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Abstract

Over the past few decades, Unmanned Air Vehicles (UAVs) have gained popularity

in various applications, from military operations to public safety. Nowadays, UAVs

can perform commercial tasks such as image and data acquisition in disaster areas,

communication delays, traffic surveillance, map building, search and rescue, and

so on. With the rise in popularity, the number of incidents involving UAVs has

increased drastically due to inexperienced operators. Most UAVs have autonomous

take-off and cruise but limited autonomous landing capabilities due to reliability

issues and high risks. In the autonomous landing phase, the UAV performs many

sensitive and vital tasks in different environmental conditions. Therefore, UAVs

must maintain their performance in the presence of external disturbances (e.g.,

wind, fog).

The landing task involves airborne (glide and flare maneuver) and ground taxi

phases. In glide maneuver, the UAV must descend along the predefined straight-

line path in the longitudinal plane with a fixed negative flight path angle between

−4o and −3o toward the runway. When the UAV reaches around 25 − 30 m

altitude, the flare maneuverability is initiated. In this phase, the UAV is required

to reduce the descent rate and follow a curved path. It is necessary to bring the

flight path angle near zero for a smooth touchdown and the minimum impact on

the landing gears. After the touchdown, the ground taxi phase begins, in which

the UAV needs to steer the centerline of the runway to stop.

In this work, first, the H∞ based Model Predictive Control (MPC) is proposed

for the airborne landing phase in the presence of wind disturbance. The UAV

encounters the wind at the start of the glide slope, and its effects last until the

flare ends. After the touchdown, the ground effects start contributing to the

dynamics of the UAV. As longitudinal velocity changes during the taxi phase,

UAV dynamics also change. At high velocities, aerodynamics contribute more,

and ground dynamics have more effects at low velocities. Due to this coupling

between aerodynamics and tire-ground friction forces, dynamics and control on the

ground are more complex. To deal with these issues, a structured Linear Parameter
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Varying (LPV) model and H∞ based LPV-MPC is proposed for the taxi phase.

The cost function matrices for the MPC are designed by solving the H∞ based

inverse optimal problem. The designed MPC inherits the small-signal properties

(stability margin and closed-loop performance) of the H∞ controller when the

constraints are inactive (i.e., the perturbation around the equilibrium point due to

which the system remains within saturation limits). This control law is successfully

evaluated in the non-linear simulation environment, and the results are compared

with the benchmark controllers. Moreover, the quantitative comparison has been

done by taking the normalized root mean square error (NRMSE) between the

outputs of the taxi phase that are taken by both techniques (H∞ and H∞ based

LPV-MPC). The NRMSEs between the outputs are 1, 1, and 0.9999 (1 for 100%

matching and 0 for no matching) for cross distance (py), yaw (ψ), and yaw rate

(R) respectively.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, are aircraft with-

out onboard human pilots. The UAV system includes a ground controller and a

communication system. The UAVs may operate remotely by a human pilot or

with autonomous flight control systems.

1.1 Background

Britain and the USA developed the first pilotless vehicles during the First World

War. In March 1917, the British Aerial Target was tested, while the U.S. Kettering

Bug, a small radio-controlled aircraft, was flown for the first time in October 1918.

Despite their promising performances during flight tests, neither was used during

the war operation [1].

The UAVs developed through the 20th century were originally for military pur-

poses and were too “dirty, dull or dangerous” for humans. However, they become

essential to most militaries by the 21th century. Many UAVs were developed and

tested during the interwar period. The British produced radio-controlled aircraft

in 1935 for training purposes. At this time, the term ‘drone’ was coined from the

name of one of these models, the DH.82B Queen Bee [2]. The United States also

manufactured radio-controlled drones for target practice and training.

1
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During the Vietnam War, reconnaissance UAVs were first deployed in large num-

bers. The UAVs also began to be used in various roles, such as launching missiles

against fixed targets, acting as decoys in combat, and dropping leaflets for psy-

chological operations. Following the Vietnam War, UAV technology began to be

explored by countries outside the United States and Britain [3]. In new models,

performance and endurance were improved, along with the ability to maintain a

greater height. Several models have been developed in recent years that use solar

power to fuel longer flights.

The UAVs now have many functions, ranging from filming, photography, deliv-

ering goods, and monitoring the changes after natural disasters to carrying out

search operations. However, their most controversial and well-known use is by the

military for surveillance, reconnaissance, and targeted attacks. The United States

has significantly increased its use since the 9/11 attack. They are mostly used for

surveillance in terrain and areas where troops cannot travel safely. However, they

are also used as weapons to attack and killing of suspected militants [4].

The academic history of UAVs involves research, development, and advancements

made in UAVs technology, as well as the scientific principles underlying their

design and operation. One of the earliest academic works on UAVs was published

in 1970 by Dr. Paul Bikle, who wrote a book titled ”Unmanned Aircraft Systems,”

which explored the history, technology, and potential applications of UAVs. Since

then, numerous academic institutions and researchers have contributed to the

development of UAVs, both in terms of hardware and software.

In the 1990s, the academic community started focusing on the development of

autonomous UAVs that can operate without human intervention. The research

efforts in this area were driven by the need to improve UAV reliability and reduce

the workload on operators. Many universities and research institutions, such as the

Massachusetts Institute of Technology and Carnegie Mellon University, began to

develop autonomous UAVs with advanced sensors, control systems, and software.

With the increasing interest in UAVs, academic institutions began offering special-

ized programs in UAV engineering and related fields. For instance, Embry-Riddle
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Aeronautical University offers a Bachelor of Science in Unmanned Aircraft Sys-

tems Science, which covers the fundamentals of UAV design, operation, and main-

tenance. Similarly, the University of North Dakota offers a Bachelor of Science

in Aeronautics with a major in Unmanned Aircraft Systems Operations. These

initiatives have created exciting opportunities for research and development in

various types of UAVs.

In recent years, the academic community has also been focusing on developing

UAVs for civilian applications, such as mapping, surveying, and monitoring nat-

ural resources. This has led to the emergence of interdisciplinary research areas,

such as remote sensing and geospatial analysis, which combine UAV technology

with other fields such as environmental science, geology, and geography. Overall,

the academic history of UAVs has been characterized by a growing interest in au-

tonomous UAVs and the development of specialized programs in UAV engineering.

As UAV technology continues to advance, we can expect further contributions from

the academic community in developing innovative applications and improving the

safety and efficiency of UAVs.

1.2 Application of UAVs

Over the past 40 years, the military UAV revolution has produced technological

advancements that have accelerated the development of the civilian UAV industry.

This growth is fuelled by a large number of UAVs application in the civilian sector

and potential users for each application [5], as shown in Figure 1.1. There are

four major categories of civil UAV applications: commercial, civil, security, and

scientific. The potential civilian UAV applications in each category are highlighted

in Table 1.1.

With the rise in popularity, the number of incidents involving UAVs has increased

drastically due to inexperienced operators [6]. The advancements in technology,

sensors, communication, and control systems have significantly increased the safety

and development of a wide range of UAVs, varying in characteristics, configuration,

shape, and size.
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Table 1.1: Examples of Civilian Applications for UAVs

Application Description

Commercial

Agriculture Monitoring harvest areas

Marine fisheries Sensing and monitoring

Commercial imaging High-altitude imaging and surveillance

Cargo delivery FedEx and United Parcel Service (UPS) delivery

Telecommunications Wide-band internet and temporary networks

Multiple vehicle coordina-
tion

Coordinating planes and ships for collaboration

Aerial surveying Photographic surveying

Civil

Monitoring of critical in-
frastructure

Monitoring the pipelines, aqueducts, dams, power
lines, ports, etc., from the sky

Traffic monitoring Sea and land traffic monitoring

Real-time disaster observa-
tion

Assess the damage after disasters and detecting the
methods to provide relief

Land imaging Inspecting land areas for resources

Search and Rescue Rescuers and prevent accidents

Forestry and fire monitor-
ing

The UAVs can utilize to detect fires in forests

Emergency communica-
tions

Can be used as means of communication by setting
temporary networks during emergencies

Security

Surveillance and reconnais-
sance

Homeland Security

Border and Harbour pa-
trols

Monitoring harbors and borders for violations

Law enforcement Helpful, especially in open or rural areas

Scientific

Meteorology weather and Monitoring weather conditions

Geological surveys Mapping geological data

Environmental monitoring Monitoring environmental conditions

Hurricane reconnaissance Damage prevention and aiding relief efforts
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Figure 1.1: Civilian Applications of UAV (a)-Communication, (b)-
Agriculture, (c)-Transportation (delivery), (d)-Surveying, (e)-Data Dissemina-

tion

1.3 Types of UAV

The UAVs have different capabilities, sizes, and models, from recreational mini-

drones to large surveillance and control drones. UAVs are categorized according

to their specifications. In general, UAVs are classified according to their wing

types [7]. The main types of UAVs are single-wing, multi-rotor, fixed-wing, and

fixed-wing hybrid Vertical Take-Off and Landing (VTOL) at different scales [8].

These types of UAVs are:

1.3.1 Single-Rotor UAVs

Single-rotor UAV types are durable and strong. The structure and design of these

UAVs are similar to the helicopters. Figure 1.2 shows one main rotor on top for

lift and a tail rotor for stability and direction control.



Introduction 6

Figure 1.2: Single Rotor Drone for Agriculture Use

1.3.2 Multi-Rotor UAVs

Multi-rotor UAVs are the cheapest and easiest option for an “eye in the sky”. They

also offer greater position control and framing; hence, they are perfect for aerial

surveillance and photography. They are known as multi-rotors because they have

more than one rotary wind, most commonly tri-copters (3 rotors), quad-copters (4

rotors), hexacopters (6 rotors), and octocopters (8 rotors). A quadcopter shown

in Figure 1.3 is the most popular type of multi-rotor UAV.

Figure 1.3: Two Multi-rotor Drones Flying at Height



Introduction 7

1.3.3 Fixed-Wing UAVs

The fixed-wing UAV shown in Figure 1.4 has one rigid wing, similar to an airplane,

which provides lift with propellers rather than vertical lift rotors. Therefore, they

only need the energy to move forward and not to maintain altitude. Thus, they

are energy-efficient.

Figure 1.4: Fixed Wind UAV

1.3.4 Fixed-Wing Hybrid VTOL

Hybrid VTOL UAVs merge the benefits of rotor-based and fixed-wing designs.

This UAV-type hovers, take-off, and lands vertically with rotors attached to fixed

wings. Currently, only a few hybrid-design UAVs are in the market, but as tech-

nology advances in the coming years, they may become more popular. Figure 1.5

shows an example of a fixed-wing hybrid VTOL with an application of Amazon’s

Prime Air delivery drone.

A brief analysis based on the pros and cons of different types of UAVs is presented

in Table 1.2.

In this work, our focus will be on fixed-wing UAVs that can fly for a long dis-

tance/duration at a higher speed than rotary-wing UAVs. However, sometimes
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Figure 1.5: Unique Fixed-wing Hybrid VTOL UAV used by Amazon Prime
Air

they required a runway for take-off and landing. This type of UAV has different

phases during the flight operation, which are explained in the next section.

1.4 UAVs Flight Phases

In aeronautics, UAVs are one of the main research areas as they have advantages

over manned air vehicles. They can perform a high-precision flight for a long

period without being affected by factors such as visibility and pilot fatigue. The

future plans for UAVs are to form a larger system through which the guidance

and flight control should be autonomous, and the human will tackle only critical

decisions of the mission. The flight envelopes of UAVs consist of different phases,

namely, take-off (taxi, departure), cruise, and landing (descent, final approach,

taxi) [9], as shown in Figure 1.6. Most UAVs have autonomous take-off and cruise

but limited autonomous landing capabilities due to reliability issues and high risks.

In the autonomous landing phase, the UAV must perform many sensitive and vital

tasks in different environmental conditions. Therefore, the performance of UAVs

must not fail in the presence of external disturbances (e.g., crosswinds, fog).
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Table 1.2: Pros and Cons of Different Types of UAVs

Drone Type Pros Cons

Multi-Rotor • Accessibility

• Ease of use

• VTOL and hover flight

• Good camera control

• Can operate in a confined
area

• Short flight times

• Small payload capacity

Fixed-Wing • Long endurance

• Large area coverage

• Fast flight speed

• Launch and recovery
needs much space

• No VTOL/hover

• Harder to fly, more train-
ing needed

• Expensive

Single-Rotor • VTOL and hover flight

• Long endurance (with gas
power)

• Heavier payload capabil-
ity

• More dangerous

• Harder to fly, more train-
ing needed

• Expensive

Fixed-Wing Hy-
brid

• VTOL

• Long-endurance flight

• Not perfect at either hov-
ering or forward flight

• Still in development

Landing the UAV is considered one of the most difficult tasks as it requires tight

control of the UAV’s multiple states. Figure 1.7 shows the accident statistics

of commercial aviation [10]. Almost half of all accidents occur during the final

approach and landing stages. This amplifies in the case of UAVs because of the

unavailability of the onboard pilot. As shown in Figure 1.8, the landing task
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Figure 1.6: Phases of UAV

Figure 1.7: Statistics Observed on the 2004-2013 Period

has two phases: airborne (glide and flare maneuver) and ground taxi. In glide

maneuver, the UAV must descend along the predefined straight-line path in the

longitudinal plane with a fixed negative flight path angle between −4o and −3o,

toward the runway [11]. Sometimes, the glide maneuverability is performed in

two steps. Initially, a higher decent angle is taken, and a lower descent angle is

attained in the latter step. When the UAV reaches around 25 − 30 m altitude,

the flare maneuverability is initiated. In this phase, the UAV is required to reduce

the descent rate and follow a curved path. It is necessary to bring the flight path

angle near zero for a smooth touchdown and the minimum impact on the landing

gears. Figure 1.9 illustrates the typical landing maneuver with the glide and flare

path indication. After the touchdown, the ground taxi phase begins in which the

UAV needs to steer the centerline of the runway to stop [12].
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Landing Problem

Airborne Phase Ground Taxxing Phase

Ground TaxiGlide Flare

Figure 1.8: UAV Landing Problem

Figure 1.9: Glide, Flare and Ground Taxi Phases

In typical UAVs, a human pilot is needed to handle the landing. This is usually

done to reduce the system cost and complexity and mitigate the risks. Opera-

tional experiences have shown that most UAV disasters are due to human errors.

Furthermore, it takes several hours of flight and significant financial investment

to train a human pilot, who can handle these phases efficiently and safely. There

are also severe restrictions on the human pilot during flight operations; for exam-

ple, he cannot land the UAV in thick fog and high crosswind. Thus, equipping

the UAV with the ability to perform landing autonomously increases the system’s

complexity but can potentially render more versatile UAVs. It also can reduce the

long-term costs and risks involved in the landing. Moreover, external disturbances,

such as wind gusts, shear, and downbursts, can be tackled more efficiently.
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1.5 Motivation

Working on UAV landing can be a highly motivating and challenging task, as it

involves solving a number of complex problems related to control, navigation, and

perception. Here are a few potential motivations for working on UAV landing:

� Safety and Reliability: Landing is one of the most critical phases of UAV

operation, and ensuring that UAVs can land safely and reliably is of utmost

importance. For individuals interested in improving the safety and reliability

of UAVs, working on UAV landing can provide an opportunity to develop

new technologies and algorithms that can improve the performance of these

aircraft.

� Autonomous Navigation: Landing a UAV autonomously requires sophis-

ticated algorithms and sensors that can accurately estimate the UAV’s po-

sition and orientation relative to the landing site. Working on UAV landing

can be highly motivating and rewarding for individuals interested in devel-

oping advanced navigation algorithms and perception systems.

� Real-World Applications: UAVs have a wide range of practical applica-

tions, from aerial surveying to package delivery. Landing is a critical compo-

nent of many of these applications, and developing technologies that enable

UAVs to land safely and reliably can significantly impact the feasibility and

effectiveness of these applications.

� Academic Research: Landing is a complex and challenging problem that

has been the subject of extensive research in the academic community. For

individuals interested in pursuing a career in academic research, working on

UAV landing can provide an opportunity to contribute to the development

of new knowledge and technologies in this field.

� Career Opportunities: As the market for UAVs continues to grow, there

is a high demand for individuals with expertise in UAV landing and re-

lated technologies. Working on UAV landing can provide an opportunity
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to develop highly valued skills and knowledge, leading to exciting career

opportunities in industry and academia.

1.6 Research Objectives

The main objective of this work is to reduce the risk induced by a human pilot.

With the steadily increasing applications of UAVs, it is also necessary to have an

autonomous flight control system that provides a proper solution in degraded en-

vironmental conditions. According to [13], Human error is responsible for roughly

60% of UAV accidents during operation, and surprisingly 50% of the incidents are

during the take-off and landing procedure. One of the advantages of autonomous

take-off and landing systems is the elimination of human error. Eliminating the

operator from manually controlling the UAV during take-off and landing proce-

dures and replacing them with an autonomous system will greatly increase safety

during operations. Due to the lack of onboard human pilots, the UAVs depend on

the control system for navigation and obstacle avoidance.

