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Abstract

Applications of a quadcopter with payload, particularly for chemical spraying,

have increased in recent times. In a sprayer drone, mass will not be fixed and

will vary over time. The variation in payload mass will alter the moments of in-

ertia (MOI). Moreover, large tilt angles are required for fast reference tracking

and wind disturbance rejection. These variations in plant parameters (i.e., mass

and inertia) and large tilt angles can degrade the control scheme’s performance

and stability. This dissertation proposes a linear matrix inequalities (LMIs)-based

linear parameter varying (LPV) control scheme for a quadrotor subject to vary-

ing mass, varying inertia, large tilt angles, and wind disturbances. The control

strategy is designed by solving LMIs derived from quadratic H∞ performance and

D-stability. The robust stability and quadratic H∞ performance are assessed by

LMIs. The effectiveness of the presented methodology is validated through com-

prehensive numerical simulations. Its performance is systematically contrasted

with both the linear time-invariant (LTI) H∞ control design with pole placement

constraints and sliding mode control (SMC) across diverse scenarios. This com-

parative evaluation encompasses various cases, providing a robust analysis of the

proposed methodology’s capabilities. The obtained results demonstrate that the

LPV control scheme outperforms in tracking precision under dynamic conditions,

including varying parameters, wind disturbances, and noise, while avoiding actua-

tor saturation. In contrast to the H∞ design technique, the proposed LPV scheme

enhances key performance metrics such as rise time (tr), settling time (ts), root

mean squared error (RMSE), and root mean squared (RMS) of the control signal

by up to 28%, 26%, 91%, and 92%, respectively. Moreover, smooth transitions are

observed in the tilt angles and control signals with the LPV scheme, contrary to

the H∞ control design incorporating constraints on pole placement, which exhibits

significant oscillations. When compared to the SMC design technique, the LPV

scheme demonstrates improvements of up to 26% in tr, 55% in ts, and 42% in

RMSE, respectively.
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Chapter 1

Introduction

This chapter provides the preliminary knowledge necessary to understand the rest

of the dissertation.

1.1 Background

Quadcopters, commonly referred to as quadrotors, belong to the category of un-

manned aerial vehicles (UAVs) and have evolved from the broader domain of

rotorcraft and multi-rotor systems. Rotorcraft, a diverse class of aircraft, relies on

spinning rotor blades for lift instead of conventional fixed wings. This category

of aircraft includes vehicles capable of vertical takeoff and landing (VTOL) due

to the rotary wings or rotor blades. The most well-known multi-rotor rotorcrafts

are quadcopters which are equipped with four rotors. The concept of quadcopters

dates back to the early 20th century, when various inventors and engineers ex-

perimented with multi-rotor designs. Early research on quadcopters focused on

stability and control challenges. As computational power, sensors, and battery

technology improved, researchers and engineers made strides in quadcopter au-

tonomous control, navigation, and stabilization algorithms. The field gained mo-

mentum in the late 20th century and continued to progress rapidly into the 21st

century [1].

1



Introduction 2

1.1.1 Quadcopter Configuration

Quadcopters are rotary-wing aircraft with four vertically oriented propellers ar-

ranged in a square or cross configuration. Quadcopters utilize four rotors, each

providing lift and propulsion. The rotors spin in opposite pairs (clockwise and

counterclockwise) to maintain stability and balance. Quadcopter is a four-rotor,

under-actuated system as depicted in Figure 1.1. The thrust forces produced by

rotors are represented by Ti(i = 1, 2, 3, 4). The adjacent rotors spin in opposite

directions. Two rotors (1 & 3) rotate clockwise, while rotors (2 & 4) spin anti-

clockwise [2, 3].

ROTOR 2

x

y

z

INERTIAL 

FRAME

ROTOR 3

ROTOR 1

ROTOR 4

North

East

Down

BODY

FRAME
  

x
-a

x
is

  y-axis

z
-a

x
is

Figure 1.1: The configuration of quadcopter
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ROTOR 2

Roll (ϕ)

ROTOR 3

ROTOR 1

ROTOR 4
  
x
-a

x
is

y-axis

z-
a
x
is

Right

Figure 1.2: Roll maneuver of quadcopter

Quadcopters are capable of performing various maneuvers. Some common maneu-

vers that a quadcopter can perform are:

1. Roll maneuver:

The roll maneuver refers to tilting the quadcopter along its longitudinal

axis, causing it to roll to one side while maintaining a constant altitude.

This maneuver is achieved by changing the speeds of the rotors on opposite

sides. The quadcopter has four rotors, Rotors 1 & 3 are diagonal from

each other, and rotors 2 & 4 are diagonal from one other. To perform the

roll maneuver, increase the speed of rotors 2 & 3 and decrease the speed of

rotors 1 & 4 simultaneously. The roll maneuver of the quadcopter is shown

in Figure 1.2.
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Figure 1.3: Pitch maneuver of quadcopter

2. Pitch maneuver:

Pitch maneuver refers to the tilting of the quadcopter forward or backward

about its lateral axis. This maneuver is achieved by changing the speeds

of the front and rear rotors. Forward pitch is achieved by increasing speed

of rotors 1 & 2 while simultaneously decreasing the speed of rotors 3 & 4.

Backward pitch is achieved by decreasing the speed of rotors 1 & 2 while

increasing speed of rotor 3 & 4 simultaneously. Forward pitch means the

quadcopter will tilt forward, and backward pitch means the quadcopter will

tilt backward. Pitch maneuver is shown in Figure 1.3.

3. Yaw Maneuver:

The yaw maneuver is the rotation of a quadcopter clockwise or anticlockwise

around its vertical axis. This maneuver is achieved by changing the speeds of

the rotors on the same side in opposite directions. Yaw rotation is achieved

by increasing the speed of rotors 1 & 3 and decreasing the speed of rotors
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Figure 1.4: Yaw maneuver of quadcopter

2 and 4, making sure that total thrust remains constant. By increasing the

speeds of the front-right rotor and rear-left rotor while decreasing the speed

of the other two rotors, the quadcopter will rotate clockwise. By increasing

the speeds of the front-left rotor and rear-right rotor while decreasing the

speed of the other two rotors , the quadcopter will rotate anticlockwise.

Yaw rotation is shown in Figure 1.4.

4. Vertical Takeoff and Landing (VTOL):

VTOL is a flight capability in which a quadcopter lifts off from the ground

vertically and also lands vertically without the need for a runway or addi-

tional landing equipment. Quadcopters also achieve VTOL by controlling

the speed of their rotors. How it works is as follows:

(a) Takeoff:

During takeoff, all four rotors of the quadcopter spin at the same speed,
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providing an upward force that lifts the vehicle off the ground in the

presence of a gravitational force acting downward. The vehicle remains

steady during takeoff because the thrust created by each rotor is bal-

anced.

(b) Howering:

Hovering in a quadcopter refers to the state in which the vehicle main-

tains a stable position at a fixed height in the air. During hovering,

the quadcopter balances upward thrust and gravitational force. Hover-

ing is accomplished by altering the speeds of the four rotors to achieve

a balance between the upward thrust and the gravitational force that

pulls the vehicle downward.

(c) Landing:

During landing, the speeds of all four quadcopter rotors are gradually

reduced, reducing the upward force created by each rotor. The quad-

copter lowers vertically downward in a controlled manner as the lift

declines. When the quadcopter gets close to the ground, the rotors

come to a halt, allowing the vehicle to land gently.

The vertical takeoff of the quadcopter is shown in Figure 1.5.

1.1.2 Flight Control

Quadcopter flight control is achieved using a combination of mechanical design,

control algorithms, and onboard sensors such as accelerometers, gyroscopes, mag-

netometers, and, in certain cases, extra sensors such as barometers and cameras.

The flight controller adjusts the speed of individual rotors, which provide the

torques and forces required for manoeuvring. Flight control in quadcopters is

composed of three major components:

1. Stabilization:

Quadcopters are inherently unstable due to their design, although they can
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Figure 1.5: Vertical takeoff and landing of quadcopter

attain stability by altering rotor speeds in real-time. Onboard sensors such

as gyroscopes and accelerometers continuously monitor the orientation and

rate of change of the quadcopter. Based on this data, the flight controller

changes the rotor speeds to maintain a steady hover and prevent drift.

2. Attitude Control:

The capacity of the quadcopter to change its orientation (roll, pitch, and

yaw) is referred to as attitude control. The flight controller regulates the

rotor speeds to do this. For example: To roll, the flight controller advances

two rotors on one side while slowing the other two. To pitch, the flight

controller increases the front rotors while decreasing the rear rotors, or vice

versa. To yaw, the flight controller adjusts the rotor speeds in opposite

directions, increasing one set while decreasing the other.



Introduction 8

3. Position Control:

Position control means maintaining a desired position or performing precise

manoeuvres in space. This is accomplished via GPS (Global Positioning

System) and other sensors such as barometers and vision systems. The flight

controller modifies the rotor speeds based on GPS data and other sensor

inputs to move the quadcopter to a specific point or follow a predefined

flight route.

1.1.3 Key Features

Quadcopters have several distinctive features that contribute to their popularity

and versatility:

� Maneuverability:

Quadcopters have excellent manoeuvrability due to their ability to inde-

pendently control the thrust of each rotor. They can hover, do acrobatic

manoeuvres, and instantly change direction.

� Vertical Takeoff and Landing (VTOL):

Quadcopters can take off and land vertically, eliminating the need for run-

ways. This ability allows them to operate in limited spaces and access loca-

tions that other aircraft may not be able to reach.

� Payload Capacity:

Quadcopters can carry a variety of payloads, such as cameras, sensors, liquid

tanks, or other equipment, depending on their size and design. Because of

their adaptability, they are suited for a wide range of applications such as

aerial photography, surveillance, mapping, delivery, and research.

� Ease of Operation:

Quadcopters are relatively easier to control and operate as compared to

fixed-wing aircraft. The advancements in control design algorithms enable

automated flight and precise navigation of quadcopters in 3D space.
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1.1.4 Application

Quadcopters have a wide range of applications, including payload transportation,

aerial photography, cinematography, surveillance, agriculture, research, search and

rescue, and others. Continuous research and development is improving quadcopter

capabilities, with advances in control algorithms, sensor integration, power sys-

tems, and materials all contributing to expanding the capabilities and performance

of the quadcopters [4–6]. Some of the well-known quadcopters used in different

applications are depicted in Figures 1.6, 1.7, and 1.8 [7–9].

Sprayer Drone:

As seen in Figure 1.6, sprayer drones can be employed on a variety of farms and

in various locations. Sprayer drones can be used in a wide variety of areas and

farms. They are used for the spraying of chemicals to kill insects and pests and

enhance crop quality in urban areas. They can spray fertilisers, pesticides, and

herbicides on crops efficiently and accurately, reducing the need for manual labour
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Figure 1.8: Toy drone [9]
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and minimising human exposure to chemicals to avoid the health problems that

humans face when spraying manually, making the spraying job easier and faster

than manual work, saving manpower, and lowering costs. They are used in forestry

to spray fire retardants or water from the air during firefighting operations. With

the recent COVID-19 outbreak, sprayer drones have gained appeal for disinfection

purposes. They can spray disinfectants in public areas, hospitals, schools, and

other populated places, reducing the danger of viral transmission.

Camera Drone:

Camera drones have a wide range of applications across various industries and

fields. The camera drone is depicted in Figure 1.7. Camera drones are extensively

used for aerial photography and videography. They have provided filmmakers and

photographers with unprecedented opportunities to capture stunning aerial shots,

adding a new level of dynamism, angles, viewpoints, and visual appeal to their

work. They are used in various industries, such as construction, urban planning,

and land surveying, to create accurate aerial maps, 3D models, and site surveys.

