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Abstract

In this thesis, it has been planned to study the fluid flow and heat transfer analysis

of nanofluid over a stretching/shrinking sheet in the presence of different forces,

e.g. surface and body forces. The considered nanofluid consist of three types of

nanoparticles that are copper, alumina and magnetite, while water and engine oil

are used as a base fluid. The flow is provoked due to the stretching/shrinking char-

acteristics of the sheet. During the analysis, the flow is considered to be steady,

incompressible, two dimensional, linear and viscous (Newtonian) fluid. The mo-

mentum analysis is executed under the influence of numerous body forces such

as: normal and inclined magnetic field, stagnation point flow and porous media.

Further, the energy analysis is carried out in the presence of Joule heating and ther-

mal radiation phenomena. Moreover, the second law analysis of thermodynamics

is also performed in order to compute the entropy generation due to the exchange

of heat and momentum. Mathematical modeling is performed to convert the phys-

ical system into a set of partial differential equations which are further simplified

as a system of nonlinear ordinary differential equations by using suitable similarity

variables. The exact solutions are acquired from the transformed non-dimensional

momentum and energy equations. The impact of various physical parameters on

the velocity profile, temperature profile, local Nusselt number, skin friction coeffi-

cient and entropy generation profile are investigated via numeric tables and graphs.

Further, flow behavior of the nanofluid is also portrayed via streamlines pattern

for many emerging parameters. It is found that the velocity profile of nanofluid

decreases with increasing values of solid volume fraction of nanoparticles in copper-

water and shows opposite behavior for aluminum oxide-water, magnetite-engine

oil and in shrinking case. It is figured out that the temperature profile increases for

accelerating values of solid volume fraction of nanoparticles, Hartmann number,

angle and velocity slip parameter in case of copper-water, aluminum oxide-water

and magnetite-engine oil. The platelets nanoparticls have highest thermal conduc-

tivity and cylinders have least in case of magnetite-engine oil. It is noticed that

the local Nusselt number is decreased by an increment in radiation parameter in

case of stretching sheet.
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Chapter 1

Introduction

This chapter provides literature review of the enclosed flow model based on heat

transfer characteristics.

1.1 Background

The science of fluid dynamics encompasses the movement of gases and liquids,

interaction of fluid with solid and the study of forces related to these phenom-

ena. Fluid dynamics plays an important role in every aspect of our daily life

for example from morning bath to evening coffee. It has potential applications

in the fields of science, engineering, manufacturing, transportation, environment,

medicine, energy etc. Flows are essential for the existence of natural and technical

world. Properties of the fluid, forces acting on the fluid particles and boundaries

of the flow domain determine the resultant flow pattern. Deformation of fluids

occurs continuously under application of shear stress which makes them isotropic

substances. There will be no deformation in fluids in the absence of shear stress.

Whenever linear relationship takes place between shear stress and shear strain the

fluid is called Newtonian fluid, otherwise it is categorized as non-Newtonian fluid.

Navier-Stokes equations are the fundamental equations of the fluid that portray

1
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the stream of Newtonian/non-Newtonian fluids [1]. This system of nonlinear dif-

ferential equations describing the balance of momentum in the fluid flow has no

general solution yet.

There is a broad scope of heat transfer aplications in numeorus industrial process

involving mecheniacl, electrical and chemical indusry. Indeed it is a significatnt

assignment, where heat must be added, subtracted, or transferred from one place

to another. Consequently this process required a bulk amount of vitality to man-

age the method of fluid heating/cooling and transport of heat. The increment in

thermal conductivity plays significant role in the improvement of heat exchange

behavior of fluids. In this regard, many researchers represented several articles on

heat transfer analysis. Das et al. [2] analyzed convective heat transfer for metallic

nanoparticle based fluid induced by vertical stretching surface with the impact of

MHD. Stability analysis for heat transport provoked due to a stretching/shrinking

sheet for metallic nanoparticle based fluid along with regression is presented by

Jahan et al. [3]. Bilal et al. [4] introduced the fluid flow past a bidirectional non-

linear stretching surface with MHD and thermal conductivitly which depends on

temperature. Hafeez et al. [5] analyzed the Carreau fluid flow with heat transport

analysis. Prasannakumara et al. [6] studied the heat exchange of Sisko nanofluid

with MHD and nonlinear radiative flow past a nonlinear stretching surface. Nu-

merical results are obtained for heat transport of water based nanofluid induced

by a nonlinearly stretching sheet using thermal and velocity wall slip effect by

Ramya et al. [7].

Now a days, the crises of energy has become a crucial point of concern for scientists.

To meet an expanding need for energy, another rush of creative models is required

that can supplant the customary ones. The resources for renewable power source,

sunlight oriented, geothermal heat, tides and wind control are contributing in

well manner to meet the energy requirements in both developing and creating

economies. Thermal radiation increases an incredible impact for such procedures,

where the system is working involving high temperature for example, thermal

energy storage, nuclear power plants, solar power technology and heat/cooling

chamber at industrial level [8]. Because of the tremendous applications, numerous
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researchers have analyzed many radiative fluid flows for different physical aspect

[9–13]. Singh and Kumar [14] investigated the impact of micropolar fluid past a

stretching sheet with the effect of viscous dissipation and thermal radiation on

mixed convection flow. Dzulkifli et al. [15] examined nanofluid with the impact of

wall mass transfer, thermal radition, velocity slip and stagnation impact. Maxwell

fluid with thermal radiation past a stretching/shrinking surface along with the

effect of stagnation point flow was examined by Ishak et al. [16]. Nasir et al. [17]

discussed the influence of velocity slip condition on a stagnation point flow over a

stretching/shrinking riga plate.

Low thermal conductivity is an essential impediment in the improvement of energy

proficient heat transfer fluids which are in huge demand in numerous industrial

applications, in spite of the fact that a variety of methods is enforced to improve

heat exchange. Thermal characteristic of energy transporting fluids is responsble

for increasing the heat exchange in a system. Therefore, low thermal conductiv-

ity is a limitation of customary fluids, for example, oil, ethylene, water, glycol in

enhancement the production and the compactness of sevral engineering electronic

gadgets. Incorporating the percentage of solid nanoparticles into the conventional

fluids is an inventive method to increase the the thermal conductivity of the con-

ventional fluids. Such types of fluids are known as nanofluids. A nanofluid is a

suspension of nanometer sized particles incorporating host fluid which massively

improves the heat exchange attributes of the fluid. Many sorts of nanoparticles,

for example, metallic, polymeric and non-metallic are incorporated into base fluids

to make nanofluids. Choi [18] was the first, who introduced the word nanofluids

to mention to the fluids with incorporated small solid particles in 1995. Eastman

et al. [19] reported that an increment in thermal conductivity of roughly 60 per-

cent can be acquired for the nanofluid comprising of water and 5 vol percent CuO

nanoparticles by few preliminary outcomes. Nanofluids are foremost for the mak-

ing of nano organized materials for the engineering of complex fluids and also to

clean oil from surfaces, because of their outstanding spreading and wetting com-

portment [20]. Pertinent experimental information [21] has demonstrated that the

nanofluids have better heat exchange properties as compared to those of normal
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fluids. Such reviews also show that these suspensions are generally stable on ac-

count of the nanoparticle size. There are many researchers, whom are working

on the heat trnsfer abilities of nanofluids. Hamad [22] discussed the impact of

natural convection flow of MHD nanofluid due to linearly stretching surface. The

analysis of flow and heat transport of nanofluid past a time dependent shrinking

wall in the presence of suction effect was examined by Azizah et al. [23]. The in-

fluence of partial slip condition on the velocity and energy transport of nanofluid

due to a stretching surface for PST was studied by Noghrehabadi et al. [24].

Oztop et al. [25] presented the numerical solution of natural convection flow of

nanofluid filled in partially heated rectangular compound. The study of nanofluid

flow provoked by a stretching/shrinking surface under an external uniform shear

flow in the presence of a convective sheet case was investigated by Yacob et al.

[26]. The problem of laminar fluid flow past a stretching surface is investigated

by Khan and Pop [27]. The impact of megnetohydrodynamics nanofluid induced

due to vertical stretching surafce in the presence of viscoelastic effect and entropy

generation was studied by Ullah et al. [28]. The viscous dissipation influence on

Jeffrey nanofluid flow provoked by a stretching surface was discussed by Zokri et

al. [29]. Chandrasekar and Kasiviswanathan [30] presented the energy and mass

transport impact on nanofluid flow provoked by a stretching sheet. The effect of

nanofluid having variable characteristics for unsteady MHD flow in the existence

of thermal radiation and chemical reaction was examined by Mjankwi et al. [31].

Vasanthakumari and Pondy [32] have used two types of nanoparticles with water

to study the effect of magnetohydrodynamic, suction and energy generation on

nanofluid past an inclined stretching surface. The impact of MHD and chemical

reaction for time dependent nanofluid provoked because of a stretching surface

was investigated by Tarakaramu and Narayan [33]. Suriyakumar and Devi [34]

inspected Buongiorno model to analyzed the MHD convective flow in the presence

of variable flow effect. Saif et al. [35] discussed the 2nd grade fluid in the existence

of stagnation point and variable thickness for nanofluid.

The investigation of fluid flows over a stretching/shrinking surface have excellent

consideration, because of its broad usage in engineering applications, for example,
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in the drawing of plastic films and to make polymer sheet from a dye by extrusion

process, hot rolling, manufacturing of paper, wire rolling, helpful in packing process

of bulk products such as shrinking wrapping, extrusion of sheet material and glass

fiber [36]. To relate the such type of a stretching/shrinking surface with fluid [37],

first time, Sakiadis [38, 39] introduced the idea of continuously stretching sheet.

Crane [40] presented the encouraging work to continue the concept of Sakiadis. He

investigated the fluid flow for stretching and exponentially surface and derived the

closed form analytical solutions. Meanwhile, numerous researcher extended the

concept of stretching surface for both linear and exponentially stretching surface

for several fluids model [41–45]. Many authors made endeavors to investigate the

heat transport induced because of a stretching sheet. Raza [46] discussed the

effects of thermal radiation, MHD and wall slip effects past a stretching surface.

MHD, thermophoresis and Brownian motion effect for Casson fluid induced by

a stretching sheet by Rabbi et al. [47]. Akinobola and Okoya [48] studied the

heat source/sink and variable viscosity impact on the non-Newtonian fluid flow

with the influence of thermal conductivity over a stretching surface. Lakshmi et

al. [49] computed the numerical results for two-phase boundary layer flow with

fluid particle suspension with diffusion-thermo and thermo-diffusion effects past a

stretching sheet.

Melting heat transport phenomena is illustrated for MHD Casson fluid with the

effect of thermal radiation embbeded in the porous media was eamined by Mabood

and Das [50]. Ali et al. computed the exact solution for viscous flow induced by a

stretching/shrinking urface soaked in a permeable media [51]. The closed form re-

sults was obtained by Rashid et al. [52] for nanofluid using alummina and copper

nanoparticles over a shrinking sheet. Haq et al. [53] obtained the closed form solu-

tion of nanofluid with aligned magnetic field past a stretching sheet. Impermeable

shrinking surface is used to analyze the viscous fluid flow in [54]. Mishra et al. [55]

studied the micropolar fluid and heat transfer with heat source past a shrinking

surface. Numerical study using successive linearization technique is introduced by

Bhatti et al. [56] for fluid flow over a stretching sheet soaked into a permeable

media. Bearing a variable temperature of exponential design and Boundary layer
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flow are examined by Magyari and Keller [57]. Damseh [58] discussed the mag-

netihydrodnamics fluid flow over an exponentially stretching sheet. Casson fluid

past a nonlinearly stretching surace with the influence of MHD and velocity slip

condition are analyzed by Ullah et al. [59]. Srinivasacharya and Jagadeeshwar an-

alyzed a doubly stratified Newtonian fluid with the impact of cross-diffusion [60].

Analytical solution for the Eyring-Powell fluid induced over a nonlinear stretching

surface was given by Jafarimoghaddam [61]. Bilal et al. [62] studied the im-

pact of MHD on vscoelasitic fluid induced by an exponentially stretching surface

and solved numerically. Elbashbeshy et al. [63] discussed unsteady convection

flow with magnetohydrodynamics, suction, radiation and internal energy gener-

ation/absorption past an exponentially stretching sheet. The energy transport

mechanism through the impact of suction provoked by an exponentially stretching

sheet was given by Elbashbeshy [64].

The study of magnetohydrodynamic flow has gained the attention of modern era

scientist on account of its extensive industrial and engineering application. Such

applications incorporate the design of cooling frameworks by including liquid met-

als, MHD generators, petroleum industries, accelerators, nuclear reactors, energy

stockpiling, pumps, gas turbines and flow meters. Having such idea as a top pri-

ority the scientists and mathematician investigated the behavior of MHD flows

in different physical angles. Sheikholeslami et al. [65] scrutinized the properties

of magnetohydrodynamic nanofluid. The MHD flow of nanfluid provoked by a

stretching surface was examined by Rashidi et al. [66]. Zeeshan et al. [67] in-

spected the results of magnetic dipole on ferrofluid. Hayat et al. [68] insected

the consequnces of Jeffrey fluid model with convective boundaries. Jat et al. [69]

scrutinized magnetohydrodynamic viscous fluid past a nonlinearly stretching sur-

face implanted into a permeabe media. The author wittnesed that the velocity

diminishes effectively while expanding the porosity parameter, which consequently

expanding the local skin friction. The stagnation point and energy transport of

magnetohydrodynamic nanofluid was discussed by Ibrahim and Makinde [70]. Das

et al. [71] analyzed the effect of energy exchange into magneto-nanofluid embed-

ded in a porous media in a revolving system. The numerical results of MHD
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viscoelastic fluid flow together with chemical reaction due to a stretching surface

was analyzed by Ramesh et al. [72]. Mahanthesh et al. [73] illustrated the ex-

ponential space dependent energy and thermal source for MHD flow of nanofluid

using carbon nano tubes over a stretchable rotating sheet. Alarifi et al. [74] ex-

plored the heat transport over a vertical stretching ssheet with energy sink/source

impact for MHD flow. Kunnegowda et al. [75] discussed the homotopy perturba-

tion technique to calculate the results of Casson fluid model in a micro channel

with induced magnetic field. Oudina and Bessah [76] discussed the stability for

MHD in cylindrical configuration.

Under the umbrella of thermodynamics, entropy defines, the measure of disorder

of a system and its surroundings or a measure of achievement towards the ther-

modynamics equilibrium. As, we are dealing with the thermodynamics system,

therefore the entropy generation analysis is very pertinent in this regard. Because

entropy computes the efficiency of any engendered system containing thermofluids.

The entropy of any system is determined from the second law of thermodynamics.

From recent studies, it is analyzed that the 2nd law of thermodynamic is a fruitful

way for evaluating entropy.

The entropy generation is related to a large number of important applications, for

example, cooling of present day electronic system, geothermal power system and

solar based power system. In the beginning, Bejan [77] recommended the idea of

entropy generation in fluid flow and energy transport systems. Afridi et al. [78]

discribed the chaos analysis in stagnation point flow with MHD, ohmic heating and

fluid friction effect. Entropy analysis in MHD nanofluid due to a heated stretching

surface with viscous dissipation and radiation are analyzed by Sithole [79]. Bhatti

et al. [80] investigated the entropy generation in nanofluid over a porous stretching

sheet for practical tool of optimization by SLM. Noghrehabadi et al. [81] analyzed

the entropy generation in nanofluid with the impact of partial slip and energy

generation or absorption past a stretching surface. Numerical results for entropy

formation in Carreau nanofluid embedded in a shrinking surface with the impact of

radiation and MHD are presented by Bhatti et al. [56]. Aziz et al. [82] examined
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the entropy generation into Casson fluid along with the hall impact and MHD over

a stretchable surface.