1.7 Research Scope

The goal of this work is to design the control system for a fixed-wing UAV that

enable it to land autonomously. It is similar to the aircraft landing, where an

Instrument Landing System (ILS) assists the pilot in landing safely. In the case of

UAVs, the unavailability of onboard pilot increase the risk involved in the landing.

The problem could be worsened by physical hindrances such as wind shear or gusts.

An autonomous landing system aims to respond fast and accurately to these types

of scenarios and reduce the risk of an error in judgment by a human pilot. It is

done with the help of H∞ based model predictive control technique. The control

system is evaluated for its ability under moderate and severe downburst during

the glide and flare maneuverability. After the touchdown, the effects of ground

forces contributing to the dynamics of the UAV are also tackled, and a lateral taxi
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control is designed. These contributions allow a complete, consistently accurate,

safer landing system for a UAV.

By the end of this work, the author should understand flight dynamics and the

control algorithms applied to UAVs in practice.

1.8 Thesis Contributions

The major contributions of this thesis have been divided into two parts: the

airborne phase and the ground taxi phase. The following individual contributions

lead to these objectives.

1.8.1 Airborne Phase

In the airborne phase, the UAV glides toward the runway, and for smooth touch,

it performs flare maneuverability when it reaches near to the ground. The wind

shear is a major challenge during this phase. The H∞ based MPC is designed

to tackle these effects. This contribution has resulted in the following journal

publication:

Z. Latif, A. Shahzad, A.I. Bhatti, J.F. Whidborne and R. Samar, “Autonomous

Landing of a UAV Using H∞ Based Model Predictive Control,” Drones, no. 6,

vol. 12, pp. 416, 2022.

1.8.2 Ground Taxi Phase

After the touchdown on the runway, the ground forces and moments start con-

tributing to the dynamics of the UAV. The UAV decelerates/accelerates during the

ground taxi phase, which makes the control more complex due to the coupling be-

tween aerodynamics and tire-ground friction forces. Moreover, the lateral control

during the deceleration phase becomes more challenging due to the high initial lon-

gitudinal velocity at touchdown and uncertainty in the tire-ground friction model.
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These effects are significantly amplified in high wind or gust conditions. The con-

troller could damage or lose the system if it does not perform well for all ground

velocities. In this work, the non-linear taxi model has been established and lin-

earized analytically, and a simplified and accurate LPV model is proposed. Then,

H∞ based LPV-MPC is proposed for the directional control. This contribution

has led to the following research publications:

Z. Latif, A. Shahzad, R. Samar and A.I. Bhatti, “Lateral Parameter-Varying

Modelling and Control of a UAV on-Ground,” 4th IFAC Workshop on Linear

Parameter Varying Systems (LPVS) Milan, Italy, no. 8, vol. 54, pp. 130-135,

2021.

Z. Latif, A. Shahzad, A.I. Bhatti and R. Samar, “Lateral Control of an UAV on

the Ground using H∞ based Linear Parameter Varying Model Predictive Control,”

(submitted).

1.9 Thesis Outline

The rest of the thesis is structured as follows:

� The literature review related to the mathematical modeling of taxi phase

and control techniques is given in Chapter 2. A comprehensive literature

survey has been carried out for the control of the UAV during the airborne

phase (glide and flare maneuverability) under wind shear effects, ground

taxi modeling, control, and tuning methods of MPC. Based on the literature

survey, gaps are identified, and a problem statement has been formulated.

� Chapter 3 is dedicated to explain the formulation of H∞ based MPC tech-

nique. The design steps for observer plus state feedback control synthesis

are presented. Linear Quadratic Regulator (LQR) based inverse optimal

problem is formulated, and Linear Matrix Inequalities (LMIs) are solved to

design the cost function matrices.



Introduction 16

� Control design for the airborne phase is presented in Chapter 4. The math-

ematical models for landing trajectory, UAV, and wind shear are presented.

The H∞ based MPC presented in Chapter 3 is developed for the glide and

flare phase. The designed algorithm is assessed in a simulation environment

under moderate and severe wind shear effects, and results are compared with

benchmark work.

Chapter-1
Introduction

Chapter-2
Literature Review

Chapter-3
Control Methodology

Chapter-4
Control Design for Airborne Phase

Chapter-5
Ground Taxi Modelling and Control

Chapter-6
Conclusions and Future Work

Figure 1.10: Thesis Layout

� The ground taxi modeling and control is discussed in Chapter 5. First, a

complete non-linear taxi model has been derived, including the forces gen-

erated by aerodynamics and the interaction of the tires and runway. The

model is analytically linearized and shows that it is explicitly dependent on

the UAV’s forward velocity, which continuously varies during both take-off

and landing roll. Then the LPV model is derived for the taxi phase. Since a

single controller designed at a particular velocity point does not satisfy the

design requirements of all other velocity points, an H∞ based LPV-MPC is

proposed.
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� Finally, the conclusions of the thesis and the future directions are presented

in Chapter 6.

Figure 1.10 presents the overall thesis layout.



Chapter 2

Literature Review

This chapter discusses the research relevant to the landing problem of fixed-wing

UAVs. The landing problem has two maneuverability: airborne and ground taxi

phase and the problem is reviewed separately for both. Moreover, the MPC tuning

has also been discussed with reference to the previously published work. The

breakdown of the survey is shown in Figure 2.1. The research gaps are identified

based on the survey, and the problem is formulated at the end of the chapter.

Literature Review

Airborne Phase Ground Taxi Phase MPC Tuning

Figure 2.1: Literature Review Breakdown

2.1 Airborne Phase

In the airborne phase, the UAV initially glides with a constant negative slope to

decrease the altitude and initiate the flare phase when it reaches the ground for

a smooth touchdown. This maneuver is important because any disturbance may

distract the UAV and damage or lose the system. Therefore, a robust flight control

system is required that can keep the UAV on the desired trajectory.

18
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Classical control techniques are preferred for autonomous landing because of their

reliability and simplicity. However, these techniques do not satisfy the desired

performance and robustness requirements. In recent years, with the developments

in the hardware and computing capacity, the difficulties in implementing modern

control techniques have been significantly reduced [14]. Therefore, the modern

control techniques base flight system is now a mature research area. The researcher

implemented many methodologies, from vision-based navigation to fuzzy logic

control algorithms, to achieve a safe and smooth landing.

A flight algorithm for the autonomous landing of a UAV is proposed in [15]. Dif-

ferent control loops are used to address the specific task separately, e.g., angle of

sideslip control or heading control. A multivariable H∞ controller is designed for

flare maneuverability. At the top level, a non-linear guidance control law provides

the 3D path following capability. A control law is proposed in [16] for Autonomous

Carrier Landing (ACL) system. The non-linear landing model is transformed into

a poly-topic model, and the arresting and ground approach risks are proposed

and integrated using Kalman Filter (KF). The risk-state MPC is presented based

on the landing risk gradient. In [17], a framework is proposed for landing in an

uncertain environment based on point cloud in a coarse to fine manner. It has four

modules: preprocessing point cloud, selection of course landing site, evaluation of

fine terrain, and optimal landing model. An ACL problem is solved in [18] with

input constraints and external disturbance. A relative motion model between the

ideal glide path and the UAV is established, and the wave disturbance to the car-

rier is considered an external disturbance. A backstepping control law is proposed

having input constraints, and the Lyapunov function is used to prove the stability

of the closed-loop system.

In [19], a model following technique based on LQR is given to track the glide and

flare trajectory. In [20], deep-stall landing for the fixed-wing UAV is proposed.

The UAV is guided along the predefined custom path and performs landing at

low speed with good precision. The landing control of high-speed UAV under

wind interference is presented in [21]. The Monte Carlo simulations are used

to show the system’s robustness under wind disturbance. In [22], an automatic
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landing technique is presented which uses an H2/H∞ technique along a dynamic

inversion method. An optimal observer is considered to tackle sensor errors and

other disturbances. The design aims to develop a landing control system that not

only cancels the negative effects of sensor errors and disturbances but also gives a

good result when the number of states is more than the number of sensors. The

PID controllers (conventional and fuzzy variant) are compared with the dynamic

inversion concept in [23]. The PID controllers are tuned for pitch, altitude, and

velocity. The controllers are tested for errors in the gyro sensors and wind shears.

Numerical simulations validate the results. In [24], a sliding mode control (SMC)

technique is designed for autonomous landing. The landing maneuver is divided

into glide path capture and flare. The two phases specify the flight path in a

longitudinal landing plane, a straight line, and an exponential curve. The obtained

controller is validated by simulating the landing maneuver using a non-linear model

with a large offset in the initial position from the reference landing trajectory. The

results are compared with the conventional PID controller.

A hierarchical control structure for the autonomous landing is developed in [25].

Active disturbance rejection for attitude control, proportional guidance law for

height tracking, and PID is used for heading angle, flight path angle, and taxi

control. The Hardware In the Loop (HIL) simulation and field experiments are

conducted to demonstrate the performance of the entire test system and the pro-

posed approach. An intelligent landing system based on an Artificial Neural Net-

work (ANN) is given in [26]. The weights are searched using the Multi-dimensional

Archive of Phenotypic Elites (MAP-Elites) algorithm. The ANN is used to control

the pitching torque and thrust of the UAV to obtain a smooth landing. The same

algorithm is used in the case of high wind conditions. All possible flight condi-

tions should be considered in the training data for efficient training of ANN. A

fuzzy logic-based autonomous landing technique of UAV is proposed in [27]. Three

fuzzy logic modules control the UAV’s global position (longitude-latitude) against

the runway for altitude, speed, and position. An SMC with a Cerebellar Model

Articulation Controller (CMAC) for the landing of a UAV is presented in [28].

The parameters of the SMC are adjusted by the use of a Genetic Algorithm (GA),
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Chaotic Particle Swarm Optimization (CPSO), and Particle Swarm Optimization

(PSO). An intelligent landing scheme based on different CAMCs is presented in

[29]. The lyapunov theory is used for stability analysis and to obtain adaptive

learning rules.

2.2 Taxi Phase

Modeling and control of UAVs are currently one of the main research areas in

industry and academia. The flight control of UAVs in the air has been studied

extensively. However, the research in controlling a UAV on-ground to keep it on

the runway centerline remains limited. The on-ground dynamics and control are

more complex due to the coupling between aero and ground dynamics. Moreover,

the lateral control during the deceleration phase becomes more challenging due to

the high initial longitudinal velocity at touchdown and the uncertain effects of the

tire-ground friction model. These effects are significantly amplified in high wind

or gust conditions. If the controller does not perform well for all ground velocities,

it could lead to damage or loss of the system. Therefore an efficient model and

robust flight control system are required that can steer the vehicle on the runway

during take-off and landing.

Many researchers have studied the UAV ground dynamics and autonomous take-

off control. In [30], an LPV PID control technique is presented for the taxi control

of UAVs. The grid LPV modeling approach tackles the varying mechanism of the

model. The non-linear model is linearised at each gridding point, covering the

entire parameter space. The scheduling depends on longitudinal velocity, and the

whole parameter space is divided into three subsets. The ground forces are ignored

in this work and considered external disturbances. A power-by-wire braking sys-

tem during the taxi phase is proposed in [31]. Instead of hydraulic, the electrical

interface is used, which enhances safety and maintainability. The varying effect of

the model is compensated by using a non-linear adaptive backstepping controller.

The Tracking Deviation Correction (TDC) problem is solved in [32]. The proposed

algorithm is limited to high-speed taxing only.
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The lateral control during on-ground deceleration is discussed in [33]. A weighted

model predictive control law is proposed to control the parameter-varying system.

Based on prior time sequences of the state vector, it provides plenty for the weight

coefficient. The varying velocity of the model would increase the error in the ref-

erence model. The previous prediction step is more important than the following

ones and needs a large plenty weight coefficient. To improve the on-ground dy-

namics of the aircraft, a parameter-varying anti-windup control design technique

is developed in [34]. Typically the anti-windup applications appear on the actua-

tor’s saturation. However, here the author used to represent the non-linear effects

of ground forces which strongly depend on the runway state. This operation is

handled by a Linear Friction Transform (LFT) based estimator. The model is also

assumed to perform well on a large operating range. In [35], a directional control

law is developed for UAVs. The primary control inputs are nose-wheel deflection,

main wheel differential braking, and rudder for low, medium, and high speed. A

priority matrix is developed to decide the secondary control if the primary con-

troller fails.

The ground steering dynamic model of the UAV is built in [36] by using aerody-

namics and ground forces. The bifurcation theory is used to analyze some key

parameters’ effects on the UAV’s steering stability. Moreover, the kinetic charac-

teristics and loading features are analyzed to check the instability mechanism of

the model. A non-linear taxi model is presented in [37] for the implementation of

ATOL algorithms. A successive linearization is used to handle the non-linearities

of airspeed in the lateral dynamics. It allows us to design and gain scheduled con-

trol laws. In [38], the ground run phase has been divided into different portions

to make the control more efficient. A simple proportional gain controller is used

to control the heading of the UAV. A non-linear mathematical model for ground

taxing is proposed in [39]. Directional control was designed for high velocity by

differential braking.

In [40], a non-linear model of the aircraft during the taxi phase is presented by

using both dynamics and kinematics analysis of the system. Then the model is

reduced to the 3 Degree of Freedom (DoF) by considering that there is no roll
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and pitch moment in the taxi phase. A proportional-integral (IP) controller is

used to design the directional control and keep the UAV on the centerline. In [41],

a non-linear model for the taxi phase has been derived by taking the damping

and stiffness model of landing gears. The model has a nose wheel and ruder

as low and high velocity control actuators, respectively. A mathematical model

for a diamond-shaped UAV is presented in [42] along the lateral control during

ground roll. Three different gain setpoints have been used to consider the effects

of the varying velocity of UAVs. In [43], an integrated control law is proposed for

the take-off roll in which the gain varies with the forward speed of the UAV. To

track the trajectory and yaw rate of UAV with varying longitudinal velocity, an

integrated controller based on sliding mode control is given in [44]. In [45], the

yaw rate of the aircraft is controlled during low ground speed. The controller was

designed using feedback linearization based on the non-linear directional model.

2.3 MPC tuning

The classical control techniques give closed-loop stability, performance, and a cer-

tain degree of robustness but generally do not handle the constraints. Some mod-

ifications are proposed, e.g., anti-windup schemes to handle the input constraints

properly. However, these may affect the closed-loop performance, complicate the

design (especially for the multivariable system), and are usually restricted to a spe-

cific class of constraints. A more systematic way to deal with the constraints is the

MPC strategy. In every control cycle, the MPC utilizes the current state’s infor-

mation to predict the model’s evolution over the prediction horizon. Accordingly,

the MPC designs a control input sequence that provides the best performance

and satisfies the constraints. However, it is difficult to characterize MPC’s ro-

bustness, stability, and frequency-domain properties in contrast to linear feedback

controllers. In literature, different techniques are presented to tune the MPC to

behave like any favorite linear feedback controller when constraints are inactive.

The tuning of MPC has been considered in several previously published articles. In

[46], the MPC tuning is based on H∞ loop-shape synthesis. The author solved the
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inverse optimization problem to compute the state estimator parameters and MPC

cost function. By assuming R = I, he computes the Qopt by solving the Algebraic

Riccati Equation (ARE) and LQR equation simultaneously. He does not consider

the constraints on output and augment the disturbance and reference into the

plant model, assuming that the disturbance must be measured or estimated. Based

on this work, the author of [47] considered the input and output constraints. He

also considered the unmeasured disturbance without incorporating the disturbance

model into the plant model. All the plant augmentations are based on the H∞

loop-shaping compensator. In [48] and [49], the controller matching and finding a

cost function problem is considered. The output and state feedback controllers are

considered in these works, respectively. To find the cost function matrices P, Q,

and R, a LMI problem is solved.

In [50], the inverse LQR problem is solved to find the cost function matrices. It

utilized the LMI method to determine the solution of the general inverse LQR

problem when both weights R and Q are unknown. It also proposed the gradient

base least-squares minimization method to find the approximate solution when

the LMIs are infeasible. To meet the closed-loop performance, the tuning of cost

function matrices of MPC are given in [51]. Two semidefinite programming prob-

lems are solved sequentially, one of which is solved in the frequency domain. In the

unconstrained case, the tuning parameters guarantee a nominal robust closed-loop

performance. In [52], an MPC tuning method based on transfer function formu-

lation is given. In the first step, MPC’s gain matches the gain of some favorite

controller by equating the respective transfer function coefficients. In the second

step, a convex optimization problem with LMI constraints is solved to find the

tuning parameters.