Furthermore, camera drones have found utility in sectors such as agriculture, where

they aid in crop monitoring, disease detection, and precision agriculture.

Toy Drone:

Toy drones have various applications, the most common of which are entertain-

ment and hobbies. Figure 1.8 shows the toy drone. They may be flown indoors or

outdoors and frequently include features like stunts, flips, and obstacle avoidance.

Toy drones are increasingly being utilized in educational settings to teach concepts

related to science, technology, engineering, and mathematics. They can help stu-

dents learn about aerodynamics, electronics, coding, and problem-solving while

gaining hands-on experience. Controlling the movement of the drone in various

locations improves the user’s ability to navigate and adapt to changing scenarios.

Toy drones offer a platform for creative experimentation. Users can modify and

customize drones, attach small objects, or create unique flying experiences. Toy

drones can be used as a learning tool for individuals who want to develop the

skills needed to operate larger and more professional drones. They offer a safe and
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inexpensive way to practise basic flight manoeuvres and acquire confidence before

progressing to more advanced drone models.

1.2 Motivation

Agriculture, as the backbone of our civilization. In today’s rapidly evolving agri-

cultural landscape, there is more demand for creative, effective, and sustainable

farming strategies. Traditional methods of crop spraying often lead to inefficien-

cies, such as overuse of chemicals, imprecise targeting, and wastage of resources.

With the global population steadily increasing, there is an urgent need to enhance

agricultural productivity while minimizing environmental impact. To address this,

optimizing agricultural practices for efficiency and sustainability is crucial. In re-

cent years, drone technology, particularly quadcopters, has emerged as a trans-

formative tool in precision agriculture. Sprayer drones, equipped with advanced

control systems, offer a promising solution to these challenges.

1.3 Research Contributions

The major contribution of the research presented in this thesis is significant in two

key areas:

1. Dynamic Modeling of Quadcopter:

Dynamic model of quadcopter with varying payload and wind disturbance,

is essential for thorough analysis and control design. This thesis, explores

the nonlinear model of quadcopter with varying payload and wind distur-

bance. A novel LPV model is developed based on the nonlinear 6-DOF

model of a quadcopter, incorporating variations in mass, inertia, large tilt

angles, and the influence of wind disturbance. The varying parameters of the

quadcopter are determined using SOLIDWORKS. The second-order Taylor

series is utilized to approximate the tilt angles. The resulting LPV model
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captures the system’s behavior across the entire range of parameter varia-

tions. To underscore the validity and accuracy of the LPV model developed

for the quadcopter, a model validation process is undertaken. This valida-

tion involved a comparison between the response of the LPV model and the

original nonlinear model with varying payload.

2. Control Design:

In control system engineering, designing an effective controller is paramount.

In this thesis, Two control strategies are developed for the position control

of quadcopter with variable payload:

� LMIs-based LPV Control:

A novel LMIs-based LPV control scheme is formulated to address posi-

tion control problem of quadcopter with varying parameters, large tilt

angles, and external disturbances. This approach employs Linear Ma-

trix Inequalities (LMIs) to guarantee stability and accurate positioning

under challenging operational conditions.

� LMIs-based H∞ Control:

Multi-objective linear controller is designed based on LMIs of ”H∞

performance” and ”Pole Placement in LMI Regions” for the position

control of quadcopter.

Furthermore, this thesis encompasses a comparative analysis involving the H∞

controller, the SMC controller, and the LMIs-based LPV control scheme. This

comparative study provides valuable insights into the effectiveness and adaptabil-

ity of these control approaches.

These contributions have led to the following journal publication:

Saeed, Azmat, Aamer I. Bhatti, and Fahad M. Malik. “LMIs-Based LPV Con-

trol of Quadrotor with Time-Varying Payload,” Applied Sciences 13, no. 11 (2023):

6553.
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1.4 Overview of the Thesis

In this chapter general problem background and motivation of this dissertation is

discussed. The subsequent sections of the thesis are organized as follows:

Chapter 1: In chapter 1, Background, motivation and objective behind this re-

search is discussed in details. Quadcopter configuration and how the quadcopter

performs different types of motion are discussed. Moreover, some of the applica-

tions of the quadcopters are also presented. The literature survey explains the

past efforts of the researchers to control the quadcopter.

Chapter 2: Chapter 2 is devoted to the literature review related to the quadcopter

control problem. Literature survey contains different types of control strategies

proposed by the researcher for quadcopter efficient control. Moreover, the gap

analysis is also presented.

Chapter 3: Chapter 3 discusses mathematical modeling of quadcopter with vary-

ing payload. It provides the background details needed for better understanding

the quadcopter from a dynamical system viewpoint. The varying parameters found

for quadcopter using solidworks are also discussed. The model equatins found us-

ing curve fitting techniques are also presented. The LPV modeling and linear

modeling of the quadcopter is also explored. Moreover, the comparision between

nonlinear model, LPV model and linear model is also presented.

Chapter 4: In chapter 4, control algorithms and their formulation for quadcopter

dynamics are discussed in detail. LPV control design technique based on LMIs

to control the quadcopter’s position is discussed. Multi-objective linear controller

designed for the quadcopter linear model to control the position of quadcopter is

also presented.

Chapter 5: In chapter 5, simulation results are discussed and compared for

different scenarios. The LPV control strategy, linear control technique, and SMC

control algorithm are applied to the nonlinear model. Various scenarios are taken

into consideration to assess the performance of the designed controllers.
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Chapter 6: Chapter 6, concludes the dissertation through outlining the main

contributions and list of directions that can be accomplished in the future research.

Chapter-wise Layout of this thesis is shown in Figure 1.9.
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Figure 1.9: Thesis layout



Chapter 2

Literature Review, Gap Analysis,

and Problem Statement

Quadcopters are used nowadays for a wide range of applications such as aerial

photography, surveillance and security, search and rescue operations, precision

agriculture, environmental monitoring, package delivery, and entertainment [10,

11]. Among these, the sprayer drone, also known as an agricultural drone, is a

significant one that offers several advantages in agricultural and farming prac-

tices [12, 13]. Some of the key advantages of using sprayer drones are:

1. Precision and Efficiency:

Sprayer drones provide precise and targeted applications of pesticides, fertil-

izers, and other agricultural chemicals. They can be programmed to follow

specific flight paths, ensuring accurate coverage and minimizing waste. This

precision leads to improved efficiency and reduced chemical usage, saving

both time and resources.

2. Increased Safety:

Sprayer drones eliminate the need for farmers to handle and apply chemicals

manually, reducing their exposure to potentially harmful substances. This

aspect improves worker safety and reduces the risk of accidents or health

issues associated with chemical handling.

16
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3. Accessibility and Adaptability:

Drones can reach areas that are difficult to access with traditional machin-

ery or manual labour. They can fly over uneven terrain, hilly regions, or

densely planted fields without damaging crops. This accessibility allows for

the efficient treatment of large areas that might otherwise be challenging or

time-consuming to reach.

4. Time and Labour Savings:

Sprayer drones can cover larger areas in a shorter period of time compared

to manual or ground-based spraying methods. With their ability to carry

substantial payloads, they can complete tasks quickly, reducing the time and

labour required for agricultural operations.

5. Environmental Benefits:

Precision spraying by drones helps to reduce the overall amount of chemicals

used in agricultural practises. By applying pesticides and fertilizers only

where needed, sprayer drones minimize runoff, limit soil contamination, and

reduce the impact on nearby water bodies. This targeted approach promotes

environmentally friendly and sustainable farming practices.

6. Data Collection and Analysis:

Many sprayer drones come equipped with advanced sensors and imaging

technologies, such as thermal cameras and multi-spectral sensors. These

sensors enable the collection of valuable data about crop health, plant stress,

soil moisture levels, and more. The data can be used to monitor and analyze

crop conditions, identify potential issues, and make informed decisions to

optimize crop management.

7. Cost Savings:

Although the initial investment in sprayer drone technology can be signif-

icant, the long-term cost savings can be substantial. With increased effi-

ciency, reduced chemical usage, and minimized labour requirements, farmers

can potentially save money in terms of chemical costs, labour expenses, and

overall operational costs.
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Figure 2.1: The 3D CAD model of quadcopter with payload

In a sprayer drone, the quadcopter’s mass will not be fixed and will vary over time.

The variation in mass with time will alter the moment of inertia. Such variations

in the quadcopter’s parameters over time, in addition to the standard features of

system dynamics, such as nonlinearities, under-actuation, noise, external distur-

bances, actuator constraints, etc., make the control system design a challenging

problem. The quadcopter with payload (liquid tank) is depicted in Figure 2.1.

2.1 Previous Control Design Techniques

Various control strategies have been developed for quadcopters to achieve stabil-

ity and effective tracking. To tackle the quadcopter’s tracking control issue, lin-

ear control approaches such as proportional–integral–derivative (PID) [14–18] and

linear-quadratic-regulator (LQR) [19–23] are proposed. These schemes required

an accurate linear model of the system for obtaining the desired tracking perfor-

mance. Robust linear control scheme based on H∞-norm optimization is presented

for quadcopter [24–27]. H∞ control is an effective control design methodology that

offers robustness to model uncertainties and disturbances. The above-mentioned
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control algorithms are based on local linearization, and the performance of a linear

time-invariant (LTI) control scheme deteriorates with deviation from the operating

point and can even lead to instability.

To overcome the impediments caused by local linearization, Linear parameter

varying (LPV) control approaches have been proposed for the quadcopter. LPV

controllers are well-suited for systems with time-varying parameters, nonlinear-

ity, and varying operating conditions. They can achieve better closed-loop per-

formance and robustness, making them advantageous in scenarios where linear

controllers may fall short. In [28], LPV control scheme is suggested for a quad-

copter to handle the large perturbation from the nominal condition. Tilt angles

are limited to ± π/8 rad (i.e., ± 22.5◦). In [29], the LPV controller is proposed for

high-speed maneuvering of quadcopter that requires large tilt angles. Tilt angles

are accounted for up to ± π/3 rad (i.e., ± 60◦). In [30], a switched LPV control

approach is recommended in order to handle huge attitude angles and external

disturbances. The region for roll angle ϕ is considered to ± π/3 rad and for pitch

angle θ, the region is limited to ± π/8 rad.

The commonly used nonlinear time-invariant (NLTI) control schemes like feed-

back linearization and backstepping have been proposed for quadcopter to achieve

desired trajectory tracking in [31–34]. These control schemes depend on accurate

model of the system for obtaining the performance of the closed loop system. In

[35], the authors suggested robust sliding mode controller (SMC) for altitude con-

trol of quadcopter. To reduce chattering, they replaced the sign function with a

saturation function. This work was extended in [36] by using integral sliding mode

controller (ISMC) for quadcopter altitude control. To handle model uncertainties

and external disturbances, robust backstepping sliding mode controller (RBSMC)

is presented for attitude/position control of quadcopter in [37]. Adaptive slid-

ing mode controller (ASMC) is proposed for quadcopter trajectory tracking under

parametric uncertainties, unknown disturbances and actuators constraints in [38].

