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Abstract

In this dissertation, the bio-mechanical response of a fiber reinforced solid matrix

(soft tissue) has been formulated. A constant magnetic field effects has been incor-

porated in the binary mixture of fluid and porous solid. The governing dynamics

involved in the multiphasic deformation was based upon the loading imposed at

the rigid bony interface. The fluid flow through the cartilage network depends

upon the rate of applied compression as well as strain-dependent permeability of

the soft tissues. The components of the mixture were assumed intrinsically incom-

pressible; however, in the derivation of governing dynamics, visco-elastic behavior

of the solid and an interstitial fluid were developed. The continuum mixture the-

ory approach is employed in modeling solid deformation and local fluid pressure.

In deriving the governing dynamics, strain-dependent permeability has been in-

corporated in the governing equations of binary mixture. The governing nonlinear

coupled system of partial differential equations was developed for the solid de-

formation and fluid pressure, in the presence of Lorentz forces. In the case of

permeability dependent flow, a numerical solution is computed, whereas, an exact

solution is provided for constant permeability case. Graphical results highlight the

influence of various physical parameters both on the solid displacement and fluid

pressure.

In the second problem, the mechanical response of a radially constrained elastic

porous shell during the passage of charged fluid has been formulated . The motion

of fluid as well as solid deformation were based upon the rate of applied compres-

sion at the inner radius of the shell. A nonlinear diffusion equation applicable to

plana and radial geometries was developed for the porosity along with informal

integral boundary conditions on both the extremities. An equation for solid de-

formation is derived in the form of an integral equation. The governing system of

equations is solved numerically for the transient case, whereas, an exact solution

is provided for the steady-state problem. In the case of linear permeability, an

excellent agreement is noticed between both the solutions. The comparison of the

fluid flow through the planar, cylindrical, and spherical shell is used in exploring
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the process of fluid flow affected by the geometrical constraint. Graphical results

highlight the influence of different physical parameters on the porosity and solid

displacement. Moreover, a detailed analysis of the fluid flow through a thick and

thin wall elastic porous shell is also presented.

Finally, for the same geometry as was in the second problem, the mathematical

model describing visco-elastic behavior of an elastic porous shell during passage

of non-Newtonian fluids was developed. In formulating the flow behavior, power-

law model was used in the constitutive equations of the mixture theory. The

dominant mechanism of the fluid flow was considered outwardly directed when

loading imposed at the inner radius of the shell. The outer boundary of the shell is

considered as rigid mesh which offers negligible resistance for the passage of fluids.

The general system of equations is derived for the porosity and solid deformation

both for planar and radial geometries. The governing system of equations is solved

analytically for steady-state case, whereas, numerical solution is computed for the

transient problem. The significance of power-law index on the porosity and solid

displacement is presented graphically.
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Chapter 1

Introduction

The basic motivation in this dissertation was in formulating the visco-elastic be-

havior of a fiber reinforced solid matrix enriched with the fluids in different loading

conditions. Present work described the dynamics of fluid flow both for biologi-

cal and non-biological settings. Particularly, mathematical models describing the

fluid-solid interaction during passage of fluids through a soft biological tissue as

well as fluid fluxes through a deformable shell are derived in different Chapters.

From the modeling point of view, derivation of the governing dynamics reported

in different problems are based upon the continuum mixture theory approach.

Furthermore, various problems reported in this dissertation have been modeled by

considering constant as well as strain-dependent permeability flow dynamics. On

the other hand, kinematics involved in the motion of fluids and solid deformation

in different problems depend upon the loading imposed either on the soft or rigid

interface of the solid matrix. In formulating the multiphasic deformation, numer-

ous theoretical studies have been reported in literature. Few of the well-known

are finite elasticity[1–3], visco-elasticity [4, 5], growth and remodeling [6, 7], and

continuum mixture theory [8–12] approach, etc. In 2003, a comprehensive review

describing these theories has been discussed by Humphrey [13].

When fluids flow through the elastic porous materials, forces associate with the

flow result in the solid matrix deformation. This deformation not only changes the

shape and porosity of the deformable porous materials but also effects the passage

1
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of fluids. This particular behavior of deformable porous solids is reported due to

establishing complex coupling between the fluids motion and solids deformation.

More precisely multiphasic deformation takes place simultaneously, when fluid

flows through the deformable porous materials. The continuum mixture theory

successfully employed [14, 15] in addressing these types of ephemerons, in which

more than one phase simultaneously moves. In the following, the problem state-

ment is given that is followed by objective, scope and significance of the present

study.

1.1 Problem Statement

In this dissertation, mathematical investigation of the fluid flow through the elas-

tic porous materials is reported. Particularly, motivated from the importance

of coupling between the solid matrix and fluid phase in a physiological system

while passage of fluid through an elastic tissue and permeation of fluid through

a deformable porous shell have been considered in formulating governing models

reported in different Chapters.

The main goal in the present study was to gain a better understanding of the dy-

namical processes as well as mechanical response involved in solid-fluid interaction

both in biological and non-biological settings.

A summary of the theory used in formulating the fluid flow through deformable

porous medium along with an overview of the applications of such flows to biologi-

cal tissue deformation have been included in this thesis. Particularly, present work

describes the mathematical formulations of the fluid flow through different geome-

tries for industrial applications and mathematical modeling of fluid flow through

a soft biological tissue.

Although, accurate and direct biological modeling is avoided, but study provided

a reasonable framework for gaining an insight into the deformation phenomena
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of elastic porous solid, if not, described the derivation of multiphasic deformation

involved in a variety of fluid flow dynamics through deformable porous materials.

1.1.1 Objective and Scope

Mathematical models have been routinely used in describing the physical nature of

different materials in engineering and biological sciences that help in understanding

complex biological systems as well as optimize industrial processes. As the purpose

of modeling is to increase our understanding of the physical world exist around us

along with the validity of a model depends upon the empirical observations that

provide theoretical background for the available experiments data. Keeping in view

such a problem, the influence of magnetohydrodynamics (MHD) during passage

of fluids through a soft biological tissue and multiphasic deformation of an elastic

porous shell have been formulated in Chapter 3 and 4, respectively. Moreover, non-

Newtonian fluid flow behavior is molded using power-law model while passage of

fluid through a deformable porous shell in Chapter 5. On the other hand, after

developing a theoretical model of any existing physical system, it is natural to

develop an algorithm that will allows one to estimate the quantitative behavior of

the system. The main focus was in developing the mathematical models reported

in different Chapters which are more feasible for the computational point view

along with the good approximation of the governing behavior. Quantitative results

from mathematical models and their comparison with available data to identify a

model’s strengths and weaknesses was the main goal in the present research work.

1.1.2 Significance of Study

Various models for the flow induced deformation of the porous materials have

been examined using the continuum mixture theory approach leading to a non-

linear finite deformation model being proposed. Theory has been generalized and

revisited by incorporating nonlinear permeability of the porous solids, in fact,

strain-dependent permeability of the solid matrix in the constitutive equations of
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the mixture theory modeling. In general, linear mixture theory modeling is com-

bined with strain-dependent permeability in the presences of different physical

parameters while deriving the governing models in different Chapters. This par-

ticular consideration helps in formulating an accurate physical behavior of a given

problem, however, experimental verification still need to improve the findings of

present research work. In the following, a historical background of the present

work is presented.

1.2 Background

Porous materials are divided into two main classes, i.e., rigid and deformable

porous materials. In the case of rigid porous materials, size as well as shape of

the solid matrix remain invariant in loading circumstances, unless their threshold

elastic limit do not reach. The pioneer work in the area of fluid flow through

the rigid porous materials is due to the study of Washburn [16]. He derived

the capillary rise phenomenon of fluid through the rigid porous materials. In

modeling the governing dynamics of fluid infiltration, he assumed that the porous

solid consists of small cylindrical capillaries, whereas, fluid flow through these

capillaries was considered as Poiseuille flow. A continuous pressure difference was

taken between the interfaces that infiltrated the fluid through these capillaries. In

the absence of gravity, he concluded that volume of the liquid penetrated in time

t was proportional to
√
t, whereas, in the presence of gravity, initial behavior still

follows the same power law approximation for time (
√
t). On the other hand, for

the longer time, fluid infiltrated in the porous solid and attained a finite height

before achieving equilibrium.

Later on, Zhmud et al. [17] have formulated the dynamics of fluid flow through

the rigid porous materials. They examined different models including the Wash-

burn model and validated early time Washburn’s finding, but for the longer time

fluid flows dynamics, theoretical results deviated from the Washburn’s equilib-

rium predictions. Moreover, recent experiment studies [18, 19] have proved that
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the capillary rise phenomenon of fluid through the rigid porous materials follow a

different power-law approximation for the time (t0.2).

Davis and Hocking [20, 21] derived the dynamics of viscous fluid spreading and

imbibition through a porous base. In their first study [20], they assumed that

the porous solid having anisotropic as well as uniform behavior. However, in the

second article [21], an extension in the previous model was made by including

spreading of fluid over an initially dry porous solid. From the modeling view

point, they assumed no cross-linking of the liquid occurred among the capillaries

that was the case in the Washburn’s study. They computed the shape of fluid

penetration through the rigid porous materials. These studies modified as well as

improved the results presented in the Washburn’s study.

In the above paragraphs, some work related to the fluid flows through the rigid

porous materials is summarized. In contrast to these materials, elastic porous

solids reshape themselves in attaining equilibrium under applied shear or normal

stress. Therefore, a special kind of visco-elastic behavior depending upon the na-

ture of a porous solid has been reported in modeling the fluid flow through these

materials. Our particular interest in this area is due to their close resemblance

with many types of processes take place in animal body structure [22–24] as well as

their numerous industrial applications [25–27]. Most common examples of the de-

formable porous materials includes sponge, foam, soil, articular cartilage, arteries,

and soft biological tissues, etc.

Parker et al. [28] have formulated one-dimensional fluid flow through a deformable

porous solid. In this study, dynamics of an incompressible fluid flow through

an elastic porous solid were considered while deriving multiphasic deformation.

They assumed that the stiffness and permeability of the porous solid both are

the functions of local strain gradient. The governing system of equations is solved

analytically for several simple constitutive relationships. Moreover, they measured

the stiffness and permeability of one particular porous solid (foam) and using these

results proved that the fluid flow and solid deformation both depend upon the
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applied pressure function. A good qualitative agreement can be found between

both the theoretical predictions and experimental findings.

Barry et al. [29] have developed the dynamics of fluid flow through a layer of

deformable porous material. The main focus in this study was subcutaneous in-

jections and subterranean of fluid through the soil. In formulating governing dy-

namics, they assumed that the porous solid matrix had an isotropic, homogeneous,

and linearly elastic in nature. The governing system of equations is derived for

an axis-symmetric geometry using the linear pore-elasticity. Moreover, governing

system of equations is solved analytically using Hankel transform technique [30],

however, Hankel inversion integrals were approximated numerically. The pressure

contours and displacement of the solid matrix have been reported for various val-

ues of source heights and elastic parameters. Results of this study indicated the

swelling of the porous medium as well as subsequent deformation of the free sur-

face. Furthermore, they find the regions upon which one dimensional models have

been applicable.

When loading impose on a deformable porous solid, fluid flows outwardly by

squeezing the elastic solid matrix nonlinearly. This multiphasic deformation re-

sults a non-linearly link between the constituents of the mixture, i.e., between fluid

and porous solid. In this particular physical phenomenon, void ratio (porosity)

as well as permeability of the deformable porous materials change dramatically;

hence, affects the passage of fluids through these materials. In the derivation

of governing dynamics of multiphasic deformation in these types of problems, low

speed flows have been formulated using the Darcy’s law, whereas, high speed flows

behaviors have been molded on the basis of nonlinear Forcheimer’s law. The mul-

tiphasic nature of these problems limits in the use of single phasic description,

even though these approaches have been reported in literature for some special

circumstances, i.e., after achieving equilibrium. The pioneer work in the area of

fluid flow through the elastic porous materials dates back to the study of Terzaghi

[31]. Moreover, these types of multiphasic deformation phenomenons successfully

described using the continuum mixture theory approach [32, 33]. This theory suc-

cessfully employed in driving the multiphasic deformation phenomenons produced
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during fluid flows through the deformable porous solids as well as passage of fluids

through the soft biological tissues.

The mixture theory is based upon the idea of continuum mechanics which state

that “individual components of the mixture are manipulated in such a way that

every particle of medium is occupy by each constituent of the mixture”. In the

mid of nineteenth century, pioneer work in the development of this theory was due

to the study of Fick [34], which was followed by Darcy [8]. Later on, necessary and

relevant details have been discussed by Truesdell [9], Atkin and Craine [10], and

Bowen [11] as well. However, most recent developments in the governing equations

of this theory were found in the book written by Rajagopal and Tao [12]. The

classical modeling approach described in this theory has provided the foundation

to derive the dynamics of fluid lubrication through biological and non-biological

settings. The description of governing dynamics of multiphasic deformation in this

theory is based upon the conservation laws of mass and momentum balance. Later

on, more reliable theoretical results have been achieved by incorporating nonlinear

permeability in the governing equations of this theory.

In 1965, Christopher and co-author [35] modified Darcy’s law into Blake-Kozeny

equation for the power-law fluids along with the laminar flow through a packed

tube. Their model was experimentally tested by passing a dilute polymer solution

through the packed tube. Theoretical results for this particular study were then

compared to the Sadowski study [36], who was working on an identical problem

using an Ellis fluid model. Later on, Hayes et al. [37] used the volume averaging

approach (method) and examined the power-law fluids model. They investigated

the velocity and pressure changes in a porous bed packed with the spherical par-

ticles. In this study, their focus was in modifying and improving the Darcy’s law

and intrinsic permeability used in modeling the power-law fluids that has been

examined by many authors, i.e., Kemblowski and Michniewicz [38], 1979; Fariss

and Pinder [39], 1987; etc.

It is worth mentioning that one-dimensional fluid flow through a deformable porous
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slab has been investigated to some extent, but less emphasis was given in accom-

modating the fluid fluxes through radially constrain geometry. The understanding

of radial flow through radial shells has direct relevance with many types of indus-

trial application, particularly, with permeability dependent flow behavior through

the arterial wall [40–42], and industrial focused application focusing ultrafiltra-

tion of hollow [43]. Moreover, another interesting biological application is flow of

proteins through the arterial wall was associated with the type of arteriosclerosis

[44, 45]. The deformation in the tissue could be a possible cause for this, partic-

ularly, if nonlinearity in the deformation of tissue is enough to impede the flux of

proteins for this accumulation as well. The modeling of these filters could be done

using cylindrical shells, as was reported in [46], and a comparison could be made

between planar and radial filters. Kenyon [47] investigated the fluid flux through

an unconfined deformable cylindrical porous medium. He studied the deformation

produced in the solid matrix by step changes in the pressure. Later on, Jayara-

man [48] extended this work and examined the oscillatory flow in the arterial wall.

In this study, the boundary conditions were associated with the initial bound-

ary position instead of the final position. Klanchar and Tarbell [49] prescribed

the nonlinear model in which they studied velocity and pressure variation in the

cylindrical confined geometry. The flow of organic matter through the cylindrical

arteries is an example of fluid-solid interaction for the elastic porous tissues, par-

ticularly be an interesting case, when non-Newtonian fluid flows through them.

An effort was made in modeling the radial flow through cylindrical and spherical

shells along with the comparison for the planar case [50]. A perturbation solution

is calculated for small-time and slow deformation with the numerical solution for

the time-dependent problems. The useful finding in this study is comparison of

fluid flow through planer and radial geometries.

In the above paragraphs, some detail describing the fluid-solid interaction in dif-

ferent physical conditions have been summarized, particularly, when fluid flow

through the rigid and deformable porous materials. Now, the main focus is to dis-

cuss the fluid flows through the soft tissues along with their effects on the swelling

behavior of solid matrix. Our interest in this regard is to elaborate theories and
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formulations used in deriving the governing dynamics of fluid flow through the

soft biological tissues (articular cartilage), in the presence of Lorentz forces. It

is well established fact that the morphology between interconnecting tissues like,

skin, cornea, cartilage, and aorta is identically; however, their functioning in the

living organisms is totally different.

The organic mixture composition of these tissue consists of glycogenolyses, salt,

fluid, glycoprotein, and cellular network. The articular cartilage is a complex bio-

logical tissue composed of dense woven type collage fabric matrix covered and filled

with proteoglycan aggregate fluid. The organic mixture composition of the solid

matrix consists of approximately 65 percent of collagen, 25 percent proteoglycans,

and remaining 10 percent other glycoproteins, in the dry weight. This compo-

sition depends upon numerous factors, such as depth, topographical positioning,

age, degeneration, ultra-structural fixation, and inter-molecular arrangement, etc.

On the micro level, this complex organic mixture behaves like a fiber reinforced

deformable porous solid. The governing dynamics involve in the solid deformation

depend upon the forces associated with the fluid fluxes through the tissues net-

work, either by the inner molecular movement or by external pressure. Until the

mid-nineteenth century, this soft tissue was considered to be devoid from all the

biological activities. This consideration was due to the fact that the cartilage tis-

sues are virtually isolated from the body structure of living organisms. It is worth

mentioning here, cartilage tissues have no blood flow along with complete isolation

from the lymphatic and nervous system of the body. Later on, in the advancement

of modern technology, a variety of different pictures of this soft biological tissue

have been presented using radioactive tracer, electronic microscopy scanning, and

bio-mechanical technology, etc. These studies opened a new era for researchers in

understanding the dynamics of fluid lubrication as well as solid deformation take

place in the cartilage and other such a types of soft biological tissues.

It was challenging for researcher to elaborate the exact nature of many types of

elastic tissues theoretically without performing experiments due to their complex

mixture compositions. An unsolved problem was the pertaining fluid flow through
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the cavities of diarthrodial joints that was the main obstacle which need to be ac-

commodate [51]. The fluid-solid interaction during loading circumstances in these

tissues was challenging, because motion of fluid and solid deformation take place

all together [52, 53]. Furthermore, a nonlinear link has been reported between

the components of the mixture while passing of fluids through the deformable

tissues [54, 55]. Later on, more reliable theoretical results of this non-linearity

have been achieved using strain-dependent permeability while deriving governing

dynamics. After this classical modification more feasible theoretical results of the

linear mixture theory have been achieved. This modification helps in understand-

ing the dynamics involve in the fluid flows and solid deformation take place in soft

biological tissues.

Mow et al. [56] have examined the creep and stress relaxation behavior of articular

cartilage. They considered that the mechanical properties of constituents (solid

matrix) as well as physical interaction between different phases exhibit rheological

behavior. In this study, cartilage solid matrix and fluid phase both were considered

intrinsically incompressible, and non-dissipative. They formulated the governing

dynamics using constant permeability that was independent of the rate of solid

deformation produced in the tissues network. Moreover, volume-metric ratio of

solid to fluid was taken in such a way that it changed in accordance with the depth

of the specimen taken for the analysis. In this study, a large separation in the

permeability coefficient was found due to the fixed rate of the solid deformation.

Their theoretical results were inconsistent with experimental findings that justify

the theory used in deriving the governing dynamics.

Later on, Myers et al. [57] studied an ion induced swelling behavior of cartilage

tissues. They placed a thin dimensionally measured specimen in the ionic bath

of sodium chloride solution (NaCl solution in water). An ion-induced swelling

behavior has been reported in the cartilage tissues that conformed an isotropic

inhomogeneous nature of the solid matrix. They found a linear contraction in

the tissue network by increasing molar concentration (αc) of the solution. Their

work extended the binary mixture theory model to a triphasic model, in which

an ion-induced strain was introduced. Theoretical prediction of this particular
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study successfully explained the transient forced history described in an isometric

experiment.

Armstrong et al. [58] have modeled an unconfined compression of articular carti-

lage. They examined creep stress-relaxation behavior of a cylindrical specimen. In

this study, a saturated tissue was placed between impermeable plates to measure

the elasticity of the solid matrix. The tissue equilibrium was maintained with

surrounding during radial fluid flow through the tissues. They found an analytical

solution of the governing systems of partial differential equations that was used in

describing the solid deformation produced in the cartilage network.

Spilker et al. [59] have employed finite element method in solving governing system

of equations, and used these results in exploring stress relaxation behavior of the

cartilage tissues. In this study, a thin layer of hydrated tissue of circular plane

was investigated. They divided the tissue domain into both thin and thick wall

specimens while exploring the solid deformation affected by the wall thickness of

the tissues. This study predicted that rigid bony interface has negligible influence

on tissue response far away from the interface.

In recent past, Guo et al. [60] have investigated the mechanical behavior of a

soft tissue (articular cartilage). They formulated the confined compression of one

dimensional deformation of cartilage tissues as well as movement of the intersti-

tial fluid through the tissue surface using a biphasic finite element method. In

formulating the governing dynamics, they assumed that tissue having an inhomo-

geneous, non linear biphasic elastic material with mechanical properties depend

upon the depth and strain-dependent material. The loading conditions are divided

into two categories. In first case, a superficial zone was considered in loading cir-

cumstances with a porous platen, later on, the deep zone was loaded with the

porous platen. They find that removing the superficial zone results in the increase

of all the mechanical parameters that decrease the fluid support ratio within the

tissues network. On the other hand, a linear change in the apparent permeability

was noticed when superficial zone is removed in the normal test, whereas, apparent

permeability did not alter in the upside down test. These two tests for different
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specimen orientations reported a large difference in the apparent permeability.

This study described the importance of superficial zones on the properties of the

articular cartilage and other types of soft tissues.