The paper [53] outlines a systematic approach to selecting the Model Predictive

Control (MPC) stage cost. The method involves matching the MPC feedback law

with a proportional-integral (PI) controller that is efficiently tuned using high-

performance Monte Carlo (MC) simulation. The MC simulation tuning of the PI

controller minimizes two objectives, namely, the 2-norm tracking error and a bi-

objective comprising the 2-norm tracking error and a penalty on the 2-norm input
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rate of movement. The paper [54] presents an innovative technique for determin-

ing the weights of the MPC based on personal driving data through an automatic

tuning method. Naturalistic driving conditions, which encompass car-following

scenarios and driver behaviors, offer the personal driving data. These data en-

able the creation of a reference model that mirrors the driver’s driving style. The

automatic tuning problem is defined as an optimization problem that involves min-

imizing the difference between the controller’s response and the reference model by

utilizing optimal weight factors. To solve this optimization problem, the Particle

Swarm Optimization (PSO) algorithm is employed.

The paper [55] presents a tuning procedure for multi-input multi-output (MIMO)

systems using MPC. The method involves two steps based on a hybrid approach:

the goal attainment method and a variable neighborhood search. In the first

step, the weights of the MPC objective function are determined by minimizing the

square error between a predefined reference trajectory and the closed-loop response

of the internal controller model. In the second step, the integer variables of the

problem, including prediction and control horizons, are optimized by minimizing

the square error between the closed-loop response and an optimal trajectory to

obtain a low computational cost controller with good performance. The proposed

method is tested on two benchmark processes using different MPC formulations,

and the results demonstrate its effectiveness. In [56] the authors developed an

analytical method to calculate the cost function matrices of MPC in cases where

the prediction horizon is short. They applied this method to control an empirically-

based wave energy converter (WEC) model and successfully tuned the MPC to

adhere to existing linear control laws and meet input and state constraints, such

as actuator force and actuator stroke.

2.4 Gap Analysis

Most UAVs accidents that occur during the landing maneuver are due to severe

weather conditions. During a flight, the UAV must cope with many natural uncer-

tainties and disturbances, such as wind gusts, wind shear, sensor noise, parametric
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uncertainties, etc. In the worst-case scenario, the UAV might diverge from the ref-

erence path, e.g., in [57], where the path error reaches about 39 ft (approx. 12

m) and can create problems for the UAV. So, a well-adjusted and robust control

strategy is required to tackle such scenarios and improve the tracking performance

of the system by reducing path error. After the touchdown, the ground forces start

contributing to the system’s dynamics. The longitudinal velocity of UAVs varies

over a wide range during the ground roll. Such characteristics lead to parameter-

varying problems. However, most of the aforementioned papers do not consider

these issues. Even a few took the gain scheduling but did not provide any explicit

parameter varying structure for vehicle model, controller, or scheduled gain.

In literature, many control techniques are proposed for autonomous landing. The

classical control techniques provide closed-loop stability and a certain degree of

performance and robustness but generally do not consider the constraints. With

some modification, e.g., an anti-windup scheme for input saturation, the con-

straints can be handled, but this reduces the closed-loop performance. A more

systematic way to handle the constraints is the MPC strategy. MPC provides

the best performance along the constraints satisfaction. However, MPC’s robust-

ness, stability, and frequency domain properties are more difficult to characterize

than linear feedback controllers. Properties of both techniques can be achieved by

solving an inverse optimal control problem using a linear state feedback control

law. The problem is to design the weighting matrices (performance index) of the

MPC controller so that it behaves like a linear state feedback controller (favorite

controller) when the constraints are inactive. Hence, the closed-loop properties of

MPC control match the classical control for the perturbations due to which states

and inputs remain in the admission range.

2.5 Problem Statement

As discussed in Section 1.8, the landing problem is divided into airborne and

ground taxi phases. Thus, the fundamental objectives of this work have two folds:
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� Design an H∞ based MPC for the airborne phase in the presence of wind

shear effects

� Develop an LPV model and H∞ based LPV-MPC for lateral control during

the taxi phase to address the challenge of varying speed

2.6 Summary

This chapter presents a detailed literature review of the landing control of fixed-

wing UAVs. The research openings are identified in the airborne phase control

and modeling and control design for the ground taxi phase. Moreover, the tuning

of MPC is also explored in the chapter. Based on this review, the gap and the

research problem have been formulated.

In the next chapter, the control methodology is presented. The algorithm and the

design steps of H∞ based MPC are discussed.



Chapter 3

Control Methodology

In this chapter, we present practical procedures for multivariable controller design,

which are relatively straightforward to apply and which, in our opinion, have an

important role to play in industrial control.

3.1 Introduction

The classical control techniques provide closed-loop performance, stability, and

a certain degree of robustness but generally do not handle the constraints [58].

Some modifications, e.g., anti-windup schemes, can be introduced to handle the

constraints on input saturation [59]. However, these make the design complicated

(especially for multivariable systems), limited to a restricted class of constraints,

and may yield reduced closed-loop performance [49]. A more systematic way to

handle the constraints is the MPC strategy. At each time step, the MPC uses

the current state’s information and predicts the system’s evolution over a desired

future horizon. Accordingly, the MPC designs the best input control sequences re-

sulting in constraint satisfaction and the best performance. However, as mentioned

in [60], it is more difficult to characterize the MPC’s frequency-domain properties,

robustness, and stability compared to many other linear state feedback techniques.

It reduces the application of the MPC technique [61].

28
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In the literature, [48, 49, 52], different techniques are presented for the selection

of the objective/cost function matrices (P, Q and R) of the linear MPC controller

in such a way that it behaves like any favorite linear controller (e.g., H∞ con-

troller for our case) when the constraints are inactive. Hence, for any disturbance

around the equilibrium point for which the inputs and states remain within the

admissible range, the closed-loop properties of the MPC match the H∞ synthe-

sis. The advantage of H∞ based MPC is that, contrary to the H∞, the resulting

technique can handle the constraint properly during the transients along with the

frequency domain properties of H∞ controller when constraints are inactive. To

obtain the cost function matrices based on H∞ controller, an LQR-based inverse

optimal problem is formulated and solved in this work. Now, one can design the

cost function matrices (P, Q and R) more sensibly.

Once the objective function has been designed, state information is required at

each time step. Like many other applications, the lateral taxi control’s full state

information is unavailable. A state observer is required to initialize the prediction

model. It is a well-known fact that the KF can be used to estimate the state in

a full state feedback system e.g., in Linear Quadratic Gaussian (LQG), which is

the basis of MPC due to quadratic objective function. However, the KF does not

guarantee stability margin [62]. Generally, this fact has been overlooked in the

MPC literature, and typically the design methodology emphasizes constraints en-

forcement and performance satisfaction [47]. In this work, we used the normalized

coprime factor robust stabilization approach, which provides a controller that can

be written as plant observer form and have an optimized stability margin [63].

The rest of the chapter is defined as follows. In Section 3.2, the H∞ Loop Shaping

Design Procedure (LSDP) is explained. The LQR-based inverse optimal problem

is formulated and solved in Section 3.3. The MPC problem is given in Section 3.4,

and design steps for H∞ based MPC are presented in Section 3.5.

3.2 H∞ Loop Shaping Design Procedure

The H∞ LSDP is a powerful and sensible procedure to stabilize the plant robustly.

It uses the classical open-loop shaping frequency response to have the desired loop
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Figure 3.1: Robust Stability Block Diagram

shape. It has a two-step design procedure: first, the open loop plant is augmented

to the desired shape of singular values with pre and post-compensators, and then

the shaped plant is robustly stabilized with respect to coprime factor uncertainty

with H∞ optimization. The advantage of this procedure is that no problem-

dependent weight selection or uncertainty modeling is required in the second step.

Consider a plant G which needs to stabilize with its normalized left coprime fac-

torization as:

G = M−1N (3.1)

The perturb plant Gp can be written as

Gp = (M + ∆M)−1 (N + ∆N) (3.2)

where ∆N and ∆M are unknown stable transfer functions, which show the uncer-

tainty in nominal plant G. The objective of robust stabilization is not only to

stabilize the nominal plant G but also a family of perturbed plants Gp around the

nominal plant defined by:

Gp = {(M + ∆M)−1 (N + ∆N) : ∥[∆N ∆M ]∥∞ < ϵ} (3.3)

where ϵ is the stability margin. The robust stabilization of coprime factors of a

plant is to maximize the stability margin. The perturbed feedback system shown
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in Figure 3.1 is robust if and only if the nominal feedback system is stable and,

γ
△
=

∥∥∥∥∥∥
 K

I

 (I −GK)−1M−1

∥∥∥∥∥∥
∞

≤ 1

ϵ
(3.4)

The minimum achievable value of γ, corresponding to the maximum stability mar-

gin ϵ is given by Glover and McFarlane (1989) as [63]:

γmin = ϵ−1
max = {1 − ∥[N M ]∥2H}

− 1
2 = (1 + ρ (XZ))

1
2 (3.5)

where ∥ . ∥H is Hankel norms, ρ denotes the maximum eigen value of minimal

state-space realization (A,B,C&D) of system G. Z is the unique positive definite

solution of the algebraic Riccati equation:

(A−BS−1DTC)Z + Z(A−BS−1DTC)T − ZCTR−1CZ

+BS−1BT = 0 (3.6)

where,

R = I +DDT , S = DTD

X is the unique positive definite solution of the algebraic Riccati equation:

(A−BS−1DTC)TX +X(A−BS−1DTC) −XBS−1BTX

+CTR−1C = 0 (3.7)

The controller guarantees∥∥∥∥∥∥
 K

I

 (I −GK)−1M−1

∥∥∥∥∥∥
∞

< γ (3.8)

for γ > γmin

K
S
=

 A+BF + γ2(LT )−1ZCT (C +DF ) γ2(LT )−1ZCT

BTX −DT

 (3.9)
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Figure 3.2: Shaped Plant and Controller

where

F = − S−1(DTC +BTX)

L = (1 − γ2)I +XZ

It can easily be implemented by MATLAB function ncfsyn and can find the robust

controller for the given plant.

In robust stabilization, the designer is unable to specify the performance require-

ments. The author of [64] proposed per and post-compensating weights to shape

the open loop singular values of the plant. Then, the shaped plant is robustly

stabilized by using the above method. If pre and post weights are W1 and W2

respectively, then shaped plant Gs is given by

Gs = W2GW1 (3.10)

as shown in Figure 3.2. The controller Ks is synthesized by solving the robust

stabilization problem for the shaped plant Gs. The feedback controller K:

K = W1KsW2 (3.11)

is used to stabilize the plant G.

Weight selection is an important step in LSDP. Skills are required to select pre and

post-weights, which shape the singular values as per requirement [65]. Typically,

it is required to have a high gain at low frequencies for noise attenuation, a roll-off
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rate of approximately −20db per decade (slope of -1) at the crossover frequency,

and a high roll-off at high frequencies. Hit and trail are involved in the selection of

these weights. The author of [66] has shown that the single DoF H∞ loop-shaping

controller can be written as observer plus state feedback control law which is

explained in the next subsection.

3.2.1 H∞ Loop Shaping Design using Observer Structure

In general, the H∞ controllers do not have an explicit structure. However, the

normalized coprime factor robust stabilization method provides a controller that

can be written in the form of a plant observer [67]. The resulting controller can

be written as an exact plant observer and state feedback:

˙̂xs = Asx̂s +Hs(Csx̂s − ys) +Bsus

us = Ksx̂s,
(3.12)

where As, Bs, and Cs are the state-space realizations of the shaped plant, x̂s is

the observer state vector, us is the input and ys is the output vector of the shaped

plant. The observer Hs and controller Ks for the shaped plant are:

Hs = − ZsC
T
s

Ks = −BT
s

[
I − γ−2I − γ−2XsZs

]−1
Xs

(3.13)

where Zs and Xs are the solutions of the following algebraic Riccati equations,

AsZs + ZsA
T
s − ZsC

T
s CsZs +BsB

T
s = 0

AT
sXs +XsAs −XsBsB

T
s Xs + CT

s Cs = 0 .
(3.14)

The maximum stability margin is calculated with ϵmax = 1
γmin

, where γmin =√
1 + ρ(XsZs), where ρ is the maximum eigenvalue of matrix XsZs. If γmin < 4

the design is usually successful. The controller Ks is used to formulate and solve

the inverse optimization problem to design the cost function matrices for MPC,

which is presented in the next section.
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3.3 Inverse Optimal Problem

In the optimal control theory, the LQR is used to find infinite horizon full-state

feedback control law for both continuous and discrete time LTI systems [50]. The

formulation for the shaped discrete-time Linear Time-Invariant (LTI) system is,

xk+1 = Asxk +Bsuk (3.15)

which minimizes the objective function

J =
∞∑
k=0

 xk

uk

T  Qs 0

0 Rs

 xk

uk

 . (3.16)

The optimal feedback control is

uk = −KLQRxk, (3.17)

where,
KLQR = (BT

s PsBs +Rs)
−1BT

s PsAs (3.18)

here Ps is the unique positive semi-definite solution of the Discrete-time Algebraic

Riccati Equation (DARE) given as:

AT
s PsAs − Ps − (AT

s PsBs)(B
T
s PsBs +Rs)

−1BT
s PsAs +Qs = 0 (3.19)

where, Qs is semi-positive definite and Rs is a positive-definite matrix. Now, if

this problem is solved in the reverse order by assuming that we have an optimal

feedback controller KLQR and our objective is to find the cost function matrices

for the shaped plant. The methods for solving this problem are explained in the

coming subsection.

3.3.1 Solution of Inverse Optimal Problem

The basic aim is to find the cost function matrices (Ps, Qs, and Rs). The inverse

optimal problem is formulated with (3.18) and (3.19) by taking KLQR = Ks. The
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resulting equations become as follows:

AT
s PsAs − Ps − (AT

s PsBs)Ks +Qs = 0

BT
s PsAs − (BT

s PsBs +Rs)Ks = 0
(3.20)

In (3.20), there are two equations and three unknowns (Ps, Qs, and Rs). The

author of [47] gave an analytical solution to the above problem by taking Rs = I.

It may yield numerically ill-conditioned cost function matrices, which result in

an ill-conditioned real-time optimization problem. An LMIs-based solution to this

problem is presented in [50] by defining an additional criterion, the optimal solution

must reduce the condition number of the cost function matrices. The LMIs-based

optimization problem for the discrete-time system is defined as follows:

(Q̂s, R̂s, P̂s, α̂) = arg min
Qs,Rs,Ps,α

α2,

such that

Ps ≥ 0

AT
s PsAs − Ps − (AT

s PsBs)Ks +Qs = 0

BT
s PsAs − (BT

s PsBs +Rs)Ks = 0

I ≤

 Qs 0

0 Rs

 ≤ αI

(3.21)

The LMI optimization problem (3.21) can be solved efficiently using the SeDuMi

[68] package with the YALMIP modeling toolbox [69] in MATLAB. In contrast

to the standard procedure for selecting cost function matrices for MPC, where

usually diagonal terms are used based on performance, this method gives an off-

diagonal term. These matrices are used to realize the MPC problem presented in

the next section.

3.3.2 Limitation of Technique

When applying the cost function designed for an infinite time horizon in LQR-

based inverse optimization to a finite time horizon scenario like Model Predictive
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Control (MPC), several effects can be observed.

1. Finite horizon objective: The cost function in LQR is derived for an infi-

nite time horizon, aiming to optimize long-term performance. In MPC, the

objective is typically defined over a finite time horizon, focusing on optimiz-

ing short-term behavior. As a result, the cost function needs to be modified

to reflect the desired objectives within the limited time frame.

2. Dynamic optimization: In MPC, the control inputs are recalculated at

each time step, considering the current state of the system and a predictive

model. This enables adaptability and responsiveness to changing conditions.

Unlike LQR, which solves for a steady-state control law, MPC allows for

dynamic optimization by incorporating time-varying constraints and objec-

tives.

3. Terminal conditions: In LQR, the infinite time horizon implies a terminal

condition of reaching a steady state. However, in MPC, the finite time hori-

zon requires explicit specification of desired terminal conditions or setpoints.

This ensures that the system converges to a desired state at the end of the

time horizon.

4. Computational complexity: MPC involves solving an optimization prob-

lem at each time step, which can be computationally intensive. The finite

time horizon increases the number of optimization iterations required com-

pared to LQR, which only requires a one-time solution for the steady-state

control law. Therefore, the computational complexity of the MPC algorithm

may be higher.

5. Performance trade-offs: The selection of the time horizon in MPC in-

volves a trade-off between short-term and long-term performance. A shorter

time horizon allows for more responsive control actions but may sacrifice

long-term stability, while a longer time horizon provides better stability but

might be less responsive to immediate changes. Selecting an appropriate

time horizon is crucial to achieve the desired control objectives.
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In summary, when applying LQR-based inverse optimization to a finite time hori-

zon scenario like MPC, modifications to the cost function, considerations for dy-

namic optimization, terminal conditions, computational complexity, and perfor-

mance trade-offs are necessary to ensure effective control and achieve desired sys-

tem behavior.Our study addressed the performance requirements by solving the

LQR-based inverse optimization problem. The results indicate that the Model

Predictive Control (MPC) approach closely adheres to the H∞ control law.