Quadcopters with variable mass and inertia have not been taken into consideration

in the control strategies outlined above.
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The design of the control system for a quadcopter with variable payload has also

been investigated in the literature. In [39], LMI-based static output feedback LPV

controller is suggested for Attitude/Altitude control of quadcopter to handle rotors

velocity variation and step change in mass. Rotors velocity and mass are assumed

to be measurable. Longitudinal and latitudinal translational motions are ignored,

and the small angle assumption (i.e., cosϕcosθ ≈ 1) is employed to design the

control scheme. Moreover, the mass flow rate is ignored, and the control scheme

is conservative due to coupling in the scheduling parameters. In [40], Hybrid LPV

control scheme is suggested for the reference tracking of quadcopter with variable

mass and variable inertia. A combination of integral backstepping control and

proportional-derivative controls are designed to control the quadcopter’s position

and altitude. PD controllers are designed using the small angle assumption (i.e.,

sinϕ ≈ ϕ, sinθ ≈ θ, cosϕ ≈ 1, and cosθ ≈ 1). Variation in mass is not considered

during the control algorithm design. LPV H∞ controller is recommended to control

the quadcopter rotational dynamics subject to time-varying inertia and variation

in the rotors speed. Mass and rotors speed are considered measurable. The vari-

ations in MOI are recalculated in real-time from the changes in the mass. The

mass flow rate is not taken into account and the scheduling parameters selected

in the proposed scheme do not vary independently, which leads to conservative

control. Robust LPV H∞ controller is proposed for Altitude/Attitude stabiliza-

tion of quadcopter to handle mass, inertia, and rotor velocity variations [41]. The

proposed controller is designed using the LMI framework. The small angle ap-

proximation is considered to design the LPV scheme for the 4-DOF model of the

quadcopter. Moreover, position control and the mass flow rate are not taken into

consideration, and the coupling in the scheduling parameters leads to conservative

control. A switched LPV control technique is suggested for the 3-DOF model of

a quadcopter subject to large attitude angles, variable inertia, and outside dis-

turbances [42]. Position control dynamics are not considered. In [43], the author

recommended a self-tuning PID control scheme for the reference tracking of quad-

copter. Mass and wind disturbance estimators based on a neural network with

online learning are suggested to cope with the system’s mass variation and wind
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disturbances. Variations in MOI due to variable mass and mass flow rate are not

taken into consideration. Adaptive sliding mode control (SMC) based on back-

stepping is advised to reduce the effect of variable load and wind disturbances [44].

Only the changing mass is estimated using the adaptive estimation controller. A

fractional SMC is designed to cope with external disturbances and variations in

inertia. Actuator limitations and mass flow rate are not considered, and chattering

issues will exist due to the use of the signum function in the control law. Adap-

tive non-singular fast terminal SMC is proposed in [45]. External disturbances and

mass are estimated online. To address the chattering issue, the saturation function

is used in place of the signum function in the control law. Changes in MOI, mass

flow rate, and actuator limitation are not taken into consideration. In [46], an

adaptive SMC control algorithm is suggested for the quadcopter’s altitude track-

ing in the presence of time-varying payload and ground effect. Position control,

MOI variations with mass, and mass flow rate are ignored. Table 2.1 showcases

the tabulated literature survey on control methodologies for quadcopters.

Table 2.1: Literature review of quadcopter.

Techniques Features Varying

Payload

Issues

PID[14–18] It’s easy to design and

implement.

✗ It’s based on local

linearization and

accurate model is

required for the closed

loop performance.

LQR[19–23] It’s an optimal control

scheme that is easy to

design, implement, and

computationally efficient.

✗ Its effectiveness heavily

relies on the system

model accuracy. It’s

based on local

linearization.

Continued on next page
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Continued from previous page

Techniques Features Varying

Payload

Issues

H∞ [24–27] It’s an optimal robust

control scheme that offers

a powerful framework for

uncertain systems. It’s

easy to implement.

✗ It’s based on local

linearization.

LPV

[28, 29]

It can handle large

perturbations from the

nominal condition.

✗ The variation in mass

and inertia is not taken

into account.

LPV [30] Switched LPV approach

is designed to handle

huge attitude angles and

external disturbances.

✗ Varying mass and

inertia are not

considered.

BSC [31–34] It can handle complex

nonlinearities and uses

Lyapunov stability

analysis to guarantee the

system stability.

✗ Its closed loop

performance depends on

the model accuracy.

Variation in the mass

and inertia are not

considered.

SMC [35] It’s a robust control

scheme that can handle

uncertainties and

disturbances.

✗ Varying mass and

inertia are not taken

into account.

ISMC [36] It’s an extension of SMC

that reduces chattering

and improve robustness

and steady-state

accuracy.

✗ Mass and inertia

variations have not been

accounted for.

Continued on next page
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Continued from previous page

Techniques Features Varying

Payload

Issues

RBSMC

[37]

RBSMC control

technique is designed for

position control of

quadcopter to handle

uncertainties and

disturbances.

✗ Variation in the mass

and inertia are ignored.

ASMC [38] It’s proposed for

quadcopter trajectory

tracking under

parametric uncertainties,

unknown disturbances,

and actuators constraints.

✗ Varying mass and

variation in inertia with

mass have not been

taken into

consideration.

LPV [39] LPV controller is

suggested for

Attitude/Altitude control

of quadcopter to handle

rotors velocity variation

and step change in mass.

✓ Longitudinal and

latitudinal motions, and

variation in inertia are

ignored. The small

angle assumption is

employed and the

control scheme is

conservative due to

coupling in the

scheduling parameters.

Continued on next page
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Continued from previous page

Techniques Features Varying

Payload

Issues

LPV [40] LPV H∞ controller is

recommended to control

the quadcopter rotational

dynamics subject to

time-varying inertia and

variation in the rotors

speed.

✓ PD scheme is designed

using small angle

assumption. Mass

variation is ignored

during position control

design. Dependency in

scheduling parameters

leads to conservatism.

LPV [41] Robust LPV H∞

controller is proposed for

Altitude/Attitude

stabilization of

quadcopter to handle

mass, inertia, and rotors

velocity variations.

✓ Small angle

approximation is

considered and position

control is not taken into

consideration. The

coupling in the

scheduling parameters

leads to conservative

control.

LPV [42] A switched LPV

technique is suggested for

the 3-DOF model of a

quadcopter subject to

large attitude angles,

variable inertia, and

outside disturbances.

✗ Position control

dynamics and varying

mass are not considered.

Continued on next page
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Continued from previous page

Techniques Features Varying

Payload

Issues

PID [43] Self-tuning PID scheme is

proposed for the reference

tracking. Mass and wind

disturbance estimators

are suggested to cope

with the system’s mass

variation and wind

disturbance.

✓ Variation in inertia due

to mass and mass flow

rate are not taken into

consideration.

ASMC [44] It’s advised to reduce the

effect of variable load and

wind disturbances. Only

the changing mass is

estimated using the

adaptive estimation

controller.

✓ Actuator limitations

and mass flow rate are

not considered, and

chattering issues will

exist due to the use of

signum function in the

control law.

ANFTSMC

[45]

External disturbances

and mass are estimated

online. To address the

chattering issue, the

saturation function is

used in place of the

signum function.

✓ Changes in inertia with

mass, mass flow rate,

and actuator limitation

are not taken into

consideration.

ASMC [46] It’s suggested for the

quadcopter’s altitude

tracking in the presence

of varying payload and

ground effect.

✓ Quadcopter position

control, inertia variation

with mass, and mass

flow rate are ignored.
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2.2 Research Gap

In sprayer drones, mass varies with a certain flow rate. The change in payload

mass causes a variation in the moment of inertia (MOI). In addition, large tilt

angles are required for high-speed trajectory tracking and external disturbance

rejection. These variations in plant parameters (i.e., mass and inertia) and large

tilt angles can degrade the performance and stability of the control scheme. In

the LPV control algorithms described in the literature, time-varying mass and

large tilt angles have not been considered simultaneously, whereas, in the nonlin-

ear adaptive control schemes suggested for a quadcopter to handle time-varying

mass, the controller gains will take time to adapt to the new values. In addition,

the computation and execution of gains are online, which will increase the compu-

tational burden compared to the LPV approaches, where the gains are computed

offline but executed online.

2.3 Problem Statement

As outlined in the research gap, the problem of position tracking of quadcopter

in the presence of varying mass, varying inertia, wind disturbances, and actuator

constraint has not been addressed in the literature.

2.4 Research Objectives

The research objectives are outlined as follows:

1. Derive the nonlinear model of a quadcopter with varying payload and wind

disturbances.

2. Determine the varying parameters of a quadcopter using SOLIDWORKS

and obtain model equations for these parameters through the curve fitting

tool.
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3. Develop a Linear Parameter-Varying (LPV) model of a quadcopter with

varying payload and large tilt angles.

4. Validate the LPV model by comparing its response with the complete non-

linear model with varying payload.

5. Design an LPV control algorithm for quadcopter capable of accurately main-

taining a desired position in the presence of variable payload, noise, and wind

disturbances without actuator saturation.

6. Validate the proposed LPV technique using numerical simulations and com-

pare the results with the H∞ controller.

2.5 Chapter Summary

After the discussion on thesis objectives, proposed strategy, and research contribu-

tion in Chapter 1, in this chapter, a thorough review of past efforts for quadcopter

control is discussed. The literature review is presented in Section 2.1 of this chap-

ter. A literature survey helps to create a gap analysis. The gap analysis presented

in Section 2.2 was achieved by the extensive literature review, which assisted in

identifying the areas of concern in the previous studies. Finally, the chapter is con-

cluded with a problem statement based on the research gap. In the next chapter,

mathematical modeling of quadcopter with variable payload is discussed.



Chapter 3

Mathematical Modeling of

Quadcopter

This chapter focuses on constructing a mathematical model for a quadcopter that

accounts for varying payload. It provides essential background information neces-

sary for comprehending the quadcopter with different payload configurations from

a dynamic systems perspective. The chapter outlines a 6-degree-of-freedom (6-

DOF) nonlinear model for the quadcopter with variable payload, detailing changes

in system mass, moments of inertia, and equations governing these varying param-

eters. The nonlinear model is transformed into a 6-DOF linear parameter varying

(LPV) model, essential for LPV control design, and a linear model, crucial for

designing the linear controller. Additionally, the chapter concludes with the sim-

ulation of these mathematical models using MATLAB/SIMULINK software to

validate their accuracy, with the nonlinear model serving as the benchmark for

validation purposes.

3.1 Reference Frames

To derive the dynamic model of quadcopter, the first step is to define the coordi-

nate frames. Two frames have to be defined [47],

28
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1. Inertial frame (F i): defined also as World reference frame.

2. Body frame (F b): centered at the center of gravity of the quadcoptor.

The (F i) is inertial coordinate system that is fixed to the earth. The (F b) is

the body coordinate system that is fixed to the quadcopter’s body. We use the

NED (North-East-Down) convention for the inertial coordinate system, with the

x-or roll axis along the front of the quadcopter, the y-or pitch axis to the right,

and the z-or yaw axis down. These frames are important as on board sensors

like accelerometers and gyroscopes measure information with respect to the body

frame, and sensors like GPS and pressure sensors measure information with respect

to the inertial frame.

3.1.1 Rotation Matrices

To transform the coordinates, i.e., from body frame to inertial frame, transfor-

mation matrices are used [48–50]. By considering right-hand oriented coordinate

system, the three different rotations can be described by:

� R(x,ϕ) represent rotation about x-axis.

� R(y,θ) represent rotation about y-axis.

� R(z,ψ) represent rotation about z-axis.