The analysis of incomprehensible fluid and energy transport because of a porous

stretching/shrinking surface is of great influence as it locates several practical ap-

plication in numerous field. More particularly, in mechanical and chemical indus-

tries such as geophysical systems, metallurgy, food storage and processing, fibrous

insulation, electrochemistry and microelectronics cooling [83].

In the literature, several researchers have analyzed the porous medium in their ar-

ticles. Barik et al. [84] analyzed the impact of MHD flow induced by a stretching

surafce soaked in permeable media. Etwire et al. [85] analyzed an impact of ther-

mal conductivity and variable suction over a stretching surafce soaked in porous

medium for oil based nanofluid. Boundary layer flow analysis over a nonlinearly

stretching sheet with the effects of partial slip is examined by Mukhopadhyay [86].

Singh et al. [87] examined the MHD flow with porosity and radiation parameters

with porous medium. Nadeem et al. [42] discusssed the Casson fluid provoked by

a stretching surface with the impact of MHD on three dimensional flow. Effects

of Newtonian heating on Casson nanofluid using sodium alginate particles using

MHD effect was examined by Khan et al. [88].

1.2 Novelty in Thesis

The primary focus of this thesis is to enhance the thermal abilities of the conven-

tional base fluid by adding small volume of nanoparticles, namely copper, alumina,

and magnetite. Chapter 3 highlights the importance of Cu−H2O nanofluid under

the combine effect of magnetic field and linear thermal radiation. Next chap-

ter portrays the importance of shaped nanoparticles under the impact of Ohmic

heating in a porous medium. Chapter 5 comprehensively gives the comparison

of Cu and Al2O3 nanoparticles along with the impact of inclined magnetic field.

Chapter 6 analyzes the heat transfer analysis of magnetic nanoparticles over a

porous medium.



Introduction 9

1.3 Thesis Outcomes

Highlights of the considered analysis are following:

• It is found that the velocity profile of nanofluid decreases with increasing

values of φ in Cu-water and shows opposite behavior for Al2O3-water, Fe3O4-

engine oil and in shrinking case.

• It is observed that the velocity profile is a decreasing function of L and M2

in Cu-water, Al2O3-water and Fe3O4-engine oil.

• It is figured out that the temperature profile increases for accelerating values

of φ, M2, β and L in case of Cu-water, Al2O3-water and Fe3O4-engine oil.

• The platelets nanoparticls have highest thermal conductivity and cylinders

have least in case of Fe3O4-engine oil.

• It is found that the local skin friction coefficient is increased by enhancing

the value of M2.

• It is noticed that the local Nusselt number is decreased by an increment in

N in case of stretching sheet.

1.4 Thesis Layout

Chapter 1:

This chapter provides literature review related to the fluid models used in this

PhD research work.

Chapter 2:

Chapter 2 comprehensively explains the basic preliminaries and dimensionless pa-

rameters used in this thesis.

Chapter 3:

In chapter 3, the closed form solution of Cu-water based nanofluid with magnetic

and radiation effects are examined.
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Chapter 4:

In Chapter 4, the impact of Joule heating on a stagnation point flow over an ex-

ponentially stretching surface in the presence of porous wall are discussed.

Chapter 5:

This chapter analyzes the simultaneous effects of inclined magnetic field and pre-

scribed surface temperature (PST) on nanofluid flow provoked by a stretching

surface

Chapter 6:

Chapter 6 investigates the magnetohydrodynamics flow of magnetite-engine oil

based nanofluid with impact of non-identical shaped nanoparticles subject to the

porous medium, velocity slip, thermal radiation and Joule heating effects.

Chapter 7:

Chapter 7 summarizes the research work of Ph.D. and proposes possible directions

for future research.



Chapter 2

Preliminaries

This chapter contains some basic definitions of fluid flow, fundamental concepts

and ideas of fluid and dimensionless numbers regarding the presented work.

Definition 2.1. (Fluid) [89]

“A substance in the liquid or gas phase is referred to as a fluid. Distinction between

a solid and a fluid is made on the basis of the substances ability to resist an applied

shear (or tangential) stress that tends to change its shape. A solid can resist an

applied shear stress by deforming, whereas a fluid deforms continuously under the

influence of shear stress, no matter how small. In solids, stress is proportional to

strain but in fluids stress is proportional to strain rate. When a constant shear

force is applied, a solid eventually stops deforming at some fixed strain angle,

whereas a fluid never stops deforming and approaches a certain rate of strain.”

Definition 2.2. (Stress)[89]

“Stress is defined as force per unit area and is determined by dividing the force

by the area upon which it acts. The normal component of a force acting on a

surface per unit area is called the normal stress, and the tangential component of

the force acting on a surface per unit area is called shear stress. In a fluid at rest,

the normal stress is called pressure.”

Definition 2.3. (Mechanics)[89]

“Mechanics is the oldest physical science that deals with both stationary and

11
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moving bodies under the influence of forces. The branch of mechanics that deals

with bodies at rest is called statics, while the branch that deals with bodies in

motion is called dynamics. The subcategory fluid mechanics is defined as the

science that deals with the behavior of fluids at rest (fluid statics) or in motion

(fluid dynamics), and the interaction of fluids with solids or other fluids at the

boundaries. Fluid mechanics is also referred to as fluid dynamics by considering

fluids at rest as a special case of motion with zero velocity (see Figure 2.1).”

Figure 2.1: Fluid mechanics flow chart

Definition 2.4. (Viscosity) [89], [90], [91]

“Viscosity is a quantitative measure of a fluids resistance to flow. More specifically,

it determines the fluid strain rate that is generated by a given applied shear stress.

We can easily move through air, which has very low viscosity. Movement is more

difficult in water, which has 50 times higher viscosity then air. Still more resistance

is found in Society of Automotive Engineers (SAE) 30 oil, which is 300 times more

viscous than water. Fluids may have a vast range of viscosities. The viscosity of

liquids decreases with the increase of temperature and while the viscosity of gases

increases with the increase of temperature. Viscosity is caused by cohesive forces

between the molecules in liquids and by molecular collisions in gases. There is no

fluid with zero viscosity, and thus all fluid flows involve viscous effects to some

degree (see Figure 2.2). Flows in which the frictional effects are significant are

called viscous flows.
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Mathematically:

µ =
τ(
du

dy

) , (2.1)

where µ is called the constant of proportionality, and is known as the coefficient

of dynamic viscosity or only viscosity, τ is the shear stress and du/dy represents

the velocity gradient or rate of shear deformation. Thus viscosity is also defined

as shear stress required to produce unit area of strain. The unit of viscosity is

centipoise (cP ). The viscosity of water at 20◦C is 1 centipoise.”

Figure 2.2: Viscosity

Definition 2.5. (Kinematics viscosity)[91]

“It is defined as the ratio between dynamic viscosity and density if fluid. It is

denoted by Greek letter ν. Thus, mathematically,

ν =
viscosity

density
, (2.2)

=
µ

ρ
, (2.3)

the SI unit of kinematics viscosity is m2/sec.”

Definition 2.6. (Newton’s law of viscosity)[91]

“It states that shear stresses (τ) on a fluid element layer is directly proportional

to the rate shear strain. The constant of proportionality is called the coefficient
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of viscosity. Mathematically, it is expressed as given by the equation:

τ = µ
du

dy
, (2.4)

in the above equation, µ is the viscosity and
du

dy
is the deformation rate. Fluids

which obey the above relation are known as Newtonian fluids and the fluids which

do not obey the above relations are called non-Newtonian fluids”.

Definition 2.7. (Thermodynamic properties of a fluid)[90]

“The three most common thermodynamic properties of a fluid are:

• Pressure

The pressure (P ) is the most dynamic variable in fluid mechanics. Pressure

is defined as a normal force exerted by a fluid per unit area. We speak

of pressure only when we deal with a gas or a liquid. The counterpart of

pressure in solids is normal stress. Differences or gradients in pressure often

drive a fluid flow, especially in ducts.

• Temperature [92]

Temperature (T ) is a measure of the kinetic energies of the particles such as

the molecules or atoms of a substance. In a liquid or gas, the kinetic energy

of the molecules is due to their random translational motion as well as their

vibrational and rotational motions. The higher the temperature, the faster

the molecules move and the higher the number of such collisions, and the

better the heat transfer.

• Density

The density of a fluid, denoted by ρ, is its mass per unit volume. Density is

highly variable in gases and increases nearly proportionally to the pressure

level. The most liquid flows are treated analytically as nearly incompress-

ible.”

Definition 2.8. (Uniform and non-uniform flows)[90]

“The flow is said to be uniform if the magnitude and direction of flow velocity are
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the same at every point and flow is said to be non-uniform if the velocity is not

the same at each point of the flow, at a given instant (see Figure 2.3).”

Figure 2.3: Uniform and non-uniform flows

Definition 2.9. (Steady and unsteady flows)[90]

“A flow whose flow state expressed by velocity, pressure, density, etc, at any

position, does not change with time, is called a steady flow. A flow whose flow

state does change with time is called an unsteady flow.”

Definition 2.10. (Compressible and incompressible flows)[90]

“Flow in which variations in density are negligible is termed as incompressible

other wise it is called compressible. The most common example of compressible

flow is the flow of gases, while the flow of liquids may frequently be treated as

incompressible. Mathematically,

Dρ

Dt
= 0, (2.5)

where ρ denotes the fluid density and D
Dt

is the material derivative given by

D

Dt
=

∂

∂t
+ V.O, (2.6)

in above equation, V denotes the velocity of the flow and O is the differential

operator. In Cartesian coordinate system, O is given as:

O =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂”. (2.7)
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Definition 2.11. (Types of fluid)[91]

“The fluids may be classified into following five types (see Figure 2.4):

• Ideal Fluid

A fluid which is incompressible and having no viscosity, is known as ideal

fluid. Ideal fluid is only an imaginary fluid as all the fluids, which exist, have

some viscosity.

• Real fluid

A fluid, which possesses viscosity, is known as real fluid. All the fluids, in

actual practice, are real fluid.

• Newtonian fluid

A real fluid, in which the shear stress is directly proportional to rate of shear

strain (or velocity gradient), is known as Newtonian fluid.

• Non-Newtonian fluid

A real fluid, in which the shear stress is not directly proportional to rate of

shear strain (or velocity gradient), known as non-Newtonian fluid.

• Ideal plastic fluid

A fluid, in which the shear stress is more than the yield value and shear

stress is proportional to the rate of shear strain (velocity gradient), is known

as ideal plastic fluid (also called Bingham plastic fluid).”

Figure 2.4: Types of fluid
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Definition 2.12. (Boundary layer flow)[90]

“The concept of boundary layer was first introduced by Ludwig Prandtl, a German

aerodynamicist, in 1904. Prandtl introduced the basic idea of the boundary layer

in the motion of a fluid over a surface. Boundary layer is a flow layer of fluid close

to the solid region of the wall in contact, where the viscosity effects are significant

(see Figure 2.5). The flow in this layer is usually laminar. The boundary layer

thickness is the measure of the distance apart from the surface. There are two

types of boundary layers:

• Hydrodynamic (velocity) boundary layer

A region of a fluid flow, where the transition from zero velocity at the solid

surface to the free stream velocity at some extent far from the surface in the

direction normal to the flow takes place in a very thin layer, is known as the

hydrodynamic boundary layer.

• Thermal boundary layer

The heat transfer exchange surface and the free stream a liquid or a gaseous

agent for heat transfer. From wall to free stream we come across the change

of temperature of heat transfer agent. It increases from wall to the main

stream. The surface temperature is assumed to be equal to the temperature

of the fluid layer closed to the wall inside the boundary and this temperature

is equal to the temperature of the bulk at some point in the fluid.”

Figure 2.5: Boundary layer flow



Preliminaries 18

Definition 2.13. (Nanofluid)[93]

“A nanofluid is the mixture of nanoparticles suspended in the base fluid. It is an

advanced heat transfer fluid that possesses superior heat transfer properties. Re-

cent developments in nanotechnology bring out fluids that possess better thermal

properties than conventional fluids. The inherent properties like the larger rela-

tive surface area of nanoparticles and superior thermal conductivity makes them

a choice for thermal engineers over conventional fluid. A suspended nanoparticle

significantly improves heat transfer capabilities and stability of the suspension.

Nanofluids possess wide range of possibilities as it can enhance heat transfer per-

formance in comparison to that of pure liquids and hence can be considered as

next generation heat transfer fluids. The most recent popular nanoparticles which

are used to produce nanofluids are aluminum oxide (Al2O3), copper oxide (CuO),

copper (Cu). While the most common base fluids which are being employed for

producing nanofluids are water, oil, decene, acetone and ethylene glycol.”

2.0.1 Applications of Nanofluid

Nanofluids can be used as engineering applications because of their enhanced ther-

mal transfer and energy ability in a mixture of thermal system.

The following segment gives a direction of several fields of nanofluid applications

according to the existing literatures [94]:

• Solar devices

• Nanofluid in fuel

• Nanofluid as coolant

• Applications in automotive

• Industrial cooling applications

• Applications of nanofluid in domestic refrigerator



Preliminaries 19

Definition 2.14. (Magnetohydrodynamics)[95]

“Magnetohydrodynamics describe the study of motion of electrically conducting

fluid (e.g. liquid metals and Plasmas) in the presence of a magnetic field. The

key hypothesis behind magnetohydrodynamic is that magnetic fields can generate

current in a moving conductive fluid, which sequentially produce a force on the

fluid and also alter the magnetic field itself. The basic equations of magnetohy-

drodynamics have been proposed by Hannes Alfven, who realized the importance

of the electric currents carried by a plasma and the magnetic field they generate.

Alfven combined the equations of fluid dynamics with Faradays and Amperes laws

of electrodynamics, thus obtaining a novel mathematical theory, which helped un-

derstanding space plasmas in earth and planetary magnetospheres, as well as the

physics of the sun, solar wind, and stellar atmospheres.”

Definition 2.15. (Joule heating)[90]

“The heat which is produced due to flow of current through conductor is called

Joule heating, also known as Ohmic heating.”

Definition 2.16. (Heat transfer)[92]

“Heat is the form of energy that can be transferred from one system to another as

a result of temperature difference. The basic requirement for heat transfer is the

presence of a temperature difference (see Figure 2.7). There can be no net heat

transfer between two mediums that are at the same temperature. The temperature

difference is the driving force for heat transfer, just as the voltage difference is

the driving force for electric current flow and pressure difference is the driving

force for fluid flow. The rate of heat transfer in a certain direction depends on

the magnitude of the temperature gradient (the temperature difference per unit

length or the rate of change of temperature) in that direction. The larger the

temperature gradient, the higher the rate of heat transfer.”

Definition 2.17. (The first law of thermodynamics)[92]

“The first law of thermodynamics, also known as the conservation of energy prin-

ciple, states that energy can neither be created nor destroyed; it can only change

forms. The conservation of energy principle (or the energy balance) for any system

undergoing any process may be expressed as follows: The net change (increase or



Preliminaries 20

Figure 2.6: Heat transfer

decrease) in the total energy of the system during a process is equal to the dif-

ference between the total energy entering and the total energy leaving the system

during that process.”

Definition 2.18. ( Thermal conductivity)[92]

“The rate of heat transfer through a unit thickness of the material per unit area per

unit temperature difference. The thermal conductivity of a material is a measure of

the ability of the material to conduct heat. A high value for thermal conductivity

indicates that the material is a good heat conductor, and a low value indicates

that the material is a poor heat conductor or insulator.”

Definition 2.19. ( Specific heat)[92]

“The product ρcp, which is frequently encountered in heat transfer analysis, is

called the heat capacity of a material. Both the specific heat (cp) and the heat

capacity (ρcp) represent the heat storage capability of a material. But cp expresses

it per unit mass, whereas ρcp expresses it per unit volume.”