3.4 MPC Realization

The MPC is a feedback control methodology in which an optimization problem is

solved online to minimize the objective function subject to input, output, and/or

state constraints. At each time step, a control input sequence is computed over

a finite-time horizon that minimizes the objective function subject to constraints.

The first element of the sequence is applied to the system on that sample time,

and the process is repeated on every sampling step in a recursive, receding horizon

manner.

The MPC control methodology is based on the following steps.

1. A prediction model,

x(k + 1) = Ax(k) +Bu(k) (3.22)

y(k) = Cx(k) (3.23)

where, x(k) is the state vector of plant, u(k) is the control input vector of

the system and y(k) is the output vector of the system at time kT , where T

is the sample time.

2. An objective function,

J(u) = xT (N)Px(N) +

N−1∑
k=1

xT (k)Qx(k) + uT (k)Ru(k) (3.24)
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The matrices P ≥ 0, Q ≥ 0, and R > 0 are designed to meet the desired

performance requirements, and N is the prediction horizon.

3. The Inequality constraints,

vmin ≤ v(k) ≤ vmax, (3.25)

here, v(k) is constraint inputs, outputs and/or states and vmin and vmax are

maximum and minimum limits on constraints.

4. An optimization algorithm to minimize the objective function.

The designed steps for the overallH∞ based MPC are presented in the next section.

3.5 H∞ based MPC Framework

The H∞ based MPC methodology has the following design steps.

1. Design the input and output weights (W1 and W2) for the model to meet the

desired closed-loop specifications. It is the basic step of the H∞ loop shape

design procedure, as explained in Section 3.2.

2. Synthesize the H∞ compensator that has an observer-based state feedback

structure. As a result, we have controller matrix Ks and observer matrix Hs

for the shaped plant. The observer matrix Hs is used to estimate the state

vector to initialize the prediction model at each time step in MPC.

3. By using the controller matrix Ks, from Step 2, formulate and solve an in-

verse optimization problem as presented in Section 3.3 to design cost function

matrices Ps, Qs and Rs.

4. Solve the MPC problem using the cost function matrices designed in Step 3.

This methodology inherits the transient response, reference tracking, disturbance

rejection, and stability margin of H∞ controller in the region where the constraints
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are inactive. As the observer is designed by H∞ synthesis, it does not require

additional tuning. In this formulation, the first three steps can be done offline.

Once the cost function matrices are designed, the MPC algorithm uses them to

solve an online optimization problem.

3.6 Summary

In this chapter, the control methodology used for landing the UAV is given in

detail. The H∞ LSDP is discussed along with the observer plus state feedback

structure. The LQR-based inverse optimal problem is formulated, and the algo-

rithm for the solution is described. Finally, the design steps for H∞ based MPC

are presented.

In the next chapter, the control is designed for the airborne landing phase by using

the above algorithm, and the results are compared with the benchmark work.



Chapter 4

Control Design for Airborne

Phase

Possibly the most critical phase of a UAV flight is landing. Autonomous landing

systems can be used to reduce the risk due to pilot error. Environmental dis-

turbances like wind shear can jeopardize safe landing; therefore, a well-adjusted

and robust control system is required to maintain the performance requirements

during landing. This work proposes a H∞ based MPC approach for autonomous

UAV landings.

The chapter is organized as follows. In Section 4.1, the mathematical models for

landing trajectory, UAV, and wind shear are presented. In Section 4.2, the H∞

controller is designed for the glide and flare phase. The MPC is realized for the

landing control of UAV in Section 3.4. The results are discussed in Section 4.4

and summarized in Section 4.5.

4.1 Mathematical Models of the System

In addition to a model of the UAV dynamics, a mathematical model of the landing

trajectory, as shown in Figure 1.9, is also necessary. It is the reference path that

the UAV will follow during landing. The performance of the UAV is affected

40
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by wind disturbances, and a wind model is needed to calculate this effect. This

section presents the mathematical model of the landing trajectory, the non-linear

and linear UAV, and the wind-shear model.

4.1.1 Landing Trajectory Model

There are two maneuvers in the airborne phase: glide and flare. During the glide

phase, the UAV descent with the glide path angle of −3o to −4o. When the UAV

reaches an altitude of about 30 m, the flare maneuverability is executed. The

descent rate of the UAV is decreased for a comfortable and smooth touchdown.

Figure 4.1: Reference Glide and Flare Path

For the glide phase (h ≥ h0, h0 is the altitude at which the glide phase ends and

flare begins), the reference altitude hr and actual altitude h is:

ḣr = V0sinγr ≈ V0γr

ḣ = V0sinγ ≈ V0γ
(4.1)

where γ = θ − α is the actual glide path angle of the UAV during the first phase

of landing and γr = θr − α is the reference glide path angle, θ is the pitch angle,
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α is the angle of attack, and V0 is the nominal flight speed of the UAV. Generally

γr ≈ 30 hence the small angle approximations are justified in (4.1). The dynamics

of the flare phase are presented in detail in [22]. The reference altitude hr is

usually an exponential decay function given as hr = h0 exp (−t/τ), with τ as the

time constant that defines the exponential curve of flare. The derivative of the

above equation is:

ḣr = −1

τ
h0 exp (−t/τ)

= −1

τ
hr.

(4.2)

By using equations (4.1) and (4.2), the reference pitch angle θr for both phases

can be determined:

θr ≈ α +
ḣr
V0

≈


α + γr, h ≥ h0,

α− 1

V0τ
hr, h < h0.

(4.3)

4.1.2 UAV Model

The UAV is assumed to be a rigid body in still air with decoupled lateral and

longitudinal dynamics. The detailed mathematical model is presented in [70].

Only the longitudinal dynamics are considered in this work because the landing

is mostly related to the longitudinal part. The longitudinal dynamics are given as

follows:

U̇ = −QW − g0sinθ +
Fx

m

Ẇ = QU + g0cosθ +
Fz

m

θ̇ = Q

Q̇ =
My

Jy

(4.4)

where U is the longitudinal body-axes velocity, W is the vertical body-axes ve-

locity, θ is the pitch, Q the is pitch rate, g0 is the gravitational acceleration, m is

mass, and Jy is the moment of inertia in the pitch of the UAV. Fx and Fz are the



Control Design for Airborne Phase 43

Table 4.1: Physical Parameters of the Test Vehicle

Description Parameter Value

Mass m 350 kg

Moment of inertia about y-axis Jy 300 kg.m2

Wing area S 6.5 m2

Mean aerodynamic chord c̄ 6.6 m

aerodynamic forces along the x− and z−axis, respectively and My is the pitching

moment about the y−axis. These forces and moments are defined as:

Fx =
1

2
ρV 2

0 SCx + T

Fz =
1

2
ρV 2

0 SCz

My =
1

2
ρV 2

0 Sc̄Cm

(4.5)

where V0 =
√
U2 +W 2, ρ is air mass density, T is thrust, S is wing area and c̄

is mean aerodynamic chord. In (4.5), the aerodynamic coefficients can be defined

as:

Cx = Cx0 + Cxαα + Cxδe
δe

Cz = Cz0 + Czαα + Czδe
δe

Cm = Cm0 + Cmαα + Cmδe
δe +

CmqQc̄

V0

(4.6)

In this work, a medium-sized UAV is used as a test vehicle. The test vehicle’s

physical parameters and aerodynamic coefficients are given in Tables 5.2 and 4.2,

respectively.

The non-linear model given in (4.4) is linearized by numerically perturbing the

states and inputs about the operating point. The algorithm introduces a small

perturbation to the states and inputs, one at a time, measures the system’s re-

sponse, and computes the state-spaces matrices. The longitudinal model has four

states. However, the states can be expanded to include x-horizontal distance and
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Table 4.2: Aerodynamic Coefficients of the Test Vehicle.

Parameter Value Parameter Value

Cx0 −0.031 Cα
x −0.088

Cxδe
−0.01 Cδe

z −0.124

Cz0 −0.129 Cα
z −3.368

Cm0 0.003 Cα
m −0.4

Cmq −2.0 Cmδe
0.25

h-altitude of the UAV as:

ẋ = Ucosθ +W sinθ,

ḣ = Usinθ −W cosθ.
(4.7)

The non-linear model is trimmed for the conditions of U = 50 m/s, W = 3 m/s,

θ = 0.5 deg, Q = 0 deg/s, h = 300 m and initial position x = 0 m. The inputs

to the system are elevator deflection δe and thrust δth. The state-space model is

written as follows:

ẋv = Avxv +Bvuv

yv = Cvxv

(4.8)

where xv = [u w θ q h x] is the perturbed state vector, uv = [δe δth] is

the perturbed input vector and yv = [u q θ h] is the perturbed output vector.

Av, Bv, and Cv are the state space matrices of the vehicle model and are given

below.

Av =



−0.0399 −0.0541 −0.1710 −0.0524 0 0

−0.2783 −1.9805 −0.0045 0.8727 0 0

0 0 0 1 0 0

1.1360 −18.3577 0 −1.9144 0 0

0.0087 −1 0.8737 0 0 0

1 0.0087 0.0295 0 0 0


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Bv =

 −0.0050 −0.0598 0 9.9890 0 0

0.0143 0 0 0 0 0

T

Cv =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0



4.1.3 Wind Shear Model

Wind shear is the rapid variation in wind direction and/or speed over a short time

or distance. If the diameter of wind shear is more than 4 km, it is called macro-

burst, otherwise micro-burst. A micro-burst may last for a few seconds, but its

effects, such as variation and extreme speed, can be very dangerous for the UAVs

during airborne phase [71].

Various models of micro-burst have been developed. One is the vortex-ring model,

proposed by Woodfield and Wood [72]. The vortex ring induces the velocity wind,

and the micro-burst is represented by the two rings symmetrically to satisfy the

boundary conditions. One is called the primary vortex ring above the ground, and

the other is of the same strength below the ground and is called the imaginary

vortex ring. Figure 4.2 illustrates the vortex-ring model.

Parameters rC , R, and Γ represent the finite core’s radius and the vortex-ring and

vortex-ring model circulation, respectively. X, Y, and H are the center coordinates

of the primary ring. Multiple pairs of ring can enhance the accuracy of the wind

shear. A simplified vortex-ring down-burst model with two rings is presented

in [57] and is used in this work. We can take Y = 0 because only longitudinal

dynamics are considered in our study. If h and x are vertical and horizontal points
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Figure 4.2: Vortex-Ring Model

of interest, respectively, then the induced velocities are computed as follows:

x1 = x−X −R x2 = x−X +R

hp = h−H hm = h+H

r1p = x21 + h2p r2p = x22 + h2p (4.9)

r1m = x21 + h2m r2m = x22 + h2m

r0 = min{r1p, r2p} ζ = 1 − exp−(r0/r2c )

rxp =
√

(x−X)2 + h2p +R2

rxm =
√

(x−X)2 + h2m +R2

rhp =
[
(x−X)2 + h2p +R2

]3/4
rhm =

[
(x−X)2 + h2m +R2

]3/4
If r0 < ϵ, where ϵ is a small number that represents a point close to the ring

filament, then,

Wx = 0, Wh = 0
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Table 4.3: Downburst Parameters for Two Rings

Parameter Moderate Severe Unit

Γ1 18580 37160 m2/s

R1 1676 1524 m

H1 610 610 m

Rc1 152 152 m

Γ2 11148 26013 m2/s

R2 1220 1067 m

H2 762 610 m

Rc2 152 91 m

Otherwise,

Wx =
1.182Γζ

2π

[
R

rxp

(
hp
r2p

− hp
r1p

)
− R

rxm

(
hm
r2m

− hm
r1m

)]

Wh =
1.576Γζ

2π

[
R

rhp

(
x1

r
3/4
1p

− x2

r
3/4
2p

)
− R

rhm

(
x1

r
3/4
1m

− x2

r
3/4
2m

)] (4.10)

where Wh and Wx are vertical and horizontal induced velocities, respectively. Two

sets of parameters are shown in Table 4.3, which are used to calculate Wh and Wx

for simulations. The first set of parameters represents a moderate down-burst

and the second for severe down-burst. It is assumed that the UAV encounters

the down-burst at the altitude of 300 m. Moderate and severe down-bursts are

shown in Figure 4.6. Simulation models of UAVs need to incorporate the above

mathematical representation of wind-shear effects. After embedding the wind-

shear model in the equation (4.4) and (4.7), the UAVs model is as follow [57]:

U̇ = −QW − g0sinθ +
Fx

m
+ Ẇx

Ẇ = QU + g0cosθ +
Fz

m
+ Ẇh

ẋ = Ucosθ +W sinθ +Wx

ḣ = Usinθ −W cosθ +Wh

(4.11)
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where, Ẇx and Ẇh are the derivative of longitudinal and vertical wind components

respectively and are considered as input signals.

4.2 Design of H∞ Control

The linear model Gv : C 7→ C2×4 presented in 4.8 is used to describe the de-

sign methodology. To meet the desired specification following pre and post-

compensators are selected,

W1 = diag

(
3(s+ 1)

s
,

(s+ 1)

s

)

W2 = diag

(
1, 1.5,

(s+ 0.01)

s
,

1.2(s+ 0.01)

s

) (4.12)

The resulting shaped model/plant is obtained as:

Gsp = W1GvW2 (4.13)

After including the weights, the state of the shaped plant has been increased. The

state space representation of the shaped plant is:

ẋs = Asxs +Bsus

ys = Csxs

(4.14)

where xs, us, and ys are the shaped plant’s state, input, and output vectors. The

state space matrices As, Bs, and Cs for the shaped plant are given below.

Following the H∞ loop shaping control procedure, as explained in Section 3.2.1,

the controller Ks and observer Hs are synthesized. The normalized coprime factor

robust optimization gave γ = 2.81 < 4 that meets the desired robustness criteria.

The singular values of the plant, shaped plant, and shaped plant along with the

controller are shown in the Figure 4.3a and the step response of altitude in the

Figure 4.3b.
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(a) Singular Values

(b) Step Response of Height

Figure 4.3: H∞ Design Results
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The state space matrices As, Bs and Cs the controller Ks, the observer Hs and

MPC cost function matrices Ps, Qs and Rs for the shaped plant are as follows:

As =



0.9992 -0.0008 -0.0034 -0.0011 0 -0.0010 0.0014

-0.0052 0.9586 -0.0000 0.0168 0 0.0026 0

0.0002 -0.0036 1.0000 0.0196 0 0.0099 0

0.0224 -0.3508 -0.0000 0.9594 0 0.9800 0

0.0002 -0.0196 0.0175 0 1 0.0001 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



Bs =

 -0.0041 0.0105 0.0397 3.9596 0.0002 0.0800 0

0.0058 0 0 0.0001 0 0 0.0800

T

Cs =


20 0 0 0 0 0 0

0 0 0 20 0 0 0

0 0 2 0 0 0 0

0 0 0 0 100 0 0



Ks =

 0.0244 -0.56 1.0539 0.2459 1.1537 0.2479 0.0001

19.1416 -12.125 20.0018 0.0215 32.2626 0.0026 0.2311



Hs =



−2.54

×10−9

−2.37

×10−8

−3.68

×10−8

−1.21

×10−6

−2.54

×10−10

−2.50

×10−8

−6.22

×10−8

4.24

×10−6

−3.79

×10−5

−5.84

×10−5

−1.91

×10−3

−3.65

×10−7

−3.95

×10−5

−1.57

×10−8

−2.21

×10−7

1.99

×10−6

3.06

×10−6

1.00

×10−4

1.91

×10−8

2.07

×10−6

1.07

×10−8

1.79

×10−9

−1.60

×10−8

−2.46

×10−8

−8.07

×10−7

−1.54

×10−10

−1.67

×10−8

5.31

×10−11



T
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The designed controller gain Ks is used to formulate and solve the LQR based

inverse optimization problem presented in Section 3.3 to design the cost function

matrices (Ps, Qs and Rs). The resultant cost function matrices for the shaped

plant are given below.