The rotation matrix from the body frame to the inertial frame is given by:

Ri
b = R(x, ϕ).R(y, θ).R(z, ψ) (3.1)

This leads to:

Ri
b =


1 0 0

0 c(ϕ) −s(ϕ)

0 s(ϕ) c(ϕ)



c(θ) 0 s(θ)

0 1 0

−s(θ) 0 c(θ)



c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0

0 0 1

 (3.2)
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This results in:

Ri
b =


c(ψ)c(θ) s(ϕ)c(ψ)s(θ)− s(ψ)c(ϕ) s(θ)c(ϕ)c(ψ) + s(ψ)s(ϕ)

s(ψ)c(θ) s(θ)s(ψ)s(ϕ) + c(ψ)c(ϕ) c(ϕ)s(ψ)s(θ)− c(ψ)s(ϕ)

−s(θ) c(θ)s(ϕ) c(θ)c(ϕ)

 (3.3)

Similarly, the complete rotation matrix from the inertial frame to the body frame

is given by:

Rb
i = (Ri

b)
T (3.4)

Hence, we can write:

Rb
i =


c(ψ)c(θ) s(ψ)c(θ) −s(θ)

s(ϕ)c(ψ)s(θ)− s(ψ)c(ϕ) s(θ)s(ψ)s(ϕ) + c(ψ)c(ϕ) c(θ)s(ϕ)

s(θ)c(ϕ)c(ψ) + s(ψ)s(ϕ) c(ϕ)s(ψ)s(θ)− c(ψ)s(ϕ) c(θ)c(ϕ)

 (3.5)

where:

s(θ) = sin(θ) and c(θ) = cos(θ).

3.1.2 Angular Rates

The angular transformation matrix from (ϕ̇, θ̇, ψ̇) to body angular rates (Pv, Qv, Rv)

is given by [51, 52]:


Pv

Qv

Rv

 = Rr


ϕ̇

θ̇

ψ̇

 (3.6)

where:



Quadcopter Mathematical Model 31

Rr =


1 0 −s(θ)

0 c(θ) s(ϕ)c(θ)

0 −s(ϕ) c(ϕ)c(θ)

 (3.7)

3.1.3 Quadcopter Kinematics Equations

The state variables x, y, and z are in inertial frame quantities, whereas the ve-

locities U , V , and W are in body frame quantities. Therefore, the relationship

between the derivatives of position (ẋ, ẏ, ż) (i.e., velocities in the inertial frame)

and velocities in the body frame is given by
ẋ

ẏ

ż

 = Ri
b


U

V

W

 (3.8)

We can write: 
U

V

W

 = (Ri
b)

−1


ẋ

ẏ

ż

 = (Ri
b)
T


ẋ

ẏ

ż

 (3.9)

This result in:
U = c(ψ)c(θ)ẋ+ s(ψ)c(θ)ẏ − s(θ)ż

V = (s(ϕ)c(ψ)s(θ)− s(ψ)c(ϕ))ẋ+ (s(θ)s(ψ)s(ϕ) + c(ψ)c(ϕ))ẏ + c(θ)s(ϕ)ż

W = (s(θ)c(ϕ)c(ψ) + s(ψ)s(ϕ))ẋ+ (c(ϕ)s(ψ)s(θ)− c(ψ)s(ϕ))ẏ + c(θ)c(ϕ)ż

(3.10)

3.2 Quadcopter Dynamic Modeling

Quadcopter with variable payload can be mathematically modeled using the New-

ton and Euler equations. The quadcopter’s translational dynamics with varying
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mass is given by [53, 54]

∑
F =

d

dt
(P ) = m

d

dt
(v) + v

d

dt
(m) (3.11)

where
∑
F stands for the resultant force acting on the quadcopter in the inertial

frame, P represents the linear momentum, m denotes the quadcopter’s mass with

variable payload, and v = [ẋ ẏ ż]T indicates the quadcopter’s transnational

velocity in the inertial frame.

The resultant force
∑
F is given by:

∑
F = mgez −Ri

bT −Wf (3.12)

Equation (3.12), leads to

∑
F = mg

0

0

1

−Ri
b

0

0

T

−

Wfx

Wfy

Wfz

 (3.13)

where,

T =
4∑
i=1

Ti = T1 + T2 + T3 + T4 (3.14)

T represents the thrust force exerted by the rotors, whereas Wfx, Wfy, and Wfz

represent the wind forces in the x, y, and z directions, respectively. The wind

forces can be expressed as [55]


Wfx

Wfy

Wfz

 =


ks|ẋ− ẋw| (ẋ− ẋw)

ks|ẏ − ẏw| (ẏ − ẏw)

ku|ż − żw| (ż − żw)

 (3.15)

[
ẋ ẏ ż

]T
and

[
ẋw ẏw żw

]T
show the translational and wind velocity, and the

parameters ks and ku indicate the drag factors on the lower-upper faces and sides

of the quadcopter, respectively.
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Equation (3.13) can be written as:

∑
Fx = −(sin(θ)cos(ϕ)cos(ψ) + sin(ψ)sin(ϕ))T −Wfx∑
Fy = −(cos(ϕ)sin(ψ)sin(θ)− cos(ψ)sin(ϕ))T −Wfy∑
Fz = mg − (cos(θ)cos(ϕ))T −Wfz

(3.16)

Using equations (3.16) and (3.11), we can write:
mẍ = − (sinθcosϕcosψ + sinψsinϕ)T − ṁẋ−Wfx

mÿ = − (cosϕsinψsinθ − cosψsinϕ)T − ṁẏ −Wfy

mz̈ = −cosθcosϕT +mg − ṁż −Wfz

(3.17)

Furthermore, referring to [53, 54], the quadcopter’s rotational dynamics with vary-

ing inertia in the inertial frame is given by

∑
M =

d

dt
(H) = J

d

dt
(W) +W d

dt
(J) +W × JW (3.18)

where
∑
M indicates the net moment, H represents the angular momentum, J

denotes the inertia tensor, and W = [ϕ̇ θ̇ ψ̇]T shows the angular speed.

W × H = î(θ̇Hz − ψ̇Hy) + ĵ(ϕ̇Hx − ψ̇Hz) + k̂(ϕ̇Hy − θ̇Hx) (3.19)

The inertia tensor J is given by [56]:

J =


Ix 0 0

0 Iy 0

0 0 Iz

 (3.20)

The net moment
∑
M can be written as:

∑
M =


∑
Mϕ∑
Mθ∑
Mψ

 =


τϕ + JrΩrθ̇

τθ − JrΩrϕ̇

τψ

 (3.21)
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By using equations (3.18), (3.19), and (3.20), we can write:
τϕ = Ixϕ̈− (Iy − Iz)θ̇ψ̇ + İxϕ̇− JrΩrθ̇

τθ = Iyθ̈ − (Iz − Ix)ψ̇ϕ̇+ İyθ̇ + JrΩrϕ̇

τψ = Izψ̈ − (Ix − Iy)ϕ̇θ̇ + İzψ̇

(3.22)

where τϕ, τθ, and τψ represent the rolling, pitching, and yawning moments, respec-

tively. JrΩrθ̇ and JrΩrϕ̇ represent the rotor gyroscopic effect. Jr represents the

rotor inertia, Ωr = Ω1 + Ω3 − Ω2 − Ω4, while Ωi (i = 1, 2, 3, 4) indicates the speed

of rotors.

Equation (3.22) can be written as:
Ixϕ̈ = (Iy − Iz)θ̇ψ̇ − İxϕ̇+ JrΩrθ̇ + τϕ

Iyθ̈ = (Iz − Ix)ψ̇ϕ̇− İyθ̇ − JrΩrϕ̇+ τθ

Izψ̈ = (Ix − Iy)ϕ̇θ̇ − İzψ̇ + τψ

(3.23)

Control signals are defined for moments and thrust force, which are as follows,
τϕ

τθ

τψ

T

 =


U1

U2

U3

U4

 (3.24)

The relationship between control signals and motor commands is as follows: [57,

58] 
∩1

∩2

∩3

∩4

 =



1
2
√
2lKf

1
2
√
2lKf

− 1
4Km

1
4Kf

− 1
2
√
2lKf

1
2
√
2lKf

1
4Km

1
4Kf

− 1
2
√
2lKf

− 1
2
√
2lKf

− 1
4Km

1
4Kf

1
2
√
2lKf

− 1
2
√
2lKf

1
4Km

1
4Kf




U1

U2

U3

U4

 (3.25)

where ∩i (i = 1, 2, 3, 4) represent the squared speed references of the motor (i.e.,

∩i = Ω2
i ).
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By combining (3.17) and (3.23), the complete nonlinear 6-DOF model of quad-

copter can be written as:

Ixϕ̈ = U1 + (Iy − Iz)θ̇ψ̇ − İxϕ̇+ JrΩrθ̇

Iyθ̈ = U2 + (Iz − Ix)ψ̇ϕ̇− İyθ̇ − JrΩrϕ̇

Izψ̈ = U3 + (Ix − Iy)ϕ̇θ̇ − İzψ̇

mẍ = − (sinθcosϕcosψ + sinψsinϕ)U4 − ṁẋ−Wfx

mÿ = − (cosϕsinψsinθ − cosψsinϕ)U4 − ṁẏ −Wfy

mz̈ = −cosθcosϕU4 − ṁż +mg −Wfz

(3.26)

Description of symbols used in quadcopter modeling, and quadcopter’s parameters

with full payload are shown in Table. 3.1 and Table. 3.2, respectively.

Table 3.1: Quadcopter parameters with full payload.

Symbol Value Unit

m 1.0497× 10−1 kg

Ix 1.1568× 10−4 kgm2

Iy 1.1378× 10−4 kgm2

Iz 1.2595× 10−4 kgm2

l 6.24e− 02× 10−2 m

Jr 1.4338× 10−4 kgm2

ks 2.8× 10−2 kg/m

ku 5.4× 10−2 kg/m

Kf 6.5330× 10−4 N/(rad2/sec2)

Km 1.5769× 10−6 Nm/(rad2/sec2)

g 9.81 m/sec2
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Table 3.2: Description of symbols used in quadcopter modeling.

Symbol Unit Description

m kg Mass of quadcopter with varying paylaod

Ix kgm2 Inertia about the x-axis

Iy kgm2 Inertia about the y-axis

Iz kgm2 Inertia about the z-axis

l m Length of an arm

Jr kgm2 Rotor inertia

ku kg/m Upward Drag factors

ks kg/m Sideward drag factor

Kf N/(rad2/sec2) Thrust coefficient

Km Nm/(rad2/sec2) Thrust coefficient

g m/sec2 Acceleration due to gravity

T N Thrust

τϕ Nm Rolling moment

τθ Nm Pitching moment

τψ Nm Yawing moment

ϕ rad Roll angle

θ rad Pitch angle

ψ rad Yaw angle

x m x-position

y m y-position

z m z-position

U m/sec Velocity in x-direction in the body frame

V m/sec Velocity in y-direction in the body frame

W m/sec Velocity in z-direction in the body frame
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3.2.1 Variation in the System’s Mass and Moments of In-

ertia Parameters

To develop the model equations for varying mass and varying inertia, we have used

SOLIDWORKS. The 3D-CAD (3-dimensional computer-aided design) model of

the quadcopter with payload developed in SOLIDWORKS is shown in Figure 2.1.

The selected full payload mass is 0.042 kg , with an empty mass of 0.01 kg. It has

a capacity of 0.032 liters of water. The choice of payload mass was determined

based on the quadcopter’s total thrust. When the payload is full, the thrust can

reach up to 80% of its maximum value. The mass and MOI values are noted at

different levels of the water in the liquid tank. The values recorded are listed in

Table. 3.3. The curve fitting toolbox available in MATLAB is used to find the

model equations for mass and MOI. The variation in the values of the system’s

mass and MOI is shown in Figures 3.1 and 3.2.

The root mean squared error (RMSE) is used to assess the goodness of fit. It

is calculated by taking the square root of the average of the squared differences

between the predicted values and the actual values. Mathematically, it can be

expressed as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.27)

where n represents the number of observations in the dataset, yi represents the

actual (observed) value of the ith data point, and ŷi represents the predicted value

of the ith data point.

A parameter ℓ has been introduced which is given as:

ℓ =
h− h

h
(3.28)

where h represents the level of the water in the tank and h indicates the water

level when the payload is filled to capacity.
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Table 3.3: Mass and inertia values at different water levels.

