
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Improving Software Fault

Prediction using Novel Metrics

based on Data Flow Volume and

Coupling Complexity
by

Muhammad Rizwan
A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2022

www.cust.edu.pk
www.cust.edu.pk
rizwanabuahmad@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Improving Software Fault Prediction using Novel

Metrics based on Data Flow Volume and

Coupling Complexity

By

Muhammad Rizwan

(DCS161001)

Dr. Raheel Nawaz, Professor

Manchester Metropolitan University, UK

(Foreign Evaluator 1)

Dr. Zeeshan Pervez, Professor

University of the West of Scotland, Paisley, UK

(Foreign Evaluator 2)

Dr. Aamer Nadeem

(Thesis Supervisor)

Dr. Nayyer Masood

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2022

ii

Copyright © 2022 by Muhammad Rizwan

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

To my parents, siblings, wife, and three angels, Ahmy, Faaty, and Aany.

vii

List of Publications

It is certified that following publication has been made out of the research work

that has been carried out for this thesis:-

Journal publications:

1. M. Rizwan, A. Nadeem, and M. A. Sindhu,“ Vovel metrics—novel coupling

metrics for improved software fault prediction”, PeerJ Computer Science,

vol. 7, pp. e590, 2021.

2. M. Rizwan, A. Nadeem, and M. A. Sindhu,“Analyses of Classifier’s Perfor-

mance Measures Used in Software Fault Prediction Studies”, IEEE Access,

vol. 7, pp. 82764-82775, 2019.

Conference publications:

1. M. Rizwan, A. Nadeem, and M. A. Sindhu,“Theoretical Evaluation of Soft-

ware Coupling Metrics”, 17th International Bhurban Conference on Applied

Sciences and Technology (IBCAST), pp. 413-421, 2020.

2. M. Rizwan, A. Nadeem, and M. A. Sindhu,“Empirical Evaluation of Cou-

pling Metrics in Software Fault Prediction”, 17th International Bhurban Con-

ference on Applied Sciences and Technology (IBCAST), pp. 434-440, 2020.

Muhammad Rizwan

(DCS161001)

viii

Acknowledgement

All praise is due to Allah Almighty, who has all knowledge and has the power to

grant from his knowledge and peace, mercy and blessing upon his last and final

messenger and upon good-doers.

I would never have been able to finish my work without the support from my

respected parents and after that my very first teacher, my elder sister for her

moral, physiological, and financial support and encouragement.

One of the most notable of Allah’s blessings upon me was in the form of my

supervisor. I would like to thank my supervisors, Prof. Dr. Aamer Nadeem

for his guidance. I am also grateful to Dr. Muddassar Azam Sindhu, Assistant

Professor Quaid-i-Azam University, whose reviews help me a lot to improve my

work. I feel very lucky to be part of CSD research group members whose discus-

sion and constructive criticism maintained an environment that was conducive for

research. Moreover, without the recreational activities of our CSD research group,

I may have gone insane over the last few years. I also thank the faculty members

of Capital University of Science and Technology who gave me the resources and

healthy education environment.

Very special thanks to my siblings for their motivation and encouragement. I

would like to thank my beloved Maana. She was always there cheering me up and

stood by me through the good times and bad.

I would like to express my gratitude to my friend and colleague Mr. Muhamad

Yousuf Baig for his technical guidance. Apart from the mentioned above, many

people helped me reach this point. May Allah grant all of them peace and bless

them with prosperity.

ix

Abstract

Well in time prediction of faulty modules is of key importance in software test-

ing, which is generally done by software fault prediction (SFP) techniques. It lets

testers focus more on faulty modules and prioritize test cases. It also assists in

integration testing, hence significantly minimizes testing effort and improves test-

ing quality.

The SFP community accepts the effectiveness of coupling between software mod-

ules in SFP. More specifically, coupling metrics which are purposed by Martin,

Henry, and Chidamber are reported more useful. However, it is found that two

important aspects of coupling, i.e., data flow volume and levels in software cou-

pling have not been addressed so far. Keeping in view the same we proposed

coupling metrics Vovel-in and Vovel-out, that incorporate these two aspects of

coupling to improve the performance of SFP.

We performed experimentation by using five public datasets; Apache Lucene 2.4,

Eclipse Equinox Framework 3.4, Eclipse JDT Core 3.4, Eclipse PDE UI 3.4.1, and

Mylyn 3.1. These datasets provide class level information of numerous metrics

along with the faults reported in each class. We selected five coupling metrics from

the datasets due to their reported effectiveness in SFP. Finally, we extended the

datasets by adding information of the proposed Vovel metrics from the projects’

source code using JavaParser.

We first performed the univariate logistic regression to compute the significance

of all the included coupling metrics, wherein all metrics were found significantly

correlated with the fault. Later we performed the correlation analysis using Spear-

man correlation between all the coupling metrics in the datasets, to ensure the ab-

sence of duplicate information. It is observed that there is weak correlation exists

between the metrics, yet not enough to be dropped. Finally, an experiment is con-

ducted using multivariate logistic regression to analyze the performance achieved

by including Vovel metrics. The significance of the result is ensured statistically

using Wilcoxon test. The results of F-measure reflect significantly improved pre-

dictive performance of proposed metrics when used in combination with conven-

tional class level coupling metrics.

x

In this thesis, we empirically evaluated the impact of coupling metrics, and more

specifically, data flow volume coupling level in SFP. The results show that the

inclusion of these factors significantly improves SFP.

Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xv

List of Tables xvii

Abbreviations xviii

1 Introduction 1

1.1 Research Aims and Objectives . 2

1.2 Research Questions . 3

1.3 Previous Work . 4

1.4 Problem Statement . 5

1.5 Research Contribution . 5

1.6 Research Methodology . 6

1.7 Thesis Outline . 6

2 Background 8

2.1 Software Fault Prediction . 8

2.1.1 Metrics Used in SFP . 9

2.1.1.1 Process Metrics . 9

2.1.1.2 Product Metrics 9

2.1.2 Datasets Used in SFP . 10

2.1.3 Approaches Used in SFP . 12

2.1.4 Performance Evaluation in ML-based SFP Techniques 13

2.2 Software Coupling . 14

2.2.1 Coupling Principles and Consequences of High Coupling . . 14

xi

xii

3 Literature Review 16

3.1 Studies on the Development of Coupling Metrics 16

3.1.1 Inclusion Criteria . 17

3.1.2 Exclusion Criteria . 17

3.1.3 Summary of the Coupling Metrics 18

3.1.3.1 Henry and Kafura Coupling Metrics 18

3.1.3.2 Total Design Complexity 18

3.1.3.3 Degree of Coupling Between Objects 19

3.1.3.4 Design Complexity 19

3.1.3.5 Fenton and Melton Metric 19

3.1.3.6 Chidamber and Kemerer Metrics Suite 20

3.1.3.7 Oman Coupling Metrics 20

3.1.3.8 Chen and Lu Coupling Metrics 21

3.1.3.9 Offutt Metric . 22

3.1.3.10 Message Passing Coupling and Data Abstraction
Coupling . 22

3.1.3.11 Coupling Factor 22

3.1.3.12 Lee et al. Coupling Metrics 23

3.1.3.13 Dhama Metric . 23

3.1.3.14 Afferent and Efferent Couplings 24

3.1.3.15 Coupling Dependency Metric 24

3.1.3.16 Ordinal Scale Module Coupling 24

3.1.3.17 Briand’s Coupling Metrics 24

3.1.3.18 Number of Associations 25

3.1.3.19 ABC Metric . 25

3.1.3.20 Direct Class Coupling 25

3.1.3.21 Cognitive Functional Size Metric 26

3.1.3.22 Nagappan and Thirumalesh Coupling Metrics . . . 26

3.1.3.23 Weighted Transitive Coupling 26

3.1.3.24 Alghamdi Metric 26

3.2 Studies on the Evaluation of Coupling Metrics 27

3.2.1 Inclusion Criteria . 27

3.2.2 Exclusion Criteria . 27

3.2.3 Summary of the Included Studies 27

3.2.4 Analysis of Coupling Metrics w.r.t Their Usage 51

3.3 Studies on the Coupling Levels/Principles 53

3.3.1 Inclusion Criteria . 53

3.3.2 Exclusion Criteria . 53

3.3.3 Brief Description of the Studies Included 54

3.3.4 Shortlisted Coupling Levels 55

3.3.5 Analysis of Coupling Metrics w.r.t. Coupling Levels 58

3.4 Conclusion and Research Gaps . 61

4 Vovel Metrics: New Coupling Metrics 63

4.1 Possible Solutions . 63

xiii

4.2 Computation/Derivation of Vovel Metrics 65

4.2.1 Computing Data Flow Volume 66

4.2.2 Inducing Coupling Levels . 68

4.2.3 Relationship Between Vovel-in and Vovel-out 68

4.2.4 Combining Coupling Levels and Data Flow Volume 69

4.3 Significance of Vovel Metrics . 70

4.4 Examples . 71

4.4.1 Computing Volume of Methods 71

4.4.2 Computing Vovel Metrics in Structure Paradigm 72

4.4.2.1 Example 1 . 72

4.4.2.2 Example 2 . 73

4.4.2.3 Example 3 . 73

4.4.2.4 Example 4 . 74

4.4.2.5 Example 5 . 74

4.4.2.6 Example 6 . 75

4.4.2.7 Example 7 . 76

4.4.2.8 Example 8 . 76

4.4.3 Computing Vovel Metrics at Class Levels 77

4.4.3.1 Computing Vovel-in metric for Class X 78

4.4.3.2 Computing Vovel-out Metric for Class X 78

4.4.3.3 Computing Vovel-in metric for Class Y 79

4.4.3.4 Computing Vovel-out metric for Class Y 79

5 Materials and Methods 81

5.1 Datasets Development . 81

5.1.1 Case Study . 81

5.1.2 Parsing of Metrics Information 83

5.1.3 Fault Labeling . 85

5.2 ML Algorithm/Techniques . 85

5.2.1 Univariate Logistic Regression 86

5.2.2 Correlation Analysis . 87

5.2.3 Multivariate Logistic Regression 88

5.3 Selection of Performance Measure 88

5.3.1 Evaluation of Performance Measures 89

5.3.1.1 Plausibility . 89

5.3.1.2 Consistency and Discriminancy 90

5.3.1.3 Evaluation Result 90

5.3.2 Selection of β Value in F-measure 91

5.4 Statistical Significance Assessment 91

5.4.1 Formulation of Hypotheses 92

5.4.2 Selection of Statistical Test 92

5.5 Experimental Methodology . 93

6 Experimentation and Results 96

6.1 Results of Univariate Logistic Regression 96

xiv

6.2 Results of Correlation Analysis . 97

6.3 Results of Multivariate Logistic Regression 114

6.4 Discussion on Results . 117

6.5 Threats to Validity . 118

7 Conclusion and Future work 120

7.1 Conclusion . 120

7.2 Future Work . 121

Bibliography 123

List of Figures

2.1 Distribution of metrics . 10

2.2 Relationship of structural complexity of the software with software
faults . 15

3.1 Orientation of Literature review . 17

4.1 Process of deriving Vovel metrics 66

4.2 Example for computing Vovel metrics at class levels 77

5.1 Ratio of faulty and clean instances in the selected datasets 86

5.2 Experimental methodology . 94

6.1 Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue) . 97

6.2 Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue) . 98

6.3 Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue) . 99

6.4 Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue) . 100

6.5 Correlation between pair metrics in Eclipse Equinox Framework 3.4
dataset (Continue) . 101

6.6 Correlation between pair metrics in Eclipse Equinox Framework 3.4
dataset (Continue) . 102

6.7 Correlation between pair metrics in Eclipse Equinox Framework 3.4
dataset (Continue) . 103

6.8 Correlation between pair metrics in Eclipse JDT Core 3.4 dataset
(Continued) . 104

6.9 Correlation between pair metrics in Eclipse JDT Core 3.4 dataset
(Continued) . 105

6.10 Correlation between pair metrics in Eclipse JDT Core 3.4 dataset
(Continued) . 106

6.11 Correlation between pair metrics in Eclipse PDE UI 3.4.1 dataset
(Continued) . 107

6.12 Correlation between pair metrics in Eclipse PDE UI 3.4.1 dataset
(Continued) . 108

6.13 Correlation between pair metrics in Eclipse PDE UI 3.4.1 dataset
(Continued) . 109

xv

xvi

6.14 Correlation between pair metrics in Mylyn 3.1 dataset 110

6.15 Correlation between pair metrics in Mylyn 3.1 dataset (Continued) 111

6.16 Correlation between pair metrics in Mylyn 3.1 dataset (Continued) 112

6.17 Correlation between pair metrics in Mylyn 3.1 dataset (Continued) 113

6.18 AUC in Apache Lucene 2.4 . 115

6.19 AUC in Eclipse Equinox Framework 3.4 115

6.20 AUC in Eclipse JDT Core 3.4 . 116

6.21 AUC in Eclipse PDE UI 3.4.1 . 116

6.22 AUC in Mylyn 3.1 . 117

List of Tables

3.1 Summary of the independent and dependent variables used in the
studies . 40

3.2 Summary of the methodologies and datasets used in the studies . . 44

3.3 Coupling metrics w.r.t. evaluating studies 51

3.4 Coupling levels proposed in different studies 56

3.5 Coverage of coupling levels and principles by Coupling metrics . . . 60

4.1 Six classes of coupling metrics . 64

4.2 Coverage of coupling levels and principles by Vovel metrics 70

4.3 Hypothetical Java based methods and their volume 71

5.1 Statistical description of metrics in the selected datasets 84

5.2 Descriptions of the experiments performed 95

6.1 Results of the ULR using coupling metrics in the selected five datasets 96

6.2 MLR results in five datasets using Set1 and Set2 metrics 114

xvii

Abbreviations

AM Alghamdi metric

AST Abstract Syntax Tree

AuC Area under the receiver operator curve

C∼ Total design complexity

Ca Afferent couplings

CBO Coupling between objects

CDM Coupling dependency metric

Ce Efferent couplings

CK Chidamber and Kemerer metrics’ suite

COF Coupling factor

CPDP Cross product defect prediction

CrtlC Control coupling

CTA Coupling through abstract data type

CTM Coupling through message passing

DAC Data abstraction coupling

DataC Data coupling

DC Design complexity metric

DCBO Degree of coupling between objects

DM Dhama metric

DL Deep learning

DoP Difference of opinion

E Encapsulation

FM Fenton and Melton metric

fp Fault-prone

xviii

xix

GIF Global information flow

LIF Local information flow

LOC Lines of code

MDP Metrics Data Program

ML Machine learning

MPC Message-passing coupling

NAS Number of associations

NIHICP Information flow-based non-Inheritance coupling

nfp Not fault-prone

OCM Operation coupling metric

OM Offutt metric

OSGi Open Service Gateway Initiative

OOP Object Oriented Programming

RF Random forest

RFC Response for a class

SFP Software fault prediction

SLR Systematic literature review

UDP Universal defect prediction

Chapter 1

Introduction

The pervasiveness of software in everyday life and in important decision-making

tasks demands software to be more reliable than ever before. That amplifies the

importance of software testing tasks that find the presence of faults in the software

system. However, in order to discover all the residual faults, one should have to

perform extensive testing. Such extensive testing is not feasible. It is reported

that testing activity can potentially take 50% to 75% of the total development cost

[1, 2]. Software failures cost the enterprise software market $61B annually [3].

This cost was raised to 1 trillion in 2016. It is considered as the most expensive

activity in software development [4].

Fortunately, it is found that faults are having uneven distribution in the software

system[5]. Few modules in a software product carry more faults than that of oth-

ers. According to the study conducted by Gyimothy et al., fault are found in only

42% of the software products[6]. Likewise, another study suggested that about

70% of the faults are found by testing only 6% of the software modules[7]. Similar

results are also reported by multiple studies conducted by Weyuker et al. [8–11].

Software fault prediction (SFP) is a process of detecting fault-prone (fp) mod-

ule(s) or the number of expected faults in a software module. This is usually

accomplished by employing an artifact from the same release of the software (Intra-

release SFP) or from different releases of the software project (Inter-release SFP)

or from the different software projects (Cross Project Defect Prediction) [12, 13].

The timely detection of faulty modules or the number of faults in any module

is quite beneficial, especially, in critical and strategic software systems. It helps

in reducing testing cost and improving the quality of the system [13]. Moreover,

1

Introduction 2

it can direct the testing efforts to focus more on the fp modules. Predicting the

number of faults can be even more useful as it provides the criteria for sufficient

testing. SFP assists in optimum resource utilization in the process of software

testing[14].

There are three main ingredients in SFP [15], i.e, Metrics, Class label, and Model.

Metrics is a measure that shows an aspect of software artifact (detail in Section

2.1.1). Class label is the required output, also known as independent variable.

In SFP studies, class label can be numerical, that shows number of faults in a

module, it can also be binary, like presence or absence of faults, or even ordinal

like severity of faults. Finally, modeling maps the relationship between dependent

to the independent variables. It is generally accomplished by ML algorithm, sta-

tistical algorithm, experts’ opinion, etc. [16] (detail in Section 2.1.3). Among the

existing metrics, modules’ coupling is an important software design parameter.

High coupling adds complexity and potentially leads to faults [17–22]. Moreover,

coupling relations increase complexity, minimize encapsulation, reuse, and reduce

understanding and maintainability[23]

1.1 Research Aims and Objectives

Modules’ coupling is an important software design parameter and can potentially

lead to software faults [17–22]. The research community reports the significant

predictive performance of coupling in SFP. Our research aim and objectives start

after appreciating the importance of coupling in SFP.

• There are many factors, which affect coupling complexity. For example, cou-

pling between software modules by exchanging data has a different impact

than that of coupling between software modules without the exchange of

data. This exchange of data is referred to as volume. Likewise, coupling

levels are another factor to influence the coupling between modules [24–27].

Hence, the coupling has couple of factors associated (see Section 3.3.5) that

discriminate one coupling from another coupling. Some of these factors (like,

volume of data flow, levels of coupling) have not been evaluated yet in SFP.

Therefore, our objective is to evaluate the impact of these ignored factors in

SFP. This objective can be achieved either by deriving new metric(s) that

incorporate all these important factors or accumulating the existing metrics.

Introduction 3

• SFP is generally done using ML models [16]. Selecting the right model and

declaring the best out of multiple models are dependent on the performance

measures. Our second objective is to find the most suitable performance

measure out of the performance measures frequently used in SFP studies.

Our analyses would help ML practitioners and researchers in SFP to select

the most appropriate performance measure for the ML models’ evaluation.

• Only seven coupling metrics have publicly available datasets [16]. These

metrics do not provide any information about data flow volume and level of

coupling. Therefore, our third objective is to develop defect datasets that

contain information about data flow volume and levels of coupling also.

1.2 Research Questions

RQ-1 What are the different factors that contribute to coupling’s complexity?

Objective: Since complexity potentially leads to faults. Our objective is to iden-

tify those factors that affect the coupling complexity and hence potentially leads

to faults. These factors could be an important indicator in predicting fp modules.

Methodology: This research question would be answered by first finding different

factors associated with modules’ coupling. After that, we will examine the factors

that are associated with coupling’s complexity. The outcome of this methodology

has been summarized in Table 3.5.

RQ-2 How different factors of coupling perform in predicting fp modules?

Objective: To assess the performance of coupling factors that can improve SFP.

Methodology: This research question would be answered by deriving new cou-

pling metric(s) that incorporate important aspects of coupling. The newly derived

coupling metric(s) would be first, searched in publicized datasets for availability.

If not found, new datasets will be developed. In either case, complexity car-

rier factors of coupling metric(s) will be assessed by applying ML algorithm on

the dataset(s). Chapter 6 has been dedicated to represents the performance of

metrics that include volume of data flow and levels of coupling in predicting fp

modules.

RQ-3 What is the most appropriate performance measure in SFP?

Objective: To identify the performance measures, that can be used to interpret

the results and evaluate the performance of ML model.

Introduction 4

Methodology: This question would be answered by first finding performance

measures that are frequently used in SFP. After that, all the found performance

measures are evaluated through some criteria to identify the best out of them.

Section 5.3.1 provides the detail about the performance measures and finding the

best of them in SFP.

1.3 Previous Work

Research community uses coupling and its different aspects in various dimensions

including fault prediction [6, 19, 21, 23, 28–42, 42–59], design patterns [60], im-

pact analysis [61], re-modularization [62], assessing software quality [39], mainte-

nance cost [63], productivity [64], software vulnerabilities [65], reusability [66–80],

changeability [81–96], reliability [97–105], and maintainability [42, 105–116]. How-

ever, keeping in view our scope we explore the coupling and its different aspects

in the context of SFPs.

We performed survey in three different dimensions. The 1st survey outputs the

numerous coupling metrics proposed so far, followed by the 2nd survey on SFP

studies that use the metrics found in the 1st survey. This survey will explore the

studies on the empirical evaluation of the coupling metrics. Finally, 3rd survey

focuses the studies on coupling levels/principles to find the evaluation parameter

for theoretical evaluation of the coupling metrics.

The research community reports the complexity due to high coupling. Numerous

empirical studies also advocate the viability of coupling metrics in SFP [6, 19,

21, 23, 28–59, 117]. Coupling metrics in general, and Coupling between objects

(CBO), Response for a Class (RFC), Fan-in, and Fan-out are specifically found

useful in predicting software faults, irrespective of the dataset size, type of depen-

dent variable. However, there are few metrics that have not been addressed by

the SFP community. Mostly, coupling metrics are evaluated individually. Hence,

the impact of multiple coupling metrics in SFP needs to be evaluated. SFP has

been done using statistical techniques (i.e., Linear and Logistic regression), with

the exception of few studies [6, 30] wherein Decision tree, Neural network, Sup-

port Vector Machines (SVM), Bayesian Learners. A wide variety of datasets are

used by the research community which includes Public, Partially public, and Pri-

vate. Likewise, all type of labels are used including Binary, Numerical and ordinal

(severity and range of faults) are used as a label.

Introduction 5

However, the coupling has many factors associated with it that add complexity

[24–27]. After analyzing the existing coupling metrics proposed so far, it is found

that all the coupling metrics do not incorporate the levels associated with the cou-

pling. Therefore, there is a need of proposing a coupling metric that incorporates

the coupling levels along with the volume of data flow between coupled modules.

Since, these factors provide coverage of important coupling factors, thus they can

potentially improve SFP process.

In addition to that, there are five features of coupling that are discouraged to be

used in software system. These are; broad, remote, indirect, hidden, and rigid

coupling[118]. The required new coupling metric is recommended for maximum

coverage of coupling aspects.

1.4 Problem Statement

The coupling metrics used in the existing studies do not incorporate direction of

control flow, coupling levels, and volume of information flow. Consequently, the

exclusive impact of complexity associated with these aspects in SFP have not been

discussed.

1.5 Research Contribution

• There are many factors, which contribute to coupling’s complexity [24–27,

118]. Some of these aspects have not been evaluated yet in SFP. Two such

aspects are the data flow volume and coupling levels. We propose two class-

level coupling metrics that incorporate these two aspects. The proposed

metrics are assessed in predicting software faults using 32 datasets. Finally,

we reported the predictive ability of these two aspects of coupling.

• ML-based SFP models have been extensively used [16]. However, selecting

the right model and declaring the best out of multiple models are dependent

on the performance measures. We analyze 14 frequently used, non-graphic

classifier’s performance measures used in SFP studies. Our analyses would

help ML practitioners and researchers in SFP to select the most appropriate

performance measure for the models’ evaluation.

Introduction 6

• We perform an empirical evaluation of seven coupling metrics in SFP. Like-

wise, we perform theoretical evaluation of more than 37 coupling metrics

against coverage of coupling levels and principles.

1.6 Research Methodology

The research methodology is a composite of the following four phases.

1st Phase: In this phase, we would identify the factors that contribute to com-

plexity in the modules’ coupling.

2nd Phase: In this phase, new metric would be equated by accumulating missing

aspects of coupling.

3rd Phase: The usefulness of the proposed metrics is subject to be validated em-

pirically. Availability of dataset is a base requirement for such validation. There-

fore, this phase is dedicated for the development of dataset for the evaluation of

the proposed metrics.

4th Phase: In this phase, the proposed metrics are evaluated for their impact on

SFP. First, we perform the univariate logistic regression (ULR) to compute the

significance of the coupling metric. The significant metrics are later assessed for

the existence of association with other metrics using Spearman correlation coeffi-

cient. Later the least correlated metrics were used to build a multivariate logistic

regression model.

1.7 Thesis Outline

The thesis outline is as follows:

Chapter 2 elaborates the SFP process and its three key ingredients: approaches,

metrics, and datasets. After that performance evaluation techniques are discussed.

Finally, software coupling, its principles, and its consequences are briefly disclosed.

Chapter 3 comprises a literature review in three different dimensions. The 1st

section outputs the numerous coupling metrics proposed so far, followed by the 2nd

section on SFP studies that use the metrics found in the 1st section. This section

will explore the studies on the empirical evaluation of the coupling metrics. The

3rd section focuses the studies on coupling levels/principles to find the evaluation

Introduction 7

parameter for theoretical evaluation of the coupling metrics. In the end, theo-

retical evaluation of coupling metrics is addressed w.r.t. the coupling levels and

principles.

Chapter 4 describes the computation/derivation of our proposed metrics. The

first half of the chapter elaborated the computation of data flow volume and cou-

pling levels, while the second half is dedicated to illustrate the computing proposed

metrics on hypothetical Java methods/classes.

Chapter 5 is dedicated to the selection and brief elaboration on materials and

methods used for the empirical validation of the proposed metrics. This comprises

dataset development, selection of performance measures, ML algorithm, and Sta-

tistical test.

Chapter 6 is dedicated to the reporting of the results computed using materials

and methods discussed in the previous chapter. There comes a detailed discussion

on the results along with the threat to validity.

Chapter 7 concludes the thesis and provides possible future directions for re-

search.

Chapter 2

Background

Software cannot be free of errors, and every error can potentially lead to fault.

Although, the density of fault can vary from industrial projects to normal applica-

tions [119, 119, 120], yet none is free from faults.x Testing is regarded as an activity

of executing the software program and uncovering the faults as much as possible.

The first known formal definition of software testing is defined by Glenford Myers

as

Testing is the process of executing a program with the intent of finding

errors [121].

Since discovering all the faults in the software requires extensive testing, which is

nearly impossible, therefore, software has to be deployed with those hidden faults.

That is why software can never be guaranteed to be 100% reliable. An effective

way to identify the fault is to determine the most fault-prone modules, which is

the primary objective of software fault prediction.

2.1 Software Fault Prediction

SFP is the process of detecting fp module or the number of expected faults in a

software module. This is usually, accomplished by employing an artifact from the

same release of the software (Intra-release SFP) or from different releases of the

software project (Inter-release SFP) or from the different software projects (Cross

Project Defect Prediction) [12, 13]. The timely detection of faulty modules or

8

Background 9

the number of faults in any module is quite beneficial, especially, in critical and

strategic software systems. It helps in reducing testing cost and improving the

quality of the system [13]. Moreover, it can direct the testing team to focus more

on the fp modules. Predicting the number of faults can be even more useful as it

provides the criteria for sufficient testing. SFP helps in [14] the improvement of

the software testing process and software quality. There are three main ingredients

in SFP [15]

1. Metrics is a measure that shows an aspect of software artifact.

2. Class label is the required output, also known as independent variable. In

SFP studies, class label can be numerical, that shows number of faults in

a module, it can also be binary, like presence or absence of faults, or even

ordinal like severity of faults.