In 1998, Cohen et al. [61] employed biphasic theory on the hydrated soft tissues

and developed a transversely isotropic model. They found an analytical solution

for an unconfined compression of radially constrained disk plate tissues that com-

pressed between two rigid platens having frictionless interface. Particularly, they

reported the stress relaxation behavior of applied compression and ramp displace-

ments. The solution of the governing system of equations is then used in validating

the theoretical results by comparing these results with experimental data obtained

in finding the biphasic material parameters. They found an excellent agreement

between theoretical predictions and experimental results that are much better than

the previously achieved results in an isotropic model.

Later on, Mow et al. [62] provided an overview of the different bio-mechanical

factors used in analyzing the interpret biological data found in the experiments.

They presented a detail describing some mechano-electrochemical events that oc-

curred in the articular cartilage during loading circumstances. Furthermore, a

provocative discussion of applied pressure effects on the soft tissues has been pre-

sented. They have considered different loading cases, like, hydrostatic pressure,

osmotic pressure, pressure loading, confined compression, and unconfined com-

pression. The effects of these loadings on the solid matrix, fluid, solute and ion

flows, deformation, and electrical fields have been discussed in detail. Particularly,

similarities and differences in these parameters for different types of loading cir-

cumstances was the main goal in this study. They found that the understanding of

these differences help in describing the insights into the mechano-electrochemical

events that take place in tissues during different loading conditions.

In the articular cartilage, proteoglycan aggregate (PGA) are immobilized as well

as restrain within the tissues network. These PGAs contain sufficiently large

molecules range between 1 × 108 to 2 × 108 [63]. These molecules contain nega-

tively charged ions in large proportion (S0−3 , C00−), with their glycosaminoglycan
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(GAG) network. These movable charges have efficiency to generate an induced

magnetic field due to the relative motion between different phases. The motivation

of present work was to model the governing dynamics involved in the application

of external magnetic field on the mobile charge fluid within the tissue network.

This particular consideration will helps in understanding the influence of external

magnetic fields on the swelling behavior of cartilage as well as other types of elastic

porous tissues. We used an identical modeling technique as was in [15, 50, 56, 57],

with suitable modification for incorporating the magnetohydrodynamics (MHD)

and power-law effects in the governing dynamics of different problems reported in

coming Chapters.

Siddique and Kara [64] employed binary mixture theory in formulating the effects

of MHD on a capillary rise of liquid through a sponge type elastic porous solid.

Later on, Naseem et al. [65] derived the MHD dynamics for the fluid flow through

a deformable porous material. The main idea used in modeling the MHD process

is the forces interaction between the applied and induced magnetic fields. These

processes have relevance in various contexts, like, MRI (magnetic resonance imag-

ing), study of plasma, drug targeting, and separation of nuclear isotopes, etc. In

the field of computational biomechanics, Ahmed et al. [66] have studied the in-

fluence of MHD on the tissues deformation using the continuum mixture theory

approach.

In the above paragraphs, some work related to the mixture theory modeling have

been summarized for the fluid fluxes through the porous materials and soft bi-

ological tissues. On the other hand, this theory also employed in modeling the

composite manufacturing process [67]. These processes are well known and used

in the preparation of different industrial products. The composite manufactur-

ing is usually referred as a resin transfer molding technique (RTM), structural

resin molding (SRIM), and squeeze casting (SC). These phenomenons have been

schematized based on the fluid infiltration through initially dry porous materials.

In recent past, these processes have paid much attention due to their low cast

investment, less energy requirement, simple curing cycle, environment friendly,

etc. Most often, rigid porous materials have been considered in these processes,
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however, there are several papers reported in literature [68–71] that focused on the

solid deformation as well as described the importance of stress monitoring in the

derivation of governing dynamics. In fact, in many physical situations the applied

compression was taken large enough to generate the considerable deformation,

particularly to the face of porous solid having direct contact with the fluids.

Preziosi et al. [72] have formulated the infiltration of an incompressible fluid

through a deformable porous solid. Particularly, they considered the liquid flow

through a sponge type porous material that obey the slug flow approximation. The

resulting boundary value problem in this study was the Stefan-type with suitable

interfaced boundary conditions that described the saturation domain of porous

solid. They predicted different models and their dependence upon the inertial and

stress factors.

Ambrorosi et al. [73] have derived a new model that described an injection molding

process under the isothermal conditions. These processes are generally governed

by initially dry deformable porous solids. From the modeling point of view, the

specimen for analysis was divided into two sub-intervals, i.e., dry and wet porous

performed. Their model predicted that the porous solids reshaped themselves

under loading circumstances and this deformation altered the properties of the

porous material within the prescribed domain without effecting the other (spec-

imen separated by an interface). They concluded that the inertial forces have

maximum effects in the early stage of the infiltration and gradually settled by the

elasticity of the solid matrix with the passage of time.

Farina et al. [74] have formulated the composite manufacturing of the porous

materials on the basis of infiltration processes along with the qualitative results.

In this study, the resin moulding and structural resin injection moulding have

been discussed. In these processes liquid injected into a porous material consist of

fiber reinforced elements. They studied the rheological behavior of the fluid along

with the mechanical properties of porous solid that deform during the process of

infiltration.
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Billi et al. [75] have developed different models that help in improving certain

industrial processes used in the manufacturing of composite materials. In the

derivation of governing dynamics, they assumed unidirectional infiltration through

a deformable porous material. They used a set of Lagrangian coordinates fixed on

the solid matrix while formulating governing dynamics. This particular considera-

tion helps in changing the dynamics of the problem from moving domain problem

to a fix domain problem. This assumption used in simplifying the problem from

modeling point of view. In fact, in Eulerian coordinates, such a problem is treated

as free boundary value problem characterized by two time-dependent interfaces.

By using fixed coordinates system, they are able to obtained a nonlinear Stefan

type governing equation for a considered geometry.

Later on, Mesin and coworker [76] have formulated the dynamics of fluid flow and

solid deformation. This study helps in understanding the industrial production of

a composite material that is based upon the injection moulding technique. They

have proved that the inertia having typically sufficient effects during early time

fluid flow through the elastic porous solid. On the other hand, model predicted

that some ideal assumptions used for energy associated with the system help in

estimating the time required for the dissipation of vibrational motion. Motivated

from these theoretical studies (reported above), the multiphasic deformation dur-

ing passage of fluid through a soft tissue [77] and a deformable porous shell [78]

have been derived and discussed in different Chapters in this thesis.

The continuum mixture theory is used to elaborate the constitutive motion of

the components of the mixture, here these components are the deformable porous

solids like a tissue or shell and fluid. Furthermore, due to the availability of

different grade fluids, it seems quite interesting to formulate the behavior of non-

Newtonian fluid flow through the deformable porous materials and explore their

consequences on the solid matrix deformation. The main interest behind this

particular area is due to the natural occurrence of varsities of non-Newtonian fluids

along with their numerous practical applications, like, injection of cement in soil,

infiltration of organic matter in tissues, blood flow through confined arteries, and

industrial preparation different products, etc. Furthermore, one of the important
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applications from an industrial point of view is the oil recovery (EOP) in petroleum

engineering in which a large variety of the non-Newtonian fluids exist (jel, foam,

polymers, etc). It is important to mention here that the non-Newtonian fluids

exhibit nonlinear behavior that was not reported in the case of Newtonian fluids.

In fact, it is important to derive the consequences of non-Newtonian fluids on the

solid deformation, particularly, when these fluids flows through the elastic porous

materials. The Darcy’s law has been used in formulating the fluid fluxes through

the deformable porous solids [79], however, the complex coupling between the

high speed fluid flows and solid materials are not modeled on the basis of this law

[80]. Therefore, by considering a moderate speed fluid flow dynamics, we have

formulated the passage of non-Newtonian fluid flow through a deformable porous

shell in Chapter 5. On the other hand, another interesting fluid-solid interaction

has been reported during passage of electrically conducting fluids through the

deformable porous materials [81, 82], in the presences of Lorentz forces. In this

dissertation, two Chapters have been devoted to this particular area for both

biological and non-biological settings.

In the following, a layout is given that summarizes the relevant details of work pre-

sented in this thesis. Different problems have been discussed in different Chapters

along with the results and discussions.

1.3 Thesis Outline

The continuum mixture theory modeling approach has been used in formulating

the governing dynamics of different problems reported in this dissertation. Foun-

dation of this remarkable theoretical framework is based on the study of Atkin and

Carine [10] and Bowen [11], however, recent developments have been discussed in

[12]. In this thesis, the governing dynamic of fluid flow through a deformable

porous shell has been derived and a strain-dependent permeability model for the

passage fluid through the cartilage tissues is formulated. The mathematical for-

mulations presented in this thesis are based upon the mixture theory modeling
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used in [50] and [83] for a deformable porous shell and cartilage tissues, respec-

tively. From the solution point of view, the governing system of equation derived

in different Chapters have been solved using numerical scheme method of lines

(MOL), whereas, exact solutions are also computed in some special cases. In the

following, a short summary of work presented in different Chapters is given.

In Chapter-2, relevant detail of the mixture theory has been summarized that helps

in developing the governing dynamics in different Chapters or Sections. This is

followed by basic definitions and terminologies about the fluids, porous solids, soft

biological tissues, partial differential equations, and numerical scheme method of

line. These preliminaries help while developing the mathematical models as well

as their numerical simulation.

In Chapter-3, the dynamics of electrically conducting fluid flow through the ar-

ticular cartilage using mixture theory has been formulated. In order to derive

nonlinear interaction between the fluid and solid, strain-dependent permeability is

incorporated in the basic constitutive equations of the binary mixture theory ap-

proach. The governing system of time dependent diffusion equations is developed

for the solid deformation and fluid pressure. An exact solution of the governing

system of equations is calculated for the constant permeability along with a nu-

merical solution of permeability dependent flow. Graphical results have been used

in describing the effects of exposed magnetic field on the tissue deformation and lo-

cal fluid pressure. This work is published in “Computer Methods in Biomechanics

and Biomedical Engineering” [77], vol (23), pp. 524-535, 2020.

Chapter-4 contains the necessary and relevant detail of mathematical model de-

rived for the exposed magnetic field effects on the mixture of charged fluid and

deformable porous shell. The governing nonlinear system of equations is devel-

oped for the solid displacement and porosity of the shell. The integral boundary

conditions are outlined on both the extremities in the form of unknown function.

The numerical solution of the governing system of equations is computed for two

different inner radii of the shell for a time dependent problem along with an exact

solution for steady state case. A comparison of fluid flow through the radial and
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planar geometries is also presented in the form of graphical outcomes. This work

is published in “Computer and Mathematics with Application” [78], vol (80), pp.

1104-1116, 2020.

In Chapter-5, the derivation of radial flow of non-Newtonian fluids through a de-

formable porous shell has been given. The governing system of equations is derived

for the porosity along with an integral equation containing solid deformation using

power-law. In case of time dependent problem, numerical solution is computed

using the method of lines, whereas, an exact solution is provided for the steady

state problem. Revision of this work has been submitted in “International journal

of engineering sciences” in December 2019.

In Chapter-6, concluding remarks have been given that is followed by Appendices

that contain necessary details of an exact solution of the governing equation for

constant permeability reported in Chapter three and numerical algorithms used

in solving governing equations reported in Chapters 3, 4 and 5. At the end, the

bibliography is furnished that help during the research work presented in this

dissertation.



Chapter 2

Preliminaries

In this Chapter, the main focus was on the basic definitions and terminology that

will help in the coming Chapters or sections for both modeling and solution point of

view.. This includes definition of the fluid, porous materials, mixture theory mod-

eling, magnetohydrodynamics (MHD) formulation, power-law formulation, and

numerical scheme “method of lines” (MOL).

2.1 Introduction

It is well established engineering as well as biological practice that elastic porous

solids under loading circumstances cannot attain instantaneous deflection but

gradually settled to manage the applied stress. The balancing of applied compres-

sion results in the solid matrix deformation. These types of deformation processes

are important, particularly, in the sand and clay saturation phenomenons, while

draining of fluids. The dynamics involve in the settlement is the continuous adap-

tion of the loading effects that causes solid deformation in these materials. This

basic phenomenon of deformation is known as soil consolidation.

Early studies of fluid flow through the porous materials were based on the phe-

nomenon of soil consolidation. These types of processes are closely link with the

squeezing of fluid, particularly, flow of water through the deformable porous solids.

19
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The pioneer work in this area is due to the study of Biot [84–86]. In 1941, he de-

veloped a general theory of three-dimensional consolidation. This study opened a

new era for researcher to model and understand the lubrication processes occurs

in the porous materials, both in the biological and non-biological settings. Before

advance to the modeling of these types of phenomenons, it is important to go

through the basic terminology related to the fluids.

2.2 Fluids Flow

Fluid is a state of matter that reshape itself to adopt the shape of confined ge-

ometry. On the other hand, description of the fluid flow or more precisely liquid

flow required to specify the velocity vector. The average kinetic energy associates

with any fluid, in fact, is due to the velocity with which fluid flow through any

medium. So, this is the basic requirement to specify the velocity of the fluid at

each and every instant within the given domain of fluid flow. The velocity vectors

generally denoted by u or v and quantitatively define as “the rate of change of

displacement or space with respect to the time”. A fluid flow is said to be study, if

and only if, the velocity u is independent of the time, i.e., ∂u/∂t = 0, at any time

t, otherwise, the flow is said to be unsteady. The flow behavior dependents upon

different factors, like, applied pressure, dimension of the plane through which fluid

flow occurs, and the nature of the fluid as well. In general fluids are divided into

two main categories, Newtonian, and non-Newtonian.

The class of fluids which obey the Newton’s law are known as Newtonian and that

do not obey the law are known as non-Newtonian fluids. This law plays a very

important role in modeling the behavior of fluids when they flow in contact with

different types of solids. According to this law, the applied shear stress is directly

proportional to the rate of deformation, mathematically it can be written as

τ = µ

(
du

dy

)
, (2.1)



Preliminaries 21

where τ corresponds to shear stress, µ is viscosity, and du/dy is the rate of defor-

mation. For the case of non-Newtonian fluids

τ = µ

(
du

dy

)n
. (2.2)

The exponent n in the equation (2.2) is generally used to differentiate between

Newtonian and non-Newtonian fluids. In case of Newtonian fluids n = 1, oth-

erwise a fluid is considered as non-Newtonian. The main interest in this thesis

was in modeling the fluid flow through the porous materials, when fluid is of non-

Newtonian in nature, i.e., n < 1 or n > 1. When a fluid passes through elastic

porous solids, forces associated with the flow result in solid matrix deformation.

During this process, both the porosity and permeability of the material change,

hence, effects the passage of fluid. Moreover, a nonlinear coupling has been es-

tablished between the fluid and solid deformation that depends upon the nature

of porous solid as well as fluid. In the following, a detail describing the porous

materials is given.

2.3 Porous Materials

A porous material is a type of solid that has empty spaces (pores) within the solid

matrix. These pores often filled with liquids, if not, gases phase. The skeletal

portion of the solid is called the “matrix” or “frame”. There are numerous en-

gineering applications of these materials, e.g., ground water hydrology, reservoir

engineering, filtration process in industries, and fluid flow through the soft biolog-

ical tissues, etc. These materials based upon their structure and inner molecular

fixation (arrangement) are divided into rigid and deformable porous materials.

2.3.1 Rigid Porous Materials

Rigid porous solid remain in contact under loading circumstances unless their

threshold elastic limit do not reach. These materials bear a specific limit value
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of the applied normal or shear stress that vary from one type of material to the

other. This specific behavior of the rigid porous solids depends upon their inter-

molecular fixation. Fluid infiltration through these materials depend upon the

capillaries action along with energy associated with the flows and kind of loading

act on them. These materials have numerous application in engineering, like,

absorption of mineral and food transports in plants, fluid flows occur through

rocks, and bone-interface interaction with soft tissues in animals body structure,

etc.

2.3.2 Deformable Porous Materials

Deformable porous solids is the class of porous materials that reshape themselves in

balancing the applied stress. When fluid fluxes through these materials, kinematics

associated with the flow produces solid deformation that effects the infiltration as

well as discharging of fluid through these materials. This phenomenon produces a

complex interconnection between the fluid and porous solid. The main responsible

components of the multiphasic deformation are the porosity and permeability of

the materials.

2.3.3 Porosity

Porosity corresponds to the void or empty spaces present in a porous solid. On

the other hand, word porosity particularly used for the rocks, in the engineering

terminology, and it can be defined as “ratio of the pore volume of bulk to the pore

volume of rock simple”. Mathematically, it can be written as

φ =
Vp
Vb
, (2.3)

where φ is porosity, Vp and Vb are the pore and bulk volume, respectively.
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Figure 2.1 shows microscopic view of different types of deformable porous solids.

Particularly, empty spaces represented by tiny black holes correspond to the poros-

ity of the porous solids. These pores allow the fluid to pass through the porous

materials, however, porosity of the materials depends upon the inner fixation be-

tween the molecules of the porous solids as well.

Figure 2.1: Microscopic view of different types of the porous materials, for
detail see [87].

The porosity is a dimensionless quantity, and it is generally expressed in decimals

or percentage. In general, porosity of the material changes when fluid flows occurs

through a porous solid due to the repulsion of gas or air phases present in the

pores.

In case of dry substrate, these empty spaces are filled with a gas or more precisely

air, in equilibrium situation. During the process of infiltration, these gaseous

media resist for the passage of fluid which in turn changes the capability of fluid

to pass through the porous material, in fact, changing in the permeability of the

porous material take place in this process.
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2.3.4 Permeability

It is well established fact that properties of an elastic porous medium change in

accordance with the deformation of the solid matrix. Particularly, porosity of the

deformable porous solid decreases in compression. The mathematical relationship

between the permeability and strain is then required for deriving the governing

equations for an accurate governing model [88]. This was the first study that de-

scribed relationship between the porosity and strain. The permeability of a porous

material plays an important role while passing of fluids through rigid as well as

deformable porous materials. This can be define as “the ability of a porous solid

to allow the fluid to pass”. On the other hand, permeability of the porous solids

is link directly with the porosity, however, permeability also depends upon the

shapes of pores present in the solid matrix. In system international of units, per-

meability is measured in m2, most appropriate measuring scale used in measuring

permeability is Darcy (d) or milli-Darcy (md). Mathematically, permeability can

be expressed as follows

k = v
µ∆x

∆P
, (2.4)

where v is the velocity, k is the permeability, ∆x is thickness of the porous solid,

µ viscosity, and ∆P is the applied compression (applied pressure). A quantitative

relation between the driving pressure, permeability of the porous solid, and fluid

flow is given by Darcy.

2.4 Darcy Law

In 1856, Henry Darcy was the first scientist to explore the flow of fluid through

the porous solids. Particulary, Darcy formulated the amount of sand required

for filtration of given flow, specially, water flow. On the basis of experiments, he

derived a relationship between the fluid flow and applied pressure.

The Darcy’s law states that “fluid flux through the porous solids is directly pro-

portional to the pressure gradient imposed on initially saturated porous solid”.
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It is worth mentioning; this proportionality relation between the fluid flow and

pressure is only valid for the low-speed flow dynamics for both liquids and gases

phases. This law can be used in describing the fluid flow behavior through the

elastic porous materials in the form of a single parametric equation. Foundation

of this mathematical description is based upon the experimental finding of water

flow through the bed of sand. This law plays an important role in understand-

ing ground water hydrology that opens new ways of understanding the different

governing dynamics in Earth sciences (geophysics). In the absence of gravity,

Darcy’s law is redefined by Morris which state that there exists a proportional

relationship between the fluid flow, pressure difference, and viscosity of the fluid.

Mathematically it can be written as

Q = − Ak(p2 − p1)
µL

, (2.5)

where Q is total discharge of fluid, A is the cross-sectional area, k corresponds to

the permeability, p2−p1 pressure difference or pressure drop, µ dynamical viscosity

of the fluid, and L is the length of porous solid. Negative sign in equation (2.5)

indicates that the fluid flow directed from high to low pressure, i.e., in direction

of decreasing potential. After some mathematical manipulation and using general

notation, equation (2.5) can be written as

q = − k

µ
∇P, (2.6)

where q is the fluid flux, and ∇P correspond to the pressure gradient. Darcy’s law

provided the basis for modeling different kinds of flow through porous materials.

Furthermore, lots of modifications have been made to this law to include high

speed flow behavior through the deformable materials. For the validation of this

law, slow rate of deformation of mixture constituents has been considered in de-

riving the governing dynamics of different problems reported in this thesis. In this

dissertation, this law has been used for incorporating different factors, like mag-

netohydrodynamics (MHD) and power-law, in the governing dynamics of different

problems reported in coming Chapters.
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2.5 Magnetohydrodynamics

Magneto-hydrodynamics deals with the forces interaction between the applied and

induced magnetic fields. It is well established fact that an electric field setup

around a stationary charge, whereas, a moving charge is surrounded with both

electric and magnetic fields. Matter under high temperature and pressure con-

sist in ionic form, generally known as plasma. When these charges moves, they

have ability to generate an induced magnetic field those magnitude depends upon

the strength of the charges as well as velocities with which they move. It is

worth mentioning; most part of the universe exist in plasma state, however, inner

core of our Earth also exhibit plasmic nature. The mobile charges in the inner

core of the Earth establish a strong magnetic field around the Earth that con-

trol the atmospheric conditions around the globe. On the other hand, one of the

important biological application of these MHD processes is to study the effects

of exposed magnetic field on the moving charges in animals body structure. In

fact, this particular physical phenomenon have great importance and need to pay

attention. The mathematical formulations used in deriving the consequences of

magnetic fields on moving charges were first discussed by Swedish mathematician

and physicist H. Alfvsen, in 1942. Furthermore, in the derivation MHD process

that involve in the fluid flow dynamics, the Maxwell equations are manipulated

with the Navier-Stokes equation. These types of studies having grate importance

both in engineering and biological sciences.

