
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

A Resource-Aware Dynamic

Load-balancing Technique for

Deadline Constrained Cloud

Tasks
by

Said Nabi
A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2022

www.cust.edu.pk
www.cust.edu.pk
saidnabi115@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

A Resource-Aware Dynamic Load-balancing

Technique for Deadline Constrained Cloud Tasks

By

Said Nabi

(DCS161005)

Dr. Jerry CHun-Wei Lin, Professor

Western Norway University of Applied Sciences, Norway

(Foreign Evaluator 1)

Dr. Radu Prodan, Professor

Alpen-Adria University Klagenfurt, Klagenfurt, Austria (Foreign

Evaluator 2)

Dr. Mohammad Masroor Ahmed

(Thesis Supervisor)

Dr. Nayyer Masood

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2022



ii

Copyright © 2022 by Said Nabi

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.



iii

This thesis is dedicated to all my family

members, especially to my mother









vii

List of Publications

It is certified that following publication(s) have been made out of the research

work that has been carried out for this thesis:-

1. S. Nabi, M. Ahmed, “OG-RADL: overall performance-based resource-aware

dynamic load-balancer for deadline constrained Cloud tasks,” Supercom-

puting https://doi.org/10.1007/s11227-020-03544-z, vol. 77, no. 7, pp.

7476–7508, 2021.

2. S. Nabi, M. Ahmed, “PSO-RDAL: Particle Swarm Optimization based Re-

source and Deadline Aware dynamic Load-balancer for Deadline Constrained

Cloud Tasks,” Supercomputing, https://doi.org/10.1007/s11227-021-04062-

2, vol. 78 no. 4, pp. 4624-4654, 2021.

3. S. Nabi, M. Aleem, M. Ahmed, A. Islam, A. Iqbal “RADL: A Resource and

Deadline-aware Dynamic Load-balancer for Cloud Tasks,” Supercomputing

https://doi.org/10.1007/s11227-022-04426-2, 2022.

4. S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “Adpso: Adaptive pso-

based task scheduling approach for cloud computing,” Sensors, vol. 22, no.

3, pp. 920, 2022.

Said Nabi

(DCS161005)



viii

Acknowledgement

I would like to thank all those who extend their contributions in the complete

journey of my Ph.D. thesis both directly and indirectly. First of all, I express

my sincere gratitude to my thesis supervisor Dr. Masroor Ahmed for his advice,

encouragement, and support in completing my doctorate thesis. Secondly, I would

like to thank my Ex-supervisor Dr. Muhammad Aleem who extends his efforts in

providing me the baseline knowledge for my Ph.D. research.

I am also highly grateful to Dr. Adul Qadir, Dean of Faculty of computing, CUST,

for his time, interest, and insightful suggestions during the graduate research semi-

nars. I also want to acknowledge the role of Dr. Arshad Islam, Dr. Altaf Hussain,

and all members of the Parallel Computing and Networks (PCN) research lab,

who always show their willingness for support and discussion that broaden my

horizon.

Finally, I am highly grateful to my mother for her silent support for my passion

for pursuing the doctorate while other family members opposed it. I am thankful

to my wife and children who sacrificed and suffered during my Ph.D. journey.



ix

Abstract

Cloud computing has emerged as an attractive platform to facilitate the com-

puting needs of users over the Internet. The Cloud service providers acquire the

computing resources (software and hardware) and assign them to the users on a

pay-per-use mode. To effectively utilize Cloud resources and achieve high user sat-

isfaction, Cloud service providers demand efficient task scheduling algorithms. An

efficient task scheduling algorithm should be fair and adaptive to improve resource

utilization, meet task deadlines, minimize the makespan, reduce the task response

time, and task rejection ratio. There are a number of task scheduling and load

balancing algorithms, however, most of these scheduling algorithms fail to achieve

efficient resource utilization and load-balancing. The main reason is that these al-

gorithms are not resource and deadline-aware. Moreover, these algorithms execute

tasks in batch mode, do not properly monitor/update the Virtual Machines (VMs)

load and tasks execution status at run-time. To achieve high resource utilization,

load balancing, minimized makespan, reduced task response time, and lower task

rejection ratio, there is a need to have such dynamic scheduling algorithms which

can monitor and update the VMs load along with tasks execution status at run-

time. Furthermore, these algorithms should have a high capability to meet task

deadlines and reduce the task rejection ratio. To overcome these issues, a resource

aware dynamic load balancing technique for deadline constrained task has been

proposed. The contribution of the proposed scheduling scheme has been divided

into three parts.

The first part of this thesis presents a Resource Aware Dynamic Load-balancer

(RADL) for deadline constrained Cloud tasks. The RADL approach has the ability

to evenly distribute the incoming workload of independent and compute-intensive

tasks at run-time. In addition, RADL approach has the capability to accommodate

the newly arrived tasks (with shorter deadlines) in efficient manner. The proposed

approach consists of two schedulers namely RADL-Scheduler and ShifterScheduler

(S-Scheduler). RADL-Scheduler allocates incoming tasks to a set of VMs based

on minimum completion time. It also monitors/updates the task and VM status.

S-Scheduler, finds a suitable position in the task queue of a VM for the incoming



x

tasks with shorter deadlines. Experimental results show that the proposed ap-

proach has attained up to 67.74%, 303.57%, 259.2%, and 146.13% improvement in

terms of average resource utilization, meeting tasks deadlines, lower makespan, and

task response time respectively as compared to the state-of-the-art tasks schedul-

ing heuristics.

In the literature, a number of task scheduling and load balancing schemes have

been proposed. However, the majority of these scheduling heuristics focus either

on a single evaluation parameter (i.e., makespan or resource-utilization, etc.) or

multiple evaluation parameters individually as a scheduling objective. Improving

one parameter may not guarantee an increase in the overall performance of the

Cloud. There is a need to have such algorithms that focus on improving the overall

performance of the Cloud by taking into account multiple evaluation parameters.

The second part of this thesis attempts to present, an Overall Performance-based

Resource Aware Dynamic Load-balancer (OG-RADL) for deadline constrained

Cloud tasks. OG-RADL has the ability to distribute the workload of independent

and compute-intensive tasks according to the resource computation capability at

run time. Moreover, a novel normalization technique is proposed that overcome

the limitations of existing normalization techniques. The OG-RADL enhance

load-balancing, support deadline constrained tasks, and improve the overall per-

formance gain of the Cloud. The experimental result shows that the proposed

approach OG-RADL outperforms as compared to existing task scheduling algo-

rithms named DLBA, DC-DLBA, Dy-MaxMin, RALBA, PSSELB, and MODE in

terms of the overall performance of the Cloud.

The objective of the Cloud users is to lease optimal resources that meet their

demand with minimum cost and time. A number of heuristics and meta-heuristics

based approaches have been proposed in the literature. The majority of the ex-

isting state-of-the-art task scheduling heuristics optimize a single parameter or

multiple non-conflicting parameters like makespan, throughput, response time,

etc. However, in the real Cloud scenario, most of the time Cloud users demand

for multi-objective based conflicting Quality of Service (QoS) requirements i.e.,

task execution time and cost. Therefore, there is a need for schedulers that can

provide a balanced solution for conflicting parameters. For this purpose, meta-



xi

heuristics based algorithms are considered more efficient to provide an optimized

solution for conflicting objectives. In this part of the thesis, a modified PSO based

Resource and Deadline Aware dynamic Load-balanced (PSO-RADL) algorithm is

proposed. PSO-RADL can provide an optimized solution for the workload of

independent and compute-intensive tasks with reasonable time and cost. Experi-

mental results reveal that the PSO-RADL has gained up to 66%, 162%, 56%, 89%,

98%, and 97% enhancement in terms of makespan, average resource utilization,

task response time, meeting task deadline, penalty cost, and total execution cost

respectively as compared to existing state-of-the-art tasks scheduling heuristics.



Contents

Author’s Declaration v

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xv

List of Tables xvii

Abbreviations xviii

Symbols xix

1 Introduction 1

1.1 Overview of Cloud Computing . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cloud Services Model . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Cloud Architecture . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Cloud Deployment Model . . . . . . . . . . . . . . . . . . . 6

1.2 Cloud Scheduling and Load Balancing . . . . . . . . . . . . . . . . 7

1.2.1 Tasks Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Load Balancing . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Types of Task Scheduling . . . . . . . . . . . . . . . . . . . 9

1.2.3.1 Static Scheduling . . . . . . . . . . . . . . . . . . . 10

1.2.3.2 Batch Dynamic Scheduling . . . . . . . . . . . . . 11

1.2.3.3 Dynamic Scheduling . . . . . . . . . . . . . . . . . 11

1.2.3.4 Meta-heuristic Algorithms . . . . . . . . . . . . . . 12

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Objectives and Significance . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 17

xii



xiii

1.8 Research Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Literature Review 22

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Heuristic based Cloud Task Schedulers . . . . . . . . . . . . . . . . 23

2.2.1 Static Scheduling Heuristics . . . . . . . . . . . . . . . . . . 23

2.2.2 Batch Dynamic Scheduling Heuristics . . . . . . . . . . . . . 24

2.2.3 Dynamic Scheduling Heuristics . . . . . . . . . . . . . . . . 25

2.3 Meta-heuristics based Cloud Task
Schedulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Summary of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . 38

3 RADL: A Resource-Aware Dynamic Load-balancer for Deadline
Constrained Cloud Tasks 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Proposed Load-balancing Algorithm . . . . . . . . . . . . . . . . . . 43

3.2.1 RADL System Overview and Background . . . . . . . . . . 43

3.2.2 RADL System Architecture . . . . . . . . . . . . . . . . . . 45

3.2.3 RADL System Model . . . . . . . . . . . . . . . . . . . . . . 47

3.2.4 RADL Performance Model . . . . . . . . . . . . . . . . . . . 49

3.2.5 RADL Algorithms . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.5.1 RADL Scheduler . . . . . . . . . . . . . . . . . . . 51

3.2.5.2 S-Scheduler . . . . . . . . . . . . . . . . . . . . . . 53

3.2.6 Complexity and Overhead Analysis . . . . . . . . . . . . . . 55

3.3 Experimental Evaluation and Discussions . . . . . . . . . . . . . . . 56

3.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Workload Generation . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 OG-RADL: Overall Performance Based Resource Aware Dynamic
Load-balancer for Deadline Constrained Cloud Tasks 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Proposed Load-balancing Algorithm . . . . . . . . . . . . . . . . . . 71

4.2.1 OG-RADL System Overview and Background . . . . . . . . 71

4.2.2 OG-RADL System Architecture . . . . . . . . . . . . . . . . 72

4.2.3 OG-RADL System Model . . . . . . . . . . . . . . . . . . . 72

4.2.4 OG-RADL Performance Model . . . . . . . . . . . . . . . . 74

4.2.5 OG-RADL Algorithms . . . . . . . . . . . . . . . . . . . . . 75

4.2.5.1 OG-RADL Scheduler . . . . . . . . . . . . . . . . . 75

4.2.5.2 S-Scheduler . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Experimental Evaluation and Discussions . . . . . . . . . . . . . . . 78

4.3.1 Normalization of Evaluation Parameters . . . . . . . . . . . 79



xiv

4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 PSO-RADL: Particle Swarm Optimization based Resource and
Deadline Aware dynamic Load-balancer for Deadline Constrained
Cloud Tasks 88

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . 89

5.1.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . 90

5.2 PSO-RADL System Overview and
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 PSO-RADL System Architecture . . . . . . . . . . . . . . . 93

5.2.2 PSO-RADL Algorithm . . . . . . . . . . . . . . . . . . . . . 95

5.2.3 PSO-RADL System Model . . . . . . . . . . . . . . . . . . . 99

5.2.4 PSO-RADL Performance Model . . . . . . . . . . . . . . . . 101

5.3 Experimental Evaluation and Discussions . . . . . . . . . . . . . . . 102

5.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusions and Future Work 116

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Bibliography 121



List of Figures

1.1 Clouds and Grids overview . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Cloud Actors [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Cloud Architecture [4, 11] . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Levels of Cloud Scheduling . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Heuristics-based Task Scheduling Types in cloud [19, 36] . . . . . . 10

1.6 Meta-Heuristics based Task Scheduling Types in Cloud [19, 41] . . . 12

1.7 Makespan and Task Response Time based comparison Results . . . 14

3.1 Basic Architecture of Cloud . . . . . . . . . . . . . . . . . . . . . . 44

3.2 RADL Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Number and sizes of Cloudlets for Synthetic Workload and GoCJ
[59] dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Computation power of VMs . . . . . . . . . . . . . . . . . . . . . . 60

3.6 ARUR and Task Response Time results for Synthetic dataset based
executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Makespan and Task Rejection results for Synthetic dataset . . . . . 61

3.7 Makespan and Task Rejection results for GoCJ dataset . . . . . . . 62

3.8 ARUR and Task Response Time results using GoCJ datasets . . . . 62

3.9 Makespan and Task Rejection results using HCSP dataset . . . . . 63

3.10 ARUR and Task Response Time results using HCSP dataset . . . . 64

4.1 OG-RADL Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 OG using Synthetic Benchmark Dataset . . . . . . . . . . . . . . . 83

4.3 OG using GoCJ Benchmark Dataset . . . . . . . . . . . . . . . . . 83

4.4 OG using HCSP Benchmark Dataset . . . . . . . . . . . . . . . . . 84

5.1 PSO-RADL Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 ARUR results for Synthetic dataset . . . . . . . . . . . . . . . . . . 102

5.3 Makespan results for Synthetic dataset . . . . . . . . . . . . . . . . 103

5.4 Task rejection results for Synthetic dataset based executions . . . . 103

5.5 Task Response Time results for Synthetic dataset based executions 104

5.6 Penalty cost results for Synthetic dataset based executions . . . . . 104

5.7 Total Cost results for Synthetic dataset based executions . . . . . . 105

5.8 ARUR results for GoCJ workload-based dataset . . . . . . . . . . . 105

5.9 Makespan results for GoCJ dataset based executions . . . . . . . . 106

5.10 Task rejection results for GoCJ workload-based dataset . . . . . . . 106

5.11 Task Response Time results for GoCJ dataset . . . . . . . . . . . . 107

xv



xvi

5.12 Penalty cost results for GoCJ dataset based executions . . . . . . . 108

5.13 Total cost results for GoCJ dataset based executions . . . . . . . . 108

5.14 ARUR results for HCSP instances based dataset . . . . . . . . . . . 109

5.15 Makespan results for HCSP instances based dataset . . . . . . . . . 109

5.16 Task rejection results for HCSP instances based dataset . . . . . . . 110

5.17 Task Response Time results for HCSP instances based dataset . . . 110

5.18 Penalty cost results for HCSP dataset based executions . . . . . . . 111

5.19 Total Cost results for HCSP dataset based executions . . . . . . . . 112



List of Tables

2.1 Summary of the heuristic based cloud task schedulers . . . . . . . . 33

2.2 Summary of meta-heuristic-based task schedulers . . . . . . . . . . 36

3.1 Notations and definitions used in RADL technique. . . . . . . . . . 45

3.2 Computational complexity of scheduling algorithms . . . . . . . . . 56

3.3 Scheduling overhead analysis of algorithms . . . . . . . . . . . . . . 56

3.4 Simulation environment configuration . . . . . . . . . . . . . . . . . 57

4.1 Normalization results for NNGC Dataset . . . . . . . . . . . . . . . 81

4.2 Two step normalization results for NNGC Dataset [89, 96] . . . . . 82

5.1 Initialization parameters . . . . . . . . . . . . . . . . . . . . . . . . 94

xvii



Abbreviations

API Application Programming Interface

ARUR Average Resource Utilization Ratio

CDC Cloud Datacenter

CRM Customer Relationship Management

CSP Cloud Service Provider

CT Completion Time

dT Deadline of Task

ETC Expected Time to Compute

GoCJ Google Like Cloud Jobs

HCSP Heterogeneous Computing Scheduling Problems

MI Million Instructions

MIPS Million Instructions Per Second

OG Overall Gain

PM Physical Machine

RADL Resource-Aware Dynamic Load-balancer

RTL Rejected Task List

SMEs Small and Medium size Enterprizes

SPQ Suitable Position in VM tasks Queue

S-Scheduler Sub-Scheduler

sz Size of Task in MI

VM Virtual Machine

VMS Set/List of VMs in a Cloud data center

xviii



Symbols

Cloudlet Notation for a task in CloudSim

CTc Completion time of candidate task to be shifted

CTij Completion time of task Ti on VMj

dTc Deadline of candidate task to be shifted

dTi Deadline of task Ti

execTime Task execution time on VM

gbest Global best

gBestValue Global best value

gbFMap Global best based final hashMap

Heterogeneous VMs with different computation capabilities in MIPs

Itr Number of iterations

maxItr Maximum number of iterations

minCTij Minimum completion time of task Ti on VMj

MindTi A task with a minimum deadline in the task queue

newCTc Completion time candidate task after shifting

P Particle Position

pbest Personal best

pBestValue particle best value

pbMap Personal best based particle hashMap

pList Parameters list Velocity

TCT Task Completion Time Velocity

tList Tasks list Velocity

V Particle Velocity

VMRTMap HashMap that store VM ready time

xix



xx

W Inertia weight

PosTc Position of candidate task

vmQ Virtual machine Queue

newCTk Completion time of kth task lies behind

TETMap Task execution time Map



Chapter 1

Introduction

1.1 Overview of Cloud Computing

The idea of distributed computing [1] has emerged to enhance the processing ca-

pability of computers with evident benefits. Distributed computing covers both

traditional (non-service) oriented and services oriented [2, 3] computing paradigms

[4]. The distributed computing evolves into Grid, Cluster [5], and Cloud comput-

ing [1]. Grid computing links distinct computers to form a single infrastructure.

In [6], grid computing has defined as “a system that coordinates resources which

are not subject to centralized control, using standard, open, general-purpose pro-

tocols and interfaces to deliver nontrivial qualities of service”. Grid computing

work on collaboration based, having decentralized control, access is more trans-

parent to end user, hard to manage, having a rigid payment mode, and limited

support for Quality of Service (QoS) parameters [7]. Grid computing works for

service-oriented and non-service oriented applications. The fast development of

processing and storage technologies owing to the internet has made the computing

resources powerful, easily available and economical to use [8]. This rapid growth

in the technology has motivated the start of a new computing era known as Cloud

computing [8]. Cloud computing has evolved from Grid computing and is con-

sidered as a user friendly version of Grid computing [4] This is because Cloud

computing provide hardware level abstraction to the cloud users. Cloud comput-

1



Introduction 2

Distributed Computing

Supercomputers

Clusters Web 2.0

CloudsGrids

Application
oriented

Service
oriented

Sc
al

e

Figure 1.1: Clouds and Grids overview

ing is defined by [4] “A large-scale distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services are delivered on de-

mand to external customers over the Internet”. As compared to Grid computing,

cloud is a service-oriented computing paradigm which provide high level hardware

abstraction, simple, flexible and user-friendly computing environment.

Figure 1.1 shows overlapping relationship of clouds with other domains of dis-

tributed computing. Cluster computing and supercomputing focus only on tradi-

tional non-service oriented applications, however, supercomputing is highly scaled

than cluster and other computing paradigm. Web 2.0 covers the whole spectrum

of service-oriented computing paradigm. However, cloud computing covers large

scaled side of service oriented applications. Cloud computing has enabled end

users to use resources like CPU and storage for a particular time based on their

needs. In this model of computing, there are two key actors [6] (as shown in Figure



Introduction 3

Service
 Providers

Service
Users

Utilization Deployment/
Management

Service Service Service Service Infrastructure Interface

Infrastructure Management Layer

Virtualization Layer

Operating System Layer

Hardware Layer

Figure 1.2: Cloud Actors [6]

1.2) 1) Cloud Service Provider (CSP): cloud service providers deploy the resources

like storage and CPU etc. 2) Service users: Service users hire the services provided

by the service providers for their temporal needs.

Service providers use internet based-interfaces to make their services accessible to

service users. As compared to Grid computing [6, 9, 10], cloud computing provides

auto resizing of the virtualized hardware resources which need dynamic reconfig-

uration in an automatic manner. Infrastructure management interface [9, 11] is

an Application Programming Interface (API) [11] specification used for cloud in-

frastructure management. The infrastructure management layer, manage Cloud

infrastructure and act as bridge between user services layer and infrastructure

layers. Cloud infrastructure layer includes Virtualization layer, Operating system

layer, and Hardware layer.

1.1.1 Cloud Services Model

Cloud computing is highly adaptive for diverse needs. To meet these diverse re-

quirements, cloud computing model is implemented in various ways, using different

technologies, and provide a number of services [12] like:



Introduction 4

• Infrastructure-as-Services (IaaS)[11, 13, 14]

• Platform-as-Services (PaaS)[11, 13, 14]

• Software-as-Services (SaaS) [6, 13, 14]

In the last few years, cloud computing has a high impact on the industry of Infor-

mation Technology [8]. According to Gartner Predictions [15], the market revenue

of cloud infrastructure services will grow by 176% in 2021. Because of such bene-

fits of cloud [16], many companies like Microsoft 1, Google 2, and Amazon 3 have

started providing powerful, reliable and cost-efficient services to the customers.

In SaaS [14], the cloud Service Providers (CSP) provide special purpose softwares

to the cloud users (i.e., consumers) which are deployed and running on cloud In-

frastructure. Live Mesh from Microsoft and Customer Relationship Management

from Saleforce.com are examples of SaaS services. The online alternative to the

Microsoft office application i.e., word processor is an example of SaaS services.

In SaaS, cloud users are not responsible for the maintenance and management of

issues related to the cloud Infrastructure like servers, OS, Networks, development

and deployment tools and other applications [6, 13].

PaaS [14] is an other obstruction level offered by the CSP where consumer (cloud

user) deploy their own applications developed in any programming language that

is supported by CSP provided environment. In PaaS, the cloud user control de-

ployment, hosting, and configuration of user-created applications. Microsoft Azure

and Google App Engine are examples of PaaS services. However, in PaaS, cloud

users are not responsible for maintaining and managing the cloud Infrastructure

like managing OS, servers configuration, and Storages.

In Infrastructure-as-a-Service (IaaS) [11, 14], the Cloud service providers manage

and maintain a huge set computing resources such as processing and storage ca-

pacity. Virtualization of these resources enables Cloud service providers to split

physical resources and build dynamically resizable ad-hoc computing systems.

Moreover, virtualization provide scalability in terms of run-time lease and release

1https://azure.microsoft.com
2https://cloud.google.com
3https://aws.amazon.com



Introduction 5

of virtual resources and high level of customization according to the users require-

ments. The Cloud Service Provider (CSP) provide these scalable resources to the

consumers based on user demand.

In IaaS, the consumer acquires the CSP provided storage services, processing

power, network bandwidth, and other essential resource to run their operating

systems and other applications. In this model, consumer is not responsible for

managing physical infrastructure of the cloud. OpenNebula, Eucalyptus, Amazon

Web Services are the examples of IaaS services.

1.1.2 Cloud Architecture

User Infrastructure Layer

Servers, PC, tablet,  PDA  and Mobile devices

Internet

Cloud Application Layer

Social, Scientific, Enterprise, and academic
applications, 

Development and deployment environment, tools,
and middleware etc.

  Platform Layer

 Unified Resource Layer

pd2

VMs, pods & logical storage

Infrastructure Layer

pd1

   Cloud 

Figure 1.3: Cloud Architecture [4, 11]

Figure 1.3 depicts basic design of the cloud related environment. User infras-

tructure is considered as front end for cloud users. This component of cloud

environment comprises of user end servers, PCs, tablets, PDAs, Mobile devices



Introduction 6

etc. that is used by the cloud users to access the cloud computing system. Cloud

users connects to the Cloud through Internet. Cloud is categorized into four basic

layers [4] (shown in Figure 1.3).

Application Layer consists of applications that are directly available to the cloud

users. Cloud users are the active users that utilize the Software-as-a-Service (SaaS)

applications over the Internet. Cloud service providers may acquire these resources

and made available to the cloud user on pay-per-use mode. However, cloud users

either hire these applications like Customer Relationship Management (CRM)

softwares or deploy their own applications like e-research [17] and e-science [18]

among others [11].

Platform layer implement platform level services and provide runtime for hosting,

development, deployment,and managing user level services. The most important

services at this layer are services discovery, resource management, scheduling, and

load-balancing. Unified resource layer comprise of virtual machines, pods, and log-

ical/temporary storages. This layer provide abstraction of the physical resources

layer. Cloud Infrastructure layer consists of physical resources that includes physi-

cal storage devices and large number of host machines and/or servers. The number

of physical storages, servers, host machines depends on size of cloud datacenter.

1.1.3 Cloud Deployment Model

From deployment point of view, clouds computing environments are divided into

three different categories which include public cloud, private cloud, Hybrid cloud

[14]. This categorization is based on the type of ownerships and right to access

the cloud resources.

Public cloud resources are available to every interested users on the Internet and

on pay-per-use mode. Public cloud is used by small organizations and individuals

who need computing resources on ad-hoc basis. Its because these organizations

and individual can’t invest such huge amount for purchasing computing resource

for their ad-hoc use. On the other hand, large or medium size organizations and

governments offices provision public cloud resources for temporal usage along with

the maintaining their own private clouds due to the temporal variations on their



Introduction 7

service demands [11].

Just like public cloud, access to the private cloud is not available to every one on

the Internet. Private cloud is only accessible to cloud users within the organization

that own the cloud. Private cloud is own by the organizations and enterprizes like

banks etc that need massive computing resources on routine basis.

A hybrid cloud is combination of public cloud and private cloud. This model of

cloud is adopted by small and medium size of enterprizes and Govt. organizations

for their private use. Along with maintaining their own private cloud, these enter-

prizes use public cloud temporarily to handle temporal increase in the computing

resource usage. Hybrid cloud model is beneficial for govt. organizations and

Small Medium Enterprizes (SMEs) that need huge computing power and storage

at specific day and time [11].

1.2 Cloud Scheduling and Load Balancing

To deliver better services, there is a need to utilize the available cloud resources

in a balanced way [19]. This leads to the importance of selecting the preeminent

scheduling algorithm for allocating cloud resources. The main objective of the

cloud scheduling algorithms is to allocate a job or task to the most suitable cloud

resource.

1.2.1 Tasks Scheduling

There are two levels of mapping involved in the cloud (as shown in Figure 1.4). 1)

VM to host mapping that maps VMs on the underlying host machines and 2) Task

to VM mapping which allocates tasks to the respective VMs. This research focus

on tasks to VMs mapping, where the number and computation power of VMs are

pre-determined.Task scheduling is an important factor in cloud computing and a

principle means of resource allocation.

Task scheduling is the way of choosing the best suitable available resource and

is one of the most challenging issues in the cloud. The task scheduling affects

the performance of the cloud and needs to be optimized. The objective of task



Introduction 8

scheduling is to balance the load among different resources, improving the uti-

lization of resources, makespan, throughput, and to reduce tasks waiting time.

However, task scheduling becomes a more challenging problem when the number

of tasks and resources increases [19–22] and increase in the number of users re-

quests for limited computing resources.

VM 1 

Cloudlet to 
VM Mapping 

VM to host 
Mapping 

Cloudlet1 Cloudlet2 Cloudletn . . .
Application Layer 

. . . 
Virtualization Layer 

. . .
Physical Layer 

VM1 VM2 VMn 

Host1 Host2 Hostn 

Figure 1.4: Levels of Cloud Scheduling

Additionally, the infrastructure management interface layer of the cloud comput-

ing framework provides the facility to resize the virtualized hardware resources

that need dynamic and automatic reconfiguration [9, 11].

In cloud task scheduling, there is a possibility to assign a large-size task to a slower

VM that can increase the overall execution time of the cloud task. Moreover, as-

signing small-size tasks to faster VMs can increase the task-switching overhead,

waiting time for larger tasks, and increase the possibility of task rejection [23].

These problems reducing the overall performance [1] of the cloud and imbalance



Introduction 9

the load on VMs. Load balanced [1, 20] task scheduling [22] plays an important

role to enable optimal use of the cloud resources and load balancing is discussed

in section 1.2.2.

1.2.2 Load Balancing

Load balancing is the distribution of workload among a set of heterogeneous re-

sources according to their computation power. Load balancing is the mapping of

workload among a set of resources in such a way that all the resources complete

execution of the assigned workload nearly at the same time. It helps in achieving

better user satisfaction and improving higher utilization of cloud resource. Load

balancing can be at network level, host level and VM level. Network level load

balancing means distributing the incoming traffic evenly among different com-

munication channels to reduce unnecessary transmission delay. Host level load

balancing enables evenly distribution of workload among various physical host

machines. It helps in achieving high utilization of physical resources and avoids

over provisioning of any particular host machine.

1.2.3 Types of Task Scheduling

Several task scheduling algorithms have been proposed in the literature. To effec-

tively address the tasks scheduling challenges, task scheduling algorithms should

be based on a well-defined set of rules/constraints (heuristics) [24, 25]. These sets

of rules/constraints can problems specific or general. There are two broad cate-

gories of task scheduling that are Heuristic and meta-heuristic-based task schedul-

ing algorithms. Figures 1.5 and 1.6 show prominent categories and types of task

scheduling algorithms in cloud computing.

Heuristic-based algorithms are designed for tackling a specific problem and are

known as problem-dependent approaches [7]. The reason for using heuristic-based

approaches is that they find a satisfactory solution within limited time and more

efficiently. These algorithms are easy to implement and bear low computational

cost [26]. Heuristic-based [20] algorithms are more suitable for online mode of task



Introduction 10

scheduling as these tasks need a quick system response. Greedy algorithm is a type

of heuristic-based algorithm that tends to find a good solution for continuously

arriving tasks quickly [27]. The main objective of the heuristic-based algorithm is

to reduce the execution time without considering the cost [7].

Heuristics based cloud task scheduling approaches (as shown in Figure 1.5) are

categorized into three types.

1.2.3.1 Static Scheduling

Static scheduling [28, 29] is the simplest type of scheduling that maps all the tasks

before starting their execution. All information about active resources and jobs

must be known in advance to allow allocation of tasks to resources.