3. Model. Modeling maps the relationship between dependent to the indepen-

dent variables. It is generally accomplished by ML algorithm, statistical

algorithm, experts’ opinion. [16].

2.1.1 Metrics Used in SFP

SFP is performed using software metrics, which show the quantitative detail of

software aspects. These metrics have two significantly distinct categories: process

and product metrics [16].

2.1.1.1 Process Metrics

These metrics measure the development process that creates a body of software.

A common example of a process metric is the length of time taken for the develop-

ment of perticular software module. According to the study conducted by Catal

et al. 79% of articles under study used process metrics for SFP [16].

2.1.1.2 Product Metrics

These metrics describe the characteristics of the product such as size, complexity,

design features, performance, and quality level. Within the product, metrics can

Background 10

vary in levels. According to the study conducted by Catal et al. 60% of articles

under study used method-level metrics [16](see Figure 2.1). There is another

dimension of product metrics, there could be design metrics, code metrics, volume

metrics, complexity metrics. This document exclusively considers only the product

Figure 2.1: Distribution of metrics

metric, assuming uniformity in processes within a product. According to the

studies, [15, 16, 22, 122–126] the most frequently used in structural paradigm

are McCabe [127], Halstead [128] and LOC. In object oriented paradigm, metrics

are generally proposed in suites like Morris metric suite [129], CK metric suite

[130], Oman coupling metric suite [131], Chen and Lu metric suite [132], Li and

Henry metric suite [106], Lee et al. metric suite [133], Abreu et al. metric suite

[134], Martin metric suite [135], Lorenz and Kidd metric suite [136], Briand et

al. metric suite [61], and Li metric suite [137]. However, CK metric suite is the

most frequently used [15, 16, 22, 122–126]. Besides this, inheritance metrics are

reported as the least useful or insignificant metrics. More specifically, Depth of

Inheritance Tree (DIT) and Number of childern (NOC) of the Chidamber and

Kemerer inheritance metrics are extensively evaluated and found insignificant.

Likewise, Lacks of Cohesion Metrics (LCOM), LCOM2, LCOM3 are also found

useless in predicting software faults [138].

2.1.2 Datasets Used in SFP

Dataset is a collection of multiple records/instances that comprises one or more

metrics and a class label. Numerous datasets have been used in fault prediction

studies. Based upon their availability, datasets can be classified into three classes:

Background 11

public, partial public, private[16, 22].

Publicly available datasets comprise the labeled datasets having a value of some

metrics against each instance. The major datasets used are as follows:

1. NASA [139] datasets consists of 13 software projects in PROMISE version

and 14 software projects in metrics data program (MDP) version, with con-

siderable difference in the number of features set also [140]. Besides having

the quality problems [140], it is the most used dataset by the SFP community

[138].

2. SoftLab [141] dataset contains five projects, i.e., Autoregressive-1 (AR1),

AR2, AR3, AR4, and AR5, which are embedded controller software for

white goods. All these projects are written in C.

3. AEEEM [142] is collected by D’Ambros et al.. It contains class-level datasets

of five software systems; Apache Lucene 2.4, Eclipse Equinox Framework 3.4,

Eclipse JDT Core 3.4, Eclipse PDE UI 3.4.1, and Mylyn. These datasets

have 61 metrics, which include code metrics, process metrics, and churn

metrics.

4. ReLink [143] is a file-level dataset of three projects; Apache, Safe, and ZXing

having 194, 56, and 399 instances, respectively. Each dataset contains 26

features, including complexity and count metrics.

5. Jureczko and Madeyski[144] collected 92 versions of 38 different software

development projects. These projects are open source, proprietary and aca-

demic software projects. Each of these datasets contains 20 metrics, includ-

ing McCabe’s cyclomatic metrics, CK metrics, and other object oriented

metrics. Few of these datasets are Tomcat, Ant, Camel, Ckjm, Forrest, Ivy,

JEdit, Log4j, Lucene, PBeans, Poi, Prop, Synapse, velocity, Xalan, Xerces,

etc.

6. ECLIPSE1 [145] contains file and package level datasets of three versions of

Eclipse, i.e., 2.0, 2.1, and 3.0. These datasets contain code metrics on the

file level and 40 metrics on the package level.

In Partial public datasets, source code of the software system and fault data is

available, from where the metrics can be parsed, like Eclipse [145] and Mozilla.

Background 12

Few studies which use these datasets are [29, 32, 36, 46, 52, 54]. However the

most critical issues with partial public are many-to-many relation between bug-

file links, duplicated bug-file links and the issue of untraceable bugs [146].

In Private datasets, projects’ code and defect information are not public. These

datasets are mostly proprietary used by few studies [31, 34, 37–39, 45, 58, 59, 147].

This type also includes projects developed by the university students.

Catal and Diri [16] conduct a systematic literature review (SLR) from the years

1990 to 2007. They conclude that 69% of papers have private datasets published

before 2005, which becomes 48% after 2005. SLR conducted by Radjenvic et al.

[22] covers the studies published between 1991 and 2011 declares that 62% of

the studies used private, 22% partial public datasets. Ronald [148] reports that

from 1996 to 2012, 57% of the studies used publicly available datasets. A survey

conducted by R. Malhotra concludes that 23% of the paper published from 1991

to 2013 use private dataset, while 77% of papers use public dataset [123]. This

collectively implies that researchers are more inclined towards public datasets.

The reason is the least availability of fault information.

2.1.3 Approaches Used in SFP

Five different approaches are being used in SFP;

1. Machine learning

2. Deep learning [149, 150]

3. Statistical modeling

4. Experts’ opinion

5. Similarity based [151]

6. Association rule mining [152–155]

In the SFP literature, most of the articles used ML-based techniques. [16]. The

usage frequency of ML algorithms from 1991 to 2013 shows the domination of

decision tree and Bayesian[7, 123]. Lately, a study conducted by Mahesh et al.

supports the frequent use of ML for fault prediction[156]. However, as far as per-

formance is concerned, generally, models perform best where the selected technique

Background 13

successfully maps the relationship between dependent to independent variables. A

survey is conducted that includes studies published from 1991 to 2013. The objec-

tive was to assess the performance of ML algorithm in terms of AuC. It has been

reported that the RF performed the best, followed by the Multilayer perceptron

(MLP), Naive Bayes (NB), and Bayesian Network (BN) models [123]. The most

recent survey is conducted with coverage from 1995 to 2018 [138]. The authors

reported that the most used learning method is Decision Tree. The second most

used technique is built on Bayes theorem. While, Regression, Discriminant analy-

sis, and Threshold-based classification are the third most used technique for SFP.

Apart from that, RF is generally appreciated by the SFP research community

[35, 49, 50, 157–163].

2.1.4 Performance Evaluation in ML-based SFP Techniques

There are numerous performance measures used in the evaluation of the SFP ma-

chine learning models. Some commonly used performance measures are Accuracy,

Recall, Precision, F-measure, and AuC. However, the most used performance mea-

sure is Recall followed by Precision and AuC [138].

We analyzes 14 frequently used, non-graphic classifier’s performance measures

used in SFP studies. The objective of the study is to help ML practitioners and

researchers in SFP to select the most appropriate performance measure for the

models’ evaluation. They evaluate the performance measures for resilience against

producing invalid values through their proposed plausibility criterion. After that,

consistency and discriminant analyses are performed to find the best out of the

14 performance measures. Finally, they conclude that the F-measure is the best

candidate to evaluate the SFP models.

Malhotra [123] report that amongst the studies published from 1991 to 2013,

F-measure is amongst the top five most-used performance amongst 21 collected

performance measures. Likewise, SLR of the studies from 1998 to 2018 also re-

ports the same result [138]. Keeping in view these findings we select F-measure

as a performance evaluation measure.

F-measure [164] is the harmonic mean of Precision and Recall. It tells how precise

a classifier is and how robust it is. Mathematically it is written as.

F-measure =
(β2 + 1)× Precision×Recall
β2 × Precision+Recall

(2.1)

Background 14

Whereas the value of β can be 0.5, 1, and 2 for F0.5, F1, and F2 measures,

respectively, where F1-measure is being the most used variant.

Apart from that, some of the studies use statistical tests for the evaluation of

their results. In this context, Wilcoxon test is the most used test followed by the

Friedman and Analysis of Variance (ANOVA) test [138].

2.2 Software Coupling

Software coupling is defined as,

“The measure of the strength of association established by a connection from one

component to another” [165, 166]

In software engineering, the coupling can be in different ways, like:

1. OO paradigm vs Aspect-oriented paradigm [167].

2. OO paradigm vs structural paradigm

3. Static coupling vs dynamic coupling [168, 169]

4. Syntactic coupling vs conceptual/semantic coupling [169, 170]

5. Coupling through inheritance vs coupling without inheritance

In this document, we are concerned with syntactic, static coupling in object ori-

ented and structural paradigm without inheritance. More precisely, the coupling

is considered in SFP, instead of reusability, maintainability, etc.

2.2.1 Coupling Principles and Consequences of High Cou-

pling

There are five principles of coupling [118]. Which are flexible, obvious, local, direct,

and narrow connections between software modules are desirable. In contrast to

that rigid, hidden, global, indirect, and broad connections should be avoided.

Coupling does not hold transitive property [130].

Background 15

High coupling is undesirable, as it leads to complexity and consequent faults.

The reason is that highly coupled modules are difficult to reuse, modify or test

without understanding all the modules that the very module is coupled to. If an

error occurs in a highly coupled module then the probability of an error in other

modules increases. That is why highly coupled modules can be more fp [171, 172].

A comprehensible level of coupling is always desirable, however, when there exists

complexity in coupling in terms of levels, and volume of information flow there

comes incomprehensibility. Consequently, the programmer finds it difficult to

program by keeping all parameters in consideration and thus causes him to commit

a bug in a code [173]. Offutt [25] describes that high coupling increases the:

• probability to propagate faults from one module to another.

• effect of change impact from one module to another.

• time to understand the single component.

Coupling is closely related to cognition. This is an empirically proven fact[21, 38,

40, 41], which can be pictorially shown as in the Figure 2.2

Structural	Complexity
(Coupling,	 etc.) Cognitive	Complexity External	Quality	Attribute

(Fault-proneness,	 etc.)affect affect

Figure 2.2: Relationship of structural complexity of the software with
software faults

Inheritance is another software design aspect, and it is a unique type of coupling.

Since, it enables re-usability [130] and has a very weak association with software

faults[23, 174]. Keeping in view these reasons, we exclude it from our thesis.

Chapter 3

Literature Review

Research community uses coupling and its different aspects in various dimensions

including fault prediction [6, 19, 21, 23, 28–42, 42–59], design patterns [60], im-

pact analysis [61], re-modularization [62], assessing software quality [39], mainte-

nance cost [63], productivity [64], software vulnerabilities [65], reusability [66–80],

changeability [81–96], reliability [97–105], and maintainability [42, 105–116]. How-

ever, keeping in view our scope we explore the coupling and its different aspects

in the context of SFPs. This chapter comprises a survey in three different di-

mensions. The 1st survey outputs the numerous coupling metrics proposed so far

(Section 3.1), followed by the 2nd survey on SFP studies that use the metrics found

in the 1st survey (Section 3.2). This survey will explore the studies on the empir-

ical evaluation of the coupling metrics. Finally, 3rd survey focuses the studies on

coupling levels/principles (Section 3.3) to find the evaluation parameter for theo-

retical evaluation of the coupling metrics. Figure 3.1 illustrates the orientation of

this chapter.

3.1 Studies on the Development of Coupling Met-

rics

In this section, we briefly discuss the coupling metrics in chronological order. Most

of the coupling metrics discussed here are part of some metric suite (see Appendix

A). The following section precisely defines the inclusion and exclusion criteria

16

Literature Review 17

Figure 3.1: Orientation of Literature review

followed by the section that summarizes the included studies.

We do not conduct a systematic literature survey, however, we tried to include

maximum studies through snowball sampling [175] and random query generation

on digital libraries. Fortunately, our list covers all the coupling metrics discussed

in various Systematic literature surveys (SLR) [16, 22, 148, 176–184].

3.1.1 Inclusion Criteria

In this literature review we include following type of studies

1. Studies wherein the coupling metric has been proposed with focus on syn-

tactic aspects

2. Studies wherein the coupling metric has been proposed with focus on static

aspects

3. Studies wherein the coupling metric has been proposed for object oriented

paradigm or structural paradigm

3.1.2 Exclusion Criteria

In this review we exclude the studies having following properties

Literature Review 18

1. Studies wherein the coupling metric has been proposed with focus on con-

ceptual/semantic aspects

2. Studies wherein the coupling metric has been proposed with focus on dy-

namic aspects of coupling

3. Studies wherein the coupling metric has been proposed that addresses any

of the aspects of inheritance like Coupling based on Strength Specification

Metric (CSSM) [185, 186]

4. Studies wherein the coupling metric has been proposed informally, yet are

used by some studies like Access To Foreign Data (ATFD), Foreign Data

Providers (FDP), Locality of Attribute Accesses (LAA), etc [187]

3.1.3 Summary of the Coupling Metrics

3.1.3.1 Henry and Kafura Coupling Metrics

The first coupling metrics by Henry and Kafura [17, 18]. The authors proposed

an four different types of information flow complexity measure. In this context,

relationships between software modules/programs are either fan-in’s or fan-out’s.

Likewise local and global information flow coverage are equated for relationship

between variables and program modules. That makes a total of four coupling

metrics. Two metrics are represent coupling software modules, i.e., Fan-in and

Fan-out. Whereas two coupling metrics represent coupling between variables and

software modules, i.e, Global information flow and Local information flow, shortly

named as GIF and LIF, respectively.

3.1.3.2 Total Design Complexity

Total design complexity (C∼) [188] calculates the overall system’s complexity by

adding of inter-module and intra-module complexity. Mathematically, C∼ of a

Literature Review 19

method A is;

C ∼ (x) =

∑
fx

2

n
+

∑ vx
fx + 1

m
(3.1)

Where, fx is the frequency of method being called by other modules (i.e Fan-out

of module x), n represents the total number of modules in the software project, v

is the total number of input/output variables variable in module x and m is the

number of new modules in the system. Desirable value of C∼ metric ≤ 26 [189].

3.1.3.3 Degree of Coupling Between Objects

Degree of Coupling Between Objects (DCBO) [129] computes the number of uses

of one object to the elements of another object. It can be found by simply drawing

a number of arcs between objects in a network diagram.

3.1.3.4 Design Complexity

Design complexity metric (DC) [190] is the cyclomatic complexity [127] of the

reduced control-flow graph. The reduction is done on some rules. With no function

call, design complexity would be 1. However, for every Fan-out in a sequence or

branch, DC would increase by 1. DC is similar to Fan-out, but it does not consider

updating any global data structure.

3.1.3.5 Fenton and Melton Metric

Fenton and Melton metric(FM) is an ordinal metric of coupling between any two

modules [191]. The authors have proposed the metric as a measure of coupling

between two components x and y :

M(x, y) = i+
n

n+ 1
(3.2)

where, n =numberofinterconnectionsbetween x and y, and i = level of highest

(worst) coupling type found between x and y.

Literature Review 20

3.1.3.6 Chidamber and Kemerer Metrics Suite

Chidamber and Kemerer present suite which comprise two coupling metrics [130],

i.e., Coupling between objects (CBO) and Response for a class (RFC).

CBO is the total number of classes that are coupled to a particular class. CBO

could occur if the method(s) of a class invoke(s) member (data member or member

function) of another class. If class A invokes member(s) of class B and C then

CBO of A will be 2. Multiple accesses of a particular class’s member would be

counted as a separate occurrence [192]. CBO ≤ 14 is acceptable [193]. CBO came

with two versions, the earlier version does not include inheritance-based coupling

[130] while latter does [194]. In this study, an earlier version of CBO is considered

in evaluation, literature review and later in the experimentation.

RFC of any class C is a union of two sets:

1. Set of all methods of C

2. Set of all methods of classes other than C which is called by method(s) of C

Multiple calls to the same method would be counted only once.

3.1.3.7 Oman Coupling Metrics

Oman and Hagemiester propose four coupling metrics [131]. The original manuscript

is not available, however, the details about the coupling metrics are discussed in

later article by the same authors [109].

The mathematical equation of these metrics are as follows

ControlCoupling(CrtlC) = Fan− out2 (3.3)

DataCoupling(DataC) =
Total Global Structures+Modules′ Parameters

No. of Data Structures inmodule

No. of Modules

(3.4)

Literature Review 21

Encapsulation(E) =
1− (DataCoupling ×No. of Modules)

Fan− in
(3.5)

ModuleResue(MR) = 1− No. of Modules

Fan− in
(3.6)

SystemCoupling(SC) =
No. of Global structures+No. of parameters

No. of Data structures
(3.7)

3.1.3.8 Chen and Lu Coupling Metrics

There are two coupling metrics in this suite [132]. Operation coupling metric

(OCM) and Class coupling metrics (CCM).

OCM measures the coupling between the operations of two classes. Mathemati-

cally,

OCM = No of Oper. accessotherclasses

+No of Oper. accessedbyotherclasses

+No of Oper. cooperated

When class directly/indirectly accesses members of other class, while that called

class is accessing members of that very class, cooperated coupling is established.

CCM = No. of Classeswhichaccessotherclasses

+No. of Classes being accessed

+No. of cooperatedClasses

CCM and OCM[132] are having subtle differences. OCM is more generalized in

its coverage. Since it covers data members and member function both. Whereas,

Literature Review 22

CCM is the operation of accessing other classes.

3.1.3.9 Offutt Metric

Offutt metric (OM) [26] precisely define the coupling levels that can be computed

through an algorithm. Moreover, the authors incorporated the notion of coupling

direction also. The coupling levels used in OM are shown in Table 3.4.

3.1.3.10 Message Passing Coupling and Data Abstraction Coupling

Li and Henry propose two coupling metrics [106]; Message-passing coupling (MPC)

and Data abstraction coupling (DAC).

MPC computes the coupling between classes through message passing. Hence, it

is computed at the class level instead of the object level. It shows the number

of messages sent out of the class, whereas DAC is the number of abstract data

types in a class.

The definitions of both of these metrics are descriptive in the original study, how-

ever, another article [195] defined them as;

MPC is “the number of method invocations in the class of interest” and DAC is

“the number of attributes in a class of interest whose types are of other classes.

Later, Wei Li [137] proposes six metrics wherein two are related to coupling, which

are very similar to his earlier study [106]; Coupling Through Abstract Data Type

(CTA), and Coupling Through Message Passing (CTM). The CTA metric is the

total number of classes that are used as abstract data types in the data- attribute

declaration of a class. The CTM metric measures the number of different messages

sent out from a class to other classes.

Since both of these metrics have no significant difference in these two studies, we

consider them as single versions. Therefore, in the rest of this document, these

two versions are referred to by their prior versions, i.e., DAC and MPC.

3.1.3.11 Coupling Factor

Coupling Factor (CLF) takes into account the main components of OOP including

inheritance, encapsulation, information hiding or polymorphism with the belief to

Literature Review 23

be responsible for the increase in software quality and development productivity

[196]. Mathematically it is;

CLF =
TCC

TC
(3.8)

Whereas where TC is the total number of classes in the system under consideration

and Class Clusters are represented by TCC.

3.1.3.12 Lee et al. Coupling Metrics

Lee et al. propose a metric suite wherein two metrics are related to coupling

[133]. These two metrics are Information flow-based non-Inheritance coupling

(NIHICP) and Information flow-based coupling (ICP). NIHICP [133] is the number

of methods that are invoked by other classes. These methods are weighted by the

number of parameters of the invoked method.

3.1.3.13 Dhama Metric

Dhama metric (DM) [197] incorporates four aspects of coupling; global coupling,

data coupling, control coupling, and external in his proposed metric. In DM, low

coupling is good which is shown by high number and vice versa. So, coupling C

is inversely proportional to coupling factors. K = 1 is taken as proportionality

constant. Mathematically,

C =
1

SUM(piC(i), poC(o), pgC(g), D(i), D(o), D(g), Fan− out, Fan− in)

(3.9)

Whereas total number of input, output, and global parameters which are used

for data coupling are shown by D(i), D(o), and D(g), respectively. Likewise, total

number of input, output, and global parameters which are used for control coupling

are shown by, Ctr(i), Ctr(o), and Ctr(g) respectively.

pi, po, andpg are given value as 2 as heuristic estimate. The authors came up

with additional levels of coupling by minor augmentation of the existing coupling

metrics purposed earlier [24–27].

Literature Review 24

3.1.3.14 Afferent and Efferent Couplings

Martin propose three coupling metrics [135]: Afferent Couplings (Ca) is the num-

ber of classes outside this category that depend upon classes within this category.

Efferent Couplings (Ce) is the number of classes inside this category that de-

pend upon classes outside this categories. Third metric is Instability (I), which is

mathematically written as,

I =
Ce

Ca+ Ce
(3.10)

The value of Instability varies from zero to one. The lower value represents a

maximally stable category, while a higher value represents a maximally unstable

category.

3.1.3.15 Coupling Dependency Metric

Coupling dependency metric (CDM) considers three dependencies in the coupling;

Referential (R), structural (S), and integrity (D) dependency [198]. The metric is

equally applicable in the structural and OO paradigm. The metric incorporates

levels of coupling also.

3.1.3.16 Ordinal Scale Module Coupling

Ordinal scale module coupling (OSMC) [43] takes into account five levels of cou-

plings. These are Content, Common, Control, Stamp, and Data. The metric

is discussed descriptively without any mathematical form. However, the authors

claim a strong correlation between OSMC and failures.

3.1.3.17 Briand’s Coupling Metrics

Briand et al. [199] propose a number of metrics which count the number of class-

attribute (CA), class-method (CM) and method-method (MM) interactions for

Literature Review 25

each class. CA occurs when one class has an attribute of another class. CM

interaction occurs when one class has a method and having a parameter of another

class type. MM interaction type occurs when a method of one class calls a method

of another class. By the inclusion of Friend, Inverse friend, Afferent, and Efferent

coupling, a suite of metrics is proposed. Cartesian product of these concepts makes

in total 18 metrics in number (and ignoring infeasible combinations). However, 6

metrics are related to inheritance so they are ignored. Thus, remaining relevant

metrics are FCAEC, FCMEC, FMMEC, IFCAIC, IFCMIC, IFMMIC, OCAEC,

OCAIC, OCMIC, OCMEC, OMMEC, OMMIC.

3.1.3.18 Number of Associations

Number of associations (NAS) [192] is the number of association lines spread out

from a class on an Object Model diagrams [200]. There is a subtle difference

between NAS and CBO. The NAS considers only the unique calls, whereas CBO

considers each call as a separate occurrence. Moreover, NAS is similar to another

metric, i.e, DCBO [129].

3.1.3.19 ABC Metric

In ABC metric [201], A is for assignment, usually done by transferring data into a

variable, B is for Branch, means when control moves out of the module’s bound-

ary, C is for condition, which is generally a Boolean check. So, higher the value

of B (which is there in case of coupling), higher the value of ABC metric. Math-

ematically ABC of any method A is;

ABC(A) =
√
A+B + C (3.11)

3.1.3.20 Direct Class Coupling

Direct class coupling (DCC) is a part of QMOOD metric suite [202]. It is a different

number of classes that a class is directly related to by attribute declaration or

Literature Review 26

message passing.

3.1.3.21 Cognitive Functional Size Metric

This metric takes into account the functional complexity in terms of cognition[203].

CFS takes into account the weight assigned to basic control structure in a module.

Apart from this every functional call has been assigned a weight of 2. The value

of the metric highers by high frequency of function calls.

3.1.3.22 Nagappan and Thirumalesh Coupling Metrics

Nagappan and Thirumalesh propose multiple coupling metrics [204] and make

them patent.

3.1.3.23 Weighted Transitive Coupling

Weighted transitive coupling (WTrnCpl) takes into call graph in to consideration[66].

Its mathematically form is as follows;

WTrnCpl =

∑n
x,y=1Cpl(x, y)

n2 − n
(3.12)

Where n represents the total count of modules in the software system under

consideration. Whereas, Cpl(x, y) utilizes the relationship between two modules,

i.e., x and y.

3.1.3.24 Alghamdi Metric

Alghamdi metric (AM) [205] used to compute coupling metric by first populating

a matrix named Description matrix, which is a Cartesian mapping of program

components. After that coupling metric is computed by taking into account the

values placed in the cell.

Literature Review 27

3.2 Studies on the Evaluation of Coupling Met-

rics

In this section, we discuss the studies which evaluate coupling metrics in SFP. The

objective of this section is to assess the importance of coupling metrics empirically

by the research community. The following subsection precisely defines the inclu-

sion and exclusion criteria followed by the section that summarizes the included

studies in chronological order.

3.2.1 Inclusion Criteria

In the section, we include the studies having all of the following properties

1. Studies that report the exclusive impact of coupling metrics discussed in

Section 3.1.3

2. Studies from software fault prediction domain

3. Studies wherein machine learning is used for software fault prediction

3.2.2 Exclusion Criteria

In the section, we exclude the studies having any of the following properties

1. Studies that report the metrics other than the coupling metrics discussed in

Section 3.1.3

2. The studies that address the coupling metrics other than SFP are not in-

cluded.

3.2.3 Summary of the Included Studies

Troy and Zweben [19] use coupling measures that are related to any aspect of

coupling like the number of interconnections per module (volume), the number

Literature Review 28

of modules accessing a common interconnection (frequency of common coupling),

unique common interconnections (common coupling), boxes accessing control in-

terconnections (control coupling). The authors test the hypotheses for the use-

fulness of the coupling indicators. Data is taken from 73 designs and their cor-

responding source code. The result of linear regression modeling indicates that

module coupling is an important factor in determining the quality of the software.

Kitchenham [206] assesses multiple design metrics that are based on Henry and

Kafura’s information flow metrics (i.e. Fan-in and Fan-out). A communications

system is taken as a case study. The objective is to evaluate the ability of selected

metrics to identify change-prone, error-prone, and complex programs. Based upon

visual scatter plots, it is reported that the Fan-out has a strong association with

software fault, whereas Fan-in is relatively weak in this trait.

Bisili et al. [45] evaluate the performance of CBO and RFC in predicting

the fault-prone modules. The authors take a total of eight medium-sized software

systems. It is concluded that the included coupling metrics significantly improves

the predictive accuracy.

Binkley et al. [44] take corrective maintenance data of a 82,000-line code

developed in C++. The software is a patient collaborative care system. In addi-

tion to the report of insignificance of inheritance metrics, the authors reported the

effectiveness interclass and intraclass metrics are in fault-prone prediction. The

included coupling metrics are CBO, NCC, NSSR, CDM, Fan-in, Fan-out. The

correlation is performed using Spearman correlation.