Ps = 108 ×



2.5343 -0.2893 0.0596 0.0056 1.0865 0.0113 -0.1385

-0.2893 2.3353 -1.5603 -0.0701 -1.2734 0.0421 -0.0069

0.0596 -1.5603 3.0612 0.1503 3.0576 -0.1907 0.0417

0.0056 -0.0701 0.1503 0.0405 0.1650 -0.0587 -0.0005

1.0865 -1.2734 3.0576 0.1650 5.7402 0.0968 -0.0025

0.0113 0.0421 -0.1907 -0.0587 0.0968 2.9988 -0.0008

-0.1385 -0.0069 0.0417 -0.0005 -0.0025 -0.0008 0.0105



Qs = 108 ×



0.0687 -0.0253 0.0667 0.0098 0.1241 0.0018 -0.0029

-0.0253 0.3092 -0.3552 -0.0868 -0.3736 -0.0166 -0.0006

0.0667 -0.3552 0.7049 0.1409 0.8329 -0.0052 0.0004

0.0098 -0.0868 0.1409 0.0390 0.1578 -0.0005 -0.0009

0.1241 -0.3736 0.8329 0.1578 1.0808 0.0022 -0.0001

0.0018 -0.0166 -0.0052 -0.0005 0.0022 0.1176 -0.0000

-0.0029 -0.0006 0.0004 -0.0009 -0.0001 -0.0000 0.0004



Rs = 104 ×

 0.0932 -0.0002

-0.0002 1.6236



4.3 MPC Design

The MPC problem presented in Section 3.4 is realized for the shaped model given

in (4.14) having input constraints [−25◦ 25◦], and [0 100]% for elevator deflection

and percentage thrust, respectively. The dense approach presented in [73] is used

for given LTI systems. The cost function and prediction model with prediction

horizon N can be written as follows:(The subscript “s” is ignored in the rest of
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the work since we are designing MPC for a shaped system.)

J(z, x0) = xTNPxN +
N−1∑
k=1

xTkQxk + zTk Rzk

J(z, x0) =xT0Qx0 +



x1

x2
...

xN−1

xN



T 

Q 0 0 · · · 0

0 Q 0 · · · 0
...

...
. . .

...
...

0 · · · 0 Q 0

0 0 · · · 0 P


︸ ︷︷ ︸

Q̄



x1

x2
...

xN−1

xN



+


u0

u1
...

uN−1



T

︸ ︷︷ ︸
z


R 0 · · · 0

0 R · · · 0
...

...
. . .

...

0 0 · · · R


︸ ︷︷ ︸

R̄


u0

u1
...

uN−1




x1

x2
...

xN

 =


A

A2

...

AN


︸ ︷︷ ︸

T̄

x0 +


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B


︸ ︷︷ ︸

S̄


u0

u1
...

uN−1



J(z, x0) = xT0Qx0 +
(
T̄ x0 + S̄z

)T
Q̄
(
T̄ x0 + S̄z

)
+ zT R̄z

=
1

2
zT 2(R̄ + S̄T Q̄S̄)︸ ︷︷ ︸

H

z + xT0 2T̄ T Q̄S̄︸ ︷︷ ︸
F

z

=
1

2
zTHz + xT0 Fz (4.15)

where z is the input vector. As we are designing the control system for the shaped

plant, it is necessary to convert the input constraint limits from uv to us. The
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constraints matrices for the shaped plant are as follows:
Cw1Bw1 0 · · · 0

Cw1Aw1Bw1 Cw1Bw1 · · · 0
...

...
. . .

...

Cw1A
N−1
w1 Bw1 Cw1A

N−2
w1 Bw1 · · · Bw1


︸ ︷︷ ︸

G


u0

u1
...

xN−1

 ≤


umax

umax

...

umax

−


Cw1Aw1

Cw1A
2
w1

...

Cw1A
N
w1


︸ ︷︷ ︸

S

xw1

The Interior Point Method (IPM) is used to minimize the cost function (4.15)

along with constraints at each time step. The detailed results are presented and

discussed in the next section.

4.4 Results and Discussion

The proposed control law is implemented in a non-linear simulation environment

to validate the designed algorithm. The simulation was conducted for two differ-

ent scenarios. In the first case, the designed control law is tested for reference

tracking in an ideal environment (without external disturbance) and the second

case illustrates the disturbance rejection property of the design. The wind shear

effects given in Section 4.1.3 are used as external disturbances, and results are

compared to the study presented in [57].

4.4.1 Case-1

In the first case, the linear model of the UAV given in (4.8) is used to ensure that

it follows the reference trajectory under ideal conditions. The altitude error is

minimized by elevator deflection and thrust demand. Figure 4.5a shows that the

UAV track the reference trajectory closly with minimum path error. The result

also indicates that the angle of attack (α), pitch (θ), and flight path angle (γ) have

been smoother, as shown in Figure 4.5b. Figure 4.5c and 4.5d show the elevator

and thrust demand respectively.
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Figure 4.4: An Observer Based Implementation of H∞ based MPC with Wind
Shear

4.4.2 Case-2

The design algorithm is assessed under moderate and severe wind shear in the

second case. The UAV encounters the wind at the start of the glide slope, and

its effects last until the flare ends. It is assumed that the initial altitude of the

UAV is 300 m, and the flare phase begins at an altitude of 30 m. In (4.11),

winds-shear components were introduced into the dynamic equations of the UAV.

The equation shows that altitude depends on U , W , θ, and Wh. The wind shear

component Wh is a disturbance input that cannot be controlled; however, the

controller can compensate for the wind shear effects using U , W , and θ. The

controller dynamically adjusts θ and hence γ to keep the UAV on the desired

path. Contrary to the ideal case, it is not required to maintain a constant angle

of attack α in the presence of the wind shear.

Figure 4.7a shows that the headwind increase during the first 20 seconds, and

the UAV has increased the longitudinal velocity component to compensate for its

effects. Figure 4.7b shows that the angle of attack also increases in response to the
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(a) Altitude Level

(b) Angle of Attack (α), Glide Path Angle (γ) and Pitch Angle (θ)

Figure 4.5: Case 1: No Wind Effect
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(c) Elevator Deflection

(d) Thrust Demand

Figure 4.5: (Continued)
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(a) Moderate Downburst

(b) Severe Downburst

Figure 4.6: Windshear Effects
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(a) Altitude Level

(b) Angle of Attack (α), Flight Path Angle (γ) and Pitch Angle (θ)

Figure 4.7: Case 2: Moderate Downburst
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(c) Deviation between Actual Path and Reference Path

(d) Velocity Deviation from Trim Value

Figure 4.7: (Continued)
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(e) Elevator Deflection

(f) Thrust Setting

Figure 4.7: (Continued)
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(a) Altitude Level

(b) Angle of Attack (α), Flight Path Angle (γ) and Pitch Angle (θ)

Figure 4.8: Case 2: Severe Downburst
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(c) Deviation between Actual Path and Reference Path

(d) Velocity Deviation from Trim Value

Figure 4.8: (Continued)
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(e) Elevator Deflection

(f) Thrust Setting

Figure 4.8: (Continued)
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vertical component of wind. As a result, the altitude and velocity return to the

desired level with little deviation, as shown in Figures 4.7c and 4.7d, respectively.

After 20 seconds, the headwind effects weaken, and the angle of attack decreases

to maintain the desired altitude. The UAV starts encountering a tailwind after

50 seconds, increasing the longitudinal velocity and decreasing the angle of at-

tack. The controller reduces the velocity and increases the angle of attack by

manipulating the thrust demand and elevator deflection.

The flare phase begins after 90 seconds when the tailwind gradually loses its effects.

Figure 4.5a shows that the UAV follows the reference trajectory closely during both

glide and flare phases and performs a smooth touchdown. Figures 4.7e and 4.7f

represent the elevator and throttle actuator displacements, which remain within

limits since the UAV follows the reference landing trajectory. The controller is

also tested under a severe downburst. The results in Figure 4.8 are similar to the

moderate downburst case with higher magnitudes. The UAV closely follows the

reference trajectory and the elevator deflection angle and throttle position remain

within limits.

The proposed control methodology is compared with the study reported in [57].

Our UAV is different, so for a fair comparison, the wind load on both vehicles is

calculated, and the controller performance is assessed under the severe downburst

effects. The wind load Fwind, on the air vehicle is calculated by:

Fwind =
1

2
ρVwindSCL (4.16)

where ρ represents the air density, Vwind is the wind velocity, S is the wing reference

area, and CL is the lift coefficient. The acceleration azw along the z-axis, due to

wind load is defined as:

azw =
Fwind

m
(4.17)

The acceleration az of the test vehicle throughout the landing trajectory is given in

Figure 4.9. Moreover, it is shown in Table 4.4 that the vehicle’s acceleration (azw)
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(a) For Moderate Downburst

(b) For Severe Downburst

Figure 4.9: Body Acceleration along z−axis
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Table 4.4: Comparison of Test Vehicle with Reference

Parameter Reference Vehicle [57] Test Vehicle Unit

Mass 73482 350 kg

Wing reference area 201.6 6.5 m2

Wind velocity 23 23 m/s

Wind load 63988 268.19 N

azw(wind) 0.871 0.766 m/s2

az(controller) 2.1 0.00627 m/s2

due to wind load is nearly the same for both systems. The controller did not react

properly in the reference study, which worsened the situation. Contrary to this,

our proposed controller reacts efficiently and cancels the wind effect significantly.

4.5 Summary

A different approach for landing fixed-wing UAVs is presented in this work. Glide

and flare reference trajectories are predefined, and the UAV is forced to follow the

altitude of the reference trajectory. First, the model is robustly stabilized using

the normalized coprime factorization method, and the controller Ks and observer

Hs are obtained. Then, the LQR-based inverse optimal problem is formulated

and solved to design the cost function matrices, which are further utilized to

realize MPC. The designed MPC inherits the small-signal properties (stability

margin and closed-loop performance) of the H∞ controller when the constraints

are inactive (i.e., perturbation around equilibrium points that keep the system

within saturation limits). Various scenarios are simulated and studied. The results

demonstrate the proposed techniques’ effectiveness and correctness even under

moderate and severe wind shear effects. A qualitative analysis is also performed to

compare the results with the benchmark work. The landing results demonstrated

a significant improvement.



Chapter 5

Taxi Modeling and Control

Modeling and control of UAVs are currently one of the main research areas in in-

dustry and academia [74]. The flight control of UAVs in the air has been studied

extensively. However, the research on the control of a UAV on-ground to keep it

on the runway centreline remain limited. The on-ground dynamics and control are

more complex due to the coupling between aerodynamics and tire-ground friction

forces [75]. Moreover, the lateral control during the deceleration phase becomes

more challenging due to the high initial longitudinal velocity at touch-down and

uncertainty in the tire-ground friction model. These effects are significantly am-

plified in high wind or gust conditions. The controller could damage or lose the

system if it does not perform well for all ground velocities. Therefore, an accurate

LPV model and robust flight control system are required to steer the vehicle on

the runway during take-off and landing taxi.

The chapter is organized as follows. In Section 5.1, a complete non-linear taxi

model has been derived, including the aerodynamic forces and the interaction of

the tires and runway. In Section 5.2, the model is analytically linearized and shows

that it is explicitly dependent on the UAV’s forward velocity, which continuously

varies during both take-off and landing taxi. Then, an LPV model is derived for

the taxi phase. The H∞ controller is designed in Section 5.3. It is shown that a

single controller designed at a particular velocity point does not satisfy the design

requirements at all other velocity points. An LPV H∞ controller is proposed

67
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to address this issue. In Section 5.4, the inverse optimal problem is solved to

design LPV cost function matrices. Then, an H∞ based LPV-MPC problem is

formulated and solved in this section. The control law is successfully evaluated in

the non-linear simulation environment. The comparative results of LPV H∞ and

H∞ based LPV-MPC are presented in Section 5.4.4.

5.1 Non-Linear Taxi Modelling

This section establishes a non-linear taxi model for the UAV on the ground. A

reference frame must be defined to develop motion equations for UAVs [76]. During

the taxi phase, the UAV must interact with both atmosphere and the ground. The

necessary reference frames relative to which the motion is considered are given in

the coming subsection.

5.1.1 Reference Frame and Axes

Mathematical models for UAVs require a system of coordinates that describes

their motion relative to that system. The coordinate systems required for the

mathematical modeling of UAVs are discussed here.

5.1.1.1 Body Fixed Coordinate System

It is necessary to define the UAV’s body-fixed coordinate system to describe its

motion and orientation. It originates at the center of mass (center of gravity, CG)

of the UAV with the x-axis aligned to the nose of the UAV, and the x − z plane

is symmetric. The y-axis is starboard, and the z-axis is downward. In Figure 5.1,

xb, yb and zb show the direction of the body-fixed axis frame. The rotations and

translations of this coordinate system are directly linked to the motion of the UAV

in air.
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Figure 5.1: Body-fixed and Aerodynamics Coordinate Systems

5.1.1.2 Aerodynamic Coordinate System

This coordinate system is also linked with the body of the UAV. Its origin is at

the center of the mass of the UAV and is associated with the orientation of the

UAV’s velocity vector relative to the air mass. As shown in Figure 5.1, its x-axis,

(xa) is aligned in the direction of the air velocity vector Vair. It can be transformed

into the body coordinate system by rotating an angle α (angle of attack) around

the y-axis and angle β (side-slip) around the z-axis.

5.1.1.3 Earth’s Coordinate System

An earth reference frame is required to describe the UAV’s motion on the runway.

All the navigations of UAVs are described relative to the earth coordinate system.

The distance covered by the UAV is small enough to approximate the earth as

a flat surface. Figure 5.2 shows that the earth coordinate system is defined with

its origin at the start of the point of the runway. The x-axis is aligned with the

runway direction, the y-axis toward the right, and the z-axis downward. If the
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runway has a direction toward the north, then this axis can be called the north,

east, and downward (NED axis).

Figure 5.2: Earth Coordinate System

5.1.1.4 Wheels Coordinate Systems

It is a moving coordinate system associated with the UAV wheels. It originates at

the contact point between the wheel and the ground, as shown in Figure 5.3. The

x-axis is aligned to the direction of the wheel’s motion, the y-axis is perpendicular

to the wheel plan and positive to the right hand, and the z-axis is vertically

downward. On a perfectly horizontal plane, a wheel coordinate system can be

deduced from the earth’s coordinate system by rotating around the vertical axis.

5.1.2 UAV Ground Dynamics

For the control design purpose, the UAV can be considered a rigid body with

gravitational, engine, aerodynamic, and runway forces and moments acting upon

it. This model has a three-wheel tricycle undercarriage, and its top view is shown
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Figure 5.3: Wheel Coordinate System

in Figure 5.4, where ln is the distance of the nose wheel from the CG, lm is the

distance of the main axle for CG, and lw is the distance between the main wheels.

The on-ground dynamics of a UAV are divided into three translational and three

rotational components comprising 6-DoF. During the taxi or ground roll phase, it

is assumed that there are no roll and pitch dynamics, so the motion is considered

in the lateral plane only. The ground model presented in this paper has 3-DoF,

two translational (along x and y-axes), and one rotational (yaw moment).

5.1.2.1 Equation of Motion

Newton’s second law defines the translational motion of a UAV. The translational

dynamic is described as [70] (p. 28):

v̇B =
FB

m
− ωB × vB +Bg, (5.1)

where vB is the relative velocity of the UAV, ωB is the angular velocity, FB =

[Fx Fy Fz]
T is the force vector, m is the mass, g is gravitational acceleration, B

is transformation matrix from NED to body coordinate and subscript B indicates
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Figure 5.4: Three Wheel Tricycle Undercarriage

that all these vectors are expressed in body coordinate system. For definitions of

body and NED frame, the reader is referred to [70]. The angular acceleration of

the UAV is defined as [70] (p. 30):

ω̇B = −J−1 (ωB × JωB) + J−1TB, (5.2)

where TB = [Tx Ty Tz]
T is torque vector and J is the inertia matrix. Using the

assumptions of constrained motion in the lateral plane, (5.1) and (5.2) can be

written in component as:

U̇ = RV +
Fx

m

V̇ = −RU +
Fy

m

Ṙ =
Mz

Jz
,

(5.3)
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where U and V are forward and lateral velocities expressed in body frame and R

is yaw rate. The position of the UAV is determined in runway axes, in which x

is aligned to the runway heading and y is in the lateral direction. The differential

equations for the positions px, py, and yaw angle ψ are,

ṗx = U cosψ − V sinψ

ṗy = U sinψ + V cosψ

ψ̇ = R.

(5.4)

The next subsection defines the forces and moments acting upon the UAV.

5.1.3 Forces and Moments

The forces and moments that act on the UAV are aerodynamics, thrust, gravity,

and ground reaction, which are described in this section. The control of the UAV

is performed by manipulating these forces and moments.

