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Abstract

The prevalence of Low Probability of Intercept (LPI) radars in Electronic War-

fare (EW) system has made the recognition of phase-coded radar waveforms cru-

cial. LPI radar Waveform Recognition Technology (LWRT) deployed at the Radar

Warning Receiver (RWR) is gaining attention as radar types diversify and the elec-

tromagnetic environment becomes more complex. The recognition of phase-coded

waveforms at a low Signal-to-Noise ratio (SNR) is still challenging. This research

suggests an Automatic Modulation Classification System (AMCS) to recognize

LPI radar waveforms and perform feature extraction in low SNR environments. A

novel phase spectrum-based feature extraction method is proposed for identifying

phase-coded waveforms. The EW receiver measures the deliberately introduced

phase offsets in intercepted and modulated phase-coded waveform using Short

Time Fourier Transform (STFT) to identify the emitter’s phase coding scheme.

This research focuses on analyzing the phase spectrum of STFT, instead of the

amplitude spectrum for recognition of phase-coded signals. Selecting the opti-

mal window size for STFT is critical to preserve phase offset of each sub-pulse

within the phase-coded signal. The STFT is computed window-wise as it moves

along the entire signal duration, providing outputs with computed phase values.

The research utilizes 1D phase-based feature extraction by selecting the maxi-

mum window output and recording its phase-value for a feature vector. For 2D

phase-based extraction, phase values are directly computed from the window out-

put and stacked horizontally to form a feature matrix. The research proposes two

architectures for AMCS: Bidirectional Long Short Term Memory (BiLSTM) and

Deep Convolution Neural Network (DCNN). A BiLSTM network learns bidirec-

tional, long-term relationships between time steps in a time sequence, and mostly

outperforms the other Recurrent Neural Networks (RNNs) used to handle sequen-

tial data. A BiLSTM network with 1D phase-based feature vectors has achieved

about 70% recognition accuracy at -8 dB SNR. The other architecture uses a

DCNN with 2D phase-based features, achieving 89% recognition at -16 dB SNR.

DCNNs perform well for image classification due to their ability to automatically



x

learn hierarchical features, exploit local correlations, and achieve translation in-

variance. Both approaches compete well with existing methods, requiring minimal

pre-processing and offering efficient online recognition of phase-coded waveforms.

The newly proposed feature extraction method has outperformed other techniques,

demonstrating high recognition accuracies for phase-coded waveforms at low SNR

situations. Additionally, it is found that Barker codes, even at low SNR levels,

have acceptable recognition accuracy when utilizing both approaches; yet, they

are rarely discussed in the literature.
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Chapter 1

Introduction

1.1 Background and Motivation

The term “RADAR” stands for RAdio Detection And Ranging. It is an electro-

magnetic device used to identify, detect, and track the targets at long distances.

It works by sending electromagnetic radiation in the direction of targets and lis-

tens for the echoes that are reflected back. The targets may be automobiles,

spacecraft, aircraft, ships, or even insects, birds, and rain. In addition to their

size and shape, radar can determine the existence, range, and velocity of such

objects. The capability of radar to identify distant objects in bad weather and

precisely calculating their range, distinguishes it from optical and infrared sensing

technologies. It often uses frequencies in the range of 400 MHz to 40 GHz [1].

Due to military demands, radars developed rapidly in the 1930s and 1940s. Addi-

tionally, radar has been used in several important civilian applications including

planetary observation, space surveillance, air traffic control, weather monitoring,

remote sensing, ship and aircraft navigation, etc. Modern radars work in collabo-

ration with machine learning algorithms and are able to find out useful information

in the presence of high noise levels. Initially, radar was developed as a device to

warn about approaching hostile aircraft and to direct the weapons toward the

1
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hostile target. The well-designed modern radar systems are capable of extracting

more information about the target other than the range.

1.2 History of Radar

Scientist Nikola Tesla discovered in 1900 that when sound waves are produced,

echoes can be observed [2]. Electromagnetic waves return in a similar manner

as sound waves, the distance and velocity of an object can be estimated with

their help. Heinrich Hertz conducted some experiments in the late 19th century,

and the findings showed that radio waves are reflected back from metallic objects

[3]. After that, the systems based on the principle of electromagnetism began

to emerge. German inventor Hulsmever was the first to apply electromagnetic

principles to create a detection gadget that ships use to avoid collisions during

foggy weather [4].

Sir Robert Watson, a British physicist, created the first radar device in 1935. By

the end of 1939, England had established a network of radar stations to protect its

coastline from any potential aerial attackers. Radars were also utilized in ships and

planes during WW2. Japan was unable to successfully employ radar technology,

which Germany had been using since 1940 [5].

John Randall and Harry Boot created the resonant cavity magnetron in 1940,

which could produce radio pulses with a high frequency and high strength [6].

Lasers of extremely short wavelengths were used to operate this cavity. Radar

systems were extensively employed in several fields after WW2, including naviga-

tion, guidance systems, meteorology, and others. Traveling Wave Tubes (TWT),

which finally gave rise to phased array radars, were the main advancement after

the post-war era. The development of entirely digital phased-array radars was

spurred by developments in digital technology throughout the first decade of the

twenty-first century. In the millimeter-wave region of the spectrum (usually 94

GHz), high-power transmitters with average powers 100–1,000 times greater than

before became accessible for radar applications. With continued development of
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electronics, systems with pulse durations measured in picoseconds became possi-

ble.

1.3 Fundamentals of Radar

A narrow electromagnetic energy beam is often sent into space from an antenna

of radar. The focused antenna beam scans the desired area. When the beam

hits a target, some of the energy is reflected back toward the radar system and a

portion of it is intercepted. A single antenna is mostly used for both transmitting

and receiving on a time-shared basis because the majority of radar systems don’t

transmit and receive at the same time. The desired reflected signals are extracted

by a receiver connected to the antenna’s output element, while the undesired

signals are discarded. The echo from an aircraft, for instance, might be a signal of

interest. The detection of the intended echo from the aircraft may be masked and

interfered with the signals that are not of interest, such as rain or echoes from the

ground. The unwanted reflections, or clutter, don’t affect human sight the way

they do radar sometimes. Radio Frequency (RF) energy is reflected by mountains,

trees, houses, rain, birds, and chaff. The basic function of radar is shown in Fig.

1.1.

Figure 1.1: Basic Function of Radar System
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Target discriminants as shown in Fig. 1.2 are used by radar systems to separate

the desired target from the clutter. The range, velocity, and angle are the target

discriminants. The range is calculated as the total time for the radar signal to

travel from the source to the destination and back. The angular direction of a

target is determined using the antenna’s orientation at the time the echo signal

is received. By determining the target’s location at successive time intervals, the

recent track of the target may be determined. A moving target shifts the frequency

of the reflected signal by a specific amount known as the Doppler shift.

Figure 1.2: Radar Target Discriminants

1.4 Basic Components of Pulse Radar

Pulse radar transmits and receives signals through a single antenna by using a

duplexer. Fig. 1.3 depicts the block diagram of a pulse radar. The blocks in

blue represent the transmit path and green blocks show the path followed by the

received signal. The functionality of each block of pulse radar is given below:

1.4.1 Antenna

The function of the antenna is to radiate energy in space. Antennas mainly used in

radar systems include planar arrays, phased arrays that are steered electronically,
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Figure 1.3: Basic Components of Pulse Radar

or parabolic reflectors. A horn antenna or other tiny antenna is placed at the

parabola’s focus in order to shine light onto the reflector’s parabolic surface. The

electromagnetic energy is reflected by this surface and then emitted as a confined

beam.

1.4.2 Pulse Modulator

For radar activities, such as target identification, range, and tracking, the pulse

modulator determines the pulse duration, pulse repetition frequency, and other

parameters of the transmitted pulses.

1.4.3 Transmitter

A transmitter is built using semiconductors or vacuum tubes. It sends out the

pulse-modulated signal, which consists of a series of repeated pulses. In addition to

having the wide bandwidth and high power that are typical of radar applications,

the transmitter of a radar system must also be effective, dependable, not too

huge in size and weight, and simple to maintain. The transmitter must normally

create low-noise, continuous transmissions to prevent interference signals from the
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transmitter obscuring the detection of the slight Doppler frequency shift caused

by weak moving objects.

1.4.4 Duplexer

An antenna is connected alternatively to the transmitter and receiving sections

by a microwave switch called a duplexer. The pulse-modulated signal is sent by

the antenna when it is connected to the transmitter by the duplexer. Similarly,

when the antenna and low-noise Radio Frequency (RF) amplifier are connected

by a duplexer, the signal picked up by the antenna is delivered to the amplifier.

1.4.5 Low Noise RF Amplifier

This device boosts the weak RF signal that the antenna receives. The amplifier’s

output is also linked to the mixer.

1.4.6 Local Oscillator

It generates a stable frequency signal. The mixer is connected to the local oscilla-

tor’s output.

1.4.7 Mixer

The mixer can generate both the difference and sum of the applied frequencies.

The variation in frequencies among them will be of the Intermediate Frequency

(IF) type.

1.4.8 IF Amplifier

It amplifies the IF signal. The output Signal to Noise Ratio (SNR) is enhanced. It

also determines the gain and effective bandwidth of the receiver. The IF amplifier’s
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job is to increase the weak signal’s strength and SNR so that it can be processed

and demodulated further, which will improve the receiver’s overall performance.

1.4.9 Detector

It demodulates the signal that was collected from the IF amplifier’s output.

1.4.10 Video Amplifier

This device amplifies the visual signal that the detector produces at its output.

1.4.11 Display

The amplified video signal is often displayed on a screen.

1.5 Types of Radar

Depending on their functionality and the types of signals they can operate with,

radars can be categorized into the following categories:

1.5.1 Waveform Based Classification

Radars can be categorized according to the waveforms that they employ. Following

is a list of some of the waveform-based categories:

1.5.1.1 Pulse Radar

A sequence of short, repeating pulses makes up the most prevalent kind of radar

signal. Fig. 1.4 depicts a basic description of a sine-wave pulse that could be pro-

duced by a medium-range radar transmitter used for aircraft detection. The sine
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Figure 1.4: Pulse Radar

wave in the illustration depicts how the transmitter’s output voltage changes over

time. Referring to Fig. 1.4, the common radar parameters are described. Pulse

Width (PW) has time units and is frequently represented in µs. The duration be-

tween pulses is known as rest time (RT). Pulse Repetition Time (PRT) has time

units and is often measured in ms. PRT is the period of time between the begin-

nings of two successive pulses. The inverse of PRT, Pulse Repetition Frequency

(PRF) is the number of pulses transmitted each second. Radio Frequency (RF)

can be measured in GHz or MHz. Since a pulse radar does not continuously emit

radiation, the average power is significantly less than the peak power. Instead of

using the peak power, a radar system’s capability is evaluated using the average

power. Depending on the application, the average power of radar ranges from a

few milliWatts (mW) to one or more megawatts (MW).

One picowatt (10−12 watt) is a possible limit for a weak echo signal coming from

a target. In summary, a radar system’s power levels can be both very high and

very low as well. Radar waves travel through the atmosphere at a speed of about

300,000 km/s (the speed of light). The range of a target can be determined by

calculating the time it takes for a radar signal to travel to and return from a

target. The target’s distance is equal to cT/2, where T is the radar’s estimated

round-trip time and c is the speed of light. The capability of radar to accurately

determine a target’s distance over long distances and in poor weather is its most
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distinguishing characteristic. A simple pulse radar’s range accuracy is a function

of pulse width; the narrower the pulse, the higher the accuracy. However, large

bandwidths in the transmitter and receiver are needed for short pulses.

1.5.1.2 Continuous Wave Radar

Continuous Wave Radar (CWR) is a type of radar that uses a continuous signal to

operate. They employ the Doppler effect to recognize moving targets. The block

diagram of CWR is shown in Fig. 1.5.

The two types of CWR are given as follows:

1. Unmodulated Continuous Wave Radar (UCWR)

2. Frequency Modulated Continuous Wave Radar (FMCWR)

1. Unmodulated Continuous Wave Radar (UCWR)

This type of radar uses a continuous signal to identify moving targets. It also

goes by the name CW Doppler radar. Two antennas are needed for this radar.

One of these two antennas is used for signal transmission, and the other antenna

is utilized for signal reception. It does not measure the target’s distance from the

radar; it just measures the target’s speed.

2. Frequency Modulated Continuous Wave Radar (FMCWR) This is a

type of CW Doppler radar that employs frequency modulation. It is also known

as Continuous Wave Frequency Modulated Radar (CWFMR). There are two an-

tennas, one of which is used to transmit the signal and the other to receive it.

Along with the target’s speed, it also determines how far away the target is from

the radar. Radars can also be categorized based on the tasks they perform. The

following is a discussion of a few of them. Automotive collision avoidance systems

and precise distance measurement benefit from the great range resolution and si-

multaneous measurement of target distance and velocity provided by CWFMR

radar. Its uninterrupted waveform offers resilience to interference and efficient

power usage.



Introduction 10

Figure 1.5: CW Doppler Radar with IF Amplification

1.5.2 Functionality Based Classification

Radars can be categorized based on the tasks they perform. Some of the categories

defined based on functionality are listed below:

1.5.2.1 Airport Surveillance Radar

When an aircraft is within 75 to 110 km of its airport and above an altitude of

7,620 meters, airport surveillance radar systems can reliably detect and track it.

More than 100 major airports across the United States have such systems installed.

The ASR-9 is a radar that is designed to be operational for at least 99.9% of the

time, which translates to as low as 10 hours of downtime each year.

1.5.2.2 Doppler Weather Radar

Radar has been used for many years to provide information about the intensity of

rain and other types of precipitation. Numerous weather radars were developed

by engineers, greatly expanding their capabilities by being able to measure the

Doppler frequency shift in addition to the strength of the echo signal reflected

by precipitation. The radial velocity of wind-blown precipitation is important

and related to the doppler frequency shift. Downbursts, also known as microbursts,
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are a significant weather risk to aircraft when they approach or depart from an

airport. An airplane could be forced to the ground by this powerful downdraft’s

wind shear. The system type at or near airports that is specifically designed to find

hazardous microbursts is known as Terminal Doppler Weather Radar (TDWR).

It operates from 5.60 to 5.65 GHz (C band).

1.5.2.3 Airborne Combat Radar

In most cases, a combat aircraft is needed to attack surface targets on the ground

or at sea in addition to intercepting hostile aircraft. Such an aircraft’s radar must

be capable of carrying out these specific military missions. Since each mission

has unique criteria, this is challenging. Various radar waveforms are required

depending on the ranges, precision, and speed at which the radar data must be

collected, as well as the effect of the surrounding environment and the types of

targets.

1.5.2.4 Satellite Surveillance Radar

The systems for tracking orbiting satellites and ballistic missiles are much larger

than those used for tracking aircraft. Maximum ranges for these radars could be

required to be between 3,700 to 5,600 km. Several hundred kW to one MW is

the typical transmitter power of a Ballistic Missile Defense (BMD) radar, which

is around 100 times more powerful than the typical transmitter power of radars

used to detect aircraft. Radar systems for long-range ballistic missile detection

and satellite monitoring commonly use lower frequencies (MHz).

1.5.2.5 Ground-Probing Radar

Usually, it is considered that radar waves are reflected from the ground’s surface.

However, lower-frequency radar energy can pass through the earth and bounce off

buried things. At these frequencies, the propagation loss in the ground is relatively
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substantial, but it is also low enough to allow for ranges of at least 3.3 to 33 feet

(1 to 10 meters). This is sufficient for archaeological digs and for probing the

subsurface soil to locate utility cables, pipelines, and tunnels. Since a bandwidth

of 500 MHz is required for a 1-foot range resolution, broad bandwidth is often not

possible at lower frequencies.

(a) Airborne Early Warning Radar [7] (b) Ground-Probing Radar [8]

1.5.2.6 Over-the-Horizon Radar

Radar applications often do not require frequencies lower than 100 MHz. The

High Frequency (HF) band has the benefit that radio waves at these frequencies

are refracted by the ionosphere, which allows them to travel far beyond the hori-

zon before returning to the Earth’s surface. This allows for target identification

between 900 to 3,700 km. Since the earth’s curvature restricts the range of ground-

based microwave air surveillance radars, an Over-The-Horizon (OTH) radar may

detect aircraft at distances up to ten times greater than those of those radars.

1.5.2.7 Tracking Radar

In order to determine a target’s trajectory and estimate its future position, this

type of radar continually tracks a single target in angle (azimuth and elevation)

and range. The single-target tracking radar constantly updates the location of

the target. A typical tracking radar might take ten measurements of the target’s
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location each second. Tracking radars are typically used for range instrumentation.

The Air Force, Army, Navy, and NASA are the main organizations that employ

tracking radars [9].

1.6 Factors Affecting Radar Performance

The following criterion can be used to assess the performance of the radar system:

1. The greatest distance at which it may see a target of a specific size.

2. The accuracy with which the target’s distance and angle are measured.

3. The capability to distinguish one target apart from another.

4. The capability to identify the desired target echo in the presence of significant

clutter echoes, unexpected interference from other friendly transmitters, or

harmful radiations from hostile jamming.

5. The capability to recognize different types of targets.

This subsection talks about some of the key variables that influence radar perfor-

mance.

1.6.1 Transmitter Power and Antenna Size

A radar system’s maximum range is significantly influenced by the average trans-

mitter power and antenna size. The typical normal power of many radar systems

is 1 MW or more. There are many phased-array radars with a diameter of around

100 feet (30 meters), while some are much larger. Longer detection ranges and

improved signal-to-noise ratios are made possible by higher transmitter power, but

larger and more intricate antennas are also needed. Although smaller antennas

are more useful for systems that are more compact, they frequently lead to de-

creased radar sensitivity and range. Optimizing radar system design for particular
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applications requires striking the correct balance between transmitter power and

antenna size.

1.6.2 Receiver Noise

The inevitable noise that appears at a radar receiver’s input determines its sen-

sitivity. At microwave radar frequencies, the noise that limits detectability is

often created by the receiver rather than by external noise that enters the receiver

through the antenna. The receiver is made to improve desired signals while reduc-

ing overall noise and other unwanted signals that inhibit detection. Additionally,

the matched filter is used which increases the SNR ratio at the receiver output.

1.6.3 Target Size

It’s not always the case that a target’s size as seen by radar corresponds to its actual

size. The radar cross-section, which is expressed in units of area, is a measurement

of the target size as seen by radar (square meters). Two targets with the same

physical cross-sectional area may have very different radar cross-sections or sizes.

1.6.4 Clutter

Echoes from the land, rain, snow, sea, hail, insects, birds, and meteors are fasci-

nating to people who monitor and study the environment, but they are a hassle

for people who wish to detect aircraft, missiles, ships, or other comparable targets.

As a result, a large portion of radar design is focused on limiting the impacts of

clutter without diminishing the echoes from desired targets.

1.6.5 Atmospheric Effects

The performance of radar can also be impacted by additional atmospheric phe-

nomena. Radar waves are bent as they travel through the atmosphere due to the
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Earth’s atmosphere losing density with altitude. This typically extends the detec-

tion range at low angles. The formation of ducts in the atmosphere allows radar

energy to be trapped, guided around the curvature of the Earth, and detected at

distances beyond the normal horizon. When propagating through a clear blue sky

or rain, the loss of radar energy due to atmospheric absorption is often minimal

for the majority of microwave-operated systems.

1.6.6 Interference

Strong enough signals can enter a radar receiver and generate erroneous results

if they originate from adjacent emitters like radars and other devices. Even

though they may find it annoying, well-trained operators are not frequently misled

by interference. However, interference cannot be ignored as easily by automatic

detection and tracking systems. As a result, some method is typically needed to

identify and remove interference pulses before they approach the radar’s automatic

detector and tracker.

1.7 Electronic Warfare (EW)

Electronic Warfare (EW) is the term used to describe any operation involving the

use of electromagnetic spectrum to seize control of the spectrum, fight with an en-

emy, or resist such attacks. In order to ensure that friendly forces have unrestricted

access to the electromagnetic spectrum and to deny the enemy an advantage over

it, EW was invented. EW includes the entire RF spectrum as well as the infrared,

optical, and ultraviolet spectrum. EW receivers are designed to detect, identify,

and locate threats. The countermeasures are designed to reduce the effectiveness

of those threats. EW is responsible for responding to the threat signals that are

present in its environment [10]. As a result, since the advent of advanced EW

in the early 1940s, some sort of processing has been required to decide when and

how to use the appropriate countermeasures. Originally, the selection of appro-

priate countermeasures was entirely dependent on the ability of trained operators
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to identify threat signals. Receivers collect RF signals because humans are unable

to detect them immediately. The signals were then processed in some manner

before being presented in a way that operators could interpret. It was essential to

automatically detect and classify threats as the signal environment became more

complicated, and radar-controlled weapons became more destructive. Numerous

sensors and countermeasures are frequently included in fully integrated modern

EW systems. These system resources must all be managed and coordinated [10].

In many nations over the past few years, the divisions of the EW field have been

revised. The following definitions are currently accepted in NATO as shown in

Fig. 1.6.