Binkley and Schach [43] perform a study to determine the usefulness of design-

based software product metrics in predicting the number of run-time faults that

will be encountered during execution. The included coupling metrics are Fan-in,

Fan-out, OSMC, and CDM. It is deduced that the most effective metric for pre-

dicting failures is related to coupling. In other words, the metrics which correlated

most highly with failure were those which measured some form of module coupling.

Binkley and Schach [117] investigate the usefulness of CDM, OSMC, Fan-in,

Literature Review 29

and Fan-out in predicting run-time failures using Spearman correlation. OASIS is

taken as a case study that is developed in COBOL. It is reported that the most

accurate predictor of run-time failures is the amount of interdependency between

modules, which is computed by the selected coupling metrics.

Binkley and Schach [42] employ four case studies: run-time failure data for

a COBOL registration system; maintenance data for a C text-processing utility;

maintenance data for a C++ patient collaborative care system; and maintenance

data for a Java electronic file transfer facility. It is found that the most undesirable

property in terms of software maintenance is the level of coupling between mod-

ules. In contrast to that, the case studies with lower coupled modules undergo less

maintenance. More specifically, That is, coupling metrics in general, and CDM in

particular, are excellent predictors of maintenance measures.

Briand et al. [41] investigate the usefulness of existing coupling metrics in

identifying the probability of fault detection. Both import and export couplings

are used as independent variables. Medium-sized eight different software systems

developed by students are used for the evaluation. Fault data is taken from the in-

dependent testing team. Included coupling metrics are Henry and Kafura coupling

metrics and Briands coupling metrics. The result of regression coefficients shows

that all the coupling metrics are a good predictor of software faults except OCMIC.

Harrison et al. [192] hypothesized that coupling is associated with a num-

ber of errors and understandability. The authors analyzed two coupling metrics

CBO and the NAS. A strong association is found between these two metrics. Both

the metrics are available early on in system design. The experiment is performed

on five object-oriented systems which are developed in C++. The results of the

Spearman correlation show the existence of partial association included coupling

metrics with fault density. More specifically, NAS is more associated with the

density of faults than that of CBO.

Eman et al. [40] assess the significance of CK and Briand’s coupling metrics in

predicting fault-prone modules. The independent variables are measured using an

Literature Review 30

open source software tool and configuration management is used for labeling the

faulty classes. Logistic regression is used for model building. The performance

evaluation is done by using of R2 and coefficients. The outcome of the experiment

infers the positive association of included metrics related to coupling with fault.

More specifically, CBO, OCMEC, OCAEC, and OMMEC are found a prudent

choice for fault prediction.

Mei et al. [59] evaluate CK metric suite using univariate logistic regression.

They made three classes of faults; Object-oriented faults, Object management

faults, and Traditional faults. They report the usefulness of RFC. Moreover, the

authors propose few metrics and found them useful also.

Briand et al. [39] explore the association of import/export coupling measures

and the probability of fault detection. The eight systems used for this study were

developed in C++ by students over the course of four months. The systems con-

sist of 180 classes. Coupling metrics are parsed using M-System and fault data is

collected during the testing phase which is conducted by an independent testing

team. They conclude that coupling measures, with good variance, are significantly

useful in predicting software faults. The result of univariate logistic regression is

that all import and export couplings are useful in SFP except OCAEC.

Briand et al. [38] hypothesized the association of numerous coupling metrics

with software faults. The independent variables comprise the CK and Brainds

coupling, which are parsed using a tool developed at the Frauhofer IESE. The

object-oriented based industrial software system written in C++ is used as a

case study. The fault information is computed using the change report form. The

results of univariate logistic regression report the strong association of all included

coupling metrics with software faults.

Eman et al. [58] apply logistic regression and Pearson correlation on the

telecommunications framework written in C++. They evaluate the association

of CBO, RFC, and Briand’s metric suite with software faults. They report that

Literature Review 31

CBO and RFC are both associated with faults, whereas RFC’s association gets

weaker when size is controlled.

Eman and Melo [21] evaluate Briand’s coupling metrics in SFP. A software sys-

tem developed in Java is used as a case study. The fault and fault-free instances

are determined by skimming the failure reports. The experimental methodology

is cross-version defect prediction. One version of the software is used for building

a logistic regression model. The built model is used for the fault module identifi-

cation in the subsequent version of the same project. The result is reported in the

form of Regression coefficients. It is deduced that there exists a strong association

between coupling metrics and faults. The conclusion is the same as that reported

by El-Eman [40].

Ping et al. [37] empirically validate a set of object-oriented metrics in terms of

their effectiveness in predicting fault-prone software modules. The authors use a

total of ten metrics including, size, coupling, cohesion, and inheritance. Out of

the total of eight hypotheses, three hypotheses exclusively address the significance

of coupling metrics (CBO, RFC, Fan-in). Client-side of a large network service

management system developed in Java is used as a case study. The evaluation

of results is carried out using regression analysis and discriminant analysis. The

result of R2 advocates the usefulness of CBO and RFC. While mild effectiveness

is reported in favor of Fan-in.

Subramanyam and Krishnan [207] investigate the performance of CBO (and

some non-coupling metrics) in SFP. The study uses an e-commerce application

suite developed in C++ and Java, wherein total classes are 706. Metrics are com-

puted from the design document and source code. Defect data is collected from

customer acceptance testing and defect resolution logs, which are later validated

by the concerned development team. They examined the effect of the size along

with the CBO values on the faults by employing multivariate regression. Besides

validating the usefulness of metrics, they compared the applicability of the metrics

in different languages; thus, they test the hypotheses for C++ and Java classes

separately. The results show the usefulness of CBO in C++ projects.

Literature Review 32

Gyimothy et al. [6] investigate eight metrics, including CK metrics, LCOMN,

and LOC. Every metric is evaluated independently. The authors process the

Bugzilla database with bugs associated with each class in the source code. Both

classification and regression are performed on the Mozilla software project using

logistic and linear regression respectively. R2 is used as a performance evaluation

parameter. The results infer the effectiveness of CBO for having its large value of

R2. While mild usefulness of RFC is observed.

Finally, another experiment is performed using a decision tree and multilayer per-

ceptron on the binary and ordinal fault data. The performance evaluation is

conducted using three performance measures. However, outcome of the experi-

ment supports the results reported when regression is performed.

Abubakar et al. [208] aimed to assess the effect of cohesion metrics on software

faults. They perform stepwise linear regression on KC1 dataset wherein PPD,

ATPD, CBO, DIT, LCOM, NOC, RFC, WMPC, and DOC are used as inde-

pendent variables. Though the objective was the evaluation of cohesion metric

LCOM, a significant correlation of CBO and WMPC with software faults is re-

ported. However, Fan-in is declared insignificant.

Janes et al. [147] perform three regression techniques on five real-time telecom-

munication system. The objective was to assess the performance of CK metric

suite in fault prediction. They report the statistically significant performance

of RFC in all the projects, while CBO found it useful on some of the analyzed

projects.

Shatnawi et al. [36] assess the applicability of CTA, CTM, CBO, and RFC

in predicting fault-prone modules. The authors take 2.0 version of Eclipse. Per-

formance of Univariate Binary Regression is evaluated using Odds ratio. The

results deduce the acceptable predictive performance of coupling metrics. The

next experiment is performed using collinearity analysis, wherein the results re-

main the same.

Yuming and Hareton [35] aim to assess the impact of CK metrics in identifying

Literature Review 33

the fault-prone modules in KC1 dataset. The study is carried out in on ordinal

variables, i.e, the severity of faults. Four statistical and tree-based algorithms

are employed wherein Precision, correctness, and completeness are used as a per-

formance indicator. Results in all the cases are quite consistent, i.e, the coupling

metrics are very productive in predicting the severity level of any software module.

Aggarwal et al. [34] perform an experiment on 12 different software system

developed by student. The CK metrics suite and Briands metrics suite are used

as independent variables, whereas binary fault information is used as a dependent

variable, which is collected from the testing team. The results of Bivariate logis-

tic regression is evaluated on the scale of Sensitivity and Specificity. The results

infer the significant predictive ability of CBO, RFC, while metrics in the Briands’

metric suite could not show significant results.

Olague et al. [57] empirically evaluate three object-oriented metric suites (CK,

MOOD, and QMOOD) in predicting faults on six Rhino versions. Using bivariate

correlation between metrics and defects they conclude RFC as strongly correlated

with software defects, while CBO has minor to moderate correlation. Next, by

using logistic regression analysis, RFC is found significant in all six versions of

Rhino, whereas CBO is found significant in five versions of Rhino.

Pai and Bechta [56] investigate how Bayesian methods can be used for as-

sessing software fault content (number of faults) and the presence of faults. They

use KC1 dataset to analyze the correlation between CK metric suite with faults.

They conclude that CBO, RFC, and SLOC are very significant for assessing both

fault content(number of faults) and the presence of faults.

Goel and Singh [33] assess the impact of three coupling metrics, CBO, Fan-in,

and RFC on KC1. The dataset comprises the information of 145. Univariate

logistic regression is used to figure out the relationship between selected coupling

metrics and a dependent binary fault variable. The result is in the favor of CBO

and RFC in predicting the fault-prone classes in KC1 dataset.

Literature Review 34

Jie et al. [55] assess the usefulness of CBO and RFC on NASA’s KC1 dataset

and conclude the effectiveness of both metrics using Correlation and Regression

analyses. However, their third experiment using Neuro-fuzzy approach results in

the effectiveness of both metrics.

Shitnawi and Li [32] aim to evaluate the productiveness of CK coupling metrics

along with CTA, and CTM. For the experimentation, three versions of Eclipse

are utilized. Fault label is taken as a dependent variable, which is collected

Bugzilla fault repository. In the first experiment, Univariate Binary Logistic Re-

gression is employed in predicting faulty modules. While in the second experi-

ment wherein Univariate Multinomial Regression is used in predicting faults’ level

of severity. Which is computed by number of faults reported in each module. In

both of the experiments, the acceptable level of predictive performance of included

metrics is reported.

Zimmermann and Nagappan [54] assess the dependency factor in predict-

ing fp binaries in Windows Server 2003. The dependency factor includes call

dependencies, data dependencies, and dependencies specific to Windows. Binary

refers to Portable executables, COMs, or DLLs. Call dependency includes import

calls, export calls. The dataset comprises 2252 binaries. A dependency graph is

generated using MaX and defect data is collected using the post-release defect

achieve maintained by Microsoft. Prediction is done for classification and rank-

ing (number of defects). They evaluated CCM, Nagappan’s CyclicClassCoupling,

Fan-in, and Fan-out along with some non-coupling metrics.

Aggarwal et al. [23] disclose the association of coupling metrics with that

of fault detection. The study is in fact the replication of another study performed

by Birnad et al. [38, 39]. 10 coupling metrics are using as an independent variable

while binary fault information is used as the dependent variable. Initially, every

independent variable is assessed individually using univariate logistic regression.

Later the significant metrics are employed together using multivariate logistic re-

gression. The experiment is carried out on 12 different software systems developed

Literature Review 35

in Java by the students. In the first experiment metrics which are related to cou-

pling show an acceptable level of impact on the presence of faults. However, the

metrics that are related to export coupling alone cannot produce a satisfactory

results. In the second experiment, it is found that when coupling metrics are used

in combination of size metrics, the predictive performance improves.

Kpodjedo et al. [52] investigate the fault predictive ability of CK metric suite

and their proposed ECGM metrics. In addition to ECGM, the most accurate

model is the one built on CBO and RFC inclusively.

English et al. [53] evaluate the usefulness of CK metric suite using Bugzilla

reports and CVS commits of two software products Eclipse JDT and Mozilla. The

authors use univariate and multivariate logistic regression to assess the impact of

individual metrics and LOC with software faults. They report high correctness

values of RFC and CBO. Next, in linear regression modeling, RFC and CBO are

found reasonable predictors of software faults. Finally, they give a verdict that

LOC along with CBO and RFC are the best predictors of fp classes.

Selvarani et al. [31] exclusively assess the productivity of RFC in predicting

software faults. Multifunctional estimation model is used to map their relationship

on five software products developed in Java. The results show that there exists

an influence of 3% with the value of 24, which becomes 24% with the value of 93.

Moreover, there is a clear indicator of occurrence of fault when the value of RFC

is above 100.

Jureczko and Spinellis [50] develop a regression model for predicting faults

using CK metric suite and LOC. They use five proprietary and eleven open-source

projects. In the process of eliminating the least correlated metrics, they drop

RFC, while keeping CBO.

Malhotra et al. [30] aim to evaluate CK metrics suite in predicting fault classes

in KC1 dataset. This time severity of fault is used as a target label. Initially, cor-

Literature Review 36

relation is used to figure out the association between metrics. In the second phase,

RFC and CBO are tested for their fault predictive ability using a support vector

machine (SVM) wherein radial basis is used as a kernel function. The results of

Sensitivity, Specificity, Precision, Completeness, and AuC advocate the viability

of both coupling metrics (CBO and RFC) in the identification of severe fault car-

rier classes.

Shatnawi [51] investigate the acceptable risk level using CK metric suite. Two

versions of Eclipse 2.0 and 2.1 are taken as a case study. Modeling is done through

univariate logistic regression. CBO and RFC are found significant predictors of

faults at the 95% confidence level.

Elish et al. [48] evaluated three OO metric suite that comprises six coupling

metrics, i.e., Ca, Ce, I, CF, RFC, and CBO. Data is collected from three versions

of Eclipse. The authors evaluate individual metrics using Spearman correlation

coefficients and report the significance of Ca, Ce, CBO, and RFC, while insignifi-

cance of CF and I.

Johari and Kaur [29] carried out an experiment on JHotDraw 7.5.1, which

is an open-source software system developed in Java. CK metrics suite is used

as an independent variable, which is computed using ckjm parser. The fault label

is determined by reviewing the description of revisions. A total of 613 instances

are collected. The empirical evaluation is conducted in three different dimensions.

In the first experiment, linear correlation is assessed between bug count and the

included independent variables, wherein a strongly positive correlation is observed

with WMC and RFC. Moreover, an average level of correlation is observed between

LCOM and CBO. In another empirical test, predictive ability of RFC, and CBO

independently with fault count using Univariate linear regression model. Value of

R2 infers the positive performance of both of the coupling metrics, i.e., CBO and

RFC.

Rathore and Gupta [49] evaluate 19 class level metrics (including coupling

metrics) on five publicly available project datasets. The authors first evaluate

Literature Review 37

each metric independently using univariate logistic regression. Next, the correla-

tion between metrics is computed, where strongly correlated metrics are dropped

and the remaining subset of metrics are evaluated using multiple releases of the

same software. In their first experiment, they conclude that CBO, RFC, import,

and export coupling metrics are significantly correlated with software fault in four

datasets.

He et al. [47] aim to build simplified metric set for SFP. They take 34 re-

leases of 10 open-source projects from PROMISE repository. Model building is

done using J48, LR, NB, DT, SVM, and BN. Independent variables are CBO,

RFC, Ca, Ce, and CBM and the dependent variable is Binary. They first select

TOPK metrics for their experiment, wherein CBO, RFC, and Ce are selected.

Kumari and Rajnish [46] propose a class level complexity metric (CLCM).

Their objective is to evaluate the performance difference of CLCM and some other

coupling metrics CBO, RFC, MPC, LMC, Fan-out, and EXT. Dataset is collected

from three versions of Eclipse 2.0, 2.1, and 3.0 and the experiment is performed

on each version independently. Two types of labels are used binary and Severity

level (Minimum, Low, Medium, and High). For both types of dependent variables,

Spearman correlation coefficients and univariate logistic regression are used to in-

vestigate the impact of a metric on SFP. The results of this experiment show the

strong correlation of coupling metrics with faults, and classification accuracy for

all coupling metrics lies between 0.70 to 0.75. More specifically EXT, MPC, and

RFC have the strongest impact on pre-release faults.

Anwer et al. [28] evaluate the predictive performance of three coupling metrics,

Ca, Ce and CBO. The prediction model is built using multivariate linear regres-

sion. They use seven different size open-source projects which are developed in

Java. These datasets are Jedit, Camel, Arc, Ant, Velocity, Xerces, and Poi. They

conclude that Ce has a better correlation with faults than Ca and CBO. They

report that CBO and Ce are strongly correlated in all the seven selected projects.

Literature Review 38

Kumair et al. [209] consider CBO, RFC, Ce, Ca, CBM, WMC, DIT, NOC,

LCOM, NPM, LOC, LCOM3, DAM, MOA, MFA, IC, CAM, AMC, Max-CC,

Avg-CC as independent variable and presence and absence of fault a dependent

variable. They take 31 projects from Promise repository, which are developed

Java. Upon applying the multiple statistical tests (i.e.Chi-squared test, Gain ra-

tio feature evaluation, OneR, Feature evaluation, Univariate Logistic regression,

Principle component analysis) they reported the outperformance of OO metrics

in SFP.

Bosco et al. [210] introduced Clang/LLVM-based static analysis tool for iden-

tifying the software quality threshold for software product metrics. Initially, the

authors employ the compiler infrastructure and introduce a Clang AST tool to

gather Abstract Syntex Tree(AST)-based metrics. Later, the statistical analysis

has been conducted to identify the reference thresholds of 22 code metrics includ-

ing Fan-in and Fan-out. Wherein, acceptable threshold of Fan-in is less than 8.

However, the underline identified thresholds are sensitive to probability distribu-

tion and thus could change by varying the distribution. Moreover, the inclusion of

more libraries could alter the presented findings. Finally, the thresholds are built

using the identified code smells. Therefore the threshold may not perform well in

the unseen data.

Deepak et al. [211] aim to classify faults and to explore the usability of Factor

Analysis with Regression. The constructed models used to estimate the proneness

of faults surpasses Multivariate linear regression. CK+OO metrics are utilized

for the experimentation and performance has been evaluated using R Square and

Adjusted R Square and AEEEM datasets have been taken as a case study. The

results support the inclusion of CK and OO metrics to be utilized for SFP.

Malhotra et al. [212] provide an effective defect prediction framework for imbal-

anced data by employing cost-sensitive classifiers and stable performance measures

like GMean, Balance, and AUC. The authors utilized three Apache projects and

four decision tree-based classifiers, i.e, J48, AdaboostM1, Bagging, and RSS. The

Independent variables of the study are CBO, RFC, Ce, Ca, MFA, CBM along with

Literature Review 39

14 object-oriented metrics. Friedman and Wilcoxon signed-tank test supports the

effective performance of included metrics.

Navneet et al. [213] employs CBO, RFC, along with other metrics of CK met-

rics suite to identify the dichotomy that can effectively distinguish the fp and nfp

classes. The authors analyzed numerous threshold-based techniques to determine

the most effective one. The results reported the significantly effective performance

of concordance probability and maximum sum of sensitivity and specificity. More-

over, it was concluded that WMC, CBO, RFC, LOC, and NPM were statistically

significant predictors and can be used for the threshold identification process.

Navneet et al. [214] performed a study wherein WMC, CBO, RFC, Ce, and

LoC utilized over commonly used metrics for SFP problem. The authors proposed

fuzzy cognitive map to eliminate data dependency for software fault prediction.

The proposed cognitive map was learned from experts without the need or depen-

dency on a prior project dataset wherein the technique provides more plausible

and accurate decisions in predicting the faulty modules.

Sushant et al. [215] conducted 880 experiments to analyze the variation in

the performance of 10 SFP models by concerning the class imbalance problem.

The authors used 22 public datasets consisting of 41 software metrics comprising

numerous coupling metrics. Moreover, 10 baseline SFP methods, and 4 sampling

techniques are also examined. Performance has been evaluated using F-measure.

The results conclude that Random Sampling techniques give the best result with

most of the ML algorithms.

Table 3.1 and 3.2 summarize the studies that explicitly address the coupling met-

rics. The first column of Table 3.1 show the reference of study, 2nd and 3rd columns

show the coupling and non-coupling metrics used in the study. The 4th column

shows the type of dependent variables used. The dependent variable has three

possible values;

1. Binary shows fp and nfp labels

2. Ordinal shows fault severity

Literature Review 40

3. Numerical shows number of faults

Table 3.1: Summary of the independent and dependent variables used in the
studies

Study Coupling metrics Non-coupling metrics Type of

Dependent

variable

[19] X[1-7, 19-21] X [8 - 18] Numerical

[206] Fan-in, Fan-out LoC, CC Numerical

[45] CBO, RFC,

FunctCall

Intercept, MaxStatNest,

FunctDef, DIT, NOC,

LCOM, WMC

Binary

[44] CBO, NSSR, NCC,

CDM, Fan-in,

Fan-out, RFC

LoC, WMC, DIT, CHNL,

NOC, NOD, NCIM, WIH,

HIH

Numerical

[43] Fan-in, Fan-out,

CDM, OSC

CC, LoC Numerical

[117] Fan-in, Fan-out,

CDM, OSC

CC, LoC Numerical

[42] Fan-in, Fan-out,

CBO, NCC, NSSR,

CDM, RFC

WMC, DIT, CHNL, NOC,

NCIM, WIH, HIH, CC,

LOC, NOD, No. of global

variables, No. of clients

Numerical

[41] CBO, RFC, MPC,

ICP, NIHICP, DAC,

OCAEC, OCMEC,

OMMEC, OMMIC,

OCAIC, OCMIC,

IFCAIC, IFCMIC,

IFMMIC, FCAEC,

FCMEC,

FMMEC,IFMMIC,

FCAEC

NMO, SIX, NMA, LOC,

WMC, DIT, AID, NOA,

NOP, NMI, NOC, NOD,

CLD, ACAIC, DCAEC,

ACMIC, DCMEC,

AMMIC, DMMEC

Binary

Literature Review 41

[192] CBO, NAS None Numerical

[40] CBO, RFC, OCAEC,

OCMEC, OMMEC,

OMMIC, OCAIC,

OCMIC, IFCAIC,

IFCMIC, IFMMIC,

FCAEC, FCMEC,

FMMEC

LCOM, SLOC, WMC,

DIT, ACAIC, DCAEC,

ACMIC, DCMEC,

AMMIC, DMMEC

Binary

[59] CBO, RFC DIT, NOC, WMC, IC,

CBM, NOMA, AMC, IC,

CBM, NOMA, AMC

Numerical

[39] CBO, RFC, MPC,

ICP, NIHICP, DAC,

OCAEC, OCMEC,

OMMEC, OMMIC,

OCAIC, OCMIC

NMO, SIX, NMA, LOC,

WMC, DIT, AID, NOA,

NOP, NMI, NOCAMMIC,

DMMEC

Binary

[38] CBO, RFC, MPC,

ICP, NIHICP, DAC,

OCAEC, OCMEC,

OMMEC, OMMIC,

OCAIC, OCMIC,

IFCAIC, IFCMIC,

IFMMIC, FCAEC,

FCMEC, FMMEC

NMO, SIX, NMA, LOC,

WMC, DIT, AID, NOA,

NOP, NMI, NOC, NOD,

CLD, ACAIC, DCAEC,

ACMIC, DCMEC,

AMMIC, DMMEC,

Binary

[58] CBO, RFC, OCAEC,

OCMEC, OMMEC,

OMMIC, OCAIC,

OCMIC, IFCAIC,

IFCMIC, IFMMIC,

FCAEC, FCMEC,

FMMEC,

NPAVG,OCMEC

SIX, LCOM, SLOC, WMC,

DIT, ACAIC, DCAEC,

ACMIC, DCMEC,

AMMIC, DMMEC, NMA,

NMO

Binary

Literature Review 42

[21] OCAIC, OCAEC,

OCMIC, OCMEC,

ACAIC, ACMIC, DCAEC,

DCMEC, DIT, NOC

Binary

[37] CBO, RFC, Fan-in NMC, LOC, LCOM, DIT,

NOC

Binary

[207] CBO, RFC DIT, LCOM, NOC, NOM,

SLOC

Numerical

[6] RFC, CBO, WMC, DIT, LOC, LCOM,

NOC, LCOMN

Binary and

Numerical

[147] CBO, RFC DIT, LCOM, NOC, NOM,

SLOC

Numerical

[36] CTA, CTM, CBO,

RFC

WMC, DIT, NOC, NOAM,

NOOM, NOA, NOO

Binary

[35] CBO, RFC WMC, DIT, NOC, LCOM,

SLOC

Binary

[208] CBO, RFC, Fan-in PPD, ATPD, CBO, DIT,

LCOM, NOC, RFC,

WMPC, and DOC

Numerical

[34] CBO, RFC, FCAEC,

FCMEC, FMMEC,

IFCAIC, IFCMIC,

IFMMIC, OCAEC

LCOM1, LCOM2, NOC,

DIT, WMC, ACAIC,

DCAEC, ACMIC, DCMIC,

DCMEC, AMMIC

Binary

[57] CBO, RFC DIT, LCOM, NOC, WMC,

MC, AHF, AIF, MHF,

MIF, CIS, DAM, DCC,

MFA, NOM

Numerical

[56] CBO, RFC WMC, DIT, NOC, SLOC,

LCOM

Binary and

Numerical

[33] CBO, Fan-in, RFC DIT, LCOM, WMC, NOC,

CC, SLOC, NMC

Binary and

Numerical

[55] CBO, RFC WMC, DIT, NOC, SLOC,

LCOM

Numerical

Literature Review 43

[32] CTA, CTM, CBO,

RFC

WMC, DIT, NOC, NOAM,

NOOM, NOA, NOO

Ordinal

(Severity)

[54] Fan-in, Fan-out LOC, No. of parameters,

CC, NOM, SubClasses

DIT, ClassCoupling, CCC

Binary and

Numerical

[23] CBO, RFC, DAC,

MPC, ICP, NIHICP,

FCAEC, FCMEC,

FMMEC, IFCAIC,

IFCMIC, IFMMIC,

OCAEC, OCAIC,

OCMIC, OCMEC,

OMMEC, OMMIC

IHICP, ACAIC, DCAEC,

ACMIC, DCMEC,

AMMIC, DMMEC,

LCOM1, LCOM2, LCOM3,

TCC, LCC, ICH, NOC,

DIT, CLD, NOP, NOD,

NOA, NMO, NMI, NMA,

SIX, AID, NA, NM, WMC,

PM, NPM, NPARA, LOC

Binary

[52] CBO, RFC WMC, DIT, NOC, LCOM,

EC, CR, LOC

Binary and

Numerical

[53] CBO, RFC WMC, DIT, NOC, LOC Binary

[31] CBO, RFC WMC Binary and

Numerical

[50] CBO, RFC, Ca, Ce CBM, WMC, DIT, NOC,

LCOM, LCOM3, NPM,

DAM, MOA, MFA, CAM,

IC, AMC, CC, LOC

Binary

[30] CBO, RFC WMC, DIT, NOC, LCOM,

SLOC

Binary

[51] CBO, RFC WMC, DIT, NOC Binary

[48] Ca, Ce, CBO, RFC NC, I, D, AHF, MHF, AIF,

MIF, CF, PF, WMC,

LCOM, DIT, NOC

Numerical

[29] CBO, RFC WMC, DIT, NOC, LCOM,

Token count, WMC(CC)

Numerical

Literature Review 44

[49] CBO, RFC, CA, CE, WMC, DIT, NOC, IC,

CBM, MFA, LCOM,

LCOM3, CAM, MOA,

NPM, DAM, AMC, LOC,

CC

Binary

[47] RFC, CBO, CA, CE CBM, WMC, DIT, LCOM,

NOC, DAM, NPM, MFA,

CAM, MOA, IC, AMC,

LCOM3, MAX CC, AVG

CC, LOC

Binary

[46] RFC, MPC, CBO NOS, UWCS, CC, NLOC,

EXT, LMC, TCC, PACK,

NOM, LOM2, INST,

MAXCC, FOUT, AVCC,

CLCM

Binary,

Multinomial

[28] Ca, Ce, CBO None Numerical

[209] CBO, RFC, Ce, Ca CBM, WMC, DIT, NOC,

LCOM, NPM, LOC,

LCOM3, DAM, MOA,

MFA, IC, CAM, AMC,

Max-CC, Avg-CC

Nominal

Table 3.2: Summary of the methodologies and datasets used in the studies

Study Dataset

quantity/-

name

Prog.

lng.