2.6 Tissue Engineering

In biological science, living organisms are mainly divided into two main categories,

i.e., animals and plants. In both these classes, the building block of the body is

cell that combine together in forming the body structure. Based upon the organic

mixture composition and functioning of the different parts of the body, these cells

are divided into soft and rigid bony interface.
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It is well established fact that every cell of the living organism enrich with the

fluids and it has been estimated that almost 70 percent of cell weight consist in

the fluid form, particularly, in water form. This composition of the cell or more

precisely tissues convince us to derived the dynamics of fluid-solid interaction,

specially, for soft tissues where kinematics associated with the fluid flows having

sufficient effects on the tissues deformation. This particular area belong to the

tissue engineering in which a combination of cells, engineering, materials methods,

and suitable biochemical factors have been discussed.

Figure 4.1 shows a verity of different types of soft biological tissues under the

microscope. These tissues are responsible of performing different kinds of activities

in the animals body structure. In the case of soft tissues, visco-elastic behavior has

been reported in loading circumstances, however, this deformation phenomenon is

also observed in some kinds of rigid tissues as well. This characteristic of the elastic

as well as stiff tissues legitimate the importance of mathematical and physical

description of these tissues for the better understanding of their functioning and

composition. On the other hand, the rate of deformation and inertial fluid flow

through different tissues having numerous applications both in the medical and

clinical point of views.

Figure 2.2: Microscopic view of different types of soft biological tissues [89]
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In elastic tissues, a multiphasic deformation phenomenon has been reported while

passing of fluids. There are different theoretical studies that have been used in

modeling these types of multiphasic deformation phenomenons. In the beginning

of introductory, a proactive discussion of different theory [13] is given that are

successfully employed in deriving these types of problems. Particularly, the con-

tinuum mixture theory has been used in modeling the visco-elastic behavior of

articular cartilage, in the presence of Lorentz forces, in Chapter 3. In following

two sections, some basic terminology related to the tissues is given.

2.6.1 Stress Relation Behavior of Tissues

In soft tissues, stress relation is considered as a function of the local strain. In

most of the cases, stress is assumed linearly related to the strain while driving

the fluid flows through the soft biological tissues. This is known as infinitesimal

deformation theory more precisely linear deformation theory. Particularly, the

stress tensor for the solid matrix can be written as follows

σs = λeI + 2µe, (2.7)

where λ, µ are Lame constant, and e = trace(e) that can be found as follows

e =
1

2
(∇u+ (∇u)T ). (2.8)

2.6.2 Visco-elastic Behavior of Soft Tissues

Visco-elasticity is a property that is associated with many types of biological tis-

sues, particularly, for soft tissues. In this thesis, viscoelastic behavior has been

considered in modeling the governing dynamics of fluid flow through a soft bio-

logical tissue. Moreover, stress relaxation in tissue is a process where a constant

displacement is imposed on the solid matrix that requires a force to hold this

displacement. In the case of constant force acting on the medium, tissue creeps
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towards the equilibrium displacement by balancing the loading effects. A classical

methods used in describing these types of phenomena can be written in the form

of following integral

T (t) =

∫ t

−∞
G(t− τ)T (τ)dτ, (2.9)

where G(t) corresponds to the normalized reduced relaxation function, T (t) is

the elastic response, and T (τ) is continuous stretch. The poro-elastic theory has

proved the viscoelastic behavior of the tissues is due to the interaction of the fluid

and the solid matrix. In the mixture theory, these types of phenomenons are

well explained using the finite time for the passage of fluid within the tissue. On

the other hand, when displacement is imposed on the boundary, it causes fluid

squeezed out from the tissues by compressing elastic porous media of the tissues.

This results in a large stress and reduces the passage of fluid through the tissue

while balancing the applied stress.

2.6.3 Creep

Creep is a process in which a coupled stress relaxation behavior of the soft tissues

is observed. When a constant stress is imposed to a system (solid matrix), then

the surface displacement gradually creeps towards the equilibrium. This particular

behavior is due to the fluid motion that drainage through the porous boundary.

2.7 Continuum Mixture Theory

The continuum mixture theory states that “individual components of the mixture

are manipulated in such a way that every component of the mixture occupies each

and every point within the mixture”. This theory has been used in formulating the

governing dynamics, when there exists relative motion between different phases of

mixture and resistive forces having sufficient effects during deformation. These

resistive forces play an important role both on the motion of the fluid and solid

deformation. In the literature, mixture theory successfully employed in addressing
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the problems of fluid fluxes through biological [13–15] and non-biological [47, 50,

64, 65, 72] settings.

In this thesis, the binary mixture theory has been used in modeling the squeezing

phenomenon produced in an elastic porous shell as well as visco-elastic behavior

of cartilage tissues during the passage of fluid in the presence of different physical

parameters. In general, the power-law model has been developed for the elastic

porous shell, whereas, MHD effects have been derived for both an elastic porous

shell and a soft biological tissue. In fact, the constitutive theory for the mixture

has been presented for the fluid and porous solid. In literature, continuum mixture

theory model has been developed for fluids, suspensions, porous solids enriched

with fluids, and composite solids as well. In this thesis, the main focused was on

the mixture theory formulation related to the porous solid and viscous fluids only.

In deriving basic mixture theory model, assumed a continuum mixture having N

different components that are individually incompressible and each component of

the mixture having its on identity within the mixture.

The relative motion of constituents is specify by a following smooth function

χ = χα(Xα, t), (2.10)

where α = 1, 2, 3, · · ·, N , and Xα denote position with respect to some reference

configuration.

In the following, we defined an inverse function for χα

χα = ξα(x, t). (2.11)

Now, the mass density ρ, for the mixture as whole can be written as

ρ =
∑

ρα, (2.12)

where ρα corresponds to the density of αth component of the mixture.
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The volume fraction φα, for the αth can be expressed as

φα =
ρα

ραR
, (2.13)

where ραR is used for the density of αth constituent in a homogeneous state.

In the case of saturated configuration, volume fraction can be written as

∑
φα = 1. (2.14)

The velocity profile vα and deformation gradient F α are related to each other by

a following relation

vα =
∂

∂t
χ(X, t), F α = ∇χα(Xα, t). (2.15)

In equation(2.15), operator ∇ corresponds to gradient with respect to the spatial

position. For a homogeneous mixture, we have

v =
1

ρ

∑
ραvα, uα = vα − v, (2.16)

where v and uα represent mean and diffusion velocities, respectively. The total

derivative with respect to time can be written as

Dα(·)
Dt

=
∂(·)
∂t

+ ((vα · ∇)(·)). (2.17)

In the following, we gave the basic law of mass conservation for the mixture

∂ρα

∂t
+∇ · (ραvα) = ραφα. (2.18)

The conservation of linear momentum for the mixture can be written as

∂

∂t
(ραvα) +∇ · (ραvα ⊗ vα) = ∇ · T α + ραbα + πα + ραφαvα (2.19)

where ραφα corresponds to the mass flow rate, T the stress tensor, πα interaction
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forces, and ραbα body forces for the αth components of a continuum mixture.

Particularly, for the case of binary mixture, α = 1, 2 that represent two phases,

i.e., liquid and solid. It is worth mentioning; mixture theory is employed with

following general assumptions in developing different models in coming Chapters

1. The mixture constituents are considered immiscible, however, they formed

homogeneous mixture when mixed together.

2. For a closed system conservation of mass always hold, i.e., neither mass

growth nor resorption exist.

3. The mixture constituents considered non reacting, i.e, constituents are chem-

ically stable.

4. The solid matrix was assumed in fully saturated conditions, i.e. whole avail-

able space is occupied by every constituents of the mixture.

5. Governing dynamics are depend loading conditions, inertial terms are ig-

nored due to their small contributions.

6. Mixture constituents were considered intrinsically incompressible, and isother-

mal.

7. There exist no external body forces, i.e., gravity.

In following two section, details of the mixture theory formulation for the deriva-

tion of power-law and MHD are given.

2.7.1 Power-law Formulations

The continuum mixture theory has been used in formulating the power-law model.

Most of the equations were originated directly from the basic constitutive equations

of mixture theory with suitable modification for the problem of our interest.



Preliminaries 33

The conservation of mass for α phase can be written as

∂φα

∂t
+∇ · (φαvα) = 0, (2.20)

where α = s, f correspond to solid and fluid phases respectively, vα is the velocity,

and φα is volume fraction.

A general form of the momentum balance for the mixture can be written as

ρα
(
∂vα

∂t
+ (vα · ∇)vα)

)
= ∇ · T α + ραbα + πα, (2.21)

where T is the stress tensor, π corresponds to the drag forces, and bα represent

body forces. Following forms of the stress tensor were considered

Tα = −φαpI + σα, (2.22)

and

πs = −πf = K(vs − vf )n − p∇φs, (2.23)

where n corresponds to the power law index, σα represents the stress of mixture,

K is the drag coefficient, and p is the fluid pressure. The components of stress

tensor for the radial and angular direction can be written as

σrr = (λ+ 2µ)
∂u

∂r
+ βλ

u

r
, (2.24)

and

σθθ = (λ+ 2µ)
u

r
+ λ

∂u

∂r
+ (β − 1)

uλ

r
, (2.25)

where λ and µ are Lame constants, and β correspond to the geometry.

2.7.2 MHD Formulations

In the derivation of MHD dynamics, we considered the binary mixture of an elec-

trically conducting fluid and deformable porous solid. A continuous magnetic field
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effects have been considered on the binary mixture of fluid and porous solid. The

components of mixture are considered individually incompressible, homogeneous,

non-dissipated, and an-isotropic.

Form modeling point of view, the conservation of mass for MHD having an identical

equation as was (2.20), whereas, the momentum balance, in the presence of Lorentz

forces can be written as

ρα(
∂vα

∂t
+ (vα · ∇)) = ∇ · T α + ραbα + πα + J ×B, (2.26)

where J and B are the current and magnetic flux density, respectively. In the

following, we gave the mathematical forms of Maxwell’s and Ohms laws. These

equation have been used in simplifying the expression J ×B, later on

∇×B = µcJ , ∇ ·B = 0, ∇×E = − ∂B

∂t
, J = σ0(E + vα ×B), (2.27)

where µc is the primitivity of free space, σ0 corresponds to electric conductivity,

and E is the electric field strength. The expression J × B corresponds to the

contribution of Lorentz forces effects that can be simplify using relations defined

in (2.27) as

J ×B = σ0(E + vα ×B)×B. (2.28)

It is wort mentioning that B corresponds to the total magnetic filed [90, 91]

which is the actually sum of applied and induced magnetic fields (B = B0 +B1).

Furthermore, induced magnetic filed (B1) having negligible influence due to the

low magnetic field Reynolds number approximation. In this setting, equation

(2.28) can be written as

J ×B = σ0(E + vα ×B0)×B0. (2.29)

Using the rule of vector triple product, equation (2.29) can be written as

J ×B = σ0(B0(v
α ·B0)− vα(B0 ·B0)). (2.30)
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As, magnetic field having maximum effects for perpendicular direction and zero

for the parallel orientation. This fact leads to ignore the term vα ·B0. This leaves

the following form of the equation (2.30)

J ×B = −σ0B2
0v

α. (2.31)

From equations (2.26) and (2.31), we get

ρα(
∂vα

∂t
+ (vα · ∇)) = ∇ · T α + ραbα + πα − σ0B2

0v
α. (2.32)

Expression −σ0B2
0v

α gives the magnetic fields (Lorentz ) contribution in the gov-

erning dynamics.

It is wort mentioning here, equations for the stress tensor are identical to the

equations (2.22) to (2.25) given for the power-law formulation. The only difference

occurs in the constitutive equation (2.23) either the Newtonian or non-Newtonian

fluid flow behavior has been used in the MHD dynamics.

2.8 Solution Technique and ODEs Solver

In general, any physical system is well described by three dimensional space and

time that is known as space-time. These space and time coordinates are used in

developing any mathematical model in the form of partial differential equations

(PDEs). In computing the solution of resulting PDEs, different analytical as well

as numerical methods have been reported in literature. In this thesis, we have

used numerical scheme “method of lines (MOL)” and successfully solved the re-

sulting partial differential equations (PDEs) reported in different Chapters. MOL

required to convert the partial derivatives of spatial variables involved in the gov-

erning system of partial differential equations into system of ordinary differential

equations using the finite difference. The resulting system of ODEs is than solved
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using a well established MATLAB’s ODE solver, like odes15, odes23, etc. In or-

der to elaborate the implementation of MOL, we first introduce the some basic

terminology about the partial differential equations for the convenience.

2.8.1 General Form of PDE System

The general form of a partial differential equation in the first order is of the

following type

ut = f(x, t, u, ux, uxx, ...), (2.33)

where x is vector of spatial coordinates, i.e., planar or radial, u denotes the vectors

for n-dependent variables (x), and f is a function. In general, u and f can be

written as

u = (u1, u2, u3, ...un)T , f = (f1, f2, f3, ...fn)T , (2.34)

where T denotes the transpose. As, equation (2.33) is first order in variable t, so,

it required just one initial condition of following type

u(x, t = 0) = u0(x, u, ux, uxx, ...). (2.35)

For the case of u, it required n-vectors as follows

u0 = (u10, u20, ...un0)
T . (2.36)

In case of derivative function f , we defined boundary conditions (BCs) prior be-

cause BCs purely depend upon the highest derivatives involve in the governing

PDE. Particularly, we considered that highest derivatives in variable x is of sec-

ond order, then there are two BCs in solving the given PDE. In general, the BCs

for equation (2.33) can be written as

fb(xb, u, ux, uxx, ...t) = 0. (2.37)
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Now, we have a complete system, i.e, a PDE along with associated initial and

boundary conditions.

2.8.2 Implementation MOL

It is well established fact that PDEs problem come in infinity variety of mod-

ern science, engineering, biomedical applications, and industries manufacturing of

different materials. On the other hand, geometric classification (parabolic, ellip-

tic, hyperbolic), class of dependent and independent variables, and types of BCs

(boundary conditions), it seen quite difficult to formulate a numerical scheme with

any generality which address board spectrum of all PDEs problems. However, the

numerical scheme MOL provides a surprising degree of generality, although the

output depends upon the experience and inventiveness of analyst to new PDE

problem. Now, the focused is toward formulation and implementation of MOL to

a PDE problem. The main theme of MOL is to change spatial derivatives (par-

tial derivatives) involve in PDE with algebraic approximation (forward difference,

reverse difference, central difference etc). In order to understand the process of

implementation of MOL, we consider following simple first order PDE

ut + vux = 0. (2.38)

Using forward difference, we get

ux ≈
ui − ui−1

∆x
, (2.39)

where i corresponds to an index (i = 1 for left end and i = M for right end) along

x, and ∆x is the spacing between two consecutive mesh points. Now, equation

(2.38) can be written as

dui
dt

= −v ui − ui−1
∆x

, M ≥ i ≥ 1. (2.40)
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Equation (2.40) has only one independent variable that is t also it represents

system of M ODEs. This system of ODEs is approximated form the given PDE.

In order to solve this system, we need to complete the PDE problem by imposing

one initial and one boundary condition of the following types

u(x, t = 0) = f(x), u(x = 0, t) = g(t). (2.41)

As, equation (2.40) has M initial value ODEs, so, it required M initial conditions

as

u(xi, t = 0) = f(xi), 1 ≤ i ≤M. (2.42)

The boundary condition at i = 1 can be written as

u(x1, t) = g(t). (2.43)

Now, equations (2.40), (2.42) and (2.43) are complete MOL approximation of

equation given PDE, whereas, solution of ODE system is given as

u1(t), u2(t), u3(t), ...uM−1(t), uM(t), at i = 1, 2, 3, ...M. (2.44)

The error associated with such a solution depends upon the order of approximation

generally known as truncation error. We used first order forward difference to

approximate the spatial derivatives, however, for the case of ∆x→ 0 leads to the

exact derivatives of original partial differential equation. In practical application,

∆x remain finite, so, given PDE remain approximated.

2.9 Example

In this section, we can solved the heat equation using the method of lines and

compared this solution with an available exact solution. Heat equation is most

widely studied in mathematics, and its analysis is considered as fundamental in

the field of partial differential equations.



Preliminaries 39

Numerous nonlinear variants of the heat equation were introduced in differential

geometry by James Eells and Joseph Sampson in 1964, inspiring the introduction

of the Ricci flow by Richard Hamilton in 1982. On the other hand, heat equation

also paly an important role in many fields of science and applied mathematics.

Particularly, researches interested in formulating the distribution of heat within

the slab. This process is usually derived in the form of time varying ultimately

reaches to a steady state. This phenomenon is represented by the parabolic partial

differential equations along with appropriate boundary conditions on the extrem-

ities. Furthermore, linear and nonlinear parabolic partial differential equations

have been discussed in literature.

In the present section, a comparison of analytical and numerical solutions for a

parabolic partial differential equations is given. In the following, a general form

of the parabolic type PDE is given

∂u

∂t
= ~2

∂2u

∂x2
, t > 0, 0 < x < 1. (2.45)

Let ~ = 1, for the case of simplicity, and equation (2.45) subjected to the following

initial and boundaries conditions

u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0. (2.46)

In solving equation (2.45), consider the domain of spatial variable from 0 to 1.

An exact solution of the partial differential equation (2.45) using the boundary

condition (2.46) can be written as follows

u(x, t) =
4

π

∞∑
n=0

1

2n+ 1
sin[(2n+ 1)πx]e−(2n+1)π2t. (2.47)

Now, discretizing equation (2.45) using the finite difference, we get

duj
dt

=
uj+1 − 2uj + uj−1

(∆x)2
, j = 1, 2, 3 · ··, n, (2.48)
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where ∆x = 1−0
n

, and u0 = 0 = un (contribution of left and right boundaries).

An input of the initial condition can be written as

u(xi, 0) = 1, xi = i∆x. (2.49)

Now, we have a system of n ODEs given in equation (2.48) along with the initial

condition expressed in equation (2.49). These equation can be solve using Matlab’s

ODE solver, like ode15, ode23s, etc. In the following, the graphical outcome gives

the comparison between the exact and numerical solutions for t = 0.1

In Figure 2.3, an excellent agrement has been found between both the solutions,

i.e., exact and numerical solutions. Moreover, this graphical result shows that

method of lines (MOL) give good accuracy, particularly, in case of parabolic type

partial differential equations. In this thesis, most of the governing equations de-

rived in different Chapters are of parabolic types partial differential equations and

solved numerically using method of lines.

Figure 2.3: Comparison between the exact and numerical solutions.
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It is worth mentioning that the convergence and stability of MOL also depends

upon the order of approximation of partial derivatives involve in the governing

equation. This approximation change from one type of PDE to the other as well

as nature of governing equation, i.e., equation is linear or nonlinear.



Chapter 3

Visco-Elastic Behavior of

Articular Cartilage Under

Applied Magnetic Field and

Strain-Dependent Permeability

3.1 Introduction

In this Chapter, the problem of fluid flow through an elastic tissue is derived

using binary mixture theory approach. The governing dynamics involved in the

motion of fluid and solid deformation are formulated for both constant as well

as strain-dependent permeability of the solid matrix. A constant magnetic field

effects have been incorporated in the governing equations while deriving influence

of Lorentz forces on the tissues deformation. The fluid flow and solid deformation

were assumed to be depend upon the loading imposed at the rigid bony interface

of the cartilage tissues. We employed the continuum mixture theory approach and

developed a mathematical model that described the contribution of MHD effects

on a soft biological tissue.

42
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The continuum mixture theory successfully used in deriving the problems of fluid-

solid interaction during the passage of fluids through the deformable porous ma-

terials [19–21, 50, 64, 72, 73, 92]. Present Chapter based upon the research work

published in [66] that was the only available model in literature developed for

the investigation of MHD effects on a soft tissue using mixture theory approach.

However, there are several paper reported in literature that described the deriva-

tion of MHD effects based upon the mixture theory during passage of electrically

conducting fluids through the deformable porous solids [64, 65, 78].

In formulating the kinematics of the problem, components of the mixture were

assumed individually incompressible, homogeneous within the solid matrix, and

isotropic. We have derived the governing system of partial differential equations

for the solid deformation and local fluid pressure, in the presence of Lorentz forces.

The numerical solution is computed using the method of lines for the permeability

dependent flow, whereas, an exact solution is provided by the eigenfunction expan-

sion method for the case of constant permeability. The graphical results highlights

the influence of magnetic parameter, normalized time, strain-dependent permeabil-

ity, and dimensionless constant (R) on the fluid pressure and solid deformation.

In the following, a summary of the present Chapter is given.

Section 3.2 contains the mathematical formulation, Section 3.3 described the so-

lution methodology, Section 3.4 devoted for the result and discussion. At the end,

Section 3.5 contains the concluding remarks.

3.2 Theory and Model

The intrinsic permeability was introduced in modeling multiphasic deformation of

soft biological tissues while passage of fluids, in different loading conditions. The

elasticity of soft tissues links the consequences of drag forces on the solid deforma-

tion hence change the permeability of the solid matrix [93]. Experimental studies

have proved that the mechanical response of the cartilage tissues is extremely

sensitive, even for a slow rate of compression. The dependence rate of sensation
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related to the drag forces is very high; also, this factor plays an important role in

modeling the mechanical behavior of cartilage and other types of soft biological

tissues. This particular behavior of many types of deformable tissues makes it

important to consider the effects of strain-dependent permeability while deriving

the governing dynamics.