Definition 2.20. (Entropy)[96]

“Entropy is a Greek terms means change. It is a measure of disorder or randomness

of molecular motion of the system (see Figure 2.7). It is a thermal property of

a system, which remains constant as long as no heat enters or leaves the system.

Entropy of a system increases if heat flows into the system at constant temperature

and decreases, if leaves the system at constant temperature. Noted that such kind

of energy loss can not be regained so system and surrounding cannot come to its
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initial state without doing any extra work on it be. Therefore, entropy is called the

measure of irreversibilities. In nature there is no reversible process due to friction

and heat transfer. So every thermodynamic process is irreversible.”

Figure 2.7: Entropy

Definition 2.21. (Dimensionless physical quantities)[97]

“In physics and mathematics, dimensionless physical quantities have been widely

used. Some of these quantities, which are usefull in this thesis are:

• Reynolds number

Re =
wL%

η
, (2.8)

=
wL2

ν
, (2.9)

Rerot =
ωL2

ν
, (2.10)

=
%nL2

η
, (2.11)

w (ms−1) - flow velocity; L (m) - characteristic length; % - density; η (Pas)

- dynamic viscosity; ν (m2s−1) - kinematic viscosity; ω (Hz) - angular fre-

quency; n (s−1) - rotational frequency.

This number expresses the ratio of the fluid inertia force to that of molecular

friction (viscosity). It characterizes the hydrodynamic conditions for viscous

fluid flow. It determines the character of the flow (laminar, turbulent and

transient flows).



Preliminaries 22

• Eckert number

Ec =
w2
∞

cp∆T
= 2Rf , (2.12)

Ec = (k − 1)M2
∞
T∞
∆T

= 2
∆Tad
∆T

= 2
Tad,∞ − T∞
T∞ − T

, (2.13)

w∞ (ms−1) - fluid flow velocity far from body; cp (Jkg−1K−1) - specific heat

capacity of fluid; ∆T (K) - temperature difference; T, Tad, T∞ (K) - static,

adiabatic and far from body temperatures; k - specific heat ratio; Rf -

temperature recovery factor.

It expresses the ratio of kinetic energy to a thermal energy change.

• Bejan number

Be =
S1

S1 + S2

, (2.14)

S1 (JK−1) - entropy generation contribution by heat transfer; S2 (JK−1) -

entropy generation contribution by fluid friction.

It expresses the ratio of heat transfer unreturnability to the total unreturn-

ability caused by heat transfer and fluid friction.

• Entropy generation number

Ns =
L2T0E0

λ (Tw − T0)2 , (2.15)

EG =
λ

T 2
0

[
(∆xT )2 + (∆yT )2] , (2.16)

L (m) - characteristic length (wall thickness); T0 (K) - input fluid tempera-

ture; EG (Wm−3K−1) - entropy change (volume density of heat flux) by tem-

perature change 1K; λ (Wm−1K−1) - wall thermal conductivity; Tw (K) -
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wall temperature; η (Pa s) - dynamic viscosity of the fluid; ∆xT,∆yT (Km−1) -

temperature gradient in the direction of x and y axis; ∆yu(s−1) - velocity

gradient in the direction of y axis.

It characterizes the fluid entropy change in laminar streaming of viscous

incompressible fluid through an inclined canal with isothermic walls. It was

determined from the analysis of the second law of thermodynamics.

• Hartmann number

Ha =µHL

√
γ

η
= BL

√
γ

η
, (2.17)

=
√
StRe =

√
ReEumRem, (2.18)

µ (Hm−1) - permeability; H (Am−1) - magnetic field intensity; L (m)- charac-

teristic length; γ (Sm−1) - specific electrical conductance; η (Pa s) - dynamic

viscosity; B (T ) - magnetic induction; St - Stuart number; Re - Reynolds

number; Eum - Euler magnetic number; Rem - Reynolds magnetic number.

It is an important criterion of magneto-hydrodynamics. It expresses the

ratio of the induced electrodynamic (magnetic) force to the hydrodynamic

force of the viscosity or, alternatively, the ratio of the ponderomotive force

(the electromagnetic volume force by means of which the magnetic field acts

on a conductor through which electric current flows, which causes magnetic

pressure) to the molecular friction force. It characterizes the magnetic field

influence on the flow of viscous, electrically conducting fluid. With small Ha

values, the motion proceeds as if no magnetic field were acting. With great

Ha values, the viscosity forces act only on a thin layer of the electrically

conducting fluid (ionized gas) which adheres closely to a by-passed wall sur-

face. In other cases, the motion resistance does depend on the viscosity and

is determined completely by electromagnetic volume forces which are acting

on the fluid. With high velocities and turbulent flow, it is more suitable to

use the Stuart number, expressing the mutual magnetohydrodynamic action,

instead of the Ha number.
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• Brinkmann number

Br =
ηw2

λ∆T
=

ηw2

λ (Ts − T∞)
(2.19)

η (Pa s) - dynamic viscosity; w (ms−1) - flow velocity; λ (Wm−1K−1) - ther-

mal conductivity; ∆T (K) - temperature difference; Ts (K) - surface temper-

ature; T∞ (K) - temperature in the thermal undisturbed fluid area.

Brinkmann number (Br) expresses the ratio of the heat arising due to vis-

cous friction of a fluid to the heat transferred by molecular conduction. It

characterizes the heat conduction in viscous fluid flow. For high fluid viscos-

ity values and low thermal conductivity values (e.g. molten polymers), the

value is Br � 1.”



Chapter 3

Impact of Radiation on Cu-Water

Based MHD Nanofluid

This chapter investigates the closed form solution of Cu-water based nanofluid

with magnetic effects. The radiation effect is also considered in the energy equa-

tion. Tiwari-Das model is used for the analysis of the effective thermal conduc-

tivity. Mathematical modeling is carried out. Exact solutions for the momentum

and energy equations are computed and interpreted for the diverse physical inter-

est. It is depicted that by enhancing the magnitude of solid volume fraction of

nanopartilces and velocity slip parameter, the velocity profile is increased. The

results indicate that enhancing the magnitude of the Hartmann number enhances

the temperature profile. It is examined that the entropy generation is enhanced

by increasing the value of Brinkmann number and Reynolds number. The irre-

versibility parameter is a decreasing function of the Brinkmann number.

3.1 Mathematical Formulation

In this chapter, we have considered the incompressible, two dimensional, steady

nanofluid flow passed a shrinking sheet. Here the shrinking of the sheet is con-

sidered along the x- and y-axis is considered perpendicular to the flow. Magnetic

25
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field of strength B0 is enforced normal to the fluid flow.

Figure 3.1: Geometrical view of the physical model

3.1.1 Continuity and Momentum Analysis

The elementary system of equations for the considered flow are [37]:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2
− σnfB

2
0

ρnf
u, (3.2)

where u and v represent the velocity elements along x- and y-axis respectively. The

subscript nf represents the nanofluid, µnf shows the effective dynamic viscosity

and σnf electric conductivity of the nanofluid. The thermophysical correltaion can

be shown as follow [98, 99]:

µnf =
µf

(1− φ)2.5
, αnf =

knf
(ρcp)nf

,

(ρcp)nf = (1− φ) (ρcp)f + φ (ρcp)s ,

νnf =
µnf
ρnf

, ρnf = (1− φ)ρf + φ(ρs),

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

,

σnf
σf

= 1 +

3

(
σnf
σf
− 1

)
φ(

σnf
σf

+ 2

)
−
(
σnf
σf
− 1

)
φ

.



(3.3)
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In the above equations, ρf express the density, (ρcp)f the effective heat capacity,

the solid volume fraction is denoted by φ, kf represents the thermal conductiv-

ity and knf denotes the thermal conductivity of nanoparticles. The boundary

conditions are:

u = −ax, v = −vx at y = 0,

u→ 0, as y →∞.

 (3.4)

In the above equation, the wall mass transfer velocity is represented by vx with

suction vx > 0 and injection vx < 0. To non-dimensionalize the flow system,

following similarity variables have been introduced [100].

u = axf ′(η), v = −(νa)1/2f(η), η = y

(
a

ν

)1/2

. (3.5)

After applying the similarity transformation, we have

f ′′′ + A1A2ff
′′ − A1A2f

′2 − A1M2f
′ = 0, (3.6)

the transformed boundary conditions are

f(η) = S, f ′(η) = −1, at η = 0,

f ′(η)→ 0 as η →∞.

 (3.7)

In the above (3.6) and (3.7), M2 =

√
σB2

0

ρfa
the Hartmann number and S =

vx
(νa)1/2

the wall mass transfer parameter. Moreover, A2 =

(
1− φ

(
1− ρs

ρf

))
and A1 =

(1− φ)2.5.

Chakrabarti and Gupta [101] acquired the analytical solution in 1979 for these

type of 3rd order nonlinear differential equations. Recently, Bhattacharyya et al.

[102] obtained the closed form solution of the momentum equation by taking the

same trial solution as given in (3.8).

f(η) = a3.1 + b3.1e
−α3.1η. (3.8)
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Putting (3.7) into (3.8), we get

f(η) = S −
(

1

α3.1

− e−α3.1η

α3.1

)
. (3.9)

Using (3.9) in (3.6), we have

α3.1 =
SA1A2 +

√
(SA1A2)2 − 4A1A2 + 4M2A1

2
. (3.10)

Using in (3.9), one can have

a3.1 = S − 2

SA1A2 +
√

(SA1A2)2 − 4A1A2 + 4M2A1

, (3.11)

b3.1 =
2

SA1A2 +
√

(SA1A2)2 − 4A1A2 + 4M2A1

, (3.12)

where a3.1, b3.1 and α3.1 are constants.

Now, using the above constants in (3.9), we get the following velocity profile

f(η) =S −

2

1− e
−
SA1A2 +

√
(SA1A2)2 − 4A1A2 + 4M2A1

2
η


SA1A2 +

√
(SA1A2)2 − 4A1A2 + 4M2A1

. (3.13)

The local skin friction is written as

Cf =
τw
ρu2

w

= −Re
−1/2
x

A1

f ′′(0),

A1CfRe
1/2
x = −f ′′(0),

 (3.14)

where
τw
µnf

=

(
∂u

∂y

)
y=0

is the stress at surface wall and Rex =
xuw
ν

shows the

Reynolds number.
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3.1.2 Heat Transfer Analysis

In this segment, heat transport analysis is analyzed with the thermal radiation

phenomenon. The governing equation is given as [103]

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρcp)nf

∂qr
∂y

, (3.15)

where

qr = −4σ∗

3k∗
∂T 4

∂y
. (3.16)

Here, σ∗ the Stefan’s constant, k∗ denotes the mass absorption coefficient, αnf is

the thermal diffusivity, T expresses the temperature field and (Cp)nf the specific

heat. Assuming that the temperature differences with in the flow field are suffi-

ciently small, so that T 4 can be linearized using Taylor series. After expanding T 4

about free stream temperature and ignoring the higher order terms.

T 4 =
T 4
∞ (T − T∞)0

0!
+

4T 3
∞ (T − T∞)1

1!
· · · ,

= T 4
∞ + 4T 3

∞T − 3T 4
∞,

T 4 ≈ 4T 3
∞T − 3T 4

∞, (3.17)

using (3.16) into (3.15), we get

qr = −4σ∗

3k∗
∂ (4T 3

∞T − 3T 4
∞)

∂y
,

qr = −4σ∗4T 3
∞

3k∗
∂T

∂y
,

qr = −16σ∗T 3
∞

3k∗
∂T

∂y
. (3.18)

Putting qr = −16σ∗T 3
∞

3k∗
∂T

∂y
into (3.15)

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

1

3 (ρcp)nf

16σ∗T 3
∞

k∗
∂2T

∂y2
. (3.19)
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The boundary conditions are

T = Tw = T∞ + T0

(x
l

)n
at y = 0,

T → T∞ as y →∞,

 (3.20)

where (3.19) expresses the boundary condition at the wall (y = 0) and at the free

stream temperature (y → ∞). T0 expresses the constant reference temperature,

Tw the temperature of the sheet, n shows the power-law index and T∞ represents

the free stream temperature. The similarity transformation for the temperature

field is given as [104]:

θ(η) =
T − T∞
Tw − T∞

. (3.21)

The following non dimensional energy equation is obtained after utilizing the sim-

ilarity variables defined in (3.5) and (3.20).

Ψθ′′ + Prfθ′ − nPrf ′θ = 0, (3.22)

where

A3 =
(ks + 2kf ) + (−2φkf + 2φks)

(ks + 2kf ) + (2φkf − 2φks)
, Ψ =

(
A3 +

4N

3

)
,

A4 =

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
.

 (3.23)

Here Pr =
νf
αf

is the Prandtl number and N =
4σ∗T 3

∞
k∗kf

the radiation parameter.

The reduced boundary condition get the form:

θ(η) = 1 at η = 0,

θ(η)→ 0 as η →∞.

 (3.24)

Now, putting (3.9) in (3.21), it is easy to get

Ψθηη + Pr

(
S −

(
1− e−α3.1η

α3.1

))
θη − nPre−α3.1ηθ = 0. (3.25)
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Above linear differential equation of second order can be reduced to Kummer’s

ordinary differential equation. For this purpose, a new variable

ξ3.1 =
Pr e−α3.1η

Ψα2
3.1

(3.26)

is introduced.

As a result, (3.24) becomes Kummer’s ordinary differential equation:

ξ3.1
∂2θ

∂ξ2
3.1

+ (Q− ξ3.1)
∂θ

∂ξ3.1

− gθ = 0, (3.27)

where g = −n, Q = (1− q) and q =
Pr

Ψα3.1

(
S − 1

α3.1

)
. The boundary conditions

are

θ(ξ3.1) = 1, θ(0) = 0. (3.28)

The closed form solution of (3.26) with (3.27) in terms of the Kummer’s functions

[105] is

θ(ξ3.1) =

M

(
Pr

Ψα3.1

(
S − 1

α3.1

)
− n, 1 +

Pr

Ψα3.1

(
S − 2/2

α3.1

)
, ξ3.1

)
M

(
2Pr

Ψα3.1

(
S − 1

α3.1

)
− n, 1 +

Pr

Ψα3.1

(
S − 1

α3.1

)
,
P r

Ψα2
3.1

)

×
(

Ψα2
3.1ξ3.1

Pr

) Pr

Ψα3.1

S− 1

α3.1


, (3.29)

where M represents the 1st kind of the Kummer function. The solution of (??) is

given as follows

θ(η) =

M

(
2Pr/2

Ψα3.1

(
S − 1

α3.1

)
− n, 1 +

Pr

Ψα3.1

(
S − 1

α3.1

)
,
P r e−α3.1η

Ψα2
3.1

)
M

(
Pr

Ψα3.1

(
S − 1

α3.1

)
− n, 1 +

Pr

Ψα3.1

(
S − 1

α3.1

)
,
P r

Ψα2
3.1

)

× e
−
Pr

Ψα3.1

S− 1

α3.1

η
, (3.30)
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where

α3.1 =
SA1A2 +

√
(SA1A2)2 − 4A1A2 + 4M2A1

2
. (3.31)

The non-dimensional wall temperature is

θη(0) =

M

(
1 +

Pr

Ψα3.1

(
S − 1

α3.1

)
− n, 2 +

Pr

Ψα3.1

(
S − 1

α3.1

)
,
P r

Ψα2
3.1

)
M

(
Pr

Ψα3.1

(
S − 1

α3.1

)
− n, 1 +

Pr

Ψα3.1

(
S − 1

α3.1

)
,
P r

Ψα2
3.1

)
(3.32)

× Pr

Ψα3.1


Pr

Ψα3.1

(
S − 1

α3.1

)
− n

Pr

Ψα3.1

(
S − 1

α3.1

)
+ 1

+
Pr

Ψ

(
S − 1

α3.1

)
. (3.33)

The local Nusselt number is defined as:

Nux =

−knfx
(
∂T

∂y

)
y=0

kf (Tw − T∞)
= −knf

kf
Re1/2

x θη(0). (3.34)

The above equation is reduced to the following form

kf
knf

NuxRe
−1/2
x = −θη(0). (3.35)

3.1.3 Second law analysis

Whenever exchange of energy and momentum take place, non-equilibrium situ-

ation emerges, which leads to chaos effect inside the flow medium and at the

boundaries. The volumetric entropy generation term SG is given as:

SG =
K

T 2
∞

(
∂T

∂y

)2

+
σB2

0u
2

T∞
. (3.36)
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(3.35) displays the effect of two important factors generating irreversibility in a

system. The rate of dimensionless entropy formation EG =
SG
Sg

is given as

EG = A3Reθ
′(η)2 +Br

M2

Ω
f ′(η)2, (3.37)

where

Sg =
kf

T 2
∞

(
∆T

x

)2 , Ω =
T∞
∆T

and M2 =
2LσB2

0

ρ
. (3.38)

Here Ω is the non dimensional temperature. To figure out the irreversibility in a

system, Bejan parameter Be was introduced in 1979 [77], which gives the propor-

tion of the energy transport irreversibility to the sum of all irreversibilities in the

system and is given as:

Be =
Eh

Eh+ Em
. (3.39)

3.2 Results and Discussion

This segment reflects the behavior of several emerging pertinent parameters on

the velocity and temperature profiles. Figure. 3.2 is developed to visualize the

nature of the velocity profile for enhancing magnitude of φ. It is noted that the

velocity profiles increases by enhancing the magnitude of φ. Impact of the suction

parameter is illustrated in Figure 3.3. An increase in the velocity profile is observed

with decrements in suction parameter over a shrinking surface depicted in Figure

3.3.