Availability Analysis

methodol-

ogy

Performance

Measure

[19] 73/Industrial

systems

- Private MLR Regression

coefficients

[206] 1/Com.

system

- Private Scatter plot Visual

analysis

Literature Review 45

[45] 8/Information

management

systems

C++ Private Univariate

and

multivariate

logistic

regression

Regression

coefficients,

p-value,

Accuracy

[44] 8/patient

collaborative

care system

C++ Private Spearman

correlation

Correlation

coefficients

[43] 1/OASIS COBOL Private Spearman

correlation

Correlation

coefficients

[117] 1/OASIS Java Public Spearman

correlation

Regression

coefficients

[42] 4/OASIS,

Ffortid,

Collaborative

Care System,

Electronic

File Transfer

Facility

COBOL,

C++,

C,

Java

Private Pearson

correlation

coefficients

Correlation

coefficients

[41] 8/Information

system

C++ Private Univariate

logistic

regression

Regression

coefficients

[192] 5/GNU,

LEDA,

SEG1, SEG2,

EFOOP2

C++ Private Spearman

correlation

Correlation

coefficients

[40] 1/telecom

system

C++ Private Logistic

Regression

regression

coefficients

andR2

[39] 8/Students’

projects

C++ Private Logistic

regression

Completeness,

Correctness,

Kappa, R2

Literature Review 46

[59] 3/Three

subsystems of

Human

Machine

Interface,

C++ Private Univariate

logistic

regression

Coefficients,

The

statistical

significance(p-

value)

[38] 1/LALO 1.3 C++ Private Univariate

Logistic

regression

regression

coefficients

and standard

error

[58] 1/Telecom.

framework

C++ Private Pearson

correlation

Regression

coefficients

[21] 2/Commercial

Application

2.5 and 2.6

Java Private Univariate

logistic

regression

Regression

coefficients,

R2

coefficients

[37] 1/Managing

system

Java Private Univariate

linear

regression

multiple

coefficients of

determina-

tion, R2

coefficients

[207] 1/E-

commerce

application

C++

and

Java

Private Correlation

between

metrics,

Cook’s

distance

Coefficient

[6] 7/Mozilla’s

Versions

C++ Partial Univariate

logistic

regression,

C4.5 , Neural

Network

R2

coefficients,

Precision,

Correctness,

Completeness

Literature Review 47

[147] 5/Telecom.

Apps

C++ Private Correlation

coefficient,

Poisson

regression,

Negative

binomial

regression

Correlations,

dispersion

coefficients,

and Alberg

diagrams.

[36] 1/Eclipse 2.0 Java Partial Univariate

Binary

Analysis

Odds ratio

[35] 1/KC1 C++ Public Univariate

Logistic

regression,

Bayes

network, RF,

Nearest

neighbor

Regression

coefficients,

Precision,

Correctness,

Completeness

[208] 1/KC1 C++ Public Stepwise

linear

regression

Standard

Error, Sum of

square error

[34] 12/Students’

Projects

Java Private Univariate

logistic

regression

Sensitivity,

Specificity

[57] 6/Rhino Java Private Spearman

correlation

between

variables,

Spearman

correlation,

ULR, MLR

Coefficient

Literature Review 48

[56] 1/KC1 C++ Public Spearman

correlation

analysis,

ordinary

least-squares

(OLS, BLR,

and Bayesian

Poisson

regression

(BPR)

Adjusted

coefficient of

determina-

tion,

Deviance

information

criterion,

[33] 1/KC1 C++ Public Univariate

logistic

regression,

Multivariate

Logistic

regression,

ULR, MLR

R2

coefficients

[55] 1/KC1 C++ Public Correlation,

ULR, MLR,

and

Neuro-fuzzy

Coefficient,

Constant, R2,

P-value

[32] 3/Eclipse 2.0,

2.1, and 3.0

Java Partial Univariate

Binary

logistic

Regression,

ULR

Regression

coefficients

[54] 1/Windows

Server 2003

C Private ESCROW

analysis,

Spearman

correlation,

PCA, LR

R2, Adjusted

R2, Pearson

correlation,

Precesion,

Recall

Literature Review 49

[23] 12/Students’

Projects

Java Private Univariate

logistic

regression

coefficients,

standard

error

[52] 1/Rhino

1.6R5

Java Partial Linear

Regression,

logistic

regression,

Regression

tree

—

[53] 2/Eclipse

JDT and

Mozilla

Java,

C++

Partial Univariate

and

Multivariate

logistic

regression

Coefficient,

Constant,

p-value, R2

[31] 5/- Java Private Multifunctional

estimation

Defect

proneness

index

[50] 16/versions

of 11 software

products

Java Public T-test

statistic

coefficient

[30] 1/KC1 C++ Public SVM Sensitivity,

Specificity,

Precision,

Complete-

ness, AuC

[51] 2/Eclipse 2.0

and 2.1

Java Partial Univariate

logistic

regression

p-value,

VARL values,

[48] 3/Eclipse 2.0,

2.1, and 3.0

Java Partial Spearman

correlation

coefficients

Coefficient

Literature Review 50

[29] 1/JHotDraw

7.5.1

Java Partial Correlation

coefficients

and ULR

Correlation

coefficients

and Squared

error

[49] 16 releases of

5 software

products

Java Public ULR,

correlation

coefficient,

and MLR

Coefficient,

p-value, and

Odd ratio

[47] 34 releases of

10 softwares

product-

s/Promise

repository

Java Public J48, Logistic

Regression,

Naive Bayes,

Decision

Table,

Support

Vector

Machine,

Bayesian

Network,

Analysis of

variance

Precision,

Recall, F

Measure

[46] 3/Eclipse 2.0,

2.1, and 3.0

Java Partial Spearman

correlation

coefficients

and

Binary/MLR

R2

coefficient,

AuC

[28] 7/Jedit,

Camel, Ant,

Arc, Velocity,

Xerces, Poi

Java Public Spearman

correlation

Regression

coefficients

[209] 31/Promise

repository

Java Public Chi-squared,

Gain ratio,

ULR, PCA

F-Measures,

Accuracy

Literature Review 51

3.2.4 Analysis of Coupling Metrics w.r.t Their Usage

The coupling metrics discussed in Section 3.1 are searched for their exclusive

usage and usefulness in SFP studies. Table 3.3 shows the mapping of coupling

metrics against the corresponding studies. “Not used exclusively” shows that the

respective metric has not been evaluated exclusively in SFP.

Table 3.3: Coupling metrics w.r.t. evaluating studies

Metric SFP Studies on respective metric

Fan-in [17, 18, 33, 37, 42–44, 54, 117, 206, 208]

Fan-out [17, 18, 42–44, 46, 54, 117, 206]

GIF [17, 18]

LIF [17, 18]

C∼ [188]

DCBO Not used exclusively

DC Not used exclusively

FM Not used exclusively

CBO [6, 23, 28–42, 44–53, 55–59, 147, 192, 207–209]

RFC [6, 23, 29–42, 45–53, 55–59, 147, 208, 209]

CtrlC Not used exclusively

DataC Not used exclusively

E Not used exclusively

MR Not used exclusively

SC Not used exclusively

OCM Not used exclusively

CCM [54]

OM Not used exclusively

DAC [23, 32, 36, 38, 39, 41]

MPC [23, 32, 36, 38, 39, 41, 46]

COF [48]

NIHICP [23, 41]

ICP [23, 38, 39, 41]

Literature Review 52

DM Not used exclusively

Ca [28, 47–50, 209]

Ce [28, 47–50, 209]

I [48, 54, 58, 117]

CDM [42–44, 117]

OSMC [42, 117]

Briand suite [21, 23, 34, 38–43, 58]

NAS [192]

ABC Not used exclusively

DCC [57]

CFS Not used exclusively

Nagappan suite [54, 57]

WTCoup Not used exclusively

AM Not used exclusively

The included studies depict that,

1. Coupling metrics in general, and CBO, RFC, Fan-in, and Fan-out are specif-

ically found useful in predicting software faults, irrespective of the dataset

size, type of dependent variable.

2. Fifteen coupling metrics discussed in Section 3.1.3, have not been addressed

by the SFP community.

3. Every time, coupling metrics are evaluated individually. Therefore, the com-

bined effect of multiple coupling metrics is hidden.

4. Coupling metrics are evaluated using products developed in C, C++, Java,

or COBOL.

5. Mostly, statistical techniques (i.e., Linear and Logistic regression, etc) are

used for modeling, except for few studies [6, 30] wherein Decision tree, Neural

network, SVM, Bayesian Learners are used.

Literature Review 53

6. A wide variety of datasets are used by the research community which includes

Public, Partial, and Private. Likewise, all type of labels is used including

Binary, Numerical and ordinal (severity and range of faults).

3.3 Studies on the Coupling Levels/Principles

Software modules’ coupling is indispensable. Absolute exclusion of coupling im-

plies the existence of only one module. Thus it would be difficult to understand,

develop, test, and deploy. Comprehensible level of coupling is always desirable,

however, when there exists complexity in coupling in terms of levels and volume of

data flow there comes incomprehensibility. Consequently, the programmer fail to

take into account all necessary associated flows. This lack of comprehension cause

him to commit/induce faults in a program module. Hence it may be used with

great care. This spurs to discover/disclose maximum possible levels associated to

coupling that segregate desirable coupling from that of undesirable coupling.

3.3.1 Inclusion Criteria

The research literature is quite rich on the discussion of coupling levels and prin-

ciples, however we include studies that having following properties.

1. Software coupling is presented as a framework

2. Different principles/levels of coupling are presented

3.3.2 Exclusion Criteria

The studies that discuss coupling without having any concern about desirable and

undesirable aspects of coupling are not considered.

Example of such study is [216], wherein three principles are stated; Stable De-

pendencies Principle, Acyclic Dependencies Principles, and Stable Abstraction

Literature Review 54

Principle. Likewise, in another article by Booch et al. [217], wherein different

types of relatedness between classes of software system are discussed.

3.3.3 Brief Description of the Studies Included

Yourdon and Constantine [118] are the first authors (to the best of our

knowledge), who enumerate five basic rules of coupling. According to them, few

couplings are desirable, i.e, narrow, direct, local, obvious, and flexible. In contrast

to that few couplings are undesirable, i.e, broad, indirect, remote, hidden, and

rigid.

Myers [24] defines six levels of coupling and scales them from lowest level of cou-

pling (best) to highest coupling (worst). These levels are Data, Stamp, Control,

External, Common, and Content. Moreover, the authors reported that Data cou-

pling is low susceptible to errors, while stamp and control are medium susceptible

to errors whereas the last three levels are highly susceptible to errors. The levels

are also mapped against usability and extensibility.

P. Jones [25] presents three broad categories of coupling; Normal coupling, global

coupling, and content coupling. Normal coupling includes Data, Tramp, Stamp,

Bundling, Control, and Hybrid coupling. The authors later map these levels to

the degree of susceptibility of ripple effects, modifiability, understandability, and

usability. Global and content coupling are declared as the most susceptible to

ripple effects, carry the least understandability, and have bad usability.

Offutt et al. [26] are more focused on extending the coupling levels by fur-

ther granulating the coupling levels proposed by Myers [24]. They argued that

previously, coupling levels have been defined subjectively and are not quantified.

They develop a general software metric system of coupling. They precisely defined

the levels of coupling, incorporated the notion of direction into the coupling lev-

els. Later, they implemented their metric system so that it measures the coupling

between pairs of procedures written in C programs.

Dhama [197] specify, implement, and verify quantitative model for software cou-

Literature Review 55

pling. The author divides coupling into four categories (data, control, global, and

environment coupling) followed by the quantification of each category in his pro-

posed metric. He further uses α, β, andγ as proportionality constants, associated

with control factors. These factors are given a value of 2 as a heuristic estimate.

Timothy and Laganiere [27] are more inclined towards coupling levels in the

OO paradigm. They elaborate the coupling levels using short examples from Java

language and introduce two new coupling levels, Inclusion/Import, and Type use

coupling.

Table 3.4 shows the list of coupling levels and principles proposed in the included

studies. The levels are sorted by increasing order of their desirability assigned by

the corresponding authors.

3.3.4 Shortlisted Coupling Levels

The accumulated list of coupling levels by all the authors discussed earlier cannot

be taken as a whole. The reason is that few coupling levels are associated with

few avoidable properties. These are briefly discussed below;

1. Few coupling levels cannot be counted as coupling levels, like Inclusion/Ex-

clusion coupling and Independent coupling

2. Few coupling levels do not fall under the scope defined for this study, like,

External coupling, hybrid coupling, and Type use coupling. The reason is

that these coupling levels do not take into account the coupling between two

software modules.

3. Few coupling levels are derived from some other base coupling levels, like

Stamp data/control coupling, has been derived from Stamp coupling and

Control coupling.

4. Few coupling levels are common in name and definition. Like Content cou-

pling defined by P. Jone’s is same in definition as that of Content coupling

Literature Review 56

T
a
b
l
e
3
.4
:

C
ou

p
li

n
g

le
ve

ls
p

ro
p

os
ed

in
d

iff
er

en
t

st
u

d
ie

s

L
e
v
e
ls

P
ri

n
ci

p
le

s
M

y
e
rs

P
.

J
o
n
e
s

O
ff

u
tt

e
t
a
l.

D
h
a
m

a
T

im
o
th

y
Y

o
u
rd

o
n

a
n
d

C
o
n
st

a
n
ti

n
e

C
on

te
n
t

C
on

te
n
t

T
ra

m
p

E
n
v
ir

on
m

en
t

C
on

te
n
t

V
ol

u
m

e
In

d
ir

ec
t

R
em

ot
e

H
id

d
en

R
ig

id
C

om
m

on
C

om
m

on
G

lo
b
al

C
on

tr
ol

C
om

m
on

N
ar

ro
w

D
ir

ec
t

L
o
ca

l
O

b
v
io

u
s

F
le

x
ib

le
E

x
te

rn
al

D
at

ab
as

e
N

on
-l

o
ca

l
G

lo
b
al

C
on

tr
ol

C
on

tr
ol

H
y
b
ri

d
E

x
te

rn
al

D
at

a
S
ta

m
p

S
ta

m
p

C
on

tr
ol

fl
ag

S
ta

m
p

d
at

a/
co

n
tr

ol
D

at
a

D
at

a
D

es
cr

ip
ti

ve
fl
ag

S
ca

la
r

d
at

a/
co

n
tr

ol
R

ou
ti

n
e

ca
ll

S
ta

m
p

S
ta

m
p

co
n
tr

ol
T

y
p

e
u
se

B
u
n
d
li
n
g

S
ca

la
r

co
n
tr

ol
In

cl
u
si

on
/i

m
p

or
t

D
at

a
S
ta

m
p

d
at

a
E

x
te

rn
al

T
ra

m
p

S
ca

la
r

d
at

a
Z

er
o

sc
al

e
C

al
l

In
d
ep

en
d
en

t

Literature Review 57

proposed by Myers.

By considering a few or all of the above reasons, we do not take into account a

few coupling levels. The following subsection briefly describes the coupling levels

included in our study by the decreasing order of their complexity reported by

earlier studies.

1. Content coupling shows the access of components of one module to the com-

ponents in another module. In the programming languages, goto statement

is used for this purpose. Although modern programming languages prohibit

the use of content coupling. However, there are few hacks for employing

it[27].

2. Common coupling establishes between modules when both of the modules

assess(read, write) common global variables. Common coupling has another

name global coupling. Moreover, there is another coupling level proposed in

[118], i.e., remote coupling is also based upon common coupling. Liguo et al.

conduct detailed research on common coupling and its various dimensions

[218].

3. Control coupling or Control flag coupling is established between two software

modules when a module directs the control of another module by passing pa-

rameters. Scalar control coupling is also a type of control coupling, wherein

passed parameter is a primitive data type. Moreover, stamp control cou-

pling is also a type of control coupling, wherein passed parameter is a data

structure. Besides these two types, there exists another type name as Hybrid

coupling. which is also a part of control coupling.

4. Descriptive flag coupling is similar to that of control coupling, discussed

earlier. The only difference is that in the control flag coupling the return

value is of Bool type, whereas in descriptive flag coupling the return type

can be of any type other than Bool.

5. Stamp coupling establishes when one module sends/receives complete data

structure (object, interface, array, etc) to/from another module. According

Literature Review 58

to this definition, both Stamp coupling and stamp data coupling are the

same.

6. Data coupling establishes between two modules when one module sends/re-

ceives primitive data to/from another module. According to this definition

both Data coupling and scalar data coupling are the same. There are few

other types also, which are used in this context, i.e, Bundling, Tramp cou-

pling, etc.

7. Call coupling implies no coupling between software modules. In this type of

coupling neither any parameter is passed nor any data is returned. It is also

named as zero scale coupling and routine call coupling[25].

Out of the five properties of worst coupling defined by Yourdon and Constantine

[118], two properties, i.e, remote and indirect coupling are not considered in this

study. The reason is that remote coupling is similar to global coupling while

indirect coupling is in fact two levels of coupling, which does not fall under the

scope of our study. Keeping in view this, we consider only three principles of

coupling in our comparison and evaluation. These principles are broad, hidden,

and rigid coupling.

3.3.5 Analysis of Coupling Metrics w.r.t. Coupling Levels

In this section, we aim to assess the coupling metrics for the presence and dis-

crimination of coupling levels (discussed in the last section). Keeping in view the

important and disjoint coupling levels, there are a total of nine coupling levels.

In addition to that, we aim to assess the coupling metrics if they take into ac-

count the coupling principles or not. Table 3.5 shows the coverage of the coupling

metrics to the coupling levels shortlisted earlier. We classified such coverage into

three types, i.e., None, Partial, and Full shown by 7, , and X respectively see

Table 3.5).

1. If the value of metric remains the same by the presence and absence of

coupling level, then it is shown by 7.

Literature Review 59

2. If the value of metric remains the same by the presence and absence of cou-

pling level but does not segregate between different levels, then it is shown

by . The example of such mapping is observed in Fan-in metric. The

reason is that the value of Fan-in value reflects the presence of data cou-

pling, however, it does not change by changing the coupling level from data

coupling to control coupling. Such segregation is very vital. The reason is

that complexity associated with each coupling level significantly varies, this

is expected to be addressed by the coupling metrics also.

3. If the value of coupling metric changes by the presence/absence of coupling

level and along with the representation of varying coupling level, then it is

shown by X. This state is the best of all the three states, just discussed.

Principles’ coverage includes three principles of Yourdon and Constantine [118];

volume, hiddenness, and rigidness. Xand 7show the presence and absence of the

corresponding factor in the respective metric.

Shaded rows show the metrics which are not yet used in SFP, exclusively. Table

3.5 depicts that,

1. All the coupling metrics fail to incorporate three important aspects of cou-

pling, i.e., Content coupling, hiddenness, and rigidness.

2. There are a total of 27 coupling metrics that partially incorporate data-

related coupling like (Control, Stamp, Data, and Stamp).

3. Very few metrics successfully incorporate Control, Descriptive, Stamp, and

Data couplings.

4. None of the coupling metrics is able to incorporate all the four levels of

coupling.

5. Data flow volume is an important coupling parameter that is not addressed

by about thirty coupling metrics.

Literature Review 60

Table 3.5: Coverage of coupling levels and principles by Coupling metrics

Metric
Levels Principles

C
o
n
te

n
t

C
o
m

m
o
n

C
o
n
tr

o
l

D
e
sc

ri
p

ti
v
e

S
ta

m
p

D
a
ta

C
a
ll

V
o
lu

m
e

H
id

d
e
n

R
ig

id

Fan-in 7 7 7 7 7

Fan-out 7 7 7 7 7

GIF 7 7 7 7 7 7 X 7 7

LIF 7 7 7 7 7 7 X 7 7

C∼ 7 7 7 7 7

DCBO 7 7 7 7

DC 7 7 7 7 7

FM 7 X X X X X 7 7 7 7

CBO 7 7 7 7 7 7

RFC 7 7 7 7 7

CtrlC 7 7 7 7 7

DataC 7 X X 7 7

E 7 7 7 7

MR 7 7 7 7

SC 7 X 7 7

OCM 7 7 7 7 7

CCM 7 7 7 7 7

OM 7 X X X X X 7 7 7 7

DAC 7 7 7 7 7 7 7 7 7 7

MPC 7 7 7 7

COF 7 7 7 7 7

NIHICP 7 7 X 7 7

ICP 7 7 X 7 7

DM 7 X X 7 X X 7 7 7 7

Ca 7 7 7 7 7

Ce 7 7 7 7 7

I 7 7 7 7 7

CDM 7 7 7 7 7 7 7 7 7 7

OSMC 7 X X X X X 7 7 7 7

Briand suite 7 7 7 7 7 7

NAS 7 7 7 7

ABC 7 7 7 7 7

DCC 7 7 7 7 7

CFS 7 7 7 7 7

Nagappan suite 7 7 7 7

WTCoup 7 7 7 7 7

AM 7 7 7 7

Literature Review 61

6. The simplest of all the coupling is call coupling, which is not considered by

nine of the coupling metrics.

7. The worst of all the coupling metrics in maximum ignoring the important

aspects of coupling are CDM and DAC.

8. The best of all the coupling metrics in maximum incorporating the important

aspects of coupling are FM, OM, and OSMC.

It can safely be stated that the complexity associated with the coupling cannot be

enveloped by any of the coupling metrics as a whole. Therefore, there is a need to

propose either a new measure of coupling or augment any of the existing measures

of coupling that incorporates the yet missing aspects of coupling. We believe that

if we are successfully able to incorporate these aspects in coupling metrics and

used in SFP, this would potentially assist the software testing community.

3.4 Conclusion and Research Gaps

This chapter depicts following conclusions

1. Coupling metrics in general, and CBO and RFC are specifically found useful

in predicting software faults, irrespective of the dataset size, type of depen-

dent variable.

2. Most of the coupling metrics discussed in Section 3.1.3, have not been ad-

dressed by the SFP community (see Table 3.5). This gap has been suggested

in the future work.

3. Unused coupling metrics do not carry any exclusive coverage of coupling

levels and principles.

4. Every time coupling metrics are evaluated individually. Hence, the combined

impact of multiple coupling metrics in SFP needs to be evaluated.

5. Coupling metrics are evaluated using products developed in C, C++, Java,

or COBOL. However, their performance in other extensively used program-

ming languages, like Python, C#, and Visual basic are yet to be evaluated.

Literature Review 62

Likewise, few famous scripting languages like PHP, JavaScript, etc. may

also be employed. This gap has been suggested in the future work.

6. Most of the metrics do not justify the complexity associated with the cou-

pling levels. This thesis document focuses on this very aspect.

7. Content coupling, hiddenness, and rigidness are ignored by all the metrics.

This gap has been suggested in the future work.

Chapter 4

Vovel Metrics: New Coupling

Metrics

The coupling level is an important aspect that shows the degree of complexity

between the coupled modules. The importance of this aspect is realized by many

authors [24–27], while some others accommodate it in their proposed metrics also

(see Table 3.5). Likewise, the data flow volume is another important dimension

to reflect the nature of complexity between the coupled modules, which is also

appreciated by many authors [118, 131, 133] and few coupling metrics accommo-

date these aspects also (see Table 3.5). The DataC metric covers one coupling

level along with data flow volume[131]. However, both of these two aspects (i.e.,

coupling levels and volumd of information flow) have not been found in any of the

metrics, therefore the impact of these two important factors on SFP is yet to be

addressed. This lack can be addressed by first computing these two aspects using

some metric (Section 4.1 and 4.2), and then evaluating the impact of the metric

in SFP. Rest of this thesis document is dedicated to address these aspects.

4.1 Possible Solutions

This section analyses the possibilities to meet the objective by using existing

coupling metrics. It is clear from Table 3.5 that individual metrics cannot achieve

our objective. Yet, can a combination of multiple existing metrics address this

issue? This section is dedicated to find the answer to this question.

We make six classes of the metrics based on the evaluation shown in Table 3.5.

63

Vovel Metrics: New Coupling Metrics 64

These six classes and their corresponding metrics are shown in Table 4.1. Table

Table 4.1: Six classes of coupling metrics

Classes Levels’
coverage

Discrimination
of Levels

Volume Metrics Included

1 None No No DAC, CDM
2 Partial No No LIF, WTCoup, DC,

Briand suite, ABC,
Ca, DCC, Fan-in,
CBO, RFC, OCM,

CCMCOF, Fan-out,
GIF, Ce, I, CFM

3 Partial No Yes NIHICP, ICP
4 Partial Yes No FM, OM, DM, OSMC
5 Full No No C∼, DCBO, CtrlC,

MR, MPC, NAS,
Nagappan suite, AM

6 Full No Yes DataC, E, SC

4.1 is quite helpful to search for an answer to the posed question.

1. Combining multiple metrics belonging to only one class cannot solve the

problem. The reason is that one class alone does not address all the re-

quired coupling aspects, even if all the metrics of that class are combined.

For instance, Fan-in and Fan-out metrics belong to the same class. If we

combine these two metrics, neither discrimination of levels nor volume would

be covered.

2. Combining the metrics of Class 1 with any other class’ metrics cannot solve

the problem either. The reason is that in such a case, there would be a

duplication of coupling aspects. For instance, by combining Fan-in for Class

1, and ICP of Class 3, discrimination of level cannot be covered. The same

goes for combining metrics belonging to any two classes.

3. Combining metrics of Class 2, 3, or 4 with any metric of Class 5 or 6 will

duplicate the coverage of some levels. And so, combining metrics of Class

5 with metrics of Class 6. Duplicate coverage of any factor will increase

the value of the metric without the due importance of that very factor.

For instance, Fan-in and SC belong to Class 2 and 5 respectively. Both of

these metrics cover data coupling. If we combine them there would be the

computing of data coupling twice, whereas such dual computation is not

realistic.

Vovel Metrics: New Coupling Metrics 65

4. Combining metrics of Class 2 with metrics of Class 3 is not useful because

both classes’ metrics do not address discrimination of coupling levels. For

instance, by combining DCM and Fan-in discrimination of coupling level

would be left unaddressed.