S.No Water Level (m) Mass (kg) Ix (kgm2) Iy (kgm2) Iz (kgm2)

1 1.71× 10−2 1.0497× 10−1 1.1568× 10−4 1.1378× 10−4 1.2595× 10−4

2 1.52× 10−2 1.0141× 10−1 1.1311× 10−4 1.1254× 10−4 1.2396× 10−4

3 1.33× 10−2 9.7844× 10−2 1.1022× 10−4 1.1099× 10−4 1.2196× 10−4

4 1.14× 10−2 9.4281× 10−2 1.0697× 10−4 1.0906× 10−4 1.1994× 10−4

5 9.47× 10−3 9.0756× 10−2 1.0331× 10−4 1.067× 10−4 1.1794× 10−4

6 7.57× 10−3 8.7194× 10−2 9.910× 10−5 1.0380× 10−4 1.1590× 10−4

7 5.68× 10−3 8.3650× 10−2 9.431× 10−5 1.0028× 10−4 1.1386× 10−4

8 3.78× 10−3 8.0088× 10−2 8.876× 10−5 9.601× 10−5 1.1179× 10−4

9 1.86× 10−3 7.6488× 10−2 8.230× 10−5 9.080× 10−5 1.0967× 10−4

10 0 7.3002× 10−2 7.506× 10−5 8.477× 10−5 1.0760× 10−4

The equations of the mass and MOI obtained using curve fitting are:



m = a1ℓ+ a2

Ix = b1m
2 + b2m+ b3

Iy = c1m
2 + c2m+ c3

Iz = d1m+ d2

(3.29)

The derivatives are: 

ṁ = a1ℓ̇

İx = 2b1mṁ+ b2ṁ

İy = 2c1mṁ+ c2ṁ

İz = d1ṁ

(3.30)

The values of parameters in equation (3.29) are given in Table. 3.4.
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Table 3.4: Parameter values.

Parameter Value Unit

a1 −3.1967× 10−2 kg

a2 1.0501× 10−1 kg

b1 −2.3181× 10−2 kg−1m2

b2 5.3709× 10−3 m2

b3 −1.9308× 10−4 kgm2

c1 −2.3731× 10−2 kg−1m2

c2 5.1061× 10−3 m2

c3 −1.6102× 10−4 kgm2

d1 5.7349× 10−4 m2

d2 6.5828× 10−5 kgm2

Data

Fitted curve

Figure 3.1: Variation in mass with parameter ℓ
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Figure 3.2: Variation in MOI with mass

3.3 LPV Model

The LPV model can be described by a set of differential equations that relate the

system’s state, inputs, outputs, and parameters. These equations are typically

expressed in the form of:dx(t)/dt = f(x(t), u(t), ρ(t))

y(t) = g(x(t), u(t), ρ(t))

(3.31)
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Here, f(.) represents the system dynamics that describe how the state evolves over

time, and g(.) represents the output equation that relates the state, inputs, and

parameters to the system outputs. The state vector, denoted as x(t), represents

the internal state of the system at time t. The input vector, denoted as u(t),

represents the inputs or control signals applied to the LPV system. The parame-

ter vector, denoted as ρ(t), represents the time-varying parameters or scheduling

variables that influence the system dynamics. These parameters vary with time

or with the operating conditions and can affect the system’s behaviour, such as

its stability, performance, or response characteristics.

The affine LPV model can be described by the following set of state-space equa-

tions [59]:

G :


E(ρ(t))

dx(t)

dt
= A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

(3.32)

Here, E(ρ(t)), A(ρ(t)), B(ρ(t)), C(ρ(t)), andD(ρ(t)) represent parameter-dependent

matrices that capture the linear dynamics of the system. These matrices can vary

as a function of the parameters ρ(t).

where,

x ϵ Rn is model state vector.

ρ ϵ Rs is time varying vector.

u ϵ Rm is model input vector.

y ϵ Rp is model output vector.

Input, system, and output matrices can be written as:

E(ρ(t)) = E0 +
i=N∑
i=1

ρi(t)Ei (3.33)

A(ρ(t)) = A0 +
i=N∑
i=1

ρi(t)Ai (3.34)

B(ρ(t)) = B0 +
i=N∑
i=1

ρi(t)Bi (3.35)
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C(ρ(t)) = C0 +
i=N∑
i=1

ρi(t)Ci (3.36)

D(ρ(t)) = D0 +
i=N∑
i=1

ρi(t)Di (3.37)

3.3.1 LPV Modeling of Quadcopter

The LPV modeling approach provides a flexible and powerful framework to rep-

resent complex dynamic systems. The LPV model for a dynamic system is not

unique, as it allows for various representations that capture the system’s behaviour

under different operating conditions. Multiple LPV models can exist for a plant,

each approximating the system’s dynamics from distinct perspectives. The con-

struction of an LPV model involves selecting appropriate time-varying parameters

that best describe the system’s behaviour across its operating range. These param-

eters act as adjustable coefficients that vary with changing operating conditions.

The time-varying parameters chosen in the LPV model determine the complexity

and effectiveness of the control system.

To develop the affine LPV model of quadcopter with varying payload, the following

assumptions are taken into account [29, 42].

� The sine and cosine of tilt angles are approximated by the second-order

Taylor’s expansion which is given as:



sin(ϕ) ≈ ϕ− ϕ3/6

cos(ϕ) ≈ 1− ϕ2/2

sin(θ) ≈ θ − θ3/6

cos(θ) ≈ 1− θ2/2

(3.38)

� The input U4 ≈ mg + u4 and yaw angle ψ ≈ 0 are considered to make the

dependency between system states

(
i.e.,

[
x y

]T
on

[
ϕ θ

]T)
explicitly.
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Using the above assumptions, and considering the small rotor gyro effect, the sim-

plified 6-DOF nonlinear model is obtained for the nonlinear model of quadcopter

with varying payload given in equation (3.26), which is as follows,



Ixϕ̈ = U1 − İxϕ̇

Iyθ̈ = U2 − İyθ̇

Izψ̈ = U3 − İzψ̇

ẍ = −
(
θ − θ3

6

)(
1− ϕ2

2

)
g − ṁ

m
ẋ− Wfx

m

ÿ =

(
ϕ− ϕ3

6

)
g − ṁ

m
ẏ − Wfy

m

mz̈ = −
(
1− θ2

2

)(
1− ϕ2

2

)
(mg + u4) +mg − ṁż −Wfz

(3.39)

Equation (3.39) depicts the simplified 6-degree-of-freedom (6-DOF) model of a

quadcopter, considering variable payload and significant tilt angles, specifically

the roll angle (ϕ) and pitch angle (θ).

By employing equations (3.29) and (3.30), we can express equation (3.39) in an

alternative form:

(b1m
2 + b2m+ b3)ϕ̈ = U1 − (2b1mṁ+ b2ṁ)ϕ̇

(c1m
2 + c2m+ c3)θ̈ = U2 − (2c1mṁ+ c2ṁ)θ̇

(d1m+ d2)ψ̈ = U3 − d1ṁψ̇

ẍ = −gθ + g

2
ϕ2θ +

g

6
θ2θ − ṁ

m
ẋ− 1

m
dx

ÿ = gϕ− g

6
ϕ2ϕ− ṁ

m
ẏ − 1

m
dy

ρ1z̈ =
1

2
ϕ2u4 +

1

2
θ2u4 − u4 − ṁż − dz

(3.40)

The LPV model of the quadcopter, derived from equation (3.40), is presented as

follows. This model offers a comprehensive representation, capturing the dynamic

characteristics of the quadcopter under varying conditions. It serves as a valuable

tool for analyzing and predicting the quadcopter’s behavior in diverse operational

scenarios.
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

(b1ρ1 + b2 + b3ρ2) ϕ̈ = ρ2U1 −
(
2b1ϕ̇+ b2ρ2ϕ̇

)
dr

(c1ρ1 + c2 + c3ρ2) θ̈ = ρ2U2 −
(
2c1θ̇ + c2ρ2θ̇

)
dr

(d1ρ1 + d2) ψ̈ = U3 − d1drψ̇

ẍ = −gθ + g

2
ρ3θ +

g

6
ρ4θ − drρ2ẋ− ρ2dx

ÿ = gϕ− g

6
ρ3ϕ− drρ2ẏ − ρ2dy

ρ1z̈ =
1

2
ρ3u4 +

1

2
ρ4u4 − u4 − drż − dz

(3.41)

where:

ρ = [ρ1 ρ2 ρ3 ρ4]
T is a time-varying parameters vector. The terms (ϕ2θ2)/4

and (ϕ2θ3)/12 are neglected because of their higher power and relatively modest

contribution.[
dx dy dz dr

]T
denote the bounded disturbances and are given as:



dx = Wfx

dy = Wfy

dz = Wfz −
mgϕ2

2
− mgθ2

2

dr = ṁ

(3.42)

The scheduling parameters of the quadcopter LPV model are:



ρ1 = m ∈
[
1.05e− 1 7.3e− 2

]
=

[
ρ1 ρ1

]
ρ2 =

1

m
∈
[
13.71 9.51

]
=

[
ρ2 ρ2

]
ρ3 = ϕ2 ∈

[
(π
3
)2 0

]
=

[
ρ3 ρ3

]
ρ4 = θ2 ∈

[
(π
3
)2 0

]
=

[
ρ4 ρ4

]
(3.43)
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The significant contributions of the proposed model, distinguishing it from prior

research, can be summarized as follows:

1. A novel 6 DOF LPV model is introduced, accommodating variable mass,

variable inertia, mass flow rate, large tilt angles, and wind disturbances for

the quadcopter system.

2. Model equations for variable mass and variable Moment of Inertia (MOI)

are meticulously developed utilizing a curve fitting tool. Notably, a triangle

polytope is chosen over a rectangular polytope to reduce the number of

vertices in the LPV control system. This strategic choice aims to minimize

computational load and conservatism in the LPV control strategy.

3.3.2 Linear Model of Quadcopter

The nonlinear model is linearized around hovering condition, allowing the sys-

tem nonlinear dynamics to be effectively described by a linearized model when

operating around the hovering state [27, 60–62]. The following assumptions are

considered to obtain the simplified model of the quadcopter.



sin (ϕ) ≈ ϕ

cos (ϕ) ≈ 1

sin (θ) ≈ θ

cos (θ) ≈ 1

ψ ≈ 0

U4 ≈ mavgg + u4

(3.44)
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Table 3.5: Nominal parameters of the quadcopter.

Symbol Value Unit

mavg 1.0497e− 1× 10−1 kg

Ixavg 1.1568× 10−4 kgm2

Iyavg 1.1378× 10−4 kgm2

Izavg 1.2595× 10−4 kgm2

Using the above assumptions, the linearized model for the quadcopter is obtained,

which is as follows: 

ϕ̈ = u1
Ixavg

θ̈ = u2
Iyavg

ψ̈ = u3
Izavg

ẍ = −gθ

ÿ = gϕ

z̈ = − u4
mavg

(3.45)

Equation (3.45) represent the 6-DOF linearized model of the quadcopter.

Table. 3.5 provides the values of the parameters used in the linearized model.

3.4 Model Validation

Model validation is a crucial step in the modeling process.It involves assessing the

accuracy, reliability, and predictive capability of a model. It aims to determine

whether the model adequately captures the behavior of the real system it repre-

sents. The procedure for validating an approximate model using a nonlinear model

as a benchmark is given as:
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1. Define the Nonlinear Model:

Define the nonlinear model that represents the actual system. This model

should capture all the nonlinearities and complexities of the system’s behav-

ior that is under study.

2. Develop the Approximate Model:

Create the approximate model that you intend to validate. This could be

a simplified linear model, reduced-order model, or any other approximation

technique used to simplify the system’s complexity.