5.1.3.1 Aerodynamic Forces and Moment

The aerodynamic forces and moments acting on the UAV are defined in terms of

dimensionless aerodynamic coefficients:

F a
x = qS

(
Cx0 + Cα

x |α| + Cβ
x |β| + Cδe

x |δe|
)

F a
y = qS

(
Cβ

y β + Cδr
y δr

)
F a
z = qS

(
Cz0 + Cα

z α + Cδe
z δe
)

Ma
z = qS

(
Cβ

z β + Cδr
z δr +

b

2V0
Cr

zR

)
b,

(5.5)

where F a
x is the longitudinal aerodynamic drag depends upon angle of attack α,

side-slip angle β and elevator deflection δe, F
a
y is the lateral aerodynamics force

mainly created by rudder deflection δr, F
a
z is the lift force mainly generated by α
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Table 5.1: Aerodynamic Coefficients of Test Vehicle

Parameter Value Parameter Value Parameter Value

Cx0 −0.031 Cα
x −0.088 Cβ

x −0.050

Cδe
x −0.010 Cβ

y −0.487 Cδr
y −0.097

Cz0 −0.129 Cα
z −3.368 Cδe

z −0.124

Cβ
z 0.083 Cδr

z 0.0225 Cr
z −0.05

and δe, T
a
z is the aerodynamic yawing moment, q = 1

2
ρV 2

0 is the dynamics pressure,

S is the reference area of the UAV body, b is wing span, V0 =
√
U2 + V 2 is nominal

flight speed and ρ is the air density. The aerodynamic coefficients of a test UAV

are given in Table 5.1.

5.1.3.2 Thrust and Gravitational Forces

Engine thrust is the main force that produces acceleration in the forward direction.

It is assumed that the thrust is acting along the body x-axis. The thrust force of

a UAV can be adequately modeled as a first-order transfer function as [77]:

F t
x =

Tc
τT s+ 1

, (5.6)

where Tc is the commanded thrust and τT is the engine time constant.

The gravitational force at the CG of the UAV is along the z-axis is defined as:

FG
z = mg. (5.7)

5.1.3.3 Ground Reaction Forces

These forces and moments are produced when the tires roll on the ground fraction

between the tire and ground surface take the vehicle forward. The wheel coordinate

system is used as reference frame. These forces have lateral and longitudinal
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Table 5.2: Physical Parameters of Test Vehicle

Description Parameter Value

Mass m 350 kg

zB-axis moment of inertia Jz 480 kg.m2

Wing area S 6.5 m2

Wing span b 6.6 m

Distance of nose wheel from CG ln 2.1 m

Distance of main wheels from CG lm 0.13 m

Distance of right wheel from the center of main
wheel axle

lr 0.7 m

Distance of left wheel from the center of main
wheel axle

ll 0.7 m

components, which merely depend on the normal load of the vehicle on the tires.

The algebraic sum of the gravitational and lift forces are used to calculate the

normal load on tires [77] as:

Zn = (FG
z + F a

z )

(
lm

ln + lm

)

Zl = Zr = 0.5(FG
z + F a

z )

(
ln

ln + lm

)
,

where Zn, Zl, and Zr are the normal load on the nose, left, and right wheels,

respectively. These parameters for the test vehicle are presented in Table 5.2.

During the movement on the ground, the forces between the tires and the ground

are briefly described hereafter.

Cornering Forces

The cornering force appears when the velocity of the tire is no longer oriented to

its plane (e.g while taking turn), and the wheel creates a side slip on the ground.

It is due to the lateral velocity component (which is produced by the deformation
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of the tire) and friction force. The side-slip angles for the wheels of the UAV are

defined as:

αn = tan−1

(
Vn
Un

)
= tan−1

(
V + lnR

U

)
− δn

αl = tan−1

(
Vl
Ul

)
= tan−1

(
V − lmR

U + llR

)

αr = tan−1

(
Vr
Ur

)
= tan−1

(
V − lmR

U − lrR

)
,

where Vn, Vl, and Vr are lateral, Un, Ul, and Ur are longitudinal velocity compo-

nents of the respective tire, lr = ll = lw
2

are the distances of the left and right wheel

from the center of the main axle, and δn is the nose wheel steering angle of the

UAV. The mathematical functions that take into account the main characteristics

of this force are based on side-slip angle, corner stiffness, and normal load on the

tire [78] are,

F c
n = −Cc

nαnZn,

F c
l = −Cc

l αlZl,

F c
r = −Cc

rαrZr ,

The corner stiffness coefficients Cc
n, C

c
l and Cc

r considered for the test UAV are

defined in Table 5.3.

Ground Rolling Resistance

The major longitudinal force on a ground vehicle at level ground is the rolling

resistance of the tires. It is the primary resistance force at low speeds and on hard

pavement. The ground rolling resistance for the wheels of the UAV is defined as

[78]:

F r
n = −Cr

nZn,

F r
l = −Cr

l Zl,

F r
r = −Cr

rZr .

The rolling resistance coefficients Cr
n, C

r
l and Cr

r considered for the test UAV are

listed in Table 5.3.
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Longitudinal Ground Forces

A friction force from the ground acts on the tires while accelerating (or decel-

erating). It appears when the tire’s traveling speed is different from the tread

velocity. It produces slip and friction between the tire and the ground. The slip

ratio normally characterizes it. The slip ratio for the tires of UAVs is defined as:

sn =
vln − rnωn

max(vln, rnωn)

sl =
vll − rlωl

max(vll , rlωl)

sr =
vlr − rrωr

max(vlr, rrωr)
,

(5.8)

where vln, v
l
l and vlr are longitudinal velocities at the axle of the wheels, ωn, ωl

and ωr are angular velocities and rn, rl and rr are radius of respective tire. The

experimental results have established in [78] that the longitudinal ground forces

defined on the slip ratio, normal load on the tires, and the friction coefficient of

the tire-road interface and model are described as:

F l
n = −C l

nsnZn,

F l
l = −C l

lslZl,

F l
r = −C l

rsrZr ,

(5.9)

where C l
n, C l

l and C l
r are the friction coefficients and defined in Table 5.3.

Braking Torque

During the taxi phase, differential braking is used to control the yawing moment

of the UAV. Increasing the brake pressure at the rear right wheel compared to the

left wheel creates a clockwise yawing moment and vise-versa. Braking torque is

the function of brake friction coefficient Cb, brake pressure δb, breaking area of

the wheel Ab, and braking radius rb [78]. The braking torque on the main wheels
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is defined as:

τ bl =rbAbC
b
l δ

b
l ,

τ rl =rbAbC
b
rδ

b
r

(5.10)

For differential braking, inputs δbl and δbr are set as:

if δb < 0 then δbl = 0, δbr = −δb

else δbl = δb, δbr = 0.

(5.11)

for δb < 0 right brake is applied, the left brake is kept at zero, and vice versa.

5.1.3.4 Wheels Dynamics

The longitudinal force and rolling resistance are directly related to the dynamics

of the wheel through its rotational velocity. The dynamics for the wheels of a UAV

can be defined as [78]:

ω̇n = − rn
Jn

(
−F r

n + F l
n

)
ω̇l = − 1

Jl

(
−rlF r

l + rlF
l
l + τ bl

)
ω̇r = − 1

Jr

(
−rrF r

r + rrF
l
r + τ br

)
,

(5.12)

where Jn, Jl and Jr are moments of inertia of respective wheel and, τ bl and τ br are

the braking torques of the main left and right tires, respectively.

The overall ground forces and moment of the UAV are expressed along body axes

as follows:

F g
x =(F r

n + F l
n) cos δn − F c

n sin δn + F r
l + F r

r + F l
l + F l

r

F g
y =(F r

n + F l
n) sin δn + F c

n cos δn + F c
l + F c

r

M g
z = ln

(
(F r

n + F l
n) sin δn + F c

n cos δn
)

+ lr(F
r
l − F r

r

+ F l
l − F l

r) − lm (F c
l + F c

r ) .

(5.13)
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The total forces and moments acting upon the UAV are defined as:

Fx = F a
x + F g

x + F t
x

Fy = F a
y + F g

y

Fz = F a
z + FG

x

Mz = Ma
z +M g

z .

(5.14)

A complete non-linear model of the UAV on the ground is obtained by combining

the dynamics equations (5.3), kinematic equation (5.4), and wheel dynamics (5.12)

with three inputs (nose wheel deflection δn, rudder deflection δr and differential

braking of main wheels δb) and nine state variables as:

U̇ = RV +
Fx

m

V̇ = −RU +
Fy

m

Ṙ =
Mz

Jz

ṗx = U cosψ − V sinψ

ṗy = U sinψ + V cosψ

ψ̇ = R

ω̇n = − rn
Jn

(
−F r

n + F l
n

)
ω̇l = − 1

Jl

(
−rlF r

l + rlF
l
l + τ bl

)
ω̇r = − 1

Jr

(
−rrF r

r + rrF
l
r + τ br

)
,

(5.15)

The next section derives an LPV model from the complete non-linear taxi model

presented in 5.15.

5.2 Linear Parameter Variable Modelling

Another objective of this work is to develop an accurate but simplified LPV model

of the UAV during the ground taxi phase. In this section, first the non linear model
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Table 5.3: Cornering, Rolling and Friction Parameters of the Test Vehicle

Coefficient Value Coefficient Value Coefficient Value

Cr
n 0.0141 Cc

n 5.6 rn 0.080 m

Cr
l 0.0141 Cc

l 8 rl 0.149 m

Cr
r 0.0141 Cc

r 8 rr 0.149 m

C l
n 4.2 Jn 0.006 Cb

l 9.25

C l
l 12 Jl 0.051 Cb

r 9.25

C l
r 12 Jr 0.051 rb 0.04 m

rA 0.5 m2

of the UAV is linearized analytically and shown that the linear model explicitly

depends on the longitudinal velocity of the UAV. A full state space LPV model is

constructed by a set of linear models which cover the whole taxi envelope (longi-

tudinal velocities from state to take-off). Then, a reduced-ordered LPV model is

presented for directional control of the UAV.

5.2.1 Full-State LPV Model

In the ground taxi phase, the UAV’s velocity varies, unlike in the airborne phase,

where the UAV flies at a constant speed most of the time. Therefore, no steady-

state or equilibrium point exists in the longitudinal axis for linearisation. However,

an equilibrium point in the lateral direction exists if lateral variables V, R, ψ and

inputs δr, δn, δb are kept zero. At each forward velocity U and corresponding

steady-state wheel velocities U
Rn
, U

Rl
, U

Rr
the Jacobian matrices A, B, C and D

for the linearized model are obtained by differentiating the non-linear equation an-

alytically. It gives explicit expressions for each term used in the Jacobian matrices

and all non zero terms are given in Tables 5.4, 5.5 and 5.6 respectively. It comes

out that each term in these matrices depends explicitly on longitudinal velocity

as relations U, U2 and/or 1
U

. These dependencies are used to define the explicit
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structure of the LPV model. In general, the full state parameter varying model of

the taxi operation is written as: ẋ(t)

y(t)

 =

 A (U) B (U)

C (U) D (U)

 x(t)

u(t)

 , (5.16)

A(U) = A0 + A1U +
A2

U

B(U) = B0 +B1U +B2U
2

C(U) = C0 +
C1

U

D = 0 ,

where U ∈ [Umin, Umax], Umin > 0, Umax is less than the take-off velocity, x =

[px py U V R ψ ωn ωl ωr]
T is the state vector, u = [δr δn δb]

T is the input

vector, y = [py ψe R]T is the output vector of the system, and ψe is the effective

yaw angle and is define as: ψe = ψ + β. As our control objective is to keep the

UAV on centre line of runway (), the model is reduced to lateral dynamics in the

next subsection.

5.2.2 Reduced Ordered Model

The full-state LPV model given above is reduced in this subsection to obtain

a lateral model for the UAV for the directional control. It is evident from the

structure of matrix B and C that the states corresponding to px, U , and ωn can

be removed to reduce the order of the system for control design purposes. For the

differential input on the main wheels, we define ω := ωl −ωr and reduce one more

state. Finally, (5.16) is transformed to a reduced-order linear model for direction

control that consists of 5 states, x = [py V R ψ ω]T with the same inputs

and outputs as above. The state-space coefficient matrices of the reduced-ordered

MIMO LPV model are given below:
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Table 5.4: Coefficients of A Matrix

Matrix El-
ement

Expression

a13 =
∂ṗx
∂U

1

a24 =
∂ṗy
∂V

1

a26 =
∂ṗy
∂ψ

U0

a33 =
∂U̇

∂U
U0(

1
m

(ρS(Cx0 + Cδe
x |δe|) − ρS(Cz0 + Cδe

z |δe|)(lmCr
n + 0.5ln(Cr

l +
Cr

r ))/lL − 1
U0

((C l
nZn + C l

lZl + C l
rZr))

a37 =
∂U̇

∂ωn

1

U0

(
C l

nZnrn/m
)

a38 =
∂U̇

∂ωl

1

U0

(
C l

lZlrl/m
)

a39 =
∂U̇

∂ωr

1

U0

(
C l

rZrrr/m
)

a44 =
∂V̇

∂V
U0(−0.5ρSCβ

y )/m− 1

U0

(Cc
nZn + Cc

l Zl + Cc
rZr)/m

a45 =
∂V̇

∂R
−U0

a54 =
∂Ṙ

∂V
U0(0.5ρSM

β
z Sω)/Jz +

1

U0

(−lnCc
nZn + lmC

c
l Zl + lmC

c
rZr)/Jz

a55 =
∂Ṙ

∂R

1

U0

(−l2nCc
nZn + l2rC

l
lZl − l2rC

l
rZr − l2mC

c
l Zl − l2mC

c
rZr)/Jz

a58 =
∂Ṙ

∂ωl

1

U0

(
C l

lZlRllr
)
/Jz

a59 =
∂Ṙ

∂ωr

− 1

U0

(
C l

rZrRrlr
)
/Jz

a65 =
∂ψ̇

∂R
1

a73 =
∂ω̇n

∂U
U0(rnC

r
nρSlm(Cz0 + Cδe

z |δe|)/(JnlL) − 1

U0

(Cn
l Znrn)/Jn

a77 =
∂ω̇n

∂ωn

− 1

U0

(
C l

nZnrn
)
/Jn

a83 =
∂ω̇l

∂U
U0(rlC

r
l ρSln(Cz0 + Cδe

z |δe|)/(JllL) − 1

U0

(C l
lZlrl/Jl)

a85 =
∂ω̇l

∂R

1

U0

(
rlC

l
lZllr

)
/Jl

a88 =
∂ω̇l

∂ωl

− 1

U0

(
r2l C

l
lZl

)
/Jl

a93 =
∂ω̇r

∂U
U0(rrC

r
rρSln(Cz0 + Cδe

z |δe|)/(JrlL) − 1

U0

(Cr
l Zrrr/Jr)

a95 =
∂ω̇r

∂R
− 1

U0

(
rrC

l
rZrlr

)
/Jr

a99 =
∂ω̇r

∂ωr

− 1

JrU0

(
r2rC

l
rZr

)
/Jr
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Table 5.5: Coefficients of B Matrix

Matrix El-
ement

Expression

b41 =
∂V̇

∂δr
U2
0

(
0.5Cδr

y ρS/m
)

b42 =
∂V̇

∂δn

F r
n + F l

n + Cc
nZn

m

b51 =
∂Ṙ

∂δr

Cδr
N qSb

Jz

b52 =
∂Ṙ

∂δn
U2
0

(
ln(F r

n + F l
n + Cc

nZn)
)
/Jz

b83 =
∂ω̇l

∂δlb
−C

b
lAbrb
Jl

b93 =
∂ω̇r

∂δrb
−C

b
rAbrb
Jr

Table 5.6: Coefficients of C Matrix

Matrix El-
ement

Expression

c12 =
∂yp
∂yp

1

c24 =
∂ψe

∂V

1

U0

c26 =
∂ψe

∂ψ
1

c35 =
∂R

∂R
1

A0 =



0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0


, B0 =



0 0 0

0 0.055 0

0 0.085 0

0 0 0

0 0 -3.6275


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A1 =



0 0 0 1 0

0 0.030 -1 0 0

0 0.004 0.022 0 -0.002

0 0 0 0 0

0 0 -35.05 0 3.8748


, B1 =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



A2 =



0 0 0 0 0

0 -77.1 0 0 0

0 2.06 -47.8 0 4.073

0 0 0 0 0

0 0 76405 0 -8445.3


, B2 = 10−5



0 0 0

-2 -3 0

2 -4 0

0 0 0

0 0 0



C0 =


1 0 0 0 0

0 0 0 57.3 0

0 0 57.3 0 0

 , C1 =


0 0 0 0 0

0 57.3 0 0 0

0 0 0 0 0


In this model, the inputs δr, δn, δb have units deg, deg, and % respectively, and

outputs py, ψe, R have meters, deg, and deg/sec respectively.

A simulation is developed to compare the simplified LPV model with the non-linear

model to validate it. The same input signal is applied at δr, δn and δb, and is shown

in Figure 5.5a. The simulation results in Figure 5.5 show that the constructed LPV

model is in high fidelity with the established non-linear model because we have

considered the non-linear dependencies of the model in the scheduling parameters

of the LPV model. Moreover, the quantitative comparison of both (Non-linear

and LPV) models is done by calculating the NRMSE between the outputs. The

NRMSEs between the outputs are 0.9972, 0.9929, and 0.9865 (1 for 100% match

and 0 for no match) for cross distance (py), yaw (ψ), and yaw rate (R) respectively.