The impact of N and φ on the temperature profile is shown in Figures 3.4 and

3.5. Physically, the solid volume fraction strongly accelerates the temperature

field by rising the magnitude of φ presented in Figure 3.4. This is due to the

fact that the solid nanoparticles have pertinent effects on thermal properties. The

augmented concentration of solid volume nanoparticles within the host fluid gives
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higher thermal conductivity of the host fluid that correspondingly enhances the

energy storage capacity of the host fluid. It is concluded that the boundary layer

thickness is an increasing function of φ. In Figure 3.5, the influence of N on

the temperature field is discussed. It is concluded that a gain into the thermal

radiation parameter N shows a decrease in the temperature profile because of an

enhancement in the radiative heat. It is examined that there is increase in the

temperature because of an increment in the mean absorption parameter. Figures

3.6 and 3.7 portray impact of the Hartmann number M2 and φ on the local skin

friction coefficient. It is seen that due to increasing the Hartmann number M2

with influence of suction and injection parameters, the local skin friction coefficient

enhances in both cases. This is because of the Lorentz force that gives resistance

to flow. The impact of Pr and the Hartmann number M2 on the heat transfer

rate is reported in Figures 3.8 and 3.9. It is observed that the non-dimensional

temperature gradient −θ′(0) accelerates by enhancing the magnitude of Pr. The

effect of N is displayed in Figure 3.9. It is perceived that the temperature profile

enhances with an increment in the magnitude of N .

The effect of the power law index is illustrated in Figure 3.10. It is depicted that

an enhancement in −θ′(0) is recorded by increasing the value of the power law

index. Figure 3.11 expresses the impact of Br on the entropy generation profile

EG. It can be observed that the EG rises by an increment in Br. Physically,

Br is the product of Eckert and Pradntl number. Moreover, an increment in

the EG indicates that the heat dissipation decreases in the Eckert number. The

purpose behind is clear, Brinkmann number produces heat within the layers of fluid

particles during the flow because it is the heat source. The heat created together

with the heat exchange from the heated wall empowers entropy generation inside

the fluid flow. Therefore, the magnitude of the Brinkmann number should be

controlled to minimize the entropy. Impact of Ω is plotted in Figure 3.12. It is

seen that an increment in Ω reduces the chaos in the system. The impact of the

Reynolds number Re on EG is reflected in 3.13. It is seen that entropy enhances

due to an increasing value of Re number which is provoked by fluid friction and

energy transport. An increment in the Reynolds number interrupts the fluid, and
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thus increases the entropy generation. Figure 3.14 illustrates an increase in EG

for M2. Moreover, enhancing magnitude of the Hartmann number increases EG

near to the sheet and distant from the wall, it is not influenced by the Hartmann

number. The impact of Br on Be is illustrated in Figure 3.15. It is observed that

an enhancement in Br effectively reduces the Be profile. The effect of Re and Ω

is shown in Figures 3.16 and 3.17. It is visualized that an increment in magnitude

of Re and Ω enhances Be.

The contour plots are shown in Figures 3.18, 3.19, 3.20, 3.21 and 3.22. Three di-

mensional bar graph of Pr against the Nusselt number is plotted in 3.23 and 3.24.

Table 3.1 shows the thermophysical characteristics of host fluid and nano-meter

sized particles are stated as [106] and [105]. Table 3.2 and Table 3.3, represent the

numerical values of the local skin friction and local Nusselt number respectively.

Figure 3.2: Impact of variation in φ on f ′(η)

Figure 3.3: Impact of variation in S on f ′(η)
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Figure 3.4: Impact of variation in φ on θ(η)

Figure 3.5: Impact of variation in N on f ′(η)

Figure 3.6: Impact of variation in M2 on local skin friction
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Figure 3.7: Impact of variation in φ on local skin friction

Figure 3.8: Impact of variation in Pr on Nusselt number

Figure 3.9: Impact of variation in N on Nusselt number
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Figure 3.10: Impact of variation in n on Nusselt number

Figure 3.11: Impact of variation in Br on the entropy generation profile

Figure 3.12: Impact of variation in Ω on the entropy generation profile
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Figure 3.13: Impact of variation in Re on the entropy generation profile

Figure 3.14: Impact of variation in M2 on the entropy generation profile

Figure 3.15: Impact of variation in Br on the irreversibility ratio parameter
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Figure 3.16: Impact of variation in Re on the irreversibility ratio parameter

Figure 3.17: Impact of variation in Ω on the irreversibility ratio parameter

Figure 3.18: Contour plot for φ = 0.0
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Figure 3.19: Contour plot for φ = 0.1

Figure 3.20: Contour plot for φ = 0.2

Figure 3.21: Contour plot for M2 = 0.5
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Figure 3.22: Contour plot for M2 = 1.0

Figure 3.23: Variation of Pr on Nusselt number

Figure 3.24: Impact of variation in Pr on Nusselt number
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Table 3.1: Thermal characteristics of conventional fluid and nanoparticles.

Physical characteristics ρ(kg m−3) cp(J/kgK) K(W/mk)

Water 997.1 4179 0.613

Cu 8933 385 400

Table 3.2: Numerical values of −f ′′(0).

φ S M2 0 0.3 0.5 1

0.1 −2 −0.65583924 −0.51113253 −0.42678826 −0.2429780

2 2.1042171 2.2489238 2.3332681 2.517078403

S M2 φ 0 0.1 0.15 0.2

−2 0.5 −0.29289321 −0.42678826 −0.4577315 −0.4817594

2 1.7071067 2.3332681 2.4649646 2.4855020

φ M2 S 1.5 2.5 3.5 4

0.1 0.5 1.3097161 3.1321369 4.6142883

S −1.5 −2.5 −3.5 −4

0.1 0.5 −0.76032619 −0.3179335 −0.2158104 −0.1867122

S 1.5 2.5 3.5 4

−0.76032619 −0.3179335 −0.2158104 −0.1867122

Table 3.3: Numerical computation of −θ′′(0).

M2 Pr n φ S R 0.5 0.7 1 1.5

1.5 6.2 1 0.1 3.5 5.021641 6.246060 7.631294 9.208324

R M2 0 1.5 2.5 3.5

0.5 5.012861 5.021641 5.026752 9.217130

M2 Pr 1.5 3 6 7

0.5 1.162983 2.947318 7.372352 10.42720

Pr φ 0 0.1 0.15 0.2

6.2 5.536168 6.240500 7.033973 7.585767
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3.3 Conclusion

Final outcomes of the flow analysis are:

• The velocity profile is an increasing function of φ and S.

• The temperature profile accelerates by enhancing the value of φ whereas it

found to be a decreasing function of the thermal radiation parameter N .

• It is found that the local skin friction is a growing function of the Hartmann

number and increasing/decreasing function of φ.

• An increment in the Prandtl number and N is found responsible for a gain

in the local Nusselt number.

• The entropy generation profile increases with an increase in Br, Re, Hart-

mann number and behaves oppositely for temperature difference parameter.

• The irreversibility parameter increases with an increment in Re, non di-

mensional temperature and the decreases with an increase in the Brickman

number Br.



Chapter 4

Heat Transfer Analysis of

Stagnation point flow past an

Exponentially Stretching Surface

This chapter, examines the impact of Joule heating on a stagnation point flow

over an exponentially stretching surface. Energy transport analysis is considered

with the thermal radiation and Ohmic heating impact. Mathematical modeling is

performed to transform the physical system into a set of mathematical equations

which are further simplified by using suitable variables. Closed form solutions for

the momentum and energy equations are obtained and depicted for the various

physical parameters of concern. It is examined that enhancing the magnitude of φ,

the velocity profile is accelerated. The results also indicate that the temperature

profile is an enhancing function of the Eckert number. It is depicted that by

enhancing the value of φ, the local skin friction coefficient is increased.

4.1 Mathematical Formulation

An incompressible, laminar, steady and two dimensional flow of the nanofluid

passed a permeable exponentially stretching sheet has been considered. At x-axis

45
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the exponentially stretching sheet is taken and y-axis is considered perpendicular

to the flow that can be seen in Figure 4.1. The fluid occupies the space y > 0.

Moreover, the magnetic field of strength B0 is considered which is applied normally

to the fluid flow.

Figure 4.1: Geometrical view of the physical model

4.1.1 Continuity and Momentum Analysis

The elementary governing equations for the considered flow are [107]:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

u
∂u

∂x
+ v

∂v

∂y
=
µnf
ρnf

∂2u

∂y2
+

µnf
ρnfk

(ue − u) + ue
∂ue
∂x

+
σnfB

2
0

ρnf
(ue − u), (4.2)

where u and v represent the velocity elements in the direction of x- and y- axis

respectively. The density of nanofluid is deneoted by ρnf , αnf the thermal diffu-

sivity, B0 the magnetic parameter, µnf the dynamic viscosity, νnf the kinematic

viscosity, (ρcp)nf the specific heat capacitance of the nanofluid.

Hamilton and Crosser model (1962) is considered for the shape factor of nanopar-

ticles. The thermophysical correltaion can be shown as fallows [108, 109]:
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µnf =
µf

(1− φ)2.5
, αnf =

knf
(ρcp)nf

,

(ρcp)nf = ((ρcp)f − φ (ρcp)f ) + φ (ρcp)s ,

νnf =
µnf
ρnf

, ρnf = (ρf − φρf ) + φ(ρs),

knf
kf

=
(ks + (m+ 1)kf )− (m+ 1)φ(kf − ks)

(ks + (m+ 1)kf ) + φ(kf − ks)
,

σnf
σf

= 1 +

3

(
σnf
σf
− 1

)
φ(

σnf
σf

+ 2

)
−
(
σnf
σf
− 1

)
φ

.



(4.3)

In the above equations, (ρcp)f and ρf the heat capacity and density of the host

fluid respectively, φ the solid volume fraction, σf and σnf express the electrical

conductivity, kf the thermal conductivity of the host fluid, the thermal conduc-

tivity of the nanofluid is expressed by knf . The suitable boundary conditions for

the considered flow model is defined as:

u = u0e
x/l, v = vw at y = 0,

u→ ue = u1e
x/l as y →∞.

 (4.4)

To non-dimensionalize the variables, following similarity variables have been used

[110]:

u = u0e
x/lf ′, v = −

(
u0νf

2l

)1/2

ex/2l(f + ηf ′), η = y

(
u0

2νl

)1/2

ex/2l. (4.5)

After using (4.5), we get

f ′′′ + A1A2ff
′′ + 2A1A2(A2 − f ′2) + (K + A1M2)(A− f ′) = 0, (4.6)

the considered boundary conditions are:

f(η) = S, f ′(η) = 1, at η = 0,

f ′(η)→ ue
u0

= A as η →∞.

 (4.7)



Joule Heating Effect on a Flow Field 48

In above (4.6) and (4.7), u0 represents the reference velocity, ue the stagnation-

point flow velocity, M2 =
2lσB2

0

u0ρf
the Hartmann number and K =

u0k

lνf
the perme-

ability parameter. Furthrmore, S = −
(

2l

u0νf

)1/2

e−x/2lvw , A2 =

(
1− φ+ φ

ρs
ρf

)
and A1 = (1 − φ)2.5. The closed form soltuion computed by Chakrabarti and

Gupta [101], and [111]:

f(η) = a4.1 + b4.1e
−α4.1η. (4.8)

Using (4.7) in (4.8), we obtain

f(η) = S + (
1− e−α4.1η

α4.1

). (4.9)

Now using (4.9) into (4.6), we have,

α4.1 =
1

2

√
A2

1A
2
2S

2 − 8A2A1A2 − 4AA1M − 4AK + 8A1A2 + 4MA1 + 4K (4.10)

+ A1A2S. (4.11)

a4.1 =S +
1

A4.1 +
1

2

√
A2

1A
2
2S

2 − 8A2A1A2 − 4AA1M + A4.2

, (4.12)

b4.1 =
−1

A4.1 +
1

2

√
A2

1A
2
2S

2 − 8A2A1A2 − 4AA1M + A4.2

, (4.13)

where α4.1 > 0, A4.2 = −4AK + 8A1A2 + 4MA1 + 4K and A4.1 = A1A2S. Now,

putting the above constant in (4.8), the solution of the velocity profile as follows

f(η) =S +
1

A4.1 +
1

2

√
A2

1A
2
2S

2 − 8A2A1A2 − 4AA1M + A4.2

×

1− e
−

A4.1+
1

2

√
A2

1A
2
2S

2−8A2A1A2−4AA1M+A4.2

η . (4.14)

The local skin friction is expressed as

Cf =
τw
ρu2

w

=
Re
−1/2
x

A1

f ′′(0), A1CfRe
−1/2
x = f ′′(0). (4.15)
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In (4.15), τw = µnf

(
∂u

∂y

)
y=0

is the stress at wall and Rex =
xuw
ν

the Reynolds

number.

4.1.2 Heat Transfer Analysis

In this segment, the heat tranapport investigation with the radioactive and Joule

heating phenomenon is presented. The elementary equation is given below [112]:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρCp)nf

∂qr
∂y

+
σnfB

2
0

(ρCp)nf
u2, (4.16)

where

qr = −4σ∗

3k∗
∂T 4

∂y
. (4.17)

Here αnf is the thermal diffusivity, T shows the temperature field, (Cp)nf the spe-

cific heat, σ∗ the Stefan’s constant and k∗ denotes the mass absorption coefficient.

Using (4.17) into (4.16), we have

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

1

3 (ρcp)nf

16σ∗T 3
∞

k∗
∂2T

∂y2
+
σnfB

2
0

(ρcp)nf
u2. (4.18)

The boundary conditions are

T = Tw = T∞ + T0e
x/l at y = 0,

T → T∞ as y →∞,

 (4.19)

where T0 expresses the constant reference temperature, l the characteristic length,

Tw the temperature of the sheet and T∞ represents the free stream temperature.