In the present study, the fluid flow through the tissues network was considered

as permeability dependent, and following form of strain-dependent permeability

relation has been assumed

k = k0e
m ∂u

∂x , (3.1)

where k0 and m are the material constants, ∂u
∂x

is the dilatation, and u(x, t)

corresponds to the solid displacement. It was assumed that cartilage tissues fixed

to the interval 0 ≤ x ≤ h, where x = 0 and x = h correspond to the soft and rigid

bony interfaces, respectively. Due to the symmetry, only non-zero components of

the velocities are vs = vs(x, t), vf = vf (x, t), s and f represent solid and fluid

phases, respectively.

Lai et al. [83] have found the permeability parameter of the elastic tissues ex-

perimentally. They passed Ringer solution through a soft tissue having thickness

h. In this study, area A of the specimen was subjected to the pressure PA im-

posed at the rigid bony interface of the soft tissues. They have found an apparent

value of the permeability as Q/A
PA/h

, where, Q corresponds to the volume of fluid

flux through the cartilage network. When fluid flow through the cartilage tissues,

drag forces associated with the flow result in the solid matrix deformation. This

phenomenon plays an important role both in the compactness of the porous solid

as well as passage of the fluid. This multiphasic deformation limits the value of

strain-dependent permeability to an average value, if not, an apparent value kapp.

It is worth mentioning here; this apparent value of the permeability parameter

links to the driving pressure ∇P [94] that is the main factor change the passage

of fluid through the tissues. On the other hand, when kapp measured with various

values of the clamping strains, it depends upon both applied pressure as well as

clamping strain. These experimental justifications given in [95] convinces us to
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use the equation (3.1) in the present study. The multiphasic nature of biolog-

ical tissues limits in the use of single-phasic modeling approaches, even though

these approaches have been reported (employed) in some special circumstances,

i.e., after attaining equilibrium.

Figure 3.1: Geometry of the problem 1 has been given in Figure (3.1). A
soft tissue (articular cartilage) in loading circumstances under applied
magnetic field of strength B was considered for the analysis.

In the present study, we assumed the bio-rheological behavior of the soft and

hydrated tissues that consist of deformable porous solid filled with fluids. The

governing dynamics of such a problem deals with the idea of continuum mixture

theory. The modeling technique we used in the present article has a relatively

brief; however, details can be found in [11], and a compressive review also given

in [96–99] as well. In these types of modeling, each constituent of the mixture

manipulating in such a way that it occupies at every material positioning within

the mixture . The kinematics involved in the derivation of governing dynamics

depends upon the components of a mixture, here these components are solid matrix

(cartilage body) and fluid phase. Moreover, we fallow a similar modeling approach

reported in [83], with suitable modification for the problem of our interest.

We considered that the solid matrix (cartilage tissues) could only be squeezed into

a special control volume, when an equal amount of the fluid fluxes in the opposite
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direction. The motion of the constituents described using classical conservation

laws of the mass and momentum balance. The volume fraction φα of each phase is

defined by φ = V α

V
, other useful relations are φs + φf = 1, and ρα = ραTφ

α, where

ραT is true density, ρα is density of mixture, and α = s, f used to represents different

phases. Using the model of an incompressible binary mixture, conservation of mass

can be written as

∇ · vf = −ξ∇ · vs, (3.2)

where ξ is the ratio of volume fraction, i.e., ξ = V s

V f
, for articular cartilage tissues

ξ ≈ 0.2 (for an adult joint). In modeling the governing dynamics, the quantita-

tive relation between fluid and solid velocities that is given in equation (3.2) has

been reported in numerous studies [58, 83], identical to the present study. The

momentum balance for the mixture can be written as

ρα
(
∂vα

∂t
+ (vα · ∇)vα

)
= ∇ · T α + ραbα + πα + J ×B, (3.3)

where T α is the stress tensor for α phase, bα represent body forces, πα is drag

force between the mixture constituents (πs + πf ≈ 0), J and B are the current

density and applied magnetic field, respectively.

In the case of infinitesimal deformation along with small velocities, the effects

of inertial forces become negligible [50]. Barry and coworker [100] considered the

contributions of inertial forces, in the derivation of governing dynamics, and proved

that these forces had been ignored, when t0 > kρT , where t0 is the typical time,

and k is the permeability. Using these assumptions help us to rewrite the equation

(3.3), in the absence of body forces, for both the phases as follows

∇ · T s + πs + J ×B = 0, (3.4)

and

∇ · T f + πf + J ×B = 0. (3.5)

It is important to mention here, magnetic fieldB has maximum effects, when apply

perpendicular to the moving charged fluid, and minimum for parallel orientation.
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The diffusive resistant forces for the solid and fluid can be written as [66, 83]

− πs = πf = K(vs − vf ), (3.6)

where K corresponds to the drag coefficient of the resistance, which is related to

the permeability by a relation K = 1
(1+α)2k

[50]. The linear momentum has been

affected by the relative velocities of the mixture components, i.e., vs−vf . Lai and

coauthors [101] have studied compressive stress relaxation behavior of soft tissues

for transversely isotropic permeability. For the special case, all load carried by the

elastic tissues, and binary problem changes to an elasticity problem. Furthermore,

for a confined compression, equilibrium strain, as well as lateral expansion, all are

controlled by the Es and vs [51, 56], where Es and vs are the elasticity and velocity

of the solid matrix, respectively. In literature, different studies have been reported

that used elasticity theory in modeling the behavior of soft tissues [102–104]. In

1678, Robert Hook formulated a quantitative relationship between the stress and

strain [105]. In many physical situation, it has been assumed that an accurate

governing model for solids, deformations and forces are small. Moreover, in the

development of theory of elasticity proved that Hook’s law say that strain directly

related to the applied stress, whereas, the proportionality factor is not a single

real number, but a tensor corresponds to the matrix consist of real numbers. This

configuration of the matrix depends upon the solid material taken from seven

classes of the crystals [106–108]. On the other hand, elastic solids divided into

two classes, i.e., isotropic and anisotropic, in the present study, we considered

that solid matrix of the tissues having isotropic nature. These types of solid

having properties independent of the direction, whereas, an anisotropic material

has property that depends upon direction due to their structure. In literature,

many studies have used the isotropic materials [109, 110], for more detail [111–

114]. It is well-established fact that visco-elastic behavior of soft tissues purely

depends upon the fluid fluxes through the permeable porous solid matrix as well as

type of loading condition imposed on it [60]. In the derivation governing dynamics

of the present problem, we considered the biological tissues consisting of a porous

material that is intrinsically elastic, isotropic, and filled with fluid. We considered
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the following forms of stress relations for the solid and fluid phases

T s = −ξpI + λse
sI + 2µse

s + 2µse+ λ̇sdiv(vs)I + 2µ̇sD
s − 2KcΓ, (3.7)

and

T f = −pI + λfdiv(vf )I + 2µfD
f + 2KcΓ, (3.8)

where e is the infinitesimal strain tensor, es = trace(e), Ds is the deformation

tensor, Γ is the spin tensor, p local pressure of the fluid, I is identity tensor, Df is

the rate of fluid deformation tensor, λs, µs are isotropic elastic moduli, λ̇s, µ̇s are

visco-elastic moduli, λf , µf are bulk and dynamical viscosities of the fluid, and Kc

is the diffusive interaction between mixture constituents.

The infinitesimal binary mixture theory described fluid-solid interaction using ten

material constants, i.e., ξ, λs, µs, λ̇s, µ̇s, λf , µf , Kc, r, K, where r is the con-

tribution of capillary forces. It is difficult, either impossible, to access all these

parameters at once both for modeling and solution point of views. Moreover, Mow

et al. [14] developed a model using following assumptions

1. Solid and fluid phases are linearly elastic,

2. The permeability of the solid matrix is constant,

3. Kc = 0, r = 0,

4. ξ is constant.

They used the resulting linear equations successfully in addressing the problems

of one-dimensional confined compression stress relaxation behavior of cartilage

tissues, meniscus, and nasal septum, although these restrictions were quite severe.

Using these assumptions, they find the permeability constant 10−15 m4

Ns
that made

an excellent agreement with the available experimental data [94, 115]. On the other

hand, Lia and coauthor [83] gave a detailed comparison between stress relaxation

experiments with biphasic linear mixture theory findings. They had proved that
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certain inconsistencies occurs when theory was generalized by including the non-

linear strain-dependent permeability relationship given in equation (3.1). Thus in

the present study, we have extended linear mixture theory by including non-linear

permeability relation in the presence of magnetic fields, in the constitute equations

of binary mixture. In the following, the Maxwell, and Ohm’s law are given, which

were used in simplifying the expression J ×B, later on

O×B = µcJ, O ·B = 0, O× E = − ∂B

∂t
J = σ0(E + vα ×B), (3.9)

where µc correspond to the permittivity of the medium, E is the electric field

intensity, and σ0 is the electric conductivity of the charged fluid. The expression

J ×B can be written as

J×B = σ0(E + vα ×B)×B, (3.10)

where B = B0 +B1, i.e., B is sum of the applied and induced magnetic fields.

The contribution of induced magnetic field (B1) may be ignored due to the low

magnetic field Reynold number approximation [66]. Thus, equation (3.10) for

negligible induced magnetic and electric fields can be written as

J×B = σ0(v
α ×B0)×B0. (3.11)

After some mathematical manipulation, we get

J×B = σ0 (B0(v
α ·B0)− vα(B0 ·B0)) . (3.12)

The term vα ·B0 ≈ 0 (magnetic field has negligible effects in parallel orientation

to the fluid flux). This leaves the following form of the equation (3.12)

J×B = −σ0B2
0v

α. (3.13)

We assumed that the solid and fluid deformations are along the x-direction. Now
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what follows, the vector form of equations change into one-dimension form. Us-

ing the assumptions of linear binary mixture theory, and employing divergence

operator to the equations (3.7) and (3.8), we get

∂T s

∂x
= −ξp+Ha(

∂u

∂x
), (3.14)

and
∂T f

∂x
= −p, (3.15)

where Ha = λs+2µs. Inserting equations (3.6), (3.13), (3.14)-(3.15) into equations

(3.4)-(3.5), we obtain

− ξ ∂p
∂x

+Ha
∂2u

∂x2
−K(vs − vf )− σ0B2

0v
s = 0, (3.16)

− ∂p

∂x
+K(vs − vf )− σ0B2

0v
f = 0. (3.17)

From equation (3.2), we get
∂vf

∂x
= −ξ ∂v

s

∂x
. (3.18)

The cartilage was divided into elastic as well as rigid, which correspond to the soft

and bony interface, respectively. Integrating equation (3.18), and using condition

vs = vf = 0 for cartilage rigid boundary interface (for adult joint) [83] , we get

vf = −ξvs. (3.19)

Equation (3.18), yields

vf − vs = −(1 + ξ)
∂u

∂t
, (3.20)

where vs = ∂u
∂t

. From equations (3.20) and (3.16)-(3.17), we get

∂u

∂t
=

(
Hak0e

m ∂u
∂x

1 +Mem
∂u
∂x

)
∂2u

∂x2
, (3.21)

where K = k−1(1 + α)−2, and M = k0(1 + α2)σ0B
2
0 is the dimensionless magnetic

parameter. Equation (3.21) is the governing nonlinear partial differential equation
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for the solid deformation. The nonlinearity is due to the strain-dependent per-

meability. In the case of m = 0, equation (3.21) reduces to the linear form, the

resulting linear equation used successfully in describing one-dimensional stress-

relaxation behavior of soft tissue, even though this restriction is quite hard. For

the case of constant permeability, it is not possible to elaborate on the exact na-

ture of the problem. Therefor, it is important to consider the consequences of

strain-dependent permeability that was changed in accordance with tissue defor-

mation, in the presences of the magnetic parameter M . These two factors are the

main features, which were considered in the foregoing section, and we reported

their effects on both solid deformation and fluid pressure in the section results and

discussion.

Now, we turn attention toward the fluid pressure p. For this, adding equations

(3.16) and (3.17), we get

∂p

∂x
=

[
Ha

1 + ξ
− HaM(1− ξ)em ∂u

∂x

(1 + ξ)(1 + ξ2)(1 +Mem
∂u
∂x )

]
∂2u

∂x2
. (3.22)

Equation (3.22) is used in finding the fluid pressure only when solution of the

solid deformation u is available. The nonlinear permeability k appeared both in

the equations (3.21) and (3.22). However, it seems quite physical without altering

the nature of the problem to handle the equation (3.22) for constant permeability,

because strain-dependent permeability contribution comes through the calculated

solution of u from equation (3.21) into (3.22). In this setting, equation (3.22) can

be written as
∂p

∂x
=

Ha

1 + ξ

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

]
∂2u

∂x2
. (3.23)

Integrating

p(x, t) =
Ha

1 + ξ

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

]
∂u

∂x
+ g(t), (3.24)
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where g(t) is the constant of integration, which can be found using the conditions

p(h, t) = 0, at the rigid edge. This leaves the following form of equation (3.24)

p(x, t) =
Ha

1 + ξ

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

] [
∂u

∂x
− ∂u(h, t)

∂x

]
. (3.25)

Equations (3.25) is partial differential equation for the fluid pressure. In order to

close the system, we associated following initial and boundary conditions

u(0, t) = Ṗ t(H(t)−H(t− t0)) + Ṗ t0H(t− t0), (3.26)

u(x, t) = 0, u(x, 0) = 0, p(x, t) = 0, at, x = 0, h, (3.27)

where H(t) represents Heaviside function. It is important to mention here, our

choice of left boundary condition potentially significant. For 0 ≤ t ≤ t0 corre-

sponds to a stage of compression, whereas, t > t0 represents the relaxation. The

governing system of equations is converted into the dimensionless form using the

following choices

ū =
u

h
, h̄ =

h

h0
, x̄ =

x

h
, t̄ =

Ṗ t

h
, p̄ =

p

Ha

. (3.28)

These variables allow us to rewrite the governing system of equations as follows

∂ū

∂t̄
= R

[
em

∂ū
∂x̄

1 +Mem
∂ū
∂x̄

]
∂2ū

∂x̄2
, (3.29)

p̄(x̄, t̄) =
1

1 + ξ

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

] [
∂ū

∂x̄
− ∂ū(h̄, t̄)

∂x̄

]
, (3.30)

ū(0, t̄) = t̄(H(t̄)−H(t̄− t̄0)) + t̄0H(t̄− t̄0), (3.31)

ū(1, t̄) = 0, ū(x̄, 0) = 0, p̄(x̄, t̄) = 0, at x = 0, 1, (3.32)

where t̄0 = Ṗ t0
h

, and R = Hak0

Ṗ h
. In next section, we present solution methodology

employed in solving governing system of equations. Now, we remove over bar from

the variables in upcoming sections, because the governing system of equations are

obviously in dimensionless form.
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3.3 Solution Methodology

The solution of the governing system of the equations is divided into two groups,

i.e., constant and strain-dependent permeability solutions. Particularly, an exact

solution for constant permeability is calculated using the eigenfunction expansion

that is followed by a numerical solution, in case of strain-dependent permeability

flow. It is worth mentioning that while considering nonlinear strain-dependent

permeability behavior in the governing partial differential changes the dynamics

of the problem from linear to highly nonlinear. This particular situation restrict

the governing equations to be solved analytically.

3.3.1 Exact Solution

We considered tissue contraction (when applied compression have maximum ef-

fects) as well as expansion. The eigenfunction expansion method using Green’s

formula was employed to solve the governing equation for solid deformation and

fluid pressure. The main difficulty in solving the equation for solid deformation

was the in-homogeneous left boundary condition. A detail describing the solution

methodology is given in Appendix A. The closed form solution for solid displace-

ment and pressure can be written as

u(x, t) = t(1− x) +
2

%2π3

∞∑
n=1

(
e−%

2(nπ)2t − 1

n3

)
sin(nπx), (3.33)

and

p(x, t) =
2

%2π2(1 + ξ)

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

]
b̈, (3.34)

where

b̈ =
∞∑
n=1

[
e−%

2(nπ)2t − 1

n2

]
(cos(nπx)− cos(nπ)) .

In case of compression, equations (3.33) and (3.34) are the required solutions

for the solid displacement and fluid pressure, respectively. On similar dynamics,

one can find the exact solution for tissue expansion (t > t0), which we left as a
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trivial case. It is important to note that we obtain a trivial steady-state solution

for solid displacement and fluid pressure as suggested by equations (3.33) and

(3.34) (t = 0), and these solutions are independent of permeability and magnetic

parameter effects. In the section below, we discuss some detail related to the

numerical algorithm used in solving governing equations numerically for a strain-

dependent permeability flow.

3.3.2 Numerical Solution

The method of lines (MOL) is used in solving the governing system of equations

for solid deformation and fluid pressure. MOL required to approximate spatial

derivatives using the finite difference. This transformation changes the system

of partial differential equations (PDEs) into the system of ordinary differential

equations (ODEs). The resulting system of ODEs is solved using a well established

MATLAB ODE solver like ode15s, ode23 [116, 117], etc. The partial derivatives

in equation (3.29) are approximated as follows

∂u

∂x
≈

uj+1 − uj−1
2 ·∆x

,
∂2u

∂x2
≈

uj+1 − 2 · uj + uj−1
∆x2

. (3.35)

Relations (3.35) allows us to rewrite equations (3.29) and (3.30) as follows

∂u

∂t
= R

 e
m
(

uj+1−uj−1
2·∆x

)

1 +M · em
(

uj+1−uj−1
2·∆x

)
[ uj+1 − 2 · uj + uj−1

∆x2

]
, (3.36)

and

p(x, t) =
1

1 + ξ

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

] [
uj+1 − uj−1

2 ·∆x

]
, (3.37)

where ∆x = b−a
n

(a = 0 and b = 1) also j = 1, 2, 3, · · ·n. Below are the boundary

conditions

u(0, t) = t(H(t)−H(t− t0)) + t0H(t− t0), (3.38)

u(1, t) = 0, u(x, 0) = 0, p(x, t) = 0 at x = 0, 1, (3.39)
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In the section below, the graphical results for the solid deformation and pressure

variation for various cases have been presented.

3.4 Result and Discussion

The main objective of the present section is to highlight the influence of different

physical parameters on fluid flow through the soft tissues during compression.In

Figure-(3.2), a comparison between the exact and numerical solutions is given. In

plotting these curves, four different values of the normalized time are considered

(0.015-0.1).

Particularly, dotted curves correspond to an exact solution given in equation

(3.33); however, dashed curves show numerical solutions of the equation (3.36).

An excellent agreement can be noticed between both the solutions, which verify

the convergence of the numerical scheme (MOL) used in solving the governing

system of equations. In both of these solutions, constant permeability of the solid

matrix was considered, however, strain-dependent permeability solutions are also

obtained and discussed in coming graphs.

In Figure 3.3, we plotted solid deformation for various values of the magnetic

parameter (M = 0, 1, 2, 3). This solution is plotted for constant permeability

(m = 0) using both exact and numerical solutions of solid deformation u.

It is clear that the solid volume fraction gradually decreases when the value of

magnetic parameter increases. This particular behavior is due to the Lorentz

forces associated with the flow of charged fluid, in the presence of magnetic field.

This particular behavior become more profound in the middle part of every curve

for each value of M , which gradually decreases and become linear at the end. The

plots 3.2 and 3.3 are devoted for the justification of numerical scheme, particularly,

method of lines that was used in solving governing system of equations in more

complex scenarios.
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Figure 3.2: Comparison between the exact and numerical solutions for
various values of the normalized time t, at k = 1.

In Figures 3.4, we plotted the solid deformation against the coordinate direction

for fixed values of dimensionless constant R and normalized time t. In this plot,

we explore the influence of magnetic parameter M on the swelling behavior of the

cartilage tissues during compression.

This figure illustrated that the elastic porous medium of the tissues remain in

loading circumstance throughout the course of compression; however, every curve

undergoes an expansion in the middle part for every value of the magnetic param-

eter. This fact is due to the annular stretching of the tissues medium, because

fluid flows outwardly produced inner region expansion in the solid matrix. On

the other hand, swelling behavior of the soft tissues conformed that the macro-

molecules associated with the fluid flow captured within the tissues medium.
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Figure 3.3: Comparison between the exact and numerical solutions for
various values of the magnetic parameter M , at constant permeability.

Although, average sized particles travel in the tissues network due to which initial

behavior of the solid matrix curves fluctuated downward direction. In plotting

these curves, four different values of the magnetic parameter are used. As time goes

on, solid deformation of the tissue become maximize. The largest value reported at

x = 1, for every curve, which was the limit of consolidation in the present study.

Furthermore, solid volume fraction inversely related with the magnitude of the

magnetic parameter. In fact, this particular behavior of the solid matrix was due

to the increased of resistance during passage of fluid that changed in accordance

with magnitude of Lorentz forces. On the other hand, the predominant effects of

applied compression can be seen in the middle part of every curve for every value

of the magnetic parameter. This fact is due to the expansion of the elastic porous

medium of the tissue during loading circumstances.
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Figure 3.4: Solid deformation Vs various values of magnetic parameter M ,
at t0 = 0.2.

After a while, stress effects were balanced by the elasticity of soft tissues and each

curve moves linearly. It is worth mentioning, for M = 3, equilibrium reached much

faster; the solid curve corresponds to this particular behaviors. Moreover, dotted

curve shows change in the solid displacement in the absence of magnetic fields,

which clearly indicates maximum deflection.

In Figure 3.5, changes in the solid displacement have been plotted for various value

of the normalized time (t). These curves show that the existence of consolidation

region grows in accordance with the value of time taken in plotting different curves.

During compression, four different curves correspond to four different values of

the normalized time t, and maximum deformation occurred when the value of the

normalized time reached to 0.2.
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Figure 3.5: Solid deformation Vs various values of normalized time t
(0.05-0.2.)