The error between both models is presented in 5.6.
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(a) Input Setting

(b) Cross Distance (py)

Figure 5.5: Comparison of the Non-Linear and Reduced Ordered LPV Model
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(c) Yaw (ψ)

(d) Yaw Rate (R)

Figure 5.5: (Continued)
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(a) Input Setting

(b) Error in Cross Distance

Figure 5.6: Error Between the Non-Linear and Reduced Ordered LPV Model
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(c) Error in Yaw

(d) Error in Yaw Rate

Figure 5.6: (Continued)
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An apparently obvious approach is to use LPV synthesis for the LPV model,

but [79] shows that the computational complexities increase with the number

of varying parameters. To avoid these complexities, the H∞ based LPV-MPC

design framework is proposed to control the directional offset in UAV’s position

on the runway. As a first step, the LPV H∞ controller is designed and tested, and

presented in the next section.

5.3 LPV H∞ Control Design

In this section, the LPV H∞ controller is designed for the directional taxi control

of the UAV on ground. To illustrate the design methodology, first the H∞ loop

shaping controller is designed for fixed velocity point, e.g., U = 30m/s. Then, the

procedure for obtaining parameter varying controller Ks(U) and observer Hs(U)

gains is explained.

5.3.1 Design Specifications

The primary objective of the lateral taxi control is to keep the UAV on the central

line of the runway by driving the cross distance py to zero smoothly by manipu-

lating all three inputs δr, δn, and δb. The overall control design requirements are

as follow:

� The response should have little or no overshoot.

� 90% of the desired cross-track (py = 0) should achieved in 7 ∼ 8 sec.

� The robustness index γ should be less than 4.

By keeping these design specifications, first, the controller was developed for a

fixed velocity to explain the methodology and then provide steps and structure of

LPV H∞ controller.
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5.3.2 Design Steps for a Fixed Velocity Plant

The reduced order vehicle model Gv : C 7→ C3×3 at U = 30 m/s is used to

describe the design methodology. To include the effects of the actuators and

sensor dynamics, pre and post-multiply the vehicle model Gv as:

Gp = Gact Gv Gsen, (5.17)

where Gact ∈ C3×3 is the diagonal matrix having actuator dynamics. Sensor lags

are mainly due to the integration of the Inertial Navigation System (INS) and

Global Positioning System (GPS) and are incorporated in Gsen ∈ C3×3. To meet

the desired specifications following pre and post-compensators are selected,

W1 =


1.5(s+ 2)

s+ 0.1
0 0

0 0.5 0

0 0 −9

 ,

W2 =


0.5(s+ 3)

s+ 1.5
0 0

0 1.5 0

0 0 1


(5.18)

The resulting shaped plant is obtained as:

Gsp = W1GpW2 (5.19)

After including the effects of actuators, sensor delays, and shaping of the vehicle

model, the dimension of the shaped state vector has increased to 14. The updated

state-space model is defined as:

ẋs = Asxs +Bsus

y = Csxs

(5.20)

where As, Bs, and Cs are shaped state-space matrices and given below.
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As =



0.9704 0.1339 0 0 -0.0240 -0.0003 0 -0.0078 0 0 0 0 0 0

0 0.8187 0 0 0.0725 0.0007 0 0.0225 0 0 0 0 0 0

0 0 0.8187 0 0 0.1361 0.0005 4.1544 0 -0.0001 -0.0002 0.0001 0.0003 0

0 0 0 0.3679 0 0.0118 5.7585 0 0.0021 0.0030 0.0091 0.0076 0.0231 0.0003

0 0 0 0 1 0.0197 0.0001 0.6 0 0 0 0 0 0

0 0 0 0 0 0.9660 -0.5868 0 -0.0002 -0.0012 -0.0030 0.0011 0.0020 -0.0001

0 0 0 0 0 0.0035 0.9905 0 0.0005 0.0011 0.0025 0.0027 0.0063 0.0001

0 0 0 0 0 0 0.0199 1 0 0 0 0 0.0001 0

0 0 0 0 0 0.0223 8.6494 0 0.0403 0.0061 0.0169 0.0156 0.0429 0.0006

0 0 0 0 0 0 0 0 0 -0.0543 -0.4760 0 0 0.1258

0 0 0 0 0 0 0 0 0 0.4874 0.5550 0 0 0.1177

0 0 0 0 0 0 0 0 0 0 0 -0.0543 -0.4760 0

0 0 0 0 0 0 0 0 0 0 0 0.4874 0.5550 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0.9980


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Bs =


0 0 0 0.0002 0 -0.0001 0.0001 0 0.0005 0.0939 0.0867 0 0 0.0275

0 0 0 0.0002 0 0 0.0001 0 0.0004 0 0 0.0305 0.0285 0

0 0 0 0.0006 0 -0.0001 0.0002 0 0.1916 0 0 0 0 0


T

Cs =


0.5076 2.5381 0 0 -0.5076 0 0 0 0 0 0 0 0 0

0 0 7.5 0 0 -2.8648 0 -85.9437 0 0 0 0 0 0

0 0 0 12.5 0 0 -57.2958 0 0 0 0 0 0 0



Ks =


0.3662 0.4562 1.3835 0.2725 10.5550 18.5143 218.72 942.31 0.1040 0.4686 0.6035 1.3558 1.7432 2.4651

0.2378 0.2954 0.8826 0.1714 6.8192 11.6712 141.34 604.32 0.0672 0.3034 0.3909 0.8746 1.1254 1.3179

0.1485 0.1846 0.5526 0.1113 4.2645 7.2774 89.28 378.17 0.0425 0.1911 0.2471 0.5502 0.7101 0.8199



Hs =


0.0059 0.0028 0.0012 0 0.0072 0 0 0.0001 0 0 0.0001 0 0 0.0002

0.0029 0.0027 0.0056 0.0003 0.0075 -0.0019 0 0.0003 0.0003 -0.0001 0.0020 0 0 0.0074

0.00007 0.0001 0.0011 0.0069 0.0005 -0.0059 0.0008 0.0003 0.0068 0.0003 0.0057 0.0001 -0.0002 0.0238


T
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The singular values of the plant and shaped plant are shown in Figure 5.7a. Fol-

lowing the procedure of H∞ loop shaping control, as explained in Section 3.2.1,

the controller Ks and observer Hs are synthesized and given above. The shaped

plant’s singular values and the controller are also shown in Figure 5.7a. The step

response given in Figure 5.7b shows that the controller also meets the desired

rise time specification. The normalized coprime factor robust optimization gives

γ = 3.7 < 4 which meets the desired criteria.

The Equation (5.16) shows that the taxi model is LPV and explicitly depends on

the forward velocity of the UAV. The controller designed for fixed velocity point

(e.g., 30 m/s) is used for the other velocities of the taxi envelope (e.g., 1, 5, ...45

m/s). Figure 5.7c shows that the cross-over frequency changes, eventually affecting

the system’s performance specifications. Figure 5.7d shows that the rise time of

the system varies from 6 to 300. Thus, a varying parameter controller (Ks) and

observer (Hs) are required to obtain the desired performance requirements for the

taxi envelope.

5.3.3 Design Steps for Parameter Varying Controller and

Observers

In this subsection, the parameter-dependent set of controllers Ks(U) and observers

Hs(U) are designed. Let U be a set of finite number of points of U ∈ [Umin, Umax]

with an incremental step of 1 m/s. To achieve the desired performance through-

out the taxi envelope, the controller is designed for every U ∈ U . As a first step,

the plant G(U) is shaped for every U ∈ U with fixed pre-compensator W1 and

parameter-dependent post-compensator W2(U). In W2(U), only its first compo-

nent W
(1,1)
2 (U) is scheduled as:

W
(1,1)
2 (U) = kgs(U) ∗W (1,1)

2 (U0), (5.21)

where U0 = 30 m/s. This approach is general and is not limited to one parameter
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(a) Singular Values of Plant, Shaped Plant, and Shaped Plant+Controller

(b) Step Response in Cross Distance

Figure 5.7: Results for Fixed Velocity Point Design
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(c) Maximum Singular Values on other Velocities

(d) Step Response on other Velocities

Figure 5.7: (Continued)
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variation. One may change other coefficients of W1 and W2. The gain schedul-

ing parameter kgs(U) at each velocity point is computed by solving H∞ control

problem iteratively to meet the desired rise time and other performance specifica-

tions. In Figure 5.8a, the maximum singular values of the loop transfer function

are shown for every U ∈ U . The cross-over frequency does not change much with

the change in longitudinal velocity. The step response of the closed-loop system at

different velocities is shown in Figure 5.8b. It shows that the system’s performance

requirement (rise time) is fairly good for the whole envelope of the taxi phase. The

scheduled gains to achieve this performance are given in Figure 5.8c as a function

of forward velocity, and it is modeled as:

kgs(U) = k0 + k1U + k2U
2 +

k3
U

(5.22)

where k0, k1, k2 and k3 are constants. Figure 5.8d shows that the robustness of

the system is also not degraded with the increase in rolling velocity and remains

within the limit for the higher velocities as well.

The parameter varying weights are used to design the set of controllers (Ks) and

observers (Hs) matrices for the taxi envelope. The knowledge of the physical

system is used in order to define the structure of Ks(U) and Hs(U). Since shaped

plant matrices As(U), Bs(U) and Cs(U) vary smoothly with operating point U

and have explicit structure, then the controller Ks(U) and observer Hs(U) gains

will vary smoothly if the Riccati solution Xs(U) and Zs(U) vary smoothly ([67]).

The following structure of observer and controller gain matrices is considered for

the given problem.

Hs(U) = H0 +H1U +H2U
2 +

H3

U

Ks(U) = K0 +K1U +K2U
2 +

K3

U
,

(5.23)

where Ki and Hi (i ∈ 0, · · · , 3) are constant matrices. The model in Equation

(5.23) is a regression fit, and the coefficient matrices are obtained by minimizing

the least square error.
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(a) Singular Values at Different Velocities

(b) Step Response at Different Velocities

Figure 5.8: Results for Fixed Velocity Point Design
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(c) Scheduled gain

(d) γ at Different Velocities

Figure 5.8: (Continued)
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5.3.4 Stability Analysis

The stability of the system at designed points is assured by the γmin but can not

be guaranteed between the design points, e.g., infinite velocity points between 5

m/s to 6 m/s. In [80], the Lyapunov approach is presented to ensure the stability

of LPV systems. The longitudinal velocity varies over a wide range (from start to

take-off), so it may not be possible to have a single constant Lyapunov matrix P for

the whole range. As argued in [81], it is also not necessary to have a globally valid

single common Lyapunov matrix. Consequently, a piecewise Lyapunov function is

sufficient to guarantee the stability of an LPV system. The whole taxi envelope

is divided into 45 regions. The following LMI can state the quadratic stability of

the LPV system for each region:

Pi = P ′
i > 0, ∀ i = 1, 2, . . . , 45

Āi(U)′Pi + PiĀi(U)′ < 0, U ∈ [Ui, Ui+1], .

(5.24)

where Āi(U) is closed-loop matrix for ith region. The algorithm given in [80] is

used to compute a symmetric positive definite matrix Pi for each region, which

satisfies the LMIs (5.24). It ensures a positive-definite matrix Pi for each interval

which guarantees the stability between design points. This not only proves the

stability at each Ui but also U ∈ [Ui, Ui+1], ∀ i = 1, 2, . . . , U45.

5.3.5 Field Test Results of LPV H∞ Controller

To validate the LPV H∞ controller, it is implemented on a test UAV, and exper-

imental results are compared with the simulation. The test results are in good

comparison with the simulation results as shown in Figure 5.9. In this case, the

UAV touches the runway at a cross distance of 6 m, as shown in Figure 5.13b.

The control actions δr, δn, and δb are generated by the controller to steer the UAV

on the center line and are shown in Figures 5.13a, 5.13c and 5.13e respectively.

The outputs (cross distance, yaw, and yaw rate) of the UAV are in Figures 5.13b,

5.13d and 5.13f respectively.



Ground Taxi Modelling and Control 100

(a) Rudder Deflection

(b) Cross Distance of the UAV from Central Line

Figure 5.9: Test Results of LPV H∞ for Lateral Taxi Control
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(c) Nose Wheel Deflection

(d) Effective Yaw

Figure 5.9: (Continued)
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(e) Differential Braking on Main Wheels

(f) Yaw Rate

Figure 5.9: (Continued)



Ground Taxi Modelling and Control 103

To minimize the distance traveled by the UAV on the runway, a fix 50% brakes are

also applied on the main wheels when its speed reaches 30 m/s. The longitudinal

velocity of the UAV on the ground and the applied brakes to slow down the UAV

are shown in Figure 5.10. After successfully designing and testing the LPV H∞

controller, the next step is to design H∞ based LPV-MPC, which is explained in

the coming section.

5.4 H∞ Based MPC Design

The MPC is one of the most popular modern control techniques used frequently

in the process industries. It is a model-based technique in which a cost function

(usually quadratic) is minimized online along with a set of constraints over a

prediction horizon at each time step. The major challenge in designing the MPC

is the selection of cost function matrices which is explained in the next subsection.

5.4.1 Design of Cost Function Matrices

A major challenge in the MPC design is the selection of cost-function weighting

matrices. Generally, the tuning of MPC has based on heuristic rules and often

does not provides the required performance or robust stability guarantee, even for

the unconstrained problems. In this work, we used the method given in Section

3.3 to design the cost function matrices for the taxi problem. The cost function

matrices Ps, Qs, and Rs for the fixed velocity point (U = 30 m/s) are mentioned

below. Then, the steps used in Section 5.3.3 are followed to design LPV cost

function matrices as:

Ps(U) = P0 + P1U + P2U
2 +

P3

U

Qs(U) = Q0 +Q1U +Q2U
2 +

Q3

U

Rs(U) = R0 +R1U +R2U
2 +

R3

U
,

(5.25)
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(a) Ground Velocity of the UAV

(b) Brakes on Main Wheels

Figure 5.10: Ground Velocity and Brakes on Main Wheels



G
rou

n
d
T
axi

M
odellin

g
an

d
C
on

trol
105

Ps =



0.1313 0.0504 0.0230 0.0052 -0.1240 0.0146 -0.0318 0.2233 0.0000 -0.0001 -0.0001 0.0000 0.0001 0.0006

0.0504 2.2648 0.1146 -0.0020 -0.9399 0.0003 0.0121 0.0286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0230 0.1146 0.0236 0.0036 -0.0651 0.0015 -0.0104 0.1661 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002

0.0052 -0.0020 0.0036 0.0138 -0.0037 0.0035 -0.0969 0.0497 0.0001 -0.0001 0.0001 -0.0002 0.0005 0.0003

-0.1240 -0.9399 -0.0651 -0.0037 0.5281 0.0016 0.0804 0.6321 0.0000 0.0001 0.0002 0.0004 0.0004 -0.0005

0.0146 0.0003 0.0015 0.0035 0.0016 0.0353 0.0472 1.0367 0.0000 0.0000 0.0001 0.0005 0.0007 0.0012

-0.0318 0.0121 -0.0104 -0.0969 0.0804 0.0472 1.9389 4.3362 -0.0002 0.0031 0.0017 0.0087 0.0048 -0.0083

0.2233 0.0286 0.1661 0.0497 0.6321 1.0367 4.3362 56.5370 0.0007 0.0065 0.0093 0.0282 0.0391 0.0037

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 -0.0002 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-0.0001 0.0000 0.0000 -0.0001 0.0001 0.0000 0.0031 0.0065 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-0.0001 0.0000 0.0000 0.0001 0.0002 0.0001 0.0017 0.0093 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 -0.0002 0.0004 0.0005 0.0087 0.0282 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000

0.0001 0.0000 0.0002 0.0005 0.0004 0.0007 0.0048 0.0391 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

0.0006 0.0000 0.0002 0.0003 -0.0005 0.0012 -0.0083 0.0037 -0.0000 0.0000 0.0000 0.0000 0.0000 0.0007


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Qs =



0.0076 -0.0067 0.0047 0.0033 -0.0041 0.0003 -0.0260 -0.0125 0.0000 0.0000 0.0000 -0.0001 0.0001 0.0000

-0.0067 0.7333 0.0353 -0.0017 -0.2873 -0.0009 0.0127 0.0050 0.0000 0.0000 0.0000 0.0000 -0.0000 -0.0001

0.0047 0.0353 0.0078 0.0025 -0.0181 -0.0012 -0.0195 -0.0147 0.0000 0.0000 0.0000 -0.0001 0.0001 0.0001

0.0033 -0.0017 0.0025 0.0120 -0.0022 0.0022 -0.0905 0.0279 0.0001 -0.0001 0.0001 -0.0003 0.0005 0.0002

-0.0041 -0.2873 -0.0181 -0.0022 0.1190 0.0002 0.0200 0.0222 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001

0.0003 -0.0009 -0.0012 0.0022 0.0002 0.0025 -0.0087 0.0397 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002

-0.0260 0.0127 -0.0195 -0.0905 0.0200 -0.0087 0.7676 0.0104 -0.0007 0.0010 -0.0012 0.0025 -0.0036 -0.0001

-0.0125 0.0050 -0.0147 0.0279 0.0222 0.0397 0.0104 1.3350 -0.0013 0.0001 -0.0002 0.0008 0.0023 0.0059

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 -0.0007 -0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 -0.0012 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

-0.0001 0.0000 -0.0001 -0.0003 0.0001 0.0000 0.0025 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0001 0.0000 0.0001 0.0005 0.0000 0.0001 -0.0036 0.0023 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 -0.0001 0.0001 0.0002 0.0001 0.0002 -0.0001 0.0059 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


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W1 Gact Gv Gsen W2(U)

Hs(U)

Bs(U)

∫
As(U)

Cs(U)

Optimizer

us ys

−

+

+

+

x̂s

ŷs

+

+

Figure 5.11: An Observer-based Implementation of LPV-MPC

Figure 5.11 shows the block diagram of the H∞ based LPV-MPC implementation

in observer form.