Cloud Task Scheduling 

Static  Batch Dynamic Dynamic

Min-Min

TASS

CCA

RALBARS

Round Robin

MCT

Max-Min HBLBA

DLBA

RePro-Active

Dy-Max-Min

DC-BLBA

Figure 1.5: Heuristics-based Task Scheduling Types in cloud [19, 36]

In static scheduling, once a set of tasks are mapped to the corresponding VMs,

their mapping will remain unaltered until the completion of the assigned tasks

(the tasks once assigned to the VMs cannot be revoked or altered at run time).

Moreover, most of the classical [8, 23, 30, 31] and state-of-the-art static scheduling

heuristics [1, 8, 10, 19, 32, 32, 33, 33–35] suffer from issues like poor resource

utilization, load imbalance, and unable to meet the deadline constraints for the

real-time tasks.



Introduction 11

1.2.3.2 Batch Dynamic Scheduling

Batch dynamic scheduling techniques [1, 10, 37] map a batch of tasks on a prede-

fined number of VMs. All tasks in a single batch are statically mapped to VMs

before their execution starts. The number of VMs can be changed (increased or

decreased) for the next batch based on the computation requirements of a batch.

These task mapping approaches result in issues like delayed response time for the

new batch formation (i.e., the task which arrives first will have to wait till the

formation of the complete batch) and inter-batch under-utilization of resources

(i.e., in circumstances where the execution of the first batch is finished and the

next batch not formed yet).

In batch dynamic scheduling, tasks of new batches are allocated to virtual ma-

chines without considering the current workload of these resources. Therefore,

the newly created virtual machines for the latest batch can finish the assigned

workload earlier than the existing virtual machines that are busy in executing the

previous workload. In batch dynamic based scheduling heuristics, if a task with

shorter deadline than the already mapped tasks arrives in later batches, and all

the VMs are already overloaded, the newly arrived task will have to wait until the

completion of already mapped tasks. This results in violation of task deadline and

high task rejection ratio.

Most of the batch dynamic scheduling heuristics [19, 34, 35, 37, 38] provide dy-

namism at the batch level only and suffer from issues related to batch formation

delays, and under-utilization of resources (during the batch formation).

1.2.3.3 Dynamic Scheduling

Dynamic scheduling mechanisms are much more flexible than the previously de-

scribed categories [23, 28]. Dynamic schedulers have the capability to check, es-

timate, and update the VMs load during the execution of the tasks either in the

reactive or proactive manner [19]. These schedulers can allow prioritization and

migration [33, 38] of the already assigned tasks. Moreover, the dynamic schedul-

ing mechanisms generally have the capability of new VMs creation [20, 34, 39],



Introduction 12

removal the existing VMs and migration of VMs [40] at run time. However, a

number of the existing dynamic scheduling approaches [23] still use an interval-

based temporal batch of input tasks that arrived during a particular time period.

Majority of the existing dynamic algorithms [19, 20, 33] suffer from the issues

like lower resource utilization, load imbalance, and high rejection ratio for the

deadline-based tasks[19, 21, 32, 33, 41]. Moreover, most of these approaches do

not consider tasks deadlines [33, 34] and lack the task shuffling mechanism to

accommodate deadlines.

Scheduling
Algorithms	

Heuristics Meta-Heuristics

Evolutionary Bio-Heuristics Non-Bio-Heuristics

Based	on	SignBased	on	Imitation

ACO

BCOCSO

COA

PSO

RRO

CSO

BCO

Figure 1.6: Meta-Heuristics based Task Scheduling Types in Cloud [19, 41]

1.2.3.4 Meta-heuristic Algorithms

As compared to heuristics-based approaches, Meta-heuristic [25] algorithms are

problem independent (shown in Figure 1.6). Meta-heuristic algorithms are de-

signed in such a way that can be applied to more than one type of problem.

These algorithms are applicable to various domains with optimal performance.

Meta-heuristic based algorithms follow a standard set of procedures to solve the



Introduction 13

problem. Currently Meta-heuristic algorithms are used for solving problems in

various domains like health care [42], diagnosing diseases [42], stock analysis [43],

academics [39], fraud and intrusion detections, feature selection [44], solving real-

world engineering problems [45], pipe and road problems [45], data classification

[46] distributed computing and cloud computing [7]. Meta-heuristic algorithms are

classified as Trajectory based (i.e., Simulated Annealing (SA) among others) and

population-based like Particle Swarm Optimization (PSO). The most prominent

meta-heuristic based task scheduling algorithms include Ant Colony Optimization

(ACO) [47, 48], Bee Colony Optimization (BCO), Raven Roosting Optimization

(RRO) [49] algorithms, Improved Raven Roosting Optimization (IRRO) [41], Cat

Swarm Optimization (CSO) [50], Chicken Swam optimization (CSO)[51], Genetic

Algorithm (GA) [52, 53], Particle Swarm Optimization (PSO) [7, 26, 54, 55], hon-

eybee foraging [56], and Simulated Annealing (SA) [57]. ACO based meta-heuristic

algorithms have better optimization at early stages, however, the convergence rate

of ACO is comparatively slower. As compared to GA, PSO has an easy imple-

mentation, fast convergence, and better optimization performance. Particle swarm

optimization based algorithms are more popular among these meta-heuristic based

algorithms due to its effectiveness for a broad range of applications, simplicity, fast

convergence, and easy implementation. Moreover, PSO based algorithms have a

sound natural computation background along with better performance.

Computational time is the most important factor in task scheduling in the cloud.

Its because cloud is a dynamic computing environment and the cloud scheduling

algorithm should be fast enough to be adopted in the real cloud environment.

Moreover, these algorithms should provide an optimized solution with fast con-

vergence.

1.3 Motivation

Cloud computing has evolved from distributed computing and become an effective

computing platform [4]. Cloud computing allows parallel execution of user’s tasks

using Virtual Machines (VM). A virtual machine is the processing unit of the cloud

that enables faster execution of user’s tasks and reduces task response time [58].



Introduction 14

To observe the behavior and effect of using a single VM on a single host machine

against multiple VMs on the same single host, several experiments have been

performed. For these experiments, 100, 250, 500, 750, and 1000 tasks have been

used and compared Single Host Single VM (SHMV) and Single Host Multiple VMs

(SHMV) in terms of total execution time (makespan) and average task response

time (as shown in Figure 1.7).

  
a b 

 

0

1500

3000

4500

6000

7500

9000

100 250 500 750 1000

M
ak

es
p

an
 (

Se
c)

 

Number of Tasks 

SHSV

SHMV

0

1500

3000

4500

6000

7500

9000

100 250 500 750 1000

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e 
(S

e
c)

 

Number of Tasks 

SHSV

SHMV

Figure 1.7: Makespan and Task Response Time based comparison Results

The experimental result presented in Figure 1.7 shows that SHMV has outper-

formed in all sets of tasks as compared to SHSV. These results reveal that has

attained up to 153% and 215% reduced total execution time (as shown in Figure

1.7 (a)) and average task response time (as shown in Figure 1.7 (b)) respectively.

However, balancing the load on the multiple VMs and efficient utilization of vir-

tual resources become more challenging with the increase in the number of VMs

used for parallel execution of user’s tasks. To overcome these challenges, the

role of task schedulers becomes more important. Therefore, this research focuses

on improving the performance of cloud task schedulers in terms of meeting user’s

QoS requirements like minimized makespan, enhanced average resource utilization

ratio, reduced task response time, and improved meeting task deadline.

1.4 Problem Statement

The task scheduling aims to enhance user satisfaction by early execution of users’

tasks and to improve utilization of cloud resources. The task scheduling becomes



Introduction 15

more challenging when the number and diversity of user requests (tasks) increase

and to map these tasks on limited computation resources. To overcome the chal-

lenges of tasks scheduling, a number of task scheduling techniques have been

proposed by different researchers (as presented in chapter 2). These scheduling

techniques can be static, batch dynamic, and dynamic.

Static scheduling approaches assign tasks to the VMs statically i.e the tasks once

assigned to the VMs can’t be revoked or altered at run time. These approaches are

unable to dynamically handle any delay in the execution of a particular task. Most

of these heuristics suffer from issues like poor resource utilization, load imbalance

[1, 23, 33, 38, 59], unable to meet the deadline of newly arrived deadline-based

tasks, and the overall performance gain not supported.

Batch dynamic scheduling [1] heuristics provide dynamism at the batch level. In

batch dynamic approaches, the number of VMs can be changed for the new batch

based on the computation needs of the new batch. However, these approaches suf-

fer from issues like 1) New batch formation-based tasks response time delay where

the tasks which arrive first will have to wait till the formation of the complete

batch, 2) Inter-batch under-utilization of resources where the execution of the

first batch is finished, however, the next batch is not received. In batch, dynamic

approaches tasks in new batches are assigned without considering the incomplete

tasks of the previous batch where newly created VMs can finish their assigned

tasks early than others. This results in the under-utilization of resources. Tasks

with shorter deadlines will suffer when VMs are already overloaded and overall

gain not computed.

Dynamic scheduling algorithms provide more flexibility than static task scheduling

and batch dynamic scheduling algorithms. Dynamism can be achieved in many

ways like real time or just-in time based task mapping, run time lease and release

of VMs, self adaption, task migration, task sequencing, and updation of VMs

status among others. However, majority of the existing dynamic task scheduling

approaches [19, 20, 33] still use an interval-based set/group of input tasks arrived

during a particular time period. Therefore, these approaches also suffer from is-

sues like new batch formation based response time delay and under-utilization of

Cloud resources.



Introduction 16

These approaches have the issue like under-utilization of cloud resources, load im-

balance, and high task rejection ratio [33, 34]. Most of these approaches do not

consider tasks deadlines [19, 21, 32, 33, 41], task shuffling, and overall performance

gain of the Cloud. Moreover, majority of these approaches are not resource aware.

To overcome issues like under-resourced utilization [19–21, 35], load imbalance [19–

21, 35], high makespan [33], mapping of deadline-based tasks [19, 21, 32, 33, 41],

and high tasks rejection ratio [33, 34], there is a need to develop a resource-aware

cloud scheduler that should have the capabilities to distribute the incoming work-

load in a balanced manner, improve the resource utilization, and minimize the

makespan.

This is because the resource aware schedulers have the ability to distribute the

workload according to the computation capacity of the computing resources and

update the resource load at run time. Moreover, the proposed scheduler will be

capable to accommodate the newly arrived tasks with shorter deadlines than the

deadlines of already mapped tasks and reduce the tasks rejection ratio using the

existing cloud resources.

1.5 Research Questions

1. How to distribute the incoming workload in a dynamic and balanced manner

to improve cloud resource utilization with minimized makespan?

2. How to minimize the response time of incoming deadline-constrained tasks?

3. How to map the newly arrived deadline-constrained tasks to meet the dead-

lines and to reduce task rejection ratio?

4. How to improve overall performance of the Cloud?

These questions has been answered in the subsequent chapters. Questions 1, 2,

and 3 have been answered in chapters 3 and 5. Chapter 4 presents answers of

research question no 4.



Introduction 17

1.6 Objectives and Significance

Cloud has become an attractive computing paradigm for both Cloud Service

Providers (CSP) and cloud service users. According to the Gartner [15] fore-

casts, the market revenue of cloud Infrastructure services will grow up to 176% by

2021. Moreover, Gartner predicts that the end-users public cloud spending will

increase by 168 million US dollars in 2022 and in 2026 the public cloud spending

will be more than 45% of all Information Technology (IT) spending [60]. This

will increase user’s resource demand and meeting cloud user’s Quality-of-Service

(QoS) needs become more challenging.

To get the full benefit of cloud resources and acquire high user satisfaction by exe-

cuting user tasks within the deadline, CSPs required efficient task scheduling algo-

rithms. For this purpose different task scheduling heuristics have been proposed in

the literature in which under-resourced utilization and load imbalance are the key

performance issues. Moreover, high task rejection is another important factor for

cloud user’s dissatisfaction. To address these issues, there is a need for improved

cloud tasks schedulers which have the capability to achieve higher resource utiliza-

tion, load balance, and scheduling for newly arrived tasks with shorter deadlines.

To achieve these objectives, heuristics, and meta-heuristics based task scheduling

algorithms can be used. However, as compared to meta-heuristics, heuristic-based

approaches are simple, fast, and have easy implementation.

The heuristics-based task scheduling algorithm is considered more suitable for pro-

viding fast and near-optimal solutions for non-conflicting scheduling objectives.

According to the assumption of RADL technique (supported by the literature

study) that the scheduling objectives like ARUR, makspan, task response time,

and task rejection ratio are non-conflicting. This is because by improving any of

these objectives may not directly affect the performance of others. Therefore, a

heuristic-based task scheduling technique has been used to achieve these objec-

tives.

1.7 Research Contributions

The major contributions of this research are:



Introduction 18

• In-depth critical analysis of static, batch dynamic, and dynamic state-of-the-

art heuristic-based task scheduling approaches to identify the strengths and

limitations of these approaches. Moreover, a rationalized descriptive review

and critical analysis of state-of-the-art meta-heuristics based task scheduling

algorithms to identify their application types, scheduling objectives, and

limitations of these algorithms.

• Empirical evaluation of the state-of-the-art heuristic-based tasks scheduling

algorithms has been performed. Moreover, experimental evaluation of most

prominent and state-of-the-art inertia weight strategies for particle swarm

optimization based algorithms. The detailed literature survey and empirical

evaluation presented in this work (shown in chapter 2) provide a baseline for

the resource-aware dynamic load balancer for cloud computing.

• A novel heuristics based dynamic load-balancing scheduler for independent,

non-preemptive, and compute-intensive cloud tasks that produce improved

resource utilization, reduced task rejection, lower makespan, minimized re-

sponse time, and overall performance gain of the cloud datacenter (presented

in chapter 3 and 4).

• A Particle Swam Optimization (PSO) based novel dynamic load-balancing

scheduler for non-preemptive, independent, and compute-intensive tasks-

based cloud workload that produces lower task execution time, improved

resource utilization, reduced task rejection, and minimized tasks response

time.

• Multi-objective based task mapping framework for conflicting parameters

like task deadline, task response time, makespan, and cost (presented in

chapter 5).

• PSO-RADL scheduling scheme has been proposed for minimizing the tasks

penalty cost and tasks execution cost of virtual machines for the Cloud

datacenter (discussed in chapter 5).

• A novel inertia weight strategy named Leaner Descending and Adaptive

Inertia Weight (LDAIW) is designed and developed that improves the per-



Introduction 19

formance of PSO-based algorithms concerning makespan, throughput and

ASRUR.

• A novel normalization technique for computing overall performance gain of

the cloud that overcomes the limitations of state-of-the-art normalization

approaches (chapter 4, Section 4.3.1).

• Empirical investigation and performance evaluation of the proposed schedul-

ing approach against state-of-the-art scheduling heuristics (chapters 3, 4, and

5, Sections 3.3, 4.3, and 5.3 ). Experimental results reveal that the proposed

approach outperform as compared to state-of-the-art task scheduling algo-

rithms in term of higher resource-utilization, lower task rejection, improved

makespan, minimized task response time, task penalty cost and tasks exe-

cution cost, and improved overall gain.

1.8 Research Evaluation

To empirically evaluate the performance of the proposed approach, the Cloudsim

[11, 61] simulator has been used. Cloudsim is a renowned open-source Java-based

simulator used for performance analysis and modeling of cloud environment and

services. The reason for using simulation environment is that using real cloud en-

vironment for evaluation of the proposed approach is costly and sometime need ex-

pert to configure the cloud environment. Moreover, performing evaluation in real

cloud environment incur high monitory cost. This limits the thorough evaluation

of the proposed and other contemporary approaches. Similarly, reconfiguration

and maintaining a variety of heterogeneity levels even become more expensive.

Our implementation extends some of the existing classes like Datacenter, Broker,

and cloudlet of cloudSim simulation environment. For experiments, three scien-

tific benchmark datasets are employed which has been published in RALBA [1],

GoCJ [59, 62], and HCSP [62]. The first benchmark datasets named as Synthetic

Work-load [1], which comprise of tasks with different sizes (in MIs) and VMs with

heterogeneous computation capability (in MIPs). The second benchmark dataset

is a Google like realistic workload published in GoCJ [59] (as shown in Figure 3.3



Introduction 20

(b)). The third benchmark dataset HCSP [62] is an Expected Time to Compute

(ETC) model in the form of HCSP instances. A simulation environment for all

experiments of Synthetic Work-load based and GOCJ benchmark datasets con-

sists of 50 VMs, 30 hosts, and a Datacenter [1]. The simulation environment used

for HCSP comprises of 16 Virtual Machines, 30 host machines, a Datacenter.

A number of influential parameters has been used for evaluating and comparing the

proposed scheduling algorithm. These evaluation parameters include makespan

[1, 19, 34, 35, 63], %age of task rejection [34], Mean ARUR [1, 19, 22, 33, 63],

average response time [19, 29, 33, 35], penalty cost [26], and total tasks execution

cost [26]. However, most of the time improving one evaluation parameter may

effect the performance of other i.e., executing tasks with shorter deadline before

tasks with longer or no deadline can increase response time of tasks with longer

deadline. This increases the importance to evaluate the overall performance of task

scheduling algorithm as well. Overall performance represents the combined effect

of the scheduling algorithm for more than one evaluation parameter (inversely

related ones). To compute the overall performance of the cloud tasks scheduling

algorithms, the results of different parameters need to be normalized. In [36], we

have proposed a novel normalization technique for cloud task scheduling which

overcome the limitations of state-of-the-art normalization techniques (as shown in

equation 4.6 [36]).

1.9 Thesis Organization

The rest of the document is organized as follows:

Chapter1:

Chapter1 presents an overview of cloud, cloud services model, cloud Architecture,

cloud deployment model. Task scheduling levels and types i.e., heuristics (static,

dynamic, batch dynamic) and meta-heuristics have been discussed in chapter1.

This chapter also describes task scheduling issues, problem statements, and re-

search objectives. The contribution of this research is also part of chapter1.

Chapter2:

Chapter 2 provides detail of existing state-of-the-art cloud task scheduling algo-



Introduction 21

rithms and highlight limitations and task scheduling issues in cloud Computing.

Moreover, this chapter also discusses various types of scheduling algorithms (i.e.,

heuristic and meta-heuristics based), scheduling objectives, strengths, and limita-

tions of state-of-the-art task scheduling algorithms. Furthermore, the summary

and gaps in the studied literature have been discussed in chapter 2.

Chapter3:

Chapter 3 presents the first contribution of this thesis i.e., RADL scheduling tech-

nique. Chapter 3 also delineates RADL system architecture, RADL system model,

RADL algorithm, complexity analysis, and scheduling overhead analysis of RADL

scheduling approach. The experimental setup, workload generation, performance

evaluation, and simulation results of RADL scheduler are discussed in chapter 3.

Chapter4:

Chapter 4 presents the second contribution of this thesis i.e., OG-RADL schedul-

ing technique. Chapter 4 also discusses the system architecture, system model,

OG-RADL algorithm, complexity analysis, and scheduling overhead. The exper-

imental setup, workload generation, performance evaluation, and results of OG-

RADL scheduler are discussed in chapter 4.

Chapter5:

The third contribution of this thesis i.e., RADL-PSO scheduler has presented

in chapter 5. Chapter 5 also delineates the system architecture, system model,

RADL-PSO algorithm. Chapter 5 presents the experimental setup, workload gen-

eration, performance evaluation, and results of PSO-RADL.

Chapter6:

Chapter 6 concludes the thesis and presents potential future directions.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents state-of-art task scheduling algorithms in cloud computing

and critically analyzed them by highlighting their strengths and weaknesses. Task

scheduling is a significant element of the cloud environment and a challenging

task especially when a large number of tasks need to be mapped efficiently on

limited Cloud resources. Task scheduling is considered as an NP-hard problem

[19, 20, 63]. To solve such problems, a number of heuristics and meta-heuristics

based scheduling algorithms proposed in the literature. Some of these algorithms

have been shown in Figures 1.5 and 1.6.

Heuristic-based task scheduling approaches provide near-optimal solutions for non-

conflicting parameters in cloud computing. These algorithms have simple imple-

mentation and lower scheduling complexity and scheduling overhead. The non-

conflicting parameters like makespan and throughput among others are the pa-

rameters where improving one parameter may not directly affect the performance

of other parameters.

Meta-heuristics based task scheduling algorithms are problem independent tech-

niques and can be applied to various domains. These schedulers are considered

more suitable for optimizing multi-objective optimization problems with conflict-

ing parameters like execution time, tasks deadline, tasks execution cost in cloud

22



Literature Review 23

computing.

2.2 Heuristic based Cloud Task Schedulers

Heuristic-based task scheduling approaches provide near-optimal solutions for non-

conflicting parameters in cloud computing. These algorithms have simple imple-

mentation and lower scheduling complexity and scheduling overhead.

2.2.1 Static Scheduling Heuristics

Static task scheduling heuristics map all the tasks to VMs before starting tasks

execution and the tasks once mapped to VMs cannot be altered during the tasks

execution. The newly arrived tasks will have to wait for scheduling until the exe-

cution of already mapped tasks is completed.

Fist-In-First-Out (FIFO) is one of the simplest task scheduling heuristics in cloud

computing. This technique allocates tasks to the Virtual Machines (VM) using

First-Come-First-Out(FIFO) basis. FIFO [23] has less scheduling overhead and

simple implementation. However, if tasks with large size (that need a longer time

for their execution) are received before the smaller tasks then the smaller tasks

received in later stages will have to wait for a longer time. This increase response

time of newly arrived deadline-based task and may lead to deadline violation.

Moreover, the long wait of user tasks can negatively impact the user experience

and lead to high penalty costs for deadline violations.

One of the simplest heuristic is Opportunistic Load Balancing (OLB) that allocates

tasks to VMs in an arbitrary manner without considering the VMs computation

power and already assigned workload [64, 65]. OLB has a simple implementation,

low complexity, and minimal scheduling overhead as compared to other scheduling

heuristics. OLB scheduling algorithm randomly selects available VMs and assigns

tasks to the selected VMs without considering there expected completion time.

This results in high makespan and poor resource utilization.

Another basic heuristic is known as Round Robin (RR) [66] that distributes the



Literature Review 24

incoming workload in circular order on predefine number of VMs. RR has mini-

mum scheduling overhead, simple implementation, and lower complexity than the

other task scheduling algorithms. However, RR assigns tasks to the VMs in cir-

cular order irrespective of the VM computation power and task size (causing load

imbalance) [1].

Minimum Completion Time (MCT) [67] algorithm allocates a candidate task to

the VM which results in lowest completion time for the task. MCT considers

already assigned workload allocated for finding the appropriate VM for the ex-

ecution. As compared to the RR and RS scheduling heuristics, MCT improves

resource utilization and reduces makespan. However, MCT assigns more tasks to

the faster VMs and slower VMs remain idle which result in load imbalance [1].

Moreover, assigning more tasks to the already over-loaded machines degrades the

performance of those VMs [59, 62].

Max-Min [68] scheduling is based on MCT which assigns a task to the VM that

promises minimum expected completion time for that task. Max-Min schedul-

ing heuristic initially takes a set of unscheduled tasks and VMs, and completes

the scheduling process in two steps: 1) finds the earliest finish time for a task

using all VMs; 2) selects the task with a maximum earliest finish time for map-

ping to the concerned VM. On each scheduling step, the heuristic removes the

mapped task from the tasks list and updates ready time of the VM. The Max-

Min approach favors larger jobs and penalizes smaller jobs. Moreover, Max-Min

scheduling heuristic suffer from load imbalance issue for workload with a high

number of large-sized tasks [1].

2.2.2 Batch Dynamic Scheduling Heuristics

In Batch dynamic task scheduling a set of task is collectively mapped to VMs

although the execution previous batch is not completed.

A Resource-Aware Load Balancing Algorithm (RALBA) [1] provides a balanced

distribution of workload according to the VMs computation capability. RALBA

is a batch dynamic scheduling technique which maps a batch of independent and

non-preemptive jobs on predefined number of VMs. RALBA works in two phases.



Literature Review 25

In phase1, the tasks are assigned to the VMs based on their computation capacity

and computation requirement of the tasks. The second part of the proposed algo-

rithm assigns the remaining tasks to the VMs which give the earliest finish time

for executing the task. RALBA claims to achieve high resource utilization as com-

pared to the existing static scheduling algorithms. However, it suffers from the is-

sue like new batch formation-based processing delay, inter-batch under-utilization

of the resources and unable to accommodate jobs with deadlines.

Kong et al. [69] have presented a heuristic-based load-balancing technique with

zero imbalance mechanism in a cloud computing environment. The working mech-

anism of the proposed approach considers VM completion time, data transfer

bandwidth of VMs, task execution time, and earliest finish time criteria for task

scheduling and load balancing. This technique consists of task mapping along

with load balancing without involving any priority method. The reason is that

including priority methods can increase the computation overhead and can reduce

the efficiency of the scheduling algorithm. The proposed approach is evaluated

against their counterparts in terms of resource utilization, makespan, and waiting

time using the cloudsim toolkit.

Praveenchandar and Tamilarasi [70] have presented an efficient resource allocation

and task scheduling scheme has proposed. The proposed approach aims to opti-

mize the power consumption of cloud data centers, reduce task completion time,

and improve task response time. The proposed approach receives input tasks

in the form of batch and is implemented using a renowned Cloudsim simulator.

However, resource utilization, task deadline are not considered.

2.2.3 Dynamic Scheduling Heuristics

Mao et al. [33] has proposed the Max-Min based elastic task scheduling algorithm

(ECMM) for load balancing. Max-Min algorithm uses the task and VM status

tables to estimate the execution time of tasks and performs real-time load bal-

ancing of VMs. VM status table shows the status of VMs which include tasks,

VM Id, number of assigned tasks, execution time, VM life-cycle status, etc. Sim-

ilarly, the task status table contains task Id, VM Id, task execution time, task



Literature Review 26

completion time, and last update time. The incoming tasks are split into different

batches based on time interval and allocate tasks to the VMs using the Max-Min

approach without considering task migration and deadlines. Additionally, the em-

ployed approach is unable to achieve improved resource utilization, load balance,

and minimized makespan.

A task migration-based scheduling algorithm named TM-eFCFS is proposed by

Panwar and Negi in [38] that employs First Come First Serve heuristic as the

base algorithm. To achieve faster execution and minimized the makespan, this

approach uses non-live migration of tasks in the queue (waiting for the execution

turn) or partially executed task to fastest idle VMs. The proposed approach com-

prises of two algorithms. 1) The algorithm selects incoming tasks and assigns them

to the VM which provide Earliest Completion Time (ECT) and update VM ready

time. The second algorithm performs task migration in which the unprocessed

or partially processed tasks already assigned to the slower VMs are migrated to

a faster machine (employing preemption mechanism). The first algorithm assign

tasks based on early completion time and overloads faster VMs. Idle or slower

VMs are not considered for the task migration resulting in unbalanced distribu-

tion of workload that causes poor resource utilization [32].

Chen et al. [30] proposed a fuzzy control theory-based dynamic resource scheduling

technique. This approach predicts the number of concurrent compute-resources

required by the users using the historical information, i.e., a number of earlier re-

quested resources, resource types, and the number of online users. The data center

monitors the utilization of resources in real-time. This model is used to ensure

efficiency, availability of cloud resources, and avoid system overload at peak time.

The proposed approach relies on feedback and prediction model; however, such a

prediction model is based on the historic resource scheduling information which is

difficult to maintain.

In [35], time-efficient dynamic threshold-based load balancing technique has been

proposed that targets to avoid tasking allocation to overloaded VMs [20]. In this

approach, a newly arrived task is assigned to a VM only if the current load of that

VM is less than a predefined threshold. The proposed algorithm also performs

task migration for assigning services to the high priority task. When tasks with



Literature Review 27

short deadlines arrive, they are assigned to the fastest machine without consider-

ing the slower machines with minimum load. Dynamic Load Balancing Algorithm

(DLBA) uses a threshold to check the VM for overloading; however, this approach

ignores the under-utilized VMs, which reduce resource utilization and increase

load imbalance. Also, the task rejection ratio is higher because the approach does

not accommodate jobs considering the deadlines.

A two-stage strategy has been proposed [23] to minimize load imbalance and im-

prove task scheduling performance. The first stage uses the historical scheduling

data to classify the tasks using the one of the machine learning classifiers. The

use of historical scheduling information helps to create a specific number of VMs

types in advance to save the time of VM creation at runtime. In stage 2, the dy-

namic task scheduling algorithm is proposed for assigning the matched task to the

corresponding VM. The key contribution of this paper is to reduce the time cost

by creating VMs beforehand and employing the historical scheduling information.

Moreover, the task requirements like task deadline and cost are not considered

leading to the reduction in the completion time of tasks as well as load of the

VMs. However, the history of past activities is not easy to maintain and process

in order to make future decisions. Moreover, the accuracy of the obtained predic-

tion may not be satisfactory [19, 59, 62].

Chen et al. proposed a dynamic annexed balance method [32] known as Cloud

Load Balancing (CLB). The proposed CLB architecture consists of five differ-

ent levels that, 1) represents the users of the cloud service request, 2) consists

of cloud Load Balance Monitoring Platform (CLBMP) that checks service status

(i.e. online or offline), determine load of all services, 3) is a Cloud Load Balance

Distribution Platform (CLBDP) which receives users’ requests and is assigned to

the hosts, 4) represents the server load information database and also store Prior-

ity Service (PS) value of each host, and 5) consists of cloud server which provides

storage from the cloud-service pool and responds to user requests. For monitoring

the platform, a cloud load-balancing algorithm is employed to get a load of the

hosts, PS value, and computer power, and store them in the database. CLBDP

receive users’ requests for cloud services and shifts them to the hosts using polling

(round-robin based) method.



Literature Review 28

In [19], Simulation-Based Optimization (SBO) scheduling framework, named as

RePro-Active has been proposed, which executes periodically. This approach

solves issues like dependency on information on past activities and maintaining

historical information. The algorithm starts from current conditions (rather than

relying on the history data) and uses the SBO technique that tries to simulate

possible prospective events to make better decisions. Although, it avoids depen-

dency on the historical information; however, this approach results in low Average

Resource Utilization Ratio (ARUR) as compared to Min-Min scheduling heuristic

and load imbalance.