These dynamics show that time directly proportional to the deformation produced

in the tissue network. It is worth mentioning here that these dynamics are opposite

to the fact noted in Figures 3.4. Moreover, maximum deformation is reported at

t = 0.2 (solid curve), and least for t = 0.05 (dotted curve).

In Figure 3.6, we explored the effects of strain-dependent permeability on the

tissue deformation. In plotting these curves, we have used fixed values of the

magnetic parameter M , dimensionless constant R, and normalized time t. These

curves used to study the effects of strain-dependent permeability flow on the soft

tissues, particulary, swelling behavior of the tissues was the main focused. The

dash-dotted curve shows solid deformation for m = 4 that was the limiting value



Visco-Elastic Behavior of Articular Cartilage... 60

of nonlinear permeability used in plotting solid deformation, because beyond this

value result a sudden change in the solid deformation.

Figure 3.6: Solid displacement Vs various values of the strain-dependent
permeability k.

This particular situation clearly shows equilibrium stage or more precisely steady

state problem in which dominating effects of permeability alter soft tissues into a

rigid medium. Large gap between dash-dotted and dashed curves provide a jus-

tification for this particular behavior. This effect is observed due to an increase

of huge resistance for the passage of fluid through the cartilage tissues. In con-

clusion, our present study clarifies that in understanding the material nature of

soft biological tissues, especially articular cartilage, it is important to consider the

fluid flow through the interstitial spaces of the solid matrix. If not, them exact

permeability of the solid matrix is required for an accurate governing model for

saturated specimen.
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Figure 3.7: Solid deformation Vs various values of dimensionless constant R.

So, it is clear that elastic porous tissues were reasonably soft as well as large con-

solidation occurred; whereas, non-linear effects during fluid flow through cartilage

network must be considered. These effects were particularly encounter by con-

sidering the non-linear strain-dependent permeability while driving the governing

dynamics of these types of problems. This modification in the derivation of gov-

erning dynamics by incorporating strain-dependent permeability closely resemble

to the exact nature of the cartilage and other types of soft biological tissues. In

Figure 3.7, we plotted change in the solid displacement for different values of the

constant R. This plot is devoted to study the effects of R on the tissue deforma-

tion. It is important to mention here that R is the function of applied compression

imposed at the rigid interface of the tissues. Theoretical prediction of applied com-

pression on the binary mixture of fluid and solid shows that stress at the surface
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of cartilage tissues is required to overcome on the relative motion of interstitial

fluid and solid matrix. Particularly, R = 2 correspond to the limiting case for ap-

plied compression, after that (R = 0), a linear behavior is observed in the tissues

expansion.

Figure 3.8: Compression between the exact and numerical solutions of the
fluid pressure, at k = 1 (constant permeability).

In Figure 3.8, a compression between an exact and numerical solutions of fluid

pressure is presented. Particularly, the dotted curves correspond to the numerical,

whereas, dashed curves correspond to the exact solution. In plotting this graph,

linear permeability of the solid matrix was considered (k = 1). The pressure

gradually increases, and become linear after attaining a specific hight due to the

achieving equilibrium with the elastic porous medium of the tissues. In Figure

3.9, changes in the fluid pressure are plotted for various values of the magnetic

parameter M . It is interesting to highlight that fluid pressure gradually decreases
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after a certain value of space variable, i.e., x ≈ 0.3. It is due to enhancement

of the resistive forces for the passage of fluid.In the beginning, pressure gradually

increases for every value of M , and become linear when moves toward the right

boundary.

Figure 3.9: Compression between the exact and numerical solutions of the
fluid pressure for various values of magnetic parameter M .

In plotting Figure 3.10, we have used different values of the material constant m.

This variation in the permeability of solid matrix effects the fluid fluxes ability

of the soft tissues. Particularly, a dramatic change occurred in the pressure is

noticed beyond m = 2, i.e., at m = 4 and m = 6. Moreover, for m = 0 to 2, a

regular increase in the fluid pressure is seen that suddenly decreased for m = 4 and

m = 6. This peculiar behavior of the fluid pressure is observed by enhancement

of non-linear affects in the permeability of the tissues that offer more resistance

for the passage of fluid in accordance with nonlinearity of the solid matrix. This
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phenomenon confirmed the dependance of pressure changes upon the permeability

of solid matrix, which play an important role in understanding of interstitial fluid

fluxes through the cartilage and other types of soft biological tissues.

Figure 3.10: Fluid pressure Vs various values of strain-dependent
permeability k.

These types of studies are very important that established a direct link between

the fluid flow and pressure changes as well as their dependance upon the material

nature of the solid matrix. In Figure 3.11, changes in the local fluid pressure

are plotted for various values of normalized time (0.05 to 0.2) while keeping other

parameters fixed. A unique behavior is noticed for every value of the time t. These

curves show that the changes occurred in fluid pressure is directly proportional to

the magnitude of time taken in each case. At the early stage, pressure gradually

increases because the permeability of the tissues is much smaller, in the beginning.
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After that, a linear behavior is noted for every value of the time to reach maximum

deflection at x = 1.

Figure 3.11: Fluid pressure Vs various values of normalized time t.

In the section below, a summery of the present Chapter is given.

3.5 Conclusion

In this Chapter, the stress-relaxation behavior of soft tissue during loading circum-

stances in the presence of applied magnetic field is derived. The problem is divided

into two categories, i.e., for compression (when applied pressure have maximum

effects), and relaxation (when the applied pressure is balanced by the elasticity of

the tissue). We present the summary as follows
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1. The magnetic parameter act as a resistive force during fluid flux through the

soft tissues.

2. By increasing the time range we observe more deformation for the same

applied pressure.

3. The strain-dependent permeability have enough effects during compression.

4. Increasing the value of dimensionless parameter R represents the same effects

that were observed for the case of varying the time on the consolidation.

5. The pressure suddenly changed by increasing the non-linear effects in the

permeability.

From the modeling point of view, continuum mixture theory is a well-established

theoretical framework employed by many researchers in modeling the squeezing

phenomenon for both linear and non-linear permeability in biological setting. How-

ever, the results of the present study can be further enhanced using more sophisti-

cated forms of the permeability and revisiting the experiments which we are unable

to perform due to lack of resources. In conclusion, our present study suggest that

governing dynamics is affected predominantly due to permeability and the fluid

flow through tissue boundaries. The magnetic parameter behaves like an opposing

force on the fluid flow through cartilage tissues.



Chapter 4

The Effects of Magnetic Field on

Porosity and Solid Deformation

for the Radial Flow through

Deformable Porous Shells

4.1 Introduction

In this Chapter, the dynamics of electrically conducting fluid flow through radially

directed an elastic porous shell have been formulated. A constant magnetic filed

effects have been incorporated in the binary mixture theory formulations while

deriving nonlinear interaction between the mixture constituents. The fluid flow

as well as solid deformation were assumed to depend upon the rate of applied

compression at the inner radii of the shell. The outer edge (boundary) of the

shell was considered as rigid mesh that offer negligible resistance during passage

of fluid. The permeability dependent flow effects have been formulated by incorpo-

rating strain-dependent permeability dynamics while deriving governing behavior

of multiphasic deformation. A system of coupled partial differential equation was

67
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developed for the porosity and solid deformation along with the informal inte-

gral boundary conditions on both the extremities. The numerical scheme method

of lines was used in finding the porosity of the shell, whereas, solid deformation

was found by solving the integral equation containing the solid displacement. An

analytical solution of the governing equations is provided for study state prob-

lem. Graphical results have been used in exploring the effects of different physical

parameters on the growth rate of porosity and solid displacement of the elastic

porous shell. A detail comparison of fluid flow through different geometries and

a comparison of numerical and exact solutions for constant permeability case are

also presented.

Barry and Aldis [50] have formulated the radial fluid flow through a deformable

porous shell. This particular study gave a comparison between fluid flow through

radial and planar geometries, still no comparison has been made between the fluid

flow through different geometries, in the presence of Lorentz forces. In this Chap-

ter, we incorporated the applied magnetic field effects in the constitutive equations

of mixture theory and made an attempt to study the influence of magnetic pa-

rameter on the swelling behavior of an elastic porous shell.

The main idea used in formulating the governing dynamics of MHD using contin-

uum mixture theory having direct relevance with the research work published in

[66], for more detail see [64, 118, 119]. The governing system of partial differen-

tial equations is derived for the porosity and solid deformation, and fluid pressure

while passage of electrically conducting fluid through an elastic porous shell. The

governing system of equations is solved numerically for permeability dependent

flow along with an exact solution for constant permeability case. A detail compar-

ison between the fluid flow through the radial and planar geometries is presented

graphically and using this particular result, we explored the fluid flow affected in

different geometries keeping in view the industrial applications of different filters.

In the following, a layout of the present Chapter is given.

Section 4.2 contains the mathematical formulation based upon the latest version

of mixture theory, Section 4.3.1 contains the relevant details of the steady state
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solution of the governing system of equations that is followed by a numerical

solution in Section 4.3.2. Finally, Section 4.4 contains a detail summery of the

present work (Chapter).

4.2 Theory and Model

It is well established fact that the deformable porous materials response to the

loading imposed on them. Moreover, solid deformation produced in these materi-

als not only change the shape of the solid matrix, but also effects the permeability

parameter of the materials. In fact, a special kind of multiphasic deformation

has been reported during fluid flows through the elastic porous materials. This

variation in the physical property of an elastic porous solid control the passage of

fluid, however, different loading conditions also play important role in these pro-

cesses. Therefore, it is important to consider the consequences of strain-dependent

permeability while deriving the governing dynamics of fluid flows through these

materials.

In the present study, we assumed that the fluid flow depends upon both, i.e.,

applied pressure as well as permeability of the elastic porous medium of the shell.

The permeability of the solid matrix is taken of the following type [50]

k(φ) = k0 · emφ (4.1)

where k0 and m are the material constants. It is worth mentioning; present study

is identical in modeling point of view of soft biological tissues such as articular

cartilage. These types of problems having more then one constituents, hence limit

in the use of single phasic description. We considered that the applied pressure

imposed at the inner boundary of the shell which in turn flux the fluid outwardly

from the central part of cylindrical or spherical geometry.

The continuum mixture theory, in fact, binary mixture theory was taken into

account while deriving complex coupling between the constituents of the mixture.



The Effects of Magnetic Field on Porosity and Solid Deformation... 70

According to this theory “individual components of the mixture are manipulated

in such a way that each point within the mixture is occupied by each constituent of

the mixture” [120]. The mathematical formulations used in deriving the governing

dynamics in the present Chapter are based on the work of Barry and Aldis [50],

however, some modifications have been made for incorporating MHD effects in the

governing dynamics of multiphasic deformation. The kinematics of the problem

have been modeled using the conservation laws of mass and momentum balance.

Due to the assumption of intrinsic in-impressibility of the components, the solid

matrix can only be squeezed into a spacial controlled volume, when an equal

amount of the fluid flow from the opposite direction. This assumption leads us to

the following equation
∂φα

∂t
+∇ · (φαvα) = 0, (4.2)

where α used to specify different phases i.e., α=f, s, f and s represent solid and

fluid phases, respectively, vs and vf are the velocities ρs and ρf are apparent

densities along with true densities ρsT and ρfT . Equation (4.2) is the continuity

equation (mass conservation) for the α phase reported in numerous studies [20,

50, 64, 66], identical to the present study. Adding equation (4.2) for both phases,

we get

∇ · v = 0, (4.3)

where v = φsvs + φfvf represents the microscopic or composite velocity. In the

absence of body forces, momentum balance for a homogenous mixture can be

written as [100]

ρα
(
∂vα

∂t
+ (vα · ∇)

)
vα = ∇ ·Tα + πα + J×B, (4.4)

where Tα represents stress tensor, J is the current density, B is contribution of

Lorentz force effects, and πα corresponds to the drag forces. For small frequen-

cies and assumption of infinitesimal deformation, effects of inertial forces become

negligible [68, 72]. This assumption allow us to rewrite equation (4.4) as follows

∇ ·Tα = −πα − J×B, (4.5)
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and

Tα = −φαpI + σα, (4.6)

where σα and K represent stress and coefficient of diffusive resistance, respectively.

It is worth mentioning; in the rest of derivation, we considered σs = σ, and σf = 0,

for detail see [68]. The diffusive resistance between the mixture components can

be written as

− πs = πf = K(vs − vf )− p∇φs. (4.7)

From equations (4.5)-(4.7), we get

−∇(φspI) +∇ · σ = K(vs − vf )− p∇φs − J×B, (4.8)

and

−∇(φfpI) = −K(vs − vf ) + p∇φs − J×B, (4.9)

where I corresponds to the identity tensor. After some mathematical manipula-

tion, equations (4.8)-(4.9), yield

∇ · σ = K(vs − vf ) + φs∇p− J×B, (4.10)

and

0 = −K(vs − vf ) + φf∇p− J×B. (4.11)

In the following, we gave the Maxwell’s and Ohm’s laws equations which help in

simplifying the expression J×B, later on

∇×B = µcJ, ∇ ·B = 0, ∇× E = − ∂B

∂t
, J = σ0(E + vη ×B), (4.12)

where µc is the permittivity of free space, and E represents the electric field inten-

sity. Now, expression J ×B can be simplify using the relations define in (4.12) as

follows

J×B = σ0(E + vα ×B)×B, (4.13)

where σ0 is the electric conductivity. The strength of magnetic field B is algebraic
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sum of the applied (B0) and induced magnetic (B1) fields. Using the vector triple

product, equation (4.13) can be written as

J×B = σ0 (B0(v
α ·B0)− vα(B0 ·B0)) . (4.14)

It is worth mentioning; contribution of magnetic force parallel to the fluid motion is

negligible, because it is vector product of fluid speed with magnetic field influence.

This allows us to ignore the term vα · B. In this setting, equation (4.14) can be

written as

J×B = −σ0B2
0v

α. (4.15)

From equations (4.15), (4.10)-(4.11), we get

∇ · σ = K(vs − vf ) + φs∇p+ σ0B
2
0v

s, (4.16)

and

0 = −K(vs − vf ) + φf∇p+ σ0B
2
0v

f . (4.17)

Eliminating the fluid pressure p from equations (4.16) and (4.17) and using relation

φs + φf = 1, we get

O · σ =
K

φf
(vs − vf ) +

σ0B
2
0

φf
(vs − φs(vs + vf )). (4.18)

The relative velocity in the opposite direction to the applied pressure is negligible,

because applied compression large enough to flux the fluid as well as produced

solid deformation in the direction of applied pressure only. In this setting, factor

vs+vf = 0 in equation (4.18) vanished and it leaves the following form of equation

(4.18)

O · σ =
K

φf
(vs − vf ) +

σ0B
2
0v

s

φf
. (4.19)

From relation v = φsvs + φfvf , we have

vf =
v − φsvs

φf
. (4.20)
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Using the value of vf in equation (4.19), we get

O · σ =
K

(φf )2
(vs − v) +

σ2B2
0v

s

φf
. (4.21)

After some mathematical manipulation, equation (4.21) can be written as

O · σ =
1

k
(1 +M)

∂u

∂t
− v

k
, (4.22)

where k = K
(φf )2

[50, 100], M =
σ2B2

0v
s

φf
k corresponds to the magnetic parameter

[65, 66], and u is the solid displacement. The quantitative relation between the

pressure and stress can be found using equations (4.16) and (4.17) as follows

O · σ = Op+ σ0B
2
0(vs + vf ). (4.23)

Simplifying, yield

Op = O · σ. (4.24)

In order to derive the governing equation along with appropriate boundary con-

ditions, it is convenient to assume that deformations are small enough. This can

be justify, because we are using infinitesimal theory in modeling the governing

dynamics. In the case of cylindrical geometry, only the radial components of the

displacement and velocity are non zero. In this configuration; stress components

can be written as

σrr = (λ+ 2µ)
∂u

∂r
+ βλ

u

r
, (4.25)

and

σθθ = (λ+ 2µ)
u

r
+ λ

∂u

∂r
+ (β − 1)

uλ

r
, (4.26)

where λ and µ are Lame constants, and β = 0, 1, 2 correspond to the cartesian

(x, y, z), cylindrical (r, θ, z), and spherical (r, θ, φ) geometries, respectively. For

the case of planar geometry, σrr is simply σ, at r = x, and σθθ = 0. For the

spherical geometry, σθθ = σφφ due to the symmetric configuration. Remaining

components of the stress are considered to be zero for the case of simplicity due

to their negligible contribution. Therefore, divergence of the stress, in the radial
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direction can be written as [50]

(∇ · σ)r =
∂σrr
∂r

+ β

(
σrr − σθθ

r

)
. (4.27)

From equations (4.25)-(4.27), we get

(∇ · σ)r = Ha
∂φ

∂t
, (4.28)

where

φ =
1

rβ
∂

∂r
(rβu), (4.29)

where Ha = λ+ 2µ is the aggregate modulus. Form of equation (4.3), we have

∂v

∂r
= 0. (4.30)

The velocity in the radial direction can be found by integrating equation (4.30) as

follows

vr =
v(t)

rβ
, (4.31)

where v(t) is the constant of integration. From equations (4.22), (4.24), (4.28) and

(4.29), we get

∂p

∂r
= Ha

∂

∂r

(
1

rβ
∂

∂r
(rβu)

)
=

1

k(φ)
[1 +M ]

∂u

∂t
− 1

k(φ)

v(t)

rβ
. (4.32)

After some algebraic simplification, we get

Hak(φ)
∂φ

∂r
= [1 +M ]

∂ u

∂t
− v(t)

rβ
. (4.33)

It is convenient to change the equation (4.33) into a single unknown function.

This modification makes the governing partial differential equation more feasible

for solution point of view. In order to transfer the governing equation (4.33) into

a single unknown function, we have define the following transformation

L(ω) =
1

rβ
∂

∂r
(rβω). (4.34)
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From equations (4.33) and (4.34), we get

Ha
1

rβ
∂

∂r

(
k(φ)rβ

∂φ

∂r

)
= (1 +M)

∂

∂t

1

rβ
∂

∂r
(rβu)− 1

rβ
∂

∂r
(rβ

v(t)

rβ
). (4.35)

The term containing the velocity factor v(t) vanished, because it is independent

of r. From equations (4.29) and (4.35), we get

Ha
1

rβ
∂

∂r

(
k(φ)rβ

∂φ

∂r

)
= (1 +M)

∂φ

∂t
. (4.36)

Now, equation (4.36) is converted into velocity free form. The equation for local

fluid pressure can be found using the equation (4.32) as follows

∂p

∂r
= Ha

∂

∂r

(
1

rβ
∂

∂r
(rβu)

)
. (4.37)

Integrating equation (4.37) gives

p(r, t) =
Ha

rβ

(
∂

∂r
(rβu)

)
+ c(t), (4.38)

From equation (4.29), we have

φ(b, t) =
∂u

∂r
(b, t). (4.39)

The fluid flow is considered normal to the surface, this leads us to the following

equation [
∂u

∂r
+ βλr

u

r

]
r=a

= 0, (4.40)

where λr = λ
(λ+2µ)

. This in terms of φ can be written as

φ(a, t) =
β

a
u(a, t)(1− λr). (4.41)

where c(t) is the constant of integration. Figure 4.1 shows the fluid motion from

central part of a spherical or cylindrical section of the shell. On the other hand,

outer boundary is represented by the rigid mesh that offered negligible resistance
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for the passage of the fluid. Inner radius of shell is a, whereas, b corresponds to

the outer radii (b > a).

Figure 4.1: In this Chapter, passage of electrically conducting fluid through
an elastic porous shell has been considered, in the presence of magnetic field
effects. The fluid flow depends upon the loading imposed at the inner wall of
shell.

Integrating equation (4.29), we get

u(r, t) = − 1

rβ

∫ b

r

rβφ(r, t)dr. (4.42)

Equation (4.42) is the required equation for the solid deformation that can only

be solve when solution of the porosity φ(r, t) is known. This leads to a system

of coupled partial differential equations (4.36), (4.38), and (4.42) correspond to

the porosity, pressure, and solid deformation, respectively. In order to close the

system, we impose displacement boundary condition u = 0, at r = b. Inserting

equation (4.42) and change the limit of integration from a to b, we get

φ(a, t) + β
(1− λr)
a1+β

∫ b

a

rβφ(r, t)dr = 0. (4.43)

For a radial constrained boundary condition at r = b, we have

φ(b, t) = φ(a, t)− ∇P
Ha

, (4.44)
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where ∇P corresponds to the pressure. Equations (4.43) and (4.44) are the re-

quired boundary conditions for the governing partial differential equation (4.36).

Below, we introduce the dimensionless variables which we used in converting the

governing system of equations in dimensionless form

P = Haφ0P̂ , r = r0r̂, u = u0û, φ = φ0φ̂, r = r0r̂,

t =
r20
D
t̂, a = a0â, b = b0b̂ k = k0k̂ p = p0p̂, (4.45)

where D is the diffusion coefficient. Using these choices, equations (4.36), (4.38

and (4.42)-(4.44) can be written as

P

r̂β
∂

∂r̂

(
r̂βk̂

∂φ̂

∂r̂

)
= (1 +M)

∂φ̂

∂t̂
, (4.46)

p̂(r̂, t̂) =
R

r̂β
∂

∂r̂
(r̂βû) + c, (4.47)

û(r̂, t̂) = − S

r̂β

∫ 1

r̂

r̂βφ̂(r̂, t̂)dr̂. (4.48)

Boundary conditions are

φ̂(â, t̂) = − β(1− λr)T
a1+β

∫ 1

â

r̂βφ̂(r̂, t̂)dr̂, φ̂(1, t̂) = φ̂(â, t̂)−∇P̂ , (4.49)

p̂(±1, t) = 0. (4.50)

In the following, different dimensionless variables are given which appeared while

converting the governing equations into dimensionless form

P =
Hak0
D

, R =
Ha

p0
, S =

r0
β+1φ0

u0r
β
0

, T =
r0
β+1

aβ+1
0

. (4.51)

Now, we have a complete system, i.e., governing equations ((4.46)-(4.48)) along

with the boundary conditions ((4.49)-(4.50)).