5.4.2 LPV-MPC Design

The MPC is designed for the shaped LPV model having input constraints ±10◦, ±

3◦ and ±20% for rudder deflection, nose wheel deflection, and percentage braking,

respectively, along with the LPV observer and cost function matrices from (5.23)

and (5.25) respectively.

The MPC formulation in Section 3.4 can be posed as a quadratic programming

(QP) problem. Generally, the dense approach given in [73] is used for LTI systems.

The computationally expensive task, matrix multiplication (e.g., AN), is done of-

fline, and the QP problem is solved online at each sample step. For LPV systems

(i.e., taxi problem) where the system matrix A changes at each time step, one can-

not use the dense approach because it also requires matrix multiplication online.

Another approach, sparse formulation, can be preferred for the LPV system and

is given below.
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VN(θ) =
1

2
θTH(U)θ,

s.t. F (U)θ = f(x̂)

Gθ ≤ g

where,

θ = [ xT0 uT0 xT1 uT1 · · · uTN−1 xTN]T

F (U) =



−I 0 0 0 0 · · · 0 0 0

A(U) B(U) −I 0 0 · · · 0 0 0

0 0 A(U) B(U) −I · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · A(U) B(U) −I


, f =



-x̂

0

0
...

0



G =



J E 0 0 0 · · · 0 0 0

0 0 J E 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · J E 0

0 0 0 0 0 · · · 0 0 J


, g =



d

d

d
...

d



H(U) =



Q(U) 0 0 · · · 0 0

0 R(U) 0 · · · 0 0

0 0 Q(U) · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · R(U) 0

0 0 0 · · · 0 P (U)



In this approach, one can avoid online matrix multiplication, but the number of

unknowns in the QP problem has increased from mN to (n + m)N + n, where n

and m are states and inputs of the system, respectively. The increased number

of decision variables greatly impacts computational and memory requirements.
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This issue has been dealt with in [82] with the efficient interior point method by

exploiting the structure of the sparse approach and discussed in coming subsection.

5.4.3 Efficient Interior Point Method

The Interior-Point Method (IPM) is an optimization strategy to solve convex prob-

lems. It starts from the feasible region and searches for the best solution. The

Primal-Dual Interior-Point Method (PDIPM) employing Mehrotra’s predictor-

corrector scheme is used in this work [83]. At each sampling step, the MPC cost

function matrices are computed by (5.25) for corresponding longitudinal velocity U

and problem 5.26 is optimized with the help of IPM. The performance bottleneck

and most expensive step in IPM is the computation of the search direction in the

Karush–Kuhn–Tucker (KKT) conditions [84]. To formulate the KKT conditions,

a slack variable s is added to the inequality constraint, and Lagrangian is formed

as follows:

L(θ, v, λ, s) =
1

2
θTHθ + hT θ + vT (Fθ − f)

+ λT (Gθ − g + s)

(5.26)

The vector v ∈ Rne and λ ∈ Rni are called Lagrange multipliers vectors or dual

variables, and ne and ni are the number of equality and inequality constraints.

The KKT conditions are as follows:

Hθ + F Tv +GTλ+ h = 0

−Fθ + f = 0

−Gθ + g − s = 0

ΛSe = 0

λ, s ≥ 0

where s ∈ Rni is the vector of slack variables, e ∈ Rni is a vector of ones and

Λ, S ∈ Rni×ni are diagonal matrices define as:

Λ = diag(λ1, λ2, · · · , λm), S = diag(s1, s2, · · · , sm)
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The equation ΛSe = 0 is called the complementarity condition. The PDIPM

generate the iterates (θi, vi, λi, si), i = 1, 2, · · · that approach feasibility with

respect to the KKT conditions. The KKT conditions given in (5.27) can be written

as a linear system to be solved for the search direction as:


H F T GT 0

−F 0 0 0

−G 0 0 −I

0 0 S Λ




∆θ

∆v

∆λ

∆s

 =


−rH
rF

rG

ΛSe

 (5.27)

where,

rH = Hθ + F Tv +GTλ+ h

rF = Fθ − f

rG = Gθ − g + s

rs = − ΛSe

(5.28)

The block elimination method can be applied on (5.27) to obtain the reduced

system. After the elimination of ∆S and ∆λ as:

∆S = Λ−1(rs − S∆λ)

∆λ = S−1(ΛrG + rS + ΛG∆θ)
(5.29)

The so-called augmented system is obtained as follows: Φ F T

−F 0

 ∆θ

∆v

 =

 rT

rF

 (5.30)

where,

Φ = H +GTΛS−1G

rT = − rH −GTS−1(ΛrG + rS)

Solution of (5.30) gives the primal ∆θ and dual ∆v search step, and by substitution
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in 5.29, one can find complete search direction.

Solving (5.30) without exploiting the structure of sparse formulation, the compu-

tation cost is
1

3
N3(2n+m)3 flops [85]. The methods presented below can improve

the speed of solving the problem. The search direction at each step is updated by

(5.31) that is the Schur complement of the (5.30) [86]:

Y∆v = β, (5.31)

where

Y = FΦ−1F T

β = rF + FΦ−1rT

and

∆θ = ϕ−1
(
rT − F T∆v

)
(5.32)

The resulting matrix Y yields a block-banded structure as shown in (5.34) and

can be efficiently factored by block-wise Cholesky factorization. The matrix Φ

also has a block diagonal structure just like the H matrix, and one can take Φ−1

block-wise to reduce the computations, and its structure is shown in (5.33).

Φ−1 =



Q̄0 0 0 0 · · · 0 0 0

0 R̄0 0 0 · · · 0 0 0

0 0 Q̄1 0 · · · 0 0 0

0 0 0 R̄1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · Q̄N−1 0 0

0 0 0 0 · · · 0 R̄N−1 0

0 0 0 0 · · · 0 0 P̄N


(5.33)

In (5.31), instead of direct multiplying (Y = FΦ−1F T ), the elements of the Y
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matrix can be computed more effectively by exploiting the structure of Φ−1 and

F . Each element of Y is n × n, and corresponding elements of tridiagonal are

symmetric, meaning Yij = Y T
ji . The Algorithm 1 is used to find matrix elements

Y . To solve (5.31) for ∆v, we need to take the inverse of matrix Y . Rather than

inverting Y directly, it is also possible to solve (5.31) by Cholesky decomposition

into a lower triangular matrix and its transpose, Y = LLT . Then, the forward

and backward substitution is used to find the search direction ∆v. The Cholesky

decomposition can be time-consuming and computationally expensive for the dense

matrix, but we can take advantage of the known tridiagonal structure of Y in a

sparse approach. The Algorithm 2 is used to calculate the elements of L and is

given in (5.35).

Algorithm 1 An Algorithm for Calculating the Elements of Y

1: function Elements of Y
2: Y11 = Q̄0

3: for i = 2, · · · , N do
4: Yi−1,i = −Q̄i−2A

T

5: Yi,i = AQ̄i−2A
T +BR̄i−2B

T + Q̄i−1

6: end for
7: end function

Y =



Y11 Y12 0 · · · 0 0

Y21 Y22 Y23 · · · 0 0

0 Y32 Y33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · YN−1, N−1 YN−1, N

0 0 0 · · · YN, N−1 YN, N


(5.34)

Algorithm 2 An Algorithm for Cholesky Decomposition of Matrix Y

1: function Cholesky Decomposition of Y
2: L1 = chol(Y11)
3: for i = 1, · · · , N − 1 do
4: Mi = Yi,i+1 inv(Li)
5: Li+1 = chol(Yi+1,i+1 −MiM

T
i )

6: end for
7: end function
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L =



L11 0 0 · · · 0 0

M21 L22 0 · · · 0 0

0 M32 L33 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · LN−1, N−1 0

0 0 0 · · · MN, N−1 LN, N


(5.35)

By this method, one can avoid many flops while calculating the search direction.

The Algorithms 1 and 2 required an order of N(n+m)3 and Nn3 flops, respectively.

5.4.4 Results

The proposed control law is implemented in a non-linear simulation environment

to validate the designed algorithm. The H∞ based LPV-MPC strategy presented

in section 3.4 with N = 10 and cost function matrices Ps(U), Qs(U) and Rs(U) de-

signed by (5.25) is implemented. The simulations were conducted for two different

scenarios. In the first case, the design is tested when the constraints are inactive,

and the second illustrates the constraints management of the control technique.

5.4.4.1 Case-1

In the first case, it is shown that uMPC = uH∞ , whenever, the constraints are inac-

tive. The input saturation limits are ±10◦, ± 3◦ and ±20% for rudder deflection,

nose wheel deflection, and percentage of differential braking. A cross distance

from the centerline of the runway is taken as 10m. Figure 5.12 shows that the

input demand does not exceed the saturation limits, and the NRMSE between the

outputs shows that both controllers are in high fidelity.

5.4.4.2 Case-2

The second case has been formulated by reducing the input saturation limits to

±3◦, ± 0.5◦ and ±5% for rudder deflection, nose wheel deflection, and percentage
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(a) Rudder Deflection

(b) Cross Distance of the UAV from Central Line

Figure 5.12: Comparison of H∞ based LPV-MPC and LPV H∞ when Con-
straints are Inactive
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(c) Nose Wheel Deflection

(d) Effective Yaw

Figure 5.12: (Continued)
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(e) Differential Braking on Main Wheels

(f) Yaw Rate

Figure 5.12: (Continued)
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(a) Rudder Deflection

(b) Cross Distance of the UAV from Central Line

Figure 5.13: Comparison of H∞ based LPV-MPC and LPV H∞ when Con-
straints are Active
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(c) Nose Wheel Deflection

(d) Effective Yaw

Figure 5.13: (Continued)
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(e) Differential Braking on Main Wheels

(f) Yaw Rate

Figure 5.13: (Continued)
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of differential braking respectively. All three constraints become active with these

limits, and the results are shown in Figure 5.13. The H∞ controller violated the

maximum limit of the actuators, but the MPC handled the constraints properly.

When the constraints violation region has passed, the MPC behaves exactly like

the H∞.

5.5 Summary

This chapter establishes a non-linear mathematical model of a UAV during the taxi

phase. The model is linearised analytically and shown that its lateral dynamics

depend on the forward speed. Then the LPV model is constructed by a set of linear

models covering the taxi envelope. It is shown that the constructed LPV model

is in high fidelity with the established non-linear model. Simulation results show

that the error between both models is less than 1 %. The H∞ based LPV-MPC is

proposed. The model is robustly stabilized by the normalized coprime factorization

method to design controller Ks and observer Hs. Then, the LQR-based inverse

optimal problem is formulated and solved for a set of plants that cover the whole

taxi envelope to design the parameter-varying cost function matrices, which are

further utilized to realize LPV-MPC. The designed MPC inherits the small-signal

properties (stability margin and closed-loop performance) of the H∞ LSDP when

constraints are inactive (e.g., the perturbation around the equilibrium point that

system remains within limits). The simulation results show that the designed MPC

is in high fidelity with the H∞ controller. Moreover, the quantitative comparison of

both techniques is done by taking the normalized root mean square error (NRMSE)

between the outputs. The NRMSEs between the outputs are 1, 1, and 0.9999 (1

for 100% match and 0 for no match) for cross distance (py), yaw (ψ), and yaw rate

(R) respectively.



Chapter 6

Conclusion and Future Work

This chapter concludes the research work presented in this dissertation, along with

some future avenues that can be explored for further study.

6.1 Conclusions

The challenges involved in the landing of fixed-wing UAVs have been highlighted

in this work. The landing problem is divided into phases, and the contribution of

each phase is concluded in the subsequent sections.

6.1.1 Airborne Phase

A different approach for landing fixed-wing UAVs is presented in this work. Glide

and flare reference trajectories are predefined, and the UAV is forced to follow

the altitude of the reference trajectory. The UAV encountered a wind disturbance

during the landing. The vortex-ring model is used to simulate the moderate and

severe wind disturbances in the system. Various scenarios are simulated and stud-

ied. The results demonstrate the effectiveness and correctness of the proposed

technique under both wind shear effects. A qualitative analysis is also performed

121
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to compare the results with the benchmark work. The landing results demon-

strated a significant improvement.

6.1.2 Ground Taxi Phase

The on-ground dynamics and control are complex due to the coupling between

aerodynamics and tire-ground friction forces. Moreover, the lateral control during

the deceleration phase becomes more challenging due to the high initial longi-

tudinal velocity at touch-down and uncertainty in the tire-ground friction model.

These effects are significantly amplified in high wind or gust conditions. This work

establishes a non-linear mathematical model of a UAV during the taxi phase. The

model is linearised analytically and shown that its lateral dynamics depend on

the forward speed. Then the LPV model is constructed by a set of linear models

covering the taxi envelope. It is shown that the constructed LPV model is in high

fidelity with the established non-linear model. Simulation results show that the

error between both models is less than 1 %.

The H∞ based LPV-MPC is proposed for the lateral control of the UAV. The

model is robustly stabilized by the normalized coprime factorization method to

design the controller and observer gain matrices. Then, an LQR-based inverse

optimisation problem is formulated and solved to design a set of cost function

matrices (P , Q and R) for plants that cover the whole taxi envelope. This set

of matrices used to design the parameter varying cost function matrices LPV-

MPC. The proposed MPC inherits the small-signal properties (stability margin

and closed-loop performance) of the H∞ LSDP when constraints are inactive (i.e

the perturbation around the equilibrium point that system remains within limits).

The results show that the designed MPC is in high fidelity with the H∞ controller.

Moreover, the quantitative comparison of both techniques is done by taking the

NRMSE between the outputs. The NRMSEs between the outputs are 1, 1, and

0.9999 (1 for 100% matching and 0 for no matching) for cross distance (py), yaw

(ψ), and yaw rate (R) respectively.



Conclusion and Future Work 123

6.2 Future Work

The potential research avenues in landing UAVs based on the current work that

can effectively contribute are as follows.

6.2.1 Airborne Phase

A challenging task in the autonomous landing of fixed wind UAVs is to maintain

baseline control performances in the presence of wind shear. An unknown and

transient wind disturbance in the system can cause significant deviation in the

UAV’s position. One can estimate the wind by using onboard wind measurement

sensors. In the aerospace industry, LiDAR’s (Light Detection and Ranging) remote

sensing capabilities have been used to detect wind disturbances. This wind preview

can be used in a feed-forward controller to compensate for the effects of wind

disturbance more efficiently.

6.2.2 Ground Taxi Phase

There are several parameters that can vary during ground taxi control of UAVs.

Some of the important parameters are:

� Ground surface: The type and condition of the ground surface can affect the

movement of the UAV during taxiing. Different surfaces such as concrete,

grass, or gravel can affect the UAV’s speed, stability, and handling.

� Wind speed and direction: Wind conditions can significantly affect the

UAV’s movement during ground taxi control. Strong winds can cause the

UAV to drift or lose control, especially during takeoff and landing.

� Weight and balance: The weight and balance of the UAV can affect its

handling characteristics during taxiing. If the UAV is not balanced correctly,

it may be difficult to control or may tip over.
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� Temperature and humidity: Temperature and humidity can affect the UAV’s

battery performance, motor performance, and other systems, which can af-

fect its handling and control during ground taxi.

� Obstacles and terrain: The presence of obstacles such as trees, buildings, or

other UAVs can affect the UAV’s movement during ground taxi. The terrain

can also affect the UAV’s handling and stability, especially if it is uneven or

sloped.

To ensure safe and efficient ground taxi control of UAVs, one can explore the taxi

problem by considering and adjusting these parameters accordingly.
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