1.7.1 Electronic Support (ES)

In order to focus operations in the future and recognize threats immediately, Elec-

tronic Support (ES) or Electronic Support Measure (ESM) requires looking for,

intercepting, identifying, and localizing sources of intentionally and unintention-

ally transmitted EM energy. Identifying the types and locations of the enemy’s

forces, or weapons is another use for the received signals, which is known as sit-

uation awareness. ES often collects a lot of signal data to facilitate less intensive

processing with a high throughput rate. ES typically determines which of the

recognized emitter types is present and where they are placed.

1.7.2 Electronic Attack (EA)

EA involves the use of EM energy, directed energy, or anti-radiation weapons

to attack people, places of business, or components of machinery in an effort

to reduce, neutralize, or eliminate an enemy’s fighting ability. The effectiveness

of military radar is intentionally reduced by hostile Electronic Countermeasures

(ECM). ECM can include noise jamming, which enters the receiver through the

antenna and increases the noise level at the receiver’s input; false target generation,

in which hostile jammers introduce additional signals into the radar receiver to try
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and fool it into believing they are real target echoes; and chaff, an artificial cloud

made up of numerous tiny metallic reflecting strips that produce strong signals.

1.7.3 Electronic Protection (EP)

The techniques and methods used for EP work to mitigate the consequences of

an electronic attack (EA). The radar’s EP or Electronic Counter Countermea-

sure (ECCM) technology prevents attempts to jam it by an EA system. Even

though it is commonly known that anti-radiation and directed energy weapons

are closely related to EW, they were not regarded as EW. They differ in that they

are weapons.

1.7.4 Radar Warning Receiver (RWR)

ESM system plays a vital role in modern EW for investigating intercepted signals.

Once the signal is detected at the Radar Warning Receivers (RWR), the classifi-

cation is done based on intrapulse modulation schemes. Therefore, an automatic

intrapulse modulation classification algorithm is required to distinguish among

different emitters and to estimate their intrapulse parameters at the RWR [11].

RWR is the system that analyzes the intercepted signal and tries to find out

information about the location and type of hostile emitter using wide coverage

antennas so that a threat may be generated against it. The RWR sends this

information in real-time to aircrew personnel so that they might make appropriate

responses. For an Airborne RWR, the operational needs and mission-specific trade-

offs ultimately determine whether to use a single antenna or several antennas.

In order to balance factors such as cost, complexity, and performance, certain

RWR systems could employ a combination of single and multiple antennas. The

intended capabilities of the RWR system, the available technology, and the threat

environment will all play a role in determining which antenna arrangement is best.

Fig. 1.7 shows a top-level block diagram for an airborne RWR. The signals are
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Figure 1.7: Signals Received at RWR by Multiple Threat Emitters

received at RWR from multiple threat emitters and are then analyzed to determine

their intrapulse modulation schemes.

1.7.4.1 RF Threat Identification

Threat identification can be done with the help of modulation schemes used by

threat emitters. These modulation schemes may include:

1. Frequency Shift Keying (BFSK/QFSK),

2. Linear Frequency Modulation (LFM),

3. Nonlinear Frequency Modulation (NLFM),

4. Phase Shift Keying (BPSK/QPSK), and

5. Polyphase Modulation (FRANK, P1, P2, P3, P4).

We are interested in emitter recognition using polyphase-coded modulation schemes.

In Section 2.1.2, the literature survey of radar emitter recognition techniques that

employ phase-coded signals is performed along with their shortcomings.
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1.7.5 Low Probability of Intercept (LPI) Radars

The electromagnetic environment is quite complex for modern EW due to the

strong impact of noise and the parameters of radar keep on changing over time.

Most radars used in the naval battlefield today, such as those used for surveillance,

reconnaissance, and target tracking, must deal with very strong and sophisticated

threats intended to decrease the effectiveness of radars. Such threats include ES,

EA systems, RWRs, and Anti-Radiation Missiles (ARMs). It is essential for the

radars to conceal their emissions from modern threats and these radars are known

as LPI radars. LPI signals have very wide bandwidth, properly managed transmit

power, frequency-agile, advanced scanning patterns, and reduced side lobes. It is

now challenging for conventional RWR to identify and parameterize the low-power

and high-bandwidth LPI radars. In this research, we are supposed to be at RWR

that will intercept the signals from multiple emitters (LPI) and it has to recognize

the different emitters based on their intra-pulse modulation schemes. [12].

A common method for realizing LPI radar signals is to utilize some type of pulse

compression technique to lower the radar’s Effective Radiated Power (ERP). In

practice, pulse compression based on intrapulse modulation produces a signifi-

cant time-bandwidth output with high radar signal processing gain. Addition-

ally, recent developments in optimization techniques have been used to create

radar waveforms that can improve the performance of LPI radar systems. Several

polyphase-coded waveforms, including Frank, P1, P2, P3, and P4, and frequency

hopping are examples of LPI waveforms. In LPI radar, phase-coded waveforms

are created by generating different phase patterns within a pulse. These radar

signals fall under the category of non-stationary signals. In order to generate the

polyphase-coded signal some parameters are significant including carrier frequency

(Fc), no of phases within a pulse, and Cycles Per Phase (CPP). Higher frequency

resolution is required to estimate the Fc and there is always a trade-off between

time and frequency resolutions. LPI radar systems attempt to reduce the prob-

ability that a threat signal can be detected by an EW receiver in two different
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ways. Initially, by carefully controlling the radiation and scan patterns and loca-

tion of power transmission. Second, the radar waveform uses high-duty cycles or

CW signals with advanced modulation techniques that span large bandwidths to

lower the average power density. Compared to an intercept receiver, LPI radars

are able to detect targets at a further distance [12]. The waveform is transmitted

by spreading in wide-band noise. Advanced signal processing algorithms are then

used to extract the LPI radar signal from wide-band noise. Due to the extraor-

dinary properties of LPI radar waveforms, the conventional waveform recognition

techniques using parameter matching from the database are unable to recognize

such radars. Therefore, it is crucial to find a novel radar emitter recognition

method at the hostile receiver side to improve the recognition accuracy of phase-

coded waveforms at low SNR. In the following paragraphs, LPI radar waveforms

are discussed in detail along with their formulas. Barker, Frank, P1, P2, P3, and

P4 codes are among the phase-coded signals utilized in our research.

1.7.5.1 Barker Code

The binary phases that make up the Barker codes have a peak-to-peak side lobe

ratio of M (Length of code). The side lobe level ratio for the longest length code

is reported to be -22.3 dB, and Barker codes are not available for M>13. As a

result of their low complexity, Barker-coded pulses frequently employ binary phase

modulation. Only the lengths M =2, 3, 4, 5, 7, 11, and 13 are available for these

codes, which only contain side lobes of unity magnitude [13]. Long-duration pulses

can be modulated using polyphase modulation, which uses several phase values.

As compared to bi-phase codes, polyphase codes produce lower-side lobes. The

definition of polyphase-coded waveforms in mathematical form is presented in the

next subsection.

1.7.5.2 Frank Code

Frank is a polyphase code having good non-periodic correlation properties. The

phase history of the LFM pulse is used to develop the Frank code, which is a
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perfect code. With this code, only perfect square length (N = L2) is applicable.

The phases of sub-pulses can be generated using the formula given in (1.1).

ϕm,n =
2π

L
(m− 1)(n− 1), (1.1)

where, 1≤ m ≤ L and 1 ≤ n ≤ L. The middle of the Frank code has more phase

increments than either of the ends [13].

1.7.5.3 P1 Code

The step approximation of an LFM signal yields the P1 and P2 codes. The length

of code is (N = L2), according to [13]. The phase value of the mth sample of the

nth frequency step can be determined using (1.2) if m signifies a sample number

in a given nth frequency step.

ϕm,n = −π

L
[L− (2n− 1)][(n− 1)L+ (m− 1)], (1.2)

where, m= 1, 2, 3, ..., L, n= 1, 2, 3..., L and N should be a perfect square length.

For P1 code, the Peak side lobe level (PSL) is expressed by using the following

formula:

PSL = 20log10

( 1

Lπ

)
. (1.3)

1.7.5.4 P2 Code

Even values of L cause low-level auto-correlation side lobes, but the P2 code still

works for perfect square lengths. The phase values for sub-pulses are calculated

using the formula expressed below:

ϕm,n = − π

2L
[2m− 1− L][2n− 1− L], (1.4)

where, m= 1, 2, 3, ..., L, n= 1, 2, 3, ..., L and L= 2, 4, 6, .... For both P1

and P2 codes, high phase increments are seen at the start and end of the code in



Introduction 23

comparison to the center. P2 codes are developed from the step approximation

of LFM pulse. The initial phase values for P2 are different, but it has the same

phase increments as P1 [13].

1.7.5.5 P3 Code

The Zadoff-Chu codes, which are applicable for any length Nc, are used as a basis

for the P3 and P4 codes [13]. The phase of the mth sample of the P3 code can be

calculated using the formula in (1.5).

ϕm = − π

Nc

(
m− 1

)2
, (1.5)

where, m=1, 2, ..., Nc, and Nc denotes the compression ratio.

1.7.5.6 P4 Code

The formula provided in [13] describes the phase values of a P4 code and is given

below:

ϕm = −
[
π(m− 1)2

Nc

]
− π(m− 1), (1.6)

where, m= 1, 2, ..., Nc. The largest phase increments in the center of code like

the Frank code, distinguish the P3 code from the P4 code. P3 and P4 codes are

more resistant to Doppler than other polyphase codes.

1.8 Motivation

LPI radars frequently employ phase-coded modulation schemes in their waveforms.

Radar emitters (LPI) that use phase-coded waveforms can produce distinctive sig-

natures that can be identified and categorized through specific emitter recognition

algorithms. Moreover, the resistance to interference provided by phase-coded mod-

ulation also makes it challenging for RWRs to interfere with LPI radars without

being aware of the precise phase-coding scheme. This serves as a motivational
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factor behind this research effort to identify the specific phase-coding scheme used

by the LPI radar to facilitate the RWR. According to the literature, extracting

information from the magnitude spectrum of Time Frequency Representations

(TFRs) is necessary for the identification of phase-coded LPI radar waveforms.

Additionally, the recognition has been done in recent research studies with a min-

imum reported SNR of -10 dB. However, a novel phase spectrum-based method is

required to enhance recognition accuracy even in low SNR settings ( < -10 dB).

1.9 Research Objectives

In light of the limitations and motivation discussed in the previous section, the

aims and objectives of this research are as follows:

1. To propose a phase spectrum-based feature extraction method for enhancing

the recognition of phase-coded waveforms at low SNR values ( < -10 dB).

2. To analyze the efficacy of the proposed phase-based features using different

deep learning architectures.

3. To compare the recognition accuracies of phase-coded signals obtained at the

output of two different deep learning architectures (BiLSTM and DCNN).

1.10 Organization of the Dissertation

The thesis comprises the following chapters:

Chapter 2 provides a review of the various radar emitter recognition methods

that have been employed in the literature. In order to select the best option

for the desired research, multiple TFRs and deep neural networks are compared

on the basis of various parameters. In the next sections, the chapter includes the

problem statement, the research methodology, and finally the contributions of this

dissertation.
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Chapter 3 explains the fundamentals of the recently proposed feature extraction

technique based on the phase spectrum obtained from the Short Time Fourier

Transform (STFT). The overall methodology and system overview of the proposed

research work for both of the deep learning architectures (BiLSTM and DCNN)

used in this research is also provided.

Chapter 4 provides the simulation parameters as well as the phase-coded waveform

recognition results for both proposed architectures. Additionally, this chapter

contains information on significant training parameters that were used to train

both architectures. The two proposed emitter recognition methods are compared

in order to determine which is better. On the basis of SNR, a comparison is

also made with other state-of-art techniques utilized in the literature for emitter

recognition.

The major findings of the research provided in this thesis are summarized in Sec-

tion 5, along with a conclusion and some suggestions for potential future research.

1.11 Chapter Summary

This chapter covers the fundamentals of radar systems as well as their historical

background. The classification of radar systems according to waveform types and

functions is also discussed. The explanation of EW and its subcategories is fol-

lowed by a discussion of LPI radar waveforms. The key objectives and motivation

highlighted at the chapter’s end, along with an overview of the entire thesis. In

the next chapter, a literature survey of radar emitter recognition techniques is to

be introduced; the gap derived and the proposed solution is also mentioned at the

end of the chapter.



Chapter 2

Literature Review, Gap Analysis,

and Proposed Solution

The literature review and research directives in radar emitter recognition tech-

nology are covered in Section 2.1 of this chapter. The literature review of time-

frequency transforms and machine learning architectures are covered in Section 2.2

and 2.3 respectively in order to choose the best one for the radar emitter recogni-

tion at low SNR values. The gap analysis presented in Section 2.4 was achieved by

the extensive literature review, which assisted in identifying the areas of concern in

the previous studies. The chapter’s next sections include the problem statement,

proposed solution, and ultimately the contributions of the dissertation.

2.1 Existing Research Directives in Radar Emit-

ter Recognition (RER) Technology

It is challenging to differentiate between the various threat signals present in a

measured spectrum due to the complexity of today’s radar environment. More

radar types have evolved as a result of the rapid developments of radar technol-

ogy. A Radar Emitter Recognition (RER) system that can operate effectively

with a range of radar types is particularly difficult to create. The recognition of

26
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intrapulse modulation schemes have been the focus of numerous studies conducted

on RER techniques. The aim of automatic intrapulse modulation classification is

to classify the intrapulse modulated and noise-embedded LPI radar signals. LPI

radars are special radars that try and hide their signals from hostile receivers, such

as RWRs [12, 13]. The peak Effective Radiated Power (ERP) of the radar is often

decreased by utilizing pulse compression techniques in order to achieve LPI radar

signals. Intrapulse modulation is a very helpful technique for pulse compression.

It has a significant radar signal processing gain and a high bandwidth-time prod-

uct. In order to widen the bandwidth, the transmitted pulse is either phase or

frequency-modulated. The emitter recognition procedure is a crucial technique

in the area of electronic countermeasures as initially it involves the preprocessing

of the intercepted radar signal. The intrapulse modulation schemes utilized by

intercepted signal is then determined using some specific algorithm.

2.1.1 Phases of Radar Emitter Recognition Technology

Radar emitter recognition (RER) technology development has undergone the fol-

lowing three phases as shown in Fig. 2.1

1. The conventional methods for identifying specific emitters are used in the

first step. These approaches primarily employ a parameter-matching strat-

egy to compare the parameters of the intercepted radar signals with the data

already stored in the database. This method seems to be computationally

less extensive but in order to cope with the varying parameters of LPI radar

waveforms it becomes difficult to recognize the exact emitter [14].

2. The second stage seems to be matured as it makes use of radar intrapulse pa-

rameters combined with Neural Networks (NNs) to boost the accuracy and

recognition performance as compared to the traditional approach. The In-

trapulse parameters including Pulse Width (PW), Time Of Arrival (TOA),

Pulse Amplitude (PA), Direction Of Arrival (DOA), and intrapulse mod-

ulation are fed as features to the NN for the classification [15]. Features
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may be distorted due to noise and interference which may lead to degraded

performance.

3. The third stage involves the Deep Neural Networks (DNNs) including Deep

Belief Network (DBN), Feed Forward Neural Network (FFNN), Recurrent

Neural Network (RNN), Long Short Term Memory (LSTM), and Convo-

lutional Neural Network (CNN) using special pre-processing techniques to

improve the recognition rates. The combination of DNNs like CNN-RNN,

CNN-LSTM, and CNN-LSTM-DNN have shown very good recognition ac-

curacies [16–18].

Figure 2.1: Phases of Radar Emitter Recognition Technology

2.1.2 Literature Survey of RER Methods

Real-time classification and detection of the intrapulse modulation schemes of

intercepted signals from LPI radars are very crucial in EW systems. Therefore,

such waveform recognition techniques have gained much attention over the past
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few decades. In this section, some LPI radar waveform recognition techniques

presented in the literature are discussed along with their shortcomings. For the

classification and analysis of LPI radar waveforms, some signal processing methods

are developed in [19]. Based on the kind of pulse compression techniques used

for phase-coded waveforms, the classification of signals from different emitters is

done. Fractional Fourier Transform (FrFT) is computed and further classification

is performed. Even at the low SNR of -10 dB, overall recognition accuracy for

the phase-coded waveforms is observed to be 87%. Moreover, the classification

accuracy of the Barker code is not discussed in this work.

An automatic radar waveform identification system is investigated in [20] for de-

tecting and tracking LPI radars. Twelve different types of radar signals, including

polyphase codes, may be classified by the system. The CNN and Elman Neural

Network (ENN), two relatively independent networks, are presented as a hybrid

classifier. At an SNR of -2 dB, the experiments show a 94.5% successful recog-

nition ratio. In the NN based approaches, training data is simulated based on

different parameters and AWGN is added to the signals to make them more realis-

tic in nature. A technique for recognizing eight different types of radar waveforms

is investigated in [21]. The classifier is an artificial bee colony (ABC) algorithm

optimized by Support Vector Machine (SVM). At SNR of -4 dB, the overall recog-

nition rate is 92%, according to the simulation findings. A novel method for radar

emitter recognition based upon intrapulse parameters is proposed using the vari-

ant of Short Time Fourier Transform (STFT) and Reinforced Deep Belief Network

(RDBN) in [22]. In this method, 60% recognition accuracy is achieved at an SNR

of -10 dB. When the SNR decreases, Linear Frequency Modulation (LFM) and

Non-Linear Frequency Modulation (NLFM) get confused with other modulation

schemes and their recognition accuracy is further reduced. In [23], a recognition

technique based upon CNN is proposed for LPI radar waveforms. In order to

reduce the computational cost, the Sample Averaging Technique (SAT) is also

proposed as the intercept receiver has to process more samples to improve the de-

tection. From the confusion matrix, it is clear that FRANK, P1, P3, and P4 signals

can be detected with an accuracy of less than 90% that needs further improvement.
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The overall accuracy is observed to be 90% at SNR= -10 dB. The performance

accuracy of Barker codes is also not considered in this paper. Recurrent Neural

Network (RNN) based recognition technique is proposed in [24] to perform denois-

ing, classification, and deinterleaving of a pulse stream. RNN has the capability

to mine temporal patterns in the given data by using the pulse streams belonging

to certain classes and supervised learning is performed. The trained RNN is then

used to categorize different classes present in the test streams and can also do pre-

dictions for the upcoming pulse streams. Only PW and Pulse Repetition Interval

(PRI) are the parameters considered for the Specific Emitter Identification (SEI)

process.

The hierarchical decision tree-based classification is proposed in [25] that seems

to be appealing in real-time applications when the Optical Fiber (OF) channels

are used to transmit the received LPI radar signals. Noise and distortion are

added to signals that may reduce the classification accuracy. In the proposed

method, classification accuracy is observed in the presence of Additive White

Gaussian Noise (AWGN) and OF impairments (chromatic dispersion). The overall

recognition accuracy for noiseless intercepted phase-coded waveforms is observed

to be 100% at Optical SNR (OSNR)= 10 dB. The performance accuracy of Barker

codes is also not considered in this paper. Moreover, the recognition accuracy

of P1 and Frank code has improved from 0% to 100% after the CD correction

factor which seems to be ambiguous. Waveform Classification method based on

the Fourier-based Synchrosqueezing Transform (FSST) and CNN is proposed in

[26]. FSST offers better performance over the extensively used Choi William

Distribution (CWD) for identifying the phase-coded waveforms even at low SNR

of -10 dB in the case of LPI Radars with an overall accuracy of 98.4%. However,

the proposed method has a lower capability to distinguish between the LFM and

Costas codes at low SNR values.

A novel network is proposed in [27] that combines a shallow CNN, Long Short-

Term Memory (LSTM) network, and Deep Neural Network (DNN). This method

can recognize six different radar emitter signals at the SNR ranging from -14 dB

to 20 dB. Three different types of signals are given at the input of a combined
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network for analysis including time, frequency, and auto-correlation domain. CNN

is used for feature extraction and features are then fed to the LSTM network.

Finally, DNN is used to give the classification results. The auto-correlation domain

has the recognition accuracy of 90% at -6 dB as compared to other domains.

The recognition accuracy of polyphase-coded waveforms is not discussed in this

work. A novel emitter recognition method is proposed in which PW images are

obtained and CNN is used for classification [28]. PW images are transformed

from a time domain into 2D binary images that are fed to CNN. The proposed

method outperforms the other techniques in literature to identify the uncertain

modulations and varying PW in the intercepted radar signal. Only the pulse

amplitudes are considered for the SEI process and phase-coded modulations are

not discussed.

The combination of CNN and LSTM has also proved to be powerful in the liter-

ature for automatic emitter recognition techniques. CNN is capable of extracting

spatial characteristics and LSTM can extract temporal characteristics in the pulse

stream. CNN-LSTM can exploit spatial and temporal characteristics simultane-

ously. In [29], a novel recognition method for radar emitter signals is proposed

using CNN-LSTM architecture along with STFT. The proposed algorithm can

identify the eight different radar signals with an overall accuracy of 96.95% at

the SNR of -2 dB. Only Barker and P2 codes are discussed in this research work.

The Multiple Feature Images Joint Decision (MFIJD) model is proposed in [30]

with two distinct feature extraction structures. It has been noted that Structure 2,

which is based on the LSTM, has 83% overall recognition accuracy at SNR= -6 dB

and 91% at SNR= -3 dB respectively. Finding the various intrapulse modulation

methods that LPI radar waveforms employ has been a significant research chal-

lenge for many decades.