In the following, we gave details of the solutions of governing system of equations.
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4.3 Solution Methodology

In this section, we first present an exact solution of the governing system of partial

differential equations for the steady state problem that is followed by numerical

solution for an unsteady case. We removed hat from the equations (4.46)-(4.50) in

the sections below, because the governing equations are obviously in the dimen-

sionless forms.

4.3.1 Steady Solution

In the case of steady state problem, equation (4.46) for k = 1 can be written as

P

rβ
d

dr

(
rβ

dφ

dr

)
= 0. (4.52)

Integrating

φ(r) =
c1

(1− β)
r1−β + c2, for β = 0, 2 (4.53)

where c1 and c2 are the constants of integration that can be found using the

boundary conditions, later on.

From equations (4.53) and (4.48), we get

u(r) = − c1S

2(1− β)rβ
(1− r2)− c2S

1 + β

1− r1+β

rβ
, for β = 0, 2 (4.54)

In the following, we used boundary conditions in finding the values of different

constants appeared in equations (4.53) and (4.54).

For r = a, we have

φ(a) = −(1− λ)
β

a1+β

∫ 1

a

rβφ(r, t)dr. (4.55)

At r = b, we have

φ(b) = −(1− λ)
β

a1+β

∫ 1

a

rβφ(r, t)dr − 1. (4.56)
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From equations (4.53), (4.55), and (4.56), we get

c1
1− β

a1−β + c2 = −(1− λ)
β

a1+β

∫ 1

a

rβφ(r, t)dr, (4.57)

and
c1

1− β
b1−β + c2 = −(1− λ)

β

a1+β

∫ 1

a

rβφ(r, t)dr − 1. (4.58)

Simplifying equations (4.57) and (4.58), we get

c1 =
(1− β)

(a1−β − b1−β)
, c2 =

−(1 + β)

(1 + β)a1+β + β(1− λ)(1− a1+β)T
A. (4.59)

where
(

2a2+β(1−λ)(1−a2)T
2(a1−β−b1−β)

)
. Using values of the constants c1 and c2 in equations

(4.53) and (4.54), for β = 0, 2 gives

φ(r) =
r1−β

a1−β − b1−β
− 1 + β

(1 + β)a1+β + β(1− λ)(1− a1+β)T
B, (4.60)

where λ = 0.5, a = 0.5 (thick wall shell), a = 0.8 (thin wall shell), and B =(
2a2+β(1−λ)(1−a2)T

2(a1−β−b1−β)

)
. Exact solution of the solid displacement can be written as

u(r) = − S(1− r2)
2(a1−β − b1−β)rβ

+
S(1− r1+β)

((1 + β)a1+β + β(1− λ)(1− a1+β)T ) rβ
B (4.61)

For β = 1, general solution of the porosity and solid displacement can be written

as

φ(r) = c3log(r)+c4, u(r) =
−1

r

[
c3(−0.25− 0.5r2log(r) + 0.25r2) +

c4
2

(1− r2)
]
,

(4.62)

where c3 and c4 are the integration constants that were computed as follows

c3 =
1

log(a)− log(1)
, c4 =

−2log(a)(2a− 0.25− 0.5a2log(a) + 0.25a2)

(log(a)− log(1))(4a+ 1− a2)
.

(4.63)
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The complete solution for β = 1 upon inserting the integration constant can be

written as

φ(r) =
log(r)

log(a)− log(1)
− 2log(a)

log(a)− log(1)

(
2a− 0.25− 0.5a2log(a) + 0.25a2

4a+ 1− a2

)
,

(4.64)

and

u(r) = C(−0.25−0.5r2log(r)+0.25r2)+D

(
(2a− 0.25− 0.5a2log(a) + 0.25a2)

4a+ 1− a2

)
,

(4.65)

where C = −1
r(log(a)−log(1)) , and D = (1−r2)log(a)

r(log(a)−log(1)) . Equations (4.60), (4.64) and

(4.61), (4.65) are the required solution for the porosity and solid displacement,

respectively. Below, a comparison of exact solution for φ and u for the fluid flow

through different geometries is presented.

Figures 4.2 and 4.3 are used to described change in the porosity and solid displace-

ment for different radial constrained geometries when thick wall elastic porous shell

(0.5 ≤ r ≤ 1) is considered. These graphical results obtained using the exact so-

lutions for planar, cylindrical and spherical geometries. In plotting these curves,

we considered a fixed value of the permeability parameter k = 1 by assuming slow

rate of the compression.

It is interesting to see that medium remains in deformation throughout the course

of compression, whereas, the cylindrical shell shows more expansion in the middle

and less toward the ends. Similar dynamics is observed for the case spherical

geometry. These dynamics are due to the annular stretching of the elastic medium

of the shell as the radius of the inner region increases for both cylindrical and

spherical geometries. The other critical observation is related to annular expansion

more than indemnify for the radial contraction du
dr

in inner region.

The planar case shows clear filtration while applied pressure is kept same and

filtering the smaller size particles in heavily compressed downstream regime. This

particular physical phenomenon is observed in applications of filters in membrane

filtration, where the goal is to separate the macro-molecules associated with the

fluid flow when the flow dynamics stopped. It is to be noted that in cylindrical
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geometries captures larger molecules as compared to planar case in which large

size molecules are excluded from the medium.

Figure 4.2: The changes occurred in the porosity Vs different geometries.

Interestingly, moderate size particles able to advance before being trapped which

elevates the possibility for them to remain constantly trapped while the fluid flux

is stopped. For the case of solid deformation, we have used equation (4.61) in

finding the variation in solid displacement under loading circumstances for different

geometrical constrained.

In Figure 4.3, change in the solid displacement was plotted against radius of the

porous shell (0.5 ≤ r ≤ 1) for both planar and radial geometries. The maximum

initial volume was reported for cylindrical geometry, however, a larger deflection

can be seen for planar case. This is due to the fact that elastic solid for planar

case drained maximum wage out during fluid fluxes.
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Figure 4.3: Solid deformation Vs different geometries.

Theses graphical results used to described the influenced of geometries on fluid

flux when medium remain under loading. The planar geometry experienced more

pressure effects as compared to the radial geometries. This result leads to the

fact, when maximum infiltration is required the planar geometry is more suitable,

however, for microorganism separation cylindrical and spherical geometries are

preferable.

Graphical results in this section show the dynamics of fluid flow while keeping the

permeability of shell constant more precisely linear permeability has been used. In

section below, we have used strain-dependent permeability dynamics in exploring

solid deformation and fluid pressure in different graphical outcomes.
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4.3.2 Unsteady Solution

In present section, we gave some detail describing the numerical scheme used

in solving the governing system of partial differential equations, in case of time

depended problem. It is worth mentioning here that the main difficulty in solving

equation containing the porosity was existence of unknown variable (φ) both in

the governing PDE and boundary conditions. Particulary, the porosity parameter

appeared in the form of an integral equation in both left and right boundary

conditions. In handling this problem, we coupled the trapezoidal rule with the

primary numerical scheme MOL in solving the equation (4.46) numerically.

From the modeling point of view by setting M = 0, we recover the system of equa-

tions described in [50]. This legitimated the rule used in deriving the governing

equations, in the presence of Lorentz forces. We have solved the governing system

of equations using the numerical scheme method of lines (MOL) [121, 122]. MOL

required to approximate the special derivatives using finite difference, leaving the

time variable continuous. The resulting system of ODEs then solved using well

established MATLAB ODEs solver like ode15s, ode23 etc. The governing equation

(4.46) using central difference can be written as

∂φ

∂t
=

Lemφj

r(1 +M)

(
r

[
φj+1 − 2φj + φj−1

h2

]
+ (β +mr)

[
φj+1 − φj−1

2h

])
, (4.66)

where L = Pk0, h = (1−a)
n

, and j = a, a+ h, a+ 2h.......a+ (n− 1)h, a+ nh = 1.

The boundary conditions for the equation (4.66) are

φ(a, t) = − β(1− λr)T
a1+β

∫ 1

a

rβφ(r, t)dr, (4.67)

and

φ(1, t) = φ(a, t)−∇P. (4.68)

Using the solution of porosity in the integral equation containing solid deforma-

tion, we find the solid displacement. In the following, we present graphical results
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to highlight the effects of different physical parameters on porosity and solid dis-

placement.

Figure 4.4: Comparison between the exact and numerical solutions for linear
permeability of the deformable porous shell (k = 1).

In Figure 4.4, we compared the numerical and exact solutions for solid displace-

ment, in the case of cylindrical geometry. The Dashed-blue curve corresponds

to the exact solution for the steady-state problem, whereas, the dotted-red curve

represents numerical solution, for k = 1. These two curves show the change in the

solid displacement for a thick wall deformable porous shell. An excellent agreement

can be noticed between both the solutions that validated the proposed numerical

scheme used in solving the governing equations.

In Figure 4.5, solid displacement is plotted against the radial distance for four

different times, i.e., t = 0.005, 0.01, 0.015 and 0.02. The dotted curve in this graph
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shows a stage when equilibrium is achieved. This figure shows the change in the

solid displacement when linear form of the permeability relation is considered as

was the case in [50].

Figure 4.5: Solid displacement Vs various values of the normalized time t.
This plot shows the similar dynamics as was in [50] when M = 0.

A similar dynamics is also reported by Barry and coauthor for the change in solid

displacement before attaining equilibrium, in their publish article [50].

Figure 4.6 shows the change in porosity for cylindrical geometry for four different

values of the magnetic parameter (M = 0, 2, 4, 6). In plotting theses curves, we

used a constant permeability that was independent of the nonlinear effects. Four

different curves show the effects of the applied magnetic field on the porosity of

the deformable porous shell. When the value of the magnetic parameter increased,
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it offer more resistance for the passage of fluid. In this particular situation, equi-

librium reached much faster. Initially, shell behaves like an elastic medium for

M=0 and reported maximum deflection at the middle part of every curve. These

dynamics become linear, when process moves toward the end. This is due to the

annular expansion in the elastic medium of the shell due to applied pressure while

draining fluid.

Figure 4.6: The porosity Vs different values of the magnetic parameter M .
In plotting these curves four different values of magnetic parameter M have
been taken ,i.e., M = 0, 2, 4, 6.

In this process an increase in the local porosity of the shell occurred that produced

changes in the permeability of the solid matrix. When magnitude of the magnetic

parameter is increased, it clearly results linear behavior in the solid deformation.

The solid line in this graph corresponds to M = 6 for which medium remains in

loading throughout the course of compression.
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In Figure 4.7, porosity is plotted against the radius of deformable porous shell

for different values of strain-dependent permeability. This graphical result is used

to study the consequences of strain-dependent permeability on the fluid flow dy-

namics. A maximum initial value of the porosity φ is reached to 0.1, at m = 0.

which gradually decreased by increasing magnitude of m or k (k is function m).

An opposite behavior is noticed at the right boundary of the shell. This result

shows that the permeability parameter can be used in controlling the growth rate

of porosity by increasing non-linear effects in the fluid flow dynamics.

Figure 4.7: Change in the porosity Vs various values of nonlinear
permeability k.

On the other hand, equilibrium attain by the elastic porous medium of the shell

become much slower, when value of m goes on increasing. This is due to the

enhancement of resistance forces during fluid-solid interaction while passaging of

fluid through the deformable porous shell. This fact can be seen in the solid curve
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for m = 7 that reported maximum deflection for the same applied pressure taken

in plotting other curves in this graph.

In Figure 4.8, solid displacement is plotted against the radial distance r of the

shell for various values of the magnetic parameter (M). In this plot, we considered

constant permeability effects for the cylindrical geometry. It can be noticed that

the solid deformation increased in accordance with the strength of the magnetic

parameter (M) taken in each case.

Figure 4.8: Solid deformation Vs different values of the magnetic parameter
M . These curves show the fluid flow behavior during passage of fluids through
cylindrical geometry.

At r = 1, maximum solid displacement is reported that corresponds to the limit of

consolidation for applied pressure acting on the elastic solid matrix. The influence

of strain-dependent permeability on the porosity is presented in Figure 4.9 while
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keeping other parameters constant. This figure shows that the porosity of the

solid decreases when nonlinear effects in the permeability parameter m increases.

This result also depicts that a highly compressed region is formed at the radially

constrained porous edge due to the increase of non-linearity in the system during

fluid flow in compression.

The porosity φ and displacement u for a constrained cylindrical shell are graphed

for various values of normalized times, in Figures 4.10 and 4.11, respectively.

Figure 4.9: Changes in the porosity Vs different values of strain-dependent
permeability k.

The full time dependent behavior of the radial flow is obtained using the numerical

scheme, which may not be possible by solving the governing equations analytically,

even, in case of small time.
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Figure 4.10 shows the change in porosity at four different values of time after the

application of unit step change in pressure function. The applied pressure contri-

bution comes through the right boundary condition while solving the governing

equations numerically. The expansion in the inner region of the elastic porous

boundary grows with time. This fact leads to the conclusion that a compressed

region is formed at the constrained boundary that is separated inwards when time

varies from 0.005 to 0.02.

Figure 4.10: Change in the porosity Vs various values of the normalized
time t. In plotting these curves, values of time have been changed from 0.005
to 0.02 with a regular step.

This finding shows a sensation of growth rate of medium’s porosity with time.

Figure 4.11 presents solid deformation as a function of radius of porous shell for

various times. It can be observed that a consolidation region is formed which grows

with time. A change in solid displacement is reached to a value 0.071, at t = 0.02,
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which corresponds to a maximum solid deformation achieved by the deformable

shell in this plot.

Figure 4.11: Solid deformation Vs various values of normalized time t.

In Figures 4.12 and 4.13 porosity and solid deformation are plotted against the

radius of a thin wall (i.e. 0.8 ≤ r ≤ 1) deformable porous shell, respectively. We

considered four different values of the magnetic parameter M in plotting different

curves in this graph.

The equilibrium state is achieved in a thin wall shell much faster as compared to

the thick wall shell. This was the main reason due to which maximum value of

the time taken in this graph is 0.00125, because for greater values of the time shell

moves toward equilibrium much faster. Almost, a uniform behavior can be seen in

both the cases when the magnetic parameter M exceeds from 1. This particular
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behavior was due to the wall thickness, because the shell is essentially thin enough

to react as a uniform elastic medium through out the course of compression.

Figure 4.12: Variation in the porosity Vs various values of the magnetic
parameter M .

This fact shows the a small value of the magnetic parameter is sufficient for estab-

lishing high resistance for a thin wall deformable porous shell. From the analysis

of boundary thickness of the elastic porous media, it is clear that equilibrium

controlled by the boundaries of elastic shell through which fluid flow occurred.

Particularly, when loading imposed on the wall, thin shell react more faster as

compared to the thick wall shell. This fact is due to the filtration of micro-

molecules associated with the flow dynamics that have been draped within the

porous medium of shell when wall thickness was taken large enough to manage

the applied compression.
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Figure 4.13: Solid deformation Vs different values of magnetic parameter M .

In the following, concluding remarks of the present study are given.

4.4 Conclusion

Results have already summarized in different sections, here we only point out some

main features of the present study. It has been noticed that the applied pressure

has sufficient effects on the fluid flow dynamics as compared to the inertial forces.

A system of coupled non-linear partial differential equations is obtained which pre-

scribed the physics of the geometry. Generally, the system was derived for planar,

cylindrical, and spherical geometries. By changing the value of a single parameter

(β = 0, 1, 2), switched the governing system from planar to radial geometry. In the

case of a steady-state problem, an exact solution is given. The graphical results
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are used to explore the effects of magnetic parameter and normalized time range

both on the porosity and solid deformation.

The magnetic parameter not only controlled the growth rate of the porosity and

solid deformation also affects the equilibrium in loading circumstances. By in-

creasing the magnitude of the magnetic parameter reported the opposite effects

that were reported for the normalized time on the solid deformation. In the case

of thin wall elastic porous shell more profound effects of the time and magnetic

field have been noticed on flow dynamics due to attaining the equilibrium much

faster. A comparison between fluid flows through different geometries legitimated

the fact that planar geometry experienced more loading effects as compared to the

cylindrical and spherical geometries.

The theoretical framework based upon which we derived the governing dynam-

ics in the present study having sufficient background both in the biological and

non-biological settings. The binary mixture theory approach reported by many

researched in describing the fluid flow dynamics through soft tissues as well as

fluid flux through deformable porous materials. This theory successfully address

flow behavior for constant and strain dependent permeability through many types

of elastic porous solids. The present study will helps in understanding the mag-

netic effects on the flow of charged fluid through planar, cylindrical, and spherical

geometries. The theoretical results of the present study are further improve by

incorporating different physical parameters like gravity, inertial forces, etc. In this

study, these effects have been ignored due to their small contribution and can be

included in the modeling where the interactions of such effects play critical role in

future work for industrial applications.



Chapter 5

Radial Flow of non-Newtonian

Fluid through Deformable Porous

Shells and its Impact on Porosity

and Solid Deformation

5.1 Introduction

In this Chapter, we have incorporated power-law model in the governing equa-

tions of continuum mixture theory for a radial fluid flow through an elastic porous

shell. The main motivation in this study was in modeling the influence of different

grades fluids on the solid deformation produced in an elastic shell. A parabolic

type partial differential equation is derived for the porosity along with an integral

equation containing the solid deformation. The numerical solution is computed for

the transient case, whereas, an exact solution is provided for the steady state prob-

lem. Graphical outcomes highlights the influence of power-law fluids, normalized

time, and wall thickness on the equilibrium achieved by the elastic porous shell

during loading circumstances. Furthermore, changes occurred in the porosity and

solid displacement are reported for planar, cylindrical, and spherical geometries.

95
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In fact, majority of the fluids like air, water and oils, have been treated as Newto-

nian in engineering and scientific research. However, in many cases, assumption of

Newtonian behavior not remain valid and reported more complex non-Newtonian

response while driving the governing behavior [123]. Particularly, these types of

situations arise in the chemical engineering process involved in preparation of dif-

ferent products and plastics processing industry. Moreover, non-Newtonian behav-

ior is also encountered in the mining industry, where slurries and mud are often

handled, and in applications of fluids lubrication through soft biological tissues

where a variety of non-Newtonian fluids exist. The simulation of non-Newtonian

fluid flow phenomena is therefore of importance to industry as well as biomedical

science. Furthermore, surfactant used in controlling heating and cooling systems

in advanced technology having great importance for energy savings [124]. In in-

corporating the non-Newtonian behavior into a dye-streak, an effective flow tracer

has been molded. These types of tracers having great importance because they

allow both turbulent and separated flows. These non-Newtonian tracers have been

developed based upon the idea of drag-reduction technology. The basic concept is

to incorporate the shear induced state. These tracer fluids can be ejected into the

turbulent flow as a dye-streak that resists dispersion as well as breakup in the flow

path. In the case of Newtonian fluids, the multiphasic deformation has been de-

rived in understanding the dynamics of inkjet printing [125], Earth sciences [126],

and fluid flow through the soft biological tissues [93, 127], etc. Barry and Aldis

[50] have been formulated the problem of radially directed fluid flow through an

elastic porous shell. This study used the Newtonian flow behavior while driving

the governing dynamics. They derived nonlinear diffusion equations applicable to

spherical, cylindrical and planar geometries. For the case steady flow, they cal-

culated an exact integral along with the perturbation solutions for some special

cases. In case of unsteady flow, perturbation methods have been used in finding

small time solutions with a solution valid for slow rate of compression. These so-

lutions have been used while investigating the deformation of the porous material

along with the comparisons of fluid flows through the planar and radial geome-

tries. In this Chapter, we extended Barry and Aldis [50] work by incorporating
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non-Newtonian flow dynamics using power-law model.

We have formulated the non-Newtonian fluid flow through an elastic porous shell

using mixture theory approach. The main focus in this study was in exploring the

fluid flow behavior through planar and radial geometries, particularly, for the non-

Newtonian fluids cases. The continuum mixture theory approach has been used in

modeling the Newtonian [74, 100, 128] as well as non-Newtonian [129, 130] flows

dynamics through the deformable porous materials. In the present Chapter, we

incorporated power-law index in the basic constitutive equations of binary mixture

and developed a mathematical model describing the passage of non-Newtonian

fluids through a deformable porous shell. In the following, a summery of work

presented in the present Chapter is given.

Section 5.2 contains the mathematical formulation of governing dynamics. In sec-

tion 5.3.1, the steady state solution of governing system of equation is computed,

whereas, section 5.3.2 devoted for the numerical solutions of time dependent prob-

lem. At the end, section 5.4 contains the concluding remarks.

5.2 Theory and Model

The mathematical model is developed on the basis of continuum mixture theory.

In this type of modeling, fluid is considered to be incompressible and occupies each

material point within the mixture. The components of the mixture are assumed

elastic, homogeneous, anisotropic, and individually incompressible. The historical

development of our modeling is based on the mixture theory given by Bowen [11].

A more elaborated version of this theory was discussed by Atkin and Crain [10].

However, most recent developments in the governing equations can be found in

the book written by Rajagopal and Tao [12] as well.

Recently, this modeling approach is employed by Barry and Aldis [100] and Mow

et al [54, 56], in deriving the dynamics of fluid flow through biological tissues.