Heuristic-Based Load Balancing Algorithm (HBLBA) [20] employs configuration

of host servers and tasks to VMs mapping. The aim of the host server configu-

ration is to create the required number and types of VM instances to serve the

batch of the incoming tasks. The input tasks are stored in decreasing order. To

reduce the waiting and completion time of the tasks, a queuing model has been

adopted for task-to-VM mapping. The length of the host server queues is fixed

and the queue length of VMs is dynamic. The key metrics used for evaluation

are the waiting time, makespan, Scheduled Length Ratio (SLR), CPU utilization

of hosts, and VMs. The proposed approach receives tasks in batch mode which

results in two issues like batch formation-based response time delay and lower

resource utilization. The proposed algorithm allows creating as many instances of

hosts with the highest computation power as the data center allows. The slower

hosts remain idle due to the unavailability of computing power required for a VM,

which give rise to low resource utilization and load imbalance problems.

Kumar and Sharma [34] proposed a deadline constrained dynamic scheduling al-

gorithm which provides scalability by adding and removing VMs at run time.

VMs are added based on the average number of the rejected tasks. When tasks

are scheduled on the VMs then the task migration is performed from Overloaded

VM (OVM) to Under-loaded VM (UVMs). Load and capacity of each VM are

calculated before task migration. The OVMs and UVMs are identified and sorted

in descending and ascending order respectively. The threshold of the overloaded

and underutilized VMs are taken from the existing approaches and fine-tuned by

performing experiments. At the end of each interval, some of the under-loaded



Literature Review 29

VMs are removed based on the average number of UVM. If the number of rejected

tasks is high then the number of new VMs created is higher than required. The

creation of unnecessary VMs increase scheduling overhead, load imbalance issue,

and resources under-utilization issue. Furthermore, the task rejection ratio is high

and the rejected tasks are not reconsidered for re-scheduling.

To reduce makespan and increase the number of tasks that meet their deadlines,

[71] has proposed a flexible and elastic task scheduling algorithm in cloud comput-

ing. The algorithm has the capability to automatically scale-up and scale-down

based on the incoming requests from the service users. Architecture of the pro-

posed approach comprises of components like controller node/scheduler, load an-

alyzer, Elastic Load Balancer (ELB), and a component that perform provisioning

and de-provisioning of cloud resources.

In [72], Wang et al. have focused on the parallel execution of deadline-based tasks

to improve the performance of cloud task scheduling. In the first phase, dead-

line aware task scheduling is modeled as an optimization problem and focused on

the overall utilization of computing resources. Moreover, Wang et al. have pro-

posed parallelism-awareness-based scheduling methods that are quickly allocated

as much as possible resources iteratively to the tasks with shorter deadlines. How-

ever, the proposed approach not considering the overall performance gain of cloud.

ControCity a controlling and elasticity-based model has been presented by Ghobaei-

Arani et al. [73]. The proposed framework manages the elasticity by using two-

component called ”elasticity management” and ”buffer management”. The buffer

management works at the application layer and manages the user input queue.

The elasticity manager manages the elasticity of the cloud platform using the

learning automaton technique. The proposed approach is implemented and evalu-

ated using a cloudsim simulator using ARUR and task response time as evaluation

parameters. However, makespan and task deadline not considered.

Alworafi and Mallapa [74] have presented a Quality of Service (QoS) based model

for executing user’s tasks on VMs and is named as Deadline and Budget Schedul-

ing (DBS). The proposed approach aims to reduce total task execution time

(makespan) and task execution cost. Based on the user’s needs, the input tasks

are categorized into three different levels. The user’s tasks with cost and budget-



Literature Review 30

constrained are assigned high priority, tasks with cost-constrained are marked as

a fair priority, low priority is assigned to tasks with budget requirements only.

Makespan and cost were used as evaluation parameters for the proposed approach

as compared to their counterparts. The cloudsim simulator is used to implement

and evaluate the proposed approach using a randomly generated set of indepen-

dent tasks. However, ARUR, task response time, task rejection are not considered

for the evaluation of DBS.

The elastic scheduling algorithm for micro-services has been proposed [75]. The

proposed approach uses an on-demand model to combine auto-scaling and task

scheduling in the cloud environment. An urgency based workflow scheduling is

proposed that map tasks and identifies the quantity and type of instances to be

scaled-up. The utilization of resources, tasks deadline, and virtual machine cost

is considered as scheduling objective for the streaming-based workload of micro-

services. However, the overall performance of the cloud is not considered.

In [76], Yazdanbakhsh et al. have proposed a Multi-Objective scheme for Dynamic

scheduling with Elastic cloud resources (MODE). MODE has the capability to add

and remove virtual machines dynamically in an elastic way. A limit (threshold)

has been set to lease new resources or release the existing under-loaded resource.

Mean utilization of VMs, makespan, task deadline violation, and total cost are the

scheduling objectives of the proposed technique. The proposed approach provides

high scalability and reduced task response time. However, due to high scheduling

overhead, MODE has high makespan and monetary cost and minimized utilization

of cloud resources.

Ibrahim et al. [63] have experimentally evaluated the most prominent static state-

of-the-art task scheduling in cloud computing in terms of Average Resource Uti-

lization Ratio (ARUR), makespan, energy consumption, Throughput. Moreover,

individual VMs level load-imbalance is evaluated and compared. However, task

deadlines and overall performance gain are not considered.

In [77], Shahidinejad et al. have proposed a Quality of Service (QoS) based re-

source provisioning technique in cloud computing environment. The proposed ap-

proach is a hybrid approach of K-means and Imperialist Competition algorithm.



Literature Review 31

The Imperialist Competition algorithm and K-means are used for clustering the

user submitted workload. For efficient resource provisioning, scaling decisions are

determined with the help of decision tree algorithm. CPU utilization, task re-

sponse time, and total execution cost are used as evaluation parameters for the

proposed scheduling technique. Cloudsim tolkit has been used for implementation

and evaluation of the proposed approach using two realistic workload traces.

In [36], an overall performance based resource aware dynamic scheduling algorithm

for cloud computing has been proposed. In this research, the combined effect

of different evaluation parameters has been analysed. The idea is that most of

time, improving one scheduling parameters can effect the performance of other.To

compute the overall performance of cloud task scheduler, the values of different

evaluation parameters need to normalized. A novel normalization technique has

also been presented.

Nabi et al. [78] have proposed a Dynamic and Resource-Aware Load Balancing

Algorithm (DRALBA) for independent and compute-intensive tasks in a cloud en-

vironment. DRALBA computes the computation share of each Virtual Machine

(VM) and assigns tasks based on VM computation share. On every scheduling

decision, the VM load (ready time) is updated. The proposed approach updates

VM’s computation share and load after a predefined interval. DRALBA has eval-

uated and compared against their counterparts in terms of total execution time,

task response time, average resource utilization ratio, and throughput. However,

the proposed approach does not support task deadlines and the task rejection ratio

has not been used as a scheduling objective. Moreover, overall performance of the

Cloud not computed.

In summary, the literature review revealed that the static and batch dynamic

scheduling techniques suffer from issues like poor resource utilization, load-imbalance,

and unable to meet the deadlines of newly arrived deadline-based tasks. More-

over, the batch dynamic scheduling heuristics suffers from the issues like new batch

formation-based delay (resulting in higher response time) and under-utilization of

resources during the formation of a new batch. There are several dynamic tasks

scheduling approaches which are batch-based; however, most do not support the

deadline-based tasks. There are few approaches which support deadline-based



Literature Review 32

tasks such as DLBA [35] and DC-BLBA [34]; however, these approaches have

high task-rejection ratio and imbalance mapping of jobs.

2.3 Meta-heuristics based Cloud Task

Schedulers

Meta-heuristics based task scheduling algorithms are problem independent tech-

niques and can be applied to various domains. These schedulers are considered

more suitable for optimizing multi-objective optimization problems in cloud com-

puting. In the last, two decades, meta-heuristic based task scheduling algorithms

have become very popular for solving NP-hard problems.

Mousavi et al. [21] have proposed meta-heuristics based task scheduling algorithm

that combines Grey Wolves Optimization (GWO)and Teaching Learning Based

Optimization (TLBO) algorithms. TLBO is used to search the problem space,

identifying optimal parameters, and provide settings for meeting the problem ob-

jective. GWO provided better exploration and exploitation while the TLBO helps

in avoiding trapping into the local optima. The objective function of the proposed

optimization technique is the maximization of throughput. However, the proposed

approach not considering ARUR, task deadline, and task monetary cost.

In [41], Torabi et al. have proposed an approach that uses a combination of

Chicken Swarm Optimization (CSO) and Improved Raven Roosting Optimization

(IRRO) algorithms. This approach uses strengths of both IRRO and CSO to

provide balance in the local and global search which results in solving premature

convergence, reduces the response time, execution time, and improves throughput.

By using a hybrid algorithm (IRRO-CSO), a framework named IRRO-CSO Dy-

namic Scheduling Framework (ICDSF) has been proposed for dynamic scheduling

of independent tasks in a cloud environment. The results show that the improve-

ment in the execution time of the proposed approach and the existing heuristics is

very small and the improvement in the response time is very high. However, this

method does not consider resource utilization, monetary cost and tasks deadlines.

Wang et al. [80] have presented an enhanced form of Genetic Algorithm (GA)



Literature Review 33

Table 2.1: Summary of the heuristic based cloud task schedulers

Aproach Year Tool Strengths Weaknesses

OLB
[64, 65]

2009
Custom
event-
based

Minimal implemen-
tation and schedul-
ing overhead

high makespan and
under-resource utiliza-
tion

RR [66] 2008 Cloudsim
Minimal implemen-
tation and schedul-
ing overhead

Not resource-aware,
load imbalance and
high makespan

MCT [67] 2012 Cloudsim

Improved Resource
Utilization and
makespan than RS
and RR

Overload faster VMs,
not support deadline
based tasks

Max-Min
[68]

2012 Cloudsim
Map largest jobs
on the fastest VMs,
Favors larger tasks

Execution delay for
smaller tasks[1], task
deadline not supported

Dy-
MaxMin
[33]

2014 Cloudsim

Compute VMs sta-
tus after an inter-
val, Real-time load
balancing

Under-resource
utilization[1][23],
Task deadline not
considered

TM-
eFCFS
[38]

2017 Cloudsim
Task migration can
be very effective in
load balancing

No task migration for
slower idle machines,
load imbalance and re-
duced resource utiliza-
tion [79][23]

DLBA [35] 2017 Cloudsim

Threshold-based
mapping, prevent
over-provisioning
of VMs

threshold partial us-
age, Lower Resource
utilization, load imbal-
ance, high task rejec-
tion and makespan

RALBA
[1]

2018 Cloudsim

Balanced distribu-
tion of load among
a predefined num-
ber of VMs

High makespan and
under-resource utiliza-
tion, task deadline not
supported

TSSLB
[23]

2018 Cloudsim
Reduced execution
time by creating
VM in advance

Dependent on histori-
cal information (previ-
ous scheduling) [19][20]

Repro-
Active
[19]

2019 Cloudsim
Independence
of the historical
information

Poor resource utiliza-
tion, load imbalance
[1], batch based

MODE
[76]

2020 Cloudsim
High scalability
and reduced task
response time

Poor-resource utiliza-
tion, higher makespan
and monetary cost

DRALBA
[78]

2021 Cloudsim
Reduced makespan
and high through-
put

Not support task dead-
line, and task rejection



Literature Review 34

named as Look-Ahead Genetic Algorithm (LAGA)for cloud and Grid computing.

LAGA is designed for large scale distributed systems and is reputed for reliability

and runtime-based execution of tasks in cloud and grid environment. In every

generation, the proposed technique computes the order of tasks based on resource

completion time. LAGA selects the resource which has a minimum failure rate

in the mutation step. The objective function of LAGA comprises the failure rate

of tasks and reliability. However, this scheduling technique does not support

makespan, ARUR, task response time, and monetary cost.

In [81], Zhang et al. have proposed a particle swarm optimization based tasks

scheduling scheme and compared it with a Genetic Algorithm (GA) using the

same simulation environment. Minimization of task execution time and maxi-

mization of resource utilization are the key scheduling objective of the proposed

approach. The experimental results reveal that the PSO provides a better quality

solution with lesser time than that of GA in the majority of the test cases. Based

on their observations, the Zhang et al. have concluded that the PSO algorithm

outperforms GA for large-scale optimization problems. However, task deadlines,

task response time, and monetary cost are not supported.

In [82], Khalili et al. have experimentally evaluated the five most prominent In-

ertia weight strategies using Particle Swarm Optimization (IW-PSO) in terms

of makespan. These strategies include Simple Random Inertia Weight (SRIW),

Chaotic Random Inertia Weight (CRIW), Chaotic Descending Inertia Weight

(CDIW), and (SRIW), Linear Descending Inertia Weight (LDIW), Chaotic Ran-

dom Inertia Weight (CRIW), Chaotic Descending Inertia Weight (CDIW), and

Adaptive Inertia Weight (AIW). Inertia weight strategy is used to provide a bal-

ance between global and local search. Khalili et al. have concluded that the

LDIW inertia weight strategy performs better than other state-of-the-art inertia

weighted strategies. However, parameters like ARUR, task response time, task

deadline, and monetary cost are not considered.

Alkayal et al. [24] have investigated particle swarm optimization-based algorithms

for task scheduling in cloud computing. In this paper, the authors have divided the

PSO based literature work based on the number of objectives (i.e., single objective



Literature Review 35

or multiple objectives) used for optimization. The literature shows that majority

of the authors have used standard PSO or modified PSO algorithms. Alkayal et

al. have concluded that to balance the workload and improve QoS parameters like

task execution time, cloud throughput, task response time, Utilization of cloud

resources, and task execution cost need more focus and improvement.

Kumar and Sharma [83] have proposed a particle swarm optimization-based model

for resource allocation in the cloud environment. The proposed approach is termed

PSO-COGENT and the ultimate objective of the proposed scheduler is to effi-

ciently process the user jobs with minimum cost and energy consumption. The

PSO-COGENT is a multi-objective based task scheduling scheme that optimizes

multiple parameters like makespan, throughput, task rejection ratio, energy con-

sumption, and task execution cost. The PSO-COGENT algorithm is implemented

using the cloudsim simulator and evaluated using random independent tasks. How-

ever, the proposed approach does not consider the ARUR and task response time.

Kumar et al. [7] has proposed a Particle Swarm Optimization (PSO) based novel

framework for tasks processing and resource mapping (RTPF-PSO) in cloud en-

vironment. The aim of this research is to find optimal mapping of users tasks to

the requested resources, minimize resource consumption and improve a number

of Quality of Service (QoS) parameters. These parameters include reducing total

execution time and cost, improving tasks acceptance ratio by meeting user’s bud-

get deadline, and enhancing system throughput. The framework comprises of job

request handler that accepts user request using user interface and forwards them

to the controller node. The controller node is the fundamental component of pro-

cessing framework that communicate with other component and handle incoming

and outgoing requests.

In summary, the literature review revealed that most of the meta-heuristic based

task scheduling algorithms are single objective or bi-objective and the majority

of these algorithms consider non-conflicting parameters like makespan, through-

put, and response time, etc. for performance evaluations. Moreover, only few of



Literature Review 36

meta-heuristic based algorithms support task deadline and tasks execution cost.

Table 2.2: Summary of meta-heuristic-based task schedulers

Aproach Year Tool Strengths Weaknesses

LAGA [80] 2011 Gridsim

Improved reliability

and lower task fail-

ure rate

ARUR, makespan,task

response times, and

monetary cost not sup-

ported

PSO-GA

[81]
2008 Gridsim

In-depth compari-

son of PSO and GA

ARUR, task response

time, task deadline,

and monetary cost are

not considered

IW-PSO

[82]
2015 Cloudsim

Experimental eval-

uation of prominent

Inertia weights for

PSO

ARUR, task response

time, task deadline,

and monetary cost are

not considered

PSO [24] 2017 N/A

Scheduling ob-

jectives based

categorization

Experimental evalua-

tion not performed

GWO-

TLBO [21]
2017

MATLAB,

Cloudsim

Avoid trapping into

local optima and

higher throughput

ARUR, makespan,task

deadlines, and mon-

etary cost not sup-

ported

ICDSF [41] 2018 MATLAB

Improved task re-

sponse time and

throughput

Not supporting task

deadlines, ARUR, and

monetary cost

RTPF-

PSO [7]
2019 Cloudsim

Reduced execution

time and optimized

task-resource map-

ping

task response time,

task rejection, and

ARUR not supported



Literature Review 37

2.4 Gap Analysis

The tasks scheduling heuristics like RS [1, 64], Round Robin [66] and MCT [1, 67]

are unable to distribute the incoming workload on heterogeneous resources in a

balanced way [1, 19, 38, 59]. It is because these heuristics are not resource-aware.

Moreover, these algorithms are unable to execute the newly arrived tasks with

shorter deadlines within their deadlines. It is because the newly arrived tasks will

have to wait until the execution of already assigned tasks. RALBA [1] is a batch

dynamic resource-aware scheduling heuristic. However, RALBA cannot adjust the

newly arrived tasks with shorter deadlines. The newly arrived deadline-based tasks

will wait till completion of already mapped tasks. As compared to the static and

batch dynamic scheduling algorithms, dynamic schedulers are much more flexible.

Dynamic schedulers have the ability to assess, estimate, and update the VMs and

tasks status during the execution. However, a number of the existing dynamic

approaches [19, 20, 33] still use an interval-based batch of input tasks arrived in

a particular time. Moreover, dynamic task scheduling heuristics also provide flex-

ibility like estimating the real-time workload of VMs, task migration, and new

VMs creation. However, majority of the dynamic task scheduling heuristics are

still unable to improve utilization of cloud-resources and load balance [19–21, 35],

and fails to minimize makespan [33] and task rejection ratio [33, 34].
Most of the dynamic scheduling heuristics [19, 21, 32, 33, 41] do not consider the

tasks deadline. The tasks with the shorter deadline may not complete in the due

time which may result in user dissatisfaction. Moreover, meta-heuristics-based

tasks scheduling algorithms provide a generalized solution that is problem/do-

main independent. These approaches can provide an optimal and compromised

solution for conflicting scheduling objectives. However, these approaches incurred

high computational complexity and are difficult to implement. Most of the exist-

ing static, batch dynamic, and dynamic heuristics and meta-heuristics based task

scheduling approaches perform an evaluation based on either a single parameter or

multiple independent parameters. However, these improving one parameter may

affect the performance of the other parameter. The literature study conducted

in this research reveals that none of the task scheduling techniques has evalu-

ated their scheduling scheme based combined effect of multiple parameters like



Literature Review 38

makespan, ARUR, task response time, task rejection ratio, and execution cost of

task scheduling approaches.

To address these issues and achieve maximum load balance, meet the deadlines of

newly arrived tasks with shorter deadlines, and compute the overall performance

of the cloud there is a need to have such a scheduling technique which should be

resource, deadline aware, and also reduce total execution cost of executing user

tasks.

2.5 Summary of the Chapter

In static scheduling techniques, tasks are assigned to the VMs statically which

cannot be changed at runtime. These approaches are unable to dynamically han-

dle any delay in execution of a particular task. Most of these heuristics suffer from

issues like poor resource utilization, load imbalance [1, 23, 33, 38, 59] and unable

to meet deadline of newly arrived deadline-based tasks.

Batch dynamic scheduling [1, 37] heuristics provide dynamism at the batch level.

However, these approaches have issues like new batch formation-based delay in

response time, inter-batch under-utilization of resources. Moreover, tasks with

shorter deadlines may suffer when VMs are already overloaded.

A number of the dynamic approaches like PSSLB [19], PSSELB [19], and HBLBA

[20], Max-Min [33] are batch-based which suffers from issues like: 1) Batch formation-

based response time delay and 2) Inter-batch-based under-utilization of resources.

Most of these approaches not supporting the deadlines based tasks. Approaches

like DLBA [35] and DC-DLBA [34] supports tasks deadline. However, tasks re-

jection is high and the load is still not balanced.

Heuristic-based task scheduling algorithms are fast, simple to implement, and

incurred lower computational complexity. These algorithms are more suitable

for single objective or multiple non-conflicting objectives. However, heuristic-

based task scheduling approaches are not more efficient for solving conflicting

parameters-based multi-objective optimization task scheduling problems. Most

of the meta-heuristic-based task scheduling algorithms are single objective or bi-



Literature Review 39

objective and the majority of these algorithms consider non-conflicting parame-

ters like makespan, throughput, and response time, among others for performance

evaluations. Moreover, only a few meta-heuristic-based algorithms support task

deadline and task execution cost [7, 76, 83]. The subsequent Chapter describes

the proposed methodology, based on the discussion presented in this Chapter.



Chapter 3

RADL: A Resource-Aware

Dynamic Load-balancer for

Deadline Constrained Cloud

Tasks

3.1 Introduction

The fast development of processing and storage technologies owing to the Internet

has made the computing resources powerful, easily available, and economical to

use [8]. This rapid growth in technology has resulted in the birth of cloud com-

puting [8] that enables end users to share resources like CPU and storage for a

particular time based on their needs. Cloud computing model comprises of two

key actors [6, 7] (as shown in Figure 1.2). 1)Cloud Service Provider (CSP): deploy

the resources like storage, processors, network etc., 2) Service users/clients: hire

the services provided by the service providers for their temporal needs. Service

providers use internet based-interfaces to make their services accessible to the ser-

vice users.

To deliver better services, there is a need to utilize the available cloud resources

in a balanced way [19]. This leads to the importance of selecting the preemi-

40



Resource Aware Dynamic Load Balancer (RADL) 41

nent scheduling algorithm for allocating cloud resources. There are two levels of

mapping involved in the cloud. 1) VM to host mapping that maps VMs on the

underlying host machines and 2) Task to VM mapping which allocates tasks to

the respective VMs. This focus of this research is on tasks to VMs mapping, where

the number and computation power of VMs are pre-determined. Load balanced

[1, 20] task scheduling [22] plays an important role to enable optimal use of the

cloud resources.

Cloud task scheduling techniques can be based on heuristics or meta-heuristics

algorithms. Heuristic-based task scheduling algorithms provide a near-optimal

solution efficiently. These algorithms have a simple implementation with lower

complexity and scheduling overhead [7]. However, heuristics-based scheduling al-

gorithms are not suitable for multi-objective based scheduling with conflicting

parameters like task execution time and cost. Meta-heuristic based scheduling

algorithms can provide an optimal solution for multi-objective based optimiza-

tion problems with conflicting parameters. In this chapter, a novel heuristics-

based dynamic and deadline-aware tasks scheduling algorithm has been proposed.

Heuristics-based task scheduling algorithms can be static [28, 29], dynamic [19,

20, 33] and batch dynamic [1, 10, 37].

In this work, we argue that task scheduling algorithms should be resource-aware

to achieve better performance. Resource-aware [1, 61] load balancing process

includes resource discovery, monitoring the current loads on each resource, and

assessing workload to be assigned to a resource. To overcome the load imbal-

ance issue, the tasks should be scheduled on the most suitable VMs considering

the resource capacities. Therefore, this research proposes a dynamic resource-

aware scheduling algorithm named, Resource Aware Dynamic Load-balancer for

Deadline Constrained Tasks (RADL) to mitigate the load imbalance issue and to

support deadline constraints. RADL scheduling heuristic distributes the incoming

workload of independent, non-preemptive, and compute-intensive tasks in a bal-

anced manner. The RADL approach dynamically updates two metrics, i.e., VM-

load and ready-time. The prime objective of the RADL scheduler is to increase

resource utilization, meet deadlines of newly arrived deadlines-based tasks, and

reduce makespan. The proposed approach consists of two schedulers: 1) RADL-



Resource Aware Dynamic Load Balancer (RADL) 42

Scheduler: assigns incoming tasks to the pre-defined number of VMs based on the

minimum completion time of the tasks. Moreover, the RADL-Scheduler monitors,

updates, the task and VM status at run-time. Task status table contain tasks re-

lated information like Task Id, VM Id, task arrival time, task completion time,

and last update time. Similarly, VM status table contain information like VM Id,

Number of tasks assigned, total remaining time, VM life cycle status, last update

time. 2) ShifterScheduler (S-Scheduler), this sub-scheduler places the incoming

tasks with a shorter deadline in a suitable position of the task queue of a VM

(which provides minimum completion time for the execution of that job). This

mechanism helps to execute the newly arrived tasks (with shorter deadlines) in

a timely manner. The proposed scheduling mechanism accommodates the newly

arrived deadline-based tasks without migrating (the executing jobs) with no ad-

ditional VM requirement. The employed mechanism (of not migrating executing

jobs and creating new VMs) results in the reduced scheduling overhead. In sum-

mary, the major contributions of this research are:

• In-depth critical analysis of static and dynamic state-of-the-art scheduling

heuristics to identify the strengths and limitations of these approaches.

• A novel dynamic load-balancing scheduler for independent, non-preemptive,

and compute-intensive cloud tasks that produce improved resource utiliza-

tion, reduced task rejection, lower makespan, and minimized response time.

• Empirical investigation and performance evaluation of the proposed schedul-

ing approach against state-of-the-art scheduling heuristics.

Rest of the chapter is organized as follows. Section 3.2 presents RADL sys-

tem overview and background, RADL system architecture, RADL system model,

RADL algorithm, complexity analysis, and scheduling overhead. The experimen-

tal setup, workload generation, and simulation results in Section 3.3. Section 3.4

presents RADL Results and discussion. Section 3.5 concludes the chapter and

presents potential future directions.



Resource Aware Dynamic Load Balancer (RADL) 43

3.2 Proposed Load-balancing Algorithm

This section presents a complete overview of the proposed scheduling technique

RADL’s system architecture, performance model used, detail description of the

algorithm, time complexity, and scheduling overhead analysis.

3.2.1 RADL System Overview and Background

From the literature review, it has been observed that most of the existing schedul-

ing algorithms suffer from issues like poor resource utilization, load imbalance,

high makespan, and task rejection ratio. Moreover, these algorithms are also

unable to map the newly arrived tasks with shorter deadlines within their dead-

lines. RADL is a resource and deadline-aware load-balanced scheduling technique

and composed of two schedulers: i.e., RADL-Scheduler and S-Scheduler. RADL

scheduling scheme picks a single task from the input queue or buffer irrespective

of the task arrival rate, tries to map that task on a suitable VM that completes

their execution within minimum time and can meet their deadline. According to

the assumptions of the proposed technique, the RADL scheduler schedule incom-

ing tasks on pre-defined number of VMs without creating new VMs at run time.

Moreover, this is the responsibility of the cloud service provider to manage and

decide the number of VMs according to the expected arrival rate of the tasks.

A renowned Cloudsim [11] simulator is used for the simulation of the proposed

scheduling algorithms. In cloudsim simulator cloudlet is used as a synonym for

the task. Datacenter entity of cloudsim is used to simulate infrastructure level ser-

vices related to the cloud. Datacenter manages hosts machines and the power of

Datacenter is represented by the computation power of host machines and storage

servers on that Datacenter. One or more VMs are assigned to each host based on

the Cloud Service Provider (CSP) defined VMs allocation policy. RADL schedul-

ing scheme assigns tasks to VMs on just-in-time based in order to improve resource

utilization reduce task rejection. Just-in-time means that the proposed technique

map the tasks when it received without any wait for the formation of batch and

also known as online or real time scheduling which helps in preventing wastage of



Resource Aware Dynamic Load Balancer (RADL) 44

time and unnecessary delay [84]. Figure 3.1 shows the basic architecture of the

Cloud.

Servers, PC, tablet,  PDA  and Mobile devices

Internet

Resource
Manager

user
job n

Monitor Load
balancer

RADL

.....

.....

Storage Host 1 Host 2 Host 3 Host n

VM 1 VM 2 VM 3 VM nVS 1 VS 2

user
job 1

user
job 2

user
job 3

user
job 4 .....

Virtualization Layer

User Infrastructure
Layer

Physical
Infrastructure Layer

Cloud Management
Layer

Figure 3.1: Basic Architecture of Cloud

The user Infrastructure layer represents the Cloud interface used by the users

who communicate with the Cloud through Internet. The cloud management layer

comprises of several submodules like resource manager that determines the user

requirements in terms of computation resources, provide information of currently

available resources, the monitoring module allows a system administrator to ini-

tiate and monitor activities of each layer, load-balancer manages the distribution

of workload for execution among available virtual resources. RADL scheduling



Resource Aware Dynamic Load Balancer (RADL) 45

scheme is proposed at the Cloud management layer to enhance load balancing and

improve utilization of Cloud resources. The virtualization layer represents virtual

instances of the Cloud resources like virtual storage and virtual machines. The

physical infrastructure layer represents the physical infrastructure of the Cloud.

3.2.2 RADL System Architecture

RADL is a dynamic (just-in time based) cloud scheduling approach that maps

incoming task in a load balanced manner. The system architecture of the proposed

model is shown in Figure 3.2. Some of the notations used in RADL scheduling

technique are given in Table 3.1. RADL scheduling technique comprises of two

algorithms, RADL-Scheduler and S-Scheduler which consist of following major

steps:

1. RADL-Scheduler receives a task with their size szi in Million Instructions (MIs)

along with their deadline dTi (in MilliSecond (MS)). A list of VM (VMS) with

their computation capability is provided as an input parameter (shown in Figure

3.2, Step 1). VMS represents the actual size of cloud Datacenter.

2. The Completion Time (CTij) of the received task is calculated for all VMs and

store in a storage structure (i.e., hashMap) (presented in Figure 3.2, Step 2). CTij

is the sum of the expected execution time of task Ti on VMj and current load on

the VMj as shown in Eq. (3.2).

Table 3.1: Notations and definitions used in RADL technique.

Notations Description

CTc Completion time of candidate task to be shifted

CTij Task completion time on VMj

dTc Deadline of candidate task

dTi Task deadline in Millisecond (MS)

LR-Scheduler Sub-scheduler that is invoked to identify SPQ for task

Ti

minCTij Least Completion Time of task Ti on VMj



Resource Aware Dynamic Load Balancer (RADL) 46

MindTi Task in the VM task queue having shortest deadline

newCTc New completion time of candidate task

pList List of Parameters

szi Task size in MI

tList List of tasks

3. This step identifies VMj which gives expected minimum completion time

(minCTij) for Ti. minCTij is compared with the deadline dTi of the task Ti

(shown in Figure 3.2, Step 3).