In [31], a unique CNN architecture for automatic modulation classification is pro-

posed for SNR ranging from -4 dB to 20 dB. The suggested model makes use of

an asymmetric convolution structure to decrease computational complexity. How-

ever, in this work, phase coded signals are not considered. Intrapulse modulation
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classification method using intrapulse signatures and deep residual learning is pro-

posed in [32] that can recognize eight types of radar waveforms with an overall

accuracy of 94.1 % at -8 dB SNR. Frank codes are only considered in this work.

In [33], 1D-CNN with the selective kernel is used to classify intrapulse modulation

of eleven types of radar signals. Polyphase codes other than Frank codes are not

taken into account in this work. Radar emitter recognition using a unique 1D

Deep Residual Shrinkage Network (DRSN) is described in [34]. This analysis

does not take phase-coded signal recognition accuracy into account. The end-

to-end denoising and recognition of radar signals are proposed using a denoising

network based on an inception method in [35]. The overall recognition accuracy is

89.25% at an SNR of -10 dB. Only Frank codes are considered in this work. [36]

uses a transfer learning method using CNN to enhance the recognition accuracies

of nine various kinds of radar waveforms. Initially, three intrapulse modulation

types of radar signals that are easily collected and have enough samples are used

to train a 1D CNN. Following that, nine different kinds of few-shot complex intra-

pulse modulation classification tasks in the target domain are used to employ the

knowledge acquired by the convolutional layer. Other than the Frank code, the

recognition of polyphase codes is not considered. In [37], a CNN-based intrapulse

modulation recognition method is proposed using semi-supervised data. However,

phase-coded signals are not considered in these researches except Frank code [35–

37]. A recognition method using dual channel CNN and feature fusion is used in

[38] to recognize twelve different types of LPI radar waveforms with 97% accuracy

at SNR of -6 dB. In order to differentiate eight different types of intrapulse mod-

ulations of radar signals, a novel end-to-end sequence-based network that consists

of a shallow CNN, a BiLSTM network strengthening with a self-attention mecha-

nism, and a dense NN is created in [39]. The simulation results demonstrate the

reliability and effectiveness of autocorrelation features. Additionally, the proposed

network achieves more than 95% accuracy at -10 dB and roughly 61.25% accuracy

at -20 dB. The situations with very low SNR have been taken into account in

this research work, although polyphase-coded signals have not been considered in

this study. The majority of state-of-the-art techniques, such as [40], exhibit lower
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recognition accuracies for phase-coded signals exploiting the magnitude spectrum

at low SNR values. In this study, we propose a phase spectrum-based method

for feature extraction since phase should be a good candidate for the detection of

phase-coded signals. The phase spectrum-based emitter recognition is performed

in [16, 41] and the results are provided in Chapter 4 of the dissertation. Addi-

tionally, a tabular version of the literature survey of the different radar emitter

recognition techniques is presented in Table 2.1.

In applications related to signal processing, the time domain representation is not

always the ideal one. Mostly the eminent information of the signal is concealed

within its frequency content. Time-Frequency Representation (TFR) is used in

signal processing to investigate the time-varying signals as their spectral contents

changes with time. In literature, there are several TFRs that are used to transform

time domain radar waveform into 2D time-frequency images which are further

given at the input of DNN for analysis. Different TFRs are used including STFT,

CWD, Wigner Ville Distribution (WVD), cross WVD, FrFT to generate the time-

frequency representation from which the parameters of polyphase coded signals

are derived [42–54]. Literature survey of some time-frequency techniques is given

in the next subsection.

2.2 Time Frequency Representations (TFRs)

A TFR is a 2D function that provides spectral and temporal information simulta-

neously for investigating non-stationary signals. Such information is unavailable

if we use frequency or time representation separately. TFRs are widely used to

identify, extract and classify the auto-components of a multi-component signal.

Mostly the comparison of TFRs is done based on the capability of cross-term sup-

pression, resolution, computational complexity, phase retrieval information, etc.

It is crucial to choose the appropriate time-frequency transformation function for

the data to be analyzed and to provide good resolution in both time and frequency.

Choosing an appropriate TFR depends on the application being considered.



Literature Review, Gap Analysis, and Proposed Solution 34

Table 2.1: Literature Survey of Deep Learning Techniques for Radar Emitter Recognition (RER)

SN Years Ref. Techniques Limitations

1 2017 [19] WVD-FrFT SNR=-10 dB (87% accuracy),
Barker codes are not considered.

2 2017 [20] CWD with CNN-ENN SNR=-2 dB (94.5% accuracy).

3 2018 [21] ABC-SVM SNR=-4 dB (92% accuracy).

4 2018 [22] STFT-RDBN SNR=-10 dB (60% accuracy).

5 2018 [23] SAT-CNN SNR=-10 dB (90% accuracy),
Barker codes are not considered.

6 2018 [24] RNN PW and PRI considered for emitter
identification.

7 2019 [25] Decision Tree Optical SNR=10 dB (100% accu-
racy).

8 2019 [26] FSST-CNN SNR=-10 dB (98.4% accuracy).

9 2019 [27] CNN-LSTM-DNN Polyphase coded signals are not con-
sidered.

10 2020 [28] PW images-CNN Polyphase coded signals are not con-
sidered.

11 2020 [29] STFT-CNN Only Barker and P2 codes are dis-
cussed.

12 2020 [30] MFJID SNR =-6 dB (83% accuracy).

13 2020 [31] CNN SNR=-4 dB to 20 dB (phase coded
signals not considered).

14 2021 [32] Deep residual learning Only Frank codes are considered.

15 2021 [34] DRSN Only Frank codes are considered.

16 2021 [39] CNN-BILSTM-NN
auto correlation features

SNR=-20 dB (61.25% accuracy),
Phase coded signals are not consid-
ered.

17 2022 [35] Denoising-guided
disentangled network

Only Frank codes are considered.

18 2022 [36] CNN and Transfer
Learning

Only Frank codes are considered.

19 2022 [37] CNN with feature
fusion

SNR= -6 dB (97% accuracy).

20 2022 [55] Power Spectral
Analysis and deep
learning

Only Barker and Frank codes are
considered.

21 2022 [56] De-noising encoder
and X-net

Only Frank codes are considered.

22 2022 [57] CWT and CNN Only Frank codes are considered.
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The recognition techniques for LPI radar waveforms have evolved in past few

decades using feature extraction techniques to extract the useful features from

intercepted radar signals and further classification is performed.

Different TFRs are used to transform the time domain waveform into a 2D time-

frequency image that is further used for feature extraction. TFRs have proved

to be useful in the successful identification and extraction of auto-components

in a multi-component signal. Such TFRs may include STFT, Wavelet Trans-

form (WT), Gabor Transform (GT), WVD, CWD, Reassignment Method (RM),

Synchrosqueezed Transform (SST), etc. The recent radar waveform recognition

methods use CWD or Fourier-based SST (FSST) as they have a good resolution of

auto-components and cross-terms (noise or interference) are suppressed by using

special kernels.

1. Linear TFRs

Linear TFRs include STFT, WT, GT, etc. shown in Fig. 2.2. Such trans-

forms obey the law of superposition. In linear TFR, auto-components have

low resolution and they don’t offer cross terms.

2. Quadratic TFR

Quadratic TFRs fulfill the following criteria:

|x(t)|2 =
∫

TFRx(t, w)dw, (2.1)

|X(w)|2 =
∫

TFRx(t, w)dt. (2.2)

Quadratic TFRs include WVD, Smooth Pseudo WVD (SPWVD), CWD

etc., offer good resolution for auto-components but they suffer from cross-

terms.

Linear and quadratic TFRs have their own pros and cons. There is no distinct

transform that can fulfill all the requirements for any application. An analysis

has been performed to highlight the strengths and weaknesses of these linear and
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quadratic TFRs.

Two main goals for a desired TFR are:

1. Auto-components having high concentration.

2. Elimination of the cross-terms.

Figure 2.2: Time Frequency Representations (TFRs)

2.2.1 Literature Survey of Time-Frequency Representations

(TFRs)

The literature survey of TFRs has been performed to analyze them based on

different parameters and to choose the suitable one for our proposed method.

These transformations are very helpful for studying non-stationary signals, which

are found in vibration analysis, radar, and voice processing, among other fields.

2.2.1.1 Fourier Transform (FT)

The amplitude and frequency representation of a signal is obtained if the Fourier

Transform (FT) of a time domain signal is computed. The benefit of Fourier anal-

ysis is that during transformation very less information is lost and the phase also

remains preserved. In FT, perfect resolution in frequency is achieved as the kernel
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function is a window of infinite length. The FT has many applications in various

fields but it is not suitable for non-stationary signals as their spectral components

vary over time [58].

2.2.1.2 Short Time Fourier Transform (STFT)

The Short Time Fourier Transform (STFT) is a windowed FT used to determine

the phase and frequency information about local sections of a signal as it varies

with time. The optimal width of the window must be chosen so that the signal

is assumed to be stationary during that time. STFT is a widely used tool as it

has simple interpretation and fast implementations. It enjoys benefits over the

FT as it provides information about the time localization of spectral contents of a

time-varying signal. STFT is also widely used in LPI radar waveform recognition

methods to identify the intrapulse modulation parameters [22, 59–61].

2.2.1.3 Gabor Transform (GT)

The Gabor Transform (GT) is an STFT using the Gaussian function as a window.

FT of a Gaussian function is also a Gaussian function but the window length is

different. In the case of multi-component signal, blurring is observed by using GT

and the extraction of closely spaced auto-components becomes difficult [62, 63].

2.2.1.4 Continuous Wavelet Transform (CWT)

It is also used in which Multi-Resolution Analysis (MRA) is performed. At high

frequencies, MRA is designed to offer good time resolution but poor resolution in

frequency, and vice versa in the case of low frequencies. The obvious drawback of

CWT is that a signal can have long-lasting high-frequency components and low-

frequency components of short duration as well. In such cases, STFT is a better
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choice as compared to CWT [62–64]. Furthermore, it is impossible to read the

amplitudes or spectral powers directly from the CWT spectrum due to variations

in frequency resolution.

2.2.1.5 Wigner-Ville Distribution (WVD)

In the Wigner-Ville Distribution (WVD) auto-correlation method is used. WVD

serves as a perfect signal analysis tool for mono-component signals and gives in-

formation about time and frequency localization. The main drawback of WVD is

that in the case of a multi-component signal, it offers cross-terms (interference).

A method to reduce cross terms is to suppress the oscillatory components by ad-

ditional low-pass filtering in time and frequency. WVD is also used in LPI radar

waveform recognition methods to obtain Time-Frequency (TF) images and further

classification is done [19, 64–67].

2.2.1.6 Fractional Fourier Transform (FrFT)

It is used in many applications as a generalized version of FT. FrFT has rec-

ognized itself as an influential tool for investigating time-varying signals. If a

multi-component signal is given, FrFT has the capability to segregate the signal

components from the cross terms [68]. The rotation of the time-frequency plane is

controlled by the parameter α having a value ranging from 0 to 2π. FrFT falls un-

der the category of linear TFR. IT has shown to be less computationally extensive

as compared to WVD and radon transform (RT) [19]. It is also used in LPI radar

waveform recognition methods to obtain TF images and further classification is

done based upon hierarchical Decision Tree (DT) [25].

2.2.1.7 Smooth Pseudo WVD (SPWVD)

The cross terms appearing in WVD need to be suppressed and this idea leads

to the generalized version of TFRs also known as Cohen’s Class. In SPWVD,
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two separate Kernels are used for smoothing WVD in both time and frequency.

The drawback of filtering is that the excellent resolution in time and frequency is

distorted. SPWVD is not capable to separate closely placed signal components and

more computations are required to find the optimal window length for frequency

and time domain filtering [65, 66].

2.2.1.8 Gabor Wigner Transform (GWT)

The Gabor-Wigner transform is a technique for time-frequency analysis that re-

duces cross-term interference and provides a thorough representation of the time-

varying frequency content of a signal by combining features of the Gabor transform

and the Wigner-Ville distribution. GWT enjoys the benefits of both transforms

(GT and WVD): excellent resolution in time and frequency due to WVD and the

absence of cross terms due to GT. Due to the non-existence of cross terms in GT,

the TFR of GT acts as a filter for filtering cross terms appearing at the output

of WVD [65–67]. GWT can be used as a substitute for SPWVD to suppress the

cross terms that may appear as noise or interference during analysis . It involves

a combination of two TFRs so its computationally extensive.

2.2.1.9 Stockwell Transform (ST)

Basically, S Transform or Stockwell transform (ST) is an STFT using the Gaussian

window whose length depends upon the frequency. As a result, varying resolution

in time and frequency is obtained similar to the CWT. It shows similarity with

CWT if Morlet wavelet is used as an analysis function. In contrast to the GT,

the ST offers no cross-terms and thus better clarity of signal is achieved. The

computational complexity of the fast ST algorithm is O[Nlog(N)] [69–71].

2.2.1.10 Hilbert Haung Transform (HHT)

It is a nonlinear transform that is used for the analysis of non-stationary signals

to extract information about their time and frequency contents. This method
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involves two major steps: 1) Initially, a multi-component signal is decomposed

into various AM or FM-modulated sine waves using Empirical Mode Decompo-

sition (EMD) method. Demodulation is done and instantaneous frequency and

amplitudes of sine waves are extracted. 2) Then the HHT is applied to obtain the

time-frequency representation of sine waves. EMD seems to be effective and simple

but as compared to SST mode reconstruction is not carried out in an appropriate

mathematical framework [71–73].

2.2.1.11 The Choi-Williams Distribution (CWD)

It is a TFR that falls under the category of Cohen’s Class. It shows similarity

with WVD but the exponential kernel is used that acts as a 2D low pass filter and

balances the cross terms appearing due to the presence of multiple components in

a signal. Cross terms suppression also results in a high resolution of auto-terms. In

LPI radar waveform recognition methods, CWD is used to obtain the TF image

[74]. Feature extraction is performed that further leads to the classification of

emitters having different intrapulse parameters. It offers better results but it’s

computationally extensive. In contrast to CWD, frequency reassignment (FR)

method provides better visual representation and recognition accuracy is higher

for polyphase codes [26, 75, 76].

2.2.1.12 Reassignment Method (RM)

It is used for non-stationary multi-component signals to sharpen their TFR with-

out losing information about temporal localization. In this method, the value of

any time-frequency point is obtained by computing the weighted sum of its nearby

points in TFR. This averaging may result in cross-term suppression but at the cost

of the disturbing location of auto-terms. RM involves the reassignment of coeffi-

cients in both time and frequency that allows perfect localization of linear chirps.

Instantaneous frequency and group delay are computed to obtain the centroid of

distribution. RM then moves the value of the spectrogram towards the centroid

[77–80].
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2.2.1.13 Synchrosqueezing Transform (SST)

It is a type of reassignment method that sharpens the TFR and is used to sepa-

rate the components of a multi-component signal. SST differs from EMD in the

sense that mode reconstruction is done using an appropriate mathematical back-

ground. SST offers dual benefits: It enhances the resolution of auto-components

by sharpening the TFR. Additionally, different modes in a multi-component sig-

nal can be separated and demodulated. FSST can also be used to estimate the

phases when exact phase information is not available [81]. STFT is computed and

then the transform values are squeezed so that they concentrate around curves of

Instantaneous Frequency (IF) in the time-frequency plane [82–84].

2.2.2 Summary of TFRs

TFRs are compared in terms of different performance measures including multi-

component analysis, phase estimation, computational complexity, resolution, cross

terms, etc., and are given in Table 2.2.2. In LPI radar waveform recognition tech-

niques, it is very important to choose the appropriate TFR capable of resolving

multi-component signals with low computational complexity and high resolution.

Phase information is necessary to identify the phase-coded waveforms. Cross-term

reduction is also very important because it appears as interference and also limits

the resolution of auto-components. Among the linear TFRs, CWT has more com-

putational complexity than STFT, making it hard to directly read the spectral

components from its output. While the Gabor transform has a higher resolution

than the STFT, there is blurring in the presence of multi-components. Among

the quadratic TFRs: CWD, RM, and FSST are observed to be better in terms

of performance measures discussed above but they are computationally extensive.

In RM, the modes retrieval method is not straightforward as compared to FSST.

According to the literature review mentioned above, STFT is discovered to be

capable of satisfying the aforementioned requirements for the online recognition

of phase-coded waveforms in low SNR environments.
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Literature Survey of TFRs

Techniques Features Multi-

Comp.

Comp.

Complexity

Cross

Terms

Phase Resolution Cons

1. STFT

[22, 59–61]

1.Used for non-stationary signals

2.Most widely used, easy interpre-

tation and fast implementation

3.Fixed TF resolution

Not good Low No Yes Limited 1.Limited and fixed TF resolution

2.Computations required for optimal

window length

2. CWT

[62–64]

1.Multi-Resolution Analysis (MRA)

2.Gives good TF resolution at high

frequencies and vice versa for lower

frequencies

Not good High No No Variable (frequency

dependent)

1.Variable TF resolution

2.Impossible to read spectral ampli-

tudes directly from a wavelet spectrum

3. Gabor

[62, 63]

1.Variant of STFT with the Gaussian

window function

2.Offers better TF resolution than STFT

Not good Low No No Better than STFT 1.Computations required for optimal

length

2.Blurring is observed for multi-

components

4. WVD

[19, 64–67]

1.Uses an auto-correlation approach to

overcome limited resolution of STFT

2.Best energy concentration for LFM

signals is observed

Not good High Yes No

(Use

Cross

WVD)

High 1.Cross terms (for multiple quadratic

components)

2.Additional low-pass filtering required for

cross terms suppression
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Techniques Features Multi-

Comp.

Comp.

Complexity

Cross

Terms

Phase Resolution Cons

5. SPWVD

[65, 66]

1.It’s a WVD, filtered by two separate

kernels.

2. The kernels smooth the WVD in fre-

quency and time

Good High Reduced No Degraded resolution

than WVD

1.Degraded resolution of auto-components

2.Proper selection of windows for time &

frequency filtering

3.It can’t separates closely placed sig-

nal components

6. GW

[65–67]

1.Combination of GT and WVD

2.Excellent TF properties (WVD)

and lack of cross-terms (GT)

Good high Almost

eliminated

No High 1.Computationally extensive

7. ST

[70, 71]

1.Generalized STFT with frequency

dependant Gaussian window

2.Low frequency comps have good

freq resolution and vice versa for high

freq comps

Good Low No No Better than STFT

(frequency dependent)

1.Clarity is worse than WVD

8. EMD &

HHT

[71–73]

1.Initially, the Signal is decomposed into

a sum of AM/FM sine waves using an

EMD approach

2.The IA and IF of each sine wave

can be extracted using analytical signal

3.Finally, TF representation is ob-

tained by using HHT

Good Lower (than

CWT)

No No Low 1.Separation of components with close In-

stantaneous Angular Freq. (IAF) is a com-

mon problem
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Techniques Features Multi-

Comp.

Comp.

Complexity

Cross

Terms

Phase Resolution Cons

9. CWD

[26, 75, 76]

1.It’s a WVD with an exponential kernel

2.Kernel balances cross terms and

provide high resolution

3.Used in LPI waveform recognition

methods

Good High Reduced No High 1.Better recognition accuracy is not

achieved in case of phase-coded LPI radars

waveforms

10. RM

[77–80]

1.It aims to sharpen the TFR

2.Reassignment of spectrogram is

done both in time and frequency domain

Good High No No V.High 1.No mode reconstruction technique using

the RM is straightforward

11. FSST

[81–84]

1.It combines IF estimation and TFR

mapping into a complete TF transform

2.The coefficients are reassigned to

STFT only for the frequency component

3.Better recognition accuracy is achieved

in case of phase-coded waveforms in LPI

radars as compared to CWD

Good Lower than RM No No V.High 1.Computationally extensive

2.It enables mode reconstruction when

freqs. of multiple components are well

separated

12. FrFT

[19, 25, 68]

1.It is the generalization of FT

2.FrFT can be used for detection of

cross terns in WVD

3.Can be used to isolate signal compo-

nents from multi-component signal

Good Low No No ST-FrFT offers high

resolution

1.It is useful to filter noise, but with the

condition that it does not overlap with the

desired signal in the TF domain

Table 2.2: Literature Survey of TFR



Literature Review, Gap Analysis, and Proposed Solution 45

2.3 Deep Learning (DL) Techniques for Emitter

Recognition

Machine learning and deep learning are the two technologies that are now trending

the most. The combinations of these technologies are widely employed. Machine

learning (ML) is the subset of Artificial Intelligence (AI) that gives a system

the capability to learn from experience and get improve over time without being

explicitly programmed.

Figure 2.3: Relationship of AI and ML

2.3.1 Literature Survey of DL Techniques for Emitter Recog-

nition

Some of the deep neural network (DNN) models used in the literature include:

1. Artificial Neural Networks (ANNs)[21–23, 29, 74]

2. Deep Belief Networks (DBNs) [85]
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3. Convolutional Neural Networks (CNNs)[23, 27–29, 85]

4. Recurrent Neural Network (RNN) and [24, 85]

5. Long Short Term Memory (LSTM) [27, 29, 85]

Artificial Neural Networks (ANNs) and Recurrent Neural Networks (RNNs) are

associated with deep learning, a subset of machine learning. The algorithms are

developed in the same way as machine learning is done, however, there are many

more levels of algorithms. Fig. 2.3 depicts the relationship between AI, ML, and

DL.