The necessary and relevant details of the modeling technique that we used in
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formulating the solid deformation in the present article is based on the study of

Barry and Aldis [50] for Newtonian fluids, and Siddique and Anderson [130] for

the power-law fluids. The details of constitutive equations of the mixture theory

are given in the Chapter 1. The classical laws of mass conservation for each phase

given in equation (2.20) can be added to give the following equation

∇ · v = 0, (5.1)

where v = φsvs + φfvf is known as composite velocity or macroscopic veloc-

ity, s and f correspond to solid and fluid phases, respectively. Form equation

(2.21), momentum balance after ignoring the inertial forces for small velocity and

infinitesimal solid deformation along with negligible body force can be written as

∇ · T α = −πα, (5.2)

where T α is the stress tensor (α = s, f). However, in the rest of the derivation,

we considered that σf = 0 and σs = σ, for detail see [50, 66, 131]. Using this

assumption, equations (2.22) and (2.23) can be written as

T s = −φspI + σ, T f = −φfpI, (5.3)

and

− πs = K(vs − vf )n − p∇φs, πf = K(vs − vf )n − p∇φs. (5.4)

Inserting equations (5.3) and (5.4) into (5.2), we get

−∇ · (φspI) +∇ · σ = K(vs − vf )n − p∇φs, (5.5)

and

−∇ · (φfpI) = −K(vs − vf )n + p∇φs, (5.6)

where n corresponds to the power-law index, K is the drag coefficient, p is the fluid

pressure, σ is the solid stress, and I is identity tensor. Equation (5.5) and (5.6)
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can be rewritten as

−∇(φsp) +∇ · σ = K(vs − vf )n − p∇φs, (5.7)

and

−∇(φfp) = −K(vs − vf )n + p∇φs. (5.8)

After some algebraic simplifying, yields

∇ · σ = K(vs − vf )n + φs∇p, (5.9)

and

0 = −K(vs − vf )n + φf∇p. (5.10)

Eliminating the fluid pressure p from equations (5.9) and (5.10), we get

∇ · σ =
K

φf
(vs − vf )n. (5.11)

From the expression of macroscopic velocity relation (v = φsvs + φfvf ), we have

vf =
v − φsvs

φf
. (5.12)

From equation (5.12) and (5.11), we get

∇ · σ =
1

k
(
∂u

∂t
− v)n, (5.13)

where k = (φf )n+1

K
(k is the permeability), and vs = ∂u

∂t
(u is the solid displace-

ment). In the following, the relation between the fluid pressure (p) and stress can

be found using equations (5.9) and (5.10)

∇p = ∇ · σ (5.14)

Equation (5.13) is well explained in physical terms by considering the Darcy’s

law and expressing it relative to the movement of solid, whereas, the equilibrium

equation of elasticity (∇p = ∇ · σ) is governed by stress in the solid matrix. From
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equations (5.13) and (5.14), we get

∇p = ∇ · σ =
1

k
(
∂u

∂t
− v)n. (5.15)

In the case of cylindrical geometry, the only radial components of displacement and

velocity are considered non-zero, whereas, the permeability parameter (k) depends

upon the change in the porosity (φ) of the shell. The permeability parameter that

justifies material properties of the present problem [50] is of the following form

k = k0 · em·φ, (5.16)

where k0 andm are material constants. The constitutive relation for the divergence

of stress in the radial direction can be written as

(∇ · σ)r =
∂σrr
∂r

+ β

(
σrr − σθθ

r

)
. (5.17)

It is important to mention here that the parameter β is used to specify different

geometries, i.e., β = 0 (planar), β = 1 (cylindrical), and β = 2 (spherical). So,

by changing the value of β, we switch from one geometry to the other in a single

governing partial differential equation. Inserting equations (2.24) and (2.25) into

(5.17), we get

(∇ · σ) = Ha

[
∂2u

∂r2
− β

(
r ∂u

∂r
− u

r2

)]
, (5.18)

where Ha = λ+ 2µ is the aggregate modulus. From equation (5.18), we have

(∇ · σ)r = Ha
∂

∂r

[
1

rβ
∂

∂r
(rβu)

]
= Ha

∂φ

∂r
, (5.19)

and

φ =
1

rβ
∂

∂r
(rβu). (5.20)

We considered that the fluid flow depends upon the loading imposed on the in-

ner radius of the shell. So, fluid flow and solid deformation are large enough in

the direction of applied pressure only. This restriction leads the problem into a

unidirectional framework. Now, what follows is to convert the vector forms of the
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equations into uni-directional form. In this setting, equation (5.1) can be written

as follows
∂v

∂r
= 0. (5.21)

Integrating equation (5.21), yields

vr =
v(t)

rβ
, (5.22)

where v(t) is a constant of integration. Using the value of vr from equation (5.22)

into equation (5.15), we get

∂p

∂r
= (∇ · σ)r =

1

k

(
∂u

∂t
− v(t)

rβ

)n
. (5.23)

From equations (5.19), (5.20) and (5.23), we get

∂p

∂r
= Ha

∂

∂r

(
1

rβ
∂

∂r
(rβu)

)
=

1

k

(
∂u

∂t
− v(t)

rβ

)n
. (5.24)

In equation (5.24), v(t) is a constant. It seems quite easy for the solution point

of view to model the problem in pressure govern dynamics as compared to the

velocity, because it is easy to find the driving pressure. This requires to elimi-

nate unknown constant v(t) from equation (5.24). For this, we defined following

transformation

L(ω) =
1

rβ
∂

∂r
(rβω). (5.25)

Using transformation (5.25) on the equation (5.24), we get

1

rβ
∂

∂r

[
rβ
(
Hak(φ)

∂

∂r

(
1

rβ
∂

∂r
(rβu)

)) 1
n

]
=

∂

∂t

1

rβ
∂

∂r
(rβu)− 1

rβ
∂

∂r

(
rβ(

v(t)

rβ
)

)
.

(5.26)

Now, equation (5.26) become velocity free, because it is independent of r. From

equations (5.20) and (5.26), we get

∂φ

∂t
=

1

rβ
∂

∂r
rβ
(
Hak(φ)

∂φ

∂r

) 1
n

. (5.27)

The partial differential equation (5.27) is the required governing equation for the
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porosity φ. Now, what follow is to outline the boundary conditions required for

completing the governing equation (5.27) both for planar and radial geometries.

Figure 5.1: The non-Newtonian fluids flow through an elastic porous shell
was consider in this Chapter. The outer boundary of the shell is considered
rigid mesh that offers negligible resistance during passage of the fluid.

Figure 5.1 shows the fluid flow outwardly through the central part of spherical or

cylindrical an elastic porous shell. We assumed that inner radius of the shell is a,

whereas, b is used to represent outer radius (b > a). The displacement boundary

condition at the porous mesh is u = 0, at r = b. The boundary condition for φ

can be derived using the equation (5.20) as follows

φ(b, t) =
∂u

∂r
(b, t). (5.28)

The inner boundary at r = a can be written as [50]

σrr(a, t) = 0. (5.29)

Simplifying equation (5.29), we get

[
∂u

∂r
+ βλr

u

r

]
r=a

= 0, (5.30)
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where λr = λ
(λ+2µ)

. In term of φ, we have following equation

φ(a, t) =
β

a
u(a, t)(1− λr). (5.31)

Integrating equation (5.20), we get

u(r, t) = − 1

rβ

∫ b

r

rβφ(r, t)dr. (5.32)

Equation (5.32) is the required governing equation for the solid displacement (u).

Substituting the value of u from equation (5.32) into (5.31) and changing the limit

of integration, we get

φ(a, t) + β
(1− λr)
a1+β

∫ b

a

rβφ(r, t)dr = 0. (5.33)

The boundary condition at the outer boundary (r = b) can be written as

φ(b, t) = φ(a, t)− ∆P (t)

Ha

, (5.34)

where P (t) is used for the pressure function. Equations (5.33) and (5.34) are

boundary conditions for partial differential equation (5.27). We follow [131], to

find the potentially important position of the inner boundary (a) that is usually

of the following form

a = a0 + u(a0, t), (5.35)

where a0 is the initial boundary position, and a is the new position that is found

once displacement u is known which we computed numerically, later on. In solving

the governing equation, many researchers applied the boundary condition at the

original position (initial position) instead of the new position by considering the

moving domain. On the other hand, the initial deformation is not large enough to

change the permeability parameter, so, it is seems physical to take k = 1 for this

particular situation. This justification allows us to take the boundary condition

r = a instead of r = a(t), because we are using infinitesimal theory to model the

problem of fluid-solid interaction. We assumed that medium not deformed enough
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away from the initial position. So, the non-linear moving boundary is not subject

of the present study and left for the future work. On the other hand, our main

focus in this study was in exploring the affects of power-law index on the porosity

and solid displacement during passage of fluid flow through deformable porous

shell. However, there is the possibility of error associated with the numerical

approximation due to the moving non-linear boundary. These problems are well

fixed by experimental study, which we are unable to perform due to the lack of

resources. From the modeling and solution point of view, we justify the present

work by comparing the results with Barry and Aldis [50], in solution section. We

have reproduced their graphical results for both porosity and solid deformation.

Below, we introduced the dimensionless variables that were used in converting the

governing system of equations into dimensionless form

P = Haφ0P̂ , r = br̂, k = k0k̂, u = u0û, a = bâ, φ = φ0φ̂, t = t0t̂,

(5.36)

where pm is the typical pressure. Using these choices in the governing system of

equations, we get

∂φ̂

∂t̂
=

t0
r̂β

∂

∂r̂
r̂

[
k̂
∂φ̂

∂r̂

] 1
n

, (5.37)

û(r̂, t̂) = − Q

r̂β

∫ 1

r̂

r̂βφ̂(r̂, t̂)dr̂, (5.38)

φ̂(r̂, t̂) =
1

Qr̂β
∂

∂r̂
(r̂βû(r̂, t̂)), (5.39)

φ̂(â, t̂) = −Rβ (1− λr)
â1+β

∫ 1

â

rβφ̂(r, t̂)dr̂, (5.40)

φ̂(b̂, t̂) = φ̂(â, t̂)−∆P̂ , b̂ = 1. (5.41)

In the following, we gave the dimensionless parameters that appeared during non-

dimensionalizing the governing equations.

t0 =
bn+

1
n

Ha

1
nk0

1
n (φ0)

1−n
n

, Q =
rβ+1φ0

u0rβ
, R =

rβ+1

bβ+1
. (5.42)
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Now, we have a system of equations ((5.37)-(5.39)) along with boundary conditions

((5.40)-(5.41)). In the following section, details of the solutions are given.

5.3 Solution Methodology

For the solution point of view, we have considered two different values of the inner

radii of the shell, i.e., a = 0.5 (thick wall shell) and a = 0.8 (thin wall shell). The

motivation of behind this consideration was to study the effects of wall thickness

on both the porosity and solid deformation.

In the next sections, we first discuss the steady state solution of the governing

system of partial differential equations that is followed by the numerical solution

of the unsteady problem.

5.3.1 Steady Solution

For the steady-state case, equation (5.37) can be written as

1

rβ
d

dr
rβ
(
k
dφ

dr

) 1
n

= 0. (5.43)

If k = 1, the general solution of differential equation (5.43) can be written as

φ(r) =
c1

1− nβ
r1−nβ + c2. (5.44)

From equations (5.39) and (5.44), we get

u(r) =
c1r

2−nβ

(1− nβ)(2 + β(1− n))
+

c2
1 + β

r +
c3
rβ
, (5.45)

where c1, c2 and c3 are constants of integration which we find using the following

boundary conditions

φ(a) = −β (1− λr)
a1+β

∫ 1

a

rβφ(r)dr̂, (5.46)
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and

φ(1) = φ(a)−∆P, u(1) = 0, (5.47)

where λr = 0.5, and ∆P = 1. Using boundary conditions (5.46) and (5.47) for

β = 0 (planar geometry) into equation (5.44), we get

c1a+ c2 = 0, c1(b = 1) + c2 = −1. (5.48)

After some algebraic simplification, we get

c1 =
1

a− 1
, c2 =

a

1− a
. (5.49)

Using the rigid boundary condition for solid displacement (u(1) = 0), yields

c3 =
2a− 1

2(a− 1)
. (5.50)

For cylindrical geometry β = 1, we have

c1
1− n

a1−n + c2 = − 1

2a2

∫ 1

a

rφ(r)dr,
c1

1− n
b1−n + c2 = − 1

2a2

∫ 1

a

rφ(r)dr − 1.

(5.51)

After some mathematical manipulation, we get

c1 =
1− n

a1−n − 1
, c2 =

−2(1 + (5− 2n)a3−n)

(3− n)(a1−n − 1)(3a2 + 1)
(5.52)

From equations (5.45) and (5.52) at u(1) = 0, gives

c3 =
(1 + (5− 2n)a3−n)− (3a2 − 1)

(3− n)(3a2 + 1)(a1−n − 1)
. (5.53)

Similarly, we can find values of constants, c1, c2 and c3 for spherical geometry(β =

2) as follows

c1 =
1− 2n

a1−2n − 1
, c2 =

−3(1 + (3− 2n)a4−2n)

(4− 2n)(a1−2n − 1)(2a3 + 1)
, c3 =

(1 + (3− 2n)a4−2n)− (2a3 − 1)

(4− 2n)(2a3 + 1)(a1−2n − 1)
.

(5.54)
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Exact solution of the porosity can be written as

φ(r) =
r

a− 1
+

a

1− a
, β = 0, (5.55)

φ(r) =
r1−n

(a1−n − 1)
− 2(1 + (5− 2n)a3−n)

(3− n)(a1−n − 1)(3a2 + 1)
, β = 1, (5.56)

φ(r) =
r1−2n

(a1−2n − 1)
− 3(1 + (3− 2n)a4−2n)

(4− 2n)(a1−2n − 1)(2a3 + 1)
, β = 2. (5.57)

The exact solution of solid deformation can be written as

u(r) =
1

2(a− 1)
r2 +

a

1− a
r +

2a− 1

2(a− 1)
, β = 0, (5.58)

u(r) =
r2−n

(3− n)(a1−n − 1)
− x1r + x2

1

r
, β = 1, (5.59)

u(r) =
r2−2n

(4− 2n)(a1−2n − 1)
− x3r + x4

1

r2
, β = 2. (5.60)

where

x1 =
(1 + (5− 2n)a3−n)

(3− n)(a1−n − 1)(3a2 + 1)
, x2 =

(1 + (5− 2n)a3−n − (3a2 − 1))

(3− n)(a1−n − 1)(3a2 + 1)
,

(5.61)

x3 =
(1 + (3− 2n)a4−2n)

(4− 2n)(a1−2n − 1)(2a3 + 1)
, x4 =

(1 + (3− 2n)a4−2n − (2a3 − 1))

(4− 2n)(a1−2n − 1)(2a3 + 1)
.

(5.62)

In the following, we have presented the solutions of equations (5.55)-(5.57) and

(5.58)-(5.60) graphically.

Figures 5.2 and 5.3 show change in the porosity and solid displacement, respec-

tively. In plotting these curves, we have considered different numerical values of

the power law index.

It has been noticed that the changes in porosity and displacement occurred in

accordance with the value of n. The porosity decreased, whereas, solid deformation

increased while increasing the value of the power-law index. In fact, pores ratio

of the deformable porous shell and solid deformation show an inverse behavior for

a same value of n. This particular result leads to the fact that more resistance is
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experienced by elastic porous shell when viscosity of the fluid passing through it

increased.

The application of expansion from the inner section of the medium for small pe-

riod of time linked to the dynamics of solid and non-Newtonian fluid interaction.

One has to be careful while choosing the permeability relation that provides the

meaningful values for expanded medium, and an unclear situation whether per-

meability should be function of porosity φ or radial strain du
dr

. If the medium is

random than it is appropriate to consider permeability as a function of porosity.

Figure 5.2: Change in the porosity Vs various values of power-law index n

The graphical results in this section show the variation in porosity and solid dis-

placement for k = 1, however, nonlinearity during passage of fluids through the

elastic porous shell is reported due to non-Newtonian nature of the fluids.
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Figure 5.3: Variation in the solid displacement of cylindrical shell Vs various
values of power-law index n.

These results described the fluid flow through different geometrical constraint that

help in understanding flow behavior through planar and radial geometries. In the

following section, time dependent solution of the governing system of equations is

given.

5.3.2 Unsteady Solution

In this section, we presented the numerical solution of the governing partial dif-

ferential equation for a unsteady problem. We have solved the equation (5.37)

using numerical scheme method of lines. MOL is convergent semi-analytic numer-

ical technique that requires to approximate the spatial derivatives using the finite
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difference; however, the time variable remains continuous. The resulting system

of ordinary differential equations (ODEs) that are approximated from the given

PDE is solved using MATLAB ODE solver. It has been already discussed with

detail the convergence of MOL on the parabolic types PDEs in Chapter 2. Now,

partial differential equation (5.37) can be written as

∂φ̂

∂t̂
=

1

r̂β
∂

∂r̂
r̂β

[
∂φ̂

∂r̂

] 1
n

. (5.63)

Simplifying and dropping over hat, yields

∂φ

∂t
=

(
∂φ

∂r

) 1−n
n
[
n · ( ∂

2φ

∂r2
) +

β

r
(
∂φ

∂r
)

]
. (5.64)

The set of boundary and initial conditions are as follows

φ(a, t) = −(1− λ)
β

aβ+1

∫ 1

a

rβφ(r, t), (5.65)

φ(b, t) = φ(a, t)−∆P, (5.66)

φ(r, 0) = 0.001e−r. (5.67)

In solving above system of equations, we have considered a step change in the

pressure function (∆P = 1). The contribution of initial condition is purely depen-

dent upon the radial direction. More precisely it is exponentially decreasing with

the radius (r). By setting power-law index n = 1, we have recovered the governing

equation as was in [50], which is the validation of our modeling. We employed the

following approximation in computing the spatial derivatives involved in equation

(5.64).
∂φ

∂r
≈

uj+1 − uj−1
2 · h

,
∂2φ

∂r2
≈

uj+1 − 2 · uj + uj−1
h2

(5.68)

These approximation allow us to rewrite equation (5.64) as follows

∂φ

∂t
=

[
uj+1 − uj−1

2 · h

] 1−n
n
[
n ·
(
uj+1 − 2 · uj + uj−1

(h)2

)
+

β

r

(
uj+1 − uj−1

2 · h

)]
,

(5.69)

where h = (b−a)
m

also j = a, a + h, a + 2h, · · ·a + (m− 1)h, a + mh = b, where m
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corresponds to the numbers of mesh (nodes) points. A simple trapezoidal rule is

given as follows

f(x) =
h

2
(f(x0) + 2(f(x1) + f(x2) · · · f(xm−1) + f(xm))) . (5.70)

The boundary condition (5.65) using the rule define in (5.70) takes the following

form

φ(a, t) =
−4aβ

(1 + 4aβ)
x5, (5.71)

where

x5 = [2((a+ h)φ(a+ h, t) + · · ·(a+ (m− 1)h)φ(a+ (m− 1)h, t) + bφ(b, t))] .

The right boundary condition (5.66) can be written as

φ(b, t) =
−4aβ

(1 + 4aβ)
x6, (5.72)

where

x6 = [2((a+ h)φ(a+ h, t) + · · ·(a+ (m− 1)h)φ(a+ (m− 1)h, t) + bφ(b, t))]− 1.

The governing equation (5.69) together with the boundary conditions (5.71) and

(5.72) was used in finding the porosity (φ), numerically. On the other hand, solid

deformation can be found using following equation

u(r, t) = − 1

rβ

∫ 1

r

rβφ(r, t)dr. (5.73)

It is worth mentioning; equation (5.73) can only be solve when solution of porosity

is available. In the following, we presented graphical results for porosity and solid

displacement. We explore the influence of different physical parameters on the

porosity and solid deformation along with the compression between the Newtonian

and non-Newtonian fluid flow through an elastic porous shell.

Figure 5.4 shows the change in porosity for n = 1 at K = 1. This graphical
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result shows an identical result that was presented in [50] for various values of the

normalized time. It is interesting to note that expansion occurs in the medium at

the inner boundary as time increases.

Figure 5.4: The changes in the porosity against the radius of deformable
porous shell. In plotting these curves, Newtonian fluid flow behavior has been
considered for the linear permeability of the solid matrix. This plot shows the
same dynamics as was in [50] for the case of Newtonian fluid flow behavior.

The compression occurs at the constrained boundary and spreads towards the in-

ner direction with the passage of time. The growth consolidated region in time

is represented as a maximum value of displacement gradient attained for a radius

equal to 1, which is the limit of consolidation. The dynamics of fluid flows are

plotted for the thin wall shell due to the comparison with Barry and Aldis pub-

lished article result [50]. This justification of the numerical scheme used in solving
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the governing system of equations serves as a starter for non-Newtonian fluids for

both the shear thinning and shear thickening fluids cases.

Figure 5.5: The changes in the porosity Vs four different values of
normalized time t.

Figure 5.5 shows variability in porosity φ as a function of radial distance for

various values of time after imposing unit step change in pressure. The change in

φ represents the expansion of the medium at the inner boundary in accordance

with the values of time taken in plotting different curves. It is interesting to note

that high compressed region is formed at the constrained boundary and as time

evolves it spreads in the inward direction.

In Figure 5.6, we plotted solid deformation against radial direction of the de-

formable porous shell. The displacement figure shows the validity of these results
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as the existence of a consolidated region growing with increase of times. In plot-

ting this figure, power law index value is taken to be n = 1.5 (shear thickening).

The consolidation process slows down for the shear thickening fluid as the seepage

of fluid decreased through the porous shell.