4. This step will be executed based on the true value of condition at step 3. If

minCTij of task Ti is less than the deadline of that task, task Ti is mapped to the

VMj that execute them in minimum time (Figure 3.2, Step 4).

5. When task Ti is mapped to the VMj, task status and VM status tables are

updated (presented in Figure 3.2, Step 5). 6. In case, minCTij of task Ti is

greater than their deadline dTi, RADL-Scheduler calls S-Scheduler. S-Scheduler

computes a suitable position for task Ti in the task queue of VMj. Task Ti, VMj,

minCTij, and deadline dTi are provided as input to the S-Scheduler (shown in

Figure 3.2, Step 6). Based on the output (true or false) value of the S-Scheduler,

task Ti will be assigned to the VMj or will select another VM from VMS which

gives next minCTij value for task Ti.

7. S-Scheduler will check the tasks queue of VMj to identify the task Tc, which

has minimum deadline greater than the deadline of task Ti (shown in Figure 3.2,

Step 7). If such a task (i.e., candidate task Tc) is found, then new completion

time of task Tc (i.e., newCTc) and new completion time for task Ti (i.e., CTi),

will be computed. The newCTc and CTi) will be compared with dTc and dTi

respectively. In case any of these conditions become false then step 7 will be re-

peated until all the task queue of VMj is scanned.

8. In case, both conditions at step 7 are true i.e., task Ti can be adjusted in the

task queue of VMj, then the positions of task Ti and Tc will be updated (shown

in Figure 3.2, Step 8).

9. In case, both conditions at step 7 become true and tasks positions are updated

as represented in step 8. Task Ti will be mapped to VMj. Task status and VM



Resource Aware Dynamic Load Balancer (RADL) 47

status tables are updated (shown in Figure 3.2, Step 9),.

 Input Task Ti
(dTi, sz), VMS

Find VM 
minCTij for task

Ti

Start

End

VMS,
Ti(sz, dTi)

hashTbl
(VMj, CTij) 

minCTij < dTi
YesMap(Ti ,VMj)  updateTkTbl(pList)

updateVmTbl(pList)

NoFind Next 
(minCTij) VMj

addToRTL(Ti, sz) 

minCTij VM
 exists?

Yes

No

No

No

Yes

 Task Ti,VMj,
minCTij. dTi

findMindT
(tList>dT)

newCTc = CTc 

newCTc <dTc 

    return true

Yes

RADL Scheduler S-Scheduler

(Ti.MI,
VMj.MIPs)

updateTaskPos()

&& CTi<dTi

CTi = newCTc- execTimeTc

+ minCTij

1

Text

2 3

4

7

5 6

8

10

11

Map(Ti,VMj)

updateVmTbl(pList)
updateTkTbl(pList)

9

CompCTij 

Figure 3.2: RADL Scheduler

10. If condition at step 6 becomes false, a new VM that gives next minimum

completion time will be identified (shown in Figure 3.2, Step 10). In case, next

VM with minimum completion time is found, then steps 7 and 8 will be repeated.

11. In case, none of the VMs is able to execute task Ti within their deadlines,

task Ti will be added to the rejected task list and the next task will be served.

The process of the task to VM mapping will continue until no task is available for

mapping (shown in Figure 3.2, Step 11).

3.2.3 RADL System Model

The basic notations, definitions, and terminologies that have been used in the

mathematical expressions of the proposed approach shown in Abbreviations and



Resource Aware Dynamic Load Balancer (RADL) 48

Symbols section. To delineate the performance of RADL tasks scheduling tech-

nique, a unified cloud system model is formed [1]. A cloud Datacenter comprises

on a number of VMs (VMS, as shown in Eq. (3.1), and a VM can be represented

as VMj.

VMS = VM1, VM2, VM3, ... VMm (3.1)

, where m is the total number VMs on the cloud Datacenter (1 ≤ j ≤ m). Task Ti

represents the task to be mapped on VMj that executes them in minimum time.

CTij is the expected completion time (depict in Eq. (3.2)) of task Ti on VMj and

mathematically expressed as:

CTij = vmExecTij+vmRTj (3.2)

Completion time of task Ti on VMj is the sum of the execution time of task Ti

and the current load on that VM. vmExecTij is the execution time of task Ti on

VMj and vmRTj is ready time (current load) of VMj. vmExecTij is computed

using Eq. (3.3), where the task size (in MI) is divided by the computation power

of VMj (in MIPS).

vmExecTij = (
Task size(Ti)

VMj.MIPS
) (3.3)

, where size of the task is represented as million instructions (MI) and MIPS

represens the computation power of VMj. The Eq. (3.4), represents vmRTj which

is the ready time (already assigned workload) of VMj and is computed as:

vmRTj =
∑k

i=1
vmExecTij (3.4)

, where k is the total number of tasks assigned to VMj. minCTij (shown in Eq.

(3.5)) is the completion time of task Ti on VMj that executes them in least amount

of time.

minCTij = min (CTij) ∀j ∈ 1,2,3,...m (3.5)

If deadline of task Ti is less than the completion time of Ti on VMj which executes

them in least amount of time, then a suitable position for Ti will be identified in

the task queue of already mapped tasks to VMj. SPQ represents Suitable Position

in VM task Queue and will return true value or false value (depicted in Eq. (3.6))



Resource Aware Dynamic Load Balancer (RADL) 49

and represented mathematically as:

SPQ =

 1 SPQ of Ti identified

0 otherwise
(3.6)

If the return value is 1 (true) then the task will be assigned to VMj, VM and tasks

status will be updated.

VM CTj =
∑k

i=0
(
Size of Ti (in MI)

VMj.MIPS
) (3.7)

VM CTj represents completion time of VMj which is the sum of completion time

of all tasks assigned to VMj and computed using Eq. (3.7) [1]), where k shows

the number of tasks assigned to VMj.

Response time of task Ti is the difference of task arrival time and task execution

start time, and is computed using Eq. (3.8).

RspTimei = (execSTimei - arrTimei) (3.8)

RspTimei is the response time of task Ti, execSTimei and arrTimei are the exe-

cution start time and arrival time of task Ti. Moreover, average response time is

computed by dividing sum response time of all mapped tasks on the total number

of tasks.

3.2.4 RADL Performance Model

The performance of the proposed approach RADL is evaluated against the state-

of-the-art approaches in terms of ARUR, percentage of task rejection, makespan

and response time.

Makespan is the maximum time taken by a resource to finish the assigned tasks

among all other resources of cloud datacenter i.e., the completion time of a resource

(VM) which finish execution of tasks most recently. Mathematical representation

of makespan is shown in Eq. (3.9) [1, 23, 34, 59, 62].

Makespan = max (VM CTj) ∀j ∈ 1,2,3,...m (3.9)



Resource Aware Dynamic Load Balancer (RADL) 50

, where m is the total number of VMs in VMS. ARUR represents the overall

utilization of cloud resources (as depicted in Eq. (3.10) [1, 19]). ARUR is mathe-

matically expressed as:

ARUR = (
∑m

j=1
(VM CTj))×

1

m×Makespan
(3.10)

ARUR values lie among 0 and 1, where a higher value shows higher utilization of

cloud resources and vice versa. Percentage of task rejection (%ageRT as shown in

Eq. (3.11)) [83]) is the ratio between the number of rejected tasks and the total

number of tasks and is computed as:

RT%age = (
RTL size× 100

N
) (3.11)

, where RTList is the rejected tasks list and size of RTList shows the number of

rejected tasks.

AvgRspT =
1

m

∑m

j=1
(
1

k

k∑
i=1

RspTimeij) (3.12)

Average Response Time (AvgRspT) (as shown in Eq. (3.12) represent average

response time of scheduled tasks [85]. In Eq. (3.12), m represent the total number

of VMs and k represent the total number of tasks assigned to each VM. To com-

pute average response time of all the tasks, average response time of each VM is

identified by dividing the sum of the response time of all k tasks by total number

of assigned tasks (k). Then the sum of the average response time of each VM is

divided by the total number of VMs (m).

3.2.5 RADL Algorithms

This section discusses the proposed scheduling technique RADL based on two

algorithms RADL-Scheduler and S-Scheduler. The RADL-Scheduler maps tasks

based on minimum completion time and updates VM and Task status tables. The

proposed S-Scheduler finds a suitable position in the task queue of VM which

executes that task in minimum time.



Resource Aware Dynamic Load Balancer (RADL) 51

3.2.5.1 RADL Scheduler

To perform mapping of tasks on VMs, RADL-Scheduler (Algorithm 1) receives

task Ti with their size in the unit of Million Instructions (MIs), task deadline

(dTi) in Milli Seconds (MS), and a list of VMs (VMS) with their computation

power as input parameters. Outputs of Algorithm 1 include mapped tasks on

VMs and Rejected Task List (RTL). Lines 1-6 of Algorithm 1 present necessary

initialization of the RADL algorithm. The while loop (lines 7-37, Algorithm 1)

will continue until there is a task Ti to be scheduled.

For loop (lines 8-11, Algorithm 1) compute the completion time of task Ti on

every VM in the VMS using Eq. (3.2), (3.3), and (3.4) and store task completion

time of each VM in a hashMap. VM with minimum completion time is identified

(using Eq. (3.5)) (lines 12, Algorithm 1). The method at (lines 12, Algorithm

1) takes hashMap as an argument that contains completion times of all VMs for

task Ti. The completion time for task Ti is obtained (lines 13, Algorithm 1) and

compared with the task deadline (line 14, Algorithm 1). On the true side of the

decision (line 14, Algorithm 1), the task is mapped to the VMj and placed at the

end of the task queue of VMj, task status table, and VM status table is updated

(lines 15-17, Algorithm 1). If the decision (line 14, Algorithm 1) is false then the

else part (lines 18-36, Algorithm 1) is executed.

The S-Scheduler (line 20, Algorithm 1) is invoked which finds a possible suitable

position for task Ti in the task-queue of VMj. In the task queue of VMj, the

S-Scheduler identifies task with minimum deadline with the constraint of greater

than the deadline of new unscheduled task (i.e., Ti) and if such a task is found in

the task queue of VMj then it returns a true value. In case, S-Scheduler returns a

true value (line 21, Algorithm 1), task Ti is mapped to VMj, the tasks and VMs

status tables are updated (lines 22-24, Algorithm 1). On the other hand, if the

condition (line 21, Algorithm 1) becomes false then the else part (lines 25 to 30,

Algorithm 1) of if statement is executed where next VM within minCTij the VM

list is selected (line 26, Algorithm 1). The method at (line 26, Algorithm 1) finds

next VM that executes task Ti in a minimum time for the remaining VMs. If VM

with next minCTij is found, their minCTij is obtained (line 28, Algorithm 1) and



Resource Aware Dynamic Load Balancer (RADL) 52

repeat-until loop executes again.
Algorithm 1: RADL Scheduler

Input : VM list with their computation power, Task Ti with size ”szi” and

deadline ”dTi”

Output: Map (Ti, VMj) i.e., Mapping of Task Ti to VMj

1 CTij = 0

2 minCTij = 0

3 Vm VM = null

4 RTL = null

5 findSPQ = false

6 VmId = 0

7 while Ti.exists() do

8 for j = 1 to m do

9 CTij = computeCTij (Ti.MI, VMj.MIPs)

10 hashMap.add(CTij)



Steps 2 and 3 shown

in Figure 3.2.
11 end

12 VMj = findVmWithMCT(hashMap)

13 minCTij = VMj.getKeyValue()

14 if minCTij < dTi then

15 Map.add(Ti, VMj)


Steps 4 and 5 shown

in Figure 3.2.
16 updateTkTbl(pList)

17 updateVmTbl(pList)

18 else

19 repeat

20 findSPQ = S-Scheduler (Ti, VMj, dTi, minCTij)

 call to the

S-Scheduler
21 if findSPQ == true then

22 Map.add(Ti, VMj) updateTkTbl(pList)

 Step 9 shown

in Figure 3.2.
23 updateVmTbl(pList)

24 else

25 VMj = findNVmWithMCT(hashMap)

26 if VMj != null then

27



Represent step 10

of Figure 3.2.
28 minCTij = VMj.getKeyValue()

29 end

30 end

31 until findSPQ == true or VMj == null ;

32 if findSPQ == false then

33


Represent step 11

of Figure 3.2.

34 RTL.add (Ti)

35 end

36 end

37 end



Resource Aware Dynamic Load Balancer (RADL) 53

3.2.5.2 S-Scheduler

The repeat-until loop is repeated until task Ti and is mapped to a suitable VM

or complete list of VMs is checked for adjusting the task Ti to execute it within

their deadline. In case, none of the VMs adjust the task Ti within their deadline,

then the control moves out of loop (line 19-31), then the task Ti is added to the

Rejected Task List (RTL) (line 34, Algorithm 1).

The S-Scheduler(Algorithm 2) is invoked by RADL scheduler (Algorithm 1) when

the minCTij of a task Ti is greater than the task deadline dTi. The input pa-

rameters for S-Scheduler comprise of task Ti with the deadline (dTi), VMj, and

minCTij. The S-Scheduler return true(1) value or false (0) value as an output.

The necessary initialization of Algorithm 2 is represented in lines 1-5.

The candidate task (Tc) which has the lowest deadline value in the task queue

of VMj that is greater than dTi is identified (line 6, Algorithm 2). In case the

candidate task is not found i.e., the condition becomes true (line 7, Algorithm 2),

a false value is returned, and control move out of if condition (lines 7-8, Algorithm

2). On the false side of the if statement, the else block (line 9-37, Algorithm 2) will

be executed. Execution time of Ti is computed (line 11, Algorithm 2). The new

completion time of candidate task Tc (i.e., newCTc) is identified by adding their

completion time and execution time of task Ti (line 12, Algorithm 2). Similarly,

execution time of candidate task Tc (i.e., execTimeTc) and new completion time

(newCTi) of task Ti is obtained at (line 13-14, Algorithm 2). In case, the condi-

tions at line 15 (algorithm 2) are false, the next task with a minimum deadline

greater than dTi is identified and the repeat-until loop (lines 10-20, Algorithm

2) will be executed again. The repeat-until loop is repeated until an appropri-

ate location in the tasks queue of VMj is determined or the complete queue is

scanned and the appropriate location is not found. If the conditions at (line 15

of Algorithm 2) are true, the control moves out of the repeat-until loop and next

statement (line 21 of Algorithm 2) after the loop is executed.

The position of the candidate task (PosTc) is obtained from the task execution

Map (TEMap) at (line 21 of Algorithm 2). The deadline dTk, completion time

CTk), and updated completion (newCTk) time of next task to Tc) which is termed



Resource Aware Dynamic Load Balancer (RADL) 54

as Tk) the task is obtained (lines 23-25 of Algorithm 2).
Algorithm 2: S-Scheduler

Input : Ti with deadline dTi, VMj and minCTij

Output: true or false

1 Tc =null

2 newCTc = 0

3 execTimeTi =0

4 CTi = 0

5 execTimeTc = 0

6 Tc = findMindTi (tList) > dTi


Represent step 6

of Figure 3.2.

7 if Tc == null then

8 return false

9 else

10 repeat

11 execTimeTi = Ti.MI/VMj.MIPs

12 newCTc = CTc + execTimeTi

13 execTimeTc = TETMap(Tc)

14 newCTi = newCTc - execTimeTc



Represent step 7

of Figure 3.2.
15 if (newCTc < dTc && CTi < dTi) then

16 break:

17 else

18 Tc = findNextMindTi (tList) > dTi

19 end

20 until tList.hasNext();

21 PosTc = getPosTc(TEMap)

22 for k = PosTc to vmQ.length do

23 dTk = getDeadline(Tk)

24 CTk = getCTk (TEMap)

25 newCTk = CTk + minCTij

26 if (newCTk > dTk) then

27 flag = 0

28 break:

29 end

30 end

31 if (flag == 1) then

32 updateTaskPos()

33 return true


Represent step 8

of Figure 3.2.
34 else

35 return false

36 end

37 end

If the condition at line 26 (Algorithm 2) becomes true then the flag value is set

to zero and the control moves out of the For loop. if condition at (line 26 of



Resource Aware Dynamic Load Balancer (RADL) 55

Algorithm 2) becomes false then the For loop is executed again.

The For loop is executed until the tasks in the queue are checked or the condition

at line 26 (Algorithm 2) becomes true. If the condition at line 31 (Algorithm 2)

becomes true then the position of the task is updated and a true value is returned

(lines 32-33, Algorithm 2). In case, condition at (line 31, Algorithm 2) becomes

false, a false value is returned (line 35, Algorithm 2) and control moves to the

algorithm 1.

3.2.6 Complexity and Overhead Analysis

To analyze the computational complexity (in terms of time) of the proposed

scheduling technique, we consider that N represents the total number of tasks

and m represents the total number of VMs in a cloud Datacenter. For a real cloud

Datacenter, the following assertion is maintained: N>>m. RADL algorithm finds

VM with Minimum Completion Time (MCT) for a task after performing m num-

ber of comparisons. For N number of tasks, the total number of comparisons

has become N(m). In case, the deadline of the task is greater than the minimum

completion time of that task then S-Scheduler is invoked which tries to adjust the

current task in the task queue of VM with MCT. In the worst case, the complete

task queue of the selected VM will be searched by performing N/m comparisons.

If the task is not adjusted in the queue of selected VM then the next VM will with

the next MCT be selected and in the worst case, all the VMs will be checked by

performing m comparisons to adjust the task in any of the total VM which be-

comes N(m + m(N/m)). In case, a suitable position for the current task is found

then in the worst case, all the tasks in the task queue will be checked for violation

of task deadline after inserting the new task in the task queue of VM. This is

because by inserting a new task in the task queue, the remaining tasks will be

moved one step back in the queue. Therefore, the time complexity of the RADL

scheduler will become N(m + m(N/m + N/m)) or N(m + m(2N/m)). Thus, the

overall complexity of the proposed approach has become O(mN + N2) ≈ O(N2).

Table 3.2 shows complexity analysis of the RADL and other state-of-the-art task



Resource Aware Dynamic Load Balancer (RADL) 56

scheduling algorithms.

Table 3.2: Computational complexity of scheduling algorithms

Algorithms

Dy-

MaxMin

[33]

PSSELB

[19]

DLBA

[35]

RALBA

[1]

DC-

DLBA

[34]

MODE

[76]
RADL

Time Com-

plexity
O(mN2) O(mN.n2/2) O(N2) O(mN2) O(m2N2) O(MN2) O(N2)

Table 3.3: Scheduling overhead analysis of algorithms

Algorithms RADL PSSELB DLBA RALBA MODE DC-

DLBA

Overhead (N * Dy-MaxMin) 1.90 2.06 2.29 2.32 5.52 7.44

Scheduling execution overhead analysis has been performed for the proposed al-

gorithm (RADL) and state-of-the-art scheduling algorithms such as Dy-MaxMin

[33], PSSELB [19], DLBA [35], RALBA [1], and DC-DLBA [34]. Table 3.3 shows

the overhead analysis of scheduling algorithms in best to worst order (w.r.t to N

times of Dy-MaxMin [33]). Dy-MaxMin shows the minimal scheduling overhead

as compared to the others. Table 3.3 delineates that DC-DLBA [34] has maxi-

mum overhead in terms of scheduling decision, due to run time tasks migration,

creation, and removal of VMs. Overhead analysis depicted in Table 3.3 shows that

the RADL will perform comparatively in a scalable manner for larger workloads.

3.3 Experimental Evaluation and Discussions

This Section presents the experimental evaluation of the proposed scheduling ap-

proach (RADL) and state-of-the-art scheduling technique.

3.3.1 Experimental Setup

To empirically evaluate the performance of the proposed approach, the Cloudsim

[11, 61] simulator has been used. Cloudsim is a renowned open-source Java-based



Resource Aware Dynamic Load Balancer (RADL) 57

simulator used for performance analysis and modeling of environment and ser-

vices. The experimental environment includes CPU (Intel Dual-Core T4300 2.1

each core, Memory (3.00 GB) HD 320 GB, eclipse Oxygen.3a and Cloudsim 3.0.3

(as shown in Table 3.4). Our implementation extends some of the existing classes

like Datacenter, Broker, and Cloudlet. A simulation environment for all experi-

ments consists of 50 VMs, 30 hosts, and a Datacenter. Details of the simulation

environment are shown in Table 3.4.

Table 3.4: Simulation environment configuration

Simulator/Version Cloudsim version 3.0.3

Experimental environ-

ment

Intel Dual-Core T4300 2.1 each core, Memory (3.00

GB) HD 320 GB

Total host machine 30

Host machine memory 15000 MBs each

Total Virtual Machine 50 heterogeneous VMs (shown in Figure 3.4) for Syn-

thetic and GoCJ workload, 16 VMs for HCSP dataset

Total Cloudlets 500, 600, 700, 900, 1000

Figure 3.4 shows the configuration of heterogeneous VMs used in our experimen-

tation. In our experimentation, two realistic cloud/cluster traces and MapReduce

logs of M45 supercomputing clusters based benchmark datasets have been used

that includes Google like realistic workload that is GoCJ [59, 62] (as shown in

Figure 3.3(b)), and Expected Time to Compute (ETC) model based on HCSP

instances [62]. Additionally, synthetic workload based benchmark dataset from

[1] has been used for evaluation.

A number of influential parameters has been used for evaluating and comparing the

proposed scheduling algorithm. These evaluation parameters include makespan

[1, 19, 34, 35, 63], %age of task rejection [34], Mean ARUR [1, 19, 22, 33, 63],

and average response time [19, 29, 33, 35]. However, most of the time improv-

ing one evaluation parameter may effect the performance of other i.e., executing

tasks with shorter deadline before tasks with longer or no deadline can increase

response time of tasks with longer deadline. This increases the importance to

evaluate the overall performance of task scheduling algorithm as well. Overall



Resource Aware Dynamic Load Balancer (RADL) 58

performance represents the combined effect of the scheduling algorithm for more

than one evaluation parameters (inversely related ones). The detail regarding the

overall performance of tasks scheduling heuristics will be discussed in chapter 4.

3.3.2 Workload Generation

Three scientific benchmark datasets have been used for experimentation. However,

these datasets are customized by adding tasks deadline information using pattern

followed in [34] for assigning deadlines to the tasks. To incorporate, the deadlines

related information in the existing dataset, deadlines are assigned by following the

Monte-Carlo simulation technique and the pattern used in DC-DLBA [34]. For

this purpose, our implementation extends some of the existing classes of Cloudsim

simulation environment like Datacenter, Broker, and Cloudlet class.

The GoCJ [59, 61, 62, 78] dataset is based on real world traces derived from

traces of Google Cluster [86] and logs of MapReduce from M45 supercomputing

cluster[87]. The GoCJ dataset using realistic high-performance computing cloud-

tasks. The GoCJ dataset consists of tasks having different length i.e., 15000 MIs

to 900000 MIs (as presented in Figure 3.3 (b)) and is generated using a renown

Monte-Carlo simulation method. These tasks have been divided into five cate-

gories: small, medium, large, extra-large, and huge size tasks as shown in Figure

3.3 (b). The percentage of these tasks include: 20% tasks are of small size, 40%

tasks are of medium size, the percentage of large size tasks are 30%, extra-large

size tasks are of 4%, and 6% tasks are of huge size.

The synthetic benchmark dataset generated by [1] using monte-carlo technique.

This dataset comprises tasks with different sizes ranges from 1 MI to 45000 MI

and categorized as tiny, small, medium, large, and extra-large (as shown in Fig-

ure 3.3 (a)). The length of tiny tasks ranges from 1 to 250 MI, small from 800

to 1200 MI, medium from 1800 to 2500 MI, large from 7000 to 10000 MI, and

Extra Large (XL) ranges from 30000 to 45000 MI. The synthetic workload based

benchmark datasets are a more positively skewed dataset. A positively skewed

dataset contains a large number of smaller tasks and only a few large size tasks,

however, negatively skewed workload consists of a large number of longer tasks



Resource Aware Dynamic Load Balancer (RADL) 59

and few smaller size tasks.

  
(a) Synthetic Workload dataset (b) GOCJ dataset 

 

20 

60 

5 
10 

5 

0

10

20

30

40

50

60

70

tiny
(500-

700 MI)

small
(800-
1200
MI)

medium
(1800-
2500
MI)

large
(7k-10k

MI)

extra
large

(30k-45k
MI)

%
ag

e 
o

f 
C

lo
u

d
le

ts
 

Cloudlet Size 

20 

40 

30 

4 6 

0

10

20

30

40

50

small
(15k-55k

MI)

medium
(59k-99k

MI)

large
(101k-

135k MI)

extra
large

(150k-
337.5k

MI)

huge
(525k-

900k MI)

%
ag

e 
o

f 
C

lo
u

d
le

ts
 

Cloudlet Size 

Figure 3.3: Number and sizes of Cloudlets for Synthetic Workload and GoCJ
[59] dataset

To execute these tasks, Virtual Machines (VMs) with heterogeneous computation

capability has been used. The computation power of the VMs used for tasks ex-

ecution ranges from 100 Million Instructions per Second (MIPS) to 4000 MIPS.

The Figure 3.4) shows the number of VMs with their computation power.

The Heterogeneous Computing Scheduling Problem (HCSP) [59, 62] benchmark

dataset is based on an Expected Time to Compute (ETC) model in the form of

HCSP instances. The ETC values are generated in such a way that had provided

an accurate way for approximating the real behavior of the heterogeneous comput-

ing environment [59]. The HCSP instances are categorized into three complexity

levels (small, medium, and large size instances).

The small size HCSP instances include 512 to 2048 tasks and 16 to 64 machines.

The medium size HCSP instances range from 4096 to 8192 and 128 to 256 ma-

chines. The large size HCSP instances contain tasks ranging from 16384 to 32768

and number of machines ranging from 512 to 1024. HCSP instances are named

as c-hilo, c-lohi, s-hilo, s-lohi, i-hilo, and i-lohi. This naming scheme follows C-

THMH pattern where c represents consistency type (c used for consistent, s for

semi-consistent and i represent inconsistency), TH and MH shows task and ma-

chine level heterogeneity, respectively. Similarly, hi represent high heterogeneity



Resource Aware Dynamic Load Balancer (RADL) 60

7 7 

6 6 6 6 6 6 

1

2

3

4

5

6

7

8

100 MIPS 500 MIPS 750 MIPS 1000
MIPS

1250
MIPS

1500
MIPS

1750
MIPS

4000
MIPS

N
u

m
b

er
 o

f 
V

M
s 

Computation Power of VMs 

Figure 3.4: Computation power of VMs

and li used for low heterogeneity. The VMs computation power used for HCSP

instances in [62] ranging from 19 MIPS to 7000 MIPS. In this research, we have

used small size HCSP instances with small complexity level and include c-lohi,

c-hilo, i-lohi, and i-hilo.

3.3.3 Simulation Results

This section presents simulation results of the proposed approach RADL and

a comparison of these results with the existing state-of-the-art DC-DLBA [34],

DLBA [35], Dynamic Max-Min (Dy-MaxMin) [33], PSSELB [19], RALBA [1], and

MODE [76]. The performance evaluation metrics include makespan [1, 19, 34, 35],

%age of task rejection [34], Mean ARUR [1, 19, 33], and average response time

[19, 33, 35]. The higher value of ARUR shows better performance, however, lower

value of makespan, task rejection, and task response time shows better perfor-

mance.

Experimental results based on makespan using Synthetic workload [1] dataset

is shown in Figure 3.5 (a). Synthetic workload dataset is a positively skewed

dataset where most of the tasks are smaller in size and only few tasks are of



Resource Aware Dynamic Load Balancer (RADL) 61

  
(a) ARUR (b) Task Response Time 

 

0.31 

0.1 

0.18 

0.29 

0.23 0.23 

0.12 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n
 A

R
U

R
 (

0
 -

 1
) 

 

Scheduling Heuristics 

17.19 

5.71 

15.7171 

42.31 

19.26 

32.82 

25.69 

0
5

10
15
20
25
30
35
40
45

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e 
(S

ec
o

n
d

s)
 

Scheduling Heuristics 

Figure 3.6: ARUR and Task Response Time results for Synthetic dataset
based executions

larger size. Figure 3.5 (a) reveals that the proposed approach RADL has attained

43.38%, 95.78%, 259.2%, 49.78%, 156.28%, and 378.21% lower makespan and

42.86%, 145%, 303.57%, 562.14%, 1195.71%, and 857.14% reduced task rejection

(as shown in Figure 3.5 (b)) using the Synthetic workload dataset as compared

to Dy-MaxMin [33], DLBA [35], DC-DLBA [34], RALBA [1], PSSELB [19], and

MODE [76] respectively.

  
(a) Makespan (b) Task Rejection 

 

120.31 
172.5 

235.54 

432.16 

180.2 

308.33 

575.34 

0

100

200

300

400

500

600

700

A
ve

ra
ge

 m
ak

es
p

an
(S

ec
o

n
d

s)
 

Scheduling Heuristics 

1.4 2 
3.43 

5.65 

9.27 

18.14 

13.4 

0
2
4
6
8

10
12
14
16
18
20

%
ag

e 
o

f 
Ta

sk
 R

ej
ec

ti
o

n
 

Scheduling Heuristics 

Figure 3.5: Makespan and Task Rejection results for Synthetic dataset

Figure 3.6 (a) shows that RADL has gain 67.74%, 41.93%, 6.45%, 25.80%, 25.80%,

67.29% higher performance in terms of mean resource-utilization for the Synthetic

workload [1] dataset as compared to Dy-MaxMin [33], DLBA [35], DC-DLBA



Resource Aware Dynamic Load Balancer (RADL) 62

[34], RALBA [1], PSSELB [19], and MODE [76], respectively. The results pre-

sented in Figure 3.6 (b) reveal that the proposed RADL mechanism has attained

146.13%, 12.04%, 90.92%, and 49.44% improved task response time as compared

to DC-DLBA [34] RALBA [1], PSSELB [19], and MODE [76], respectively for the

Synthetic workload dataset. The Dy-MaxMin scheduling algorithm performs well

in terms of response time as compared to the RADL approach and other state-of-

the-art approaches. It’s because, Dy-MaxMin update task and VM status table at

runtime that helps to schedule tasks in realistic expected completion time. How-

ever, the performance of the Dy-MaxMin is poor for other parameters like ARUR,

makespan, and task rejection among others.