3. Simulate Both Models:

Simulate both the nonlinear model and the approximate model under iden-

tical conditions. This could involve providing the same inputs or initial

conditions to both models.

4. Compare Model Responses:

Compare the responses of the nonlinear model and the approximate model.

This could involve providing the same input or initial condition to both

models.

5. Model Accuracy:

Assess the accuracy of the approximate model by analyzing the differences

with the nonlinear model. Consider both qualitative and quantitative as-

pects such as the overall trends, transient behaviour, steady-state behaviour,

and Root Mean Squared Error (RMSE).

To assess the precision of both the LPV model and the linear model of the quad-

copter, their outputs are compared to those of the nonlinear model. This com-

parison is illustrated in Figures 3.3 and 3.4. It is evident that the LPV model’s

response closely aligns with the nonlinear model, outperforming the linear model.

The RMSE and the percentage (%) improvement values can be found in Table. 3.6.

The RMSE is a widely used metric to measure the accuracy of the approximate

model. It effectively indicates the model’s fidelity. Smaller RMSE values indicate
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Table 3.6: Comparative analysis: Accuracy of LPV model versus nonlinear
model.

Model
Outputs

RMSELPV RMSELM % Improvement

Roll 0.79377 5.1669 84.637

Pitch 0.41115 4.4792 90.821

Yaw 0.19917 1.2704 84.322

x-position 0.99186 4.6561 78.698

y-position 1.2572 4.4406 71.689

z-position 2.152 14.477 85.135

a better quality of approximation (i.e,. lower the RMSE, the better the model’s

accuracy).

The RMSE decreases by upto 90.82% when utilizing the LPV model in comparison

to the linear model.

The formula used to compute the %RMSE is given as:

%Improvement =

(
1− RMSELPV

RMSELM

)
× 100% (3.46)

Within this equation, RMSELPV and RMSELM denote the root mean squared

error values associated with the LPV model and the linear model. These val-

ues signify the disparities between each model and the full nonlinear model of

the quadcopter, which accounts for variable payload conditions. The comparison

provides insights into the accuracy and performance of both the LPV and linear

models under dynamic variations in quadcopter payload.
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Figure 3.3: Quadcopter’s response to a step input, showing changes in roll
(ϕ), pitch (θ), and yaw (ψ) with time.

3.5 Bode Plots

Bode plots are crucial tools in the field of control systems engineering due to their

significance in analyzing and designing control systems. These plots are useful

in visualizing how a system’s characteristics change across different frequencies,

providing essential information about the gain margin (GM), phase margin (PM)

and gain crossover frequency (wcp). GM is a measure used to assess the stability of

a system. It is related to the gain of the system at the frequency where the phase

of the system is -180o. The GM is expressed in decibels (dB) and represents the

amount by which the system’s gain can be increased before the system becomes

unstable. PM is the amount by which the phase of system at the gain crossover

frequency falls short of -180o. It is expressed in degrees. A positive phase margin
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Figure 3.4: Quadcopter’s response to a step input, illustrating changes in
positions (x, y, z ) with time.

signifies system stability, indicating there is a margin of safety before instability

occurs. Conversely, a negative phase margin suggests proximity to instability,

where further gain increases could lead to system instability. wcp is the frequency

at which system’s gain is equal to 0 dB. It is used to measure the PM of the

system. To assess the impact of parameter variations on system behavior, we have

compared the Bode plots of the LPV model with the linear model. Bode plots

for both the 6-DOF LPV model and the linear model of the quadcopter are given

below.

Figure 3.5 (a) illustrates the Bode plots of LPV models representing the altitude

dynamics of the quadcopter at different operating points (i.e., vertices of the poly-

tope). These plots depict how the magnitude and phase of the altitude dynamics
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Figure 3.5: (a) Bode plot of LPV model of z-position dynamics; (b) Bode
plot of linear model of z-position dynamics.

change with varying frequencies, considering variations in both mass and tilt an-

gles. In contrast, Figure 3.5 (b), showing the Bode plot of linear models obtained

at the hovering point (i.e., equilibrium point), fails to capture these variations.

The values of GM, PM and wcp are given in Table 3.7. It can be seen that the wcp

varies from 3.701 to 0.9878 with the variation in the operating point. It means

that linear controller will not be able to provide the desired results.

Similarly, the bode plots of x-position, y-position, roll, pitch, and yaw dynamics

of quadcopter are shown in Figures 3.6, 3.7, 3.8, 3.9, and 3.10, respectively. It

can be seen from the figures that, when the operating point shifts, the system’s

magnitude and phase variation with frequencies also alter, which are prominent in



Quadcopter Mathematical Model 52

10
-2

10
0

10
2

10
4

10
6

M
ag

n
it

u
d
e 

(a
b
s)

10
-2

10
0

-90

-45

0

P
h
as

e 
(d

eg
)

(a)

LPV Model of X-Position Dynamics

Frequency  (rad/s)

10
0

10
2

10
4

10
6

M
ag

n
it

u
d
e 

(a
b
s)

10
-2

10
0

-1

-0.5

0

0.5

1

P
h
as

e 
(d

eg
)

(b)

Linear Model of X-Position Dynamics

Frequency  (rad/s)

Figure 3.6: (a) Bode plot of LPV model of x-position dynamics; (b) Bode
plot of linear model of x-position dynamics.

Table 3.7: The GM, PM and wcp of z-position dynamics.

Dynamic Model GM PM wcp

@ vertex-1 inf 179.3214 3.7010

@ vertex-2 inf 179.4342 3.0860

L
P
V

M
o
d
el

@ vertex-3 inf 178.9870 2.4792

@ vertex-4 inf 179.1554 2.0672

@ vertex-5 inf 178.9870 2.4792

@ vertex-6 inf 179.1554 2.0672

@ vertex-7 inf -2.1193 1.1845

@ vertex-8 inf -1.7672 0.9878

Linear Model inf -180 3.3520
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Figure 3.7: (a) Bode plot of LPV model of y-position dynamics; (b) Bode
plot of linear model of y-position dynamics.

Table 3.8: The GM, PM and wcp of y-position dynamics.

Dynamic Model GM PM wcp

L
P
V

M
o
d
el

@ vertex-1 Inf -1.4285 3.1316

@ vertex-2 Inf -2.0546 3.1311

@ vertex-3 Inf -1.5812 2.8292

@ vertex-4 Inf -2.2741 2.8286

Linear Model 1 0 3.1321

the bode plots of LPV models. The fluctuations in the Bode magnitude and phase

plots signify that the model’s response is affected by varying parameters such as

mass and inertia, as well as deviations from the equilibrium point due to changes

in tilt angles. Moreover, the variation in the GM, PM and wcp are listed in the

Tables 3.8, 3.9, 3.10, 3.11, and 3.12.
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Figure 3.8: (a) Bode plot of LPV model of roll dynamics; (b) Bode plot of
linear model of roll dynamics.

Table 3.9: The GM, PM and wcp of x-position dynamics.

Dynamic Model GM PM wcp

@ vertex-1 inf 177.2130 3.1302

@ vertex-2 inf 175.9921 3.1282

L
P
V

M
o
d
el

@ vertex-3 inf 175.8406 2.0953

@ vertex-4 inf 174.0200 2.0924

@ vertex-5 inf 176.9153 2.8277

@ vertex-6 inf 175.5643 2.8254

@ vertex-7 inf 174.5889 1.6087

@ vertex-8 inf 172.2231 1.6049

Linear Model inf -180.0000 3.1321
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Figure 3.9: (a) Bode plot of LPV model of pitch dynamics; (b) Bode plot of
linear model of pitch dynamics.

Table 3.10: The GM, PM and wcp of Roll dynamics.

Dynamic Model GM PM wcp

L
P
V

M
o
d
el @ vertex-1 inf -0.0086 93.1309

@ vertex-2 inf -0.0216 96.2588

@ vertex-3 inf -0.0419 115.1200

Linear Model 1 0 102.3953



Quadcopter Mathematical Model 56

10
2

10
4

10
6

10
8

10
10

M
ag

ni
tu

de
 (

ab
s)

10
-4

10
-2

10
0

-180

-135

-90

P
ha

se
 (

de
g)

(a)

LPV Model of Yaw Dynamics

Frequency  (rad/s)

10
4

10
6

10
8

10
10

M
ag

ni
tu

de
 (

ab
s)

10
-4

10
-2

10
0

-181

-180.5

-180

-179.5

-179

P
ha

se
 (

de
g)

(b)

Linear Model of Yaw Dynamics

Frequency  (rad/s)

Figure 3.10: (a) Bode plot of LPV model of yaw dynamics; (b) Bode plot of
linear model of yaw dynamics.

Table 3.11: The GM, PM and wcp of Pitch dynamics.

Dynamic Model GM PM wcp

L
P
V

M
o
d
el @ vertex-1 inf -0.0021 93.8619

@ vertex-2 inf -0.0149 94.4586

@ vertex-3 inf -0.0326 108.2865

Linear Model 1 0 100.3045

Table 3.12: The GM, PM and wcp of Yaw dynamics.

Dynamic Model GM PM wcp

L
P
V

M
o
d
el

@ vertex-1 inf 0.0240 89.0703

@ vertex-2 inf 0.0260 96.3610

Linear Model 1 0 92.5008
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3.6 Chapter Summary

This chapter starts with the nonlinear modeling of quadcopter with varying pay-

load, which will be used to derive the LPV model. In the next section, the varying

parameters of the quadcopter with variable payload are computed. After that, the

LPV model derivation of the nonlinear model is presented. This model will be used

in designing an LPV control technique to control the position of the quadcopter.

Moreover, the linear model of the quadcopter is also presented, which will be used

in designing a linear controller for the quadcopter. Finally, in the last section,

model validation is presented. The RMSE is used as a performance index to show

the accuracy of the LPV model and the linear model compared to the nonlinear

model. The response of the LPV model is much closer to the nonlinear model as

compared to the linear model. In the next chapter, an LMIs-based LPV control

scheme and linear control methodology are discussed for the position control of

quadcopter.



Chapter 4

Control Design

This chapter discusses multiple objective control designs using LMI techniques.

Many practical control systems require the ability to fit simultaneously different

and often conflicting performance objectives as best as possible. Therefore, mul-

tiple objective control designs are very important in control system applications.

The advantage of this type of approach is that a globally optimal and numerically

reliable solution can always be obtained as long as the finally formulated LMI

problem has a solution. In this chapter, LMIs-based LPV control for the position

control of a quadcopter in the presence of time-varying parameters and wind dis-

turbance is presented. This technique is based on the LPV model presented in the

preceding chapter. Moreover, the design of H∞ design with the desired LMI pole

region is also presented for the linear model presented in Chapter 3.

4.1 LPV Control

Linear parameter varying (LPV) control is a relatively recent development in the

field of control systems, combining elements of both linear control theory and non-

linear control theory. It emerged in the late 1980s and early 1990s as a response

to the increasing need for control techniques that can handle systems with time-

varying parameters or operating conditions. One of the significant milestones in

58
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LPV control history was the introduction of the so-called Linear Matrix Inequality

(LMI) framework. This framework, pioneered by researchers like Boyd, Ghaoui,

and Feron, provided a powerful and systematic approach to solving control syn-

thesis problems for LPV systems [63]. The LMI framework allowed for the design

of controllers that guaranteed stability and performance over the entire parameter

space of the system. Since then, LPV control has continued to evolve and has

found applications in various fields, including aerospace [64, 65], vehicle [66, 67],

automotive [68], robotics [69], and renewable energy systems [70]. Today, LPV

control remains an active area of research, with ongoing developments in both

theory and applications.