Figure 5.6: Solid deformation Vs various values of the normalized time t.

On the other hand, for the case of shear thinning fluid, large consolidation of the

solid matrix is reported due to more fluid flow out from the porous shell which in

turn causes more deformation.

Like previous figures, Figures 5.7 and 5.8 show change in porosity (φ) and solid

deformation (u) as a function of radial distance during passage of both shears thin-

ning and thickening fluids. We have made a comparison between the Newtonian

n = 1 and non-Newtonian fluids flow through the elastic porous shell.
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It is important to note that radius of the shell change from 0.8 to 1 (thin shell),

i.e., a thin wall elastic shell was considered in these figures. The reason behind this

motivation was to study the equilibrium effected by the wall thickness of the shell.

It is interesting to note that for case of thinner shell equilibrium is attained much

faster in contrast to the shear thickening fluid. An opposite dynamic is observed

for shear thinning fluid case.

Figure 5.7: The changes in the porosity Vs various values of the power-law
index n.

On the other hand, change in solid displacement behaves opposite to porosity

dynamics for both shears thinning and shear thickening fluid as comparison to

the Newtonian fluid case. It is to be noted that in cylindrical geometries captures

larger molecules as compared to planar case in which large size molecules are

excluded from the medium. Interestingly, moderate size particles will be able to



Radial Flow of non-Newtonian Fluid through Deformable Porous Shells... 116

advance before being trapped which elevates the possibility for them to remain

constantly trapped while the fluid flux is stopped.

It is important to note that this process slows down for non-Newtonian (shear

thickening n > 1) fluids and fosters for (shear thinning n < 1, not shown here).

The application of expansion from the inner section of the medium for small period

of time linked to dynamics of solid-non-Newtonian fluid interaction.

Figure 5.8: The change in the solid displacement Vs different values of
power-law index n.

One has to be careful while choosing a permeability relation that provides the

meaningful values for expanded medium, and an unclear situation whether per-

meability should be function of porosity φ or radial strain du
dr

. If the medium is

random than it is appropriate to consider permeability as a function of porosity.
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Figure 5.9 shows the variation of porosity φ as a function of radial distance for

a thin shell being of radius 0.8 ≤ r ≤ 1 for n = 0.7. The region of thin wall

shell attains equilibrium faster as compared to the thick wall shell due to which

maximum time t = 0.005 is considered in plotting flow dynamics for thin wall

shell. It is to be noted that there is comparatively less expansion of inner region

of the shell as compared to Newtonian fluid reported in [50]. Although the results

are uniform for non-Newtonian case as compared to Newtonian fluid that shows

thin region act as a uniform region for most values of the time.

Figure 5.9: Variation in the porosity Vs various values of the normalized
time t.

The displacement u as a function of radial distance is graphed in Figure 5.10, for

various values of times (t = 0.005, 0.0375, 0.0025, 0.00125) to confirm the existence

of a strongly growing region in time. In plotting these curves, we have considered

same grade fluid (n = 0.7, shear thinning) for all cases.
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Figure 5.10: Solid deformation Vs four different values of the normalized
time t.

It is to be noted that maximum change in displacement reaches at r = 1, which

is our maximum limit of consolidation. It is to be noted that geometry, and type

of fluid, play a very important role in dynamics of fluid flow through the elastic

porous shell. Following section contain a summery of the work presented in the

present Chapter.

5.4 Conclusion

The consequences of the present work were summarized already in individual sec-

tions. Here, we seek some overview of usefulness findings and present the key

results of the model for radial flow and its solution. We follow the same modeling
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approach as was used by Barry and Aldis [50] to develop a radially directed flow

through spherical, cylindrical, and planar shells. We have computed exact solu-

tion for steady state case and numerical solution for unsteady for both planar and

radial geometries. Furthermore, we considered the shell is radially constrained for

two different cases, i.e., 0.5 ≤ r ≤ 1 (thicker) and 0.8 ≤ r ≤ 1 (thinner).

When the geometry is planar, the geometry is more compressed as compared to

cylindrical shell for power fluid case due to filtration of smaller particles. This is

represented by decrease of porosity in planar case. The cylindrical shell expands

if the width of the cylindrical shell is wide enough. This result shows that the

cylindrical filter will trap within its expanded pores when the particle size is large

enough to be recovered later for non-Newtonian fluid case as compared to New-

tonian case. There might be error associated with approximating the boundary

condition to negate the increased accuracy when nonlinear permeability relation

is incorporated in our model. The theoretical results predict that increasing the

value of n (power law index) more resistance will be experienced by the fluids

during the flow through porous shell. The wall thickness effects the equilibrium

of the porosity and solid deformation, this effect can be controlled by the value of

time as well as power-law index.



Chapter 6

Conclusion and Future Work

In this dissertation, the fluid flux through an elastic porous shell as well as fluid

flow through a soft biological tissue have been reported. The theoretical framework

employed in modeling the phenomenon of multiphasic deformation was based upon

the well established continuum mechanics laws of mass balance and momentum

balance. These laws were manipulated in developing the continuum mixture theory

that was widely used in understanding the viscoelastic behavior of both soft tissues

and fluid flow dynamics through deformable porous solids. The continuum mixture

or more precisely binary mixture theory was the key path upon which we have

derived the mathematical models in different Chapters. In the following, we have

concluded the key results of present study and some possible future direction as

outcomes of the present research work.

6.1 Conclusion

The fluid flow is the branch of applied mechanics that find many application in

the field of engineering and biomedical sciences. Over the past few decades, nu-

merous theoretical approaches have been used to understand the dynamics of fluid

flow through different geometries under various physical conditions. Particularly,

a special attention has been given in modeling the fluid-solid interaction, when

120
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fluid flows through the deformable porous solids. These types of problems have

natural intrust due to their close resemblance to the different types of biochemi-

cal processes that take place in the living organisms along with many industrial

applications. In this thesis, we have formulated the solid deformation for both

the soft tissue and deformable porous shell. This was based upon the mixture

theory and formed an overview of the theoretical results of the field since 1967.

In Chapter three, mathematical model for the coupled motion of the fluid and de-

formable tissues is given that is followed by Chapters four and five describing the

derivation of fluid fluxes through a deformable porous shell. A system of coupled

partial differential equations for the solid displacement and local fluid pressure has

been derived. Furthermore, the governing systems of equations are converted into

dimensionless form using appropriate dimensionless variables in different problems

discussed in this thesis. At the end, both numerical and analytical solutions were

found along with their graphical comparison. In some cases, we compared the

graphical results of our present study with previous published articles results for

the purpose of validation of both the mathematical modeling and solution method-

ology. In the following, we summarize the main findings of research presented in

this dissertation.

1. In loading circumstances, solid volume fraction for initially saturated porous

solid increases that clarify the drainage of fluid, when pressure applied to

the solid matrix.

2. The magnetic parameter offers resistance for the passage of fluid through the

soft tissues and these forces are enhanced in accordance with the magnitude

of the applied magnetic field.

3. Increasing the value of the normalized time results in the increase of solid

deformation means that solid deformation produced in the tissue is directly

proportional to the time for which loading acts.

4. The permeability of the tissue affects the passage of fluid through the porous

materials. In case of increasing the nonlinear effects in the permeability of

the porous material result in the decrease of liquid flow through it.
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5. Pressure changes produced in the deformable porous solid can also be con-

trolled using the strain dependent permeability of the tissues.

6. In the case of elastic porous shells, permeability dependent flow controlled

the growth rate of the porosity for both radial and planar geometries.

7. In case of electrically conducting fluid flow through the deformable porous

shell, the magnetic parameter and time reports the opposite effects of each

other on the solid deformation.

8. In case of fluid flow through deformable porous shells, width and equilib-

rium are correlated with each other. When the width of the shell decreases,

it results in achieving equilibrium more quickly. This particular behavior

shows that the solid deformation of the solid matrix depends upon the wall

thickness of the shell.

9. In geometry comparison of fluid flow, planar geometry experiences more

loading effects as compared to the radial geometry. Hence, when maximum

fluid flow is required the planar geometry is more suited. Moreover, when

micro precipitate septation is required from the solution then cylindrical or

spherical geometries are better.

10. In the modeling of fluid flow through the deformable porous shell, I developed

a single governing partial differential equation that prescribed both planar

and radial geometries and just changing the value of one variable (parameter)

switched the system from one geometry to another.

11. In case of power-law fluids, the flow or passage of the fluid offers more resis-

tance in accordance with the value of the power-law index.

12. The expansion of the cylindrical shell effects by the permeability, power-law

index, and loading imposed upon it.

13. One of the interesting findings in case of cylindrical geometry is that cylin-

drical filters trap within its expanded pores when large particles associated

with the fluid flow.
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14. In the case of numerical solution of the governing system of equation for fluid

flow through deformable porous shells, the unknown variable has appeared

both in the boundary conditions and governing PDE. I coupled the trape-

zoidal rule with the primary numerical scheme ”method of lines” to handle

this problem.

6.2 Future Work

From the modeling point of view, mixture theory is a well established theoretical

framework used in modeling both biological and non-biological settings for con-

stant as well as strain-dependent permeability. In this thesis, we used the biphasic

mixture to derive the problems of fluid flow through deformable porous shells and

soft tissue. In this thesis, a good qualitative analysis of different problems and

their physical natures according to the material properties and geometry have

been summarized still there is further need of improvement in models that are

applicable to the real world problems. Particularly, experimental verification not

only improves the quality of present work but also includes the parameters which

were ignored in this dissertation due to their small contribution. Some interesting

future directions in the preset work are as follows

1. Both MHD and non-Newtonian contribution in single model still need to

accommodate for the fluid flow through soft tissues as well as fluid fluxes

through deformable porous shell.

2. The comparison of radial and planar geometries for the fluid flow through

the tissues network still needs to be performed.

3. In the derivation of governing dynamics for the fluid fluxes through the car-

tilage tissues, I assumed an isotropic and homogeneous nature of the tissues.

For more accuracy of the theoretical results, one can take inhomogeneous

and anisotropic nature of the soft biological tissues.
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4. We can fixed the domain for the analysis, however, moving domain problem

can be consider for future work.

5. In the present study, I model two phases, i.e, liquid and solid. The consid-

eration of gases phase present in the pores of deformable porous shells and

tissues can be studied using triphasic mixture theory approach.

6. Finally, one can compare the results of the present study by performing the

experiments.
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[106] E. Mariotte, Traité du mouvement des eaux... Estienne Michallet, 1886.

[107] D. Royer and E. Dieulesaint, Elastic waves in solids I: Free and guided prop-

agation. Springer Science and Business Media, 1999.

[108] D. Royer and E. Dieulesaint, Elastic waves in solids II: generation, acousto-

optic interaction, applications. Springer Science and Business Media, 1999.

[109] G. Eason, “Jd achenbach, wave propagation in elastic solids, north-holland

publishing company, amsterdam (1973) cloth, 440 pp.; dfl 120.00, about us

42.10.,” Journal of Sound Vibration, vol. 34, pp. 575–576, 1974.

[110] R. Masri and D. Durban, “Self similar dynamic expansion of a spherical

cavity in elastoplastic media,” in 21st International Congress of Theoretical

and Applied Mechanics, 2004.

[111] K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012.

[112] O. Coussy, L. Dormieux, and E. Detournay, “From mixture theory to biot’s

approach for porous media,” International Journal of Solids and Structures,

vol. 35, no. 34-35, pp. 4619–4635, 1998.



Bibliography 136

[113] A. Gajo, “A general approach to isothermal hyperelastic modelling of sat-

urated porous media at finite strains with compressible solid constituents,”

Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 466, no. 2122, pp. 3061–3087, 2010.

[114] Y. Wang and K. Hutter, “A constitutive model of multiphase mixtures and

its application in shearing flows of saturated solid-fluid mixtures,” Granular

matter, vol. 1, no. 4, pp. 163–181, 1999.

[115] C. W. McCutchen, “The frictional properties of animal joints,” Wear, vol. 5,

no. 1, pp. 1–17, 1962.

[116] E. A. Celaya, J. A. Aguirrezabala, and P. Chatzipantelidis, “Implementa-

tion of an adaptive bdf2 formula and comparison with the matlab ode15s,”

Procedia Computer Science, vol. 29, pp. 1014–1026, 2014.

[117] H. Lamba and A. Stuart, “Convergence results for the matlab ode23 rou-

tine,” BIT Numerical Mathematics, vol. 38, no. 4, pp. 751–780, 1998.

[118] J. I. Siddique, A. Ahmed, A. Aziz, and C. M. Khalique, “A review of mixture

theory for deformable porous media and applications,” Applied Sciences,

vol. 7, no. 9, p. 917, 2017.

[119] A. Naseem, A. Mahmood, J. Siddique, and L. Zhao, “Infiltration of mhd

liquid into a deformable porous material,” Results in physics, vol. 8, pp. 71–

75, 2018.

[120] A. Bedford and D. Drumheller, “Theories of immiscible and structured mix-

tures, recent advances,” Int. J. Engng. Sei, vol. 21, pp. 863–960, 1983.

[121] W. E. Schiesser, The numerical method of lines: integration of partial dif-

ferential equations. Elsevier, 2012.

[122] B. P. Boudreau, “A method-of-lines code for carbon and nutrient diagenesis

in aquatic sediments,” Computers & Geosciences, vol. 22, no. 5, pp. 479–496,

1996.



Bibliography 137

[123] M. Bush, “Applications in non-newtonian fluid mechanics,” in Viscous Flow

Applications, pp. 134–160, Springer, 1989.

[124] J. Hoyt, “Some applications of non-newtonian fluid flow,” in Rheology Series,

vol. 8, pp. 797–826, Elsevier, 1999.

[125] R. K. Holman, M. J. Cima, S. A. Uhland, and E. Sachs, “Spreading and in-

filtration of inkjet-printed polymer solution droplets on a porous substrate,”

Journal of colloid and interface science, vol. 249, no. 2, pp. 432–440, 2002.

[126] M. Spiegelman, “Flow in deformable porous media. part 1 simple analysis,”

Journal of Fluid Mechanics, vol. 247, pp. 17–38, 1993.

[127] M. H. Holmes, “A theoretical analysis for determining the nonlinear hy-

draulic permeability of a soft tissue from a permeation experiment,” Bulletin

of mathematical biology, vol. 47, no. 5, pp. 669–683, 1985.

[128] V. C. Mow, M. H. Holmes, and W. M. Lai, “Fluid transport and mechanical

properties of articular cartilage: a review,” Journal of biomechanics, vol. 17,

no. 5, pp. 377–394, 1984.

[129] A. Ahmed, J. Siddique, and A. Mahmood, “Non-newtonian flow-induced

deformation from pressurized cavities in absorbing porous tissues,” Com-

puter methods in biomechanics and biomedical engineering, vol. 20, no. 13,

pp. 1464–1473, 2017.

[130] J. Siddique and D. Anderson, “Capillary rise of a non-newtonian liquid into

a deformable porous material,” Journal of Porous Media, vol. 14, no. 12,

2011.

[131] S. Barry and G. Aldis, “Flow-induced deformation from pressurized cavities

in absorbing porous tissues,” Bulletin of mathematical biology, vol. 54, no. 6,

pp. 977–997, 1992.



Appendix A

Exact solution

The ultimate goal in the present section is to elaborate the solution technique used

in finding an exact solution of the governing partial different equation reported

in chapter 3. The main theme was to construct the solution function u(x, t) that

satisfy the given initial and boundary conditions, for k = 1.

The solution of governing system of equations is found using the eigenfunction

expansion method. The main motivation in finding this particular solution is to

compared the results (predictions) with numerically calculated solution, in case of

constant permeability. It is important to mention here that the boundary condi-

tions for the solid displacement are non-homogeneous. It is well established fact

that eigenfunction method only work when boundary condition are in homogenous

form. In handling this problem, we have defined following special transformation

w(x, t) = Ψ0(t) +
x

L
(Ψ1(t)−Ψ0(t)), (A.1)

where Ψ0, Ψ1(t) are the contribution of boundary conditions and L = 1. Using

boundary conditions (3.31) and (3.32) into equation (A.1), we get

w(x, t) = t(1− x). (A.2)
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Now, solution of the equation (3.29) can be written as

u(x, t) = w(x, t) + v(x, t) (A.3)

where w(x, t) and v(x, t) are new solutions for the given partial differential equation

containing solid displacement. In finding v, we have following equation

vt = %2vxx − (1− x), 0 ≤ x ≤ 1, (A.4)

with following boundary conditions

v(0, t) = v(1, t) = 0, v(x, 0) = 0, (A.5)

where % =
√

R
1+M

. Now, equation (A.4) for the unknown function v have homoge-

nous boundary conditions defined in (A.5). The expression s(x, t) = −(1− x) can

be approximated as follows

s(x, t) = −(1− x) =
∞∑
n=1

s̄n(t) sin(nπx) (A.6)

where s̄n(t) is the constant that can be found as follows

s(x, t) = 2

∫ 1

0

(x− 1) sin(nπx)dx =
−2

nπ
. (A.7)

Now, consider solution of v(x, t) satisfy the following infinite series

v(x, t) =
∞∑
n=1

v̄n(t) sin(nπx) (A.8)

Equation (A.8) allow us to rewrite vt and vxx as follows

vt =
∞∑
n=1

∂v̄n
∂t

sin(nπx), (A.9)

vxx = −
∞∑
n=1

v̄n(t)(nπ)2 sin(nπx). (A.10)
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Inserting equations (A.6), (A.9), and (A.10) into (A.4), we get

∞∑
n=1

(
∂v̄n
∂t

+ %2(nπ)2 +
2

nπ

)
sin(nπx) = 0. (A.11)

Simplifying

v̄n(t) =
−2

(nπ)3%2
+Bn · (e−%

2(nπ)2t − 1), (A.12)

where Bn is constant that can be found to be 2
%2(nπ)3

using initial condition. Using

equations (A.2), and (A.12) into (A.3), closed form of the solutions for the solid

deformation can be written as

u(x, t) = t(1− x) +
2

π3%2

∞∑
n=1

(
e−%

2(nπ)2t − 1

n3

)
sin(nπx). (A.13)

From equation (A.13) and (3.30), we get exact solution for the pressure as follows

p(x, t) =
2

(1 + ξ)%2π2

[
1− (1− ξ)M

(1 + ξ2)(1 +M)

] ∞∑
n=1

(
e−%

2(nπ)2t − 1

n2

)
(cos(nπx)− cos(nπ))

(A.14)

This complete the solution of given system of partial differential equations.
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MOL Algorithms

B.1 MOL Code for Chapter 3

clc; clear all;

N = 500; K = 200;

a = 0; b = 1;

dx = (b− a)/N ;

x = linspace(a, b,N);

uinit = 0. ∗ (x);

tinit = 0; tfinal = 0.2;

tspan = linspace(tinit, tfinal,K);

RelTolV al = 10−6;

AbsTolV al = 10−6;

options = odeset (’RelTol’,RelTolVal,’AbsTol’,AbsTolVal);

[t, u] = ode15s(@heat− function, tspan, uin, options,N, dx);

plot(x,u(end,:),’k-’); R=2; M=1; m=0;

for j = 1 : N

U(j) = R ∗ (exp(m ∗ (u(j + 1)− u(j − 1)) ∗ (2 ∗ dx)−1))

∗(1 +M ∗ exp(m ∗ (u(j + 1)− u(j − 1))∗

((2 ∗ dx)−1))−1 ∗ (u(j + 1)− 2 ∗ u(j) + u(j − 1)) ∗ (dx)−2;
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end

RHS=[U(1:N)]’;

B.2 MOL Code for Chapter 4

clc; clear all;

N=600; K=300;

a=0.5; b=1;

dx =(b-a)/N;

x = linspace(a,b,N);

uinit = 0 ∗ cos(0 ∗ x);

tinit = 0; tfinal =0.00125;

tspan = linspace(tinit,tfinal,K);

RelTolV al = 10−6;

AbsTolV al = 10−6;

options = odeset (’RelTol’,RelTolVal,’AbsTol’,AbsTolVal);

[t, u] = ode15s(@heatfunction, tspan, uin, options,N, dx);

plot(x,u(end,:),’k-’); L=2; t=2; b=1;

for j = 1 : N

U(j) = L ∗ exp(t ∗ u(j)) ∗ (0.5 + j ∗ dx)−1 ∗ (1 +M) ∗ ((0.5 + j ∗ dx)∗

(u(j + 1)− 2 ∗ u(j) + u(j − 1)) ∗ (dx−2) + (b+ t ∗ (0.5 + j ∗ dx))∗

(u(j + 1)− u(j − 1)) ∗ (2 ∗ dx)−1);

end

RHS=[U(1:N)]’;

B.3 MOL Code for Chapter 5

clc; clear all;

N=600; K=600;

a=0.5; b=1;
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dx =(b-a)/N;

x = linspace(a,b,N);

uinit = 0.001*exp(-x);

tinit = 0; tfinal =0.025;

tspan = linspace(tinit,tfinal,K);

RelTolV al = 10−6;

AbsTolV al = 10−6;

options = odeset (’RelTol’,RelTolVal,’AbsTol’,AbsTolVal);

[t, u] = ode15s(@heatfunction, tspan, uin, options,N, dx);

plot(x,u(end,:),’k-’); t = 2; n = 1;

j = 1 : N

U(j) = abs(((u(j + 1)− u(j − 1))./2 ∗ dx)(1− n)/n)∗

(n ∗ ((u(j + 1)− 2 ∗ u(j) + u(j − 1))./(dx)2)+

b./(0.5 + j ∗ dx) ∗ ((u(j + 1)− u(j − 1))./2 ∗ dx));

end

RHS=[U(1:N)]’;
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