  
(a) Makespan (b) Task Rejection 

 

5676.57 
7303.5 

16770 

5844.81 

8227.53 
9520.18 

5211.1 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

A
ve

ra
ge

 M
ak

es
p

an
 (

Se
co

n
d

s)
 

Scheduling Heuristics 

8.21 
11.5 13.2 14.43 

35.24 
38.99 39.02 

0

5

10

15

20

25

30

35

40

45
%

ag
e 

o
f 

Ta
sk

 R
ej

ec
ti

o
n

  

Scheduling Heuristics 

Figure 3.7: Makespan and Task Rejection results for GoCJ dataset

  
(a) ARUR (b) Task Response Time 

 

0.3 

0.12 0.13 

0.28 

0.23 

0.27 

0.17 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ea

n
 A

R
U

R
 (

0
 -

 1
) 

Scheduling Heuristics 

795.59 

295.41 

673.08 

832.7 846.8 

964.27 

371.03 

0

200

400

600

800

1000

1200

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e 
(S

ec
o

n
d

s)
 

Scheduling Heuristics 

Figure 3.8: ARUR and Task Response Time results using GoCJ datasets



Resource Aware Dynamic Load Balancer (RADL) 63

Second benchmark dataset used for evaluation of the proposed approach is GOCJ

dataset proposed in [59] which comprise of large number of larger tasks as com-

pared to small size tasks. Experimental results show that the proposed ap-

proach RADL has attained 28.66%, 195.42%, 2.96%, 44.94%, 67.71%, -8.19% lower

makespan (as presented in Figure 3.7 (a)) and 40.07%, 60.78%, 75.76%, 329.23%,

374.9%, and 375.27% reduced task rejection (as shown in Figure 3.7 (b)) for the

execution of GoCJ benchmark dataset as compared to Dy-MaxMin [33], DLBA

[35], DC-DLBA [34], RALBA [1], PSSELB [19], and MODE [76], respectively.

Figure 3.8 (a) shows that RADL scheduling scheme has attained 60%, 56.67%,

6.67%, 23.33%, 10%, and 43.33% higher ARUR for the execution of GoCJ dataset

as compared to the Dy-MaxMin [33], DLBA [35], DC-DLBA [34], RALBA [1],

PSSELB [19], and MODE [76], respectively. For the execution of GOCJ dataset,

the RADL approach results in 4.66%, 6.43%, and 21.20% improved response time

than DC-DLBA [34], RALBA [1], and PSSELB [19], respectively (as presented in

Figure 3.8 (b)).

  
(a) Makespan (b) Task Rejection 

 

454.71 

231.47 

1298.63 

492.96 

1201.63 

1810.76 

469.45 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

A
ve

ra
ge

 M
ak

eS
p

an
 (

Se
co

n
d

s)
 

Scheduling Heuristics 

3.16 3.96 
8.1 

15.96 

26.32 

41.71 

34.17 

0

5

10

15

20

25

30

35

40

45

%
ag

e 
o

f 
Ta

sk
 R

ej
ec

ti
o

n
  

Scheduling Heuristics 

Figure 3.9: Makespan and Task Rejection results using HCSP dataset

However, response time of the proposed approach is higher than the Dy-MaxMin

[33], MODE [76], and RALBA [1]. This is because, reduction in the response time

is the core objective of the Dy-MaxMin [33] and MODE [76] create more new

VMs when the load increases which results in reduced response time. Similarly,

RALBA [1] not supporting the deadline.



Resource Aware Dynamic Load Balancer (RADL) 64

  
(a) ARUR (b) Task Response Time 

 

0.34 

0.15 

0.2 

0.13 

0.3 0.29 

0.35 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
ea

n
 A

R
U

R
 (

0
 -

 1
) 

Scheduling Heuristics 

1221.42 

176.87 

1433.95 

214.86 

1227.35 

2232.04 

634.1 

0

500

1000

1500

2000

2500

A
ve

ra
ge

 R
e

sp
o

n
se

 T
im

e 
(S

ec
o

n
d

s)
 

Scheduling Heuristics 

Figure 3.10: ARUR and Task Response Time results using HCSP dataset

Heterogeneous Computing Scheduling Problem (HCSP) [59, 62] benchmark dataset

consist of HCSP instances and is based on an Expected Time to Compute (ETC)

model. For the execution of HCSP dataset (as shown in Figure 3.9 (a)), the

proposed scheduling heuristic RADL has attain -49%, 185.59%, 8.41%, 164.26%,

298.22%, and 3.24% reduced makespan and 25.31%, 156.33%, 405.06%, 732.91%,

1219.9%, and 981.32% reduced task rejection as compared to the Dy-MaxMin

[33], DLBA [35], DC-DLBA [34], RALBA [1], PSSELB [19], and MODE [76],

respectively. Figure 3.10 (a) shows that RADL heuristic has attained 55.88%,

41.17%, 61.76%, 11.76%, and 14.7% higher performance in terms of mean resource

utilization for HCSP [62] dataset as compared to Dy-MaxMin [33], DLBA [35],

DC-DLBA [34], RALBA [1] and PSSELB [19], respectively. Figure 3.10 (b) shows

that RADL has achieved 17.4%, 1%, and 82.74% improved task response time than

DLBA [35], RALBA [1] and PSSELB [19] using HCSP benchmark dataset. The

DC-DLBA [34] and MODE [76] have lower task response time than the proposed

technique (as shown in Figure 3.10 (b)). This is because, these techniques create

new VMs at run time when the workload on VMs exceed the given threshold or

the average number of rejected tasks reached to the predefined limit. This results

in reduced task response time for these approaches.



Resource Aware Dynamic Load Balancer (RADL) 65

3.4 Results and Discussion

In-depth analysis of the experimental results reveals that the proposed schedul-

ing technique (RADL) has attained significant improvements in terms of resource

utilization, meeting task deadlines, and reducing makespan. It is because the pro-

posed approach is resource and deadline aware. Experiments have been performed

on three different benchmark datasets. The GoCJ dataset used in the experimen-

tation consists of relatively larger size tasks as compared to Synthetic workload.

Moreover, the HCSP instances based dataset used for experimentation, consist-

ing of c hilo, c lohi, i hilo, and i lohi where c and i show consistency level of the

workload, where c represents consistent workload and i is used for inconsistent

workload, lo represent low heterogeneity and hi represent high heterogeneity of

the workload and resources.

DC-DLBA [34] achieved higher makespan and response time on synthetic workload

and comparatively lower makespan for GoCJ and HCSP datasets. This is due to

a large number of smaller-size tasks in the synthetic workload where task rejection

is comparatively small and few new VMs are created. RADL has achieved 259.2%

improved makespan, 6.45% higher ARUR, 146.13% improved response time, and

303.57% lower task rejection on synthetic workload as compared to DC-DLBA

[34]. Similarly, DC-DLBA [34] attained lower resource utilization on GoCJ and

HCSP datasets as compared to synthetic workload. Moreover, DC-DLBA [34]

has achieved lower task response time for the HCSP dataset and comparable task

response time for the GoCJ dataset. This is because DC-DLBA [34] creates more

VMs due to a large number of tasks in the HCSP dataset.

Dy-MaxMin [33] attained lower response time due to run-time updates of the

task and VM status-tables which result in the mapping of tasks on realistic ex-

pected completion time. However, resource utilization is low and task rejection

is high. This is because Dy-MaxMin neither creates new VMs nor gives prior-

ity to the tasks with shorter deadlines. The RADL attained 67.74%, 60%, and

55.88% higher resource-utilization than Dy-MaxMin [33] on synthetic, GoCJ, and

HCSP datasets, respectively. Also, RADL attains 43.38% and 42.86% improved

makespan and task rejection, respectively for synthetic workload dataset. Dy-



Resource Aware Dynamic Load Balancer (RADL) 66

MaxMin [33] has a lower makespan for the execution of HCSP datasets. This is

because the task of the HCSP dataset is of medium sizes.

The scrutinized results show that PSSELB [19] achieved comparatively better re-

source utilization than Dy-MaxMin [33], DLBA [35], RALBA [1], and MODE

[76] for the execution of synthetic and GoCJ datasets and comparable results for

HCSP datasets. This is because improving resource utilization is one of the key

objectives of PSSELB [19]. However, the RADL scheduler outperforms as com-

pared to PSSELB in terms of resource utilization, makespan, task response time,

and task rejection for all three benchmark datasets. This is because the PSSELB

[19] follow the Max-Min scheme which selects the largest tasks possibly assigns

some of the larger tasks to the slower machine and also increases waiting time

for the smaller size tasks which results in load imbalance. The percentage of task

rejection is high for all three datasets because the PSSELB [19] do not consider

deadline-based tasks.

DLBA [35] has gained lower task response time as compared to PSSELB [19],

RALBA [1], DC-DLBA [34], and RADL for the execution of synthetic work-

load and GoCJ datasets. This is because the reduction in waiting time is the

key scheduling objective of DLBA [35] and comparatively lower scheduling over-

head for these datasets. However, RADL has achieved 41.93%, 56.66%, 41.18%

higher ARUR, 95.78%, 195.42%, 185.95% improved makespan, 145%, 60.78%, and

156.33% reduced task rejection as compared to the DLBA [35] on synthetic work-

load, GoCJ, and HCSP datasets respectively.

Experimental results show that the RALBA [1] achieved improved performance

in terms of makespan, and resource utilization as compared to PSSELB [19] and

DLBA [35] and higher resource utilization than Dy-MaxMin [33] for all the three

datasets. This is due to the resource awareness of the RALBA [1] scheduling

scheme. The scrutinized results show that the RADL attained 49.78%, 44.94%,

and 164.26% improved makespan, 25.8%, 23.33%, and 11.76% improved resource

utilization, 12.04%, 6.44%, and 0.048% reduced task response time and 562.14%,

329.23%, and 732.91% lower task rejection ratio as compared to RALBA [1] on syn-

thetic workload, GoCJ, and HCSP datasets, respectively. This is because RALBA

[1] is based on the Max-Min scheme which increases waiting time for smaller tasks



Resource Aware Dynamic Load Balancer (RADL) 67

and is not deadline aware.

MODE [76] has achieved a lower response time for GoCJ, HCSP, higher response

time for Synthetic workload. This is because MODE [76] lease new VMs at run

time for the comparatively high workload. Moreover, MODE [76] has shown poor

performance in terms of resource utilization and task rejection ratio for all the

three benchmark datasets. This is because the MODE [76] scheduling technique

is not resource and deadline aware.

The overall in-depth analysis of the experimental results shows that RADL out-

performs in terms of Resource utilization, meeting task deadlines, makespan, and

task response time. However, RADL can not support workflow-based dynamic

and SLA-aware task scheduling.

3.5 Chapter Summary

Cloud computing has become an attractive platform for cloud service providers

and service users. To get the full benefit of cloud and achieve high user satisfac-

tion, cloud service providers demand load balancing in terms of higher resource

utilization and executing users’ tasks within their deadlines. This leads to a need

for efficient task scheduling algorithms. To achieve higher resource utilization and

meeting task deadlines, several tasks scheduling algorithms have been proposed.

However, the majority of these approaches are unable to achieve high utilization

of cloud resources and to meet task deadlines.

In this chapter, a Resource-Aware Dynamic Load-balancer for Deadline Con-

strained Cloud Tasks (RADL) technique has been proposed. The proposed ap-

proach is evaluated against state-of-the-art scheduling heuristics like DC-DLBA

[34], Dy-MaxMin [33], DLBA [35], RALBA [1], and PSSELB [19] using three

benchmark datasets. Experimental results show that the proposed approach out-

performs as compared to the state-of-the-art tasks scheduling algorithms in terms

of ARUR and in meeting the task deadlines, makespan, and task response time.

The proposed approach reduces task rejection by maximizing the utilization of

existing resources and adjusting the already mapped tasks. However, this may



Resource Aware Dynamic Load Balancer (RADL) 68

increase task rejection and task scheduling overhead if all the newly arrived tasks

having shorter deadlines. In the future, we intend to extend the proposed approach

for workflow-based (dependent tasks) dynamic task scheduling.



Chapter 4

OG-RADL: Overall Performance

Based Resource Aware Dynamic

Load-balancer for Deadline

Constrained Cloud Tasks

4.1 Introduction

Overall Gain (OG) is the overall performance of the cloud that compute and eval-

uate the combine affect of multiple evaluation parameters like Average Resource

Utilization Ratio (ARUR), makespan, task response time, task rejection ratio,

and throughput among others. The majority of state-of-the-art task scheduling

heuristics improve a single parameter like makespan, resource utilization, or task

waiting time as scheduling objectives. However, focusing on a single parameter

can affect the performance of others, which can degrade the overall performance of

the task scheduling algorithm. For example, sometimes improving cloud resource

utilization and meeting tasks deadline can affect the makespan and task response

time. A number of state-of-the-art scheduling algorithms consider more than one

evaluation parameter as a scheduling objective, however, these approaches evalu-

ate each parameter individually. There is a need to evaluate and increase overall

performance [72] by combining multiple evaluation parameters like cloud resource

69



Overall Performance based RADL 70

utilization, task rejection ratio, makespan, and task response time among others.

In this chapter, a resource-aware dynamic scheduling algorithm named Over-

all Performance-based Resource Aware Dynamic Load-balancer (OG-RADL) for

deadline constrained tasks is proposed. The proposed approach minimizes the

load-imbalance issue, supports deadline-based tasks, and improves the overall

cloud performance. Moreover, a novel normalization approach is also proposed

that overcome the limitations of existing normalization techniques like Min-Max,

Z-score, and Advanced Min-Max Z-score Decimal Scaling (AMZD). The prime

objective of the OG-RADL scheduler is to improve cloud resource utilization,

minimize task rejection, and enhance the overall performance of the cloud. In

summary, our contributions to this research are as follows:

• Extensive analysis of state-of-the-art static, dynamic, and batch dynamic

scheduling heuristics to identify their strengths and weaknesses.

• A novel and dynamic load-balancing algorithm has been proposed for none-

preemptive, independent, and compute-intensive tasks that maximize uti-

lization of cloud resources, reduce task rejection and increase the overall

performance of cloud datacenter.

• Overall performance (i.e., Overall Gain) is computed by using a novel nor-

malization technique that overcomes the limitations of state-of-the-art nor-

malization approaches.

• Comprehensive evaluation and performance analysis of the proposed ap-

proach against existing state-of-the-art cloud task scheduling algorithms has

been conducted using three benchmark datasets.

The rest of the chapter is organized as: The introduction part is discussed in

Section 4.1. Section 4.2 presents the proposed load-balancing algorithm, OG-

RADL system overview and background, OG-RADL system architecture, system

and performance model, and OG-RADL algorithm. Experimental evaluation and

discussion that includes experimental setup, workload generation, normalization of

evaluation parameters, and simulation results are discussed in Section 4.3, Section



Overall Performance based RADL 71

4.4 presents Simulation results and discussion.Section 4.5 concludes the chapter

and discusses the future directions.

4.2 Proposed Load-balancing Algorithm

This Section presents a complete overview of the proposed scheduling technique

OG-RADL that includes, the system architecture of the proposed approach, sys-

tem and performance model, OG-RADL algorithm, algorithmic complexity, and

scheduling overhead analysis.

4.2.1 OG-RADL System Overview and Background

The literature study reveals that the majority of state-of-the-art task schedul-

ing heuristics suffer from issues like under-utilization of cloud resources, load-

imbalance, high task rejection ratio, and makespan. Moreover, most of these al-

gorithms are unable to map the newly arrived tasks with shorter deadlines within

their deadlines. In this chapter, an Overall Performance based Resource Aware

Dynamic Load-balancer is proposed that improves utilization of cloud resources,

reduces makespan, enhances meeting task deadlines, and improves overall perfor-

mance gain of the cloud. The OG-RADL comprises two schedulers: i.e., OG-

RADL-Scheduler and Shifter Scheduler (S-Scheduler). The proposed approach is

implemented using a renowned Cloudsim [11] simulator. Cloudlet is used as a

synonym for the task in the Cloudsim simulator. A Cloud datacenter entity is

used to simulate cloud infrastructure level services. The data center is composed

of host machines and storage servers. The power of the datacenter is represented

by the computation capabilities of all of the host machines on that datacenter.

VMs are created on each host based on the Cloud Service Provider (CSP) defined

VMs allocation policy. OG-RADL scheduling scheme map tasks to VMs on a

Just-in-Time based to improve the tasks response time of deadline constrained

tasks, reduce task rejection, and enhance overall cloud performance.



Overall Performance based RADL 72

4.2.2 OG-RADL System Architecture

OG-RADL is a dynamic cloud scheduling scheme that maps incoming tasks (on a

Just-in-Time basis) in a balanced way. Figure 4.1 presents the system architecture

of the proposed model. The basic notations, definitions, and terminologies that

have been used in the mathematical expressions of the proposed task scheduling

technique are given under the heading Symbols. The proposed technique consists

of two algorithms, OG-RADL-Scheduler and S-Scheduler. Steps 1 to 7, 11, 12,

and 13 of the Figure 4.1 are similar to the Figure 3.2 and have been discussed in

section 3.2.2. However, Figure 4.1 is extended by adding steps 8, 9, 10, 14, 15,

and 16.

Steps 8, 9, and 10 of Figure 4.1 are used to check the deadline violation of the

remaining tasks in the task queue of VMj after shifting one step back in the task

queue. This process is repeated until a task is found whose deadline is violated

or the complete queue of tasks is searched. At step 10 the flag value is set to

zero or one. If the flag value is zero (0), then steps 6 to 10 or 12 are executed

again. In case, the flag value is equal to 1 (true) then tasks positions are updated

as represented in step 11. Task Ti will be mapped to VMj. Task status and VM

status tables are updated (shown in Figure 4.1, Step 11)

In step 14, the values of evaluation parameters are ARUR, makespan, average task

response time, and average task rejection are computed. In the next step (i.e.,

step 15), the values of makespan, average task response time, and average task

rejection are normalized using Eq. 4.6. In step 16, the overall performance gain

is computed using Eq. 4.2.

4.2.3 OG-RADL System Model

This Section presents the OG-RADL performance model and the system model

using mathematical expressions. To describe, the performance of the OG-RADL,

a unified cloud system model is formed. A cloud datacenter consists of a set of

VMs (VMS, as shown in Eq. (3.1) and VM is represented as VMj.

CTij is the expected completion time of task Ti on VMj and mathematically



Overall Performance based RADL 73

expressed using Eq. (3.2), vRT is the VM ready time i.e., the current workload of

the VMj and is computed using Eq. (3.4)

7
 Input Task Ti
(dTi, sz), VMS

Find VM 
minCTij for

task Ti 

Start

End

VMS, 
Ti(sz, dTi)

hashTbl 
(VMj, CTij) 

minCTij < dTi

Yes

Map(Ti ,VMj)  updateTkTbl(pList)
updateVmTbl(pList) 

No
 Find Next VMj  
   with minCTij

addToRTL(Ti, sz)  

minCTij VM 
 exists?

Yes

No

No

No

No

Yes

 Task Ti,VMj,
minCTij. dTi

findMindT 
(tList)>dT

 

newCTc = CTc 

newCTc <dTc 

 

 

 

 

 updateTkTbl (pList)

Yes

OG-RADL Scheduler S-Scheduler

computeCTij
(Ti, VMj)

Map(Ti ,VMj)

updateVmTbl(pList)

&& CTi<dTi

CTi = 
newCTc- execTimeTc

 + minCTij

Does Ti Exist? 

Compute ARUR,  
Makspan, ART  

and ATR

Normalize values of  
Makspan, ART  

and ATR

Compute Overall  
Gain (OG)

Yes

 Get position of Tc

 
Get dTk, CTk 

Compute newCTk

newCTk < dTk 

Yes
 Set flag value

if flag == 1

|| k<Q.length
No

NoYes

1

Text

2 3

45 6

7

8

9

10
11

12

13

14

15

16

Figure 4.1: OG-RADL Scheduler

vmExecTij is the execution time of task Ti on VMj. The vmExecTij is computed

(as depicted in Eq. (3.3) [1]) as dividing the task size (in MI) by computation

power of VM (in MIPS). The Eq. (3.5) shows that minCTi is the minimum

completion time of task Ti on VMj that execute the task Ti in the least amount

of time. In case the completion time of VMj is greater than the deadline of task



Overall Performance based RADL 74

Ti then a suitable position for Ti will be checked in the tasks queue of VMj. This

will return a true value or false value (as shown in Eq. (3.6)).

The Eq. (3.7) [1] shows that VM CTj is the expected completion time of all

assigned tasks to VMj and is used for mapping tasks to the VM that executes them

in minimum time. Therefore, during mapping, VM idle time is not considered.

However, the actual completion time of VMj is calculated after the execution of

all assigned tasks that comprise tasks execution time, VM idle time, and other

unexpected delays, etc., as well. Moreover, the proposed approach updates VM

status at run time to get a more realistic expected completion time of VMs.

The new expected completion time of candidate task Tc (newCTc) is the updated

completion time (after shifting) of task Tc and is computed using Eq. (4.1).

newCTc = CTc + minCTij (4.1)

, where CTc is the completion time of candidate task and minCTij is the minimum

completion time of task Ti on VMj.

RspTimei represents the Response time of task Ti which is the difference of task

execution start time and task arrival time. RspTimei is computed using Eq. (3.8).

4.2.4 OG-RADL Performance Model

The performance of the proposed technique OG-RADL is evaluated against the

state-of-the-art approaches in terms of ARUR which is computed using Eq. (3.10)

[1, 19], makespan (mathematically represented using Eq. (3.9) [1, 23, 34, 59,

62]), percentage of task rejection (computed using Eq. (3.11)), and average task

response time which computed using Eq. (3.12).

OG = (

p∑
i=0

(pi)

p
) (4.2)

Overall Gain (OG) is the overall performance results of the proposed approach

and is one of the contributions of this research which is published in [36]. The OG



Overall Performance based RADL 75

is computed mathematically using Eq. (4.2). In Eq. (4.2), p represents the total

number of performance evaluation parameters like ARUR, makespan, %ageTR,

AvgRT, and pi shows the value of each parameter. The value of pi lies between 0

and 1 and is normalized using Eq. (4.6).

4.2.5 OG-RADL Algorithms

This section discusses the proposed scheduling technique OG-RADL which has

two algorithms OG-RADL scheduler and S-Scheduler. OG-RADL scheduler assign

tasks to VMs based on Minimum Completion Time (MCT) and update VM and

task status. S-Scheduler investigates a suitable position for task Ti in the VM

task queue which executes that task in the least time.

4.2.5.1 OG-RADL Scheduler

To perform mapping of tasks on VMs, OG-RADL scheduler (Algorithm 3) receives

task Ti with their deadline (dTi) in Milli-Second (MS) and task size in Million

Instructions (MIs), and set of VMs (VMS) with their computation capability in

Million Instructions per Second (MIPs) as input parameters. Outputs of Algo-

rithm 3 include mapped tasks on VMs and Rejected Task List (RTList). Lines

1 to 3 of Algorithm 3 represents the necessary initialization of the OG-RADL

scheduler. The while loop (lines 4-35, Algorithm 3) is similar to that of algorithm

1 which is discussed in detail at section 3.2.5.1.

Lines 36-39 of algorithm 3 are extending algorithm 1. Lines 36-38 of algorithm

3 are executed when there is no un-mapped task to be scheduled and the values

of Average Resource Utilization Ratio (ARUR), Makespan, percentage of Task

Rejection (%ageTR), and Average Response Time (AvgRT) are computed (lines

36-38, Algorithm 3) respectively. The overall gain is calculated at line 39 Al-

gorithm 3. The makespan
′
, %ageTR

′
, and AvgRT

′
are the normalized values of

makespan, percentage of task rejection (%ageTR), and average task response time

(AvgRT).



Overall Performance based RADL 76

Algorithm 3: OG-RADL Scheduler

Input : VM list with their computation power, Task Ti with size ”sz” and

deadline ”dTi”

Output: Map (Ti, VMj) i.e Mapping of Task Ti to VMj

1 CTij = 0, VmId = 0, minCTij = 0;

2 Vm V = null, RTL = null, findSPQ = null;

3 ARUR= 0, Makespan=0, %ageTR =0, AvgRT=0;

4 while Ti != null do

5 for j = 1 to m do

6 CTij = computeCTij (Ti, VMj);

7 VmId = VMList.getVmId(j);

8 hashMap.add(VmId, CTij);

9 end

10 VmId = findVmWithMCT(hashMap);

11 minCTij = hashMap.get(VmId);

12 if minCTij < dTi then

13 Map.add(Ti, VMj);

14 updateTkTbl(pList);

15 updateVmTbl(pList);

16 else

17 repeat

18 findSPQ = S-Scheduler (Ti, VMj, dTi, minCTij);

19 minCTij);

20 if findSPQ == true then

21 Map.add(Ti, VMj);

22 updateTkTbl(pList);

23 updateVmTbl(pList);

24 else

25 Vj = findNVmWithMCT(hashMap);

26 if Vj != null then

27 minCTij = Vj.getKeyValue();

28 end

29 end

30 until findSPQ == true or Vj = null ;

31 if findSPQ == false then

32 RTL.add (Ti);

33 end

34 end

35 end

36 Makespan = getMakespan(vList, cList);

37 %ageTR = getPoTR(vList, cList);

38 AvgRT = getAvgRT(vList, cList);

39 double OG = (ARUR + Makespan
′

+ %ageTR
′

+ AvgRT
′
)/4;

4.2.5.2 S-Scheduler

The OG-RADL scheduler (Algorithm 3) calls S-Scheduler (Algorithm 4) if the

task deadline is less than the minCTij. The input parameters of S-Scheduler con-

sists of VMj, minCTij, and task Ti with the deadline (dTi).



Overall Performance based RADL 77

Algorithm 4: S-Scheduler

Input : Ti with deadline dTi, VMj and minCTij

Output: true or false

1 Tc = null, dTk = null;

2 newCTc = 0, CTi = 0;

3 ExecTimeTi =0, flag = 1;

4 execTimeTc = 0;

5 Tc = findMindTi (tList) > dTi;

6 if Tc == null then

7 return false;

8 else

9 repeat

10 execTimeTc = TEMap(Tc);

11 newCTc = CTc + minCTij;

12 CTi = newCTc - execTimeTc ;

13 if (newCTc < dTc && CTi < dTi) then

14 break:

15 else

16 Tc = findNextMindTi(tList) > dTi

17 end

18 ;

19 until tList.size();

20 PosTc = getPosTc(TEMap);

21 for k = PosTc to vmQ.length do

22 dTk = getDeadline(Tk);

23 CTk = getCTk (TEMap);

24 newCTk = CTk + minCTij;

25 if (newCTk > dTk) then

26 flag = 0;

27 break:

28 end

29 end

30 if (flag == 1) then

31 updateTaskPos();

32 return true;

33 else

34 return false;

35 end

36 end

As output, a true or false value is returned. Lines 1-4 show the necessary initial-

ization of Algorithm 4. The first part of algorithm 4 (lines 5-19) tries to identify

the suitable position for the newly arrived task in the task queue of VMj and is

discussed in detail in algorithm 2, Section 3.2.5.2. This part of algorithm 4 tries



Overall Performance based RADL 78

to identify the suitable position for the newly arrived task in the task queue of

VMj.

The position of candidate task Tc in the queue of VMj is identified (line 20, Al-

gorithm 4). The for loop (lines 20-29, Algorithm 4) scan all the remaining tasks

in the queue of VMj to check their execution within their deadline. The deadline

and completion time of task Tk are computed (lines 22-23, Algorithm 4).

The updated completion time (after shifting) of Tk (newCTk) is computed and

compared with deadline dTk (lines 24-25, Algorithm 4). If newCTc is greater

than dTk (line 25, Algorithm 4) then flag is set zero (line 26, Algorithm 4). The

zero value of the flag indicates that Tk cannot be executed within their deadline.

Moreover, the break statement is executed (line 27, Algorithm 4) and the control

moves out of for loop. In case, if condition at line 25 is false, the next task in the

queue of VMj is selected and the for loop (lines 20-29, Algorithm 4) is executed

again. In line 30 (Algorithm 4) flag value is checked and if the flag value is 1 then

the task position is updated at the queue of VMj and the true value is returned.

if the flag value is not equal to 1 (line 30, Algorithm 4) then else part (lines 33-35,

Algorithm 4) is executed and a false value is returned (line 34, Algorithm 4). The

repeat-until and for loop in Algorithm 4 is executed repeatedly until a suitable

position in the tasks queue of VMj is determined or all the tasks in the queue are

checked. In case, task Tc is equal to null (the suitable position for task Ti not

found in the task queue of VMi), the control is transferred back to the Algorithm

3 for finding next VM with next completion time.

The complexity of the OG-RADL scheduling technique is the same as of the RADL

scheme which is discussed in section 3.2.6 of chapter 3.

4.3 Experimental Evaluation and Discussions

This Section shows the experimental evaluation of the proposed scheduling ap-

proach (OG-RADL) and state-of-the-art scheduling techniques. The OG-RADL

scheduling approach is an extension of the RADL Scheduler, therefore, the same

experimental setup and workload generation criteria has been used which are dis-

cussed in section 3.3.1 and section 3.3.2 respectively.



Overall Performance based RADL 79

4.3.1 Normalization of Evaluation Parameters

In this Section a novel normalization technique has been proposed which over-

comes the limitations of existing normalization approaches like Min-Max, Z-score,

Advanced on Min-Max Z-score Decimal scaling (AMZD).

The Overall Gain (OG) (which combines metrics like ARUR, makespan, task

rejection ratio, and task response time) has been used to evaluate the performance

of the proposed approach. To compute OG, the values of these evaluation metrics

need to be normalized. Normalization [88, 89] is a process that transform different

values to a range like 0 and 1 [88]. It is the pre-processing, mapping or scaling

technique used to convert highly skewed values into a new range of values [88,

90]. There are several normalization techniques used to normalize these values

for different domains and objectives. These technique includes Min-Max use by

[91, 92], z-score [90, 93], Decimal Scaling [94] and Advanced on Min-Max Z-score

Decimal scaling (AMZD) proposed by [88].

