Abdi, C. Luong, T. Tsang, G. Allan, S. Nouranian, J. Jue, D. Haw-

ley, S. Fleming, K. Gin, J. Swift, R. Rohling, and P. Abolmaesumi, “Au-

tomatic Quality Assessment of Echocardiograms Using Convolutional Neural

Networks: Feasibility on the Apical Four-Chamber View,” IEEE Transactions

on Medical Imaging, vol. 36, no. 6, pp. 1221–1230, jun 2017.

[21] A. H. Abdi, C. Luong, T. Tsang, J. Jue, K. Gin, D. Yeung, D. Haw-

ley, R. Rohling, and P. Abolmaesumi, “Quality assessment of echocardio-

graphic cine using recurrent neural networks: Feasibility on five standard

view planes,” in Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

10435 LNCS. Springer Verlag, 2017, pp. 302–310.

[22] M. Razaak and M. G. Martini, “CUQI: cardiac ultrasound video quality in-

dex,” Journal of Medical Imaging, vol. 3, no. 1, p. 011011, mar 2016.

[23] X. Gao, W. Li, M. Loomes, and L. Wang, “A fused deep learning architecture

for viewpoint classification of echocardiography,” Information Fusion, vol. 36,

2017.

[24] H. Vaseli, Z. Liao, A. H. Abdi, H. Girgis, D. Behnami, C. Luong, F. Taheri

Dezaki, N. Dhungel, R. Rohling, K. Gin, P. Abolmaesumi, and T. Tsang,

“Designing lightweight deep learning models for echocardiography view clas-

sification,” Tech. Rep., 2019.

[25] A. Madani, R. Arnaout, M. Mofrad, and R. Arnaout, “Fast and accurate

classification of echocardiograms using deep learning,” jun 2017.

[26] S. A. MeloJúnior, B. Macchiavello, M. M. Andrade, J. L. Carvalho, H. S. Car-

valho, D. F. Vasconcelos, P. A. Berger, A. F. da Rocha, and F. A. Nascimento,



Bibliography 138

“Semi-automatic algorithm for construction of the left ventricular area vari-

ation curve over a complete cardiac cycle,” BioMedical Engineering Online,

vol. 9, 2010.

[27] A. John and K. B. Jayanthi, “Extraction of cardiac chambers from echocar-

diographic images,” in Proceedings of 2014 IEEE International Conference on

Advanced Communication, Control and Computing Technologies, ICACCCT

2014, 2015.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 9351, 2015.

[29] Z. Yue, W. Li, J. Jing, J. Yu, S. Yi, and W. Yan, “Automatic segmentation

of the Epicardium and Endocardium using convolutional neural network,”

in International Conference on Signal Processing Proceedings, ICSP, vol. 0,

2016.

[30] J. F. Silva, J. M. Silva, A. Guerra, S. Matos, and C. Costa, “Ejection Frac-

tion Classification in Transthoracic Echocardiography Using a Deep Learning

Approach,” in Proceedings - IEEE Symposium on Computer-Based Medical

Systems, vol. 2018-June, 2018.

[31] S. Leclerc, E. Smistad, A. Østvik, F. Cervenansky, F. Espinosa, T. Espeland,

E. A. Rye Berg, M. Belhamissi, S. Israilov, T. Grenier, C. Lartizien, P. M.

Jodoin, L. Lovstakken, and O. Bernard, “LU-Net: A Multistage Attention

Network to Improve the Robustness of Segmentation of Left Ventricular Struc-

tures in 2-D Echocardiography,” IEEE Transactions on Ultrasonics, Ferro-

electrics, and Frequency Control, vol. 67, no. 12, 2020.

[32] S. Moradi, M. G. Oghli, A. Alizadehasl, I. Shiri, N. Oveisi, M. Oveisi,

M. Maleki, and J. Dhooge, “MFP-Unet: A novel deep learning based ap-

proach for left ventricle segmentation in echocardiography,” Physica Medica,

vol. 67, 2019.



Bibliography 139

[33] D. Ouyang, B. He, A. Ghorbani, M. P. Lungren, E. A. Ashley, D. H. Liang,

and J. Y. Zou, “EchoNet-Dynamic: a Large New Cardiac Motion Video Data

Resource for Medical Machine Learning,” 33rd Conference on Neural Infor-

mation Processing Systems (NeurIPS 2019), no. NeurIPS 2019, 2019.