The LPV concept is derived from the gain scheduling approach [71–73]. It is

viewed as a viable alternative to classical gain-scheduling designs for controlling

nonlinear systems. Classical gain-scheduling control is a technique where multiple

linear controllers are designed for different operating points or regions of the sys-

tem and are switched or interpolated based on the current operating conditions. It

can handle systems with nonlinearities and time-varying parameters by switching

between linear controllers. The stability, performance, and robustness properties

are generally difficult to achieve with the classical gain-scheduling control method-

ologies. Moreover, adhoc methods of interpolation are needed for gains switching.

LPV controllers are automatically gain-scheduled, and no adhoc methods of in-

terpolation of gains are needed for gain switching.In summary, gain-scheduling

control switches between pre-designed linear controllers based on the operating

conditions, while LPV control explicitly models the system dynamics as a func-

tion of time-varying parameters and designs controllers that adapt to changes in

these parameters.

Some key elements of LPV control are listed below.

� Parameter Dependency:

LPV methodologies explicitly account for the system’s time-varying param-

eters and represents the system’s dynamics as a function of these varying
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parameters. These parameters could include operating conditions, external

disturbances, or other factors influencing the system behavior.

� LPV Models:

LPV techniques are based on LPV models, which mathematically describe

the relationship between system parameters and the system dynamics. These

models allow for a more accurate representation of the system’s behavior

under varying parameters and operating conditions.

� Experimental and Analytical Techniques:

LPV modeling can be done using analytical methods if reliable nonlinear

equations describing system dynamics are available. Alternatively, exper-

imental identification methods can be employed to construct LPV models

based on real-world data, enabling practical implementation of LPV control

strategies.

� Controller Adaptability:

LPV controllers are designed to adapt to changes in system parameters.

This adaptability ensures that the control system maintains stability and

performance even when the system parameters change.

� Controller Synthesis:

LPVmethodologies provide systematic techniques for synthesizing controllers

that can handle parameter variations. These methods often involve solving

mathematical optimization problems, ensuring that the control system meets

certain performance criteria under varying conditions.

� Stability Analysis:

LPV methodologies offer systematic ways to analyze the stability of the

control system across the entire parameter space. Stability analysis is crucial

to ensure that the control system remains stable under all possible operating

conditions.
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� Performance Analysis:

LPV methods allow for the analysis of control system performance concern-

ing various criteria, such as settling time, overshoot, and steady-state error,

across different parameter values. This analysis ensures that the control

system meets desired performance specifications under varying conditions.

� Robustness: LPV control designs often exhibit robustness, meaning they

can handle uncertainties and disturbances in the system. Robust LPV con-

trollers are capable of maintaining stability and performance even when there

are uncertainties in the system parameters.

� Real-time Implementation:

LPV methodologies provide control laws that are implementable in real-time

systems. The computed control gains can be updated continuously based on

the varying parameters, allowing the control system to adapt dynamically

to changing conditions.

� Computational Complexity:

In the LPV techniques, controller gains are computed offline using well

known LMIs but implemented online, leading to a reduction in computa-

tional burden [74, 75].

� Multivariable Systems:

LPV methodologies can handle multivariable systems where multiple pa-

rameters influence the system behavior simultaneously. This capability is

valuable in complex systems where interactions between parameters can sig-

nificantly impact the system’s dynamics.

LPV systems offer advantages in handling parameter variations and providing

robustness, they introduce complexities in terms of design, analysis, and compu-

tational requirements as compared to the linear control techniques.

The general LPV control system configuration is depicted in Figure 4.1. P (ρ)

shows the generalized LPV plant, and K(ρ) depicts the LPV controller gains.

The generalized LPV plant’s state-space realization is as follows [76, 77]:
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                 P(ρ)

K(ρ)

   w (system exogenous inputs)    z (system exogenous outputs)

  v (system outputs)     u (system control inputs)

ρ (Time-varying parameters)

Figure 4.1: The structure of closed-loop LPV system.

P (ρ) :


χ̇ = A (ρ)χ+ B1 (ρ)w + B2 (ρ)u

z = Cz (ρ)χ+D11 (ρ)w +D12 (ρ)u

v = Cv (ρ)χ+D21 (ρ)w +D22 (ρ)u

(4.1)

where

(1) χ ϵ Rn, w ϵ Rnw , u ϵ Rnu , z ϵ Rnz and v ϵ Rnv are the system states,

exogenous inputs (i.e., reference signals and disturbances), control signals,

exogenous outputs (i.e., error signals which are to be minimized in order to

fulfill control objectives), and sensed outputs, respectively.

(2) A (ρ) , B1 (ρ) , B2 (ρ) , Cz (ρ) , D11 (ρ) ,D12 (ρ) , Cv (ρ) , D21 (ρ) and D22 (ρ)

are parameter dependent state-space matrices of appropriate dimensions.

(3) ρ is a time-varying parameters vector that varies in a convex polytope of

vertices ρvi (i = 1, 2, . . . , N). N represents the number of vertices.

The LPV control law is given as:

u(t) = K(ρ)v(t) (4.2)
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In the LPV polytopic form, the matrices of P (ρ) can be written as


A (ρ) B1 (ρ) B2 (ρ)

Cz (ρ) D11 (ρ) D12 (ρ)

Cv (ρ) D21 (ρ) D22 (ρ)

 =
N∑
i=1

αi


Ai B1i B2i

Czi D11i D12i

Cvi D21i D22i

 (4.3)

In the polytopic form, LPV controller gains K(ρ) can be expressed as:

K (ρ) =
N∑
i=1

αiKi (4.4)

αi (i = 1, 2, . . . , N) represent the barycentric weights (for details, see [78, 79]).

The time-varying parameter vector ρ can be expressed as:

ρ =
{
αiρvi, αi ≥ 0,

∑N
i=1 αi = 1

}
(4.5)

To design an LPV controller, a mixed sensitivity control approach is adopted [80,

81]. The weighted closed-loop system for mixed sensitivity control design is shown

in Figure 4.2. GP (ρ) shows the LPV model of the dynamic system to the control

signal u and the disturbance signal w2, We is the weighting filter that is chosen

to impose meaningful requirements on the closed-loop system, such as trajectory

tracking and disturbance rejection, Wu is the sensitivity weight that is chosen to

shape the control sensitivity and limit the control effort to stay within the physical

limit of the actuator, Vu and Vd are the static weights that represent the maximum

values of control signal and disturbance signal, respectively.

The state-space realization of GP (ρ), We, and Wu is given by

GP (ρ) :

 ẋp

yp

 =

 Ap(ρ) Bw(ρ)Vd Bp(ρ)

Cp(ρ) 0 0



xp

w2

u

 (4.6)

We :

 ẋWe

z1

 =

 AWe BWe

CWe DWe

 xWe

e

 (4.7)
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Gp(ρ)

     Wu.Vu
-1

K(ρ) 

We

SUM

Vd

z1 z2 w2

ρ

      xp

                         
yp

u            e
w1

+

 -

Figure 4.2: The mixed sensitivity control problem.

Wu :

 ẋWu

z2

 =

 AWu BWu

CWu DWu

 xWu

V −1
u u

 (4.8)

The weighting sensitivity filter Wu is set to unity. The state-space realization for

LPV controller synthesis is given as:


ẋp

ẋWe

z1

z2

 =


Ap(ρ) 0 0 Bw(ρ)Vd Bp(ρ)Vu

−BWeCp(ρ) AWe BWe 0 0

−DWeCp(ρ) CWe DWe 0 0

0 0 0 0 1





xp

xWe

w1

w2

û


(4.9)

The scaled control input û is given by:

û = V −1
u u (4.10)

The LPV controller is designed using the LMI approach. The LMI approach is

based on the well-known lemmas, which are formalized in the following
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Lemma 1 (Condition for Quadratic L2-Gain Performance):

The L2-gain of closed-loop LPV system from exogenous inputs w to exogenous

outputs z will be lower than a positive scalar γ, if and only if there exists a

positive-definite symmetric matrix X(ρ) of n× n, and a non-zero matrix Y (ρ) of

1 × n for all the admissible values of time-varying parameter vector ρ satisfying

[82]

min γ

s.t. X(ρ) > 0
A (ρ)X(ρ) +X(ρ)A (ρ)

T
+ B2 (ρ)Y (ρ) + Y (ρ)

T B2 (ρ)
T B1 (ρ) a13

B1 (ρ)
T −γI D11 (ρ)

T

Cz (ρ)X(ρ) +D12 (ρ)Y (ρ) D11 (ρ) −γI

 < 0

(4.11)

where,

a13 = X(ρ)Cz (ρ)T + Y (ρ)T D12 (ρ)
T (4.12)

In the L2-gain LPV controller synthesis the objective is to find an LPV controller

such that the L2-gain of the closed-loop system is minimized. L2-gain of the

closed-loop system is an alternate to H∞-norm in the LPV framework.

Lemma 2 (Constraints for Pole Placement):

The closed-loop LPV system’s eigenvalues will be located in the desirable LMI

region D(α,β,φ), if the following LMIs are feasible [83]. The LMI regions D(α,β,φ) is

shown in Figure 4.3.

� The closed-loop LPV system’s eigenvalues will be located in the LMI region

D(α,β), if and only if there exist X(ρ), and Y (ρ), such that


X(ρ) > 0

2αX(ρ) +A (ρ)X(ρ) + B2 (ρ)Y (ρ) +X(ρ)A (ρ)T + Y (ρ)T B2 (ρ)
T < 0

2βX(ρ) +A (ρ)X(ρ) + B2 (ρ)Y (ρ) +X(ρ)A (ρ)T + Y (ρ)T B2 (ρ)
T > 0

(4.13)
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The sub-LMI region D(α,β) represented by the LMI given in equation (4.13) is

shown in Figure 4.4.

  Im

  O                                Re

 LMI region

                 φ

       -α              -β

Figure 4.3: LMI region D(α,β,φ).

  Im

  0      Re

      LMI region

       -α              -β

Figure 4.4: Strip region D(α,β).
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  Im

  O      Re

      LMI region

                 φ

Figure 4.5: Conic sector D(φ).

� The closed-loop LPV system’s eigenvalues will be located in the LMI region

D(φ), if and only if there exist X(ρ), and Y (ρ), such that

a11 a12

a21 a22

 < 0 (4.14)

where,



a11 =
(
X(ρ)A (ρ)T +A (ρ)X(ρ) + Y (ρ)T B2 (ρ)

T + B2 (ρ)Y (ρ)
)
sinφ

a12 =
(
X(ρ)A (ρ)T −A (ρ)X(ρ)− B2 (ρ)Y (ρ) + Y (ρ)T B2 (ρ)

T
)
cosφ

a21 =
(
A (ρ)X(ρ)−X(ρ)A (ρ)T + B2 (ρ)Y (ρ)− Y (ρ)T B2 (ρ)

T
)
cosφ

a22 =
(
A (ρ)X(ρ) +X(ρ)A (ρ)T + B2 (ρ)Y (ρ) + Y (ρ)T B2 (ρ)

T
)
sinφ

(4.15)

The sub-LMI region D(φ) represented by the LMI given in equation (4.14) is shown

in Figure 4.5. The closed-loop LPV system will be D-stable, if both conditions

(4.13) and (4.14) are satisfied. The LPV controller gains K(ρ) can be determined

as follows:

K(ρ) = Y (ρ)X(ρ)−1 (4.16)
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Equations (4.11)–(4.14) impose an unlimited number of LMIs that are difficult to

solve. The total number of LMIs can be squeezed to a finite set using a polytopic

LPV system. Using convexity, (4.11)–(4.14) will hold if it holds at the vertices of

the polytope.