The similarity transformation for temperature profile is introduced as [112]:

θ(η) =
T − T∞
Tw − T∞

. (4.20)
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The following dimensionless energy equation is found after utilizing the similarity

variables shown in (4.5) and (4.20).

θ′′ + Prfθ′ − 2Prf ′θ +
PrM2

A4

Ecf ′′2 = 0, (4.21)

where

Ec =
u2

(Tw − T∞)Cp
, Pr =

νf
αf
, N =

4σ∗T 3
∞

K∗Kf

, Ψ =

(
A3 +

4N

3

)
(4.22)

A3 =
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + 2φ(kf − ks)

, A4 =

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
. (4.23)

Here Pr is the Prandtl number, the Eckert number is denoted by Ec and N the

radiation parameter. The reduced boundary conditions are:

θ(η) = 1 at η = 0,

θ(η)→ 0 as η →∞.

 (4.24)

Now, putting (4.9) into (4.21), it is easy to get

Ψθηη + Pr

(
S +

1

α4.1

(
1− e−α4.1η

α4.1

))
θη − 2Pre−α4.1ηθ +

PrM2

A4

Ec
(
e−α4.1η

)2
= 0.

(4.25)

A linear differential equation of second order can be converted into Kummer’s

ordinary differential equation. For this purpose, a new variable

ξ4.1 = −Pre
−α4.1η

Ψα2
4.1

(4.26)

is introduced.

As a result, (4.25) becomes Kummer’s ordinary differential equation:

ξ4.1
∂2θ

∂ξ2
4.1

+ (E − ξ4.1)
∂θ

∂ξ4.1

− gθ = −PrM2

A4

Ec
(
e−α4.1η

)2
, (4.27)
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where E = (1−F ), F =
Pr

Ψα4.1

(
S +

1

α4.1

)
and g = −2. The boundary conditions

are

θ(ξ4.1) = 1, θ(0) = 0. (4.28)

The exact solution of (4.27) with (4.28) in forms of the Kummer’s functions [105]

is expressed as follows

θ(ξ4.1) =

M

(
−2 +

Pr

Ψα4.1

(
2S/(1S + S) +

1

α4.1

)
, 1 +

Pr

Ψα4.1

(
S +

1

α4.1

)
, ξ4.1

)
M

(
Pr

Ψα4.1

(
S +

1

α4.1

)
− 2, 1 +

Pr

Ψα4.1

(
S +

1

α4.1

)
,
−Pr
Ψα2

4.1

)

× ξ

Pr

Ψα4.1

S+
1

α4.1


4.1(

−2Pr

Ψα2
4.1

) Pr

Ψα4.1

S+
1

α4.1


1

Ψα2
4.1A4

(
−2 +

Pr

Ψα4.1

(
S +

1

α4.1

))

+

(
Pr

Ψα4.1

(
S +

1

α4.1

)2

− (ξ4.1 + 3)
Pr

Ψα4.1

(
S +

1

α4.1

)
+ ξ2

4.1 − 2

)

×

 M2Ec Ψα2
4.1(

Pr

Ψα4.1

(
S +

1

α4.1

)) − 2ξ4.1 − 1 +
Pr

Ψα4.1

(
S +

1

α4.1

)
2A4Pr

 , (4.29)

in (4.29), M represents the confluent hypergeometric function of the 1st kind. The

closed form solution of 4.21 is defined as follows
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θ(η) =

e
α4.1

−Pr
Ψα4.1

a4.5Pη

M

(
Pr

Ψα4.1

− 2a4.5, 1 +
Pr

Ψα4.1

a4.5,
−Pr
Ψα2

4.1

e−α4.1η

)
2M

(
Pr

Ψα4.1

− 2a4.5, 1 +
Pr

Ψα4.1

a4.5,
−Pr
Ψα2

4.1

)

×

 1

(Ψα2
4.1A4)

(
Pr

Ψα4.1

− 2a4.5

)


+

(
Pr

Ψα4.1

a2
4.5 + (

−Pr
Ψα2

4.1

e−α4.1η − 3)
Pr

Ψα4.1

a4.5 +

(
Pr

Ψα2
4.1

e−α4.1η

)2
)

×

 M2Ec Ψα2
4.1

2A4Pr

(
−2 +

Pr

Ψα4.1

a4.5

) −M2Ec Ψα2
4.1

2ξ4.1 − 1 +
Pr

Ψα4.1

a4.5

2A4Pr

 . (4.30)

θη(0) =

Pr2

(
S +

1

α2
4.1

)2

a4.2 (2A4Pr α4.1a4.5 − 4A4α
2
4.1Ψ−M2Ec Pr)

2Ψ2a4.2A4α2
4.1(−2 + P )

+

(
Pra4.5(a4.3 − a4.2) (2A4Pr α4.1a4.5 − 4A4α

2
4.1Ψ−M2Ec Pr)

Ψ2a4.2A4α4.1

)

−
(

a4.3 − a4.4

2a4.2A4α4.1Ψ
a4.6 +

a4.3 − a4.2

2a4.2A4α4.1Ψ

)(
PrS

Ψα4.1

− 2ξ4.1 +
Pr

Ψα2
4.1

)
α4.1

×
(
2A4Pr α4.1a4.5 − 4A4α

2
4.1Ψ−M2Pr Ec

)
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+


(
−2Pr

Ψ2α4.1

a4.5 +
4Pr

Ψ

)
EcM2α

2
4.1Ψ

A4Pr

(
−2 +

Pr

Ψα4.1

a4.5

) +
Ec M2α

2
4.1

A4

 , (4.31)

where

a4.2 = M

(
2/2Pr

Ψα4.1

(
S +

1

α4.1

)
− 2, 1 +

2/2Pr

Ψα4.1

(
S +

1

α4.1

)
,− Pr

α2
4.1Ψ

)
,

a4.3 = M

(
−1 +

Pr

Ψα4.1

(
S +

1

α4.1

)
, 1 +

Pr

Ψα4.1

(
S +

1

α4.1

)
,− Pr

α2
4.1Ψ

)
,

a4.4 = M

(
Pr

Ψα4.1

(
S +

1

α4.1

)
, 1 +

Pr

Ψα4.1

(
S +

1

α4.1

)
,− Pr

α2
4.1Ψ

)
,

a4.5 = S +
1

α4.1

,

a4.6 =

(
PrS

Ψα4.1

+
Pr

Ψα2
4.1

− 1

)
α4.1,

α4.1 = A4.1 +
1

2

√
A2

1A
2
2S

2 − 8A2A1A2 − 4AA1M + A4.2.

Accordingly, the above equation initiated the non-dimensional wall temperature

can be written as:

Nux =

−knfx
(
∂T

∂y

)
y=0

kf (Tw − T∞)
= −knf

kf
Re1/2

x θη(0). (4.32)

In the current study, it is acquired as:

kf
knf

NuxRe
−1/2
x = −θη(0). (4.33)

4.2 Results and Discussion

The effect of several emerging parameters on the velocity and temperature profile

are discussed in this segment. In this regard, Figures 4.2 - 4.25 are prepared. The

graphs shown in Figures 4.2 and 4.3 are plotted to visualize the trend of velocity
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field of the nanofluid for φ with the suction/injection phenomena separately, while

keeping the other parameters constant.

It is examined in these figures that the velocity field reduces efficiently by an

increment in φ. Influence of the suction/injection parameter is depicted in Figures

4.4 and 4.5. The velocity profile increases for increasing the value of the mass

blowing (S < 0) is seen in Figure 4.4 and a quite opposite behavior of the same

profile is recorded for the mass suction (S > 0) in Figure 4.5. An increment in the

velocity ratio parameter A =
ue
uo

strongly accelerates the velocity profile see Figure

4.6. Moreover, it is also perceived that velocity field rises because of an increment

within the magnitude of A, while the velocity of stretching wall is higher than the

velocity at y → ∞. The stagnation point flow is found zero, when velocity ratio

parameter is taken zero.

Physical insight of the temperature profile with respect to the mass suction/injec-

tion, Ec, permeability parameter K, Pr, M2, φ and the velocity ratio parameter

A is plotted in Figures 4.7 - 4.14 respectively. Figure 4.7 displays the influence of

S on the temperature field. Temperature profile decreases for increasing the value

of S. Physically, impact of S > 0 makes distribution of the temperature distribu-

tion more consistent inside the boundary layer. Suction of fluid at the sheet has

a ability to diminish the thermal boundary layer thickness, which consequently

reduces the temperature field. Further, increasing value of S(< 0) enhances the

thermal boundary layer thickness which causes the heat transport rate decrease.

Figure 4.8 portrays the impact of Ec on the temperature field. It is noticed that

there is a gradual decrease in the fluid energy by an increment in Ec. Here, it is

observed that the temperature increases for gaining the values of Ec, since fric-

tional heating is provoked the heat energy within the fluid. Such increment in heat

energy enhances the temperature profile. Figure 4.9 expresses the behavior of K

on the temperature field. As the permeability of fluid increases there is a rise in

the fluid temperature. Physically, the impact of permeable media originated more

friction to flow, for which retards the velocity of considered fluid, and due to which

there is an increase in the temperature. Figure 4.11 is prepared to study the effect

of Pr on the temperature field. It is seen that the temperature profile decreases
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effectively with an increment in the Prandtl number. Physically, it signifies that

an enhancement in Pr means that the viscosity of fluid is increased, for which

the temperature distribution is decreased. The effect of M2 on the temperature

field is portrayed in Figure 4.12 . It is observed that an increase into M2 increases

the fluid energy significantly. Actually, the M2 is dependent on Lorentz force.

Increasing the values of M2 has the more grounded Lorentz force and opposite for

the lower magnitude of M2. The higher Lorentz force generates high heat energy

in fluid motion which presents an increment in the temperature. The variation of

φ with combine effects of S on the temperature field is plotted in Figure 4.13. It

is examined that the fluid temperature increases for the suction and decreasing

trend is noticed for the injection parameter with an increase φ. The trend of the

velocity ratio parameter on the temperature field is plotted in Figure 4.14. The

temperature of fluid reduces effectively by enhancing the velocity ratio parameter.

To capture the heat transport rate, the local Nusselt number is plotted against

the variation in Ec, M2, permeability parameter and S see Figures 4.15 - 4.18.

It is seen that heat transport rate is increasing function of the Eckert number,

Hartmann parameter and K. Figure 4.18 shows that heat transfer rate is high for

(S < 0) as compared to the suction parameter. The value of −f ′′(0) is decreased

for increasing the value of S < 0 and increases efficiently for S > 0 is shown

Figure 4.19. In Figure 4.20, value of −f ′′(0) is observed to decrease gradually

by an increment in φ. An increment in the local skin friction is observed due

to enhancing the values of M2 in Figure 4.21. Figures 4.23 - 4.25 represent the

contour plots. The value of −θ′(0) for various shaped nanoparticles is depicted in

Figures 4.26 and 4.27.

Table 4.1, represents the thermal characteristics of conventional fluid (water) and

solid nanoparticles (copper) are given as [113] and [114]. Table 4.2 displays the

numerical values of nanoparticle shape factor m is given by Timofeeva et al. [115].

Results for code verification are shown in Table 4.3. Table 4.4 displays the mag-

nitude of −f ′′(0). The values of −θ′(0) owing the different emerging parameters

for different shape factors of nanoparticles shown in Table 4.5 - 4.7.
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Figure 4.2: Impact of variation in φ on f ′(η)

Figure 4.3: Impact of variation in φ on f ′(η)

Figure 4.4: Impact of variation in S on f ′(η)
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Figure 4.5: Impact of variation in S on f ′(η)

Figure 4.6: Impact of variation in A on f ′(η)

Figure 4.7: Impact of variation in S on θ(η)
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Figure 4.8: Impact of variation in Ec on θ(η)

Figure 4.9: Impact of variation in K on θ(η)

Figure 4.10: Impact of variation in Pr on θ(η)
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Figure 4.11: Impact of variation in M2 on θ(η)

Figure 4.12: Impact of variation in φ on θ(η)

Figure 4.13: Impact of variation in A on θ(η)



Joule Heating Effect on a Flow Field 60

Figure 4.14: Impact of variation in Ec on −θ′(0)

Figure 4.15: Impact of variation in M2 on −θ′(0)

Figure 4.16: Impact of variation in K on −θ′(0)
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Figure 4.17: Impact of variation in S on −θ′(0)

Figure 4.18: Impact of variation in S on −f ′′(0)

Figure 4.19: Impact of variation in φ on −f ′′(0)
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Figure 4.20: Impact of variation in M2 on −f ′′(0)

Figure 4.21: Contour plot for M2 = 0.5

Figure 4.22: Contour plot for M2 = 1.0
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Figure 4.23: Contour plot for M2 = 1.5

Figure 4.24: Impact of variation in m on −θ′(0)

Figure 4.25: Impact of variation in φ on −θ′(0)
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Table 4.1: Thermal characteristics of conventional fluid and nanoparticles.

Physical characteristics ρ(kg m−3) cp(J/kgK) K(W/mk)

Water 997.1 4179 0.613

Cu 8933 385 400

Table 4.2: Numerical values of m (shape factor).

Nanoparticles Shape m

Bricks
370

100

Cylinders
490

100

Platelets
570

100

Table 4.3: Comparison table.

S > 0 3.5 4 4.5 5

Bhattacharyya et al. [102] 0.66667 1.00000 1.22871 1.43426

Present study 0.66667 1.00000 1.22871 1.43426
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Table 4.4: Numerical values of f ′′(0).

φ A M2 S K = 0 0.3 0.5 0.6 0.7

0 0.1 2 0.3 -2.15062 -2.21700 -2.26009 -2.28131 -2.30232

0.1 -1.81798 -1.89506 -1.94465 -1.96895 -1.99294

0.2 -1.51348 -1.60419 -1.66180 -1.68983 -1.71739

0.1 0 -1.82206 -1.90731 -1.96196 -1.98870 -2.01525

0.2 -1.80567 -1.87483 -1.91947 -1.94138 -1.96303

0.3 -1.78496 -1.84634 -1.88609 -1.90563 -1.92497

0.1 0 -1.28712 -1.39628 -1.46420 -1.49691 -1.52887

0.3 -1.38091 -1.48266 -1.54651 -1.57740 -1.60765

0.5 -1.43978 -1.53735 -1.59887 -1.62869 -1.65795

2 -1 -1.39512 -1.47083 -1.51961 -1.54352 -1.56714

-0.5 -1.54363 -1.62046 -1.66990 -1.69413 -1.71806

0 -1.70973 -1.78695 -1.83662 -1.86096 -1.88499

0.5 -1.89371 -1.97054 -2.01999 -2.04422 -2.06814

1 -2.09529 -2.17100 -2.21977 -2.24369 -2.26731

Table 4.5: Numerical values of −θ′(0) for Ec = 0.3, m = 3.7, Pr = 6.2 and
N = 0.5.

φ A M2 S K 0 0.3 0.5 0.6 0.7

0 0.1 2 0.3 2.8456 2.8376 2.8322 2.8296 2.8269

0.1 2.2359 2.2262 2.2198 2.2167 2.2135

0.2 1.7935 1.7828 1.7758 1.7723 1.7689

0.2 -1 0.7939 0.7802 0.7709 0.7662 0.7614

-0.5 1.0302 1.0130 1.0015 0.9958 0.9901

0 1.4525 1.4389 1.4299 1.4255 1.4211

0.5 2.0508 2.0419 2.0360 2.0332 2.0303

1 2.7743 2.7688 2.7652 2.7634 2.7617

A M2 K S φ 0 0.4 0.6 0.8 0.9

0.1 2 0 0.3 2.8456 1.2072 0.8378 0.5503 0.3853

0.6 2.8296 1.1808 0.7993 0.4832 0.2955

1.2 2.8137 1.1566 0.7667 0.4366 0.2487

1.6 2.8032 1.1416 0.7476 0.4130 0.2285

φ K M2 Ec S A 0 0.4 0.6 0.8 1

0.1 0.3 0 0.5 0.3 2.5908 2.6314 2.6814 2.7650 2.9672

1 2.3002 2.3238 2.3507 2.3889 2.4359

2 2.0422 2.0548 2.0677 2.0828 2.0907

3 1.8086 1.81346 1.8171 1.8182 1.8069
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Table 4.6: Numerical values of −θ′(0) for Ec = 0.3, m = 4.9, Pr = 6.2 and
N = 0.5.