Min-Max [92] is the most commonly used normalization technique in data min-

ing. The Min-Max approach is suited for scenarios where maximum and minimum

bounds are already known [93, 95]. This technique transforms minimum value to

zero, maximum value to 1, and values that lie between the minimum and maxi-

mum are transformed into ranges between zero and one (as shown in Table 4.1).

Eq. (4.3) shows formula for applying normalization using Min-Max normalization

technique [92].

Vn = (
Vo −minV alue

maxV alue−minV alue
) ∗ (nMaxV alue− nMinV alue) + nMinV alue

(4.3)

, where Vn is a new/normalized value, Vo represents the original value that needs

to be transformed, minValue and maxValue shows the minimum values and max-

imum values in the list of value that need to be normalized. nMaxValue (normal-

ized maxValue) shows upper range (i.e 1) and nMinValue (normalized minValue)

shows minimum range (i.e., 0).

Z-score [93] is another commonly used normalization technique. Z-score is com-

puted using standard deviation and arithmetic means of the given data. This



Overall Performance based RADL 80

approach overcomes the issue of handling outliers, however, the Z-score is unable

to produce data with the same scale. Moreover, Z-score values can be less than 0

i.e., negative, and can be greater than 1 (as presented in 4.1). Z-score is computed

as shown in Eq. (4.4).

Vn = (
Vo −meanV alue

std Dev
) (4.4)

Advanced on Min-Max Z-score Decimal scaling (AMZD) based normalization tech-

nique has been proposed in [88]. AMZD is used to scale up integer values between

a range of 0 and 1 value. This technique solves the issue of handling outliers, how-

ever, the normalized value does not have consistency in scaling values and favors

the smallest value in the given data (as depicted in 4.1).

Vn = (
Vo − (10n − 1) ∗ d1

10n − 1
) (4.5)

where n is the number of digits in the data element( i.e., the value that needs to

be normalized), and d1 shows the first digit of the data element. Decimal scaling

[94] is a normalization technique that converts the given values among the range

between -1 and 1. However, there is a need for such normalization techniques that

can transform values into a range of values between 0 and 1 and should have the

capability to resolve the issue of handling outliers. To overcome the issues of state-

of-the-art normalization, a novel normalization technique has been developed (as

shown in Eq. (4.6)).

Vn =
Vo

k∑
i=0

(Vi)

(4.6)

, where Vo is the original value that needs to be normalized and Vi value of ith

parameter. The normalized value is subtracted from 1 to transform them to a

uniform scale.

The proposed normalization technique has been compared with state-of-art tech-

niques by using NNGC [89, 96] benchmark dataset.

Table 4.1 shows a comparison of the results of state-of-the-art normalization tech-

niques with the proposed approach. The results of Min-Max and AMZD are

taken from [96]. However, results of the z-score and proposed technique are gen-



Overall Performance based RADL 81

erated using the formula discussed in Eq. 4.4 and 4.6. The value highlighted (in

bold) show the highest and lowest normalized value using different normalization

techniques. These results show that Min-Max normalization provides consistent

results, however, it favors the highest value and penalizes the smallest value which

affects normalized results in case outliers.

Z-score also provides consistency in their values, however, the value of the Z-score

can be greater than 1 and less than 0, which is not applicable in our case.

The normalized results of AMZD are within the range of 0 and 1, however, their

results not consistent with the change in value size. AMZD approach favors the

smallest value and penalizes the largest one. However, the results of the proposed

normalization approach are consistent, do not favor in particular value or set of

values, and the results also lie between 0 and 1. The results generated using

the proposed normalization approach reveals that the behavior of the normalized

results is more similar to the actual values as compared to state-of-the-art ap-

proaches.

Table 4.1: Normalization results for NNGC Dataset

Values Min-Max Z-Score AMZD Proposed

method (OG)

2677 0 -1.222 0.677 0.052

3083 0.062 -1.025 0.083 0.059

3539 0.132 -0.802 0.539 0.068

4032 0.208 -0.562 0.032 0.078

4452 0.273 -0.358 0.452 0.086

5100 0.372 -0.042 0.1 0.098

5944 0.502 0.369 0.944 0.115

6913 0.651 0.841 0.913 0.133

6936 0.654 0.853 0.936 0.134

9185 1 1.948 0.185 0.177

In some scenarios single step normalization is not enough like the makespan needs



Overall Performance based RADL 82

Table 4.2: Two step normalization results for NNGC Dataset [89, 96]

Values Min-Max Z-Score AMZD Proposed
method (OG)

2677 1 2.222 0.677 0.948
3083 0.938 2.025 0.917 0.940
3539 0.868 1.802 0.461 0.932
4032 0.792 1.562 0.968 0.923
4452 0.727 1.358 0.54821 0.914
5100 0.628 1.042 0.9 0.901
5944 0.498 0.631 0.056 0.885
6913 0.349 0.159 0.087 0.867
6936 0.346 0.147 0.064 0.866
9185 0 -0.948 0.815 0.823

to be transformed in the range of 0 and 1. In this case, the makespan value near

0 represents better performance while the value near 1 shows poor performance.

However, there is a need to normalize data in the form that a higher value needs

to represent good performance while a smaller value needs to represent poor per-

formance. Table 4.2 depicts two-step normalization results: 1) In the first step,

actual values are transformed in the range of 0 and 1. In the second step, the

results of the first step are subtracted from 1. Table 4.2 shows that the proposed

normalization technique performs better than the state-of-the-art approaches.

4.3.2 Simulation Results

This Section shows comparison of simulation results of the proposed approach

OG-RADL and that of state-of-the-art task scheduling heuristics like Dynamic

Max-Min (Dy-MaxMin) [33], DLBA [35], PSSELB [19], DC-DLBA [34], RALBA

[1], and MODE [76].

Overall Gain (OG) is used as a performance evaluation metric of state-of-the-art

and proposed task scheduling techniques. OG combines metrics like Mean ARUR

[1, 19, 33], %age of task rejection [34], makespan [1, 19, 34, 35], and average re-

sponse time [19, 33, 35] (as shown in Eq. (4.2)).

Experimental results presented in Figure 4.2 shows the comparison of the pro-

posed approach in terms of an overall performance gain (OG) as compared to the



Overall Performance based RADL 83

state-of-the-art tasks scheduling heuristics using Synthetic workload benchmark

dataset. Figure 4.2 reveals that the proposed approach OG-RADL has gained

6.44, 8.21%, 16.6%, 11.45%, 27.86%, and 32.2% higher performance in terms OG

on Synthetic workload dataset as compared to Dy-MaxMin [33], DLBA [35], DC-

DLBA [34], RALBA [1], PSSELB [19], and MODE [76] respectively. It’s because

the proposed approach is resource and deadline-aware. Moreover, the proposed

scheduling scheme updates VMs status at run time that helps in mapping tasks

according to the latest available information of VMs.

Figure 4.2: OG using Synthetic Benchmark Dataset

Figure 4.3: OG using GoCJ Benchmark Dataset



Overall Performance based RADL 84

Figure 4.3 presents the overall performance results of the proposed approach as

compared to state-of-the-art task scheduling heuristics using the GoCJ benchmark

dataset. The results shown in Figure 4.3 shows that the proposed technique OG-

RADL has attained 4.21%, 10.63%, 2.69%, 10.33%, 11.15%, and 8.57% better

overall performance using GoCJ dataset against Dy-MaxMin, DLBA, DC-DLBA,

RALBA, PSSELB, and MODE respectively. It’s because the proposed algorithm

is more scalable and map tasks to VMs based on updated VMs status.

Figure 4.4 depicts the comparison of overall performance achieved by the pro-

posed approach OG-RADL using the HCSP benchmark dataset. Results presented

in Figure 4.4 reveal that OG-RADL has gained 1.32%, 13.24%, 5.48%, 11.59%,

28.33%, and 10% higher overall performance as compared to Dy-MaxMin, DLBA,

DC-DLBA, RALBA, PSSELB, and MODE respectively.

Figure 4.4: OG using HCSP Benchmark Dataset

4.4 Results and Discussion

A comprehensive investigation of overall performance-based experimental results

shows that the proposed task scheduling approach i.e., OG-RADL outperforms

in terms of overall gain as compared to state-of-the-art scheduling techniques

for all three datasets. It is because the OG-RADL is deadline and resource-

aware, and has comparatively less scheduling overhead. To thoroughly evaluate



Overall Performance based RADL 85

the proposed approach, three different benchmark datasets (synthetic workload,

GoCJ, and HCSP) have been used for experimentation. The synthetic workload-

based benchmark dataset comparatively comprises a large number of smaller tasks

and only a few larger size tasks. Such a dataset is called a positively skewed

dataset. Moreover, the dataset that has a high number of large size tasks is

termed as a negatively skewed dataset.

As compared to synthetic workload based dataset, the GoCJ dataset used in ex-

perimentation comprises a large number of large size tasks. Moreover, four (4)

commonly used instances of the HCSP dataset has been used for experimentation

which include i hilo, i lohi, c lohi, and c hilo instances where i and c show the

consistency level of the workload. The i represents inconsistent workload and c is

used for consistent workload, hi shows high heterogeneity, and lo represents low

heterogeneity of the resource and workload.

DC-DLBA attained lower overall performance for synthetic workload as compared

to GoCJ and HCSP datasets. It is due to the higher makespan and response time

on synthetic workload and comparatively lower makespan for GoCJ and HCSP

datasets. It’s because of a large number of smaller size tasks in the synthetic

workload where task rejection is comparatively smaller and only a few new VMs

has created. OG-RADL has achieved 16.6% higher overall performance on syn-

thetic workload as compared to DC-DLBA.

Similarly, MODE gained lower overall performance for synthetic workload as com-

pared to GoCJ and HCSP datasets. It is due to the higher makespan and task

response time on synthetic workload and comparatively lower makespan and task

response time for GoCJ and HCSP datasets. It’s because the number and sizes of

tasks in the synthetic workload dataset are comparatively small where most of the

tasks can be mapped within the specified threshold and few new VMs are created.

OG-RADL has attained 32.2% higher overall performance on synthetic workload

as compared to MODE.

The scrutinized results show that Dy-MaxMin achieved comparatively better over-

all performance than DLBA, DC-DLBA, RALBA, PSSELB, and MODE due to

lower response time because of run time updates of VM and tasks status table

which enable to map tasks on a more realistic expected completion time. How-



Overall Performance based RADL 86

ever, OG-RADL attained 6.44% and 4.21% higher overall performance than Dy-

MaxMin on synthetic, and GoCJ datasets respectively.

PSSELB attained lower overall performance for HCSP and synthetic workload-

based datasets due to a large number of small size tasks. It’s because PSSELB

selects the largest tasks and can assign some large size tasks to the slower ma-

chine. The proposed approach has achieved 27.86%, 11.15%, and 28.33% improved

overall performance as compared to PSSELB for synthetic workload, GoCJ, and

HCSP dataset respectively. OG-RADL has gained 8.21%, 10.63%, and 13.24%

higher overall performance against DLBA on GoCJ, HCSP, and synthetic work-

load datasets respectively.

The scrutinized results reveal that RALBA achieved higher overall performance

as compared to PSSELB and DLBA. Experimental results show that OG-RADL

achieved 11.45%, 10.33%, and 11.59% improved overall performance than RALBA

on HCSP, GoCJ, and synthetic workload datasets respectively.

The overall comprehensive investigation of the experimental results shows that

OG-RADL outperforms in terms of overall performance on all three benchmark

datasets as compared Dy-MaxMin [33], DLBA [35], PSSELB [19], DC-DLBA [34],

RALBA [1], and MODE [76]. However, OG-RADL cannot support SLA-aware

and workflow-based dynamic task scheduling. Moreover, this chapter works on

the assumption that every task is independent and compute-intensive. Therefore,

this chapter does not consider memory, bandwidth, and communication latency.

4.5 Chapter Summary

Cloud computing has emerged as an attractive computing mode for industry and

academia. The cloud computing environment provides services to the customer in

a pay-as-you-go manner. To get the full benefit of the cloud and efficiently utilize

cloud resources, load balancing plays an important role. To achieve maximum

load balancing, there is a need to choose an efficient task scheduling and load

balancing algorithm. To achieve higher resource utilization and load balancing,

minimize tasks execution, and response time, a number of task scheduling algo-



Overall Performance based RADL 87

rithms have been proposed. The majority of these approaches focus on improving

one or two parameters like makespan or resource utilization. However, there is a

need to improve the overall performance of the cloud datacenter. In this chapter, a

Overall Performance-based Resource-Aware Dynamic Load-balancer (OG-RADL)

for deadline constrained cloud tasks scheduling approach has been proposed. The

proposed approach has the capability to map the workload of independent and

compute-intensive tasks in a balanced manner according to the computation power

of resources. The proposed approach is evaluated against state-of-the-art schedul-

ing heuristics like DC-DLBA [34], Dy-MaxMin [33], DLBA [35], RALBA [1], PS-

SELB [19], and MODE [76] using three benchmark datasets. Experimental results

reveal that the proposed approach outperforms in terms of the overall performance

gain as compared to state-of-the-art task scheduling algorithms.

In the future, we intend to extend the proposed approach by considering workflow-

based dependent tasks where the execution sequence of tasks will matter. In the

workload of workflow-based dependent tasks, memory, bandwidth, and communi-

cation latency are some of the essential factors that can hurdle cloud performance.

Therefore, in the future, it is intended to use these factors as performance metrics

as well.



Chapter 5

PSO-RADL: Particle Swarm

Optimization based Resource and

Deadline Aware dynamic

Load-balancer for Deadline

Constrained Cloud Tasks

5.1 Introduction

This chapter focus on Particle Swarm Optimization (PSO) based resource and

deadline-aware dynamic task scheduling and load-balancing for deadline constrained

cloud tasks. In chapters 3 and 4, heuristics-based tasks scheduling algorithm has

been proposed. Heuristic-based algorithms provide near-optimal solutions for a

specific problem and are considered problem-dependent approaches. These ap-

proaches are considered suitable for single objective or multiple objectives with

non-conflicting parameters where improving one parameter can not directly affect

the performance of other parameters. Figure 1.6 shows the basic classification of

scheduling algorithms.

However, meta-heuristics based algorithms like PSO among others are designed

88



Particle Swarm Optimization based RADL 89

to provide a generalized optimal solution and can be applied to multiple domains

[97]. These algorithms are considered more suitable to provide optimal solutions

for multi-objective based problems with conflicting evaluation parameters like ex-

ecution time and cost [7]. Moreover, task execution cost and penalty cost for

deadline-aware schedulers are some of the key evaluation parameters that need

to be considered as evaluation parameters for task schedulers. The aim of using

meta-heuristics based technique is to incorporate and evaluate task execution and

penalty cost along with improving resource utilization and load balancing, reduc-

ing makespan, task response time, and task rejection ratio.

The meta-heuristic algorithms are categorized into evolutionary-based like Ge-

netic Algorithm (GA) [52, 53], bio-meta-heuristics (swarm Intelligence-based), and

non-bio-metaheuristics like Simulation-Based Optimization (SBO) and Simulated

Annealing (SA) [57]. Swarm Intelligence (SI) is a sub-domain of computational

intelligence and first used this concept by [98]. The aim of SI is to solve computa-

tional problems by modeling self-organized populations of agents that can interact

with each other. Agents can share their experiences by exchanging information.

The interactions and movements of agents represent the population performance

[99].

5.1.1 Swarm Intelligence

SI was first used by [98] for robotic intelligence in cellular robotic systems. After

that, the definition of SI is expanded by [100] for algorithms and solving dis-

tributed problems. Swarm intelligence algorithms are broadly categorized into

two sub-categories [41] i.e., 1) Sign based SI include Ant Colony Optimization

(ACO) [47, 48] and Bee Colony Optimization (BCO)algorithms, 2)Imitation based

SI algorithms comprise of Raven Roosting Optimization (RRO) [49] algorithms,

Improved Raven Roosting Optimization (IRRO) [41], Cat Swarm Optimization

(CSO) [50], Chicken Swam optimization (CSO) [41, 51], and Particle Swarm Op-

timization (PSO) [7, 26, 54, 55] algorithms among others.

The most prominent meta-heuristic based task scheduling algorithms include Ant

Colony Optimization (ACO) [47, 48], Genetic Algorithm (GA) [52, 53], Particle



Particle Swarm Optimization based RADL 90

Swarm Optimization (PSO) [7, 26, 54, 55], honeybee foraging [56, 101], and Sim-

ulated Annealing (SA) [57].

ACO based meta-heuristic algorithms have better optimization at early stages,

however, the convergence rate of ACO is comparatively slower. As compared to

GA, PSO has an easy implementation, fast convergence, and better optimiza-

tion performance [81]. PSO variants have better performance in terms of elapse

time, approximation set, and hyper volume as compared to different variants of

GA algorithm like SPEA2 and NSGA [102]. PSO is more popular among these

meta-heuristic based algorithms due to its effectiveness for a broad range of ap-

plications, simplicity, fast convergence, and easy implementation [103]. Moreover,

PSO based algorithms have a sound natural computation background along with

better performance.

Computational time is the most important factor in task scheduling in the cloud.

Its because cloud is a dynamic computing environment and the cloud scheduling

algorithm should be fast enough to be adopted in the real cloud environment.

Moreover, these algorithms should provide an optimized solution with fast con-

vergence. The literature study shows that PSO is the most adopted optimization

algorithm [99] for cloud task scheduling. Therefore, this research focuses on op-

timizing tasks execution time (makespan), Average Resource Utilization Ratio

(ARUR), reduce task response time, minimize tasks rejection, penalty cost [26],

and total tasks execution cost [26] of the cloud [63] using PSO.

5.1.2 Particle Swarm Optimization

PSO [7] can be applied to both discrete and continuous problems and is more

efficient for global search in the problem space. PSO converges globally and tries

to find comparatively better fitness value. However, PSO is weak for local search

and cannot pay more attention to the search in the local subspace [26, 54, 55, 103].

This increases the chances of trapping to the local optima and may have a lower

convergence rate in later stages.

To overcome these limitations of PSO algorithms, inertia weights play a significant

role. Inertia weight is an important control parameter for effectively adjusting the



Particle Swarm Optimization based RADL 91

local and global search capability of the PSO algorithm. A low value of inertia

weight facilitates local search while a high value of weight facilitates the global

search. The literature study shows that there are five prominent and most com-

monly used inertia weights strategies out of a total of 15 inertia weights [82, 103].

In this chapter, a novel and adaptive inertia weight strategy has been proposed

[104] which overcome the limitations of existing inertia weight strategies that re-

sults in an improved version of PSO and is termed as adaptive PSO.

In cloud computing, profit maximization is the key objective of cloud Service

Providers (CSP). CSP profit can only be maximized by higher utilization of cloud

resources and balancing the workload. On the Client side, minimization of the

tasks execution cost, reduction in tasks execution time, and meeting tasks dead-

line are the key factors for the cloud users. Most of the meta-heuristic based

task scheduling algorithms are single objective or bi-objective and the majority of

these algorithms consider non-conflicting parameters like makespan, throughput,

and response time, etc. for performance evaluations.

The main objective of this research is to investigate and analyze the multi-objective

optimization problems, proposed a task scheduling framework that maps the user

workload in a balanced manner, and improve the quality of service parameters

like makespan, Average Resource Utilization Ratio (ARUR), reduce task response

time, minimize tasks rejection, penalty cost, and total execution cost of tasks.

In this research, a Particle Swarm Optimization based Resource and Deadline

Aware dynamic Load-balancer (PSO-RADL) for the deadline-constrained task has

been proposed. PSO-RADL is a multi-objective-based task scheduling scheme.

The proposed approach considered conflicting parameters like task deadline, task

execution time, and monetary cost. The PSO-RADL scheduling technique has

the ability to reduce the task penalty cost and task execution cost. Moreover, a

novel Inertia weight strategy i.e., Leaner Descending and Adaptive Inertia Weight

(LDAIW) for PSO-based algorithms have been proposed. The proposed inertia

weight strategy improves the performance of the PSO algorithm. Its because the

proposed approach provides a better combination of local and global search. In

summary, the major contributions of this research are:

• In-depth critical investigation of state-of-the-art heuristics and meta-heuristics



Particle Swarm Optimization based RADL 92

based task scheduling algorithms to identify the strengths and limitations of

these approaches.

• A Particle Swam Optimization (PSO) based novel dynamic load-balancing

scheduler for non-preemptive, independent, and compute-intensive tasks-

based cloud workload that produces lower task execution time, improved

resource utilization, reduced task rejection, and minimized tasks response

time.

• Multi-objective based task mapping framework for conflicting parameters

like task deadline, task response time, makespan, and cost.

• PSO-RADL scheduling scheme for minimizing the task penalty cost and

execution cost of cloud datacenter.

• A novel inertia weight strategy named Leaner Descending and Adaptive In-

ertia Weight (LDAIW) has proposed that improves the performance of PSO

based algorithms.

• Empirical investigation and performance evaluation of the proposed schedul-

ing approach against state-of-the-art scheduling heuristics.

The rest of the chapter is organized as follows. Section 5.1 discusses the introduc-

tion part. PSO-RADL system architecture, PSO-RADL algorithm, PSO-RADL

system, and performance model is presented in section 5.2. Section 5.3 presents

experimental evaluation and discussion that include experimental setup, workload

generation, and simulation results. Results and discussion are discussed in section

5.4. Section 5.5 concludes the chapter and presents potential future directions.

5.2 PSO-RADL System Overview and

Background

The literature study reveals that most of the existing scheduling algorithms suffer

from issues like under-resourced utilization, load imbalance, high makespan, and



Particle Swarm Optimization based RADL 93

task rejection ratio. Moreover, these algorithms are not considering conflicting

parameters like execution time and cost. PSO-RADL is a Particle Swarm Op-

timization based resource-aware dynamic load-balancing scheduler for deadline-

constrained tasks. The PSO-RADL follow a single point based encoding scheme

i.e., the proposed approach generate a single best solution for every generation.

PSO-RADL scheduling scheme implemented and evaluated using well-known

Cloudsim [11] simulator. Cloudlet is used as a synonym for the task in the

Cloudsim simulator. The datacenter entity of Cloudsim is used to simulate cloud

infrastructure level services. The datacenter comprises hosts machines and storage

servers, and the computation power of Host Machines (HM) and storage servers on

that datacenter represents the capacity of the datacenter. Cloud Service Provider

(CSP) creates One or more Virtual Machines (VM) on every HM based on a de-

fined VMs allocation policy. PSO-RADL scheduling scheme assigns tasks to VMs

based on multi-objective based criteria having conflicting parameters like task

execution time, penalty, and total execution cost.

5.2.1 PSO-RADL System Architecture

PSO-RADL is a particle swarm optimization-based resource and deadline-aware

cloud task scheduling technique that allocates the incoming task in a balanced

way. The system architecture of the proposed model is shown in Figure 5.1. The

Symbols section shows some of the terminologies and notations used in the PSO-

RADL task scheduling scheme.

1. Input and output: PSO-RDAL Scheduler receives a list of tasks with their com-

putation requirements in Million Instructions (MIs) along with task deadline (in

Milli-Seconds (MS)). A set of Virtual Machine (VM) with their processing capac-

ity in Million Instructions Per Second (MIPS) is received as an input parameter

(shown in Figure 5.1). VMs set shows the actual capacity of cloud datacenter.

PSO-RDAL will give an optimized mapping of tasks to VMs as an output.

2. Initialization step: In this step, population agents (particles) are initialized to

random positions in the search space. At the initialization phase of the search

process, tasks are randomly mapped to VMs and local and global best values are



Particle Swarm Optimization based RADL 94

computed based on this mapping which will be used in the future for comparison.

The velocity and position of particles are initialized at random values. Table 5.1

presents some important parameters that need to be initialized before starting the

execution of the proposed approach. The c1 and c2 are the acceleration factors

and based on the literature study the values of these factors are initialized to 2

and 1.49455 respectively [82]. Moreover, the initial value of inertia weight (w1)

is set 0.4 [82, 103] and the final value of inertia weight (w2) is set 0.9 based on

literatures [7, 82, 103]. The upper and lower bound is set to the number-of-VMs

-1 and zero respectively.

Table 5.1: Initialization parameters

Parameters Values

Number of iterations 200

Number of particles 20

Minimum position 0

Maximum position No of VMs -1

w1 0.4 [82, 103]

w2 0.9 [7, 82, 103]

Acceleration factor c1 2 [82]

Acceleration factor c2 1.49455 [82]

Stopping Criteria MaxItr

3. The number of iterations also known as generations is represented by Itr and

the maxItr shows the upper bound i.e., the maximum number of iterations. The

maximum number of iterations maxItr is set to 200 after comprehensive fine-

tuning.

4. The working procedure of the swarm intelligence-based algorithm comprises

two phases i.e., global and local search. To find an optimized solution, a good

balance between local and global search plays a vital role. In an ideal scenario,

the adoption of a global search operator should be greater than the local at the

beginning of the search procedure [103]. Inertia weight strategy is considered



Particle Swarm Optimization based RADL 95

a strong control parameter for maintaining a balance between global and local

search [82]. A number of inertia weight strategies have been proposed by various

researchers. However, in this chapter, we are using the novel and adaptive inertia

weight strategy that is proposed in [104].

5. The number of iterations (discussed in step 3) represents swarm generations

and each generation has a number of particles. Each particle represents a single

solution i.e., mapping of tasks to VMs.

6. Every particle shows a complete solution that comprises a number of tasks

and VMs. Velocity and position are computed for each cloudlet to be mapped on

VM. In case the position value becomes negative or greater than VMCount-1 then

Position (P) is re-initialized to a random value between zero VMCount - 1. In

case the value of P is within the range then VM is selected and task completion

time (TRT) is computed. VM ready time and particle map are updated and this

process repeats for every cloudlet.

7. When all tasks are mapped to VM then local best is computed and is updated

if needed. Similarly, the global best value is compared with the recent local best

and is replaced if the new value is better than the current global best value and

this process repeats for each particle.

In case all particles are executed then a new iteration is started. The mapping

process is completed which Itr reached to maxItr.

5.2.2 PSO-RADL Algorithm

This section discusses the proposed scheduling algorithm PSO-RADL. PSO-RADL

algorithm (Algorithm 1) receives a list of cloudlets (tasks) with their sizes in Mil-

lion Instruction (MI) and task deadlines (in seconds) and a list of virtual machines

with their computation power in Million Instructions Per Second (MIPS) as input.

The output of the PSO-RADL (Algorithm 1) consists of a global best value-based

final task for VM mapping.

Lines 1-8 comprise of necessary initialization of the PSO-RADL algorithm. VMMap

and CloudletMap are converted into the VMList and CloudletList (Lines 9-10, Al-

gorithm 5). The number of VMs and Cloudlets are identified using VMList and



Particle Swarm Optimization based RADL 96

CloudletList (Lines 11-12, Algorithm 5). The initialization of the particles is per-

formed at line 13 (Algorithm 5) and the result of the initialization step is stored

in hashMap named pbMap.

P =  random position at
0 and VMs Count -1

Start

Input List of Tasks
and VM Set

Itr <= maxItr

Compute Inertia Weight

If Particle 
Exist?

If Particle 
Exist?If CloudLet (C) 
Exist?

Compute Inertia WeightCompute  Velocity (V)

Compute  Position  (P)

If P < 0 or 
P > VMCount - 1 

Select  VM & 
Compute Task

Completion Time (TCT)

Update VM Ready Time
(VMRT)

Update Particle Map

Yes

Yes

No

No

Yes

No

End

Initialization 

Compute  Pbest and
Update (if needed)

Compare and Update
gbest (if needed)

Yes

No

Figure 5.1: PSO-RADL Scheduler

The while loop (Lines 14-41, Algorithm 5) is executed until the number of itera-

tions (Itr) reaches their maximum level i.e., MaxItr and Itr are incremented by one

at the end of each iteration (Line 40, Algorithm 5). Inertia weight is computed



Particle Swarm Optimization based RADL 97

for every iteration (Line 15, Algorithm 5) using Eq. (5.3). The for loop (Lines

16-39, Algorithm 5) is repeated for all particles. The size of the particle varies

from case to case however, the number 20 is fixed for the number of particles

after comprehensive fine-tuning. The nested for loop (Lines 17-30, Algorithm 5)

iterates as many times as the number of cloudlets in the received cloudlet list.

For every iteration of the nested loop, particle velocity (v) and position (pos) is

updated (Lines 20-21, Algorithm 5) using Eq. (5.4) and 5.5. r1 and r2 are two

random numbers (0 ≤ r1,r2 ≤ 1) which are regenerated for every update of veloc-

ity (Lines 18, Algorithm 5). Constant acceleration factors c1 and c2 are known

as cognitive and social components of particle velocity (Lines 19, Algorithm 5).

The cognitive coefficient c1 limits the length of the swarm step that particle takes

toward their personal best and the social coefficient factor limits the size of the

step taken by the particle towards the global best. The values of c1 and c2 are

set to 2 and 1.49455 respectively [82]. Condition at line 22 restricts the position

value within their boundaries. if the position value is less than zero or greater

than the total number of VMs, a random value position is generated between 0

and VMCout-1 (Lines 22-24, Algorithm 5).

At line 25 (Algorithm 5), VM is identified and execution time (i.e., exectime) is

computed for the current cloudlet on the selected VM (Line 26, Algorithm 5) using

Eq. (3.3). Task completion time (TCT) is computed by adding task execution

time with VM ready time (Line 27, Algorithm 5) using Eq. (5.1). VM ready time

and particle hashmap pMap are updated (Lines 28-29, Algorithm 5). Personal

best value ( i.e., pBestValue) is computed and compared with the previous pBest-

Value (Line 31-32, Algorithm 5). if the condition at line 32 (Algorithm 5) is true

then the pBestValue is updated in the pbMap i.e., the personal best hashMap

that stores particles’ best value (Line 33, Algorithm 5).