5. Combining metrics of Class 2 with metrics of Class 4 is also not useful, since

both do not address data flow volume. Like, combining Fan-in and DM

would leave the data flow volume unaddressed.

Keeping in view the above discussion only one possibility is left to be analyzed,

i.e., combining Class 3 and 4 metrics. There are two metrics in Class 3, i.e.,

NIHICP and ICP. Both of these metrics are the same in coverage (see Table 3.5),

therefore, we select only one metric, which is NIHICP. In Class 4, FM, OM, and

OSMC are the same in converge therefore, we select only one of them, which is FM.

Eventually, only two pairs suffice to be analyzed (NIHICP, DM) and (NIHICP,

FM). In the first pair, Control, Stamp, and Data coupling levels are addressed

twice, whereas, in the second pair, Control, Descriptive, Stamp, and data levels

are addressed twice. Therefore, combining metrics of Class 3 and 4 cannot help

to meet our objective.

The only possible solution left, is to derive a new metric that covers both of the

aspects of coupling. Later, the metric may be used in SFP to evaluate the two

aspects in SFP. The rest of this chapter is devoted to the derivation of such a

metric.

4.2 Computation/Derivation of Vovel Metrics

Keeping in view the importance of data flow volume and coupling level, we pro-

pose two novel coupling metrics named; Vovel-in and Vovel-out. They both are

collectively named as Vovel metrics. The name is composed out of the first two

letters of word volume and the last three letters of level. This section elaborates

the process of deriving/computing the proposed Vovel metrics. Figure 4.1 illus-

trates the components and composition of the proposed metrics.

The figure shows two steps for computing Vovel metrics, i.e., Computing data

flow volume and coupling levels, which are elaborated in Section 4.2.1, and 4.2.2,

respectively. Likewise, the terms shown in the figure, like V ol(M), v(M), etc., are

also elaborated in the corresponding subsection.

Vovel Metrics: New Coupling Metrics 66

Computing
Volume

Vovel-in
/Vovel-out

Coupling levels
𝒍(𝑴𝒊,𝑴𝒋)

Volume of Method
𝑽𝒐𝒍(𝑴)

Volume of parameters
𝒗(𝑴𝒑)

Size of Each Element
𝑺𝒊𝒛𝒆𝑶𝒇 (𝑴𝑿)

Volume of return types
𝒗(𝑴𝒓)

Computing
Levels

Figure 4.1: Process of deriving Vovel metrics

4.2.1 Computing Data Flow Volume

Volume refers to the amount of data flow between modules, which is usually done

through parameters and/or return values in the case of methods. The metrics like,

GIF,LIF, DataC, SC, ICP, and NIHICP consider volume. Likewise, the depen-

dency relationship covered by CSSM metric [185] considers the parameters and

return types. However, these metrics consider only the number of parameters,

whereas, the volume does not solely dependent on the number of parameters but

the nature of parameters also. Like, primitive data types are relatively narrow

in carrying information as compared to arrays. Therefore the volume address by

these coupling metrics could not satisfy the due coverage of data flow volume.

We compute the volume of method M , i.e., V ol(M) using equation 4.1.

V ol(M) =


1, For content coupling

v(Mc), For common coupling

v(Mp) + v(Mr), otherwise

(4.1)

Where,

Mp is a list of parameters in method M , and v(Mp) shows the volume of method

M w.r.t. its parameters.

Mr is a list of return types in method M , and v(Mr) shows the volume of method

M w.r.t. its return types.

Mc is a list of common variable types that a method M reads or writes, and v(Mc)

shows the volume of the shared variables.

The v(Mr) covers the languages that allow more than one value to be returned.

One such language is Python. All v(Mp), v(Mr), and v(Mc) are computed by

equation 4.2.

Vovel Metrics: New Coupling Metrics 67

v(MX) =

{ ∑n
j=1WeightOf(MXj

), n > 0

1, otherwise
(4.2)

whereas, in MX , X can be p, r, and c to compute v(Mp), v(Mr), and v(Mc),

respectively. WeightOf(MXj
) is the weight assigned to an element j from the list

of parameter/return/common variable type X.

Whereas, in MX , X can be p, r, and c to compute v(Mp), v(Mr), and v(Mc),

respectively. WeightOf(MXj
) is the weight assigned to an element j from the list

of parameter/return/common variable type X.

The weight would reflect the complexity associated with the datatype. Gener-

ally, there are two classes of datatype, i.e., primitive and composite. The prim-

itive datatype includes, byte, short, int, long, float, double, boolean, and char.

While composite datatype includes String, Arrays and Classes/Objects. More-

over, String is a collection of char. Whereas, Array can be collection of primitive

datatypes and/or objects. Finally, Object may include all the types along with

member functions. This concludes that if,

WeightOf(Primitive Type) = w (4.3)

and WeightOf(String Type) = x (4.4)

and WeightOf(Array Type) = y (4.5)

and WeightOf(Object Type) = z (4.6)

Then,

w < x < y < z (4.7)

Assigning the complexity associated with the datatypes can be an important con-

tribution to work on. However, for the sake of simplicity and satisfying the con-

dition mentioned in Equation 4.7, following conditional function has been used

wherein weights are assigned as a heuristic.

WeightOf(P) =


1, P = Primitive Type

2, P = String Type

3, P = Array Type

4, P = Object Type

(4.8)

Vovel Metrics: New Coupling Metrics 68

4.2.2 Inducing Coupling Levels

Couplings can vary in complexity w.r.t. the levels [24–27]. The proposed metrics

include ten such levels and assign weights using following function as per their

complexity reported in the studies[24–27].

Whereas, l(Mi,Mj) represents the coupling level l between any two methods shown

by Mi and Mj. No coupling is assigned zero weight, which shows that there is

not coupling between the modules, in fact only the control is being transferred

from one module to another module. This level helps us to simplify the metrics’

equation. The function l(Mi,Mj) covers all the coupling levels discussed in Sec-

tion 3.3.4 with the added segregation of stamp and scalar in common, control, and

descriptive coupling. The reason is to accommodate the data flow volume at the

coupling levels also since stamp coupling is broader than scalar coupling.

4.2.3 Relationship Between Vovel-in and Vovel-out

Keeping in view the mathematical forms shown in Equation 4.12 and 4.13, there

are following similarities between them:

1. Both the metrics considers the volume of method

2. Both the metrics consider the level of coupling

3. Both the metrics compute levels of coupling with all the methods in a pro-

gram irrespective of the presence or absence coupling.

Likewise, there exist following difference between them

1. Vovel-in computes inflow to a module, whereas Vovel-out computes the out-

flow from the a module.

2. Vovel-in computes the volume of calling module, whereas Vovel-out com-

putes the volume of called module

3. In Vovel-in, volume of module is multiplied to the sum of all levels of cou-

pling between calling module and remaining modules. Whereas in Vovel-out,

Vovel Metrics: New Coupling Metrics 69

volume of called module is multiplied to only the level of coupling exists be-

tween calling and called module.

l(Mi,Mj) =



0, No coupling fromMi toMj

1, Call coupling fromMi toMj

2, Data coupling fromMi toMj

3, Stamp coupling fromMi toMj

4, Scalar descriptive coupling fromMi toMj

5, Stamp descriptive coupling fromMi toMj

6, Scalar control fromMi toMj

7, Stamp control fromMi toMj

8, Scalar common betweenMi andMj

9, Stamp common betweenMi andMj

10, Content coupling fromMi andMj

(4.9)

Since, the inflow and outflow are not necessary to have linear relationship, Vovel

metrics would not carry any linear relationship. Likewise, the volume and usage of

modules are independent of eachother, this further adds to non-linearity between

the two metrics.

4.2.4 Combining Coupling Levels and Data Flow Volume

Since, the coupling levels are directional (except common coupling), we derive two

metrics Vovel-in and Vovel-out to accommodate two distinct direction. These two

metrics are computed by combining the function l(Mi,Mj) and equation 4.1. The

Vovel-in and Vovel-out of a method M can be computed by equation 4.10 and

4.11, respectively.

V ovel-in(M) =
m∑
j=1

l(Mj,M)× V ol(M) = V ol(M)×
m∑
j=1

l(Mj,M) (4.10)

V ovel-out(M) =
m∑
j=1

l(M,Mj)× V ol(Mj) (4.11)

Where, m is the number of all the methods in the software product excluding

M . The equations compute coupling of a method with other methods. However,

Vovel Metrics: New Coupling Metrics 70

Table 4.2: Coverage of coupling levels and principles by Vovel metrics

Metric Levels Principles

C
o
n
te

n
t

C
o
m

m
o
n

C
o
n
tr

o
l

D
e
sc

ri
p
ti

v
e

S
ta

m
p

D
a
ta

C
a
ll

V
o
lu

m
e

H
id

d
e
n

R
ig

id

Vovel-in X 7 7

Vovel-out X 7 7

the equations can slightly be modified to equation 4.12 and 4.13 to compute the

coupling of a class with other classes.

V ovel-in(C) =
n∑

i=1

m∑
j=1

l(Mj,Mi)× V ol(Mi) (4.12)

V ovel-out(C) =
n∑

i=1

m∑
j=1

l(Mi,Mj)× V ol(Mj) (4.13)

Where, n is a number of methods in class C and m is the number of all the

methods belonging to other classes. In the equations 4.10, 4.11, 4.12, and 4.13

volume of a method being called is computed.

The product in the Vovel metrics has an important implication. In Vovel-in,

whenever the module is called same volume of information would be flowed every

time . This requires the volume of information of called module to be multiplied

by “the way it is being called” (i.e., level of coupling). Likewise, in Vovel-out, since

there would be multiple modules being called. Therefore, volume of information of

the corresponding module would be flowed every time. This requires the volume

of information associated with that very module should be multiplied by “the way

it is being called” (i.e., level of coupling).

4.3 Significance of Vovel Metrics

The proposed metrics cover all the important aspects which are used to evaluate

other metrics (see Table 4.2). In addition to that, the proposed metrics have some

unique significance also,

1. The metrics accommodate both structural and OO paradigm.

Vovel Metrics: New Coupling Metrics 71

2. Some programming languages do not support multiple values to be returned,

while some others do. However, the metric supports both types of languages.

3. Table 3.4 shows differences in the number of coupling levels and the place-

ment of coupling levels. These differences can be accommodated by just

modifying the function l(Mi,Mj). Hence, the proposed metrics are adaptive

enough to accommodate the difference in numbers of coupling levels and

diversity of coupling levels’ placement.

4.4 Examples

In this section we demonstrate the computation of Vovel metrics which are derived

in Section 4.2. The Vovel metrics work for both structural and OO paradigm. First

part of the computation comprises the computation of volume which is paradigm

independent is demonstrated in Section 4.4.1. Second part of the computation

comprises the coupling between methods which is paradigm dependent. There-

fore we demonstrate the metrics computation for Structural and OO paradigm

saperately in Sections 4.4.2 and 4.4.3 respectively.

Table 4.3: Hypothetical Java based methods and their volume

Coupled component v(Mr) v(Mp) v(Mc) V ol(M)

void A() 0 0 - 0

void B(int) 0 1 - 1

void C(boolean, short) 0 1+1 - 2

void D(float, char, bool) 0 1+1+1 - 3

int E() 1 0 - 1

char F(boolean) 1 1 - 2

boolean G(double, int[]) 1 1+3 - 5

int H(int, String, object) 1 1+2+4 - 8

int C - - 1 1

void X() 0 - 0

4.4.1 Computing Volume of Methods

Volume refers to the amount of data flow between modules, which is usually done

through parameters and/or return values in case of methods. We use equations 4.1

Vovel Metrics: New Coupling Metrics 72

and 4.2 for the computation of volume. The equation 4.2 considers the memory

allocated to the data type, which is dependent on the programming language. We

use Java for the following examples.

In Table 4.3 we assign 16 bit size to the object since it is the minimum object

size for modern 64-bit JDK object. However, in reality, we consider the memory

allocated to an object, which is implementation-dependent, so it may be equal to

or greater than 16. Finally boxed types, arrays, Strings and other containers like

multidimensional arrays, memory allocated is implementation-dependent. In Java

one way to get an estimate of these container sizes is to implement Instrumentation

interface.

4.4.2 Computing Vovel Metrics in Structure Paradigm

In the following examples, methods are denoted by a circle with the name inside

it. The arrow is directed from the caller to called method. The label on the arrow

shows the type of coupling between the methods on either sides of an arrow.

4.4.2.1 Example 1

A B

V ovel-in(A) = V ol(A)× l(B,A)

= 0× 0

= 0

V ovel-in(B) = V ol(B)× l(A,B)

= 1× 0

= 0

V ovel-out(A) = V ol(B)× l(A,B)

= 1× 0

= 0

V ovel-out(B) = V ol(A)× l(B,A)

= 0× 0

= 0

Vovel Metrics: New Coupling Metrics 73

4.4.2.2 Example 2

C D

V ovel-in(C) = V ol(C)× l(D,C)

= 2× 0

= 0

V ovel-in(D) = V ol(D)× l(C,D)

= 3× 0

= 0

V ovel-out(C) = V ol(D)× l(C,D)

= 3× 0

= 0

V ovel-out(D) = V ol(C)× l(D,C)

= 2× 0

= 0

4.4.2.3 Example 3

A X
Call

V ovel-in(A) = V ol(X)× l(X,A)

= 0× 0

= 0

V ovel-in(X) = V ol(A)× l(A,X)

= 0× 1

= 0

Vovel Metrics: New Coupling Metrics 74

V ovel-out(A) = V ol(A)× l(A,X)

= 0× 0

= 0

V ovel-out(X) = V ol(X)× l(X,A)

= 0× 0

= 0

4.4.2.4 Example 4

C B
Data

V ovel-in(B) = V ol(B)× l(C,B)

= 1× 2

= 2

V ovel-in(C) = V ol(C)× l(B,C)

= 2× 0

= 0

V ovel-out(B) = V ol(C)× l(B,C)

= 2× 0

= 0

V ovel-out(C) = V ol(B)× l(C,B)

= 1× 2

= 2

4.4.2.5 Example 5

C B
Content

Vovel Metrics: New Coupling Metrics 75

V ovel-in(B) = V ol(B)× l(C,B)

= 1× 1 = 1

V ovel-in(C) = V ol(C)× l(B,C)

= 2× 0 = 0

V ovel-out(B) = V ol(C)× l(B,C)

= 2× 0 = 0

V ovel-out(C) = V ol(B)× l(C,B)

= 1× 10 = 10

4.4.2.6 Example 6

A D

Scalar common(C)

Scalar common(C)

V ovel-in(A) = V ol(A)× l(D,A)

= 0× 8

= 0

V ovel-in(D) = V ol(D)× l(A,D)

= 3× 8

= 24

V ovel-out(A) = V ol(D)× l(A,D)

= 3× 8

= 24

V ovel-out(D) = V ol(A)× l(D,A)

= 0× 8

= 0

Vovel Metrics: New Coupling Metrics 76

4.4.2.7 Example 7

D GC
Scalar Descriptive

Data

V ovel-in(G) = V ol(G)× l(C,G) + V ol(G)× l(D,G)

= 5× 0 + 5× 4

= 20

V ovel-in(C) = V ol(C)× l(G,C) + V ol(C)× l(D,C)

= 2× 0 + 2× 2

= 4

V ovel-in(D) = V ol(D)× l(G,D) + V ol(D)× l(C,D)

= 3× 0 + 3× 0

= 0

V ovel-out(G) = V ol(C)× l(G,C) + V ol(D)× l(G,D)

= 2× 0 + 3× 0

= 0

V ovel-out(C) = V ol(G)× l(C,G) + V ol(D)× l(C,D)

= 5× 0 + 3× 0

= 0

V ovel-out(D) = V ol(G)× l(D,G) + V ol(C)× l(D,C)

= 5× 4 + 2× 2

= 24

4.4.2.8 Example 8

F HE
Scalar control

Vovel Metrics: New Coupling Metrics 77

V ovel-in(E) = V ol(E)× l(F,E) + V ol(E)× l(H,E)

= 1× 0 + 1× 0

= 0

V ovel-in(F) = V ol(F)× l(E,F) + V ol(F)× l(H,F)

= 2× 0 + 2× 0

= 0

V ovel-in(H) = V ol(H)× l(E,H) + V ol(H)× l(F,H)

= 8× 0 + 8× 6

= 48

V ovel-out(E) = V ol(F)× l(E,F) + V ol(H)× l(E,H)

= 2× 0 + 8× 0

= 0

V ovel-out(F) = V ol(E)× l(F,E) + V ol(H)× l(F,H)

= 1× 0 + 8× 6

= 48

V ovel-out(H) = V ol(E)× l(H,E) + V ol(F)× l(H,F)

= 1× 0 + 2× 0

= 0

4.4.3 Computing Vovel Metrics at Class Levels

B

E

C

A F

G

HData

Scalar Common

Class X Class Y

Figure 4.2: Example for computing Vovel metrics at class levels

Vovel Metrics: New Coupling Metrics 78

4.4.3.1 Computing Vovel-in metric for Class X

V ovel-in(A) = V ol(A)× l(F,A) + V ol(A)× l(G,A) + V ol(A)× l(H,A)

= 0× 0 + 0× 0 + 0× 0

= 0

V ovel-in(C) = V ol(C)× l(F,C) + V ol(C)× l(G,C) + V ol(C)× l(H,C)

= 2× 0 + 2× 0 + 2× 0

= 0

V ovel-in(B) = V ol(B)× l(F,B) + V ol(B)× l(G,B) + V ol(B)× l(H,B)

= 1× 0 + 1× 0 + 1× 0

= 0

V ovel-in(E) = V ol(E)× l(F,E) + V ol(E)× l(G,E) + V ol(E)× l(H,E)

= 1× 0 + 1× 0 + 1× 0

= 0

V ovel-in(X) = V ovel-in(A) + V ovel-in(C) + V ovel-in(B) + V ovel-in(E)

= 0 + 0 + 0 + 0 = 0

4.4.3.2 Computing Vovel-out Metric for Class X

V ovel-out(A) = V ol(F)× l(A,F) + V ol(G)× l(A,G) + V ol(H)× l(A,H)

= 2× 0 + 5× 0 + 8× 0

= 0

V ovel-out(C) = V ol(F)× l(C,F) + V ol(G)× l(C,G) + V ol(H)× l(C,H)

= 2× 0 + 5× 0 + 8× 0

= 0

V ovel-out(B) = V ol(F)× l(B,F) + V ol(G)× l(B,G) + V ol(H)× l(B,H)

= 2× 0 + 5× 4 + 8× 2

= 36

V ovel-out(E) = V ol(F)× l(E,F) + V ol(G)× l(E,G) + V ol(H)× l(E,H)

= 2× 0 + 5× 0 + 8× 0

= 0

Vovel Metrics: New Coupling Metrics 79

V ovel-out(X) = V ovel-out(A) + V ovel-out(C) + V ovel-out(B) + V ovel-out(E)

= 0 + 0 + 36 + 0

= 36

4.4.3.3 Computing Vovel-in metric for Class Y

V ovel-in(F) = V ol(F)× l(A,F) + V ol(F)× l(B,F)

+ V ol(F)× l(C,F) + V ol(F)× l(E,F)

= 2× 0 + 2× 0 + 2× 0 + 2× 0

= 0

V ovel-in(G) = V ol(G)× l(A,G) + V ol(G)× l(B,G)

+ V ol(G)× l(C,G) + V ol(G)× l(E,G)

= 5× 0 + 5× 4 + 5× 0 + 5× 0

= 20

V ovel-in(H) = V ol(H)× l(A,H) + V ol(H)× l(B,H)

+ V ol(H)× l(C,H) + V ol(H)× l(E,H)

= 8× 0 + 8× 2 + 8× 0 + 8× 0

= 16

V ovel-in(Y) = V ovel-in(F) + V ovel-in(G) + V ovel-in(H)

= 0 + 20 + 16 = 36

4.4.3.4 Computing Vovel-out metric for Class Y

V ovel-out(F) = V ol(A)× l(F,A) + V ol(B)× l(F,B)

+ V ol(C)× l(F,C) + V ol(E)× l(F,E)

= 0× 0 + 1× 0 + 1× 0 + 1× 0

= 0

V ovel-out(G) = V ol(A)× l(G,A) + V ol(B)× l(G,B)

+ V ol(C)× l(G,C) + V ol(E)× l(G,E)

= 0× 0 + 1× 0 + 1× 0 + 1× 0

= 0

Vovel Metrics: New Coupling Metrics 80

V ovel-out(H) = V ol(A)× l(H,A) + V ol(B)× l(H,B)

+ V ol(C)× l(H,C) + V ol(E)× l(H,E)

= 0× 0 + 1× 0 + 1× 0 + 1× 0

= 0

V ovel-out(Y) = V ovel-out(F) + V ovel-out(G) + V ovel-out(H)

= 0 + 0 + 0

= 0

Chapter 5

Materials and Methods

The usefulness of the Vovel metrics in SFP using ML is subject to be validated

empirically. Such validation requires three components; dataset, modeling tech-

nique, and performance measures. This chapter is dedicated to the selection and

brief elaboration on these three components.

5.1 Datasets Development

The availability of datasets is a base requirement for any ML base activity. One

possible solution is to use public datasets. Section 2.1.2 elaborates the list of

public datasets. These datasets lack the information of Vovel metrics, nor have

any metric the Vovel metric may be derived from. Another solution is to build new

datasets by parsing the required metrics. In this section, we discuss three steps

to build the datasets. The first step is the selection of software projects which

is elaborated in subsection 5.1.1. The second step is the parsing of the required

metrics from the selected projects, which is discussed in subsection 5.1.2. Third,

the final step is to add fault information to the instances of the datasets, which

is elaborated in subsection 5.1.3. The outcome of this phase is the developed five

datasets. The statistical description of these datasets is shown in Table 5.1.

5.1.1 Case Study

The proposed metrics need to be validated empirically for viability. D’Ambros

et al. [142] develop fault datasets of five projects; Apache Lucene 2.41, Eclipse

1Lucene.apache.org

81

Materials and Methods 82

Equinox Framework 3.42, Eclipse JDT Core 3.43, Eclipse PDE UI 3.4.14, and

Mylyn 3.15 having 691, 439, 997, 1562, and 2196 classes respectively. These

datasets are shortly named as AEEEM. The rational of selecting these datasets

are as following:

1. The source code of the selected dataset is publicly available. Therefore, we

can parse the relevant information, more specifically the Vovel metrics out

of it.

2. The selected datasets have information of 61 metrics, including the five well-

known coupling metrics, i.e. Ce, CBO, RFC, Fan-in, and Fan-out.

3. The selected datasets are developed in Java and there are numerous of freely

available parsers that can parse information from Java code. Some of these

parsers are, AEA [219], AMT[220], Together[221], ckjm[222], Viewer[223],

JCAT[224], JCTIViz[225], JMCT[226], JMT, JCMT, Understand[227], etc.

4. Frequent usage of AEEEM in SFP [53, 209, 228].

A brief description of these projects is as follows.

Apache Lucene is a high-performance, full-featured text search engine library

written entirely in Java. It is a technology suitable for nearly any application that

requires full-text search, especially cross-platform. Apache Lucene is an open-

source project available for free download.

Eclipse equinox is an implementation of the OSGi core framework specifica-

tion, a set of bundles that implement various optional OSGi services and other

infrastructure for running OSGi-based systems. It is responsible for developing

and delivering the OSGi framework implementation used for all of Eclipse. The

Equinox OSGi core framework implementation is used as the reference implemen-

tation. The goal of the Equinox project is to be a first-class OSGi community and

foster the vision of Eclipse as a landscape of bundles.

Eclipse JDT Core is a Java infrastructure of the Java IDE. It includes an

2www.eclipse.org/equinox/
3www.eclipse.org/jdt/core/
4www.eclipse.org/pde/pde-ui/
5www.eclipse.org/mylyn/

Materials and Methods 83

incremental Java compiler. In particular, it allows to run and debug code that

still contains unresolved errors. It provides a Java-centric view of a project. It

also carries a Java document model providing API for manipulating a structured

Java source document.

Eclipse PDE UI provides a comprehensive set of tools to create, develop, test,

debug and deploy Eclipse plug-ins. PDE UI also provides multi-page editors that

centrally manage all manifest files of a plug-in or feature. It carries new project

creation wizards to create a new plug-in, fragment, feature, feature patch, and

update sites.

Mylyn is the task and application life cycle management framework for Eclipse.

It provides a revolutionary task-focused interface and a task management tool for

developers.

5.1.2 Parsing of Metrics Information

D’Ambros et al. [142] compute numerous software product metrics from the se-

lected five projects. Out of these metrics, we selected five coupling metrics, i.e,

Ce, CBO, Fan-in, Fan-out, and RFC for the following reasons:

1. These coupling metrics provide coverage to most of the coupling levels that

are discussed earlier (as shown in Table 3.5).

2. The information of these metrics in the selected case studies is publicly

available. That makes it easier for the researchers to redo the experiments

performed in Chapter 6.

3. These coupling metrics are reported effective in SFP by numerous studies

(see Section 3.2).

4. These coupling metrics are the most frequently used coupling metrics in SFP,

as shown in Table 3.3.

In addition to the conventional coupling metrics, we computed the Vovel metrics

(i.e. Vovel-in, Vovel-out)using Javaparser. Javaparser contains a set of libraries

Materials and Methods 84

implementing a Java 1.0 to analyze and parse the Java projects. Its libraries

provide an Abstract Syntax Tree (AST) of Java code. The AST structure then

allows working with Java code in an easy programmatic way. It is used in various

studies also [229–231]. The statistical description of the metrics in all five datasets

is shown in Table 5.1.