2.3.1.1 Artificial Neural Network (ANN)

An ANN contains the set of neurons in a layer that is interconnected to neurons

of the next layer. The weighted sum is computed at the neuron and then the

activation function is applied. In ANN, forward propagation is done to obtain

the predictions and network parameters (weights) are updated using the Back

Propagation (BP) algorithm. Mean Squared Error (MSE) and cross-entropy cost

functions are often used in the case of regression and classification, respectively.

In ANN, the problems are presented to the network in terms of attributes. ANNs

are used for handwriting recognition, prediction of a stock exchange, image com-

pression, etc, and their architecture is shown in Fig. 2.4. In LPI radar waveform

recognition methods, different DNNs have been used in the literature that gives

better recognition accuracy under different SNR conditions [21–23, 29, 74].

2.3.1.2 Deep Belief Network (DBN)

DBN is a generative model that tries to find out the underlying data distribution

using the Bayesian rule. DBN consists of several Restricted Boltzmann Machines

(RBMs) that are stacked over each other. Each of them contains a single visible

and a hidden layer. The hidden layer of the first RBM acts as a visible layer

for the next one. The parameters of the network are then updated using the
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Figure 2.4: Artificial Neural Network (ANN) [86]

BP algorithm. Each layer is used to map different features in the training data

[85]. They find applications in natural language processing, EEG, drug discovery,

etc., and their architecture is shown in Fig. 2.5. In [22], DBN is used to classify

the radar waveform modulation schemes, and Energy Cumulant (EC)-STFT is

also used to obtain the TFR. DBN requires more time for pre-training and then

fine-tuning network parameters is done.

Figure 2.5: Deep Belief Network (DBN) [87]
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2.3.1.3 Convolutional Neural Network (CNN)

One of the most widely used DL models used for image detection and classification

problems is CNN [88]. It offers high accuracy, automatic feature extraction and

gives better results as compared to other ML algorithms. CNN involves a convo-

lutional layer where the filter weights are needed to be learned in addition to other

network parameters using BP algorithm. The output of the Convolutional layer is

fed to the pooling layer to reduce the dimensions. The output from pooling layers

is then concatenated and fed to the dense layer to get the output. In CNN, the

parameter sharing concept is used where the same filter is used to convolve with

image pixels instead of finding weights for every individual pixel [85]. They are

used for face and speech recognition, image and text classification, etc., and their

architecture is shown in Fig. 2.6.

Figure 2.6: Convolutional Neural Network (CNN) [89]

In [23], CNN is used with SAT that shows robustness to noise and good recogni-

tion accuracy for intrapulse modulation schemes. A combined network containing

CNN, LSTM, and DNN is also proposed in [27]. A novel emitter identification

method based on PW images and CNN is proposed in [28] that outperforms the

existing emitter identification techniques in the literature. In LPI radar wave-

form recognition methods, CNN is used with LSTM to provide good recognition

accuracy [29].
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2.3.1.4 Recurrent Neural Network (RNN)

RNN is very popular among Neural Networks (NNs) used for sequential data.

In NN, no relationship exists between the current input and the past output.

RNN network with the self-loop is used to resolve this issue. It is capable of

capturing short-term time dependency in the given sequence using its internal state

(memory). RNNs are also used for the classification, prediction, and deinterleaving

of pulse streams received at RWRs [90]. RNNs are used for language modeling,

sentiment classification, speech recognition, etc [85]. and its architecture is shown

in Fig. 2.7.

Figure 2.7: Recurrent Neural Network (RNN) [91]

In [24], RNN is proposed to solve problems of classification and denoising of pulse

streams as it can mine the temporal patterns in the given pulse stream. In RNNs,

there exists a problem of vanishing or exploding gradient. The information is

carried by the gradient in RNN; the parameter update becomes less significant

when the gradient value is very small. Similarly, the gradient may explode resulting

in a large parameter update. Poor accuracy is observed and more training time is

required in such cases.

2.3.1.5 Long Short-Term Memory Network (LSTM)

The Long Short-Term Memory (LSTM) network is a complicated RNN that per-

mits information persistence. It is capable of resolving the RNN’s vanishing gra-

dient issue. The high-level LSTM operations are quite similar to those of an RNN
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cell. LSTM first gained popularity in 2014 despite being introduced in 1997. To-

gether with Gated Recurrent Units (GRU), they form the family of RNNs. In the

field of Natural Language Processing (NLP) and for the classification of sequen-

tial data, LSTMs took the lead as the most advanced model when GPUs became

widely available and the first deep learning frameworks emerged. As seen in Fig.

2.8, the LSTM is composed of three gates, each of which has a different function.

The first gate decides whether data from the previous time step must be kept or

can be discarded. The input gate is used by the cell to learn new information from

the input. Finally, the cell uses an output gate to send the updated data from the

current time step to the very next time step. LSTM is used in combination with

other DNNs for radar emitter recognition problems [92]. A unique recognition

method based on CNN-LSTM and STFT is provided in [29]. At an SNR of -2 dB,

the proposed approach can identify eight different radar signals with an overall

accuracy of 96%. It is suggested in [27] that a hybrid network based on a shallow

CNN, LSTM, and DNN can identify six different radar emitter signals with SNRs

ranging from -14 dB to 20 dB.

Figure 2.8: Long Short Term Memory (LSTM) Network [93]

2.3.2 Summary of DL Techniques

On the basis of the above literature survey, it is concluded that RNNs are consid-

ered suitable for sequential or time series data but the gradient can sometimes get

too small or too large during training. As a result, in this condition, training an
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RNN algorithm becomes quite challenging resulting in low accuracy, poor perfor-

mance, and long training time. LSTM is utilized to solve this gradient exploding

and vanishing problem. As LSTM incorporates gates that control information flow,

there is little alteration in the existing information when the new one is added.

The use of CNNs is driven by their ability to capture and learn relevant features

from an image at several layers.Both of these architectures (BiLSTM and CNN)

are selected for this research to test the efficacy of derived phase-based feature

vectors. A brief literature survey of some DNNs is given in Table 2.5.

2.4 Gap Analysis

The comprehensive literature review emphasizes that the recognition of phase-

coded LPI radar waveforms relies on extracting information from the magnitude

spectrum of TFRs. Moreover, the recent research studies have considered the

recognition with a minimum reported SNR of -10 dB. However, a unique phase

spectrum-based approach is needed to improve recognition accuracy even in lower

SNR situations, as phase serves as an important candidate for phase coded wave-

forms. Additionally, investigating the performance of Barker codes in emitter

recognition is crucial. This investigation can assess their effectiveness as well as

resistance to noise and interference that might be helpful for the emitter recogni-

tion at RWR.

2.5 Problem Statement

Phase-coded LPI radar waveform recognition using amplitude spectrum informa-

tion from TFRs exhibits low accuracy in low SNR situations. There is a need to

explore alternative methods for improved recognition in noisy environments and

investigate the effectiveness of Barker codes for emitter recognition, assessing their

performance against noise and interference.
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Literature Survey of DL techniques

DNN Input Generative/

Discriminative

Cost Function Parameter Esti-

mation Algorithm

Prediction Al-

gorithm

Model Complexity

Reduction

Applications Pros Cons

1.ANN

[21–23,

29, 74]

Features Discriminative 1.Sum of squared

error (regression)

2.Cross entropy

(Classification)

BP

(SGD is used)

Forward propaga-

tion

1.Reduce number of

hidden layers

2.Regularization

3.Early stopping

Handwriting recog-

nition, image com-

pression, stock ex-

change prediction

1.Learning methods

are robust to noise

2.Problems are pre-

sented by attribute-

value pairs

1.Difficulty of showing

problem to network

2.No automatic feature

extraction

2.DBN

[22, 85]

Features Generative Log likelihood 1.Contrastive di-

vergence (CD)

initializes

the network weights

2.BP is done to

tune the initialized

weights

Forward propaga-

tion

1.Reduce the number

of hidden layers

2.Reduce the number

of neurons per layer

3.Pruning algorithms

can be used

Natural language

processing,

Drug discovery,

EEG

1.It is robust and sta-

ble even for imbal-

anced dataset

1.More training time re-

quired for pre-training and

the tuning of network pa-

rameters

3.CNN

[23, 27,

28, 85,

88]

Image,

1D

data

Both Cross Entropy BP

(ADAM)

Forward propaga-

tion

1.By using 1D data

instead of images

to reduce the kernel

weights

face recognition,

image classification,

speech recognition,

text classification

1.Automatic feature

extraction

2.Highest accuracy

among all algorithms

that predicts images

3.Parameter Shar-

ing

1.Training takes a lot of

time if CNN has several

layers

2.ConvNet requires a

large dataset to train the

network

3.Generally bad at

handling rotation and

scale-invariance
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DNN Input Generative/

Discriminative

Cost Function Parameter Esti-

mation Algorithm

Prediction Al-

gorithm

Model Complexity

Reduction

Applications Pros Cons

4.RNN

[24, 90]

Sequential

data

Both Cross entropy BP Forward pass in

time

1.Number of hidden

layers can be reduced

2.Time steps can

be reduced

Prediction prob-

lems, Language

modeling,

Sentiment

classification, video

classification ,and

speech recognition

1.Input of any length

can be processed with-

out increasing model

size

2.Computations

takes into

account historical

information

3.Weights are shared

across time

1.Exploding or vanishing

gradient

2.Training can be dif-

ficult

3.Can’t cater long term

dependence in data

4.No controlling knobs

to control the flow of

information across network

5.LSTM

[29, 92,

94]

Sequential

data

Both MSE (prediction) BP Forward pass in

time

1.Drop out LSTM cells

to reduce overfitting

2.Number of hid-

den layers can be

reduced

3.Use truncated

BPTT

Robot control,

time series

prediction, speech

recognition, rhythm

learning,

handwriting recog-

nition,etc

1.Can cater long term

dependencies

2.LSTM has con-

trolling knobs to

control flow of infor-

mation

3.Can deal with

vanishing gradient

problem

1.More complexity and

operating cost

Table 2.3: Literature Survey of DL Techniques
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2.6 The Proposed Research Methodology

We have categorized our methodology into three main sections to address the high-

lighted research issues: Signals Generation, Feature Extraction, and Recognition

of phase-coded waveforms using deep learning architectures. Initially, waveform

generation using different phase-coded modulation schemes (Barker, Frank, P1,

P2, P3, and P4) is done using MATLAB, and baseline simulations are obtained.

In the real world, some known emitters can be considered with possible modulation

schemes to simulate the training data. Additive White Gaussian Noise (AWGN)

is added to the signals for SNR ranging from -16 dB to 8 dB with a step-size of 2

dB to create the data sets for testing and training of deep learning architectures.

In the second part of the research, we aim to design a specific phase-based feature

vector/matrix for phase-coded waveforms to analyze them at different SNR values

ranging from -16 dB to 8 dB as discussed in Chapter 3. The problem statement

states that in order to improve the recognition accuracy for phase-coded LPI radar

waveforms, a novel feature vector or matrix based on phase-related information is

generated utilizing the phase spectrum of STFT.

The efficacy of derived phase-based feature vectors/matrices is tested for differ-

ent phase-coded waveforms in the third step. BiLSTM network and deep CNN

architectures are chosen based on an extensive literature survey of deep learning

techniques given in Chapter 2. Both architectures employ the same data sets and

are thoroughly explained in Chapter 3 along with their parameters. In comparison

to deep CNN architecture, the SNR values for BiLSTM architecture range from

-8 dB to 8 dB. For the deep CNN architecture, the SNR values vary from -16

dB to 8 dB. The optimal training parameters for both architectures are given in

Chapter 4 of the dissertation followed by the recognition results. The final goal

of this research is to compare the recognition results of phase-coded waveforms

obtained from both architectures so the best one can be used for our application.

The recognition accuracies obtained from both the architectures (DCNN and BiL-

STM) will be compared and the results will be discussed in the simulation part of

the dissertation. Fig. 2.9 shows the overall proposed methodology in detail.
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2.7 Contributions

The following points describe the main contribution of this work, to the best of

our understanding and comparison with certain previous research works:

1. We propose the feature extraction method using the phase spectrum of STFT

that yields high recognition accuracies of phase-coded waveforms instead of

the magnitude spectrum of TFRs used by state-of-the-art techniques in the

literature.

2. We analyze the performance of the derived phase-based features using deep

learning architectures (BiLSTM & DCNN).

3. We evaluate the accuracy of phase-coded waveforms at a low SNR level of

-16 dB whereas, in other works reasonable accuracies are observed at SNR≥

-10 dB. The purpose of the simulations is to evaluate the performance of the

proposed emitter recognition technology and compare it with that of other

existing techniques in the literature.

4. The above contributions have been published and submitted in these research

works respectively [16, 41].

Figure 2.9: Proposed Methodology
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2.8 Chapter Summary

This chapter begins with a thorough review of the literature on radar emitter

recognition methods before comparing TFRs that are used to transform 1D radar

signals into a 2D format for phase-based feature extraction. Additionally, many

deep learning methods are compared using a variety of parameters to determine

which is best for our simulations. A literature survey helps to create a gap analysis,

which is then followed by a problem statement and dissertation contributions. The

next chapter highlights the main contribution of this research work and explains

the phase-based feature extraction method in detail.



Chapter 3

Proposed Solution

The function of an end-to-end Electronic Warfare (EW) system including the in-

terception of threat signals at Radar Warning Receiver (RWR) has been discussed

in the Section 3.1. Once the signals are intercepted at RWR, the novel phase

spectrum-based feature extraction method employing STFT is performed as dis-

cussed in Section 3.2. The detailed steps for 1D and 2D phase-based feature

extraction for BiLSTM and DCNN architectures are provided in Sections 3.3 and

3.4, respectively. The two proposed deep learning architectures used to assess the

efficacy of the novel phase-based feature extraction method are presented in the

Section 3.5, which is followed by a summary of the chapter.

3.1 End-to-End EW System

In order to defend friendly forces against enemy electronic threats, EW systems are

an essential part of modern military operations. Its main objectives are to identify,

interfere with, and protect against adversary’s electronic, radar, and communica-

tion equipment. The RWR, a crucial component of EW systems, is responsible

for analyzing and identifying the emissions from different hostile emitters present

in the environment. Radar signals from possible threats, such as hostile aircrafts,

ships, or ground-based radar systems, must be intercepted and recognized by the

57
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RWR. Radar emissions can have their frequency, modulation, pulse-widths, and

other parameters analyzed by the RWR. The recognition of the kind of hostile

radar system generating the signals is made easier by this method. An end-to-end

EW system for intercepting and recognizing different phase-coded radar waveforms

emitted by LPI threat emitters is described below:

3.1.1 Waveform Generation

The first step involves the generation of phase-coded waveforms by LPI radars

including Barker, Frank, and Polyphase codes (P1, P2, P3, P4). Different type

of threat emitters (LPI radars) can generate waveforms using these phase-coding

schemes. The purpose of the intended research is to identify these threat emitters

based on their intra-pulse modulation schemes.

3.1.2 Transmitter

The function of transmitter is to send out the modulated signals in the EW en-

vironment using the antenna. In this research work, the assumption is made that

all the threat emitters will be using the same carrier frequency of 50 MHz. The

transmitter has high bandwidth and power and should create low-noise transmis-

sions. Target tracking, range measurement, and surveillance are made possible by

radar systems owing to the transmitter’s ability to illuminate and detect targets

in conjunction with the radar antenna.

3.1.3 Duplexer

A duplexer controls when signals are sent into the EW environment by functioning

as an on/off switch. In order to reduce the probability of detection, this control

is crucial for controlling the transmission of LPI radar signals. It guarantees that

the same antenna can be utilized for both purposes and guards against the high-

power broadcast signal harming the receiver. Duplexers are often designed using



Novel Phase Spectrum based Feature Extraction 59

RF switches or circulators to route signals appropriately, enabling seamless radar

operation.

3.1.4 Antenna

The radar antenna helps with signal transmission and reception, which enables

the radar system to identify and track targets, compute their range, velocity, and

direction, and carry out a number of other radar functions like air traffic control,

meteorological tracking, and military surveillance.

3.1.5 EM Environment

The emitted signals in the EW environment are exposed to noise and interference

from the outside environment. Additive White Gaussian Noise (AWGN) is used

in this research to imitate the noise and interference that are commonly found in

the real world.

3.1.6 Signal Interception

The signals from various threat emitters are intercepted at RWR. These signals

will be analyzed to identify their intrapulse modulation schemes that might be

helpful for EA system to generate the attack against hostile emitters.

3.1.7 Parameter Estimation

For the purpose of analysis, the carrier frequency (Fc) of the signal is identified

once it is intercepted at RWR. The computed carrier frequency will be helpful

to determine the row in phase spectrum of time-frequency transform that will

correspond to phase pattern of a particular phase-coded signal. The details about

this are given in the next section. If the (Fc) changes then the corresponding row
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in the phase spectrum will also change. The other parameters of emitters can also

be estimated based on the requirements.

3.1.8 Time Frequency Transformation

Short Time Fourier Transform (STFT) is used to transform 1D radar signal into 2D

for further analysis. STFT has the fast and simple implementations and a suitable

window size is required to get the good resolution. The computed window size

will have an impact on the analysis’s resolution. The steps involved for finding

suitable window size are discussed in the next section. For the intercepted signals,

the STFT is calculated window-wise. Every window gives a representation of the

signal’s frequency components during that interval by recording a portion of the

signal across time.

3.1.9 Feature Extraction

The phase-based features are extracted from the STFT representation. These

features have the ability to record signal phase properties, which are crucial for

identifying among various LPI radar phase-coded waveforms as phase is an impor-

tant candidate for their recognition.

3.1.10 Deep Learning Architectures

We have used two deep learning architectures for waveform recognition: Deep Con-

volutional Neural Network (DCNN) and Bidirectional Long Short-Term Memory

(BiLSTM). In order to classify the phase-coded waveforms, these architectures are

trained using the phase-based features and trained networks are then used to clas-

sify the phase-coded waveforms. BiLSTM will be given 1D phase-based features

as compared to DCNN that performs well on 2D data (images). In some cases,

hybrid architectures may be used to leverage the strengths of both approaches.

At the end, the recognition accuracies of both the architectures will be compared.
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3.1.11 Comparison of Recognition Accuracies

A comparison is made between the recognition accuracies obtained from both the

BiLSTM and DCNN architectures. This comparison will aid in assessing how well

the deep learning models categorize LPI radar threat emitters. The recognition

of the various phase-coded radar waveforms involves the signal generation, trans-

mission, reception, and signal processing techniques are involved throughout the

entire process. EW system rely on automated and data-driven waveform recog-

nition, made possible by deep learning models such as BiLSTM and DCNN, to

detect possible threats. The most suitable model for the task is selected with the

help of a comparison of recognition accuracies. The information obtained from

the deep learning architectures can be sent to ESM or EA to generate the attack

against the threat emitters. The end-to-end block diagram of the whole method

is shown in Fig. 3.1.

Figure 3.1: End-to-End EW System

3.2 Feature Extraction

The significance of using feature extraction techniques lies in their ability to trans-

form raw data into a reduced, meaningful representation that captures the essential
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information required for a specific task. In various fields, such as machine learn-

ing, pattern recognition, and signal processing, feature extraction plays a crucial

role in enhancing performance and reducing computational complexity. By select-

ing relevant features and discarding irrelevant or redundant information, feature

extraction reduces the dimensionality of data, which can lead to faster and more

efficient processing. It also helps to mitigate the ”curse of dimensionality,” a chal-

lenge that arises when dealing with high-dimensional data, by improving model

generalization and reducing overfitting. [95]. Feature extraction techniques can

also lead to other types of advantages such as:

1. Improvement in accuracy.

2. Reduction of overfitting risk.

3. Acceleration of training process.

4. Enhancement of data visualization.

Overall, feature extraction is a powerful tool that enhances data analysis and

pattern recognition tasks by transforming complex data into a more manageable

and informative representation [96].

3.2.1 Feature Extraction Using STFT

In this work, a novel phase-based feature extraction is presented using STFT.

The signal’s time-varying characteristics are unfortunately not resolved by the

Fourier Transform (FT). In order to solve the problem of time resolution, it is

straightforward and obvious to segment the data, taper each segment using the

appropriate window function, and then estimate the power spectrum for each

windowed segment. This process is known as STFT. It has benefits over FT in

that it may be used to examine non-stationary signals and provide information on

the temporal localization of spectral components. Assuming that the signals are

quasi-stationary inside each window, the stationary requirement is approximately

satisfied. The problem is that choosing the window size is not so easy.
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The most widely used, easy-to-understand, and quickly implemented technique

is STFT [21, 97, 98]. The standard FT provides frequency information averaged

across the whole signal time interval, but the STFT provides time-localized fre-

quency information when a signal’s frequency components fluctuate over time.

The resolution of time and frequency can be a trade-off in STFT. In other words,

a narrow-width window produces better resolution in the time domain but less

resolution in the frequency domain, and vice versa. The output of the STFT is

typically visualized using the spectrogram, which is an intensity map of the STFT

magnitude with time. STFT can be expressed as the following relation:

X(m,ω) =
∞∑

n=−∞

x[n]ω[n−m]e−jωn (3.1)

In this case, the window utilized to calculate STFT is w[n], and x[n] is the signal.