φ A M2 S K 0 0.3 0.5 0.6 0.7

0 0.1 2 0.3 2.8456 2.8376 2.8322 2.8296 2.8269

0.1 2.1508 2.1409 2.1344 2.1312 2.1280

0.2 1.6797 1.6688 1.6617 1.6582 1.6547

0.2 -1 0.7634 0.7485 0.73844 0.7333 0.7281

-0.5 0.9820 0.9643 0.9526 0.9468 0.9410

0 1.3692 1.3554 1.3463 1.3419 1.3374

0.5 1.9135 1.9043 1.8984 1.8954 1.8925

1 2.5700 2.5643 2.5606 2.5588 2.5569

A M2 K S φ 0 0.4 0.6 0.8 0.9

0.1 2 0 0.3 2.8456 1.0940 0.7487 0.4946 0.3512

0.6 2.8296 1.0675 0.7102 0.4259 0.2587

1.2 2.8137 1.0435 0.6782 0.3809 0.2151

1.6 2.8032 1.0288 0.6597 0.3586 0.1967

φ K M2 Ec S A 0 0.4 0.6 0.8 1

0.1 0.3 0 0.5 0.3 2.4926 2.5333 2.5835 2.6674 2.8703

1 2.2133 2.2374 2.2649 2.3045 2.3542

2 1.9655 1.9788 1.9927 2.0096 2.0207

3 1.7413 1.7470 1.7519 1.7550 1.7471

Table 4.7: Numerical values of −θ′(0) for Ec = 0.3, m = 5.7, Pr = 6.2 and
N = 0.5.

φ A M2 S K 0 0.3 0.5 0.6 0.7

0 0.1 2 0.3 2.8456 2.8376 2.8322 2.8296 2.8269

0.1 2.0982 2.0882 2.0817 2.0784 2.0752

0.2 1.6126 1.6016 1.5944 1.5909 1.5874

0.2 -1 0.7443 0.7287 0.7181 0.7127 0.7073

-0.5 0.9525 0.9347 0.9228 0.9169 0.9111

0 1.3196 1.3056 1.2965 1.2920 1.2876

0.5 1.8329 1.8237 1.8176 1.8147 1.8118

1 2.4513 2.4455 2.4417 2.4398 2.4380

A M2 K S φ 0 0.4 0.6 0.8 0.9

0.1 2 0 0.3 2.8456 1.0307 0.7003 0.4647 0.3330

0.6 2.8296 1.0043 0.6620 0.3954 0.2396

1.2 2.8137 0.9806 0.6305 0.3516 0.1978

1.6 2.8032 0.9660 0.6124 0.3302 0.1805

φ K M2 Ec S A 0 0.4 0.6 0.8 1

0.1 0.3 0 0.5 0.3 2.4320 2.4727 2.5231 2.6072 2.8106

1 2.1596 2.1840 2.2120 2.2523 2.3038

2 1.9181 1.9318 1.9464 1.9643 1.9775

3 1.6997 1.7059 1.7115 1.7158 1.7101
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4.3 Conclusion

Final outcomes of the flow analysis are:

• The velocity profile is a decreasing function of φ and mass suction parameter

S > 0 whereas it has an opposite behavior for the mass injection parameter

S < 0 and velocity ratio parameter A.

• The temperature profile accelerates with an increment in the mass injection

parameter, permeability parameter K, M2 and φ.

• It is seen that the temperature field decreases by increasing S > 0, the Eckert

number Ec, Pr and velocity ratio parameter A.

• An increment in S > 0 is found responsible for an augmentation in the rate

of heat transfer.

• The impact of Platelets shaped nanoparticles are greater than that of cylin-

ders and bricks in the temperature variation.

• The local Nusselt number is a decreasing function of Ec, Hartmann number

and K.

• The local skin friction coefficient increases with an increase in φ and M2.



Chapter 5

Heat Transfer Analysis of

Inclined Magnetic Field Induced

by a Stretching Surface

This chapter, analyzes the simultaneous effect of inclined magnetic field and pre-

scribed surface temperature (PST) on nanofluid flow provoked by a stretching sur-

face. In order to make this mechanism more feasible, we have further considered

the velocity slip and thermal radiation effects. Moreover, this perusal is made to

consider the two kinds of nanofluid namely: Cu-water and Al2O2-water. Inclined

magnetic field is utilized to accompanying an aligned angle that varies from 0 to

π/2. The exact solutions are acquired from the transformed non-dimensional dif-

ferential equations in the formation of confluent hypergeometric function. Lorentz

forces and aligned magnetic field depict the significant effects on nanofluid. We

found that due to an increase in the aligned angle provides an enhancement in the

value of −f ′′(0) and a reduction in the magnitude of −θ′(0). The combine impacts

of an inclined magnetic field with other emerging parameters such as velocity slip,

radiation parameter and nanoparticles ratio on velocity field, temperature field,

−f ′′(0) and −θ′(0) are examined. Flow behavior of nanofluid is also shown via

stream lines pattern.

68
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5.1 Mathematical Formulation

Consider two dimensional, steady, incompressible flow of nanofluid over a stretch-

ing sheet with slip effects at the surface. In this study, we consider the two kinds of

nanofluid namely: Cu-water and Al2O2-water. Inclined magnetic field is applied

along y-axis of strength B0 with an acute angle β and stretchable surface is taken

along the x-axis. That is to suppose influenced magnetic field which is negated in

correspondence with enforced magnetic range. The applied magnetic field occurs

normal to the surface with transverse magnetic field at β = π/2 i.e. sin (π/2) = 1.

Figure 5.1: Geometrical view of the physical model

5.1.1 Continuity and Momentum Analysis

The elemantry equations for considered flow are [116]:

∂u

∂x
+
∂v

∂y
= 0, (5.1)

u
∂u

∂x
+ v

∂v

∂y
=

(
µnf
ρnf

)
∂2v

∂y2
−
(
σnfB0

ρnf

)
u sin2 (β) , (5.2)

where u and v represent the velocity elements along x- and y- axis respectively.

The subscript nf represents the nanofluid. µnf and ρnf the dynamic viscosity and
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density regarding nanofluid respectively. The thermal diffusivity is expressed as

αnf , νnf the kinematic viscosity . The thermophysical correltaion can be shown

as fallows [117]:

µnf =
µf

(1− φ)2.5
, αnf =

knf
(ρcp)nf

,

(ρcp)nf = (1− φ) (ρcp)f + φ (ρcp)s ,

νnf =
µnf
ρnf

, ρnf = (1− φ)ρf + φ(ρs),

knf
kf

=
(ks + 2kf )− 2φ(kf − ks)
(ks + 2kf ) + φ(kf − ks)

,

σnf
σf

= 1 +

3

(
σnf
σf
− 1

)
φ(

σnf
σf

+ 2

)
−
(
σnf
σf
− 1

)
φ

.



(5.3)

The nanoparticle volume fraction parameter is denoted by φ. The appropriate

boundary conditions for the presented fluid model are

u = ax+ l
∂u

∂y
, v = 0 at y = 0,

u→ 0 as y →∞.

 (5.4)

Here l represents the characteristics length, for the sake of simplifying the analysis,

the following similarity transformation is used [118].

u = axf ′(η), v = −(aνf )
0.5f(η), η = y

(a
ν

)0.5

. (5.5)

Using (5.5), we have

1

A1A2

f ′′′ + ff ′′ −
(
f ′ +

M2

A2

sin2(β)

)
f ′ = 0, (5.6)

the transformed boundary conditions are

f(η) = 0, f ′(η) = 1 + Lf ′′(η) at η = 0,

f ′(η)→ 0 as η →∞.

 (5.7)
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In (5.7), L = l(a/ν)0.5,A2 =

(
1− φ+ φ

ρs
ρf

)
andA1 = (1 − φ)2.5. M2 =

√
σB2

0

ρfa

the Hartmann number. L shows the velocity slip parameter. The closed form

solution of (5.6) using (5.7) can be found as follows [119]:

f(η) =
χ− χe−α5.1η

α5.1

, (5.8)

where

χ =
1

Lα5.1 + 1
, (5.9)

α5.1 =
3
√
a5.1 + 12

√
3
√
A1a5.6L

6L
− 2a5.5

3L
3
√
a5.1 + 12

√
3
√
A1a5.6L

− 1/3L−1, (5.10)

a5.1 =− 72M2A1L
2 cos2 (β) + 72M2A1L

2 + 108A1L
2A2 − 8, (5.11)

a5.2 = 4M2
3A1

2L4 cos6 (β)− 12M2
3A1

2L4 cos4 (β) + 8M2
2A1L

2 cos2 (β)

+ 12M2
3A1

2L4 cos2 (β) , (5.12)

a5.3 =− 16M2
2A1L

2 cos2 (β) + 4 (cos (β))2M2 − 4M2
3A1

2L4 + 8M2
2A1L

2

− 4M2, (5.13)

a5.4 =− 36M2A1L
2 cos2 (β)A2 + 36M2A1L

2A2 + 27A1L
2A2

2 − 4A2, (5.14)

a5.5 = 3M2A1L
2 cos2 (β)− 3M2A1L

2 − 1, (5.15)

a5.6 =A1 (a5.2 + a5.3 + a5.4) . (5.16)
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The Local skin friction is defined as

Cf =
τw
ρu2

w

=
Re−0.5

x

A1

f ′′(0), (5.17)

where τw = µnf

(
∂u

∂y

)
y=0

represents the stress at wall and Rex =
xuw
ν

is the

Reynolds number.

5.1.2 Heat Transfer Analysis

In this part, we analyzed the basic thermal boundary layer partial differential

equation for incompressible nanofluid [120]:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρCp)nf

∂qr
∂y

, (5.18)

where knf is thermal conductivity and ρnf the density of nanofluid , T the tem-

perature and nanofluid specific heat is shown by (Cp)nf . Utilizing the Roseland

diffusion approximation [119] as radiation is defined as

qr = −4σ∗

3k∗
∂T 4

∂y
. (5.19)

Here σ∗ represents the Stefan’s constant and k∗ stands for the mass absorption

coefficient. Additionally, suppose that change of temperature inside of nanofluid

flow is abundantly small-scale in such a way T 4 can be written in a Taylor series

expanding about T∞. Further, ignore the terms which have higher power. As

follows

T 4 ∼= 4T 3
∞(T − 3

4
T∞). (5.20)

Putting (5.19) into (5.18), we obtain

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

3 (ρCp)nf

16σ∗T 3
∞

k∗

∂2T

∂y2
. (5.21)
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The boundary conditions are

T = Tw = T∞ + T0

(x
l

)2

at y = 0and T →∞ as y →∞, (5.22)

where Tw is the sheet temperature, T0 expresses the constant reference tempera-

ture, T∞ the free stream temperature and l the characteristics length. The dimen-

sionless temperature profile θ(η) is given by [119]

θ(η) =
T − T∞
Tw − T∞

. (5.23)

Now, we transform (5.21) by using (5.5) and (5.23). We get the dimensionless

ODE for energy equation is

Ψθ
′′

+ Prfθ′ − 2Prf ′θ = 0, (5.24)

where Ψ =

(
A3 +

4N

3

)
, A3 =

(ks + 2kf )− 2φ (kf − ks)
(ks + 2kf ) + φ (kf − ks)

, N =
4σ∗T 3

∞
K∗Kf

. Prandtl

number is represented by Pr. Accordingly, the boundary condition (5.22) get the

form

θ(η) = 1 at η = 0, θ(η)→ 0 as η →∞. (5.25)

Using the values of f and f ′ from (5.8) in (5.24), we obtain

Ψθ
′′

+ Prχ

(
1− e−α5.1η

α5.1

)
θ′ − 2Prχ

(
α5.1e

−α5.1η

α5.1

)
θ = 0. (5.26)

Here, we introduced a new variable ξ5.1 = −
(
Prχe−α5.1η

Ψα2
5.1

)
and the (5.26) reduces

to

ξ5.1
∂2θ

∂ξ2
5.1

+ (h− ξ5.1)
∂θ

∂ξ5.1

− gθ = 0, (5.27)

where h = 1− Prχ

Ψα2
5.1

and g = −2. Subject to the boundary conditions
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θ

(
−Prχe

−α5.1η

Ψα2
5.1

)
= 1, and θ(0) = 0. (5.28)

The solution of (5.27) is given by

θ(ξ5.1) = ξ

b5.1 + b5.2

2


5.1

M

(
b5.1 + b5.2 − 4

2
, 1 + b5.2, ξ5.1

)
M

(
b5.1 + b5.2 − 4

2
, 1 + b5.2,−b5.2

) , (5.29)

where b5.1 = b5.2 =
Prξ5.1

Ψα2
5.1

, M is the confluent hypergeometric function of the

Kummer function [105] and the temperature solution takes the form

θ(η) = e
−α5.1

b5.1 + b5.2

2

ηM
(
b5.1 + b5.2 − 4

2
, 1 + b5.2,−

Prχe−α5.1η

Ψα2
5.1

)
M

(
b5.1 + b5.2 − 4

2
, 1 + b5.2,−

Prχ

Ψα2
5.1

) . (5.30)

Hence the non-dimensional wall temperature is

θ′(0) =

M
(
b5.1 + b5.2 − 2

2
, 1 + b5.2,

P rχ

Ψα2
5.1

)
−M

(
b5.1 + b5.2 − 4

2
, 1 + b5.2,−

Prχ

Ψα2
5.1

)
M

(
b5.1 + b5.2 − 4

2
, 1 + b5.2,−

Prχ

Ψα2
5.1

)


×
(
b5.1 + b5.2 − 4

2

)
α5.1 − α5.1

(
b5.1 + b5.2

2

)
. (5.31)

The local Nusselt number is defined as

kfNux =
xqw

(Tw − T∞)
, (5.32)

where qw = −
(
knf +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

)
y=0

. In the current case, it is determined

as

NuxRe
−0.5
x = −

(
A3 +

4

3N

)
θ′(0). (5.33)
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Table 5.1: Thermal characteristics of conventional fluid and solid nanoparti-
cles.