Table 5.1: Statistical description of metrics in the selected datasets

Datasets Params. Ce CBO RFC Fan-

in

Fan-

out

Vovel-

in

Vovel-

out

A
p
a
ch

e

L
u

ce
n
e

2
.4

count 491 491 491 491 491 491 491

mean 5.4 6.9 18.5 4.4 5.5 344.1 547.6

std 5.4 7.6 23.4 12.1 6.8 2003 2983

min 0 0 1 0 0 0 0

25% 1 2 6 1 2 0 21

50% 6 4 12 1 3 0 129

75% 7 9 23 4 7 87 423

max 81 64 308 174 67 57776 84187

E
cl

ip
se

e
q
u

in
o
x

fr
a
m

e
w

o
rk

3
.4

count 439 439 439 439 439 439 439

mean 10.3 6.6 19.8 3.4 8.4 544.2 945.7

std 9 8.3 27.9 5 10 3034 5034.5

min 0 0 1 0 0 0 0

25% 2.7 1.5 5 1 2 0 0

50% 10 5 11 2 5 0 131

75% 15 8 23 4 11 158 678

max 105 56 213 32 67 57776 84187

E
cl

ip
se

J
D

T
C

o
re

3
.4

count 997 997 997 997 997 997 997

mean 12 14.5 37 5.4 7.4 503.6 413.3

std 17 19.4 55.9 13.7 9.7 2259.1 566.9

min 0 0 0 0 0 0 0

25% 2 4 9 1 2 0 86.8

50% 7 9 20 2 4 25.8 296.3

75% 20 18 42 4 10 243 539

max 300 214 600 137 93 30181.3 9041.5

Materials and Methods 85

E
cl

ip
se

P
D

E
U

I
3
.4

.1

count 1562 1562 1562 1562 1562 1562 1562

mean 5.3 6.6 16.9 4.1 5.8 348.4 416.2

std 5.2 7.6 20.7 13.4 6.8 1846.5 1710.3

min 0 0 1 0 0 0 0

25% 4 2 5 1 1 0 21

50% 6 4 10 1 4 0 129

75% 7 9 21 3 8 84.5 400.5

max 110 80 308 355 67 57776 84187

M
y
ly

n

3
.1

count 2196 2196 2196 2196 2196 2196 2196

mean 9 6.1 16.2 4.4 5.2 315.5 431.6

std 6.4 7.2 21 13.8 6.5 1694.2 2091.8

min 0 0 1 0 0 0 0

25% 6 1 5 1 1 0 18

50% 7 4 10 1 3 0 119

75% 9 8 20 3 7 70 374

max 94 80 308 223 67 57776 84187

5.1.3 Fault Labeling

The dependent variables that we used in our study are fp and nfp. The labeling

is performed by D’Ambros et al. [142]. The authors used change log information,

source code version information, and defect information linked to classes for both

the prediction and validation. Finally, a defect tracking system (Bugzilla/Jira) is

used for labeling. We rely on their labels. However, we convert the numerical bug

label to binary variable by converting 0 bugs to nfp, and fp otherwise. Figure 5.1

shows the fault ratio in the selected projects.

5.2 ML Algorithm/Techniques

As discussed in Section 2.1.3, in SFP studies ML is the most dominating in terms

of usage and performance. It has been used in 66% of papers published after 2005

[16]. This section is dedicated to eloborate the selected ML techniques which are

later used for the evaluation of the proposed metric.

Materials and Methods 86

Figure 5.1: Ratio of faulty and clean instances in the selected datasets

5.2.1 Univariate Logistic Regression

Logistic regression is a standard statistical technique based on maximum likelihood

estimation [232]. The logistic regression model expresses the relationship between

Yi and Xi in term of the conditional probability P (Yi = 1|Xi), as:

log(
P (Yi = 1|Xi)

1− P (Y1 = 1|Xi)
) (5.1)

Where X is computed by the following equation:

π(X) =
eC0+C1X

1 + eC0+C1X
(5.2)

where X is a set of independent variables which is coupling metrics in our case

and p is the probability of occurrence of a fault in a class, which is a dependent

variable. We aim to use ULR, for each coupling metric, against the probability

of occurrence of a fault and determine if the measure is statistically related to a

fault proneness.

The reason for the selection of Logistic regression models (ULR and later MLR)

is because of the following reasons

1. LR models are relatively more resilient to overfitting than that of Multilayer

Materials and Methods 87

perceptron (MLP)

2. LR models are easier to develop and reproduce than that of MLP for having

less number of hyperparameter optimization

3. LR models are faster in prediction at the deployment environment than that

of the Decision tree, Random Forest, MLP

4. In LR there is no requirement of discretization as that of in Decision Tree,

Random Forest, etc.

5. Hall el al. reported LR models as the most effective in SFP [15].

6. The survey of SFP studies from 1995 to 2018 conducted by Son et al. LR is

amongst the top three used algorithms in SFP [138].

7. The metrics that we include in our experiment are positively oriented met-

rics. It means higher values are discouraged. That makes the data is linearly

separable and thus makes the LR model a better candidate for modeling.

8. The selected projects were too small to be investigated with more sophisti-

cated models.

9. According to Lessmann et al. simple algorithms (like LR) are not signifi-

cantly worse than the sophisticated data processing techniques [159]

10. Numerous studies [19, 33, 35, 38, 39, 39, 40, 47, 54, 209] in SFP using

coupling metrics also utilized LR.

5.2.2 Correlation Analysis

Correlation analysis shows the linear association between two metrics. In general,

an absolute correlation coefficient greater than 0.8 between two metrics indicates

the existence of a strong association. It is performed using either Pearson correla-

tion or Spearman correlation. In both techniques correlation coefficient (r) ranges

from −1 to 1, where −1 denotes a strong negative correlation and 1 denotes a

strong positive correlation.

Strong correlation indicates the presence of redundant/duplicate information in

two metrics. This duplicate/redundant information leads to model overfitting.

Materials and Methods 88

Hence, the resultant model will be less precise and less generalized.

In the case of a strong correlation between two metrics, one is generally ignored

during model development. The removal of highly correlated factors should be

done manually instead of using automatic techniques, such as stepwise variable

selection because they may remove metric of interest in favor of less important

metric.

In this thesis document, we used Spearman correlation because it can visualize

the monotonic relationship (whether linear or not) between variables. While Pear-

son can only capture the linear relationship. Spearman correlation coefficient (r)

between two variables is computed by the following formula:

r = 1− 6
∑
d2i

n(n2 − 1)
(5.3)

where d is the distance between two metrics at the instance level and n is the total

number of observations.

5.2.3 Multivariate Logistic Regression

Multivariate logistic regression (MLR) is an extension of ULR. It is used where

more than one metrics are to be analyzed for their effect on predicting fault-prone

components. In our experiment, we aim to construct MLR for the best fitting

model to describe the relationship between dependent and independent variables.

The outcome of the MLR is a fitted logistic regression equation. The MLR is

computed through the following equation.

log
π(X)

πX − 1
= C0 + C1X1 + C2X2 + ...+ CnXn (5.4)

where Ci is the coefficient associated with each independent variable.

5.3 Selection of Performance Measure

The performance of a model (ULR or MLR) is dependent on the performance

measure [233] or sometimes multiple performance measures [234]. Therefore, the

selection of performance measures while keeping in view their scope, relationship

and interpretation is of key importance. The task is even more important when

Materials and Methods 89

two performance measures consent on two classifiers’ performance on one test set,

which may conflict with some other test set.

In the classification, performance measures are derived out of a confusion matrix,

which is a useful tool for analyzing the goodness of a classifier. The confusion ma-

trix has four cases; true positive (TP), false negative (FN), true negative (TN),

and false-positive (FP). If a classifier declares any faulty instance as faulty, the

classification is TP. If a classifier declares any instance as fault-free when it is

faulty, the classification is FN. If the classifier declares any fault-free instance as

fault-free, the classification is TN. Finally, if a classifier labels any instance as

faulty when it is fault-free, the classification is FP. Total positive instances are

denoted by P and total negative instances are denoted by N.

The performance measures which are commonly used in SFP studies can be clas-

sified as either Positive and negative oriented measures. Positively oriented mea-

sures refer to the performance measure whose higher value is desirable. Among

the existing classifiers’ performance measures, Precision, TPR, TNR, Accuracy,

F-measure, G-mean1, G-mean2, and J coefficient are positively oriented measures.

In contrast to that, where lower values are desirable, are referred to as negatively

oriented measures. FPR, FNR, Type-I error, Type-II error, Error rate, and Bal-

ance are all negatively oriented measures.

5.3.1 Evaluation of Performance Measures

We evaluated 14 performance measures through three evaluation measures; Plausi-

bility, Consistency, and Discriminancy. The following subsections briefly describe

the whole process.

5.3.1.1 Plausibility

Plausibility refers to the absence of implausible values. Implausible values can be

of three types:

1. Occurrence of “divided by zero”. For instance, for (0, 0, 1, 0). F-measure

will produce “divided by zero” error. Thus, F-measure will be declared as

an implausible value carrier in this particular scenario.

2. Non-minimum value of positively oriented measures or non-maximum value

of negatively oriented measures for the worst classification. The worst clas-

Materials and Methods 90

sification occurs when none of the instances is correctly classified. One such

scenario is (0, 1, 0, 0), wherein Type-I error is 0.5, which is non-maximum

value. Thus, Type-I error will be declared as an implausible value carrier in

this scenario.

3. Non-maximum value of positively oriented measures or non-minimum value

of negatively oriented measures for the best classification. The best classifi-

cation is achieved when all the instances are correctly classified. One such

scenario is (1, 0, 1, 0).

The second and third types are in a mutually exclusive relationship, while they

both can have co-occurrence with the first type. This evaluation parameter is

named “plausibility” because implausible value carrier measure either provides

insufficient information or does not provide any information about the goodness

of a classifier.

5.3.1.2 Consistency and Discriminancy

Consistency and discriminancy between performance measures are proposed in

[235]. Later, S. Rosset [236] computes discriminancy between AuC and Error

rate, and Haung et al. [237] use discriminancy and consistency to evaluate AuC

and Accuracy.

Consistency computes the consensus of two performance measures on evaluating

different classifiers. It is a symmetric relationship. Two performance measures,

say f and g are consistent with each other when comparing two algorithms a and

b, if both f and g stipulate that a is better than b. However, if f stipulates that a

is better than b and g contradicts that, then f and g are said to be inconsistent.

Discriminancy is an ability of one performance measure over another to discrimi-

nate different classifiers. For instance, if f declares a as different (better or worse)

than b, while g declares both a and b as equivalent. Then f is more discriminating

that g.

5.3.1.3 Evaluation Result

In plausibility analysis, the base measures are identified as the worst of all the

measures except Precision. F-measure and G-mean1 are the best of all measures.

Materials and Methods 91

However, if there is a chance of occurrence of zero which needs to be considered

manually.

Further, we conclude that F-measure and G-mean1 are equally the most discrim-

inating performance measures, hence the most suitable to evaluate two different

classifiers. Besides this, both of these measures are found to be the least scorer in

plausibility analysis. So, it is good to use one of them when there is NO possibility

of occurrence of zero in any of the four cases. However, where there is a chance of

occurrence of zero in any of the cases, Precision would be relatively a good choice

for having more plausibility scores and more discriminating.

Keeping in view the above justification and our selected datasets, we choose F-

measure as a performance measure.

5.3.2 Selection of β Value in F-measure

F-measure is the harmonic mean between Precision and TPR, first introduced in

[164]. It tells how precise a classifier is (how many instances it classifies correctly),

as well as how robust it is. Mathematically it is written as.

F-measure =
(β2 + 1)× Precision× TPR
β2 × Precision+ TPR

(5.5)

Where, β can be 0.5, 1, and 2 for F0.5, F1, and F2 measures respectively. Varying

the value of β allows different weights to be assigned to false negative and false

positive. Detail derivation of F-measure and assigning the value of β are discussed

in [164].

In our work, a value of β = 1 has been used, that equalizes the influence of false

negatives and false positives. Since declaring fp module as nfp has a performance

overhead. Whereas, declaring a nfp module as fp incurs greater testing cost. We

need to have a balance between false negative and false positive. Therefore, F1

score is more meaningful than the F0.5 and F2 score in the current context.

5.4 Statistical Significance Assessment

Models are commonly evaluated using resampling methods like k-fold cross-validation.

This approach can be misleading as it is hard to know whether the difference be-

tween mean skill scores is real or the result of a statistical fluke. To address this

Materials and Methods 92

problem, statistical significance tests are designed to assess the generalization and

significance of the reported result.

The statistical significance test needs some hypotheses to assess and the signifi-

cance test. Both of these aspects are discussed below.

5.4.1 Formulation of Hypotheses

Keeping in view our objective we construct the following hypotheses.

H0 : The data flow volume and coupling levels do not improve the performance of

SFP when used in combination with existing coupling metrics.

H1: The data flow volume and coupling levels improve the performance of SFP

when used in combination with existing coupling metrics.

First, we will test the null hypothesis H0 if it is rejected, then the alternative

hypothesis H1 will be tested. Otherwise, the null hypothesis will be accepted and

the alternative hypothesis will be rejected.

Since, the data flow volume and coupling levels are computed in Vovel metrics, we

further refine our hyptheses. We made two sets of features that act as independent

variables. These sets and their corresponding elements are as follows:

Set1 = {Ce,CBO,Fan-in, Fan-out, RFC}
Set2 = Set1 ∪ {V ovel-in, V ovel-out}
The above hypotheses can further be stated as;

H0 : The Set2 is as effective in SFP as Set1.

H1 : The Set2 is more effective in SFP than that of Set1.

5.4.2 Selection of Statistical Test

For statistical testing, we used Wilcoxon signed-rank test proposed by Frank

Wilcoxon[238]. Wilcoxon signed-rank test is a nonparametric test for pre-and

post-treatment measurements. In our case, it is with and without inducing Vovel

metrics. It does not assume the normal distribution of the samples. Wilcoxon

signed-rank test incorporates more information about the data, it is more power-

ful than the sign test. The test has three assumptions.

1. Data are paired and come from the same population.

2. Each pair is chosen randomly and independently.

Materials and Methods 93

3. The data are measured on at least an interval scale when, as is usual, within-

pair differences are calculated to perform the test.

In Wilcoxon test, equation for test statistic W is as follows

W =
Nr∑
i=1

[sgn(x2,i − x1,i).Ri] (5.6)

Where x2 and x1 are observations computed using Set1 and Set2 metrics re-

spectively. Ri denotes the rank. The two-sided test consists in rejecting H0 if

|W | > Wcritical,Nr . In our case we set α = 0.05.

5.5 Experimental Methodology

Keeping in view our objective and skewed datasets, we adopted an experimental

methodology which is used in various studies of SFP[6, 23, 29, 32, 34, 36, 41, 46,

49, 51, 53, 55, 57, 59, 209].

We first perform the ULR to compute the significance of the included coupling

metrics individually. The significant metrics are later assessed for the existence of

multicollinearity.

Multicollinearity is a statistical concept where two independent variables in a

model are correlated. Multicollinearity can lead to skewed or misleading results.

Two variables are considered to be perfectly collinear if their correlation coefficient

is +/- 1.0. This process would be done using Spearman correlation coefficient. In

statistics, Spearman’s rank correlation coefficient or Spearman’s ρ, is a nonpara-

metric measure of rank correlation. It assesses how well the relationship between

two variables can be described using a monotonic function. It is better to use

independent variables that are not correlated or drop the strongly correlated vari-

ables. Later the least correlated metrics are used to build a MLR model.

In MLR is the outcome variable (dependent variables) is dichotomous (e.g., fp

or nfp). Its aim is to derive the best-fitting model to describe the relationship

between an outcome and a set of predictors. Here, the independent variables are

called coupling metrics and dependent variable is a fault label, i.e. fp and nfp.

The performance of MLR would be assessed using F1-measure. F-measure is the

harmonic mean between Precision and TPR, first introduced in [164]. It tells how

precise a classifier is (how many instances it classifies correctly), as well as how

Materials and Methods 94

robust it is. Mathematically it is written as.

F-measure =
(β2 + 1)× Precision× TPR
β2 × Precision+ TPR

(5.7)

Where, β can be 0.5, 1, and 2 for F0.5, F1, and F2 measures respectively. Varying

the value of β allows different weights to be assigned to false negative and false

positive. In our work, a value of β = 1 has been used, which equalizes the influence

of false negatives and false positives. Since declaring fp module as nfp has a

performance overhead. Whereas, declaring a nfp module as fp incurs greater

testing cost. We need to have a balance between false negative and false positive.

Therefore, F1 score is more meaningful than the F0.5 and F2 score in the current

context. Figure 5.2 graphically illustrates the methodology. The reason is that

Datasets

Mylyn
3.1

Eclipse equinox
framework 3.4

Eclipse
PDE UI 3.4.1

Univariate
logistic

regression
Spearman

Correlation
Multivariate

Logistic
regression

Univariate
logistic

regression
Spearman

Correlation
Multivariate

Logistic
regression

Comparison
and

reporting

Set-1

Set-2

Most
significant

metrics

Most
significant

metrics

Least
correlated

metrics

Least
correlated

metrics

F-measure

F-measu
re

Eclipse
JDT Core 3.4

Apache
Lucene 2.4

Figure 5.2: Experimental methodology

these algorithms are least susceptible to imbalance datasets[239]. We performed

10 experiments using the set of independent variables (see Table 5.2).

In all the cases, dependent variable is binary, which shows the fp or nfp classes. To

avoid overfitting in ULR and MLR, we drew a random sampling, early stopping

and finally perform 10-fold cross-validation for training and validation purposes.

Finally, the average model is used (to avoid biased) on testing data, wherein F1-

Score are computed.

This is the most common dependent variable used in 70% of the SFP studies [22].

We applied MLR to build model. Each time, we split the datasets for training

and testing purposes. After that, we performed 10-folds cross-validation on the

Materials and Methods 95

training set.

Table 5.2: Descriptions of the experiments performed

Sr.

No.

Datasets IV DV Algorithm Performance

measure

1 Apache Set1

2 Lucene 2.4 Set2

3 Eclipse equinox Set1

4 framework 3.4 Set2

5 Eclipse JDT Set1

6 Core 3.4 Set2 Binary MLR F-measure

7 Eclipse PDE Set1 (fp

8 UI 3.4.1 Set2 nd nfp)

9
Mylyn 3.1

Set1

10 Set2

Chapter 6

Experimentation and Results
We performed the methodology which has been discussed in Chapter 5. In this

chapter, we report the results computed in each phase. Finally, there is a discus-

sion on the results and briefly discussed threats to validity.

6.1 Results of Univariate Logistic Regression

A ULR is undertaken using seven coupling metrics (i.e. Ce, CBO, Fan-in, Fan-out,

RFC, Vovel-in, and Vovel-out) one after another against the dependent variable,

i.e., fp and nfp. Table 6.1 shows the coefficient computed and the p-value for all

seven coupling metrics at α = 0.05.

Table 6.1: Results of the ULR using coupling metrics in the selected five
datasets

Metrics Params. Apache

Lucene

Eclipse

equinox

Eclipse

JDT Core

Eclipse

PDE UI

Mylyn

3.1

Ce
Coeff. 0.051 0.01 0.015 0.01 0.12

p-value 0 0 0 0 0

CBO
Coeff. 0.066 0.02 0.042 0.1 0.101

p-value 0 0 0 0 0

Fan-in
Coeff. 0.028 0.014 0.017 0.046 0.087

p-value 0 0.001 0 0 0

Fan-out
Coeff. 0.357 0.24 0.274 0.278 -0.06

p-value 0 0 0 0 0.268

RFC
Coeff. 0.16 0.13 0.16 0.18 0.03

p-value 0 0.039 0 0 0.01

Vovel-in
Coeff. 0 0 0.001 0.001 0.001

p-value 0 0.003 0 0 0

Vovel-out
Coeff. 0 0 0 0 0

p-value 0 0 0 0 0.043

96

Experimentation and Results 97

6.2 Results of Correlation Analysis

The correlation analysis aims to determine empirically whether the included met-

rics are in consonance with the other metrics or not. The strong association implies

the coverage of duplicate information. Figure 6.4 through 6.17 shows the correla-

tion result in the five datasets. The value of r for each metric pair is shown at the

top of each scatter plot with their names.

(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue)

Experimentation and Results 98

(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue)

Experimentation and Results 99

(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue)

Experimentation and Results 100

(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Correlation between pair metrics in Apache Lucene 2.4 dataset
(Continue)

Experimentation and Results 101

(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Correlation between pair metrics in Eclipse Equinox Framework
3.4 dataset (Continue)

Experimentation and Results 102

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Correlation between pair metrics in Eclipse Equinox Framework
3.4 dataset (Continue)

Experimentation and Results 103

(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Correlation between pair metrics in Eclipse Equinox Framework
3.4 dataset (Continue)

Experimentation and Results 104

(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Correlation between pair metrics in Eclipse JDT Core 3.4
dataset (Continued)

Experimentation and Results 105

(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Correlation between pair metrics in Eclipse JDT Core 3.4
dataset (Continued)

Experimentation and Results 106

(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Correlation between pair metrics in Eclipse JDT Core 3.4
dataset (Continued)

Experimentation and Results 107

(a) (b)

(c) (d)

(e) (f)

Figure 6.11: Correlation between pair metrics in Eclipse PDE UI 3.4.1
dataset (Continued)

Experimentation and Results 108

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: Correlation between pair metrics in Eclipse PDE UI 3.4.1
dataset (Continued)

Experimentation and Results 109

(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Correlation between pair metrics in Eclipse PDE UI 3.4.1
dataset (Continued)

Experimentation and Results 110

(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Correlation between pair metrics in Mylyn 3.1 dataset

Experimentation and Results 111

(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Correlation between pair metrics in Mylyn 3.1 dataset
(Continued)

Experimentation and Results 112

(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Correlation between pair metrics in Mylyn 3.1 dataset
(Continued)

Experimentation and Results 113

(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Correlation between pair metrics in Mylyn 3.1 dataset
(Continued)

Experimentation and Results 114

The scatter plots shown in Figure 6.4 through Figure 6.17 show that there exists a

weak correlation between pairs of seven selected metrics. However, a mild positive

correlation can be observed in all the datasets between two pairs, i.e., (RFC,

Vovel-out) and (Fan-out, Vovel-out). The obvious reason is the commonality in

directional coverage between these pairs. Likewise, there exists relatively weak

outer data flow between modules in the selected dataset. Besides these pairs,

significantly weak correlation have been observed in the rest of the pairs. This

reflects the unique information coverage by the seven included coupling metrics.

6.3 Results of Multivariate Logistic Regression

While considering the experimental methodology described in the last chapter,

MLR is applied in 10 different experiments by varying independent variables and

datasets. Finally, the average model is run on the test set for computing F-

measure. The results are shown in Table 6.2. The last two columns show the

results of Wilcoxon test with their corresponding coefficient and p-values.

Table 6.2: MLR results in five datasets using Set1 and Set2 metrics

Datasets F-

measure

in Set1

F-

measure

in Set2

Coeff. p-values

Apache Lucene 2.4 0.71 0.74 0.71 0.0000

Eclipse Equinox Framework 3.4 0.63 0.76 0.63 0.0002

Eclipse JDT Core 3.4 0.46 0.67 0.46 0.0004

Eclipse PDE UI 3.4.1 0.57 0.60 0.57 0.0004

Mylyn 3.1 0.76 0.81 0.76 0.0004

The above results are computed at the best threshold of probabilistic function.

However, the results of True positive rate and False positive rate at different

thresholds from 0.0 to 1.0 have also been computed and shown in Figure 6.18

through Figure 6.22.

Experimentation and Results 115

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Set 1:, AUC=0.66
Set 2; AUC=0.85

Figure 6.18: AUC in Apache Lucene 2.4

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Set 1:, AUC=0.55
Set 2; AUC=0.77

Figure 6.19: AUC in Eclipse Equinox Framework 3.4

Experimentation and Results 116

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Set 1:, AUC=0.64
Set 2; AUC=0.83

Figure 6.20: AUC in Eclipse JDT Core 3.4

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Set 1:, AUC=0.59
Set 2; AUC=0.79

Figure 6.21: AUC in Eclipse PDE UI 3.4.1

Experimentation and Results 117

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Set 1:, AUC=0.65
Set 2; AUC=0.77

Figure 6.22: AUC in Mylyn 3.1

The computed AUC shows the outperformance of MLP classifier using Vovel met-

rics in all the five datasets.

6.4 Discussion on Results

The results of ULR advocate that the included seven coupling metrics have a sig-

nificant association with fault- proneness. The results are similar to the conclusion

drawn by other studies [36, 52, 53, 207]. More specifically Vovel metrics have lower

coefficients than that of the other metrics. This implies the stronger association

of the proposed Vovel metrics in SFP than its counterparts. Likewise, it shows

the importance of data flow volume and coupling level in SFP. The results of the

Spearman correlation coefficient illustrate the following conclusion.

1. The Vovel-in and Vovel-out metrics are having a very weak relationship

between them in all the five datasets. This represents the orthogonal nature

of the proposed metric w.r.t. each other.

2. Vovel-in is least correlated with CBO in all the five datasets.

3. Mild association is observed between Vovel-out and Fan-out likewise Vovel-

out and RFC. The obvious reason is the consideration of direction of method

calls by the corresponding associating metrics.

Experimentation and Results 118

4. There exists a weak correlation (i.e., < 0.8) between pair of metrics in all

the datasets. This implies significant exclusive information coverage by the

included metrics.

Eventually, a weak association between pair metrics across the datasets represents

the unique information coverage by all the metrics. Therefore, none of the metrics

has been dropped, and all the metrics are included in the final phase i.e. MLR.

The experiment using MLR directly relates to our formulated null hypothesis.

The experiment illustrates the effectiveness of proposed metrics in SFP. The re-

sults infer the outperformance of Vovel metrics in all five datasets.

More specifically, in Eclipse JDT Core datasets, the performance has been im-

proved to 0.21 on the F-measure score. Whereas a mild performance improvement

(i.e, 0.03) is observed in Apache Lucene, and Eclipse PDE UI datasets.

Wilcoxon test is used for these assessments, which certifies the significance of the

results. Hence, the null hypothesis that the data flow volume and coupling levels

do not improve the performance of SFP when used in combination with exist-

ing coupling metrics should be rejected, while accepting the alternate hypothesis.

Now we can safely state that the proposed Vovel metrics significantly improve

the performance of SFP when used in combination with existing coupling metrics.

Moreover, keeping in view the objective of our study, we can conclude that data

flow volume and coupling levels improve the performance of SFP.

6.5 Threats to Validity

The results of our experiment allow us to associate Vovel metrics with SFP. Nev-

ertheless, before we could accept the result, we would have to consider possible

threats to its validity.

1. We include the content coupling in our proposed metrics, however, we could

not parse it due to its difficult nature. The reason is that it involves the

manipulation of pointers or residences of two modules physically in one com-

pilable entity. Moreover, it can also occur by just sharing the data area of

multiple modules. If we would do so, the results will even be more promising.

Hence, the impact of content coupling in SFP remains unrevealed.

Experimentation and Results 119

2. Concerning the size of the projects, sufficient comprehensible project size

is taken. The projects of a very large size or very small size were ignored.

The reason was the unavailability of either projects’ source code or fault

information.

3. The selected open-source projects are developed in Java, which sufficiently

justifies the objective of the experiment and successfully demonstrates the

experimental methodology. However, since the coupling aspects vary in dif-

ferent programming languages. The results may vary when using projects

developed in languages other than Java.

Chapter 7

Conclusion and Future work

Software coupling is an important design parameter. Software research community

is quite active in computing the degree of coupling by proposing numerous coupling

metrics. These metrics are utilized in various disciplines, like fault prediction,

design patterns, impact analysis, re-modularization, assessing software quality,

maintenance cost, productivity, software vulnerabilities, reusability, changeabil-

ity, reliability, and maintainability. This thesis focuses on effective utilization of

coupling metrics in the software fault prediction.

Software modules’ coupling is indispensable for making the software easy to un-

derstand, develop, test, and deploy. A comprehensible level of coupling is always

desirable, however, when there exists complexity in coupling in terms of levels

and volume of data flow there comes incomprehensibility. Consequently, the pro-

grammer loses control and thus leads to the introduction of faults into the module

under development. Hence it may be used with great care.