In the literature [26, 29, 34, 40], feature extraction is often performed using mag-

nitude spectrum of TFR as opposed to the phase values employed in this study.

The phase-based features will ultimately be given at the input of Deep Neural

Networks (DNNs) for classification. The transmission side of the phase-coded

waveform deliberately introduces phase offset. The EW receiver finally captures

this waveform. Its goal is to measure the phase offsets that the emitter injected

into the intercepted waveform during phase coding. These measured offsets will

assist in determining the emitter’s unidentified phase coding method. The next

sub-section describes a unique phase-based feature extraction technique based on

the STFT.

3.2.2 Optimal Window Size for STFT

The ideal window size will vary depending on the application. The size of window

can be reduced if the application requires more precise time domain information.

On the other hand, the size of the window should be increased if the applica-

tion requires more precise frequency domain information. The two domains (time

and frequency) cannot simultaneously have perfect resolutions. In the time and
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frequency domains, we can achieve perfect resolution in only one domain at the

expense of zero resolution in the other, or we can achieve intermediate resolution

in both domains.

The most challenging aspect of the interpretation of the phase features of STFT is

determining the optimal window size. In order to guarantee that the phase offset

of each sub-pulse is preserved, it is crucial that the window of data samples utilized

for phase offset calculation be short enough. The carrier must finish its one cycle

within the optimal window size to obtain more exact phase information. Since

the sub-pulse often lasts longer than a carrier cycle, the phase offset is constant

throughout the measured window. The number of Fast Fourier Transform (FFT)

points and window length (samples) are both same for STFT calculations. The

calculations for finding the optimal window size of STFT are given in the next

section.

Many deep learning algorithms use different feature formats as inputs, such as

RNN, BiLSTM, and Gated Recurrent Unit (GRU), which need sequential data to

be transformed into numerous 1D feature vectors. Similarly, DCNN can outper-

form the other deep learning algorithms if 2D data is provided at its input. The

effectiveness of the suggested phase-based feature extraction method is assessed in

this research work using two deep learning algorithms (BiLSTM & DCNN).

3.3 1D Phase Based Feature Extraction Method

for BiLSTM Network

In this study, two deep learning architectures are used to evaluate the efficacy of the

proposed phase-based feature extraction technique. The 1D phase-based feature

extraction method is described in detail in this section.The BiLSTM architecture

ultimately performs the phase-coded waveform recognition using the extracted 1D

phase-based features as the input. The input will pass through the hidden layers
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to produce the final output. BiLSTM is intended to perform well on sequential

data.

3.3.1 Steps for 1D Phase Based Feature Extraction Method

The flowchart in Fig. 3.2 shows the detailed algorithm for 1D phase-based feature

extraction used for BiLSTM architecture. The detection problem and recognition

problem are the two primary sections of the proposed BiLSTM-based recognition

method. The steps listed below are used in the detection problem to calculate the

carrier frequency (Fc) of the intercepted noisy signal:

a. Detection Problem

1. The formulas provided in Section 1.7.5 are used to simulate the six differ-

ent types of phase-coded LPI radar waveforms with SNR levels ranging from

-8 dB to 8 dB.

2. The simulated waveforms are split into training and testing data sets to train

and evaluate the effectiveness of the suggested architecture.

3. At the RWR receiver, the modulated discrete signal corrupted by Additive

White Gaussian Noise (AWGN) is intercepted and its FFT is computed.

4. The absolute value of the FFT result is calculated and the frequency (Fc) that

corresponds to the maximum value is then identified.

5. The reciprocal of Fc is calculated to determine the time (Tc) needed by the

carrier to complete one cycle:

Tc =
1

Fc

. (3.2)

6. The window size in terms of samples is calculated by multiplying (Tc) by a

sampling frequency (Fs). Ts represents the sampling time.

window (samples) = Tc × Fs (3.3)
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window (time) = Ts × window (samples) (3.4)

b. Recognition Problem

The recognition problem, which involves the following stages, is encountered after

calculating the Fc and optimal window size. The steps involved in the recognition

problem are as follows:

1. The window is initially slid over the signal and the output contains a column

vector with the length equal to the number of FFT points.

2. The largest value is chosen from the column acquired in the previous step,

and its phase is computed that corresponds to the carrier frequency signal’s

phase offset.

3. The STFT is ultimately computed window-wise after the window has been

moved along the complete duration of a signal.

4. The phase value received from each window is stored in a pre-initialized

vector in order to create a phase-based feature vector for each corresponding

signal.

5. Furthermore, the feature vector is offered to the BiLSTM network as an

input for recognition purpose.

6. The efficacy of the trained BiLSTM network is assessed by utilizing the

testing data set containing signals of varying SNRs ranging from -8 dB to 8

dB.

7. The improvement in recognition accuracy of the phase-coded waveform is

observed considering the recognition accuracies versus SNRs.

Fig. 3.2 depicts the flowchart detailing the specific procedures for the phase-

based feature extraction technique for BiLSTM network. Once the phase-

based features are obtained they are ultimately given at the input of BiLSTM

architecture for recognition of phase-coded waveforms.
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Figure 3.2: Flowchart of Phase-based Feature Extraction Algorithm for BiLSTM Network
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3.3.2 Phase Feature Plots for BiLSTM Network

In this section, the phase features obtained using the suggested method for partic-

ular phase-coded signals at various SNR levels are displayed. Although the phase

values recovered using the suggested method are noisy, they are very similar to

those of benchmark signals. The signal length (ns) is displayed on the x-axis, and

phase values (degree) are displayed on the y-axis.

In Fig. 3.3(a), the phase values of the actual Barker Code (Length= 13) without

AWGN are displayed, which acts as a benchmark. The phase is 0◦ from 0 µs till

5 µs and 180◦ for 5 µs through 7 µs. From 7 µs to 9 µs, it switches to 0◦, its 180◦

for 9 µs till 10 µs, 0◦ for 10 µs till 11 µs, 180◦ for 11 µs till 12 µs, and 0◦ for 12

µs till 13 µs. The Barker code’s extracted phase feature vectors are shown in Fig.

3.3(b) through Fig. 3.3(f) for the corresponding SNR values of 4 dB, 2 dB, 0 dB,

-2 dB, and -4 dB. The phase variations of the retrieved Barker code features are

very similar to those of the benchmark code but are noisy. The phase of the STFT

output is determined using the tangent inverse. Since the period of the tangent is

π, wrapping occurs whenever noise causes the phase value to exceed 180◦ on both

the positive and negative sides.

The retrieved phase values of the Frank code at various SNRs are compared to

the corresponding benchmark Frank code (L= 4) and are displayed in Fig. 3.4(b)

through Fig. 3.4(f). Fig. 3.4(a) acts as a benchmark and displays the phase values

of the actual Frank Code (L=4, M=16) without AWGN. The overall length of the

signal is 16 µs. From 0 µs till 5 µs, the phase is 0◦, and from 5 µs till 6 µs, it shifts

to 90◦. It switches to 180◦ from 6 µs through 7 µs, and from 7 µs through 8 µs,

it changes to -90◦. It is 0◦ from 8 µs till 9 µs, shifts to 180◦ from 9 µs till 10 µs,

then back to 0◦ from 10 µs to 11 µs. The phase is 180◦ again for 11 µs till 12 µs,

its 0◦ for next 1 µs. It changes again to -90◦ from 13 µs till 14 µs, remains 180◦

for next 1 µs and then shifts to next 90◦ 15 µs till 16 µs. The phase values for

the entire signal of length 16 µs in Fig. 3.4(a) are compared with those of derived

phase features at different SNRs shown in plots from Fig. 3.4(b) till Fig. 3.4(f).

The extracted features at low SNR values are noisy but still they resemble a lot
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with the benchmark signal showing the efficacy of the proposed feature extraction

technique. Similar comparisons are made between the P1 code’s derived phases at

various SNRs and the accompanying benchmark P1 code (L=4, M=16) are shown

in Fig. 3.5(b) through Fig. 3.5(f). As a reference signal, Fig. 3.5(a) shows the

phase values of the real P1 code without AWGN. The signal’s pulse width is 8 µs

and contains 16 sub-pulses (M=16). The phase is 0◦ from 0 µs till 1 µs, changes to

-135◦ from 1 µs till 2 µs, and it shifts to 90◦ for next 1 µs. It switches to -45◦ from

3 µs through 4 µs, and from 4 µs through 5 µs, it changes to -180◦. It is 135◦ from

5 µs till 6 µs, shifts to 90◦ from 6 µs till 7 µs, then changes to about 45◦ from 7 µs

to 8 µs. The phase is 0◦ for 8 µs till 9 µs. From 9 µs till 12 µs, the phase values are

mirror images of the phases of previous sub-pulses. The phase shifts to 180◦ from

12 µs to 13 µs, again its close to -45◦ for 1 µs, shifts to 90◦, and then back to -135◦

for last sub-pulse. The benchmark signal is very similar to the derived features

even though they are noisy at low SNR levels, demonstrating the effectiveness

of the proposed feature extraction technique. Similarly, the benchmark P2 code

(L= 6), P3 code (N= 12), and P4 code (N= 15) are compared to their respective

phase-based feature plots derived at different SNRs in Fig. 3.6(b) through Fig.

3.6(f), Fig. 3.7(b) through Fig. 3.7(f), and Fig. 3.8(b) till Fig. 3.8(f) respectively.

3.4 2D Phase Based Feature Extraction Method

for DCNN

The 2D phase-based feature extraction method is covered in detail in this section.

By providing the DCNN architecture the 2D phase-based features as input, it can

recognize the phase-coded waveforms.

3.4.1 Steps for 2D Phase Based Feature Extraction Method

The detailed procedure for 2D phase-based feature extraction for deep CNN (DCNN)

architecture is split into two sections and is explained below.
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Figure 3.3: Phase Feature Plots of Barker Code (Order=13) at different SNRs
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Figure 3.4: Phase Feature Plots of Frank Code (L=4) at different SNRs



Novel Phase Spectrum based Feature Extraction 72

0 2000 4000 6000 8000 10000 12000 14000 16000

time (nsec)

-200

-150

-100

-50

0

50

100

150

200

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

Actual phase of P1 Code (L=4)

(a) P1 Code (L=4)

0 100 200 300 400 500 600 700 800

time (nsec)

-150

-100

-50

0

50

100

150

200

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

P1 Code (L=4, SNR=4 dB)

(b) P1 Code (L=4, SNR=4 dB)

0 100 200 300 400 500 600 700 800

time (nsec)

-150

-100

-50

0

50

100

150

200

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

P1 Code (L=4, SNR=2 dB)

(c) P1 Code (L=4, SNR=2 dB)

0 100 200 300 400 500 600 700 800

time (nsec)

-150

-100

-50

0

50

100

150

200
p

h
a
s
e
 v

a
lu

e
s
 (

d
e
g

)

P1 Code (L=4, SNR=0 dB)

(d) P1 Code (L=4, SNR=0 dB)

0 100 200 300 400 500 600 700 800

time (nsec)

-150

-100

-50

0

50

100

150

200

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

P1 Code (L=4, SNR=-2 dB)

(e) P1 Code (L=4, SNR=-2 dB)

0 100 200 300 400 500 600 700 800

time (nsec)

-150

-100

-50

0

50

100

150

200

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

P1 Code (L=4, SNR=-4 dB)

(f) P1 Code (L=4, SNR=-4 dB)

Figure 3.5: Phase Feature Plots of P1 Code (L=4) at different SNRs
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Figure 3.6: Phase Feature Plots of P2 Code (L=6) at different SNRs
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Figure 3.7: Phase Feature Plots of P3 Code (N=12) at different SNRs
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Figure 3.8: Phase Feature Plots of P4 Code (N=15) at different SNRs
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In the detection part, the Fc of intercepted phase-coded signals is determined using

the following steps:

a. Detection Problem

1. The six different types of phase-coded LPI radar waveforms are simulated

using the formulas given in Subsection 1.7.5 at the SNR values ranging from

-16 dB to 8 dB.

2. The simulated waveforms are divided into test and training datasets to train

and validate the efficacy of the suggested architecture.

3. The FFT of the modulated phase-coded signal corrupted by AWGN is cal-

culated intercepted at the EW receiver.

4. The absolute value of the FFT result is used to determine the greatest ampli-

tude value, and the corresponding frequency, known as the carrier frequency

(Fc) is determined.

b. Recognition Problem

1. After determining the Fc, the phase-coded signals are classified using the

phase spectrum of STFT and DCNN.

2. The appropriate window size of STFT in terms of samples is obtained by

taking the product of Tc (inverse of Fc) and sampling frequency (Fs).

3. The window forms a column vector with a length equal to FFT points when

it is first slid across the signal and its phase values are computed that are

stored in a pre-initialized matrix.

4. STFT is computed window-wise while the window is moved over the entire

length of a signal and the phase-based matrix is obtained with the rows equal

to FFT points and columns corresponding to the number of sliding windows.
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5. The phase-based STFT matrix is then transformed into an image (phase

spectrum) where the row corresponding to the Fc contains the phase offset

introduced by phase coding schemes.

6. The remaining rows correspond to the AWGN added to the phase-coded

signals.

7. Image cropping is done to obtain the seventh row that contains the phase

pattern of a particular phase-coded signal. If the Fc shifts then the corre-

sponding row will also change.

8. The seventh row corresponds to the Fc and it is assumed that all the phase

coded waveforms are at the same Fc= 50 MHz.

9. Cropped image is then provided at the input of DCNN architecture for recog-

nition purposes.

10. Finally, testing is done to judge the performance of the proposed feature ex-

traction technique and recognition results are displayed in terms of confusion

matrix plots.

The flow chart showing the detailed steps for the phase-based feature extraction

for DCNN architecture is shown in Fig. 3.9.

3.4.2 Phase Feature Plots for DCNN

The flowchart depicted in Fig. 3.9 provides a detailed explanation of the method

used to generate the phase spectrum. The phase values are computed from the

output of STFT windows (column-wise) and the columns are stacked horizontally

to obtain the phase feature matrix. The specific phase feature matrix is then

transformed into phase spectrum.

A distinct phase pattern can be observed in all phase-based spectra that corre-

sponds to the phase offset introduced by the phase coding technique in the carrier

signal. The phase patterns can be seen in the seventh row of phase spectra, which
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Figure 3.9: Flowchart of Phase-based Feature Extraction Algorithm for DCNN Architecture
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corresponds to Fc= 50 MHz. It is assumed that all the signals are at the same

carrier frequency. The specific phase pattern is going to appear in a different row

when the carrier frequency shifts. Whereas, the remaining rows contain noise. The

phase spectrum of the phase-coded signal is cropped to reduce the computational

complexity of DCNN. Cropping is done to acquire the seventh row, which when

provided as the input to the DCNN architecture, will give an idea about the type

of phase-coded signals.

The x-axis represents the time duration of the signals (ns) and the y-axis represents

the frequency (MHz). The phase values of the actual Barker code (Length=13)

without AWGN are presented in Fig. 3.10(a), which serves as a reference. The

phase is 0◦ from 0 µs till 5 µs and 180◦ for 5 µs through 7 µs. From 7 µs to 9 µs,

it switches to 0◦, its 180◦ for 9 µs till 10 µs, 0◦ for 10 µs till 11 µs, 180◦ for 11

µs till 12 µs, and 0◦ for 12 µs till 13 µs. The extracted phase images of Barker

code are displayed in Fig. 3.10(b), Fig. 3.10(c), Fig. 3.10(d), Fig. 3.10(e), and

Fig. 3.10(f) for SNR values of 4 dB, 0 dB, -4 dB, -8 dB, and -12 dB respectively.

While the phase fluctuations of the retrieved Barker code features are basically

identical to those of the benchmark code, they are noisy and can be observed in

the seventh row (corresponding to Fc) of phase spectra. In Fig. 3.10(b), for the

first 5 µs the blue color appears that corresponds to 0◦ phase, then 5 µs through 7

µs its yellowish color that represents 180◦ phase value as shown by color bar at the

right. Then from 7 µs till 9 µs it’s again blue, followed by yellow for the next 1 µs.

The last three sub-pulses have blue, yellow, and blue color patterns respectively.

If we observe Fig. 3.10(f), for SNR= -12 dB, several lines are appearing in the

bluish and yellowish patterns that correspond to the noise. DCNN is chosen for

the recognition of phase-coded waveforms with SNR up to -16 dB as it outperforms

other DNNs on images.

As a reference, Fig. 3.11(a) presents the phase values of the actual Frank code

(L= 4) without AWGN. The phase is 0◦ from 0 µs till 5 µs and shifts to 90◦ for

the next 1 µs. It changes to 180◦ from 6 µs to 7 µs, then -90◦ from 7 µs to 8 µs, 0◦

from 8 µs to 9 µs, 180◦ from 9 µs to 10 µs, and 0◦ from 10 µs to 11 µs. From 11

µs till 12 µs there is 180◦ phase that again shifts to 0◦ for next 1 µs. From 13 µs
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to 14 µs the phase is -90◦. It switches to 180◦ for the next 1 µs and is 90◦ from 15

µs to 16 µs. Similarly, Fig. 3.11(b) represents the phase spectrum of Frank code

at SNR=4 dB. It is obvious from the figure that for the first 5 µs the phase of 0◦

is shown by cyan colour. Its yellowish green for the next 1 µs (90◦) and yellow

from 6 µs to 7 µs (180◦). Its blue from 7 µs till 8 µs (-90◦). Its again cyan for the

next 1 µs, It then follows the pattern as yellow, cyan, yellow, and cyan. It is then

blue, yellow, and yellowish green for last 3 µs. Fig. 3.11(b) through Fig. 3.11(f)

depict the phase spectrum of Frank code for SNR= 4 dB, 0 dB, -4 dB, -8 dB, and

-12 dB respectively. The phase values correspond to different colors shown in the

color bar that appears at the right of all phase spectra.

As a reference, Fig. 3.12(a) presents the phase values of the actual P1 code (L=

4) without AWGN. The phase is 0◦ from 0 µs till 1 µs and shifts to -135◦ for the

next 1 µs. It changes to 90◦ from 2 µs to 3 µs, then -45◦ from 3 µs to 4 µs, 180◦

from 4 µs to 5 µs, 135◦ from 5 µs to 6 µs, and 90◦ from 6 µs to 7 µs. From 7

µs till 8 µs there is 45◦ phase that again shifts to 0◦ for next 1 µs. From 8 µs to

12 µs, the phase values are mirror images of values appearing from 5 µs to 8 µs.

From 12 µs to 13 µs the phase is 180◦. It switches to -45◦ for the next 1 µs and

is 90◦ from 14 µs to 15 µs and is -135◦ for the last chip. Similarly, Fig. 3.12(b)

represents the phase spectrum of P1 code at SNR=4 dB. It is obvious from the

figure that for the 1 µs the phase of 0◦ is shown by cyan colour. Its royal blue for

the next 1 µs (-135◦) and yellowish green (90◦) from 2 µs to 3 µs. Its blue from 3

µs till 4 µs (-45◦). Its yellow (180◦) for the next 1 µs, It then follows the pattern

as orange (135◦), yellowish green (90◦), bluish green (45◦), cyan (0◦), bluish green

(45◦), yellowish green (90◦), orange (135◦), yellow (180◦). It is then blue (-45◦),

yellowish green (90◦), and royal blue (-135◦) for last 3 µs. Fig. 3.12(b) through

Fig. 3.12(f) depict the phase spectrum of Frank code for SNR= 4 dB, 0 dB, -4

dB, -8 dB, and -12 dB respectively.

Similarly, the benchmark P2 code (L= 6), P3 code (N= 12), and P4 code (N= 15)

are compared to their respective derived phase-based feature images at different

SNRs in Fig. 3.13(b) through Fig. 3.13(f), Fig. 3.14(b) through Fig. 3.14(f), and

Fig. 3.15(b) through Fig. 3.15(f), respectively.
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The length of the input signal, the window function, and overlap are some of the

variables that affect the time complexity of STFT. Particularly, when paralleliza-

tion and suitable window functions are used, STFT is computationally efficient.

It is easy to implement and computationally fast because it is based on the well-

established Fast Fourier Transform (FFT) methods. Because of these character-

istic, STFT can be applied to a variety of embedded systems with constrained

computational capabilities. As our algorithm involves STFT computations, so it

can be easily implemented in real time RWR system as it involves simple and fast

STFT implementations.

3.5 Phase-based Emitter Recognition Architec-

tures

This section introduces the phase-based emitter recognition architectures that

are utilized in the current research. The research’s underlying assumptions are

also included in this section. The proposed BiLSTM architecture employed for

the recognition of phase-coded waveforms is discussed. Additionally, a detailed

explanation of the suggested Deep CNN (DCNN) approach for automatic modu-

lation recognition is also provided by the end of the section.

3.5.1 Assumptions

Several assumptions were taken to carry out the research work and are given below:

1. The type of RWR platform is assumed to be air-based.

2. Different types of threat emitters using specific phase-coded modulation

schemes are assumed for detection and classification.