Physical characteristics ρ(kg m−3) cp(J/kgK) K(W/mk)

Water 997.1 4179 0.613

Cu 8933 385 400

Al2O3 3970 765 40

5.2 Results and Discussion

In this section, we analyzed the effect of inclined magnetic field along with several

physical parameters on nanofluid past a stretching surface. The geometry of the

problem shown in Figure 5.1. In Table 5.1, thermal characteristics of water and

used nanoparticles are presented in the form of density, specific heat and thermal

conductivity are given as [121] and [122]. We have examined the two important

types of nanoparticles, namely: alumina Al2O3 and copper Cu, within the base

fluid (water). Influence of φ with the base fluid are described through the velocity

and temperature profile are depicted in Figures 5.2, 5.3, 5.8 and 5.9. It can

be examined in Figure 5.2, an increase of the value of φ decreases the velocity

behavior of nanofluid for Cu-water. In case of Al2O3-water, it is observed that an

increment in the magnitude of φ enhances the velocity trend is shown in Figure

5.3. In Figures 5.8 and 5.9, the temperature profile described the behavior of

Cu-water and Al2O3-water for an increasing value of the φ. Figures 5.4, 5.5,

5.10, 5.11, 5.14 and 5.15 show the simultaneous effect of angle β and M2 on the

velocity and temperature field for each Cu and Al2O3 nanoparticles. It is found

that an increase in M2 and β decreasing the velocity profile; however it enhances

the temperature distribution. There is no effect of M2 on the velocity field for

β = 0◦ and the magnetic field applied transversely in case of β =
π

2
along the flow

section. The magnetic induction increases with an enhancement in the magnitude

of β along the flow region. Due to the improvement of magnetic induction, there

is a resistant force that produces a resistance within the boundary layer flow with

an aligned magnetic field effect.
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The importance of L on the nanofluid velocity profile and temperature profile with

prescribed surface temperature are plotted in Figures 5.6, 5.7, 5.12 and 5.13. In

Figures 5.6 and 5.7, it can be determined that velocity profile switch its behavior

at η = 2.2 due to the slip effects in the vicinity of sheet surface. The temperature

profile increases in same manners with an increasing magnitude of L for each

considered nanofluid are examined in Figures 5.12 and 5.13. The nanofluid velocity

and temperature profile behave oppositely an increasing value of L. This behavior

of stretching sheet can comprises just partially carried to the fluid. Figures 5.16

and 5.17 describe the impact of N on the temperature profile for each Cuwater

and Al2O3-water respectively. It is determine that temperature is reduces by an

increment in the value of N .

Figures 5.18 and 5.19 depict M2 influences herewith φ and aligned angle on−f ′′(0).

In Figure 5.18, the coefficient of local skin friction enhances by a gain in β and

M2. Since there is no effect of M2 with β = 0 on local skin friction, it shows

the less Hartamann number effects on the fluid flow. In Figure 5.19, one can see

the increasing behavior of −f ′′(0) due to escalating the magnitude of φ and M2.

Further, it is observed that copper based nanofluid has more friction with surface

than the Al2O3-water.

Figures 5.20 and 5.21 illustrate the effect of M2, L and φ on −θ′(0). It is examined

that the value of −θ′(0) increases due to an increase in the value of φ. In Figure

5.20, it can be noticed that Cu-water represents the heat transfer rate is faster than

Al2O3-water. In Figure 5.21 the magnitude of −θ′(0) decreases by L in Cu-water

and Al2O3-water. Furthermore, it is observed that Al2O3 based nanofluid has low

heat transport ratio as compare to the Cu based nanofluid. The combined results

for β and M2 are shown in Fig. Figure 5.22 which shows that these parameters

reducing the trend of −θ′(0). The heat transfer rate is decreasing function of N

and M2 for Cu-Water and Al2O3-water are expressed in Figures 5.23. In case

of Al2O3-water, heat transfer rate decreases faster than Cu-water as plotted in

Figures 5.23 and Figures 5.23. To analyze the flow behavior, stream lines are also

plotted in Figures 5.24-5.29.
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Figure 5.2: Impact of variation in φ on f ′(η)

Figure 5.3: Impact of variation in φ on f ′(η)

Figure 5.4: Impact of variation in β and M2 on f ′(η)
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Figure 5.5: Impact of variation in β and M2 on f ′(η)

Figure 5.6: Impact of variation in L on f ′(η)

Figure 5.7: Impact of variation in L on f ′(η)
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Figure 5.8: Impact of variation in φ on θ(η)

Figure 5.9: Impact of variation in φ on θ(η)

Figure 5.10: Impact of variation in β on f ′(η)
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Figure 5.11: Impact of variation in β on f ′(η)

Figure 5.12: Impact of variation in L on θ(η)

Figure 5.13: Impact of variation in L on θ(η)
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Figure 5.14: Impact of variation in β on θ(η)

Figure 5.15: Impact of variation in β on θ(η)

Figure 5.16: Impact of variation in N on θ(η)
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Figure 5.17: Impact of variation in N on f ′(η)

Figure 5.18: Impact of variation in β on −f ′′(0)

Figure 5.19: Impact of variation in M2 on −f ′′(0)
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Figure 5.20: Impact of variation in M2 on −θ′(0)

Figure 5.21: Impact of variation in L on −θ′(0)

Figure 5.22: Impact of variation in β on −θ′(0)
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Figure 5.23: Impact of variation in N on −θ′(0)

Figure 5.24: Contour plot for φ = 0.0

Figure 5.25: Contour plot for φ = 0.1
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Figure 5.26: Contour plot for φ = 0.2

Figure 5.27: Contour plot for L = 0.0

Figure 5.28: Contour plot for L = 0.5
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Figure 5.29: Contour plot for L = 1.0

5.3 Conclusion

In this chapter, we have analyzed the effect of each β, velocity slip parameter

and N on the flow of nanofluid past over a stretching sheet. This study has

been carried out to examine the prescribed surface temperature and two types

of nanofluid namely: Cu-water and Al2O3-water. The following outcomes of the

analysis are:

• The velocity profile of the nanofluid decreases by increasing the values of

φ,Hartmann number, L, β and L for Cu-water/Al2O3-water.

• The velocity profile behavior is opposite for each Cu-water and Al2O3- Water

by gaining the rates of φ.

• The temperature profile increases by enhancing the value of φ, M2, β and L

in case of both Cu water and Al2O3water.

• The local skin friction coefficient gains by enhancing the values of M2 and β

in both Cu water and Al2O3water. Moreover, it is observed that the local

skin friction coefficient does not affected by β = 0 and Cu-water nanofluid

but it is enhancing rapidly as compared to Al2O3-water.
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• The local Nusselt number decreases with an increment in the values of the

Hartmann number, velocity ratio parameter, β and thermal radiation param-

eter for both Cu-Water and Al2O3-Water. The heat transfer rate is higher

in Al2O3-Water as compared to the Cu-Water.



Chapter 6

Heat Transfer Analysis of Shaped

Nanoparticles.

In this chapter, we analyze the magnetohydrodynamics flow of magnetite-engine

oil based nanofluid with the impact of non-identical shaped nanoparticles subject

to the porous medium, velocity slip, thermal radiation and Joule heating effects.

The physical system is changed into the system of partial differential equations by

mathematical modeling. To solve the dynamical system of equations, we converted

the dynamical system of equations into the set of ordinary differential equation

by suitable transformation. The closed form results are found for the momentum

and energy equations. The effects of shaped nanoparticles with other physical

parameters which are radiation parameter, velocity slip, and nanoparticles ratio

on velocity field, temperature field, −f ′′(0) and −θ′(0) are analyzed. Stream lines

pattern is also plotted to study the flow behavior of nanofluid.

6.1 Mathematical Formulation

In this segment, we examine the two dimensional, steady, incompressible flow of

magnetite-engine oil based fluid provoked by a stretching sheet. The fluid occupies

the space y > 0. Magnetic field is applied along y-axis of strength B0 which is

88
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perpendicular to the surface and stretchable surface is taken parallel to the x-axis.

That is to suppose influenced magnetic field which is negated in correspondence

with enforced magnetic range. The applied magnetic field occurs normally to the

surface. The sheet is stretchable along x-axis with a velocity u = ax+ l
∂u

∂y
.

Figure 6.1: Geometrical view of the physical model

6.1.1 Continuity and Momentum Analysis

The elementry equations for the represented flow are [37]:

∂u

∂x
+
∂v

∂y
= 0, (6.1)

u
∂u

∂x
+ v

∂v

∂y
=
µnf
ρnf

∂2u

∂y2
− σnfB

2
0

ρnf
u− µnf

ρnfk
u, (6.2)

where u and v represent the velocity elements along x- and y-axis respectively, B0

the magnetic parameter. The subscript nf expresses as the nanofluid. Hamilton

and Crosser model (1962) is consider for different shaped particle to presenting a

shape factor. The thermal correlations are expressed as [98, 99, 123]:
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µnf =
µf

(1− φ)2.5
, αnf =

knf
(ρcp)nf

,

(ρcp)nf = (1− φ) (ρcp)f + φ (ρcp)s ,

νnf =
µnf
ρnf

, ρnf = (1− φ)ρf + φ(ρs),

knf
kf

=
(ks + (m+ 1)kf )− (m+ 1)φ(kf − ks)

(ks + (m+ 1)kf ) + φ(kf − ks)
,

σnf
σf

= 1 +

3

(
σnf
σf
− 1

)
φ(

σnf
σf

+ 2

)
−
(
σnf
σf
− 1

)
φ

.



(6.3)

In the above equations, (ρcp)f the heat capacity of the host fluid, ρf the density of

the host fluid, φ the nanoparticle ratio, the thermal conductivity of host fluid shows

by kf , m the shape of nanopartilce, knf the thermal conductivity of nanoparticles.

The suitable boundary conditions for considered flow are:

u = ax+ l
∂u

∂y
, v = 0 at y = 0,

u→ 0 as y →∞.

 (6.4)

To non-dimensionalize the variables, following similarity variables have been in-

troduced [100]:

u = axf ′(η), v = −(νa)1/2f(η), η = y

(
a

ν

)1/2

. (6.5)

After using the similarity transformation, the equation (??) is reduced to the form

f ′′′ + A1A2ff
′′ − A1A2f

′2 − (A1M2 +
1

K
)f ′ = 0, (6.6)

the boundary conditions are given as

f(η) = 0, f ′(η) = 1 + Lf ′′(0), at η = 0,

f ′(η)→ 0 as η →∞.

 (6.7)



Effect of MHD Nanofluid on a Flow Field 91

In (6.6) and (6.7), M2 =

√
σB2

0

ρfa
is the Hartmann number, A1 = (1 − φ)2.5 and

K =
ak

νf
the permeability parameter. Furthrmore, A2 =

(
1− φ+ φ

ρs
ρf

)
and L =

l(a/ν)1/2 the slip parameter. The analytical solution is obtained by Chakrabarti

and Gupta [101] and [124].

f(η) = a6.1 + b6.1e
−α6.1η. (6.8)

By using (6.7) in (6.8), we obtain

f(η) =
1

Lα6.1 + 1
(
1− e−α6.1η

α6.1

). (6.9)

Using (6.9) in (6.6), we get

α6.1 =
3
√
a6.2

6KL
+

a6.3

3L 3
√
a6.2

− 1

3L
, (6.10)

where

a6.2 =

(
a6.4 + 12

√
−3

a6.5

K
L− 8K

)
K2,

a6.3 = 2
(
3A1KL

2M2 + 3L2 +K
)
,

a6.4 = 108A1A2KL
2 + 72A1KL

2M2 + 72L2,

a6.5 = 4A1
3K3L4M2

3 + 12A1
2K2L4M2

2 − 27A1
2A2

2K3L2 − 36A1
2A2K

3L2M2

− 8A1
2K3L2M2

2 + 12A1KL
4M2 − 36A1A2K

2L2 − 16A1K
2L2M2 + 4,

A1A2K
3 + 4A1K

3M2 + 4L4 − 8KL2 + 4K2.

Using in (6.9), we obtain

a6.1 =
1(

L
(

3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

)2

+
3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

) , (6.11)

b6.1 = − 1(
L
(

3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

)2

+
3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

) , (6.12)
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where a6.1, b6.1 and α6.1 are constants with α6.1 > 0. Now, using the above con-

stants in 6.9, we get the following velocity profile solution

f(η) =
1(

L
(

3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

)2

+
3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

)

− e
−
( 3√a6.2

6KL
+

a6.3
3L 3√a6.2

− 1
3L

)
η(

L
(

3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

)2

+
3
√
a6.2

6KL
+ a6.3

3L 3
√
a6.2
− 1

3L

) . (6.13)

The mathematical expression for local skin friction is expressed as

Cf =
τw
ρu2

w

=
Re−0.5

x

A1

f ′′(0), (6.14)

in (6.14), τw = µnf

(
∂u

∂y

)
y=0

is the stress at wall and Rex =
xuw
ν

the Reynolds

number.

6.1.2 Heat Transfer Analysis

In this section, study the heat transport in existence of the thermal radiation and

Joule heating phenomenon has been presented. The governing equation is given

as [125]:

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
− 1

(ρCp)nf

∂qr
∂y

+
σnfB

2
0

(ρCp)nf
u2, (6.15)

where

qr = −4σ∗

3k∗
∂T 4

∂y
. (6.16)

Here, αnf the thermal diffusivity, T shows the temperature field and specific heat

is denoted by (Cp)nf . Using (6.16) into (6.15), we get

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
+

1

3 (ρCp)nf

16σ∗T 3
∞

k∗
∂2T

∂y2
+

σnfB
2
0

(ρCp)nf
u2. (6.17)
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The boundary conditions are

T = Tw = T∞ + T0(x/l)2 at y = 0,

T → T∞ as y →∞.

 (6.18)

Here, T0 expresses the constant reference temperature, l denotes the character-

istic length, Tw is the temperature at sheet and the free stream temperature is

represented by T∞ . The similarity variable is given by [125]:

θ(η) =
T − T∞
Tw − T∞

. (6.19)

The following dimensionless energy equation is found after utilizing the similarity

variables defined in (6.5) and (6.19)

Ψθ′′ + Prfθ′ − 2Prf ′θ +
PrM2

A4

Ecf ′2 = 0, (6.20)

where

Ec =
u2

(Tw − T∞)Cp
, Pr =

νf
αf
, N =

4σ∗T 3
∞

K∗Kf

, Ψ =

(
A3 +

4N

3

)

A3 =
(ks + 2kf ) + (−2φkf + 2φks)

(ks + 2kf ) + 2φ(kf − ks)
, A4 =

(
1− φ+ φ

(ρCp)s
(ρCp)f

)
. (6.21)

Here Pr expresses the Prandtl number, Ec the Eckert number and N the radiation

parameter. The reduced boundary condition are:

θ(η) = 1 at η = 0,

θ(η)→ 0 as η →∞.

 (6.22)

Now, substituting (6.9) in (6.20), one can have

Ψθηη + Pr

(
χ

(
1− e−α6.1η

α6.1

))
θη − 2Prχe−α6.1ηθ +

PrM2

A4

Ec
(
χe−α6.1η

)2
= 0.

(6.23)
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Any linear differential equation of second order can be reduced to Kummer’s or-

dinary differential equation. For this purpose, a new variable

ξ6.1 = −Pr χe
−α6.1η

Ψα2
6.1

, (6.24)

is introduced.

As a result, (6.23) becomes Kummer’s ordinary differential equation:

ξ6.1
∂2θ

∂ξ2
6.1

+ (h− ξ6.1)
∂θ

∂ξ6.1

− gθ = −PrM2χ

A4

Ec
(
e−α6.1η

)2
, (6.25)

where h = (1 − P ), P =
Pr χ

Ψα2
6.1

, χ =
1

Lα6.1 + 1
and g = −2. The boundary

conditions are taken as

θ(ξ6.1) = 1, θ(0) = 0. (6.26)

The closed form solution of (6.25) with (6.26) in the form of the Kummer’s func-

tions [105] is given as

θ(ξ6.1) =
− (ξ6.1m1M2 Ec, α6.1

2) Ψ

2 Pr A4m4m5

+

(
− ξ6.1m6 α6.1

2Ψ (Lα6.1+1)
Pr

)m7

m2m9

2m6
m7m3 Ψ2α6.1

4A4m4m5

+
ξ6.1M2 Ec α6.1

2Ψ

2 Pr A4

, (6.27)

where

m1 =

(
1− Pr

(Lα6.1 + 1) Ψα6.1
2

)2

+ (2 ξ6.1 + 1)

(
1− Pr

(Lα6.1 + 1) Ψα6.1
2

)
+ ξ6.1

2 + 2 ξ6.1,

m2 =M

(
−2 +

Pr

(Lα6.1 + 1) Ψα6.1
2
, 1 +

Pr

(Lα6.1 + 1) Ψα6.1
2
,−ξ6.1

)
,

m3 =M

(
Pr

(Lα6.1 + 1) Ψα6.1
2
− 2, 1 +

Pr

(Lα6.1 + 1) Ψα6.1
2
,

−Pr
(Lα6.1 + 1) Ψα6.1

2

)
,

m4 =1− Pr

(Lα6.1 + 1) Ψα6.1
2
, m5 = 2− Pr

(Lα6.1 + 1) Ψα6.1
2
,

m6 =− Pr

(Lα6.1 + 1) Ψα6.1
2
,
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m7 =
Pr

(Lα6.1 + 1) Ψα6.1
2
, m8 =

−2 ξ6.1 Ec M2 α6.1
4Ψ2Pr

(Lα6.1 + 1) Pr
,

m9 =2 Ψ2α6.1
4A4m4

2 + 2 Ψ2α6.1
4A4m4 +m4m8 −m8 +

ξ6.1 Ec M2 Pr α6.1
2Ψ

(Lα6.1 + 1)2 .