7.1 Conclusion

Coupling metrics are generally found useful in predicting software faults. More

specifically, CBO, RFC, Ca, Fan-in, and Fan-out are reported outperformers by

SFP community. However, numerous coupling metrics have not been assessed ex-

clusively in SFP. Consequently, the exclusive factors addressed in these metrics are

yet to be evaluated. Moreover, a few potentially useful factors related to coupling

are also ignored. The data flow volume and coupling levels are amongst those

factors.

120

Conclusion and Future Work 121

In this research thesis, we proposed two coupling metrics, Vovel-in, and Vovel-out,

that incorporate the ignored yet important aspects of coupling. Vovel-in captures

the calls/utilization of the module while Vovel-out represents the calls/utilization

by a module. To assess the effectiveness of the proposed metric we performed

experiments. Five public datasets are taken as a case study. We utilized Java-

Parser for computing Vovel metrics from the source code. First, we performed the

ULR to compute the significance of the coupling metric. The significant metrics

were later assessed for the existence of linear association with the Vovel metrics

using Spearman correlation coefficient. The objective was to assess the presence of

unique information coverage by Vovel metrics. Later the least correlated metrics

were used to build a MLR model.

A ULR has been undertaken using seven coupling metrics (i.e. Ce, CBO, Fan-in,

Fan-out, RFC, Vovel-in, and Vovel-out) one after another against the dependent

variable, i.e., fp and nfp. The results of ULR advocated that the included seven

coupling metrics have a significant association with fault- proneness. Later, in

correlation assessment, it is found that there exists a weak correlation (i.e., < 0.8)

between selected metrics with the Vovel metrics. This implies the significant ex-

clusive information coverage by Vovel metrics. Finally, MLR model has been built

on two sets of metrics. The first set comprises five conventional metrics, while the

second metrics set comprises metrics from the first set along with the two proposed

Vovel metrics. The MLP has been assessed using F1-score, while Wilcoxon test is

used for significance assessments. We reject the null hypothesis that the data flow

volume and coupling level do not improve the performance of SFP when used in

combination with existing coupling metrics.

The outcomes of the experiment advocate the viability of the proposed metrics.

The researchers and practitioners of the testing community can confidently utilize

metrics Vovel metrics in identifying fault-prone modules. The proposed metrics

can be helpful in drawing testing case prioritizing and can potentially assist in

determining ”where to start testing from”, eventually, minimizes testing cost and

time.

7.2 Future Work

The Vovel metrics are proposed both for method level coupling and class level

coupling. Since we perform the evaluation of Vovel metrics at the class level and

Conclusion and Future Work 122

found it useful, however, the performance of the metrics at the method level needs

to be evaluated also.

Besides SFP, Vovel metrics may be used for assessing software quality, mainte-

nance cost, productivity, software vulnerabilities, reusability, changeability, main-

tainability, etc. the way other coupling metrics are being used.

Yourdon et al. [118] stated five principles of coupling, i.e., direct, local, obvi-

ous, flexible, and broad coupling. Direct coupling refers to the direct interfacing

between software modules, without referring to multiple intermediate modules.

Local coupling between two modules refers to the availability of all the necessary

information within the connection. Obvious coupling is in reciprocal to obscure

coupling wherein representation does not hide any important information. Finally,

flexible coupling refers to the maintenance of one module without referring to or

changing other modules. In contrast to flexible coupling, in the rigid coupling,

maintenance of one module requires fixing of more than module(s) also.

In this study, Boradness of coupling due to Volume has been considered has been

captured and assessed in SFP. Four other aspects of coupling stated by Yourdon

et al. [118], i.e., direct, local, obvious, and flexible coupling are yet to be evaluated

by SFP community. Therefore, in the future, the capturing and utilization of these

coupling aspects can have an important aspect to do. Moreover, as it is evident

from Table 3.5 most of the coupling metrics have not been addressed by the SFP

community. Evaluation of such metrics in SFP can also be important work to do.

Finally, it is concluded in Section 3.4 that coupling metrics are evaluated using

products developed in C, C++, Java, or COBOL. However, their performance

in other extensively used programming languages, like Python, C#, and Visual

basic are yet to be evaluated. Likewise, few famous scripting languages like PHP,

JavaScript, etc. may also be employed.

Bibliography

[1] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New

York, NY, USA: Cambridge University Press, 2008.

[2] B. Hailpern and P. Santhanam, “Software debugging, testing, and verifica-

tion,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[3] Undo, “Study: Software failures cost the enterprise software market $61b

annually,” PRNewswire, may 2020.

[4] M. N. Ann, Ensuring Software Reliability. CRC Press, 2018.

[5] S. A. Sherer, “Software fault prediction,” Journal of Systems and Software,

vol. 29, no. 2, pp. 97–105, 1995.

[6] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-

oriented metrics on open source software for fault prediction,” IEEE Trans-

actions on Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[7] G. Abaei and A. Selamat, “A survey on software fault detection based on

different prediction approaches,” Vietnam J. of Computer Science, vol. 1,

no. 2, p. 79–95, may 2014.

[8] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location and

number of faults in large software systems,” IEEE Transactions on Software

Engineering, vol. 31, no. 4, pp. 340–355, April 2005.

[9] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Comparing negative binomial

and recursive partitioning models for fault prediction,” in Proceedings of the

4th International Workshop on Predictor Models in Software Engineering,

ser. PROMISE ’08. New York, NY, USA: ACM, 2008, pp. 3–10.

[10] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault prediction model to

allow inter languagereuse,” in Proceedings of the 4th International Workshop

123

Bibliography 124

on Predictor Models in Software Engineering, ser. PROMISE ’08. New York,

NY, USA: ACM, 2008, pp. 19–24.

[11] E. Weyuker, T. Ostrand, and R. M. Bell, “Do too many cooks spoil the

broth? using the number of developers to enhance defect prediction models,”

Empirical Software Engineering, vol. 13, pp. 539–559, 10 2008.

[12] S. S. Rathore and S. Kumar, “A study on software fault prediction tech-

niques,” Artificial Intelligence Review, vol. 51, no. 2, pp. 255–327, Feb 2019.

[13] K. Sandeep and S. R. Santosh, Software Fault Prediction, A Road Map.

Singapore: Springer Singapore, 2018.

[14] N. Seliya and T. M. Khoshgoftaar, “Software quality estimation with lim-

ited fault data: a semi-supervised learning perspective,” Software Quality

Journal, vol. 15, no. 3, pp. 327–344, 2007.

[15] S. Beecham, T. Hall, D. Bowes, D. Gray, S. Counsell, and S. Black, “A sys-

tematic review of fault prediction approaches used in software engineering,”

Technical Report Lero-TR-2010-04, Lero, Tech. Rep., 2010.

[16] C. Catal and B. Diri, “A systematic review of software fault prediction

studies,” Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.

[17] S. M. Henry, “Information flow metrics for the evaluation of operating sys-

tems’ structure,” Ph.D. dissertation, Iowa State University, Ames, IA, USA,

1979, aAI8000138.

[18] S. M. Henry and D. Kafura, “Software structure metrics based on informa-

tion flow,” IEEE Transactions on Software Engineering, vol. 7, no. 5, pp.

510–518, Sep. 1981.

[19] D. A. Troy and S. H. Zweben, “Measuring the quality of structured designs,”

Journal of Systems and Software, vol. 2, no. 2, pp. 113–120, 1981.

[20] D. H. Hutchens and V. R. Basili, “System structure analysis: Clustering

with data bindings,” IEEE transactions on Software Engineering, no. 8, pp.

749–757, 1985.

[21] K. E. Emam, M. Walcelio, and C. M. Javam, “The prediction of faulty

classes using object-oriented design metrics,” Journal of Systems and Soft-

ware, vol. 56, 02 2001.

Bibliography 125

[22] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault pre-

diction metrics: A systematic literature review,” Information and Software

Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[23] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical analysis

for investigating the effect of object-oriented metrics on fault proneness: A

replicated case study,” Software Process: Improvement and Practice, vol. 14,

no. 1, pp. 39–62, jan 2009.

[24] G. J. Myers, Reliable Software Through Composite Design. Petrocelli/Char-

ter, 1975.

[25] M. Page-Jones, The Practical Guide to Structured Systems Design: 2Nd

Edition. Upper Saddle River, NJ, USA: Yourdon Press, 1988.

[26] A. J. Offutt, M. J. Harrold, and P. Kolte, “A software metric system for

module coupling,” Journal of Systems and Software, vol. 20, no. 3, pp. 295–

308, Mar. 1993.

[27] T. Lethbridge and R. Laganiere, Object-Oriented Software Engineering:

Practical Software Development using UML and Java. McGraw-Hill Com-

panies,Incorporated, 2002.

[28] S. Anwer, A. Adbellatif, M. Alshayeb, and M. S. Anjum, “Effect of coupling

on software faults: An empirical study,” in 2017 International Conference on

Communication, Computing and Digital Systems (C-CODE), March 2017,

pp. 211–215.

[29] K. Johari and A. Kaur, “Validation of object oriented metrics using open

source software system: An empirical study,” ACM Sigsoft Software Engi-

neering Notes, vol. 37, pp. 1–4, 01 2012.

[30] R. Malhotra, A. Kaur, and Y. Singh, “Empirical validation of object-oriented

metrics for predicting fault proneness at different severity levels using sup-

port vector machines,” International Journal of System Assurance Engineer-

ing and Management, vol. 1, pp. 269–281, 09 2010.

[31] R. Selvarani, T. R. G. Nair, and V. K. Prasad, “Estimation of defect prone-

ness using design complexity measurements in object-oriented software,” in

2009 International Conference on Signal Processing Systems, May 2009, pp.

766–770.

Bibliography 126

[32] R. Shatnawi and W. Li, “The effectiveness of software metrics in identifying

error-prone classes in post-release software evolution process,” Journal of

Systems and Software, vol. 81, no. 11, pp. 1868–1882, Nov. 2008.

[33] B. Goel and Y. Singh, Empirical Investigation of Metrics for Fault Pre-

diction on Object-Oriented Software. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008, pp. 255–265.

[34] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Investigating effect of

design metrics on fault proneness in object-oriented systems.” Journal of

Object Technology, vol. 6, no. 10, pp. 127–141, 2007.

[35] Yuming Zhou and Hareton Leung, “Empirical analysis of object-oriented de-

sign metrics for predicting high and low severity faults,” IEEE Transactions

on Software Engineering, vol. 32, no. 10, pp. 771–789, Oct 2006.

[36] R. Shatnawi, W. Li, and H. Zhang, “Predicting error probability in the

eclipse project,” in Software Engineering Research and Practice, 01 2006,

pp. 422–428.

[37] P. Yu, T. Systa, and H. Müller, “Predicting fault-proneness using oo metrics.

an industrial case study,” 02 2002, pp. 99 – 107.

[38] L. Briand, J. Wüst, and H. Lounis, “Replicated case studies for investigating

quality factors in object-oriented designs,” Empirical Software Engineering,

vol. 6, pp. 11–58, 03 2001.

[39] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring the rela-

tionships between design measures and software quality in object-oriented

systems,” Journal of Systems and Software, vol. 51, no. 3, pp. 245–273, 2000.

[40] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, A validation of object-oriented

metrics. National Research Council Canada, Institute for Information Tech-

nology, 1999.

[41] L. C. Briand, J. Daly, V. Porter, and J. Wust, “A comprehensive empir-

ical validation of design measures for object-oriented systems,” in Pro-

ceedings Fifth International Software Metrics Symposium. Metrics (Cat.

No.98TB100262), Nov 1998, pp. 246–257.

[42] A. B. Binkley and S. R. Schach, “Validation of the coupling dependency

metric as a predictor of run-time failures and maintenance measures,” in

Bibliography 127

Proceedings of the 20th International Conference on Software Engineering,

April 1998, pp. 452–455.

[43] A. B. Binkley and S. R. Schach, “Metrics for predicting run-time failures,”

Technical Report 97-03, Computer Science Department, Vanderbilt Univer-

sity, Nashville, NT, Tech. Rep., 1997.

[44] A. Binkley, S. Schach et al., “Inheritance-based metrics for predicting main-

tenance effort: an empirical study,” Computer Science Department, Vander-

bilt University, Tech. Rep. TR, vol. 9705, 1997.

[45] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented

design metrics as quality indicators,” IEEE Transactions on Software Engi-

neering, vol. 22, no. 10, pp. 751–761, Oct 1996.

[46] D. Kumari and K. Rajnish, “Investigating the effect of object-oriented met-

rics on fault proneness using empirical analysis,” International Journal of

Software Engineering and its Applications, vol. 9, pp. 171–188, 01 2015.

[47] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on software

defect prediction with a simplified metric set,” Information and Software

Technology, vol. 59, no. C, pp. 170–190, Mar. 2015.

[48] M. O. Elish, A. H. Al-Yafei, and M. Al-Mulhem, “Empirical comparison

of three metrics suites for fault prediction in packages of object-oriented

systems: A case study of eclipse,” Advances in Engineering Software, vol. 42,

no. 10, pp. 852–859, oct 2011.

[49] S. S. Rathore and A. Gupta, “Validating the effectiveness of object-oriented

metrics over multiple releases for predicting fault proneness,” in 2012 19th

Asia-Pacific Software Engineering Conference, vol. 1, Dec 2012, pp. 350–

355.

[50] M. Jureczko and D. Spinellis, “Using object-oriented design metrics to pre-

dict software defects,” Models and Methods of System Dependability. Oficyna

Wydawnicza Politechniki Wroc lawskiej, pp. 69–81, 2010.

[51] R. Shatnawi, “A quantitative investigation of the acceptable risk levels of

object-oriented metrics in open-source systems,” IEEE Transactions on Soft-

ware Engineering, vol. 36, no. 2, pp. 216–225, March 2010.

Bibliography 128

[52] S. Kpodjedo, F. Ricca, G. Antoniol, and P. Galinier, “Evolution and search

based metrics to improve defects prediction,” in 2009 1st International Sym-

posium on Search Based Software Engineering, May 2009, pp. 23–32.

[53] M. English, C. Exton, I. Rigon, and B. Cleary, “Fault detection and pre-

diction in an open-source software project,” in Proceedings of the 5th In-

ternational Conference on Predictor Models in Software Engineering, ser.

PROMISE ’09. New York, NY, USA: ACM, 2009, pp. 17:1–17:11.

[54] T. Zimmermann and N. Nagappan, “Predicting defects using network analy-

sis on dependency graphs,” in Proceedings of the 30th International Confer-

ence on Software Engineering, ser. ICSE ’08. New York, NY, USA: ACM,

2008, pp. 531–540.

[55] J. Xu, D. Ho, and L. F. Capretz, “An empirical validation of object-oriented

design metrics for fault prediction,” vol. 4, 2008, pp. 571–577.

[56] G. J. Pai and J. Bechta Dugan, “Empirical analysis of software fault con-

tent and fault proneness using bayesian methods,” IEEE Transactions on

Software Engineering, vol. 33, no. 10, pp. 675–686, Oct 2007.

[57] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empiri-

cal validation of three software metrics suites to predict fault-proneness of

object-oriented classes developed using highly iterative or agile software de-

velopment processes,” IEEE Transactions on Software Engineering, vol. 33,

no. 6, pp. 402–419, June 2007.

[58] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai, “The confounding effect

of class size on the validity of object-oriented metrics,” IEEE Transactions

on Software Engineering, vol. 27, no. 7, pp. 630–650, July 2001.

[59] Mei-Huei Tang, Ming-Hung Kao, and Mei-Hwa Chen, “An empirical study

on object-oriented metrics,” in Proceedings Sixth International Software

Metrics Symposium (Cat. No.PR00403), Nov 1999, pp. 242–249.

[60] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Using metrics to identify de-

sign patterns in object-oriented software,” in Software Metrics Symposium,

1998. Metrics 1998. Proceedings. Fifth International. IEEE, 1998, pp. 23–

34.

[61] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement

for impact analysis in object-oriented systems,” in Software Maintenance,

Bibliography 129

1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE,

1999, pp. 475–482.

[62] F. B. E Abreu, G. Pereira, and P. Sousa, “A coupling-guided cluster anal-

ysis approach to reengineer the modularity of object-oriented systems,” in

Software Maintenance and Reengineering, 2000. Proceedings of the Fourth

European. IEEE, 2000, pp. 13–22.

[63] A. Akaikine, “The impact of software design structure on product main-

tenance costs and measurement of economic benefits of product redesign,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2010.

[64] D. J. Sturtevant, “System design and the cost of architectural complexity,”

Ph.D. dissertation, Massachusetts Institute of Technology, 2013.

[65] R. Lagerström, C. Baldwin, A. MacCormack, D. Sturtevant, and L. Doolan,

“Exploring the relationship between architecture coupling and software vul-

nerabilities,” in International Symposium on Engineering Secure Software

and Systems. Springer, 2017, pp. 53–69.

[66] G. Gui and P. D. Scott, “New coupling and cohesion metrics for evaluation of

software component reusability,” in 2008 The 9th International Conference

for Young Computer Scientists, Nov 2008, pp. 1181–1186.

[67] G. Gui and P. D. Scott, “Ranking reusability of software components using

coupling metrics,” Journal of Systems and Software, vol. 80, no. 9, pp. 1450–

1459, Sep. 2007.

[68] D. Hristov, O. Hummel, M. Huq, and W. Janjic, “Structuring software

reusability metrics for component-based software development,” in Proceed-

ings of Int. Conference on Software Engineering Advances (ICSEA), vol.

226, 2012.

[69] P. K. Bhatia and R. Mann, “An approach to measure software reusability

of oo design,” in Proceedings of the 2nd National Conference on Challenges

& Opportunities in Information Technology. Citeseer, 2008, pp. 26–30.

[70] P. Trivedi and R. Kumar, “Software metrics to estimate software quality

using software component reusability,” International Journal of Computer

Science Issues (IJCSI), vol. 9, no. 2, p. 144, 2012.

Bibliography 130

[71] F. G. Wilkie and B. A. Kitchenham, “An investigation of coupling, reuse and

maintenance in a commercial c++ application,” Information and Software

Technology, vol. 43, no. 13, pp. 801–812, 2001.

[72] J. Sanz-Rodriguez, J. M. Dodero, and S. Sanchez-Alonso, “Metrics-based

evaluation of learning object reusability,” Software Quality Journal, vol. 19,

no. 1, pp. 121–140, 2011.

[73] G. Gui and P. D. Scott, “Measuring software component reusability by cou-

pling and cohesion metrics,” Journal of Computers, vol. 4, pp. 797–805,

2009.

[74] A. Kumar, “Measuring software reusability using svm based classifier ap-

proach,” International Journal of Information Technology and Knowledge

Management, vol. 5, no. 1, pp. 205–209, 2012.

[75] A. Shri, P. S. Sandhu, V. Gupta, and S. Anand, “Prediction of reusability of

object oriented software systems using clustering approach,” World academy

of science, Engineering and Technology, vol. 43, pp. 853–856, 2010.

[76] F. Dandashi, “A method for assessing the reusability of object-oriented code

using a validated set of automated measurements,” in Proceedings of the

2002 ACM symposium on Applied computing. ACM, 2002, pp. 997–1003.

[77] G. Gui and P. D. Scott, “Coupling and cohesion measures for evaluation of

component reusability,” in Proceedings of the 2006 international workshop

on Mining software repositories. ACM, 2006, pp. 18–21.

[78] L. H. Etzkorn, W. E. Hughes Jr, and C. G. Davis, “Automated reusability

quality analysis of oo legacy software,” Information and Software Technol-

ogy, vol. 43, no. 5, pp. 295–308, 2001.

[79] J. C. C. P. Mascena, E. S. de Almeida, and S. R. de Lemos Meira, “A

comparative study on software reuse metrics and economic models from

a traceability perspective,” in IRI-2005 IEEE International Conference on

Information Reuse and Integration, Conf, 2005. IEEE, 2005, pp. 72–77.

[80] H. Li and B. Li, “A pair of coupling metrics for software networks,” Journal

of Systems Science and Complexity, vol. 24, no. 1, pp. 51–60, 2011.

[81] M. Ajmal, H. Kabaili, R. K Keller, F. Lustman, and G. Saint-Denis, “Design

properties and object-oriented software changeability,” Proceedings of the

Bibliography 131

Euromicro Conference on Software Maintenance and Reengineering, CSMR,

01 2000.

[82] S. Rongviriyapanish, T. Wisuttikul, B. Charoendouysil, P. Pitakket,

P. Anancharoenpakorn, and P. Meananeatra, “Changeability prediction

model for java class based on multiple layer perceptron neural network,” in

2016 13th International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology (ECTI-CON).

IEEE, 2016, pp. 1–6.

[83] A. Parashar and J. Chhabra, “Mining software change data stream to pre-

dict changeability of classes of object-oriented software system,” Evolving

Systems, vol. 7, 04 2016.

[84] Z. Rosko, “Predicting the changeability of software product lines for business

application,” in ISD, 09 2014.

[85] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the proba-

bility of change in object-oriented systems,” IEEE Transactions on Software

Engineering, vol. 31, pp. 601– 614, 08 2005.

[86] R. Malhotra and M. Khanna, “Investigation of relationship between object-

oriented metrics and change proneness,” International Journal of Machine

Learning and Cybernetics, vol. 4, 08 2012.

[87] L. Kumar, S. K. Rath, and A. Sureka, “Empirical analysis on effectiveness of

source code metrics for predicting change-proneness,” in Proceedings of the

10th Innovations in Software Engineering Conference, ser. ISEC ’17. New

York, NY, USA: ACM, 2017, pp. 4–14.

[88] X. Sun, H. Leung, L. Bin, and B. Li, “Change impact analysis and change-

ability assessment for achange proposal: An empirical study ** **,” Journal

of Systems and Software, vol. 96, 10 2014.

[89] L. C. Briand, J. Wust, and H. Lounis, “Using coupling measurement for

impact analysis in object-oriented systems,” in Proceedings IEEE Interna-

tional Conference on Software Maintenance - 1999 (ICSM’99). ’Software

Maintenance for Business Change’ (Cat. No.99CB36360), Aug 1999, pp.

475–482.

[90] M. K. Abdi, H. Lounis, and H. Sahraoui, “Analyzing change impact in

object-oriented systems,” in 32nd EUROMICRO Conference on Software

Bibliography 132

Engineering and Advanced Applications (EUROMICRO’06), Aug 2006, pp.

310–319.

[91] E. Arisholm, “Empirical assessment of the impact of structural properties

on the changeability of object-oriented software,” Information and Software

Technology, vol. 48, pp. 1046–1055, 11 2006.

[92] A.-R. Han, S.-U. Jeon, D.-H. Bae, and J.-E. Hoing, “Measuring behavioral

dependency for improving change-proneness prediction in uml-based design

models,” Journal of Systems and Software, vol. 83, pp. 222–234, 02 2010.

[93] M. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics for quantifying

historical changes to predict future change-prone classes in object-oriented

software,” Journal of Software: Evolution and Process, vol. 25, 05 2013.

[94] Y. Ayalew and K. Mguni, “An assessment of changeability of open source

software,” Computer and Information Science, vol. 6, pp. 68–79, 05 2013.

[95] S. Eski and F. Buzluca, “An empirical study on object-oriented metrics and

software evolution in order to reduce testing costs by predicting change-

prone classes,” in 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops, March 2011, pp. 566–571.

[96] M. Abdi, H. Lounis, and H. Sahraoui, “Predicting change impact in object-

oriented applications with bayesian networks,” 2009 33rd Annual IEEE In-

ternational Computer Software and Applications Conference, vol. 1, pp. 234–

239, 07 2009.

[97] L. Rosenberg, T. Hammer, and J. Shaw, “Software metrics and reliability,”

in 9th international symposium on software reliability engineering, 1998.

[98] N. Nagappan, L. Williams, and M. Vouk, “Towards a metric suite for early

software reliability assessment,” in International Symposium on Software

Reliability Engineering, FastAbstract, Denver, CO, 2003, pp. 238–239.

[99] N. Nagappan, “A software testing and reliability early warning (strew) met-

ric suite,” Ph.D. dissertation, 2005, aAI3162465.

[100] H. Okamura, Y. Etani, and T. Dohi, “A multi-factor software reliability

model based on logistic regression,” in Proceedings of the 2010 IEEE 21st

International Symposium on Software Reliability Engineering, ser. ISSRE

’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 31–40.

Bibliography 133

[101] M. Li, C. Smidts, and R. W. Brill, “Ranking software engineering measures

related to reliability using expert opinion,” in Proceedings 11th International

Symposium on Software Reliability Engineering. ISSRE 2000, Oct 2000, pp.

246–258.

[102] L. Guo, “Software quality and reliability prediction using dempster-shafer

theory,” Ph.D. dissertation, Morgantown, WV, USA, 2004, aAI3156448.

[103] I. Chowdhury and M. Zulkernine, “Can complexity, coupling, and cohesion

metrics be used as early indicators of vulnerabilities?” in Proceedings of the

2010 ACM Symposium on Applied Computing. ACM, 2010, pp. 1963–1969.

[104] A. Yadav and R. Khan, “Impact of cohesion on reliability,” Journal of In-

formation and operations Management, vol. 3, no. 1, p. 191, 2012.

[105] C. Rajaraman and M. R. Lyu, “Reliability and maintainability related soft-

ware coupling metrics in c++ programs,” in [1992] Proceedings Third In-

ternational Symposium on Software Reliability Engineering, Oct 1992, pp.

303–311.

[106] W. Li and S. M. Henry, “Object-oriented metrics that predict maintain-

ability,” Journal of Systems and Software, vol. 23, no. 2, pp. 111–122, Nov.

1993.

[107] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with object-

oriented metrics - an empirical comparison,” in 10th Working Conference

on Reverse Engineering, 2003. WCRE 2003. Proceedings., Nov 2003, pp.

155–164.

[108] Y. Lee and K. H. Chang, “Reusability and maintainability metrics for object-

oriented software,” in Proceedings of the 38th Annual on Southeast Regional

Conference, ser. ACM-SE 38. New York, NY, USA: ACM, 2000, pp. 88–94.

[109] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s

maintainability,” in Proceedings Conference on Software Maintenance 1992,

Nov 1992, pp. 337–344.

[110] Y. Zhou and B. Xu, “Predicting the maintainability of open source soft-

ware using design metrics,” Wuhan University Journal of Natural Sciences,

vol. 13, pp. 14–20, 02 2008.

Bibliography 134

[111] P. Bengtsson, “Towards maintainability metrics on software architecture:

An adaptation of object-oriented metrics,” in First Nordic Workshop on

Software Architecture (NOSA’98), 1998.

[112] J. Al Dallal, “Object-oriented class maintainability prediction using internal

quality attributes,” Information and Software Technology, vol. 55, no. 11,

pp. 2028–2048, 2013.

[113] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application of artificial

neural network for predicting maintainability using object-oriented metrics,”

Transactions on Engineering, Computing, and Technology, vol. 15, pp. 285–

289, 2006.

[114] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, “Predicting maintenance

performance using object-oriented design complexity metrics,” IEEE Trans-

actions on Software Engineering, vol. 29, no. 1, pp. 77–87, Jan 2003.