3. It is assumed that all the intercepted signals at RWR will be treated as

threat signals.
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4. All the phase-coded waveforms are assumed to have the same carrier fre-

quency (Fc) of 50 MHz for the sake of simplicity.
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(f) Barker Code(L=13, SNR=-12 dB)

Figure 3.10: Phase Feature Images of Barker Code (Order=13) at different SNR Values. In the phase
spectrum plots, 180◦ phase is shown in yellow whereas, cyan indicates the phase value of 0◦.
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(f) Frank Code(L=4, SNR=-12 dB)

Figure 3.11: Phase Feature Images of Frank Code (L=4) at different SNRs. This code has four
distinct phase values as shown by phase spectrum plots. The 180◦ phase is shown here in yellow,

yellowish green is for 90◦, blue indicates -90◦, and cyan depicts the phase value of 0◦
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(e) P1 Code(L=4, SNR=-8 dB)
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0 5000 10000 15000

time (nsec)

-250

-200

-150

-100

-50

0

50

100

150

200

F
re

q
u

e
n

c
y

 (
M

H
z
)

-150

-100

-50

0

50

100

150

(f) P1 Code(L=4, SNR=-12 dB)

Figure 3.12: Phase Feature Images of P1 Code (L=4) at different SNRs. Here, cyan depicts the phase
value of 0◦ as shown in phase spectrum plots, dark blue indicates -135◦, yellowish green is for 90◦,
light blue indicates -45◦, 180◦ phase is shown here in yellow, 135◦ for orange, bluish green indicates

45◦ phase.



Novel Phase Spectrum based Feature Extraction 85

0 0.5 1 1.5 2 2.5 3 3.5 4

time (nsec) 10
4

-150

-100

-50

0

50

100

150

p
h

a
s
e
 v

a
lu

e
s
 (

d
e
g

)

Actual phase of P2 Code (L=6)

(a) P2 Code(L=6)

Phase Spectrum of P2 Code (L=6, SNR=4 dB)

0 0.5 1 1.5 2 2.5 3 3.5

time (nsec) 10
4

-250

-200

-150

-100

-50

0

50

100

150

200

F
re

q
u

e
n

c
y

 (
M

H
z
)

-150

-100

-50

0

50

100

150

(b) P2 Code(L=6, SNR=4 dB)

Phase Spectrum of P2 Code (L=6, SNR=0 dB)
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(c) P2 Code(L=6, SNR=0 dB)

Phase Spectrum of P2 Code (L=6, SNR=-4 dB)
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(d) P2 Code(L=6, SNR=-4 dB)
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(e) P2 Code(L=6, SNR=-8 dB)

Phase Spectrum of P2 Code (L=6, SNR=-12 dB)
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(f) P2 Code(L=6, SNR=-12 dB)

Figure 3.13: Phase Feature Images of P2 Code (L=6) at different SNRs. Here, the 1st chip has blue
color representing 15◦ phase, dark blue indicates -135◦, 3rd color is for 75◦, 4th color indicates -75◦

phase, 5th indicates 180◦, 6th color is for -15◦, 9th color refers to 45◦, next is for -45◦, 14th is for
45◦ again, 15th is for 15◦, followed by -15◦, -45◦, and -75◦ phase values. The next half of the code is

mirror image of its first part as depicted by phase spectrum plots
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(b) P3 Code(N=12, SNR=4 dB)
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(c) P3 Code(N=12, SNR=0 dB)
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(d) P3 Code(N=12, SNR=-4 dB)
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(e) P3 Code(N=12, SNR=-8 dB)
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(f) P3 Code(N=12, SNR=-12 dB)

Figure 3.14: Phase Feature Images of P3 Code (N=12) at different SNRs. Here, the 1st chip has cyan
color representing 0◦ phase, 2nd chip indicates 15◦, 60◦ for next, followed by 135◦, -120◦, 0◦, 180◦,

0◦, -120◦, 135◦, 60◦, 15◦ respectively as shown in phase spectrum plots
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(b) P4 Code(N=15, SNR=4 dB)

Phase Spectrum of P4 Code (N=15, SNR=0 dB)
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(c) P4 Code(N=15, SNR=0 dB)

Phase Spectrum of P4 Code (N=15, SNR=-4 dB)
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(d) P4 Code(N=15, SNR=-4 dB)
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(e) P4 Code(N=15, SNR=-8 dB)
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(f) P4 Code(N=15, SNR=-12 dB)

Figure 3.15: Phase Feature Images of P4 Code (N=15) at different SNRs. As shown in phase spectrum
plots, the 1st chip represents 0◦ phase, 2nd chip indicates 180◦ due to wrapping, 48◦ for next, followed

by -72◦, 180◦, 120◦, 72◦, 48◦, 48◦, 72◦, 120◦, 180◦, -72◦, 48◦, 180◦ respectively
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3.5.2 Phase-based Emitter Recognition Using BiLSTMAr-

chitecture

The automatic phase-based emitter recognition architecture employing BiLSTM

network is described in this subsection. A detailed explanation of the three steps of

the overall method is provided, including Waveform Generation, Phase Based Fea-

ture Extraction, and Recognition. The BiLSTM architecture used in this research

is also presented.

3.5.2.1 Motivation for Using BiLSTM Architecture

LSTMs were introduced to overcome the limitations of traditional RNNs in han-

dling long-term dependencies in sequential data like audio, video, and text. They

use specialized memory cells and gating mechanisms to store and utilize informa-

tion over extended time intervals, making them effective for tasks with significant

temporal gaps [99]. Fig. 3.16 shows percentages of various tasks performed by the

LSTM network in terms of a pie-chart. BiLSTM captures information from both

past and future context, enhancing its ability to understand dependencies in the

data. BiLSTM networks can perform different tasks like classification, language

modeling, sentiment analysis, natural language inference, etc.

3.5.2.2 System Overview

The overall recognition technique is explained in great detail in this subsection.

The three basic parts of the proposed identification system are the Waveform

Generation, Phase-based feature extraction, and a Classification net-

work, as shown in Fig. 3.17. STFT is computed for each waveform in the first

step. The phase of the output is determined using the appropriate window size

computed for STFT. In the second step, a phase-based feature vector is generated

and in the third step, it is fed to the BiLSTM network’s input for recognition pur-

poses. Following the first and second sections, the system collects a large amount
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Figure 3.16: Tasks Performed by LSTM Network [100]

of information on various kinds of the waveform, and in the third section, all wave-

forms are finally categorized. Six different phase-coded waveform types, including

Barker, Frank, P1, P2, P3, and P4, can be recognized using the BiLSTM model.

Training of the BiLSTM network is done using 1D phase-based features. Once

the network is trained, testing of the network is performed to judge the efficacy of

the proposed phase-based feature extraction method using STFT phase spectrum.

Finally, the recognition accuracies of the phase-coded waveforms will be discussed

in the simulation part.

3.5.2.3 Design of BiLSTM Architecture

The proposed BiLSTM architecture is directly provided with the 1D phase-based

features extracted from the phase of STFT, as discussed in Section 3.3.2. The

phase-based features provided at the input of BiLSTM architecture are then pro-

cessed by LSTM cells present in the LSTM layer. The key components of an

LSTM cell are three gates performing different functions. The forget gate deter-

mines what information to discard, the input gate controls what new information

to add, and the output gate controls what information from the cell state should
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Figure 3.17: There are three basic steps in the proposed recognition process. STFT is initially
applied to all phase coded waveforms intercepted at RWR. A phase-based feature vector is computed
in the second step, and it is then provided as input to the BiLSTM network in the third step to

accomplish recognition task

be given at the output. The cell state is basically the memory that retains essen-

tial information from previous time steps. This architecture enables the LSTM to

effectively handle long-term dependencies and process sequential data. The BiL-

STM network consists of two LSTM layers. The Forward LSTM layer processes

the sequence from the first time step to the last. Similarly, the Backward LSTM

layer processes the sequence in reverse, from the last time step to the first.The

outputs of both LSTM layers are combined and the expression for forget gate is:

ft = σ(Wf .[ht−1, xt] + bf ), (3.5)

Here, σ is the sigmoid activation function. bf is the bias term for forget gate and

Wf are the weights. ht−1 represents the recurrent information at previous time

step and xt is the current input. The expression for input gate is:

it = σ(Wi.[ht−1, xt] + bi), (3.6)

Where, bi is the bias term for the input gate and Wi are the corresponding weights.

The cell state is updated using the following relations:

C̃t = tanh(Wc.[ht−1, xt] + bc). (3.7)
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Ct = (ft ∗ Ct−1 + it ∗ C̃t). (3.8)

Here, bc and Wc are the bias term and weights for updating cell state. The ex-

pression for output gate is:

ot = σ(Wo.[ht−1, xt] + bo), (3.9)

ht = ot ∗ tanh(Ct). (3.10)

Here, Wo are the weights; bo is the bias term for output gate, and ht represents

the current recurrent information. The gate structure was created specifically to

deal with the issue of exploding or vanishing gradients in RNN. The final outcome

is represented by the symbol yt, which may be expressed as follows:

yt = [ht
f , ht

b]. (3.11)

Here, t= 1, 2, 3, ..., n, represents the time steps. Hence, both the forward ht
f and

backward activations ht
b are used to calculate the output at any time instant t.

The BiLSTM layer contains 100 hidden units. The fully connected layer follows

the BiLSTM layer and contains 200 nodes. A softmax layer is used that applies

a softmax function to its input. Finally, the classification layer is utilized to ac-

complish the recognition task. A classification layer computes the cross-entropy

loss for multi-class classification problems. The output size of the previous layers

is used to determine the number of classes in this layer. At an SNR of -2 dB,

the technique proposed in this subsection exhibits an overall recognition accuracy

of more than 90%. Back Propagation Through Time (BPTT) is a training tech-

nique for RNNs on sequential data, where each time step is unrolled to apply the

back-propagation algorithm. Errors are calculated and accumulated for each time

step, making it computationally expensive for long sequences, leading to vanish-

ing or exploding gradients. To address this, Truncated Back Propagation Through

Time (TBPTT) is used, limiting the number of time steps considered during back-

propagation, which helps mitigate the computational cost and gradient issues. The

layers’ structure in the proposed BiLSTM-based emitter recognition architecture
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is also shown in Fig. 3.19. Six phase-coded waveforms are classified using the

proposed BiLSTM architecture, and the results of the simulations are given in the

following chapter.

3.5.3 Phase-based Emitter Recognition Using DCNN Ar-

chitecture

In this subsection, the proposed DCNN based automatic modulation recognition

architecture used in this research is explained in detail.

3.5.3.1 Motivation for Using DCNN

DCNNs are used for image classification due to their ability to automatically learn

hierarchical features, exploit local correlations, and achieve translation invariance.

The parameter sharing, non-linear activation, and transfer learning capabilities

further enhance their scalability and performance for the image recognition tasks

[23, 27, 28, 85, 88].

3.5.3.2 System Overview

We present a DCNN-based radar AMCS in this subsection. The framework of the

suggested technique is shown in Figure 3.20. The intercepted LPI radar waveforms

are divided into various categories using this recognition method. The proposed

method works by transforming the signal modulation recognition problem into a

Time-Frequency Image (TFI) recognition problem by using STFT. The approach

is divided into three sections, as shown in Fig. 3.20. The first step involves

the generation of phase-coded LPI radar signals discussed in Chapter 1. In the

next step, the TFI of the intercepted signals is obtained by computing the phase

spectrum of STFT, and pre-processing is performed. Cropping of TFI is done
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Figure 3.19: Hierarchy of Layers in the Proposed BiLSTM-based Emitter Recognition Architecture

to obtain only the segment with the phase information in order to decrease the

computational complexity of DCNN.

Figure 3.20: The proposed AMCS consists of three parts. Initially phase coded signals are generated
followed by pre-processing of phase-based TFI obtained from STFT. Finally recognition is done using

DCNN architecture
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However, in a low SNR situation, the TFI still contains a lot of noise, making the

recognition problem more challenging. In the last step, cropped TFIs are fed to

DCNN architecture for the classification of phase-coded LPI radar waveforms.

3.5.3.3 Design of Deep Convolutional Neural Network

(DCNN)

Fig. 3.21 depicts the DCNN structure used in this work for classification of phase-

coded waveforms. The DCNN model includes ten layers in total, including convo-

lutional layers (3), pooling layers (3), a flattening layer (1), a fully connected layer

(2), and a single output layer. The sizes and number of filters used for different

convolutional layers are also shown in Fig. 3.21. Here is a sequence of the functions

that make up the DCNN’s structure: Input−Con−ReLU−Pool−dropout−Con−

ReLU−Pool−dropout−Con− ReLU− Pool− dropout−FL−FC1−FC2−dropout

−OL, where Con denotes the Convolution layer, ReLU is non-linear activation

function, Pool represents the pooling layer, FL represents the flattened layer, FC1

and FC2 are two fully connected layers, and to prevent the overfitting dropout

layer is used. The OL is the output layer containing 6 neurons that represent 6

different categories of phase-coded waveforms. All the remaining parameters are

shown in Fig. 3.21. Assume the convolutional layer’s input size is L×M×Q, indi-

cated by I, where Q indicates the number of channels. L is the height and M is the

width of the input image. The dimensions of the input image are 46×545×3 pixels

for simulations. The convolution kernel K has a size of F×F×Q and a number of

R. The convolutional kernel size is chosen 3×3 for all convolutional layers. The

convolution stride is 1. The following is a description of the convolution process:

C(n,m,R) =

Q∑
l=1

F−1∑
i=0

F−1∑
j=0

I(n+ i,m+ j, l) ∗KR(i, j, l) + biasR, (3.12)

where, KR and biasR represents the Rth convolutional kernel and its bias term

respectively. C denotes the output of convolution. n∈[1,O] and m∈[1,P].

O = [
L− F

stride
+ 1], P = [

M − F

stride
+ 1]. (3.13)
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Modern CNNs frequently use the ReLU activation function since it effectively

prevents gradients from vanishing [101]. The ReLU function is written as follows:

Cout(n,m,R) = max[0, C(n,m,R)]. (3.14)

The pooling layer must be utilized to reduce the dimensions and parameters of

data to prevent overfitting. We employ maximum pooling with filter size of 2× 2

and stride size of 2 in this work.

Cd(n,m,R) = max
i,j∈{0,1}

{Cout(2n+ i− 1, 2m+ j − 1, R)}. (3.15)

Use equations (3.12), (3.14), and (3.15) to calculate the output of the last con-

volutional layer which is then fed to FL to convert 2D data into 1D vector. The

output of the FL layer is given at the input of FC1 having 25344 input nodes and

128 output nodes. FC2 has 128 input nodes and 6 output nodes (corresponding

to 6 phase-coded waveforms). All the nodes between FC1 and FC2 are fully con-

nected like the dense layers in the NN. hFC denotes the output of the FC1. Note,

WFC is the weight matrix between the FC1 and FC2. Similarly, the weight matrix

between the FC2 and the OL is WOut. hFL is the input to the FC1. The outputs

obtained from FC2 and OL are hFC and Out. bFC and bOut are their bias terms

respectively.

hFC = f(WFChFL + bFC), (3.16)

Out = f(WOuthFC + bOut). (3.17)

We use the softmax activation function on the output layer to produce the final

results of classification. There is a dropout of 50% between the FC2 and OL to

prevent overfitting and to reduce the computational complexity. The classification

output ŷ in terms of probability is given as follows:

ŷp = P (yact = p|Out) =
eOutp∑6
p=1 e

Outp
, (3.18)
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where, ŷ = [ŷ1, ŷ2, ŷ3, ...., ŷ6]
T . Outp denotes the pth component of the output

vector. The probability that the input is assigned to class p is given by ŷp. The

DCNN classification result corresponds to the category with the highest ŷp.

J(yact, ŷ) = min{−[yact log(ŷ) + (1− yact) log(1− ŷ)]}, (3.19)

where, yact is the true label of the class and ŷ represents the predicted label. In

Fig. 3.22, the DCNN model is shown in terms of the dimensions of input to the

layers and the corresponding output dimensions.
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Figure 3.22: DCNN Architecture in Terms of Input and Output Dimensions

3.5.4 Algorithms for BiLSTM and DCNN architectures

The algorithms for BiLSTM and DCNN architectures based intrapulse modulation

recognition are given in the Table 3.1 and 3.2 respectively.
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Table 3.1: Algorithm for BiLSTM based Intrapulse Modulation Recognition Architecture

Input: Testing dataset (features=102×1 cell, at each SNR value), trained BiL-

STM network, ŷ=[]

Output: Predicted labels= ŷ

Step 1: Extracted phase based features are given at the input of “Sequence Input

Layer”, features dim=1 (phase based vector)

Step 2: Phase features from sequence input layer are then fed to BiLSTM layer,

hidden nodes=100, Wf , bf , Wi, bi, Wc, bc, Wo, bo, ht = 0, Ct = 0 :

1. Calculations for Forget Gate:

ft = σ(Wf .[ht−1, xt] + bf )

2. Calculations for Input Gate:

it = σ(Wi.[ht−1, xt] + bi)

C̃t = tanh(Wc.[ht−1, xt] + bc)

3. Calculations for updating Cell state:

Ct = (ft ∗ Ct−1 + it ∗ C̃t)

4. Calculations for Output Gate:

ot = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

Step 3: The output yt is computed from both the forward and backward acti-

vations of BiLSTM layer:

yt = [ht
f , ht

b]

Step 4: The output of BiLSTM layer is then given to fully connected layer, input

nodes= 200, output nodes= 6

hFC = σ(WFCyt + bFC) , Out = hFC

Step 5: Softmax layer then applies the softmax function to Out, nodes=6 (cor-

responds to phase-coded waveforms), yact :

ŷp = P (yact = p|Out) = eOutp∑6
p=1 e

Outp

Step 6: Classification Layer is then used that holds the loss function, size of

output, and predicted label ŷp for class p

Step 7: Append the values of ŷp in ŷ:

ŷ = [ŷ; ŷp]

Step 8: Repeat the Step 1 till Step 7 for all input feature vectors from testing

dataset at different SNR values.
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Table 3.2: Algorithm for DCNN based Intrapulse Modulation Recognition Architecture

Input: Testing dataset (images), trained DCNN, ŷ=[]

Output: Predicted labels= ŷ

Step 1: Perform convolution on input image (I), Num Fil=32, stride=1,

Fil size=[3×3], Num Ch=3:

C(n,m,R) =
∑Q

l=1

∑F−1
i=0

∑F−1
j=0 I(n+ i,m+ j, l) ∗KR(i, j, l) + biasR

Step 2: Apply ReLU on the obtained feature maps from previous step:

Cout(n,m,R) = max[0, C(n,m,R)]

Step 3: Perform down-sampling using max pooling, stride=2, size=[2×2]:

Cd(n,m,R) = max
i,j∈{0,1}

{Cout(2n+ i− 1, 2m+ j − 1, R)}

Step 4: Apply 25% dropout on output of max pooling (Cd)

Step 5: Repeat Step 1 (Num Fil=64), Step 2, Step 3, and Step 4 on the output

of Step 4

Step 6: Again repeat Step 1 (Num Fil=96), Step 2, Step 3, and Step 4 on the

output of Step 5

Step 7: Flatten the output obtained from last pooling layer in Step 6:

CFL = reshape (Cd
′
, [1 size (Cd, 1) ∗ size (Cd, 2) ])

Step 8: Apply following calculations on all nodes of FC1, input nodes= 25344,

output nodes= 128, WFC , bFC :

hFC = f(WFCCFL + bFC)

Step 9: Apply following calculations on all nodes of FC2, input nodes= 128,

output nodes= 6, WOut, bOut :

Out = f(WOuthFC + bOut)

Step 10: Apply 50% dropout on output of FC2

Step 11: Compute the output (Out) in terms of probability ŷp of class p :

ŷp = P (yact = p|Out) = eOutp∑6
p=1 e

Outp

Step 13: Append the values of ŷp in ŷ:

ŷ = [ŷ; ŷp]

Step 14: Repeat the Step 1 till Step 13 for all input images (I) from testing

dataset at different SNR values and plot their recognition accuracies

and versus SNR
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3.6 Real World Settings

In real-world application, the RER method is employed at RWR to enhance sit-

uational awareness and aid in decision-making during various practical scenarios.

In EW missions, RER plays a central role in understanding the enemy’s electronic

emissions. This information is used to develop and implement electronic counter-

measures, such as jamming or emitting deceptive signals to disrupt enemy radar

and communication systems. It’s important to note that RER is often used in

conjunction with other sensor systems, such as active ECM and passive ESM, to

create a comprehensive EW suite. These systems work together to improve the

efficiency of military platforms by delivering precise and immediate information

about the electromagnetic environment and potential threats. Here’s an outline of

the steps involved for implementing the proposed research idea in the real world

settings:

3.6.1 Data Collection

Gathering and preparing the training data is a crucial part of this process. The

first step is to collect a large dataset of intercepted radar signals, specifically phase-

coded waveforms, from various radar emitters. This data can be obtained through

real-world measurements, simulations, or a combination of both. For real-world

measurements, RWR systems equipped with data recording capabilities can be

used to capture intercepted radar signals during military exercises or missions.

For simulations, realistic radar signal simulators can generate synthetic data rep-

resenting different radar emitters.

3.6.2 Signal Preprocessing

Once the dataset is collected, preprocessing is required to extract the phase-based

features from the data in order to train the deep learning architectures. Each data
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sample in the dataset needs to be labeled with the corresponding radar emitter

type.

3.6.3 Data Augmentation

The diversity and generalization of the training data can be enhanced using data

augmentation techniques or AWGN can be added at different SNR values to get

more realistic dataset.