The nested if statement (Lines 34-37, Algorithm 5) is executed when the condition

at line 34 is true i.e. when the updated pBestValue is greater (improved) than

the global best value (gBestValue). The new improved value of pBestValue is

assigned to gBestValue (Line 35, Algorithm 5) and pMap is updated in gbFMap

which stores the global best based mapping of tasks to VMs (Line 36, Algorithm

5).



Particle Swarm Optimization based RADL 98

Algorithm 5: Proposed PSO-RADL scheduler

Input : CloudletMap: List of tasks (cloudlets) with their length in MI and

VMMap: List of VMs with their processing capability in MIPS

Output: gbFMap: global best based final mapping of tasks to VMs

1 pos = 0, w = 0.0, pBestValue =0.0

2 v = RandomNo(0, 1), gBestValue =0.0

3 noParticles = 20, w1 = 0.4, w2 = 0.9

4 Itr = 1, MaxItr = 200, c1 = 2, c2 = 1.49455

5 pbMap<Integer, Double> = Null

6 VMRTMap <Integer, Double> = Null

7 pMap<Cloudlet, Vm> = Null

8 particlesMap<Integer, pMap<Cloudlet, Vm>> = Null

9 VMList = getVMs(VMMap)

10 CloudletList = getCloudlets(CloudletMap)

11 CloudletCount = CloudletList.size()

12 VMCount= VMList.size()

13 pbMap = initializeParticles(CloudletCount, VMCount, pbMap, pMap,

gbFMap, noParticles)

14 while (Itr <= MaxItr) do

15 w = ((w1 - w2)/Pbs)+((MaxItr - Itr)/Itr)*(w1 - (w1 - w2)/Pbs)

16 for (p = 1 to noParticles) do

17 for (c = 1 to CloudletCount) do

18 r1 = RandNo(0, 1)

19 r2 = RandNo(0, 1)

20 v = (w * v) + (c1 * r1 * (pbMap.get(p)- pos)) + (c2 * r2 *

(gBValue - pos))

21 pos = pos + v

22 if pos >= VMCount || pos < 0 then

23 pos = RandPosition(0, VMCount-1)

24 end

25 Vm VM = getVM(pMap);

26 execTime = getCETime(CloudletList, clt, VM)

27 TCT = execTime + getVMReadyTime(VMRTMap, VM, clt)

28 updateVMRTMap(VMRTMap, VM, clt, execTime)

29 updatepMap(VMRTMap, pMap, pos, clt);

30 end

31 pBestValue = getpbMap(VMRTMap)

32 if (pBestValue > pbMap.get(p)) then

33 pbMap.put(p, pBestValue)

34 if pBestValue > gBestValue then

35 gBestValue = pBestValue

36 gbFMap.put(0, pMap)

37 end

38 end

39 end

40 Itr++

41 end



Particle Swarm Optimization based RADL 99

5.2.3 PSO-RADL System Model

This section presents the System model of the PSO-RADL scheduling technique.

Some basics definitions, notations, terminologies used in the system architecture,

and mathematical expressions of the proposed approach are shown in the Abbre-

viations and Symbols sections. The Cloud datacenter consists of a list of VMs

(shown in Eq. (3.1)) that represents the size of the cloud. Task Completion Time

(TCT) is the expected completion time of the task on a particular virtual machine

(shown in Eq. (5.1)) and mathematically expressed as:

TCT = execTime + VMRT (5.1)

Task Completion time of task on VM is the sum of the execution time of the

current task and the completion time of already assigned tasks to that VM. The

execTime is the execution time of a task on the VM and VMRT is the VM ready

time. The execTime is computed using Equation (3.3)

The size of the task is shown in million instructions (MI) and MIPS shows the

computation capacity of VM. The VM ready time is computed using Eq. (5.2)

VMRT =

k∑
i=1

execTimei (5.2)

where, k is the total number of tasks assigned to the VM. Inertia weight plays an

important role in swarm intelligence based meta-heuristic algorithm. W represents

inertia weight and is computed using Eq. (5.3) [104].

w =
((w1 - w2 )

Pbs

+ (
(MaxItr-Itr)

MaxItr
)) ∗ (

(w2 - (w2 - w1)

Pbs

) (5.3)

Where w1 is the maximum value and w2 is the minimum value which is set to

0.9 and 0.4 respectively. MaxItr represents the total number of iterations and Itr

shows the current iteration. The Pbs shows personal best status which is used

as feedback to adjust inertia weight. Maintaining velocity is one of the major



Particle Swarm Optimization based RADL 100

activities of PSO based algorithms. PSO algorithm update particle velocity using

Eq. (5.4) [82, 103].

vg+1
pn = w ∗ vgpn + c1r1(Pbgpn − xg

pn + c2r2(Gbgpn − xg
pn) (5.4)

Where p shows the number of particles and p = 1, 2, 3, ..., P, g represents the

number of iterations g = 1,2,3, ..., MaxItr, and n represent the number of dimen-

sions i.e., the number of tasks that need to be mapped on VMs in an optimal

manner. Vg
pn represents current velocity of the particle and Xg

pn represent the cur-

rent position of pth particle with gth iteration in n dimensional space. W shows

the inertia weight, c1 and c2 are the constant acceleration factors, and r1 and r2

are randomly generated values between 0 and 1.

The position of particle is updated using Eq. (5.5) [82, 103].

xg+1
pn = (vg+1

pn + xg
pn) (5.5)

To identify the fitness of the particle, every solution of PSO-based algorithms is

evaluated through its objective function. The objective function can be a max-

imization or minimization problem. The objective function of the PSO-RADL

scheduler is based on the maximization problem and mathematically expressed

using Eq. (5.6).

Objective Function = max((ARUR + 1/makespan + 1/rtList)/3) (5.6)

VM completion time VM CT is the sum of completion time of all cloudlets which

are allocated to the VM for execution and is computed by using Eq. (3.7) [1].

Task Response time (RspTime) is the difference of task execution start time and

task arrival time and is computed using Eq. (3.8).

Cost is one of the most important evaluation parameters for cloud scheduling

algorithm. Penalty cost (penalityCost) is the multiple of delay time units and

penalty rate (shown in Eq. (5.7))[76].

penaltyCost = delayTime × penaltyRate (5.7)



Particle Swarm Optimization based RADL 101

The penalty rate is the cost per unit of delay time. Delay time is task execution

time (in seconds) that exceeds the task deadline. Deadline violation occurs when

the execution time of a task exceeds its deadline and is measured in Seconds.

TaskExecutionCost =

m∑
j=1

VMCostj (5.8)

Task execution cost is the sum of costs for all VMs. The Eq. (5.8) shows task exe-

cution cost where m represents the total number of VMs and VMCostj represents

the cost of VMj [76].

5.2.4 PSO-RADL Performance Model

Performance evaluation of the proposed technique PSO-RADL is performed against

the state-of-the-art task scheduling approaches in terms of Makespan (mathemat-

ically represented using Eq. (3.9) [1, 23, 34, 59, 62]), Average Resource Utilization

Ratio (ARUR) which is computed using Eq. (3.10) [1, 19], tasks response time

(computed using Eq. (3.12), percentage of task rejection which computed using

Eq. (3.11), penalty cost (computed using (5.9), and total cost (computed using

(5.10) (penalty plus task execution cost).

Total penalty cost is the sum of penalty cost of all tasks whose deadline violated

[76] and is computed using Eq. (5.9)

TotalPCost =

ndm∑
i=1

penaltyCosti (5.9)

where ndm represent the number of tasks whose deadline missed. Reduced total

penalty cost represents higher performance in terms of maximum tasks meeting

their deadlines. The total cost of cloud is the sum of the total penalty cost and

task execution cost and is computed using Eq. (5.10) [76]. Minimized total cost

represents better performance in terms of reduced execution expense of user job.

TotalCost = TotalPCost + TaskExecutionCost (5.10)



Particle Swarm Optimization based RADL 102

5.3 Experimental Evaluation and Discussions

This section describes the experimental evaluation and discussion of the proposed

task scheduling technique PSO-RADL and state-of-the-art task scheduling tech-

nique in cloud computing. The PSO-RADL scheduling scheme is an extension

of the RADL Scheduler and the same experimental setup and workload genera-

tion criteria has been used which are discussed in section 3.3.1 and section 3.3.2

respectively.

5.3.1 Simulation Results

This Section discuss the simulation results of the proposed task scheduling tech-

nique PSO-RADL and comparison of these results against state-of-the-art schedul-

ing heuristics. These heuristics include PSSELB [19] RALBA [1], Dynamic MaxMin

(D-MaxMin)[33], DC-DLBA [34], DLBA [35], and MODE [76].

0.23 

0.12 

0.18 

0.29 

0.23 

0.23 

0.1 

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

ARUR (1 - 0) 

Figure 5.2: ARUR results for Synthetic dataset

The performance of the proposed technique and state-of-the-art task scheduling

heuristics is evaluated using metrics like Mean ARUR [1, 19, 33], makespan [1, 19,



Particle Swarm Optimization based RADL 103

34, 35], average response time [19, 33, 35], %age of task rejection[34], penalty cost

[76], total cost[76] of the cloud.

193.28 

575.34 

235.54 

432.16 

180.2 

308.33 

172.5 

0 100 200 300 400 500 600 700

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Average MakeSpan 

Figure 5.3: Makespan results for Synthetic dataset

2 

13.4 

3.43 

5.65 

9.27 

18.14 

2 

0 2 4 6 8 10 12 14 16 18 20

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

%age of Task Rejection  

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Figure 5.4: Task rejection results for Synthetic dataset based executions

Figure 5.2 shows ARUR based experimental results using Synthetic workload [1]



Particle Swarm Optimization based RADL 104

dataset. Synthetic workload-based benchmark datasets comprise a large number of

smaller size tasks and only a few larger size tasks which are termed as a positively

skewed dataset.

18.54 

25.69 

15.7171 

42.31 

19.26 

32.82 

5.71 

0 5 10 15 20 25 30 35 40 45

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

e
d

u
lin

g 
A

lg
o

ri
th

m
s 

Average Response Time 

Figure 5.5: Task Response Time results for Synthetic dataset based executions

0.52 

5.12 

3.65 

22.77 

5.24 

21.95 

25.61 

0 3 6 9 12 15 18 21 24

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Panalty Cost (US $) 

Figure 5.6: Penalty cost results for Synthetic dataset based executions

The experimental results presented in figure 5.2 shows that the proposed PSO-



Particle Swarm Optimization based RADL 105

RADL approach attained 92%, 28%, -21%, 0%, 0%, and 130% higher resource

utilization as compared to MODE [76], DLBA [35], DC-DLBA [34], RALBA [1]

and PSSELB [19], and D-MaxMin [33], respectively. Figure 5.3 reveals that the

proposed technique PSO-RADL has attained 66%, 18%, 55%, -7%, 37%, and -12%

reduced makespan using synthetic workload benchmark dataset against MODE

[76], DLBA [35], DC-DLBA [34], RALBA [1] and PSSELB [19], and D-MaxMin

[33], respectively.

3.05 

16.75 

8.72 

99.39 

9.17 

33.00 

30.07 

0 10 20 30 40 50 60 70 80 90 100 110 120

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Total Cost (US $) 

Figure 5.7: Total Cost results for Synthetic dataset based executions

0.28 

0.13 

0.28 

0.23 

0.27 

0.17 

0.12 

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32

RADL-PSO

DLBA

DC-DLBA

RALBA

PSSELB

MODE

D-MaxMin

Sc
h

e
d

u
lin

g 
A

lg
o

ri
th

m
s 

ARUR (1 - 0) 

Figure 5.8: ARUR results for GoCJ workload-based dataset



Particle Swarm Optimization based RADL 106

Experimental results presented in figure 5.4 shows that the proposed technique

has attained 85%, 42%, 65%, 78%, 89% lower task rejection and 28%, -18%,

56%, 4%, 44% minimized response time (as shown in Figure 5.5) using Synthetic

workload benchmark dataset as compared to MODE [76], DLBA [35], DC-DLBA

[34], RALBA [1] and PSSELB [19], respectively. Figure 5.6 shows total penalty

cost based results on Synthetic workload dataset.

613.64 

1677 

584.48 

822.75 

952.02 

521.11 

730.35 

0 200 400 600 800 1000 1200 1400 1600 1800

RADL-PSO

DLBA

DC-DLBA

RALBA

PSSELB

MODE

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Average Makespan (Seconds) 

Figure 5.9: Makespan results for GoCJ dataset based executions

5.5 

13.2 

14.43 

35.24 

38.99 

39.02 

11.5 

0 5 10 15 20 25 30 35 40 45

RADL-PSO

DLBA

DC-DLBA

RALBA

PSSELB

MODE

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

%age of Task Rejection  

Figure 5.10: Task rejection results for GoCJ workload-based dataset



Particle Swarm Optimization based RADL 107

These results reveals that the proposed approach PSO-RADL has gained 90%,

86%, 98%, 90%, 98%, and 98% lower total penalty cost and 82%, 65%, 97%, 67%,

91%, and 90% Lower total cost of executing user tasks as compared to MODE

[76], DLBA [35], DC-DLBA [34], RALBA [1] and PSSELB [19], and D-MaxMin

[33], respectively.

797.16 

673.08 

832.68 

846.76 

964.27 

371.03 

295.41 

0 100 200 300 400 500 600 700 800 900 1000 1100

RADL-PSO

DLBA

DC-DLBA

RALBA

PSSELB

MODE

D-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Average Response Time (Seconds) 

Figure 5.11: Task Response Time results for GoCJ dataset

GOCJ [59] is the second benchmark dataset used for performance evaluation and

comparison of the proposed approach PSO-RADL. In the GOCJ dataset most of

the tasks are of larger size than smaller size tasks. Experimental results evince

that the PSO-ADL has attained 77%,-18%, 0%,-15%, 35%, 92% higher ARUR (as

presented in Figure 5.8), and 63%, -5%, 25%, 36%, -18%, and 16% lower makespan

(as presented in figure 5.9) using GoCJ benchmark dataset as compared to MODE

[76], DLBA [35], DC-DLBA [34], RALBA [1], PSSELB [19], and D-MaxMin [33],

respectively.

Figure 5.10 shows that PSO-RADL has achieved 58%, 62%, 84%, 86%, 86%, and

52% reduced task rejection as compared to MODE [76], DLBA [35], DC-DLBA

[34], RALBA [1], PSSELB [19], and D-MaxMin [33], respectively. The PSO-RADL

has gained 4%, 6%, and 17% lower task response time (as shown in figure 5.11)

as compared to DC-DLBA [34], RALBA [1], and PSSELB [19], respectively using



Particle Swarm Optimization based RADL 108

GoCJ benchmark dataset.

36.78 

20.04 

189.16 

31.08 

52.71 

23.66 

163.56 

0 25 50 75 100 125 150 175 200

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

e
d

u
lin

g 
al

go
ri

th
m

s 

Panalty Cost (US $) 

Figure 5.12: Penalty cost results for GoCJ dataset based executions

50.23 

30.02 

235.51 

149.63 

71.35 

38.17 

186.08 

0 25 50 75 100 125 150 175 200 225 250

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Sc
h

ed
u

lin
g 

al
go

ri
th

m
s 

Total Cost (US $) 

Figure 5.13: Total cost results for GoCJ dataset based executions

Figure 5.12 presents that the proposed approach PSO-RADL has achieved 81%,

-18%, 30%, and 78% lower penalty cost and 79%, 66%, 30%, and 73% reduced

total cost as compared to DLBA [35], DC-DLBA [34], RALBA [1], D-MaxMin



Particle Swarm Optimization based RADL 109

0.34 

0.35 

0.2 

0.13 

0.3 

0.29 

0.15 

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Mean ARUR (0 - 1) 

Sc
h

e
d

u
lin

g 
A

lg
o

ri
th

m
s 

Figure 5.14: ARUR results for HCSP instances based dataset

[33], respectively.

1113.17 

469.45 

1298.64 

492.96 

1201.63 

1810.76 

231.48 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Average MakeSpan (Seconds) 

Sc
h

e
d

u
lin

g 
A

lg
o

ri
th

m
s 

Figure 5.15: Makespan results for HCSP instances based dataset

Heterogeneous Computing Scheduling Problem (HCSP) [59, 62] is based on Ex-

pected Time to Compute(ETC) model and used as a benchmark dataset that

comprise of HCSP instances. The experimental results shown in figure 5.14 re-



Particle Swarm Optimization based RADL 110

veals that the proposed technique PSO-RADL has gained -3%, 70%, 162%, 13%,

17%, and 127%, -137%, 14%, -126%, 7%, 39%, and -381% lower makespan as

compared to MODE [76], DLBA [35], DC-DLBA [34], RALBA [1], PSSELB [19],

and D-MaxMin [33], respectively using HCSP benchmark dataset.

24.21 

57.17 

8.1 

15.96 

26.32 

41.71 

3.96 

0 5 10 15 20 25 30 35 40 45 50 55 60

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

%age of Task Rejection 

Sc
h

e
d

u
lin

g 
A

lg
o

ri
th

m
s 

Figure 5.16: Task rejection results for HCSP instances based dataset

1284.21 

634.08 

1433.95 

214.85 

1227.35 

2232.04 

176.87 

0 300 600 900 1200 1500 1800 2100 2400

RADL-PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

D-MaxMin

Average Response Time (Seconds) 

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 
 

Figure 5.17: Task Response Time results for HCSP instances based dataset

Figure 5.16 shows that the proposed approach PSO-RADL has gained 58%, -



Particle Swarm Optimization based RADL 111

199%, -52%, 8%, 42%, and -511% minimized task rejection and -76%, 22%, -418%,

9%, 50%, and -529% lower response time (presented in Figure 5.17) as compared

to MODE [76], DLBA [35], DC-DLBA [34], RALBA [1], PSSELB [19], and D-

MaxMin [33], respectively using HCSP benchmark dataset.

Figure 5.18 shows penalty cost based experimental results using HCSP benchmark

dataset. Figure 5.18 reveals the proposed approach PSO-RADL has achieved -

257%, 39%, 0%, 25%, -11%, and 25% lower penalty cost and -247%, 40%, 53%,

27%, 20%, and 26% reduced total cost as compared to MODE [76], DLBA [35],

DC-DLBA [34], RALBA [1], PSSELB [19], and D-MaxMin [33], respectively using

HCSP benchmark dataset.

5.4 Results and Discussion

The comprehensive investigation of experimental results shows that PSO-RADL

(proposed approach) has achieved significant improvements in terms of the total

time of executing user job (makespan), cloud resource utilization, meeting task

deadline, penalty cost, and total execution cost. Its because the proposed approach

is deadline and resource-aware, and using PSO based meta-heuristic algorithm.

3300.86 

924.96 

5403.97 

3285.36 

4426.61 

2971.42 

4385.68 

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

RADL_PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

Dy-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Panalty Cost (US $) 

Figure 5.18: Penalty cost results for HCSP dataset based executions



Particle Swarm Optimization based RADL 112

To perform experiments and evaluate the performance of the proposed approach,

three benchmark datasets have been used. The synthetic workload-based dataset

is generated in [1] using a well know Monte-Carlo method. This dataset comprises

a large number of small tasks as compared to large-size tasks and is termed a

positively skewed dataset. The GoCJ benchmarks dataset comparatively large

dataset and comprises a large number of larger size tasks. Moreover, the HCSP

instances-based dataset is the largest in terms of the number of tasks. The HCSP

instances used for experimentation comprise i hilo, i lohi, c hilo, and c lohi.

3351.47 

951.56 

5471.05 

7038.26 

4512.80 

4108.28 

4458.85 

0 800 1600 2400 3200 4000 4800 5600 6400 7200 8000

RADL_PSO

MODE

DLBA

DC-DLBA

RALBA

PSSELB

Dy-MaxMin

Sc
h

ed
u

lin
g 

A
lg

o
ri

th
m

s 

Total Cost (US $) 

Figure 5.19: Total Cost results for HCSP dataset based executions

D-MaxMin has attained a lower response time on all three benchmark datasets.

This is because the D-MaxMin updates task and VM status table at run time

which helps to allocate tasks to VMs based on a more realistic expected comple-

tion time. However, D-MaxMin has gained lower resource utilization, high penalty,

and total cost because this technique neither leases new VMs nor considers task

deadline for the task to VM mapping and high violation of task deadline respec-

tively. PSO-RADL has achieved 130%,127%, 92% higher ARUR, 98%, 78%, 25%

lower penalty, and 90%, 73%, 26% reduced total cost for synthetic, GoCJ, and

HCSP benchmark dataset respectively.

DC-DLBA has attained comparatively better ARUR for synthetic workload than



Particle Swarm Optimization based RADL 113

PSO-RADL. The reason is that DC-DLBA creates few new VMs for synthetic

workload as the sizes of tasks in the synthetic workload are smaller. However,

DC-DLBA shows poor performance for all other parameters like makespan, task re-

sponse time, and task execution cost among others. DC-DLBA gained higher task

response time, makespan, task rejection, and higher resource utilization for the

execution of synthetic workload and comparatively reduced makespan for HCSP

and GoCJ benchmark datasets. It is because of lower task rejection due to a large

number of large-size tasks and as a result, only a few new VMs are created. The

proposed approach PSO-RADL has attained 55% lower makespan, 56% reduced

task response time, 65% reduced task rejection of synthetic workload dataset, and

165% higher ARUR on HCSP dataset.

MODE has attained higher makespan, task rejection, and cost for synthetic work-

load and GoCJ datasets and comparatively lower makespan and task rejection for

the HCSP dataset. Its because this approach creates only a few new VMs for syn-

thetic and GoCJ datasets than HCSP instances-based datasets. Moreover, MODE

has achieved a higher penalty and total execution cost for synthetic workload and

GoCJ datasets as compared to the HCSP dataset due to increased violation of task

deadlines. PSO-RADL has achieved 66% lower makespan, 92% higher ARUR, 85%

reduced task rejection, 90% lower penalty, 82% minimized total cost on synthetic

workload. MODE has gained lower costs for GoCJ and HCSP datasets because of

their cost awareness approach, however, MODE has a higher task rejection ratio

for all three datasets. It’s because MODE is not deadline and resource-aware.

The scrutinized results reveal that DLBA has a higher makespan, cost, and lower

resource utilization for GoCJ and HCSP datasets as compared to synthetic work-

load. It is due to the high scheduling overhead for larger datasets which limits the

scalability of the DLBA technique. PSO-RADL has attained 77% and 70% higher

ARUR, 63%, 14% reduced makespan, 81%, and 39% lower penalty cost, and 79%

and 40% reduced total cost on GoCJ and HCSP datasets.

PSSELB has attained lower penalty and total execution cost for GoCJ and HCSP

datasets, however, PSSELB has poor performance in terms of makespan, task re-

sponse time, and task rejection for all three datasets as compared to PSO-RADL.

This is because PSSELB does not lease any VM at the run time nor does it sup-



Particle Swarm Optimization based RADL 114

ports task deadline. Moreover, PSSELB has achieved lower resource utilization

for synthetic workload than GoCJ and HCSP datasets. This is due to the small

number of large-size tasks which results in assigning some larger tasks to the slower

VMs.

Analysis of the experimental results shows that RALBA has attained better per-

formance in terms of ARUR and makespan for the execution of synthetic workload

based dataset. This is because RALBA is a resource-aware task scheduling tech-

nique and is more suitable for the positively skewed dataset. However, PSO-RADL

has outperformed as compared to RALBA in terms of ARUR, makespan for GoCJ,

and HCSP datasets. Moreover, PSO-RADL outperforms in terms of task response

time, task rejection, penalty, and total cost for the execution of all three datasets.

The overall comprehensive analysis of the experimental results reveals that the

majority of the cases PSO-RADL perform better in terms of makespan, meeting

task deadline, ARUR, task response time, penalty cost, and total execution cost.

Moreover, the proposed approach outperform in terms of ARUR, makespan, and

meeting task deadlines in almost all cases and showed comparable performance

in terms of task response time, penalty, and total execution cost as compared to

their counterpart. Its because the PSO-RADL is resource and deadline aware.

However, due to the inherent nature of being a meta-heuristics-based algorithm,

PSO-RADL performs better for small and medium-size workload-based datasets

as compared to larger datasets.

5.5 Chapter Summary

Cloud computing has two key actors, Cloud Service Providers (CSP) and end-

users of the cloud. The ultimate objective of CSPs is to maximize cloud profit

and cost minimization is the key objective of cloud end users. To meet these

objectives, a balanced distribution of workload plays an important role. Many

heuristics and meta-heuristics-based task scheduling has been proposed. Most of

the existing state-of-the-art task scheduling heuristics either consider a single eval-

uation parameter or multiple non-conflicting parameters. This leads to a need for

efficient schedulers that can provide an optimized solution for multiple and con-



Particle Swarm Optimization based RADL 115

flicting task scheduling objectives. This chapter presents an adaptive PSO-based

resource and deadline-aware dynamic load balancer for task scheduling in cloud

computing. The performance of the proposed technique PSO-RADL is evaluated

and compared with state-of-the-art task scheduling heuristics like MODE, DLBA,

DC-DLBA, D-MaxMin, PSSELB, and RALBA. Three benchmark datasets have

been used for performance evaluation and experimentations. Experimental results

reveal that the proposed tasks scheduling technique outperforms state-of-the-art

task scheduling heuristics in terms of average makespan, resource utilization, task

response time, meeting tasks deadline, penalty cost, and total execution cost. In

the future, it is intended to extend the proposed approach for combining heuristics

and meta-heuristic-based task scheduling approaches. Moreover, PSO-RADL can

be extended for workflow-based (dependent tasks) task scheduling.



Chapter 6

Conclusions and Future Work

6.1 Conclusion

Cloud computing has emerged as the most favorite computing platform for re-

searchers and industry. To get the full benefit of the cloud and achieve high user

satisfaction, cloud service providers demand load balancing in terms of higher re-

source utilization and executing user’s tasks within their deadlines. This leads to

needing for efficient task scheduling algorithms. Cloud task scheduling and load

balancing have emerged as important and challenging research issues in cloud

computing. To achieve higher resource utilization and meeting task deadlines, a

number of heuristics and meta-heuristic based task scheduling algorithms have

been proposed.

These algorithms can be static, dynamic, and batch dynamic. The static task

scheduling algorithms suffer from issues like poor-utilization of cloud resources,

higher makespan, task response time, and high task rejection ratio. This be-

cause tasks once mapped to VMs can not be re-adjusted at run time and the

newly arrived tasks with a shorter deadline will have to wait till the execution

of already mapped tasks. The batch dynamic task scheduling algorithm provided

dynamism at the batch level. However, these algorithms are unable to re-adjust

the already mapped to tasks at runtime, have issues like new batch formation

based response time delay, and inter-batch under-utilization cloud resources. This

116



Conclusion and Future Work 117

results in under-utilization of cloud resources, high makespan and task response

time, and are unable to meet the deadline of tasks with a shorter deadline.

Dynamic task scheduling algorithms can alter the tasks mapping and execution

strategy at runtime. However, the majority of the dynamic scheduling algorithms

do not consider the deadlines of the tasks and accept input tasks in the form of

batch-based. Therefore, the majority of these approaches are unable to achieve

high utilization of cloud resources, minimized task execution and response time,

and reduced tasks rejection ratio.

To achieve higher resource utilization, meeting task deadlines, minimize task re-

jection ratio with reduced makespan, A Resource-Aware Dynamic Load-balancer

for Deadline Constrained cloud Tasks (RADL) technique has been proposed. The

RADL scheduler map user’s tasks based on the expected minimum completion

time and considering the task deadline into account. This approach has the abil-

ity to update VM and tasks status and re-adjust the mapped tasks at runtime

which helps in allocating tasks based on more realistic expected completion time.

The RADL task scheduler is evaluated and compared with the state-of-the-art

scheduling algorithms using three benchmark datasets. Experimental results shows

that the proposed technique has attained up to 67.74%, 303.57%, 259.2%, 146.13%,

405.06%, and 259.14% improvement in terms of average resource utilization, meet-

ing tasks deadlines, lower makespan, task response time, penalty cost, and task

execution cost respectively as compared to the state-of-the-art tasks scheduling

heuristics.

To evaluate the performance of task scheduling algorithms, most of the existing

state-of-the-art scheduling techniques either considering a single metric or mul-

tiple evaluation metrics individually. However, improving a single parameter or

multiple parameters individually may not improve the overall performance of the

cloud. In the second contribution of this thesis An Overall performance gain

based dynamic load-balancer for deadline constrained task (OG-RADL) has been

proposed. OG-RADL computes and investigates the overall performance of the

scheduling algorithm by combining multiple evaluation parameters like ARUR,

makespan, task response time, and task rejection ratio. A novel normalization

technique is proposed that attempts to overcome the limitations of the existing



Conclusion and Future Work 118

normalization techniques. The performance of the OG-RADL has evaluated using

three benchmark datasets. The evaluation results reveal that the OG-RADL has

gained 32.2%, 11.15%, and 28.33% improved overall performance as compared to

the contemporary approaches for the execution of Synthetic, GoCJ, and HCSP

dataset respectively.

Heuristic-based task scheduling algorithms find near-optimal solutions in a fast

manner, having simple implementation, lower scheduling overhead, and are suit-

able for considering scheduling objectives with non-conflicting parameters. How-

ever, in the real cloud scenario, users can have the quality of service requirements

with conflicting parameters like tasks execution time and cost. A number of meta-

heuristic based task scheduling algorithms have been proposed in the literature.

In this thesis, a Particle Swarm Optimization based resource-aware dynamic load-

balancing scheduler (PSO-RADL) is proposed. To balance the local and global

search of particles, a novel and adaptive inertia weight strategy have been pro-

posed. Experimental results reveal that the PSO-RDAL has gained up to 66%,

162%, 56%, 89%, 98%, and 97% enhancement in terms of makespan, average re-

source utilization, task response time, meeting task deadline, penalty cost, and

total execution cost respectively as compared to existing state-of-the-art tasks

scheduling heuristics.