[115] M. Frappier, S. Matwin, and A. Mili, “Software metrics for predicting main-

tainability,” Software Metrics Study: Technical Memorandum 2, vol. 2, 1994.

[116] H. Washizaki, T. Nakagawa, Y. Saito, and Y. Fukazawa, “A coupling-based

complexity metric for remote component-based software systems toward

maintainability estimation,” in 2006 13th Asia Pacific Software Engineering

Conference (APSEC’06), Dec 2006, pp. 79–86.

[117] A. B. Binkley and S. R. Schach, “Prediction of run-time failures using static

product quality metrics,” Software Quality Journal, vol. 7, no. 2, pp. 141–

147, Jul 1998.

[118] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals of a

Discipline of Computer Program and Systems Design, 1st ed. Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1979.

[119] S. McConnell, Code complete. Pearson Education, 2004.

[120] M. J. Foley, “Bugfest! win2000 has 63,000 ’defects’,” Feb 2000.

[121] G. J. Myers, The Art of Software Testing. John Wiley & Sons, 1979.

[122] I. Gondra, “Applying machine learning to software fault-proneness predic-

tion,” Journal of Systems and Software, vol. 81, no. 2, pp. 186–195, 2008.

Bibliography 135

[123] R. Malhotra, “A systematic review of machine learning techniques for soft-

ware fault prediction,” Applied Soft Computing, vol. 27, no. C, pp. 504–518,

Feb. 2015.

[124] T. Chappelly, C. Cifuentes, P. Krishnan, and S. Gevay, “Machine learning

for finding bugs: An initial report,” in Machine Learning Techniques for

Software Quality Evaluation (MaLTeSQuE), IEEE Workshop on. IEEE,

2017, pp. 21–26.

[125] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous defect

prediction,” IEEE Transactions on Software Engineering, 2017.

[126] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software defect

prediction,” Institution of Engineering and Technology Software, vol. 12,

no. 3, pp. 161–175, 2018.

[127] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software

Engineering, vol. 2, no. 4, pp. 308–320, Jul. 1976.

[128] M. H. Halstead, Elements of Software Science (Operating and Programming

Systems Series). New York, NY, USA: Elsevier Science Inc., 1977.

[129] K. L. Morris, “Metrics for object-oriented software development environ-

ments,” PhD dissertation, Massachusetts Institute of Technology, 1989.

[130] S. R. Chidamber and C. F. , “Towards a metrics suite for object oriented

design,” Special Interest Group on Programming Languages, vol. 26, no. 11,

pp. 197–211, Nov. 1991.

[131] P. Oman, J. Hagemeister, and D. Ash, “A definition and taxonomy for

software maintainability, report setl report 91-08-tr,” University of Idaho,

1991.

[132] J. Chen and J. Lu, “A new metric for object-oriented design,” Information

and software technology, vol. 35, no. 4, pp. 232–240, 1993.

[133] Y. Lee, B. Liang, S. Wu, and F. Wang, “Measuring the coupling and co-

hesion of an object-oriented program based on information flow,” in Proc.

International Conference on Software Quality, Maribor, Slovenia, 1995, pp.

81–90.

Bibliography 136

[134] F. B. Abreu, M. Goulão, and R. Esteves, “Toward the design quality eval-

uation of object-oriented software systems,” in Proceedings of the 5th In-

ternational Conference on Software Quality, Austin, Texas, USA, 1995, pp.

44–57.

[135] R. D. Martin, “Object oriented design quality metrics: an analysis of de-

pendencies,” vol. 2, no. 3, 1995.

[136] M. Lorenz and J. Kidd, Object-oriented Software Metrics: A Practical Guide.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

[137] W. Li, “Another metric suite for object-oriented programming,” Journal of

Systems and Software, vol. 44, no. 2, pp. 155–162, Dec. 1998.

[138] L. Son, N. Pritam, M. Khari, R. Kumar, P. Phuong, and T. Pham, “Empir-

ical study of software defect prediction: A systematic mapping,” Symmetry,

vol. 11, p. 212, 02 2019.

[139] G. Boetticher, T. Menzies, and T. Ostrand, “{PROMISE} repository of

empirical software engineering data,” 01 2007.

[140] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some comments

on the nasa software defect datasets,” IEEE Transactions on Software En-

gineering, vol. 39, no. 9, pp. 1208–1215, Sept 2013.

[141] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value

of cross-company and within-company data for defect prediction,” Empirical

Software Engineering, vol. 14, no. 5, pp. 540–578, Oct 2009.

[142] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug

prediction approaches,” in Proceedings of MSR 2010 (7th IEEE Working

Conference on Mining Software Repositories). IEEE CS Press, 2010, pp.

31 – 41.

[143] R. wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering links

between bugs and changes,” 09 2011, pp. 15–25.

[144] M. Jureczko and L. Madeyski, “Towards identifying software project clusters

with regard to defect prediction,” in Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, ser. PROMISE

’10. New York, NY, USA: ACM, 2010, pp. 9:1–9:10.

Bibliography 137

[145] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,”

in Proceedings of the Third International Workshop on Predictor Models in

Software Engineering, ser. PROMISE ’07. Washington, DC, USA: IEEE

Computer Society, 2007, pp. 9–.

[146] G. Mauša, T. G. Grbac, and B. D. Bašić, “Data collection for software defect

prediction - an exploratory case study of open source software projects,” in

2015 38th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2015, pp. 463–469.

[147] A. Janes, M. Scotto, W. Pedrycz, B. Russo, M. Stefanovic, and G. Succi,

“Identification of defect-prone classes in telecommunication software systems

using design metrics,” Information Sciences, vol. 176, no. 24, pp. 3711–3734,

Dec. 2006.

[148] R. Jabangwe, J. Börstler, D. Šmite, and C. Wohlin, “Empirical evidence on

the link between object-oriented measures and external quality attributes: a

systematic literature review,” Empirical Software Engineering, vol. 20, no. 3,

pp. 640–693, Jun 2015.

[149] O. A. Qasem, M. Akour, and M. Alenezi, “The influence of deep learning

algorithms factors in software fault prediction,” IEEE Access, vol. 8, pp.

63 945–63 960, 2020.

[150] A. Haveri and Y. Suresh, “Software fault prediction using artificial intelli-

gence techniques,” in 2017 2nd International Conference on Computational

Systems and Information Technology for Sustainable Solution (CSITSS),

2017, pp. 1–5.

[151] A. Okutan, “Use of source code similarity metrics in software defect predic-

tion,” CoRR, vol. abs/1808.10033, 2018.

[152] Y. Shao, B. Liu, S. Wang, and G. li, “A novel software defect prediction

based on atomic class-association rule mining,” Expert Systems with Appli-

cations, vol. 114, pp. 237–254, 07 2018.

[153] Qinbao Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect

association mining and defect correction effort prediction,” IEEE Transac-

tions on Software Engineering, vol. 32, no. 2, pp. 69–82, 2006.

[154] R. Karthik and N. Manikandan, “Defect association and complexity predic-

tion by mining association and clustering rules,” in 2010 2nd International

Bibliography 138

Conference on Computer Engineering and Technology, vol. 7, 2010, pp. V7–

569–V7–573.

[155] C.-P. Chang, C.-P. Chu, and Y.-F. Yeh, “Integrating in-process software

defect prediction with association mining to discover defect pattern,” Infor-

mation and Software Technology, vol. 51, pp. 375–384, 02 2009.

[156] M. K. Thota, F. H. Shajin, P. Rajesh et al., “Survey on software defect

prediction techniques,” International Journal of Applied Science and Engi-

neering, vol. 17, no. 4, pp. 331–344, 2020.

[157] L. Guo, Y. Ma, B. Cukic, and Harshinder Singh, “Robust prediction of fault-

proneness by random forests,” in 15th International Symposium on Software

Reliability Engineering, Nov 2004, pp. 417–428.

[158] A. Kaur and R. Malhotra, “Application of random forest in predicting fault-

prone classes,” in 2008 International Conference on Advanced Computer

Theory and Engineering, Dec 2008, pp. 37–43.

[159] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classi-

fication models for software defect prediction: A proposed framework and

novel findings,” IEEE Transactions on Software Engineering, vol. 34, no. 4,

pp. 485–496, July 2008.

[160] Y. Ma, L. Guo, B. Cukic, and Lane, “A statistical framework for the pre-

diction of fault-proneness,” Advances in Machine Learning Applications in

Software Engineering, 01 2006.

[161] Y. Jiang, B. Cukic, and T. Menzies, “Fault prediction using early lifecycle

data,” in The 18th IEEE International Symposium on Software Reliability

(ISSRE ’07), Nov 2007, pp. 237–246.

[162] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets,

and feature selection techniques on software fault prediction problem,” In-

formation Sciences, vol. 179, no. 8, pp. 1040–1058, Mar. 2009.

[163] Y. Zhou, B. Xu, and H. Leung, “On the ability of complexity metrics to

predict fault-prone classes in object-oriented systems,” Journal of Systems

and Software, vol. 83, pp. 660–674, 04 2010.

[164] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the 4th Confer-

ence on Message Understanding, ser. MUC4 ’92. Stroudsburg, PA, USA:

Association for Computational Linguistics, 1992, pp. 22–29.

Bibliography 139

[165] Y. Wand and R. Weber, “An ontological model of an information system,”

IEEE Transactions on Software Engineering, vol. 16, no. 11, pp. 1282–1292,

Nov. 1990.

[166] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured design,”

IBM Systems Journal, vol. 13, no. 2, p. 117, Jun. 1974.

[167] P. J. Kaur and S. Kaushal, “Cohesion and coupling measures for aspect

oriented systems,” AETS/7/590, Elsevier, Tech. Rep., 2013.

[168] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling measurement

for object-oriented software,” IEEE Transactions on Software Engineering,

vol. 30, no. 8, pp. 491–506, 2004.

[169] E. Fregnan, T. Baum, F. Palomba, and A. Bacchelli, “A survey on software

coupling relations and tools,” Information and Software Technology, vol.

107, 11 2018.

[170] D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for object-

oriented systems,” in 2006 22nd IEEE International Conference on Software

Maintenance, Sep. 2006, pp. 469–478.

[171] F. Tsui, O. Karam, and B. Bernal, Essentials of Software Engineering.

Jones & Bartlett Learning, 2016.

[172] E. Braude and M. Bernstein, Software Engineering: Modern Approaches,

Second Edition. New York, NY, USA: John Wiley, Mar 2016.

[173] P. Laplante, Software Engineering for Image Processing Systems, ser. Image

processing series. CRC Press, 2015.

[174] C. Ebert and I. Morschel, “Metrics for quality analysis and improvement

of object-oriented software,” Information and Software Technology, vol. 39,

no. 7, pp. 497–509, 1997.

[175] T. P. Johnson, Snowball Sampling. American Cancer Society, 2005.

[176] N. E. Fenton and M. Neil, “A critique of software defect prediction models,”

IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 675–689,

Sep. 1999.

[177] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics sets,

and feature selection techniques on software fault prediction problem,” In-

formation Sciences, vol. 179, pp. 1040–1058, 03 2009.

Bibliography 140

[178] E. Arisholm, L. Briand, and E. Johannessen, “A systematic and comprehen-

sive investigation of methods to build and evaluate fault prediction models,”

Journal of Systems and Software, vol. 83, pp. 2–17, 01 2010.

[179] B. Kitchenham, “What’s up with software metrics? - a preliminary mapping

study,” Journal of Systems and Software, vol. 83, no. 1, pp. 37–51, Jan. 2010.

[180] S. Beecham, T. Hall, D. Bowes, D. Gray, S. Counsell, and S. Black, “A sys-

tematic review of fault prediction approaches used in software engineering,”

The Irish Software Engineering Research Centre: Limerick, Ireland, 2010.

[181] C. Catal, “Software fault prediction: A literature review and current trends,”

Expert systems with applications, vol. 38, no. 4, pp. 4626–4636, 2011.

[182] R. S. Wahono, “A systematic literature review of software defect prediction:

research trends, datasets, methods and frameworks,” Journal of Software

Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[183] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic

literature review on fault prediction performance in software engineering,”

IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304,

Nov 2012.

[184] B. Isong and E. Obeten, “A systematic review of the empirical validation

of object-oriented metrics towards fault-proneness prediction,” International

Journal of Software Engineering and Knowledge Engineering, vol. 23, no. 10,

pp. 1513–1540, 2013.

[185] S. Singh and A. G. Singh, “Enhancing object oriented coupling metrics

wrt connectivity patterns,” Ph.D. dissertation, Thapar university, Patialay,

Thapar university, Patialay, 2014, 147004.

[186] J. Eder, G. Kappel, and M. Schrefl, “Coupling and cohesion in object-

oriented systems,” Citeseer, Tech. Rep., 1994.

[187] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using

Software Metrics to Characterize, Evaluate, and Improve the Design of

Object-Oriented Systems, 01 2006.

[188] D. N. Card and W. W. Aggresti, “Measuring software design complexity,”

Journal of Systems and Software, vol. 8, no. 3, pp. 185–197, Jun. 1988.

Bibliography 141

[189] L. M. Laird and M. C. Brennan, Software measurement and estimation: a

practical approach. John Wiley & Sons, 2006, vol. 2.

[190] T. J. McCabe and C. W. Butler, “Design complexity measurement and

testing,” Communications of the ACM, vol. 32, no. 12, pp. 1415–1425, Dec.

1989.

[191] N. Fenton and A. Melton, “Deriving structurally based software measures,”

Journal of Systems and Software, vol. 12, no. 3, pp. 177–187, Jul. 1990.

[192] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for object-oriented

design,” in Proceedings Fifth International Software Metrics Symposium.

Metrics (Cat. No. 98TB100262). IEEE, 1998, pp. 150–157.

[193] H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help to bridge the

gap between the improvement of oo design quality and its automation?”

in Proceedings of the International Conference on Software Maintenance

(ICSM’00), ser. ICSM ’00. Washington, DC, USA: IEEE Computer Society,

2000, pp. 154–.

[194] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented

design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.

476–493, June 1994.

[195] S. A. Miquirice and R. S. Wazlawick, “Relationship between cohesion and

coupling metrics for object-oriented systems,” in Information and Software

Technologies, R. Damaševičius and G. Vasiljevienė, Eds. Cham: Springer

International Publishing, 2018, pp. 424–436.

[196] F. B. Abreu and R. Carapuça, “Object-oriented software engineering: Mea-

suring and controlling the development process,” in Proceedings of the 4th

international conference on software quality, vol. 186, 1994, pp. 1–8.

[197] H. Dhama, “Quantitative models of cohesion and coupling in software,”

Journal of Systems and Software, vol. 29, no. 1, pp. 65–74, Apr. 1995.

[198] A. B. Binkley and S. R. Schach, “Toward a unified approach to coupling,” in

Proceedings of the 35th Annual Southeast Regional Conference, ser. ACM-SE

35. New York, NY, USA: ACM, 1997, pp. 91–97.

[199] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling mea-

sures for c++,” in Proceedings of the (19th) International Conference on

Software Engineering, May 1997, pp. 412–421.

Bibliography 142

[200] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. E. Lorensen et al.,

Object-oriented modeling and design. Prentice-hall Englewood Cliffs, NJ,

1991, vol. 199, no. 1.

[201] J. Fitzpatrick, “More c++ gems,” R. C. Martin, Ed. New York, NY, USA:

Cambridge University Press, 2000, ch. Applying the ABC Metric to C, C++,

and Java, pp. 245–264.

[202] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design

quality assessment,” IEEE Transactions on Software Engineering, vol. 28,

no. 1, pp. 4–17, Jan 2002.

[203] J. Shao and Y. Wang, “A new measure of software complexity based on

cognitive weights,” in CCECE 2003 - Canadian Conference on Electrical

and Computer Engineering. Toward a Caring and Humane Technology (Cat.

No.03CH37436), vol. 2, May 2003, pp. 1333–1338 vol.2.

[204] N. Nachiappan and B. Thirumalesh, “Technologies for code failure proneness

estimation,” Computer Science Department, Vanderbilt University, Tech.

Rep. TR, 26 April 2007.

[205] J. S. Alghamdi, “Measuring software coupling,” Arabian Journal for Science

and Engineering, vol. 33, no. 1, p. 119, 2008.

[206] B. A. Kitchenham, L. M. Pickard, and S. J. Linkman, “An evaluation of

some design metrics,” Software Engineering Journal, vol. 5, no. 1, p. 50–58,

Jan. 1990.

[207] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for

object-oriented design complexity: implications for software defects,” IEEE

Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310, April

2003.

[208] A. Abubakar, J. AlGhamdi, and M. Ahmed, “Can cohesion predict fault

density?” in IEEE International Conference on Computer Systems and Ap-

plications, 2006, March 2006, pp. 890–893.

[209] Kumar, A. Tirkey, and S. Rath, “An effective fault prediction model de-

veloped using an extreme learning machine with various kernel methods,”

Frontiers of Information Technology and Electronic Engineering, vol. 19, pp.

864–888, 07 2018.

Bibliography 143

[210] B. Ndemeye, S. Hussain, and B. Norris, “Threshold-based analysis of the

code quality of high-performance computing software packages.”

[211] D. Sharma and P. Chandra, “An empirical analysis of software fault prone-

ness using factor analysis with regression,” 2021.

[212] R. Malhotra and J. Jain, “Predicting defects in object-oriented software us-

ing cost-sensitive classification,” IOP Conference Series: Materials Science

and Engineering, vol. 1022, p. 012112, 01 2021.

[213] N. Kaur and H. Singh, “An empirical assessment of threshold techniques to

discriminate the fault status of software,” Journal of King Saud University

- Computer and Information Sciences, 03 2021.

[214] S. Marangoz, B. Mutlu, and E. A. Sezer, “Fuzzy cognitive maps for soft-

ware fault prediction,” in 2021 15th Turkish National Software Engineering

Symposium (UYMS), 2021, pp. 1–6.

[215] S. K. Pandey and A. K. Tripathi, “Class imbalance issue in software de-

fect prediction models by various machine learning techniques: An empiri-

cal study,” in 2021 8th International Conference on Smart Computing and

Communications (ICSCC), 2021, pp. 58–63.

[216] R. C. Martin, Agile software development: principles, patterns, and prac-

tices. Prentice Hall, 2002.

[217] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language

User Guide. Redwood City, CA, USA: Addison Wesley Longman Publishing

Co., Inc., 1999.

[218] L. Yu, S. R. Schach, K. Chen, and J. Offutt, “Categorization of common

coupling and its application to the maintainability of the linux kernel,” IEEE

Transactions on Software Engineering, vol. 30, no. 10, pp. 694–706, 2004.

[219] J. AlGhamdi, M. Elish, and M. Ahmed, “A tool for measuring inheritance

coupling in object-oriented systems,” information SCiences, vol. 140, no.

3-4, pp. 217–227, 2002.

[220] N. Kayarvizhy and S. Kanmani, “An automated tool for computing object

oriented metrics using xml,” in Advances in Computing and Communica-

tions, A. Abraham, J. Lloret Mauri, J. F. Buford, J. Suzuki, and S. M.

Thampi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.

69–79.

Bibliography 144

[221] R. C. Gronback, “Software remodeling : Improving design and implementa-

tion quality using audits , metrics and refactoring in borland,” 2003.

[222] D. Spinellis, “Tool writing: a forgotten art? (software tools),” IEEE Soft-

ware, vol. 22, no. 4, pp. 9–11, 2005.

[223] M. Wilhelm and S. Diehl, “Dependency viewer - a tool for visualizing package

design quality metrics,” in 3rd IEEE International Workshop on Visualizing

Software for Understanding and Analysis, 2005, pp. 1–2.

[224] J. Offutt, A. Abdurazik, and S. R. Schach, “Quantitatively measuring

object-oriented couplings,” Software Quality Journal, vol. 16, no. 4, p.

489–512, Dec. 2008.

[225] P. Rosner and S. Viswanathan, “Visualization of coupling and programming

to interface for object-oriented systems,” in 2008 12th International Confer-

ence Information Visualisation, 2008, pp. 575–581.

[226] V. S. Bidve and P. Sarasu, “Tool for measuring coupling in object-oriented

java software,” International Journal of Engineering and Technology, vol. 8,

no. 2, pp. 812–820, 2016.

[227] S. T. Inc., “Scitools maintenance, metrics and documentation tools for ada,

c, c++, java and fortran,” Mar 2020.

[228] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect predic-

tion using a connectivity-based unsupervised classifier,” in 2016 IEEE/ACM

38th International Conference on Software Engineering (ICSE), May 2016,

pp. 309–320.

[229] N. Anquetil, “Predicting software defects with causality tests,” 2013.

[230] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshy-

vanyk, “Learning how to mutate source code from bug-fixes,” in 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME),

2018, pp. 301–312.

[231] ——, “An empirical investigation into learning bug-fixing patches in the wild

via neural machine translation,” in Proceedings of the 33rd ACM/IEEE In-

ternational Conference on Automated Software Engineering, 2018, pp. 832–

837.

Bibliography 145

[232] W. H. J. David and L. a. X. S. Stanley, “Applied logistic regression.” Wiley,

New York, 1989.

[233] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and com-

prehensive investigation of methods to build and evaluate fault prediction

models,” Journal of Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

[234] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Comparing the effective-

ness of several modeling methods for fault prediction,” Empirical Software

Engineering, vol. 15, no. 3, pp. 277–295, 2010.

[235] C. X. Ling, J. Huang, H. Zhang et al., “AUC: A statistically consistent and

more discriminating measure than accuracy,” in IJCAI, vol. 3, 2003, pp.

519–524.

[236] S. Rosset, “Model selection via the AUC,” in Proceedings of the twenty-first

international conference on Machine learning. ACM, 2004, p. 89.

[237] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learn-

ing algorithms,” IEEE Transactions on Knowledge and Data Engineering,

vol. 17, no. 3, pp. 299–310, 2005.

[238] F. Wilcoxon, “Individual comparisons by ranking methods,” vol. 1, pp. 80–

83, Dec 1945.

[239] A. Luque, A. Carrasco, A. Mart́ın, and A. de las Heras, “The impact of

class imbalance in classification performance metrics based on the binary

confusion matrix,” Pattern Recognition, vol. 91, pp. 216 – 231, 2019.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Aims and Objectives
	1.2 Research Questions
	1.3 Previous Work
	1.4 Problem Statement
	1.5 Research Contribution
	1.6 Research Methodology
	1.7 Thesis Outline

	2 Background
	2.1 Software Fault Prediction
	2.1.1 Metrics Used in SFP
	2.1.1.1 Process Metrics
	2.1.1.2 Product Metrics

	2.1.2 Datasets Used in SFP
	2.1.3 Approaches Used in SFP
	2.1.4 Performance Evaluation in ML-based SFP Techniques

	2.2 Software Coupling
	2.2.1 Coupling Principles and Consequences of High Coupling

	3 Literature Review
	3.1 Studies on the Development of Coupling Metrics
	3.1.1 Inclusion Criteria
	3.1.2 Exclusion Criteria
	3.1.3 Summary of the Coupling Metrics
	3.1.3.1 Henry and Kafura Coupling Metrics
	3.1.3.2 Total Design Complexity
	3.1.3.3 Degree of Coupling Between Objects
	3.1.3.4 Design Complexity
	3.1.3.5 Fenton and Melton Metric
	3.1.3.6 Chidamber and Kemerer Metrics Suite
	3.1.3.7 Oman Coupling Metrics
	3.1.3.8 Chen and Lu Coupling Metrics
	3.1.3.9 Offutt Metric
	3.1.3.10 Message Passing Coupling and Data Abstraction Coupling
	3.1.3.11 Coupling Factor
	3.1.3.12 Lee et al. Coupling Metrics
	3.1.3.13 Dhama Metric
	3.1.3.14 Afferent and Efferent Couplings
	3.1.3.15 Coupling Dependency Metric
	3.1.3.16 Ordinal Scale Module Coupling
	3.1.3.17 Briand's Coupling Metrics
	3.1.3.18 Number of Associations
	3.1.3.19 ABC Metric
	3.1.3.20 Direct Class Coupling
	3.1.3.21 Cognitive Functional Size Metric
	3.1.3.22 Nagappan and Thirumalesh Coupling Metrics
	3.1.3.23 Weighted Transitive Coupling
	3.1.3.24 Alghamdi Metric

	3.2 Studies on the Evaluation of Coupling Metrics
	3.2.1 Inclusion Criteria
	3.2.2 Exclusion Criteria
	3.2.3 Summary of the Included Studies
	3.2.4 Analysis of Coupling Metrics w.r.t Their Usage

	3.3 Studies on the Coupling Levels/Principles
	3.3.1 Inclusion Criteria
	3.3.2 Exclusion Criteria
	3.3.3 Brief Description of the Studies Included
	3.3.4 Shortlisted Coupling Levels
	3.3.5 Analysis of Coupling Metrics w.r.t. Coupling Levels

	3.4 Conclusion and Research Gaps

	4 Vovel Metrics: New Coupling Metrics
	4.1 Possible Solutions
	4.2 Computation/Derivation of Vovel Metrics
	4.2.1 Computing Data Flow Volume
	4.2.2 Inducing Coupling Levels
	4.2.3 Relationship Between Vovel-in and Vovel-out
	4.2.4 Combining Coupling Levels and Data Flow Volume

	4.3 Significance of Vovel Metrics
	4.4 Examples
	4.4.1 Computing Volume of Methods
	4.4.2 Computing Vovel Metrics in Structure Paradigm
	4.4.2.1 Example 1
	4.4.2.2 Example 2
	4.4.2.3 Example 3
	4.4.2.4 Example 4
	4.4.2.5 Example 5
	4.4.2.6 Example 6
	4.4.2.7 Example 7
	4.4.2.8 Example 8

	4.4.3 Computing Vovel Metrics at Class Levels
	4.4.3.1 Computing Vovel-in metric for Class X
	4.4.3.2 Computing Vovel-out Metric for Class X
	4.4.3.3 Computing Vovel-in metric for Class Y
	4.4.3.4 Computing Vovel-out metric for Class Y

	5 Materials and Methods
	5.1 Datasets Development
	5.1.1 Case Study
	5.1.2 Parsing of Metrics Information
	5.1.3 Fault Labeling

	5.2 ML Algorithm/Techniques
	5.2.1 Univariate Logistic Regression
	5.2.2 Correlation Analysis
	5.2.3 Multivariate Logistic Regression

	5.3 Selection of Performance Measure
	5.3.1 Evaluation of Performance Measures
	5.3.1.1 Plausibility
	5.3.1.2 Consistency and Discriminancy
	5.3.1.3 Evaluation Result

	5.3.2 Selection of Value in F-measure

	5.4 Statistical Significance Assessment
	5.4.1 Formulation of Hypotheses
	5.4.2 Selection of Statistical Test

	5.5 Experimental Methodology

	6 Experimentation and Results
	6.1 Results of Univariate Logistic Regression
	6.2 Results of Correlation Analysis
	6.3 Results of Multivariate Logistic Regression
	6.4 Discussion on Results
	6.5 Threats to Validity

	7 Conclusion and Future work
	7.1 Conclusion
	7.2 Future Work

	Bibliography