Here, M represents the confluent hypergeometric function of the 1st kind. The

solution of 6.23 are defined as follows

θ(η) =
m′1M2 Ec e−α6.1 η

(2Lα6.1 + 2)A4m4m5

+
(m6 e−α6.1 η)

m7 m′2m
′
9

2m6
m7m3 Ψ2α6.1

4A4m4m5

− Ec M2 e−α6.1 η

(2Lα6.1 + 2)A4

,

(6.28)

where

m′1 =

(
1− Pr

(Lα6.1 + 1) Ψα6.1
2

)2

+

(
2

Pr e−α6.1 η

(Lα6.1 + 1) Ψα6.1
2

+ 1

)
×
(

1− Pr

(Lα6.1 + 1) Ψα6.1
2

)
+

Pr 2 (e−α6.1 η)
2

(Lα6.1 + 1)2 Ψ2α6.1
4

+
2Pr e−α6.1 η

(Lα6.1 + 1) Ψα6.1
2
,

m′2 =M

(
−2 +

Pr

(Lα6.1 + 1) Ψα6.1
2
, 1 +

Pr

(Lα6.1 + 1) Ψα6.1
2
,
−Pr e−α6.1 η

(Lα6.1 + 1) Ψα6.1
2

)
,

m′8 =2
Ec M2 e−α6.1 ηα6.1

2Ψ Pr

(Lα6.1 + 1)2 ,

m′9 =2 Ψ2α6.1
4A4m4

2 + 2 Ψ2α6.1
4A4m4 +m4m

′
8 −m′8 −

Ec M2 eα6.1 ηPr 2

(Lα6.1 + 1)3 .

θη(0) =
−C3M2 Ec

(2Lα6.1 + 2)A4C1C2

+
C4M2 Ec α6.1

(2Lα6.1 + 2)A4C1C2

+
C5 Pr C8C6

2 (Lα6.1 + 1) Ψ3α6.1
5C5C8A4C1C2

− C10, (6.29)

where

C1 = 1− Pr

(Lα6.1 + 1) Ψα6.1
2
, C2 = 2− Pr

(Lα6.1 + 1) Ψα6.1
2
,

C3 =
−2prC1

α6.1 (Lα6.1 + 1) Ψ
− 2Pr2

(Lα6.1 + 1)2 Ψ2α6.1
3
− 2Pr

α6.1 (Lα6.1 + 1) Ψ
,

C4 =C1
2 +

(
2

Pr

(Lα6.1 + 1) Ψα6.1
2

+ 1

)
C1 +

Pr 2

(Lα6.1 + 1)2 Ψ2α6.1
4
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+
2pr

(Lα6.1 + 1) Ψα6.1
2
,

C5 =

(
− Pr

(Lα6.1 + 1) Ψα6.1
2

)1−C1

,

C6 =
−2EcM2C1 α6.1

2Ψ Pr

(Lα6.1 + 1)2 + 2 Ψ2α6.1
4A4C1

2 − 2EcM2 α6.1
2ΨPr

(Lα6.1 + 1)2

+ 2 Ψ2α6.1
4A4C1 −

Ec M2 Pr 2

(Lα6.1 + 1)3 ,

C7 = 2
Ec M2 α6.1

3C1 Ψ Pr

(Lα6.1 + 1)2 + 2
Ec M2 α6.1

3Ψ Pr

(Lα6.1 + 1)2 +
Ec M2 α6.1 ePr 2

(Lα6.1 + 1)3 ,

C8 =M

(
−C2, 1 +

Pr

(Lα6.1 + 1) Ψα6.1

, C1 − 1

)
,

C9 =M

(
−C1, 2 +

Pr

(Lα6.1 + 1) Ψα6.1
2
, C1 − 1

)
,

C10 = − C9 Pr C6

α6.1
5 (Lα6.1 + 1) Ψ3C8A4C1

(
2 + 2

Pr

(Lα6.1 + 1) Ψα6.1
2

)−1

− C7
1

2 Ψ2α6.1
4A4C1C2

.

The expression of the local Nusselt number as follows:

Nu =

−knfx
(
∂T

∂y

)
y=0

kf (Tw − T∞)
= −knf

kf
Re1/2

x θη(0). (6.30)

In the current study, the local Nusselt number is

kf
knf

NuxRe
−1/2
x = −θη(0). (6.31)

6.2 Results and Discussion

The effect of the several physical parameters on the velocity and temperature

profiles have been shown in this section in order to examine the behavior of these

parameters. Geometrical view of the physical model is depicted in Figure 6.1.

Figure 6.2 is prepared to check the trend of the velocity field for φ in the presence

of the L separately, while keeping M2 and K constant. It is examined that the

velocity field is enhanced by increasing the magnitude of φ. Impact of the velocity
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slip parameter is illustrated in Figure 6.3. It is observed that the velocity profile

reduces with a decrements in the slip parameter is depicted in Figure 6.3. An

increase in the M2 strongly accelerates the velocity profile shown in Figure 6.4.

Moreover, it is noted that the velocity profile rises by an increment within M2.

Physical insight of the temperature field along with effect of L, K, N , Pr, M2

and φ is plotted in Figures 6.5-6.9 respectively. The temperature profile develops

rapidly for φ. It is observed that platelets shaped nanoparticles has high tempera-

ture profile than the cylinder and brick shaped nanoparticles see in Figure 6.5. In

Figure 6.6, the influence of M2 on the temperature field is discussed. Additionally,

it is concluded that an increment into the magnitude of M2 shows an increasing

trend of the temperature filed. It is expressed that the temperature profile en-

hances due to less heat conduction. Therefore, we can concluded that the heat

conduction is comparatively less in platelets nanoparticles than the cylinder and

brick shaped nanoparticles. The effect of L on the temperature field is portrayed

in Figure 6.7. It is seen that increasing the velocity slip parameter, the temper-

ature field is enhanced. Figure 6.8 portrays the impact of the Prandtl number

on the temperature profile. It is seen that the temperature profile decelerates by

enhancing the magnitude of Pr. As Pr is inversely proportional to the thermal

conductivity of the fluid, therefore heat may diffuse faster from the sheet in case

of the low-Prandtl fluid number as compared the case of a fluid having high Pr

magnitude. The impact of N is displayed in Figure 6.9. It is noticed that the

temperature field accelerates because of an increment in the magnitude of N .

Figure 6.10 expresses the influence of Ec on the non-dimensional temperature gra-

dient −θ′(0). It can be observed that the non-dimensional temperature gradient

enhances by an increment in Ec. Physically, Ec is the ratio of advective transport

to heat dissipation potential. Moreover, an increment in the energy transport rate

indicates that the heat dissipation is decreases in Ec. Figure 6.11 shows diminish-

ing behavior of the heat transport rate by increasing the magnitude of M2. The

impact of Pr on the heat transfer rate is reflected in Figure 6.12. It is examined

that the value of −θ′(0) increases by an increase in Pr. Figure 6.13 illustrates the

rise in a heat transfer rate for radiation parameter. Additionally, increasing rate of
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the local Nusselt number is more high in case of platelets shaped nanoparticles. It

is noticed through Figure 6.14 that the local skin friction coefficient is accelerated

for an increasing the value of M2. In Figure 6.15, the magnitude of −f ′′(0) re-

duces gradually by an increment in L. A decrements in −f ′′(0) by enhancing φ is

concluded through Figure 6.16. In Figure 6.17, the magnitude of −f ′′(0) decreases

with an increment in the permeability parameter.

Table 6.1, shows the thermal characteristics of engine oil and magnetite are given

as [126] and [127]. Table 6.2 displays the nanoparticles shape with their shape

factor is given by Timofeeva et al. [115]. The effect of φ on Nusselt number

are plotted in Figures 6.18-6.20. In Figures 6.21-6.26, the stream lines behavior is

shown. The effect of thermal conductivity of cylinders, bricks and platelets shaped

nanoparticles are represented in Figure 6.27.

Figure 6.2: Impact of variation in φ on f ′(η)

Figure 6.3: Impact of variation in L on f ′(η)
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Figure 6.4: Impact of variation in M2 on f ′(η)

Figure 6.5: Impact of variation in φ on θ(η)

Figure 6.6: Impact of variation in M2 on θ(η)
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Figure 6.7: Impact of variation in L on θ(η)

Figure 6.8: Impact of variation in Pr on θ(η)

Figure 6.9: Impact of variation in N on θ(η)
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Figure 6.10: Impact of variation in Ec on −θ′(0)

Figure 6.11: Impact of variation in M2 on −θ′(0)

Figure 6.12: Impact of variation in Pr on −θ′(0)
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Figure 6.13: Impact of variation in N on −θ′(0)

Figure 6.14: Impact of variation in M2 on −f ′′(0)

Figure 6.15: Impact of variation in L on −f ′′(0)
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Figure 6.16: Impact of variation in φ on −f ′′(0)

Figure 6.17: Impact of variation in K on −f ′′(0)

Figure 6.18: Contour plot for L = 0.5
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Figure 6.19: Contour plot for L = 1.0

Figure 6.20: Contour plot for L = 1.5

Figure 6.21: Contour plot for φ = 0.0
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Figure 6.22: Contour plot for φ = 0.1

Figure 6.23: Contour plot for φ = 0.2

Figure 6.24: Impact of variation in φ on −θ′(0), bricks
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Figure 6.25: Impact of variation in φ on −θ′(0), cylinders

Figure 6.26: Impact of variation in φ on −θ′(0), platelets

Figure 6.27: Impact of variation in thermal conductivity for different shapes
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Table 6.1: Thermal characteristics of conventional fluid and solid nanoparti-
cles.

Physical characteristics ρ(kg m−3) cp(J/kgK) K(W/mk)

Engine oil 884 1910 0.144

Fe3O4 5180 670 9.7

Table 6.2: Numerical values of m (shape factor).

Nanoparticles Shape m

Bricks
370

100

Cylinders
490

100

Platelets
570

100

6.3 Conclusion

The hydromagnetics nanofluid flow having different shaped nanoparticles with ve-

locity slip, thermal radiation and Ohmic heating impacts over a stretching surface

is studied. We concluded the following results:

• The velocity field is a decreasing function of velocity ratio parameter L and

the Hartmann number while φ has the opposite behavior.

• The temperature filed enhances by increasing the value of φ, velocity slip

parameter and Hartmann number M2.
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• It is found that Platelets nanoparticls have highest thermal conductivity and

cylinders have least.

• It is examined that the temperature profile reduced in case of brickes, cylin-

ders and platelets shaped nanoparticles by increasing the magnitude of Pr

and N . Moreover, the decreasing rate in the bricks shaped nanoparticles is

faster than the cylinders and platelets shaped nanoparticles.

• An increase in Ec, Pr and N is found responsible for an augmentation in the

change of heat transport. The heat transfer rate decreases with an increment

in the Hartmann number M2.

• The local skin friction coefficient diminishes by increasing the values of the

Hartmann number, L, φ and permeability parameter K.



Chapter 7

Conclusion and Future Work

The current chapter comprises of the outcomes of this thesis and some future

directions.

7.0.1 Conclusion

This thesis examines the importance of fluid flow and heat transport of Newtonian

viscous nanofluid over a stretching/shrinking surface. The momentum analysis is

carried out with impact of magnetic field, porous medium and stagnation point.

The influence of linear thermal radiation and Joule heating are taken for heat

transport analysis. The closed form solutions of the considered governing equations

are obtained and results are illustrated through graphs and numerical tables. The

main outcomes of the present study are:

7.0.1.1 Shrinking Case:

• It is noticed that the velocity field is an increasing function of φ and the

suction parameter.

• It is examined that the temperature field accelerates effectively by an incre-

ment in φ and decelerates with N .

109
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• It is illustrated that the local skin friction coefficient is a rising function of

the Hartmann number and increasing/decreasing function of φ.

• It is seen that an increment in Pr and thermal radiation parameter is found

responsible for a gain in the rate of energy transport.

• It is observed that the entropy generation field increases by an increment

in the Brickman number, Re, Hartmann number and behaves oppositely for

the temperature difference parameter.

• The irreversibility parameter gains due to an increment in the temperature

difference parameter and reduces by an increase in Ec.

7.0.1.2 Stretching Case:

• The velocity profile of nanofluid decreases with an increasing value of φ in

Cu-water.

• The velocity profile behavior is opposite for Al2O3-water and Fe3O4-engine

oil by gaining the magnitude of φ.

• It is found that the velocity profile is a diminishing function of velocity

slip parameter L and Hartmann number M2 in Cu-water, Al2O3-water and

Fe3O4-engine oil.

• The temperature profile increases for each value of φ, M2, β and L in case

of Cu-water, Al2O3water and Fe3O4-engine oil.

• It is found that Platelets nanoparticls have highest thermal conductivity and

cylinders have least in case of Fe3O4-Engine oil.

• It is seen that the temperature field reduces in case of Cu-water, Al2O3-water

and Fe3O4-engine oil by increasing the values Pr and N .

• The local skin friction coefficient increases by enhancing the values of Hart-

mann number in Cu-water, Al2O3-water and Fe3O4-engine oil.
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• It is seen that the value of −f ′′(0) increasing efficiently by enhancing the

magnitude of an aligned angle. Moreover, value of −f ′′(0) is not affected

due to zero inclination.

• The local skin friction coefficient is decreasing function of L, φ and K in

Fe3O4-engine oil.

• An increase in Ec and Pr is found responsible for an augmentation in the

rate of heat transfer.

7.0.1.3 Exponentially Stretching Case:

• The velocity profile is a decreasing function of φ, velociity ratio parameter

and the mass blowing parameter, whereas it has an opposite behavior for

the mass suction parameter.

• The temperature profile accelerates because of an increasing value of the

Eckert number and M2.

• It is observed that the temperature field reduces with an increase in Pr and

velocity ratio parameter.

• An increment in the suction parameter is found responsible for an augmen-

tation in the local Nusselt number.

• The impact of Platelets shaped nanoparticles are greater than that of cylin-

ders and bricks in the temperature field.

• It is examined that the value of −θ′(0) increases by an increase in Ec, M2

and K.

• The magnitude of the local skin friction coefficient accelerates by increasing

the value of φ.

7.0.2 Future work

Fluid are very important in all aspects of life even from morning cup of tea to the
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evening bath. The industrial significance of Newtonian fluids flow are discussed

in introduction and literature review section. In future, I have plan to study the

impact of non-Newtonian fluid models. In short, I would like to proceed in the

following possible directions:

• Heat transport analysis of the Casson nanofluid induced by a stretching

surface with an inclined MHD.

• Second law analysis of Maxwell nanofluid with porous medium provoked by

a stretching sheet.

• Impact of radiation on Jeffery nanofluid past a shrinking surface with Joule

heating.

• Analysis of hyperbolic tangent fluid flow with the influence of viscous dissi-

pation under slip condition.
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