[34] M. J. Mortada, S. Tomassini, H. Anbar, M. Morettini, L. Burattini, and

A. Sbrollini, “Segmentation of Anatomical Structures of the Left Heart from

Echocardiographic Images Using Deep Learning,” Diagnostics, vol. 13, no. 10,

2023.

[35] M. Liao, Y. Lian, Y. Yao, L. Chen, F. Gao, L. Xu, X. Huang, X. Feng,

and S. Guo, “Left Ventricle Segmentation in Echocardiography with Trans-

former,” Diagnostics, vol. 13, no. 14, 2023.

[36] R. Ge, G. Yang, Y. Chen, L. Luo, C. Feng, H. Zhang, and S. Li, “PV-LVNet:

Direct left ventricle multitype indices estimation from 2D echocardiograms

of paired apical views with deep neural networks,” Medical Image Analysis,

vol. 58, 2019.

[37] M. Li, C. Wang, H. Zhang, and G. Yang, “MV-RAN: Multiview recurrent

aggregation network for echocardiographic sequences segmentation and full

cardiac cycle analysis,” Computers in Biology and Medicine, vol. 120, 2020.

[38] H. Wei, H. Cao, Y. Cao, Y. Zhou, W. Xue, D. Ni, and S. Li, “Temporal-

Consistent Segmentation of Echocardiography with Co-learning from Appear-

ance and Shape,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

vol. 12262 LNCS, 2020.

[39] G. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-path refinement

networks for high-resolution semantic segmentation,” in Proceedings - 30th

IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,

vol. 2017-Janua, 2017.



Bibliography 140

[40] S. Liu, W. Ding, C. Liu, Y. Liu, Y. Wang, and H. Li, “ERN: Edge loss

reinforced semantic segmentation network for remote sensing images,” Remote

Sensing, vol. 10, no. 9, 2018.

[41] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler, “Gated-SCNN: Gated

shape CNNs for semantic segmentation,” in Proceedings of the IEEE Inter-

national Conference on Computer Vision, vol. 2019-Octob, 2019.

[42] R. S. Zimmermann and J. N. Siems, “Faster training of Mask R-CNN by fo-

cusing on instance boundaries,” Computer Vision and Image Understanding,

vol. 188, 2019.

[43] T. Cheng, X. Wang, L. Huang, and W. Liu, “Boundary-Preserving Mask

R-CNN,” in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.

12359 LNCS, 2020.

[44] X. Zuo, H. Lin, D. Wang, and Z. Cui, “A Method of Crop Seedling Plant

Segmentation on Edge Information Fusion Model,” IEEE Access, vol. 10,

2022.

[45] B. Sui, Y. Cao, X. Bai, S. Zhang, and R. Wu, “BIBED-Seg: Block-in-Block

Edge Detection Network for Guiding Semantic Segmentation Task of High-

Resolution Remote Sensing Images,” IEEE Journal of Selected Topics in Ap-

plied Earth Observations and Remote Sensing, vol. 16, 2023.

[46] A. Ghorbani, D. Ouyang, A. Abid, B. He, J. H. Chen, R. A. Harrington,

D. H. Liang, E. A. Ashley, and J. Y. Zou, “Deep learning interpretation of

echocardiograms,” npj Digital Medicine, vol. 3, no. 1, 2020.

[47] F. M. Asch, N. Poilvert, T. Abraham, M. Jankowski, J. Cleve, M. Adams,

N. Romano, H. Hong, V. Mor-Avi, R. P. Martin, and R. M. Lang, “Auto-

mated Echocardiographic Quantification of Left Ventricular Ejection Fraction

Without Volume Measurements Using a Machine Learning Algorithm Mim-

icking a Human Expert,” Circulation: Cardiovascular Imaging, vol. 12, no. 9,

2019.



Bibliography 141

[48] F. Liu, K. Wang, D. Liu, X. Yang, and J. Tian, “Deep pyramid local at-

tention neural network for cardiac structure segmentation in two-dimensional

echocardiography,” Medical Image Analysis, vol. 67, 2021.

[49] M. Tokodi, B. Magyar, A. Soós, M. Takeuchi, M. Tolvaj, B. K. Lakatos,

T. Kitano, Y. Nabeshima, A. Fábián, M. B. Szigeti, A. Horváth, B. Merkely,
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