3.6.4 Model Training

The proposed deep learning architecture is trained on the preprocessed and labeled

dataset. During training, the model learns to recognize patterns and features that

are indicative of specific radar emitter types.

3.6.5 Model Validation

After the initial training, the performance of model is validated using a validation

dataset. Fine-tuning of the model is done based on validation results to improve

its accuracy and generalization.

3.6.6 Testing and Evaluation

The trained RER model is evaluated on an independent testing dataset to assess

its real-world performance. The model’s ability to correctly recognize phase-coded

waveforms intercepted at the RWR is critical to its effectiveness in practical sce-

narios. Evaluation of the trained model is done to judge the performance of the

proposed RER method for LPI radar waveform recognition. The recognition ac-

curacies can be observed versus SNR values. In order to be more realistic, the

recognition accuracies upto -16 dB can be considered.
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3.6.7 Deployment and Continuous Improvement

Once the model is trained and validated, it can be deployed into the RWR system

for real-world use. Regular updates and retraining may be necessary to accommo-

date new radar emitters or improve the model’s performance based on real-world

feedback.

3.7 Chapter Summary

This chapter starts with a basic notion of feature extraction, which is crucial for

various ML models. The merits of the feature extraction method are discussed,

and then a novel, STFT-based feature extraction method is proposed. Detailed

steps of the proposed feature extraction technique (1D & 2D) given in the form of

flow charts for both architectures (BiLSTM & DCNN). The derived phase-based

features for particular phase-coded waveforms at various SNR levels are also dis-

played. The proposed deep learning architectures (BiLSTM & DCNN) employed

in this research are also explained in detail. The simulations conducted to assess

the effectiveness of the suggested phase-based feature extraction technique are

covered in the next chapter.



Chapter 4

Simulations and Results

In this chapter, the RWR platform is simulated for practical consideration. The

phase-coded signals are simulated to obtain the baseline simulations.The phase-

coded signals considered for the simulations include Barker, Frank, P1, P2, P3,

and P4. The simulated phase-coded signals are modulated and AWGN is added

to realize different SNR environments. The signals are modulated at the carrier

frequency (Fc) of 50 MHz. For threat emitter recognition, it is assumed that all

the threat emitters are at the same carrier frequency. The SNR values considered

for the BiLSTM-based approach vary from -8 dB to 8 dB with a 2 dB step size,

whereas for the DCNN-based emitter recognition method SNR ranges from -16 dB

to 8 dB with the same step size. At RWR, the modulated and AWGN-corrupted

phase-coded waveforms are intercepted. STFT is used to extract features from

the phase spectrum of phase-coded waveforms. By considering the derived phase

features at various SNR values, the effectiveness of the proposed phase spectrum-

based emitter recognition architectures presented in Chapter 3 can be investigated.

Section 4.1 describes the simulation settings, network parameters, and results for

1D BiLSTM-based RER approach whereas, Section 4.2 includes the simulation

setup and recognition results for the proposed 2D DCNN-based RER architecture.

The recognition accuracies versus SNR are also given in the tabular form. In

Section 4.3, the two RER methods proposed in this research effort are compared

to determine which one is more efficient.
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4.1 Simulation Results for RER using BiLSTM

This section provides a detailed description of the simulation setup and the findings

obtained for the 1D BiLSTM-based RER approach by considering the recognition

accuracies of phase coded waveforms versus SNR to evaluate the performance of

the proposed architecture.

4.1.1 Simulation Settings

Six distinct forms of phase-modulated signals, including Barker, Frank, P1, P2,

P3, and P4 codes, are used to investigate the efficacy of the proposed recognition

approach using BiLSTM. There are specific parameters for each waveform that

need to be adjusted. The carrier wave frequency (Fc) for all signals is assumed

to be 50 MHz, and the sampling frequency is Fs= 500 MHz. There are various

phase-coded waveforms, each with a particular pulse width. The simulation uses

Barker code elements of length (M= 4, 7, 11, 13) having pulse widths of 2 µs, 14

µs, 11 µs, and 13 µs respectively. P1 codes are generated for lengths (L= 2, 4) with

pulse widths of 8 µs, and 16 µs respectively. Similarly, P2 codes are produced

for lengths (L= 4, 6) with pulse widths of 16 µs, and 36 µs respectively, using the

formula expressed in Section 1.7.5. For (Nc= 4, 12, 16), P3 codes are generated

with pulse widths of 8 µs, 12 µs, and 16 µs respectively. P4 codes are used to

generate signals for (Nc= 4, 12, 15) having pulse widths of 8 µs, 12 µs, and 15 µs,

respectively. There are six main categories of phase-coded waveforms represented

by a total of 17 signals. In Table 4.1, the parameters of simulated phase-coded

signals are listed. The category labels for various phase-coded waveforms are the

model’s output. For Barker, Frank, P1, P2, P3, and P4 codes, the total number

of samples is 20000, 35000, 12000, 16000, 28000, and 17500, respectively, at each

SNR value. The overall sample count goes to 128500 at each SNR value. Signals

are subjected to five iterations of AWGN for the generating the training datasets

at each SNR value. So, the total number of samples at each SNR is 6,42,500.
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From -8 dB to 8 dB, there are nine SNR values with a step size of 2 dB. The total

number of training and testing signals is calculated as:

Training signals (total) = 17×5×9= 765 signals (4.1)

Training samples (at each SNR) = 1,28,500×5= 6,42,500 samples (4.2)

Total Training samples (for all SNRs) = 57, 82,500 samples (4.3)

Testing signals (at each SNR) = 17×6= 102 signals (4.4)

Testing signals (total) = 17×6×9= 918 signals (4.5)

Testing samples (at each SNR) = 1,28,500×6= 7,71,000 samples (4.6)

Total Testing samples (at all SNRs) = 69,39,000 samples (4.7)

The proposed BiLSTM network is trained to utilize 765 signals for six different

types of phase-coded waveforms after the various emitter signals are simulated

with different phase-coding schemes. We split the labels in half, using 20% for

validation and 80% for training. The testing dataset, which contains a total of

918 signals with SNR values ranging from -8 dB to 8 dB, is used to evaluate the

BiLSTM network’s ability to recognize different phase-coded signals. The recog-

nition accuracies of phase coded waveforms versus SNR are displayed in tabular

form to observe how the recognition accuracy drops as the SNR decreases.

4.1.2 Network Parameters

The number of hidden layers, hidden nodes in the BiLSTM layer, activation func-

tions, and other hyper parameters must all be set in order for the classifier model

to execute classification tasks. The input and recurrent weights are randomly

initialized by using a Gaussian distribution with a zero mean and a standard

deviation of σ. The initial bias terms are set zero for all gates. During the learn-

ing phase, training epochs are also crucial. In our BiLSTM architecture, just 50
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Table 4.1: Parameter Setting of Phase-coded Radar Waveforms

Modulation Type Parameters Values
1. Barker Code Length of Code (M) [4,7,11,13]

2. Frank Code
Frequency Steps(L) [3,4,6]

CPP [100,50,50]

3. P1 Code
Frequency Steps(L) [2,4]

CPP [100,50]

4. P2 Code
Frequency Steps(L) [4,6]

CPP [50,50]

5. P3 Code
Compression Ratio (Nc) [4,12,16]

CPP [100,50,50]

6. P4 Code
Compression Ratio (Nc) [4,12,15]

CPP [100,50,50]

Table 4.2: Training Parameters for BilSTM Architecture

SN. Parameters Values

1 Number of BiLSTM Layers 1

2 Hidden Units (BiLSTM Layer) 100

3 Activation function tanh, sigmoid

4 Epochs 50

5 Optimizer Adam

6 Mini batch size 306

7 Learning rate 0.01

8 Gradient threshold 1

9 Shuffle Once every epoch

10 Sequence length According to longest sequence

training epochs are used to train the network, and 100 hidden nodes are selected.

The optimal weights are acquired using the ADAM optimizer. For each training

iteration, the mini-batch size is fixed at 306 signals, which is half of the total

training signals (612). The initial learning rate for training is set at 0.01. The

network is validated after 20 training iterations for the validation frequency of
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20. The network itself modifies the length of the sequence for a single iteration

of the mini-batch while taking the gradient threshold to be 1. The values of the

optimal training parameters chosen for simulations are listed in Table 4.2. The

training and validation accuracy plots are displayed in Fig. 4.1 for the trained

BiLSTM architecture. The plot in blue represents the training accuracy while the

black dashed line depicts the validation accuracy. By the end of 50 epochs, the

training accuracy is close to 95% whereas validation accuracy is 86%. Similarly,

the plots for training and validation loss are also displayed in Fig. 4.2. The plot in

red represents the training loss while the black dashed line depicts the validation

loss.

Figure 4.1: Training and Validation Accuracy of BiLSTM Architecture

Figure 4.2: Training and Validation Loss of BiLSTM Architecture
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The validation loss approaches 0.5 whereas the training loss is close to 0 on the

completion of 50 epochs which shows the convergence of the trained BiLSTM

architecture.

4.1.3 Recognition Results

In this subsection, the recognition accuracies of phase-coded waveforms are given

as a function of SNR. Since AWGN is introduced to the signals, the simulations

are run at least ten times for each SNR value before the averaged accuracy values

are displayed in Table 4.3 for SNR values ranging from -8 dB to 8 dB with a

2 dB step size. Every waveform has a distinct relationship between RERA and

SNR. For each waveform in our system, SNR and RERA are positively correlated.

For all phase-coded waveforms, RERA significantly rises till the SNR of -2 dB.

Almost all waveforms, with the exception of Frank codes, have a RERA of 90%

or above at SNR of -2 dB. Barker codes have 80% recognition accuracy at SNR=

-8 dB which increases significantly and reaches 100% by 0 dB as shown in Table

4.3. P1 codes have more than 60% recognition accuracy at -8 dB, and by -2 dB,

100% recognition accuracy is achieved. P2 codes have recognition accuracies of

more than 80% at -8 dB, whereas P3 codes have accuracies of 72% as displayed

in Table 4.3. According to Table 4.3, P4 codes begin out with a recognition

accuracy of about 68%, increasing to 91% by -2 dB and then 100% by 6 dB.

Frank codes have the lowest recognition accuracy of 50% when compared to the

other codes and require additional accuracy improvements. The overall recognition

accuracies of phase coded waveforms are also given in the last row of Table 4.3.

At -8 dB, the overall recognition accuracy is 70% that increases significantly and

ultimately reaches 100% by SNR= 8 dB. The overall recognition accuracies of

phase-coded waveforms are also presented in Fig. 4.3. At SNR= -8 dB, the

recognition accuracy is 70% which increases significantly from 70% to 96% with the

increase in SNR value from -8 dB to -2 dB. After -2 dB, there is a gradual change

in accuracy and finally, it reaches 100% at SNR= 8 dB. Precision, recall, and F1

score are important metrics for evaluating classifiers as they provide insights into



Results and Discussion 111

Table 4.3: Recognition Accuracies Versus SNR Obtained from BiSLTM Network

Signals -8 dB -6 dB -4 dB -2 dB 0 dB 2 dB 4 dB 6 dB 8 dB

Barker 80 83 94 99 100 100 100 100 100

Frank 50 72 75 81 83 87 89 92 93

P1 62 89 96 100 100 100 100 100 100

P2 84 92 97 100 100 100 100 100 100

P3 72 91 97 99 100 100 100 100 100

P4 68 69 79 91 94 97 99 100 100

Overall 70 82 90 96 97 98 99 99 100

their performance. These metrics are based on the concepts of True Positives (TP),

True Negatives (TN), False Positives (FP), and False Negatives (FN). TP represent

correct positive predictions. TN represent correct negative predictions, FN occurs

when the classifier predicts negative incorrectly, and FP refer to incorrect positive

predictions.
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Figure 4.3: Overall Recognition Accuracies Versus SNR for BiLSTM Architecture

.

4.1.3.1 Precision

Precision evaluates the correctness of positive predictions by indicating the pro-

portion of predicted positive instances that are accurate. The formula of precision
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is given by:

Precision =
TP

TP + FP
(4.8)

4.1.3.2 Recall

Recall assesses the classifier’s ability to correctly detect positive instances by indi-

cating the proportion of actual positive instances that are successfully identified.

The formula of recall is given by:

Recall =
TP

TP + FN
(4.9)

4.1.3.3 F1-Score

The F1 score combines precision and recall into a single measure, offering a bal-

anced assessment of the classifier’s overall performance. It takes into account both

the accuracy of positive predictions and the ability to identify positive instances,

providing a comprehensive evaluation metric. The formula of F1 score is given by:

F1-Score = 2 × Precision×Recall

Precision+Recall
(4.10)

The recognition accuracies of most of the phase coded waveforms are 90% at

SNR≥ -2 dB except the Frank codes as shown in Table 4.3. The precision, recall,

F1 score, and accuracy of phase coded waveforms are given at SNR values of -4

dB, -6 dB and -8 dB in the Table 4.4, 4.5, and 4.6, respectively.

4.2 Simulation Results for RER using DCNN

In this section, the simulation results for the RER method using DCNN architec-

ture are given. Signal generation and simulation settings are the same as in the
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Table 4.4: Precision, Recall, F1 score, and Accuracy at SNR= -4 dB

Signals Precision Recall F1 Score Accuracy

Barker 81.74 92.16 86.63 94

Frank 90.36 79.8 84.75 75

P1 78.69 96.97 86.87 96

P2 100 96.04 97.98 97

P3 93.27 97.98 95.56 97

P4 97.53 73.83 84.04 79

Table 4.5: Precision, Recall, F1 score, and Accuracy at SNR= -6 dB

Signals Precision Recall F1 Score Accuracy

Barker 75.45 78.3 76.84 83

Frank 80 77.4 78.67 72

P1 70.1 91.75 79.4 89

P2 96.84 92 94.35 92

P3 87.5 91.9 89.64 91

P4 87.34 62.7 73 69

Table 4.6: Precision, Recall, F1 score, and Accuracy at SNR= -8 dB

Signals Precision Recall F1 Score Accuracy

Barker 63 75.47 68.67 80

Frank 81.97 55.56 66.23 50

P1 62.63 70.45 66.31 62

P2 95.45 86.6 90.8 84

P3 69.23 75 72 72

P4 63.55 62.39 62.96 68

previous section. However, SNR values ranging from -16 dB to 8 dB with a 2 dB

step size are considered.

4.2.1 Simulation Settings

Barker, Frank, P1, P2, P3, and P4 codes are among the six types of simulated

radar signals. After several emitter signals have been simulated using various phase
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coding techniques, STFT is utilized to determine the phase spectrum. The phase

spectra are cropped to acquire the specific portion that corresponds to the carrier

signal’s phase offset according to the details given in Chapter 3. The dataset

includes 674 images for all 6 types of phase-coded signals with SNRs varying

from -16 dB to 8 dB with a 2 dB step size. We split the training data into two

parts, using 80% for training and 20% for validation of the proposed architecture.

The ability of the DCNN network to differentiate among phase-coded signals is

analyzed using a testing dataset of 102 signals at each SNR value. The test dataset

contains 1326 images in total for all 13 SNR values. Signals are subjected to six

iterations of AWGN for the generating the testing dataset at each SNR value. The

value of SNR can be computed by using the following expression:

SNR = 10log10
σs

2

σn
2
, (4.11)

where, σs
2 and σn

2 are signal and noise power, respectively. The calculations for

training and testing signals are given below:

Training signals (total) = 674 images, (4.12)

Testing signals (at each SNR)= 17×6= 102 images, (4.13)

Testing signals (total)=17×6×13= 1326 images. (4.14)

4.2.2 Network Parameters

The hyper-parameters, including the size of the input, the number of convolution

feature maps, the size of the convolution and pooling filters, number of Fully

Connected (FC) layers, the neurons in the FC layers, etc. are selected using

series of Monte Carlo simulations to identify the optimal structure for DCNN.

The optimal input size is chosen as [46 × 545 × 3]. The first, second, and third

layers have 32, 64, and 96 convolution filters, respectively. The optimal filter size of

[3×3] is chosen for all three convolution layers. The stride size= 1 is considered for

the convolutional layers. The maximum pooling filter size of [2×2] and stride size=
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2 without zero-padding is considered. Table 4.7 demonstrates that the proposed

technique performs well when the fully connected layers contain 25344 and 128

neurons respectively. To prevent a possible overfitting problem, there is a Dropout

layer (25% rate) after all pooling layers and a 50% rate between the FC2 and the

OL. The network is trained with only 50 epochs. The Adam optimizer is used

to obtain the best-learned weights. The mini-batch size is fixed at 40 for each

training iteration. The initial learning rate is kept at 0.01 during training. The

optimal training parameters computed for simulation are listed in Table 4.7 along

with their values. In Table 4.7, CL is for Convolutional Layer, FC is for the Fully

Connected Layer, PL is for Pooling Layer, and OL represents Output Layer.

Table 4.7: Training Parameters for DCNN Architecture

SN Parameters Values

1 No of CL 3

2 No of kernels in each CL 32, 64, 96

3 CL kernel size [3×3] for all layers

4 Pooling filter size [2×2] after all CL

5 Activation function ReLU (after all CL)

6 No of FC layers 2

7 Neurons in FC layers Layer 1 (25344)

Layer 2 (128)

8 Dropout 25% after all PL

50% between FC2 and OL

9 Batch size 40

10 Learning rate 0.01

11 Optimizer Adam

12 Epochs 50

The training and validation accuracy plots are displayed in Fig. 4.4 for the trained

DCNN architecture. Similarly, the plots for training and validation loss are also

displayed in Fig. 4.5. The reason why validation data accuracy > training data

accuracy is a situation that might be viewed as good is because hyper-parameters
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may have been tuned pretty well in the training data, which would have eventually

led to an improved prediction in the validation data.

Figure 4.4: Training and Validation Accuracy of DCNN Architecture

Figure 4.5: Training and Validation Loss of DCNN Architecture

The training and validation losses both converge to zero as the number of epochs

increases. Similarly, with the increase in number of epochs, both the training and

validation accuracies approach close to 100%.
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4.2.3 Recognition Results

For the DCNN-based RER architecture, the recognition accuracies of all phases-

coded waveforms are displayed in this subsection as a function of SNR. For SNR

ranging from -16 dB to 8 dB, RER accuracies for six phase-coded signals are

displayed in Table 4.8. A positive correlation can be seen between both variables,

and each waveform has a distinct relation between SNR and recognition accuracy.

After the simulations have been conducted at least ten times for each SNR value,

the averaged accuracy values are given since the AWGN is added to the signals.

According to Table 4.8, the recognition rate of Barker codes is observed to be

88% at -16 dB and reaches 100% at -4 dB. Frank codes have 99% recognition

accuracy at SNR of -16 dB and becomes 100% by SNR= -12 dB. P1 codes have

an accuracy of 57%, which increases dramatically with the increase in SNR and

becomes 100% at SNR= -8 dB as shown in Table 4.8, For all SNR values between

-16 dB and 8 dB, P2 codes achieve a 100% recognition rate. P3 codes also have

good recognition accuracies for all SNR values considered for the simulations. The

suggested phase spectrum-based DCNN recognition is shown to be effective for P4

codes as 93% accuracy is observed at even low SNR of -16 dB and increases to

100% by -8 dB. The last row of Table 4.8 depicts the overall recognition accuracies

of all phase-coded waveforms versus SNR.

The overall recognition rate for all phase-coded waveforms is also shown in Fig. 4.6

as a function of SNR. The recognition rate is 89% at SNR= -16 dB and rises until

-8 dB. The fluctuations in SNR from -16 dB to -12 dB and from -12 dB to -8 dB

sequentially result in an increase in recognition accuracy from 89% to 94.6% and

ultimately reaches 99%. At even low SNR of -16 dB, a 89% recognition accuracy is

achieved that shows the efficacy of proposed phase-based RER architecture using

DCNN. The recognition accuracies of all phase coded waveforms are 100% at

SNR≥ -4 dB as shown in Table 4.8. The precision, recall, F1 score, and accuracy

of phase coded waveforms are given at SNR values of -8 dB, -12 dB and -16 dB in

the Table 4.9, 4.10, and 4.11, respectively.
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Table 4.8: Recognition Accuracies Versus SNR

Signals -16 dB -12 dB -8 dB -4 dB 0 dB 4 dB 8 dB

Barker 88 93 97 100 100 100 100

Frank 99 100 100 100 100 100 100

P1 57 77 100 100 100 100 100

P2 100 100 100 100 100 100 100

P3 97 99 100 100 100 100 100

P4 93 99 100 100 100 100 100

Overall 89 94.6 99 100 100 100 100
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Figure 4.6: Overall Recognition Accuracies Versus SNR for DCNN Architecture

Table 4.9: Precision, Recall, F1 score, and Accuracy at SNR= -8 dB

Signals Precision Recall F1 Score Accuracy

Barker 100 97.5 98.7 97

Frank 100 100 100 100

P1 100 100 100 100

P2 100 100 100 100

P3 96.8 100 98.4 100

P4 100 100 100 100
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Table 4.10: Precision, Recall, F1 score, and Accuracy at SNR= -12 dB

Signals Precision Recall F1 Score Accuracy

Barker 94.9 92.5 93.7 93

Frank 100 100 100 100

P1 88.5 76.7 82.1 77

P2 98.4 100 99.2 100

P3 96.7 98.9 97.8 99

P4 90.8 98.9 94.7 99

Table 4.11: Precision, Recall, F1 score, and Accuracy at SNR= -16 dB

Signals Precision Recall F1 Score Accuracy

Barker 98.1 87.9 92.7 88

Frank 97.3 99.4 98.4 99

P1 76.7 57.5 65.7 57

P2 100 100 100 100

P3 92.1 97.2 94.6 97

P4 76 93.3 83.8 93

4.3 Discussion and Comparison

The two RER methods discussed in this research effort are compared in this section

to determine which is more efficient for recognizing phase-coded waveforms in low

SNR environments.