6.2 Limitations

The proposed approach gives equal importance to different evaluation parameters

like ARUR, Task Rejection Ratio, and makespan. However, sometimes users can

assign high weightage to one parameter than others. In the usage scenario of

the proposed scheduling technique, all the input tasks should be independent and

compute-intensive and not considering parameters like priority, memory, band-

width, and communication latency cloud resources. However, in workflow-based

dependent tasks, the execution sequence of tasks matters, and memory, band-

width, priority, and communication latency can be the essential factors that can

hurdle cloud performance. The proposed approach tries to accommodate the newly

arrived deadline-based tasks and reduce tasks rejection. However, this can lead to



Conclusion and Future Work 119

starvation for tasks with no deadline if all the newly arrived tasks are deadline-

based. The proposed scheduling technique also not considering the SLA awareness

and machine learning technique for cloud task scheduling.

6.3 Future Directions

1. The key challenges in the cloud tasks scheduling are dispersion, uncertainty,

heterogeneity of the resources, and user applications. These challenges are

not resolved by the traditional cloud scheduling approaches and there is a

need to design and develop cloud-oriented applications and services by taking

care of these challenges in the cloud computing environment.

2. Applying online (dynamic) task scheduling to assign and release resources

based on consumer budget and needs. Heuristics and Meta-heuristics algo-

rithm needs to incorporate SLA-based Quality of Service (QoS) requirements

between consumers and providers.

3. Dynamic scalability is the ability to acquire and release resources dynami-

cally according to the incoming workload. Dynamic scalability helps efficient

utilization of resources when the resource demand decreases and increases

end-user satisfaction by reducing SLA violation in high resource demand

hours. However, the current dynamic task scheduling approaches are not

able to estimate the user demand and respond accordingly. The Machine

Learning-based workload prediction and resource management can help to

lease and release resources at runtime. Moreover, a machine learning-based

cloud scheduler also helps in the selection of suitable task scheduling algo-

rithms.

4. Mapping of tasks on resources located on multiple data centers and exchange

information among datacenters. However, most of the researchers have de-

signed algorithms for mapping tasks to VMs located on the same datacenter

where time and cost of data transfer are not considered. In many real cloud

scenarios, data transfer cost may affect the cloud performance and need to be

considered for performance evaluation in cloud tasks scheduling algorithms.



Conclusion and Future Work 120

Moreover, novel techniques should be investigated that apply the sharing of

information and effective communication between data centers

5. Energy consumption is one of the most important factors to reduce the task

execution cost. Improving energy efficiency is a big challenge because an

idle machine can consume up to 70% of energy as compared to a working

machine. To efficiently utilize cloud resources and maximize the CSP profit

in a situation when cloud resources demand fluctuates. It is important to

correctly estimate the dynamic resource demands as the accuracy of fore-

casting directly affects the results of resource allocations. Regression-based

and machine learning-based resource demand prediction techniques need to

be explored and evaluated in cloud Computing.

6. Cloud computing is an important platform to execute users’ web-based ser-

vices as a pay-per-use mode. However, due to high fluctuations in user de-

mands, it becomes difficult to effectively utilize cloud resources. Autonomic

management systems (systems that adapt according to the situation) play

a vital role to cope with these challenges. However, the current autonomic

systems need to be improved and further investigated for dynamic provision-

ing of cloud resources to fulfill users’ QoS requirements and enhance cloud

system efficiency.



Bibliography

[1] A. Hussain, M. Aleem, A. Khan, M. A. Iqbal, and M. A. Islam, “Ralba: a

computation-aware load balancing scheduler for cloud computing,” Cluster

Computing, vol. 21, no. 3, pp. 1667–1680, 2018.

[2] S. Nabi and M. Khan, “An analysis of application level security in ser-

vice oriented architecture,” International Journal of Modern Education and

Computer Science, vol. 6, no. 2, p. 27, 2014.

[3] S. Nabi, S. U. Rehman, S. Fong, and K. Aziz, “A model for implementing

security at application level in service oriented architecture,” Journal of

Emerging Technologies in Web Intelligence, vol. 6, no. 1, pp. 157–163, 2014.

[4] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid comput-

ing 360-degree compared,” in 2008 grid computing environments workshop,

pp. 1–10, Ieee, 2008.

[5] N. Sadashiv and S. D. Kumar, “Cluster, grid and cloud computing: A de-

tailed comparison,” in 2011 6th International Conference on Computer Sci-

ence & Education (ICCSE), pp. 477–482, IEEE, 2011.

[6] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in

the clouds: towards a cloud definition,” ACM SIGCOMM Computer Com-

munication Review, vol. 39, no. 1, pp. 50–55, 2008.

[7] M. Kumar and S. Sharma, “Pso-based novel resource scheduling technique

to improve qos parameters in cloud computing,” Neural Computing and

Applications, pp. 1–24, 2019.

121



Bibliography 122

[8] M. Aruna, D. Bhanu, and S. Karthik, “An improved load balanced meta-

heuristic scheduling in cloud,” Cluster Computing, pp. 1–9, 2017.

[9] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galán, J. Fontán, R. S. Mon-

tero, and I. M. Llorente, “From infrastructure delivery to service man-

agement in clouds,” Future Generation Computer Systems, vol. 26, no. 8,

pp. 1226–1240, 2010.

[10] G. Sharma and P. Banga, “Task aware switcher scheduling for batch mode

mapping in computational grid environment,” International Journal of Ad-

vanced Research in Computer Science and Software Engineering, vol. 3,

2013.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,

“Cloudsim: a toolkit for modeling and simulation of cloud computing en-

vironments and evaluation of resource provisioning algorithms,” Software:

Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[12] D. K. Barry and D. Dick, Web Services, Service-Oriented Architectures, and

Cloud Computing: The Savvy Manager’s Guide. 2013.

[13] D. Hazra, A. Roy, S. Midya, and K. Majumder, “Distributed task scheduling

in cloud platform: A survey,” in Smart Computing and Informatics, pp. 183–

191, Springer, 2018.

[14] A. Sajjad, A. A. Khan, and M. Aleem, “Energy-aware cloud computing

simulators: A state of the art survey,” International Journal of Applied

Mathematics Electronics and Computers, vol. 6, no. 2, pp. 15–20, 2018.

[15] R. v. d. M. G. S. Moore and Gartner, Gartner Industry analyst firm.

Gartner, Inc. Gartner, Inc., 2018 (accessed Jauuary 15, 2019). https:

//www.gartner.com/newsroom/id/3871416.com.

[16] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-

art and research challenges,” Journal of internet services and applications,

vol. 1, no. 1, pp. 7–18, 2010.

https://www.gartner.com/newsroom/id/3871416.com
https://www.gartner.com/newsroom/id/3871416.com


Bibliography 123

[17] G. S. Bhunia and P. K. Shit, “E-research and geocomputation in public

health,” in GeoComputation and Public Health, pp. 37–78, Springer, 2021.

[18] Y. Wang, Y. Ban, and X. Hong, “Overview of e-science research in china,”

in China’s e-Science Blue Book 2020, pp. 3–12, Springer, 2021.

[19] N. Alaei and F. Safi-Esfahani, “Repro-active: a reactive–proactive schedul-

ing method based on simulation in cloud computing,” The Journal of Su-

percomputing, vol. 74, no. 2, pp. 801–829, 2018.

[20] M. Adhikari and T. Amgoth, “Heuristic-based load-balancing algorithm for

iaas cloud,” Future Generation Computer Systems, vol. 81, pp. 156–165,

2018.

[21] S. Mousavi, A. Mosavi, and A. R. Varkonyi-Koczy, “A load balancing algo-

rithm for resource allocation in cloud computing,” in International Confer-

ence on Global Research and Education, pp. 289–296, Springer, 2017.

[22] M. Ibrahim, S. Nabi, R. Hussain, M. S. Raza, M. Imran, S. A. Kazmi,

A. Oracevic, and F. Hussain, “A comparative analysis of task scheduling

approaches in cloud computing,” in 2020 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 681–

684, IEEE, 2020.

[23] P. Zhang and M. Zhou, “Dynamic cloud task scheduling based on a two-

stage strategy,” IEEE Transactions on Automation Science and Engineering,

vol. 15, no. 2, pp. 772–783, 2018.

[24] E. S. Alkayal, N. R. Jennings, and M. F. Abulkhair, “Survey of task schedul-

ing in cloud computing based on particle swarm optimization,” in 2017 In-

ternational Conference on Electrical and Computing Technologies and Ap-

plications (ICECTA), pp. 1–6, IEEE, 2017.

[25] H. B. Alla, S. B. Alla, A. Touhafi, and A. Ezzati, “A novel task scheduling

approach based on dynamic queues and hybrid meta-heuristic algorithms for

cloud computing environment,” Cluster Computing, vol. 21, no. 4, pp. 1797–

1820, 2018.



Bibliography 124

[26] C. Gogos, C. Valouxis, P. Alefragis, G. Goulas, N. Voros, and E. Housos,

“Scheduling independent tasks on heterogeneous processors using heuristics

and column pricing,” Future Generation Computer Systems, vol. 60, pp. 48–

66, 2016.

[27] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms for

virtual machines placement in cloud computing,” Concurrency and Compu-

tation: Practice and Experience, vol. 29, no. 12, p. e4123, 2017.

[28] M. Kumar, S. C. Sharma, A. Goel, and S. P. Singh, “A comprehensive

survey for scheduling techniques in cloud computing,” Journal of Network

and Computer Applications, vol. 143, pp. 1–33, 2019.

[29] M. Ibrahim, S. Nabi, A. Baz, N. Naveed, and H. Alhakami, “Towards a

task and resource aware task scheduling in cloud computing: An exper-

imental comparative evaluation,” International Journal of Networked and

Distributed Computing, vol. 8, no. 3, pp. 131–138, 2020.

[30] Z. Chen, Y. Zhu, Y. Di, and S. Feng, “A dynamic resource scheduling method

based on fuzzy control theory in cloud environment,” Journal of Control

Science and Engineering, vol. 2015, p. 10, 2015.

[31] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima, “Exploiting repli-

cation and data reuse to efficiently schedule data-intensive applications on

grids,” in Workshop on Job Scheduling Strategies for Parallel Processing,

pp. 210–232, Springer, 2004.

[32] S.-L. Chen, Y.-Y. Chen, and S.-H. Kuo, “Clb: A novel load balancing ar-

chitecture and algorithm for cloud services,” Computers & Electrical Engi-

neering, vol. 58, pp. 154–160, 2017.

[33] Y. Mao, X. Chen, and X. Li, “Max-min task scheduling algorithm for load

balance in cloud computing,” in Proceedings of International Conference on

Computer Science and Information Technology, pp. 457–465, Springer, 2014.



Bibliography 125

[34] M. Kumar and S. Sharma, “Deadline constrained based dynamic load bal-

ancing algorithm with elasticity in cloud environment,” Computers & Elec-

trical Engineering, vol. 69, pp. 395–411, 2018.

[35] S. K. Mishra, M. A. Khan, B. Sahoo, D. Puthal, M. S. Obaidat, and

K. Hsiao, “Time efficient dynamic threshold-based load balancing technique

for cloud computing,” in Computer, Information and Telecommunication

Systems (CITS), 2017 International Conference on, pp. 161–165, IEEE,

2017.

[36] S. Nabi and M. Ahmed, “Og-radl: overall performance-based resource-aware

dynamic load-balancer for deadline constrained cloud tasks,” The Journal

of Supercomputing, pp. 1–33, 2021.

[37] A. Deldari, M. Naghibzadeh, and S. Abrishami, “Cca: a deadline-

constrained workflow scheduling algorithm for multicore resources on the

cloud,” The journal of Supercomputing, vol. 73, no. 2, pp. 756–781, 2017.

[38] N. Panwar, S. Negi, and M. M. S. Rauthan, “Non-live task migration ap-

proach for scheduling in cloud based applications,” in International Confer-

ence on Next Generation Computing Technologies, pp. 124–137, Springer,

2017.

[39] M. Ibrahim, M. A. Iqbal, M. Aleem, and M. A. Islam, “Sim-cumulus:

An academic cloud for the provisioning of network-simulation-as-a-service

(nsaas),” IEEE Access, vol. 6, pp. 27313–27323, 2018.

[40] J. O. Gutierrez-Garcia and A. Ramirez-Nafarrate, “Collaborative agents for

distributed load management in cloud data centers using live migration of

virtual machines,” IEEE transactions on services computing, vol. 8, no. 6,

pp. 916–929, 2015.

[41] S. Torabi and F. Safi-Esfahani, “A dynamic task scheduling framework based

on chicken swarm and improved raven roosting optimization methods in

cloud computing,” The Journal of Supercomputing, vol. 74, no. 6, pp. 2581–

2626, 2018.



Bibliography 126

[42] P. Kaur and M. Sharma, “Diagnosis of human psychological disorders us-

ing supervised learning and nature-inspired computing techniques: a meta-

analysis,” Journal of medical systems, vol. 43, no. 7, pp. 1–30, 2019.

[43] Y. Hu, K. Liu, X. Zhang, L. Su, E. Ngai, and M. Liu, “Application of

evolutionary computation for rule discovery in stock algorithmic trading: A

literature review,” Applied Soft Computing, vol. 36, pp. 534–551, 2015.

[44] Y. Ding, K. Zhou, and W. Bi, “Feature selection based on hybridization

of genetic algorithm and competitive swarm optimizer,” Soft Computing,

pp. 1–10, 2020.

[45] A. Agrawal and S. Tripathi, “Particle swarm optimization with adaptive

inertia weight based on cumulative binomial probability,” Evolutionary In-

telligence, pp. 1–9, 2018.

[46] S. C. Satapathy, S. Chittineni, S. M. Krishna, J. Murthy, and P. P. Reddy,

“Kalman particle swarm optimized polynomials for data classification,” Ap-

plied Mathematical Modelling, vol. 36, no. 1, pp. 115–126, 2012.

[47] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, “Cloud task

scheduling based on ant colony optimization,” in 2013 8th international

conference on computer engineering & systems (ICCES), pp. 64–69, IEEE,

2013.

[48] D. Kaur and S. Singh, “An efficient job scheduling algorithm using min-

min and ant colony concept for grid computing,” International Journal Of

Engineering And Computer Science, vol. 3, no. 07, pp. 6943–6949, 2014.

[49] A. Brabazon, W. Cui, and M. O’Neill, “The raven roosting optimisation

algorithm,” Soft Computing, vol. 20, no. 2, pp. 525–545, 2016.

[50] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, “Cat swarm optimization,” in Pa-

cific Rim international conference on artificial intelligence, pp. 854–858,

Springer, 2006.



Bibliography 127

[51] S. Deb, X.-Z. Gao, K. Tammi, K. Kalita, and P. Mahanta, “Recent studies

on chicken swarm optimization algorithm: a review (2014–2018),” Artificial

Intelligence Review, pp. 1–29, 2019.

[52] Y. Xiao and A. Konak, “A genetic algorithm with exact dynamic program-

ming for the green vehicle routing & scheduling problem,” Journal of Cleaner

Production, vol. 167, pp. 1450–1463, 2017.

[53] P. Krishnadoss and P. Jacob, “Ocsa: task scheduling algorithm in cloud

computing environment,” International Journal of Intelligent Engineering

and Systems, vol. 11, no. 3, pp. 271–279, 2018.

[54] N. Dordaie and N. J. Navimipour, “A hybrid particle swarm optimization

and hill climbing algorithm for task scheduling in the cloud environments,”

ICT Express, vol. 4, no. 4, pp. 199–202, 2018.

[55] S. S. Gill, R. Buyya, I. Chana, M. Singh, and A. Abraham, “Bullet: par-

ticle swarm optimization based scheduling technique for provisioned cloud

resources,” Journal of Network and Systems Management, vol. 26, no. 2,

pp. 361–400, 2018.

[56] D. B. LD and P. V. Krishna, “Honey bee behavior inspired load balancing

of tasks in cloud computing environments,” Applied soft computing, vol. 13,

no. 5, pp. 2292–2303, 2013.

[57] K. Y. China and Q. Y. China, “A task scheduling based on simulated an-

nealing algorithm in cloud computing,” International Journal of Hybrid In-

formation Technology, vol. 9, no. 6, pp. 403–412, 2016.

[58] A. Gupta, H. Bhadauria, and A. Singh, “Load balancing based hyper heuris-

tic algorithm for cloud task scheduling,” Journal of Ambient Intelligence and

Humanized Computing, vol. 12, no. 6, pp. 5845–5852, 2021.

[59] A. Hussain and M. Aleem, “Gocj: Google cloud jobs dataset for distributed

and cloud computing infrastructures,” Data, vol. 3, no. 4, p. 38, 2018.

[60] R. v. d. M. G. S. Moore and Gartner, Gartner Industry ana-

lyst firm. Gartner, Inc. Gartner, Inc., 2018 (accessed September



Bibliography 128

12, 2021). https://www.gartner.com/en/newsroom/press-releases/

2021-08-02-gartner-says-four-trends-of-public-cloud.

[61] A. Hussain, M. Aleem, M. A. Iqbal, and M. A. Islam, “Investigation of cloud

scheduling algorithms for resource utilization using cloudsim,” Computing

and Informatics, vol. 38, no. 3, pp. 525–554, 2019.

[62] A. Hussain, M. Aleem, M. A. Islam, and M. Iqbal, “A rigorous evaluation of

state-of-the-art scheduling algorithms for cloud computing,” IEEE Access,

vol. 6, pp. 75033–75047, 2018.

[63] M. Ibrahim, S. Nabi, A. Baz, H. Alhakami, M. S. Raza, A. Hussain,

K. Salah, and K. Djemame, “An in-depth empirical investigation of state-

of-the-art scheduling approaches for cloud computing,” IEEE Access, vol. 8,

pp. 128282–128294, 2020.

[64] F. Xhafa and A. Abraham, “A compendium of heuristic methods for schedul-

ing in computational grids,” in International Conference on Intelligent Data

Engineering and Automated Learning, pp. 751–758, Springer, 2009.

[65] R. Armstrong, D. Hensgen, and T. Kidd, “The relative performance of var-

ious mapping algorithms is independent of sizable variances in run-time

predictions,” in Proceedings Seventh Heterogeneous Computing Workshop

(HCW’98), pp. 79–87, IEEE, 1998.

[66] R. V. Rasmussen and M. A. Trick, “Round robin scheduling–a survey,”

European Journal of Operational Research, vol. 188, no. 3, pp. 617–636,

2008.

[67] A. K. Bardsiri and S. M. Hashemi, “A comparative study on seven static

mapping heuristics for grid scheduling problem,” International Journal of

Software Engineering and Its Applications, vol. 6, no. 4, pp. 247–256, 2012.

[68] O. Elzeki, M. Rashad, and M. Elsoud, “Overview of scheduling tasks in

distributed computing systems,” International Journal of Soft Computing

and Engineering, vol. 2, no. 3, pp. 470–475, 2012.

https://www.gartner.com/en/newsroom/press-releases /2021-08-02-gartner-says-four-trends-of-public-cloud
https://www.gartner.com/en/newsroom/press-releases /2021-08-02-gartner-says-four-trends-of-public-cloud


Bibliography 129

[69] L. Kong, J. P. B. Mapetu, and Z. Chen, “Heuristic load balancing based

zero imbalance mechanism in cloud computing,” Journal of Grid Computing,

vol. 18, no. 1, pp. 123–148, 2020.

[70] J. Praveenchandar and A. Tamilarasi, “Dynamic resource allocation with

optimized task scheduling and improved power management in cloud com-

puting,” Journal of Ambient Intelligence and Humanized Computing, vol. 12,

no. 3, pp. 4147–4159, 2021.

[71] M. Kumar, K. Dubey, and S. Sharma, “Elastic and flexible deadline con-

straint load balancing algorithm for cloud computing,” Procedia Computer

Science, vol. 125, pp. 717–724, 2018.

[72] B. Wang, Y. Song, J. Cao, X. Cui, and L. Zhang, “Improving task scheduling

with parallelism awareness in heterogeneous computational environments,”

Future Generation Computer Systems, vol. 94, pp. 419–429, 2019.

[73] M. Ghobaei-Arani, A. Souri, T. Baker, and A. Hussien, “Controcity: an

autonomous approach for controlling elasticity using buffer management in

cloud computing environment,” IEEE Access, vol. 7, pp. 106912–106924,

2019.

[74] M. A. Alworafi and S. Mallappa, “A collaboration of deadline and budget

constraints for task scheduling in cloud computing,” Cluster Computing,

vol. 23, no. 2, pp. 1073–1083, 2020.

[75] S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice appli-

cations in clouds,” IEEE Transactions on Parallel and Distributed Systems,

vol. 32, no. 1, pp. 98–115, 2020.

[76] M. Yazdanbakhsh, R. K. M. Isfahani, and M. Ramezanpour, “Mode: a

multi-objective strategy for dynamic task scheduling through elastic cloud

resources,” Majlesi Journal of Electrical Engineering, vol. 14, no. 2, pp. 127–

141, 2020.



Bibliography 130

[77] A. Shahidinejad, M. Ghobaei-Arani, and M. Masdari, “Resource provision-

ing using workload clustering in cloud computing environment: a hybrid

approach,” Cluster Computing, vol. 24, no. 1, pp. 319–342, 2021.

[78] S. Nabi, M. Ibrahim, and J. M. Jimenez, “Dralba: Dynamic and resource

aware load balanced scheduling approach for cloud computing,” IEEE Ac-

cess, vol. 9, pp. 61283–61297, 2021.

[79] E. K. Tabak, B. B. Cambazoglu, and C. Aykanat, “Improving the perfor-

mance of independenttask assignment heuristics minmin, maxmin and suf-

ferage,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,

no. 5, pp. 1244–1256, 2014.

[80] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan and

reliability for workflow applications with reputation and a look-ahead genetic

algorithm,” Future Generation Computer Systems, vol. 27, no. 8, pp. 1124–

1134, 2011.

[81] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang, “A task scheduling algo-

rithm based on pso for grid computing,” International Journal of Computa-

tional Intelligence Research, vol. 4, no. 1, pp. 37–43, 2008.

[82] A. Khalili and S. M. Babamir, “Makespan improvement of pso-based dy-

namic scheduling in cloud environment,” in Electrical Engineering (ICEE),

2015 23rd Iranian Conference on, pp. 613–618, IEEE, 2015.

[83] M. Kumar and S. Sharma, “Pso-cogent: Cost and energy efficient schedul-

ing in cloud environment with deadline constraint,” Sustainable Computing:

Informatics and Systems, vol. 19, pp. 147–164, 2018.

[84] M. P. McGarry, M. Reisslein, C. J. Colbourn, M. Maier, F. Aurzada, and

M. Scheutzow, “Just-in-time scheduling for multichannel epons,” Journal of

Lightwave Technology, vol. 26, no. 10, pp. 1204–1216, 2008.

[85] A. Shahidinejad, M. Ghobaei-Arani, and L. Esmaeili, “An elastic controller

using colored petri nets in cloud computing environment,” Cluster Comput-

ing, vol. 23, no. 2, pp. 1045–1071, 2020.



Bibliography 131

[86] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and lessons

from a publicly available google cluster trace,” EECS Department, Univer-

sity of California, Berkeley, Tech. Rep. UCB/EECS-2010-95, vol. 94, 2010.

[87] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces

from a production mapreduce cluster,” in Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid Comput-

ing, pp. 94–103, IEEE Computer Society, 2010.

[88] S. K. Panda and P. K. Jana, “Normalization-based task scheduling algo-

rithms for heterogeneous multi-cloud environment,” Information Systems

Frontiers, vol. 20, no. 2, pp. 373–399, 2018.

[89] S. Patro and K. K. Sahu, “Normalization: A preprocessing stage,” arXiv

preprint arXiv:1503.06462, 2015.

[90] D. Singh and B. Singh, “Investigating the impact of data normalization

on classification performance,” Applied Soft Computing, vol. 97, p. 105524,

2020.

[91] A. Pandita, P. K. Upadhyay, and N. Joshi, “Prediction of service-level agree-

ment violation in cloud computing using bayesian regularisation,” in Inter-

national Conference on Advanced Machine Learning Technologies and Ap-

plications, pp. 231–242, Springer, 2020.

[92] V. Gajera, R. Gupta, P. K. Jana, et al., “An effective multi-objective task

scheduling algorithm using min-max normalization in cloud computing,” in

2016 2nd International Conference on Applied and Theoretical Computing

and Communication Technology (iCATccT), pp. 812–816, IEEE, 2016.

[93] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal

biometric systems,” Pattern recognition, vol. 38, no. 12, pp. 2270–2285, 2005.

[94] G. N. Reddy and S. P. Kumar, “Maco-mots: modified ant colony optimiza-

tion for multi objective task scheduling in cloud environment,” International

Journal of Intelligent Systems and Applications, vol. 11, no. 1, pp. 73–79,

2019.



Bibliography 132

[95] M. A. Alsaih, R. Latip, A. Abdullah, S. K. Subramaniam, and K. Ali Alez-

abi, “Dynamic job scheduling strategy using jobs characteristics in cloud

computing,” Symmetry, vol. 12, no. 10, p. 1638, 2020.

[96] J. Bezos, ANN CIFC Data set (NNG-C). IEEE, 2006 (accessed Jauuary 15,

2019). https://www.neural-forecastingcompetition.com/.

[97] A. Kumar and S. Bawa, “A comparative review of meta-heuristic approaches

to optimize the sla violation costs for dynamic execution of cloud services,”

Soft Computing, vol. 24, no. 6, pp. 3909–3922, 2020.

[98] G. Beni and J. Wang, “Swarm intelligence in cellular robotic systems,” in

Robots and biological systems: towards a new bionics, pp. 703–712, Springer,

1993.

[99] O. Ertenlice and C. B. Kalayci, “A survey of swarm intelligence for port-

folio optimization: Algorithms and applications,” Swarm and evolutionary

computation, vol. 39, pp. 36–52, 2018.

[100] E. Bonabeau, D. d. R. D. F. Marco, M. Dorigo, G. Théraulaz, G. Theraulaz,

et al., Swarm intelligence: from natural to artificial systems. No. 1, Oxford

university press, 1999.

[101] S. S. Senthilkumar, K. Brindha, N. K. Agrawal, and A. Vaidya, “Dynamic

load balancing using honey bee algorithm: Load balancing,” in Encyclope-

dia of Information Science and Technology, Fifth Edition, pp. 98–106, IGI

Global, 2021.

[102] A. Panneerselvam and B. Subbaraman, “Multi-objective optimization for

scientific workflow task scheduling in iaas cloud,” International Journal of

Engineering & Technology, vol. 7, no. 4.6, pp. 174–176, 2018.

[103] X. Huang, C. Li, H. Chen, and D. An, “Task scheduling in cloud computing

using particle swarm optimization with time varying inertia weight strate-

gies,” Cluster Computing, pp. 1–11, 2019.

https://www.neural-forecastingcompetition.com/


Bibliography 133

[104] S. Nabi, M. Ahmad, M. Ibrahim, and H. Hamam, “Adpso: Adaptive pso-

based task scheduling approach for cloud computing,” Sensors, vol. 22, no. 3,

p. 920, 2022.


	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Overview of Cloud Computing
	1.1.1 Cloud Services Model
	1.1.2 Cloud Architecture
	1.1.3 Cloud Deployment Model

	1.2 Cloud Scheduling and Load Balancing
	1.2.1 Tasks Scheduling
	1.2.2 Load Balancing
	1.2.3 Types of Task Scheduling
	1.2.3.1 Static Scheduling
	1.2.3.2 Batch Dynamic Scheduling
	1.2.3.3 Dynamic Scheduling
	1.2.3.4 Meta-heuristic Algorithms


	1.3 Motivation
	1.4 Problem Statement
	1.5 Research Questions
	1.6 Objectives and Significance
	1.7 Research Contributions
	1.8 Research Evaluation
	1.9 Thesis Organization

	2 Literature Review
	2.1 Introduction
	2.2 Heuristic based Cloud Task Schedulers
	2.2.1 Static Scheduling Heuristics
	2.2.2 Batch Dynamic Scheduling Heuristics
	2.2.3 Dynamic Scheduling Heuristics

	2.3 Meta-heuristics based Cloud Task  Schedulers
	2.4 Gap Analysis
	2.5 Summary of the Chapter

	3 RADL: A Resource-Aware Dynamic Load-balancer for Deadline Constrained Cloud Tasks
	3.1 Introduction
	3.2 Proposed Load-balancing Algorithm
	3.2.1 RADL System Overview and Background
	3.2.2 RADL System Architecture
	3.2.3 RADL System Model
	3.2.4 RADL Performance Model
	3.2.5 RADL Algorithms
	3.2.5.1 RADL Scheduler
	3.2.5.2 S-Scheduler

	3.2.6 Complexity and Overhead Analysis

	3.3 Experimental Evaluation and Discussions
	3.3.1 Experimental Setup
	3.3.2 Workload Generation
	3.3.3 Simulation Results

	3.4 Results and Discussion
	3.5 Chapter Summary

	4 OG-RADL: Overall Performance Based Resource Aware Dynamic Load-balancer for Deadline Constrained Cloud Tasks
	4.1 Introduction
	4.2 Proposed Load-balancing Algorithm
	4.2.1  OG-RADL System Overview and Background
	4.2.2 OG-RADL System Architecture
	4.2.3 OG-RADL System Model
	4.2.4 OG-RADL Performance Model
	4.2.5 OG-RADL Algorithms
	4.2.5.1 OG-RADL Scheduler
	4.2.5.2 S-Scheduler


	4.3 Experimental Evaluation and Discussions
	4.3.1 Normalization of Evaluation Parameters
	4.3.2 Simulation Results

	4.4 Results and Discussion
	4.5 Chapter Summary

	5 PSO-RADL: Particle Swarm Optimization based Resource and Deadline Aware dynamic Load-balancer for Deadline Constrained Cloud Tasks
	5.1 Introduction
	5.1.1 Swarm Intelligence
	5.1.2 Particle Swarm Optimization

	5.2 PSO-RADL System Overview and  Background
	5.2.1 PSO-RADL System Architecture
	5.2.2 PSO-RADL Algorithm
	5.2.3 PSO-RADL System Model
	5.2.4 PSO-RADL Performance Model

	5.3 Experimental Evaluation and Discussions
	5.3.1 Simulation Results

	5.4 Results and Discussion
	5.5 Chapter Summary

	6 Conclusions and Future Work
	6.1 Conclusion
	6.2 Limitations
	6.3 Future Directions

	Bibliography