4.3.1 Comparison of both RER Approaches

The proposed BiLSTM and DCNN-based emitter recognition approaches used in

this research effort are compared in terms of the SNR requirements. The phase-

based feature vector is extracted using STFT and directly fed into the BiLSTM

for recognition in the first architecture [16]. However, in the second method [41],

the phase spectrum of the phase-coded signal is transformed into an image and

cropped before it is ultimately given at the input of DCNN architecture. The

same dataset is utilized for both approaches by splitting it into test and training
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datasets. In [41], very low SNR is considered ranging from -16 dB to 8 dB whereas,

in [16] SNR ranges from -8 dB to 8 dB. The comparison is done for SNR values

ranging from -8 dB to 8 dB. The recognition accuracies obtained by using both
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Figure 4.7: The Comparison of Recognition Accuracies of Phase coded Waveforms for BiLSTM and
DCNN (a) Barker, (b) Frank, (c) P1, (d) P2, (e) P3, (f)P4

proposed architectures for all phase-coded waveforms are displayed in Fig. 4.7(a)
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through Fig. 4.7(f). At -8 dB, the BiLSTM-based approach has 80% recognition

accuracy for Barker codes as compared to DCNN architecture having 97% as shown

in Fig. 4.7(a). The recognition accuracy for Barker code reaches 100% for DCNN

at -6 dB whereas for BiLSTM it reaches 100% by -2 dB. The recognition accuracy

achieved for Frank codes using the BiLSTM method is quite low as compared to

the DCNN method and is shown in Fig. 4.7(b). The recognition rate of Frank

codes using BiLSTM increases from 50% to 90% as the SNR varies from -8 dB to

4 dB. Similarly, from -4 dB to 8 dB, the recognition accuracy varies from 90% to

93%. For P1 codes, the recognition rate is 62% at -8 dB and increases significantly

to 100% by -2 dB for the BiLSTM method whereas for DCNN its 100% for all SNR

values as shown in Fig. 4.7(c). Similarly, in the case of P2 codes, the recognition

rate varies from 84% to 100% as SNR varies from -8 dB to 8 dB using the BiLSTM

technique whereas DCNN has 100% accuracy throughout even at low SNR of -8 dB.

P3 codes have a recognition rate of 72% and increase significantly till it reaches

100% by -2 dB for the BiLSTM technique as compared to the DCNN method

having 100% accuracy throughout all SNR values as depicted by Fig. 4.7(e). P4

codes have less recognition rate at low SNR values obtained from the BiLSTM

approach as depicted by Fig. 4.7(f) but DCNN has 100% accuracy for all SNR

values. The overall recognition accuracies of phase-coded signals are compared for

both proposed architectures discussed in [16] and [41] as depicted by the Fig. 4.8.
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Figure 4.8: The Comparison of Overall Recognition Accuracies for BiLSTM and DCNN
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In [41], 99.5% recognition rate is observed at -8 dB for DCNN architecture that

reaches 100% by -6 dB and remains 100% for next SNR values till 8 dB. How-

ever, in the case of BiLSTM, the recognition rate starts from 69.33% and reaches

82.67% by -6 dB SNR, it then goes on increasing and ultimately reaches 100% by

SNR=8 dB. Hence, the overall comparison depicts that DCNN-based architecture

has outperformed the BiLSTM approach and very good recognition accuracies are

observed even at very low SNR values.

4.3.2 Comparison of Proposed DCNN Architecture with

Other Methods

The proposed RER methodology using DCNN is compared to other extensively

used state-of-the-art methodologies published in the literature in this sub-section.

The suggested strategy is compared to the other methods in [21, 30, 38, 102] in

terms of the SNR requirements and recognition results for phase-coded waveforms

are compared. The comparison of the proposed work with the existing works is not

possible because the datasets used in the existing works are not easily accessible.

Moreover, it is also difficult to run the existing methods on the dataset used in our

approach as the information provided about them is not sufficient to reproduce

such methods.

4.3.2.1 Comparison with [21]

In [21], an ABC technique is used to optimize SVM for detecting eight different

types of radar waveforms. According to the simulation results, the total recogni-

tion rate is observed to be 92% when the SNR is -4 dB. The comparison of the two

methods reveals that the recognition accuracy of phase-coded signals has improved

when phase-based images are recognized using the DCNN architecture proposed

in this study. Table 4.12 shows a comparison between the two recognition meth-

ods where all the phase-coded waveforms have 100% recognition accuracies even

at low SNR= -4 dB. Moreover, Barker codes also have 100% recognition accuracy
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obtained from our proposed architecture (DCNN) whereas they are not discussed

in [21].

4.3.2.2 Comparison with [30]

AMFIJD model is described in [30]. It fully extracts the pixel feature to obtain the

pre-classification results of each feature image for the non-stationary features of

the majority of LPI radar signals. This model has two different feature extraction

structures. The approach achieves a total recognition accuracy of 87.7% at an

SNR of -6 dB. At SNR=0 dB, the confusion matrix is displayed separately for

both structures. In comparison to [30], the total recognition accuracy of all phase-

coded signals is seen to be 100% in our suggested approach as shown in Table

4.12.

4.3.2.3 Comparison with [102]

In [102], a Neural Architecture Search (NAS) algorithm is proposed to identify the

best classifier of radar waveforms for the very first time, eliminating the depen-

dency on transfer learning and achieving good generalization ability. The accuracy

rate for 15 types of radar waveforms may reach 79.2% under the SNR= -9 dB.

The simulations demonstrate that the model based on flexible differentiable archi-

tecture search has a better performance. According to recognition plots given in

Fig. 14(a) through Fig. 14(f) in [102] at SNR= -6 dB, the recognition accuracy

of BPSK/Barker codes is 100% whereas Frank, P2, and P3 codes have more than

95% recognition accuracies. P1 codes have 80% recognition accuracy as compared

to P4 codes having the least accuracy of 78%. Whereas, all phase-coded wave-

forms, including Barker codes, have a recognition rate of 100% in our proposed

DCNN-based architecture, confirming the effectiveness of our suggested architec-

ture at an SNR of -6 dB. Table 4.13 gives the comparison of both techniques in

tabular form. The comparison shows that our proposed method performs well as

compared to other methods in [102] and [38].
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4.3.2.4 Comparison with [38]

In [38], a novel strategy based on feature fusion and a dual-channel CNN for

the LPI radar signal detection method is proposed. It consists of three main mod-

ules: the preprocessing module, the feature extraction module, and the recognition

module. The CM plot is given in [38] at SNR= -6 dB. The comparison of both

techniques is given in Table 4.13 which depicts that the recognition accuracy of

P1 codes has improved to 100% in our research work as compared to 80% in this

[38].

Table 4.12: Comparison of Radar Emitter Recognition Accuracy (RERA) with [21] and [30] at SNR
of -4 dB and 0 dB respectively.

Phase

Coding

[21] Proposed

Method

[30] Proposed

Method

Types (-4 dB) (-4 dB) (0 dB) (0 dB)

Barker Not given 100% Not given 100%

Frank 85% 100% Not given 100%

P1 84% 100% 96% 100%

P2 99% 100% 100% 100%

P3 84% 100% 100% 100%

P4 86% 100% 93% 100%

Table 4.13: Comparison of Radar Emitter Recognition Accuracy (RERA) with [102] and [38] at SNR
of -6dB

Phase

Coding

[102] Proposed

Method

[38] Proposed

Method

Types (-6 dB) (-6 dB) (-6 dB) (-6 dB)

Barker 100% 100% Not given 100%

Frank 99% 100% Not given 100%

P1 80% 100% 80% 100%

P2 98% 100% 100% 100%

P3 99% 100% 100% 100%

P4 78% 100% 93% 100%
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4.3.3 Computational Complexity

The computational complexity is computed for both the proposed architectures.

4.3.3.1 Computational Complexity of BISLTM

The computational complexity of the proposed BILSTM network can be calcu-

lated as:

Let, I=Input Nodes, H=Hidden Nodes, M=Output Nodes.

Forward Pass:

1. Time complexity for input-to-hidden computation in one time step: O(H ×

I).

2. Time complexity for hidden-to-hidden computation in one time step: O(H2).

3. Time complexity for hidden-to-output computation: O(M ×H).

4. Total time complexity for one input sequence and T time steps in the forward

pass: T × (H × I +H2 +M ×H).

5. Total time complexity for one mini-batch containing 306 input sequences :

1× T (H × I +H2 +M ×H).

6. Total time complexity for 2 mini-batches of 612 input sequences: 2 × T ×

(H × I +H2 +M ×H).

Backward Pass:

1. Time complexity for output-to-hidden computation: O(H ×M).

2. Time complexity for hidden-to-hidden computation in one time step: O(H2).

3. Time complexity for hidden-to-input computation in one time step: O(I ×

H).
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4. Total time complexity for one input sequence and T time steps in the back-

ward pass: T × (H ×M +H2 + I ×H).

5. Total time complexity for one mini-batch containing 306 input sequences:

1× T × (H ×M +H2 + I ×H).

6. Total time complexity for 2 mini-batches of 612 input sequences 2 × T ×

(H ×M +H2 + I ×H).

7. Considering both the forward and backward passes: 4× T × (H × I +H2 +

M ×H).

8. Overall= O(T ×H × I + T ×H2 + T ×M ×H).

4.3.3.2 Computational Complexity of DCNN

To compute the computational complexity of a DCNN model, we need to consider

the operations performed in each layer and their relationship to the input size.

Here’s how we can calculate the complexity for the given model:

1. Input Layer

The input shape is (46, 545, 3), so the total number of input units is 46 ×

545× 3 = 75210.

2. First Convolutional Layer

This layer has 32 filters of size 3 × 3 × 3, so the number of parameters is

32× (3×3×3+1) = 896. The output feature map size will be (46−3+1)×

(545−3+1)×3×32 = 44×543×3×32. Each output unit is computed by a dot

product of a filter with the input image, resulting in (32×3×3×3×44×543) =

20, 642, 688 multiplications and (32×(3×3×3+1)×44×543) = 21, 407, 232

additions.

3. ReLU Activation

ReLU operation does not change the computational complexity, as it only

involves element-wise comparisons and assignments.
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4. First Max-pooling Layer

The filter size is 2× 2 and the output feature map size will be 22× 271× 32.

5. Second Convolutional Layer

The layer has 64 filters of size 3 × 3 × 3, similar to the first convolutional

layer. The number of parameters is 64× (3× 3× 3+ 1) = 1792. The output

feature map size will be (22− 3 + 1)× (271− 3 + 1)× 64 = 20× 269× 64.

The number of multiplications is (64 × 3 × 3 × 3 × 20 × 269) = 9, 296, 640

and additions is (64× (3× 3× 3 + 1)× 20× 269) = 9, 640, 960.

6. ReLU Activation and Maxpooling Layer

Similar to previous layers, they do not change the computational complexity.

The size of output after max-pooling will be 10× 134× 64.

7. Third Convolutional Layer

This layer has 96 filters of size 3 × 3 × 3. The number of parameters is

96× (3× 3× 3 + 1) = 2688. The output feature map size will be (10− 3 +

1) × (134 − 3 + 1) × 96= 8 × 132 × 96. The number of multiplications is

(96× 3× 3× 3× 8× 132) = 2, 737, 152 and additions is (96× (3× 3× 3 +

1)× 8× 132) = 2, 838, 528.

8. ReLU Activation and Max-pooling Layer

These layers do not affect the computational complexity. The size of output

after max-pooling will be 4× 66× 96.

9. Flatten Layer

The flatten layer does not involve any additional computations; it reshapes

the input.

10. Dense Layer

The number of parameters in this layer is (n+1)×128, where the ”+1” is for

the bias term. Assuming that the previous layer size is n. The computational

complexity of a dense layer is typically considered to be proportional to the

number of parameters, so the complexity here is O(n× 128).
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11. Dense Layer:

Similar to the previous dense layer, the number of parameters here is (128+

1)× 6. The complexity of this dense layer is O(128 ∗ 6).

12. Sigmoid Activation

The sigmoid activation function is applied element-wise to the outputs of

the previous layer and doesn’t affect the computational complexity.

13. Overall Complexity

To calculate the overall complexity, we need to consider the cumulative com-

plexity of all the layers. Since each layer’s complexity is determined by the

number of parameters, we can approximate the overall complexity by sum-

ming up the number of parameters in all layers.

14. The overall complexity can be expressed as:

O(42, 049, 920 + 18, 937, 600 + 5, 575, 680 + n× 128 + 128× 6).

4.4 Chapter Summary

This chapter contains the simulation findings for the two proposed phase spectrum-

based emitter recognition architectures. The first section provides the simulation

setup, optimal network parameters selected for the simulations, and CM plots

displaying the phase-coded waveform recognition rates at various SNR levels. The

ideal parameters used and the CM plots for the DCNN-based architecture are both

included in the other section. Finally, in the last section, a comparison of the two

suggested architectures is carried out to ascertain which approach is more efficient

for phase spectrum-based feature extraction for the recognition of radar emitters.

DCNN has achieved better recognition accuracies as compared to the BiLSTM

approach hence, some comparison of the proposed DCNN method is performed

with other techniques in the literature.



Chapter 5

Conclusion and Future Work

Section 5.1 of this chapter provides a brief summary of the dissertation. In Section

5.2, the conclusion is discussed followed by suggested future work based on the

research work presented in the dissertation.

5.1 Summary of Dissertation

Chapter 1 covers the fundamentals of radar systems and their historical back-

ground. The classification of radar systems according to waveform types and

functions is also discussed. The explanation of EW and its subcategories is fol-

lowed by a discussion of LPI radar waveforms. The key contribution is highlighted

at the chapter’s end, along with an overview of the entire thesis.

In Chapter 2, a thorough review of the literature on RER methods is given before

the comparison of TFRs that are used to transform 1D radar signals into a 2D

format for phase-based feature extraction. Based on the extensive literature sur-

vey, the suitable TFR is chosen for our application. STFT is considered as it has

fast implementations due to FFT. Additionally, many DL methods are compared

using a variety of parameters to determine which is best for our simulations. A lit-

erature survey helps to create a gap analysis, which is then followed by a problem

statement and dissertation contributions.

129
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Chapter 3 starts with a basic notion of feature extraction, which is crucial for

various ML models. The merits of the feature extraction method are discussed,

and then a novel, STFT-based feature extraction method is proposed. Detailed

steps of the proposed feature extraction technique (1D and 2D) are listed and the

generated phase-based feature plots for various phase-coded waveforms at various

SNR levels are also displayed. Along with a system description, a detailed overview

of both phase-based emitter recognition architectures (BiLSTM and DCNN) is also

included.

In Chapter 4, the simulation setup, optimal network parameters selected for the

simulations, and recognition accuracies for phase coded signals are given at various

SNR levels. The two techniques put forward in this research effort are compared

at to decide which approach is more effective. A comparison of the two proposed

emitter recognition architectures with other state-of-the-art techniques found in

the literature is also performed.

5.2 Conclusion and Future Work

The overall dissertation is concluded as follows :

5.2.1 Conclusion

One of the key tasks performed by EW systems is the quick and efficient recog-

nition of LPI radar waveforms. Automatic radar waveform recognition is a cru-

cial survival skill for an intercept receiver (RWR) that identifies radar emitters

and recognizes threats. Intercept receivers must have an automatic LPI radar

waveform identification function that offers precise detection and recognition ca-

pabilities in order to detect the presence of LPI radar signals. A few LPI radar

recognition approaches that use feature extraction and classification methods have

been mentioned in the literature that extracts features from the intercepted sig-

nal and categorizes the signal utilizing the derived features. The recognition of
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phase-coded waveforms at a low Signal-to-Noise ratio (SNR) and feature extrac-

tion is still challenging, despite the recent breakthrough of DNNs along with time

frequency transforms for emitter recognition.

In order to recognize phase-coded waveforms with high recognition accuracies at

low SNR levels, it is recommended to apply an AMCS technique based on the phase

spectrum rather than the amplitude spectrum used in recent research studies.

The simulation findings obtained for this research also depict that phase is a

crucial parameter for the better identification of phase-coded waveforms. This

research has investigated an AMCS approach for phase-coded waveforms based

on the novel features derived from the phase spectrum of STFT. Six different

types of noisy emitter signals including Barker, Frank, and Polyphase codes (P1-

P4) intercepted at the RWR have been recognized. Since phase features can be

expressed as a 1D vector or 2D matrix, both techniques (BiLSTM and CDNN)

seem like good candidates for automatic modulation classification of phase-coded

waveforms. They have been used to verify the effectiveness of a novel phase-based

feature extraction method which is the major contribution of this research work.

The BiLSTM network receives the STFT-derived phase-based feature (1D) vectors

directly at the input. There is no need for intricate pre-processing because the

feature extraction is carried out on the phase-coded and modulated signals received

at RWR. The efficacy of the proposed phase-spectrum based BiLSTM model has

been investigated and simulations are performed using a simulated dataset with

waveforms having SNR ranging from -8 dB to 8 dB. The CM plots are presented

to judge the performance of the newly proposed phase-based feature vector at

different SNR values. The suggested method is competitive with other methods

mentioned in the literature in terms of SNR and requires no pre-processing, which

makes it attractive for applications requiring quick and efficient online recognition

of phase-coded waveforms. The proposed method works effectively well in practice,

achieving 70% overall identification accuracy at an SNR of -8 dB.

The STFT-derived phase-based images (2D) are cropped and fed to the DCNN

network for recognition. The DCNN-based recognition system has performed very
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well in contrast to BiLSTM on the same dataset and the following are the details:

It has high recognition accuracies even at a low SNR value of -16 dB. The overall

recognition rate is 89% when SNR is as low as -16 dB. Secondly, it has a low level

of computational complexity when compared to recent approaches discussed in

the literature in terms of SNR requirements. The simulations take far less time

to complete as no complex pre-processing is there. Additionally, it is found that

Barker codes, even at low SNR levels, have acceptable recognition accuracy when

utilizing both approaches; yet, they are rarely discussed in the literature. In a

nutshell, it has been concluded that the proposed phase spectrum-based automatic

modulation recognition approaches using the newly proposed feature extraction

method have outperformed the other notable techniques in the literature attaining

high recognition accuracies for phase-coded waveforms at low SNR environments

while also requiring less pre-processing.

5.2.2 Future Work

The research findings presented in this thesis can be extended in the following

ways as future work.

1. Recognition of Phase-Coded Waveforms at different Carrier Fre-

quency (Fc)

The proposed AMCSs pave the way for the development of cutting-edge

emitter recognition methods that will produce high recognition accuracies

in extremely low SNR environments. For simplicity, the carrier frequency

in this research work has been assumed to be the same for all intercepted

phase-coded waveforms. Therefore, it is recommended that this research

may be expanded to detect various phase-coded waveforms with different

carrier frequencies to realize more realistic EW scenarios.

2. Denoising

The process of de-noising an image has become vital to image pre-processing.

Its purpose is to reduce background noise and highlight the unique image
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data that is stored inside it. In the field of image processing and computer

vision, the issue of image denoising poses a very fundamental challenge.

Therefore, it has a significant impact in a variety of fields where retriev-

ing the original image is crucial for reliable performance. The identification

accuracies of phase-coded waveforms simulated in this research can be im-

proved further even in low SNR environments by adding a denoising method

in the image pre-processing step which appears to be an appealing future

work.

3. Recognition of Poly-time Codes along with Phase-Coded Wave-

forms

The proposed research includes the recognition of polyphase-coded signals

that are mostly used by LPI radars to prevent them from being intercepted

at RWRs. In order to evaluate the effectiveness of suggested algorithms, this

research effort might be broadened by using poly-time codes in addition to

Barker and polyphase codes.

4. Recognition of Overlapping or mixed phase coded waveforms

The development of AMCS that can identify various phase-coded waveforms

that have been mixed or overlapped can be accomplished through the ex-

tension of this research. In an electromagnetic environment that is growing

more and more complex, many LPI radar emitters may simultaneously trans-

mit distinct signals on similar bands, causing receiving signals to overlap in

both the time domain and the frequency domain. Recognizing the various

modulation patterns of these signals is crucial if we intend to recover the

original signals while preserving useful information.

5. Object Detection

Future research may incorporate objection detection as a fundamental part

of the proposed phase-based feature extraction method in replacement of the

recognition problem, where the Fc of the signal is determined to estimate

the optimal window size for STFT. In order to achieve a more realistic radar
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environment, it will also be useful when the various phase-coded waveforms

are at distinct carrier frequencies.

6. Recognition of Unknown Number of Radar Signals

Future research can assess how well advanced deep learning techniques per-

form when determining the modulation schemes of an unknown number of

radar signals in a more realistic situation. This problem appears to be chal-

lenging when there are few samples available and in an environment with

poor SNR.
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