4.1.1 LPV Control Design for Quadcopter

In this section, we present an LMIs-based LPV control design for position tracking

of the quadcopter. The goal is that the state variables [x, y, z] follow the desired

reference trajectories (xref , yref , zref ), while the yaw angle ψ is required to remain

at ∠00. All the state variables (x, y, z, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇, ẋ, ẏ, ż)

and the water level in the liquid tank are considered as measurable. The overall

control design requirements are as follows:

1. The system response should exhibit minimal or no overshoot.

2. The desired reference positions (xref, yref, zref) should be achieved within 4

seconds.

3. The robustness index, denoted by γ, should be less than 4.

4. The disturbance should be rejected within 3 seconds.

5. The motor speed should be within the limits (i.e., 500 rad/sec).

The closed loop block diagram of quadcopter system is shown in Figure 4.6. Based

on the system dynamics, the control system is split into subsystems.

(1) The fully actuated subsystem dynamics that consist of z̈ and ψ̈.

(2) The under-actuated subsystem dynamics made up of ϕ̈, θ̈, ẍ, and ÿ.
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4.1.2 LPV Control for Fully Actuated Subsystem

LPV controller is devised for the fully actuated subsystem dynamics by solving

the LMIs given in (4.11)–(4.14) at each vertex of the rectangular polytope using

the LMI control toolbox [59].

The descriptor LPV form of altitude dynamics is:

Ez (ρz)

ż
z̈

 =

0 1

0 −ṁ


z
ż

+Bz (ρz)u4

yz =

[
1 0

]z
ż


(4.17)

where,

Ez (ρz) =

1 0

0 0

+ ρ1

0 0

0 1

+ ρ3

0 0

0 0

+ ρ4

0 0

0 0

 (4.18)

Bz (ρz) =

 0

−1

+ ρ3

0
1
2

+ ρ4

0
1
2

 (4.19)

The descriptor LPV form of yaw dynamics is:

Eψ (ρψ)

ψ̇
ψ̈

 =

0 1

0 −d1ṁ


ψ
ψ̇

+

0
1

U3

yψ =

[
1 0

]ψ
ψ̇


(4.20)
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where,

Eψ (ρψ) =

1 0

0 d2

+ ρ1

0 0

0 d1

 (4.21)

The weighting filters Wez and Weψ are selected as follows,

 ẋWez

z1z

 =

 −5.6× 10−6 0.56

1 0.5

 xWez

ez

 (4.22)

 ẋWeψ

z1ψ

 =

 −4.5× 10−4 0.45

1 1

 xWeψ

eψ

 (4.23)

The static weights Vuz and Vuψ are expected to be 0.5 and 1, respectively. The static

weight dz = 0.5 is taken into consideration. The bounded disturbance dr is as-

sumed as 3.2 × 10−3 kg/sec. The parameters associated with the desired LMI

regions are chosen on the basis of the desired control objective given in Section

4.1.1. Based on the desired control objectives, These parameter values are as

follows:

αz = −0.5, βz = −30, ∠φz = 50◦ (4.24)

αψ = −0.5, βψ = −5, ∠φψ = 50◦ (4.25)

The LPV controller gains are:

Kz (ρz) =
8∑
i=1

αziKzi (4.26)

Kψ (ρψ) =
2∑
i=1

αψi
Kψi

(4.27)
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where Kzi (i = 1, 2, . . . , 8) and Kψi
(i = 1, 2) represent the state feedback gains,

αzi (i = 1, 2, . . . , 8) and αψi
(i = 1, 2) represent the barycentric weights, and ρz =

[ρ1, ρ3, ρ4] and ρψ = ρ1 are the time-varying parameters.

The robust closed-loop system stability and quadratic H∞ performance γ of the

LPV system are tested by using the functions pdlstab and quadperf from the

MATLAB LMI Toolbox’s. The LPV system will be stable, if the quantity tmin

returned by the pdlstab function is negative (i.e., tmin < 0). The values achieved

using the functions are given in Table 4.1.

Table 4.1: tmin and γ values of fully actuated LPV subsystem.

Name z-position Yaw Angle

tmin −0.0512 −0.0158

γ 1.95 0.02

The quantity tmin < 0, which ensures the closed-loop system’s robust stability.

The Controller gains and the positive-definite symmetric matrix X at each vertex

for the altitude control and yaw control are shown in the Table 4.3, and Table 4.2,

respectively.

Table 4.2: Controller gains and X matrix of yaw control

Vertex Controller Gains X > 0

@ vertex-1
[
−0.0080 −0.0013 −0.0084

] 
0.2627 −0.9667 −0.0797

−0.9667 10.9236 0.0283

−0.0797 0.0283 0.0686



@ vertex-2
[
−0.0069 −0.0011 −0.0072

] 
0.2624 −0.9661 −0.0792

−0.9665 10.9236 0.0281

−0.0791 0.0281 0.0681


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Table 4.3: Controller gains and X matrix of altitude control.

Vertex Controller Gains X > 0

@ vertex-1
[
7.1586 2.3208 −9.7133

] 
25.0316 −17.3795 14.3073

−17.3795 19.3877 −8.3387

14.3073 −8.3387 8.5537



@ vertex-2
[
8.6006 3.2495 −10.8622

] 
16.1704 −10.4017 9.7018

−10.4017 11.0004 −5.0557

9.7018 −5.0557 6.1710



@ vertex-3
[
10.8783 4.9088 −12.4656

] 
10.0194 −5.9018 6.4293

−5.9018 5.7644 −2.9512

6.4293 −2.9512 4.4513



@ vertex-4
[
13.3529 6.9253 −14.0111

] 
6.5871 −3.6439 4.4863

−3.6439 3.3826 −1.8492

4.4863 −1.8492 3.3655



@ vertex-5
[
10.8783 4.9088 −12.4656

] 
10.0194 −5.9018 6.4293

−5.9018 5.7644 −2.9512

6.4293 −2.9512 4.4513



@ vertex-6
[
13.3529 6.9253 −14.0111

] 
6.5871 −3.6439 4.4863

−3.6439 3.3826 −1.8492

4.4863 −1.8492 3.3655



@ vertex-7
[
−27.697 −21.087 21.025

] 
1.8839 −0.9442 1.542

−0.9442 0.7476 −0.509

1.5420 −0.5093 1.525


Continued on next page
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Continued from previous page

Vertex Controller Gains X > 0

@ vertex-8
[
−35.304 −29.917 23.698

]


1.3114 −0.6577 1.130

−0.6577 0.4823 −0.383

1.1303 −0.3834 1.203



4.1.3 LPV Control for Under-Actuated Subsystem

To address the under-actuation, a multi-loop control strategy is adopted. An

inner-loop LPV scheme is suggested for roll and pitch dynamics, while an outer-

loop LPV strategy is proposed for the y-position and x-position dynamics to gen-

erate the roll and pitch commands. The inner-loop receives the roll and pitch

commands [ϕref , θref ] from the outer-loop to track the desired reference positions

[yref , xref ]. The scheduling parameters ρ1 and ρ2 are not independent, which

leads to conservatism. To reduce conservatism, we use a triangle polytope, BED,

rather than a rectangular polytope, ABCD, as shown in Figure 4.7 (for details,

see [68, 84]). The roll dynamics in descriptor LPV form is:



Eϕ (ρϕ)

ϕ̇
ϕ̈

 = Aϕ (ρϕ)

ϕ
ϕ̇

+Bϕ (ρϕ)U1

yϕ =

[
1 0

]ϕ
ϕ̇


(4.28)

where,

Eϕ (ρϕ) =

1 0

0 b2

+ ρ1

0 0

0 b1

+ ρ2

0 0

0 b3

 (4.29)
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E

C

BA

D

Figure 4.7: The structure of the polytope.

Aϕ (ρϕ) =

0 1

0 −2b1ṁ

+ ρ1

0 0

0 0

+ ρ2

0 0

0 −b2ṁ

 (4.30)

Bϕ (ρϕ) =

0
0

+ ρ1

0
0

+ ρ2

0
1

 (4.31)

The descriptor LPV form of pitch dynamics is given by:

Eθ (ρθ)

θ̇
θ̈

 = Aθ (ρθ)

θ
θ̇

+Bθ (ρθ)U2

yθ =

[
1 0

]θ
θ̇


(4.32)
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where,

Eθ (ρθ) =

1 0

0 c2

+ ρ1

0 0

0 c1

+ ρ2

0 0

0 c3

 (4.33)

Aθ (ρθ) =

0 1

0 −2c1ṁ

+ ρ1

0 0

0 0

+ ρ2

0 0

0 −c2ṁ

 (4.34)

Bθ (ρθ) =

0
0

+ ρ1

0
0

+ ρ2

0
1

 (4.35)

The LPV form of x-position dynamics is given by:

ẋ
ẍ

 = Ax (ρx)

x
ẋ

+Bx (ρx)ux

yx =

[
1 0

]x
ẋ


(4.36)

where,

Ax (ρx) =

0 1

0 0

+ ρ2

0 0

0 −ṁ

+ ρ3

0 0

0 0

+ ρ4

0 0

0 0

 (4.37)

Bx (ρx) =

 0

−g

+ ρ2

0
0

+ ρ3

0
g
2

+ ρ4

0
g
6

 (4.38)
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The descriptor LPV form of y-position dynamics is given by:

ẏ
ÿ

 = Ay (ρy)

y
ẏ

+By (ρy)uy

yy =

[
1 0

]y
ẏ


(4.39)

where,

Ay (ρy) =

0 1

0 0

+ ρ2

0 0

0 −ṁ

+ ρ3

0 0

0 0

 (4.40)

By (ρy) =

0
g

+ ρ2

0
0

+ ρ3

 0

−g
6

 (4.41)

Weighting filters Weψ, Weθ, Wex, and Wey are chosen as follows:

 ẋWeϕ

z1ψ

 =

 −7.5× 10−4 7.45

1 0.5

 xWeϕ

eϕ

 (4.42)

 ẋWeθ

z1θ

 =

 −7.5× 10−4 7.45

1 0.5

 xWeθ

eθ

 (4.43)

 ẋWex

z1x

 =

 −9.5× 10−5 0.95

1 0.83

 xWex

ex

 (4.44)

 ẋWey

z1y

 =

 −9.1× 10−5 0.90

1 0.83

 xWey

ey

 (4.45)

The values of weights Vuψ = 1, Vuθ = 1, Vux =
π

3
, and Vuy =

π

3
are considered.

The values of static weights Vdx = 0.5 and Vdy = 0.5 are assumed. The values of

the parameters associated with the LMI regions selected on the basis of control
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Table 4.4: tmin and γ values of under-actuated LPV subsystem.

Name Roll Angle Pitch Angle x-position y-position

tmin −0.04 −0.032 −0.1042 −0.0433

γ 1.0 1.0 1.718 1.292

objectives are:

αϕ = −5, βϕ = −30, ∠φϕ = 50◦ (4.46)

αθ = −5, βθ = −30, ∠φθ = 50◦ (4.47)

αx = −0.5, βx = −4.5, ∠φx = 50◦ (4.48)

αy = −0.5, βy = −4.5, ∠φy = 50◦ (4.49)

The following are the gains of the LPV controllers designed using conditions (4.11)–

(4.14):

Kϕ (ρϕ) =
3∑
i=1

αϕiKϕi (4.50)

Kθ (ρθ) =
3∑
i=1

αθiKθi (4.51)

Kx (ρx) =
8∑
i=1

αxiKxi (4.52)

Ky (ρy) =
4∑
i=1

αyiKyi (4.53)

Kϕi (i = 1, 2, 3), Kθi (i = 1, 2, 3), Kxi (i = 1, 2, . . . , 8), and Kyi (i = 1, 2, . . . , 4) rep-

resent the feedback gains, αϕi (i = 1, 2, 3), αθi (i = 1, 2, 3), αxi (i = 1, 2, . . . , 8), and

αyi (i = 1, 2, . . . , 4) represent the barycentric weights, and ρϕ=[ρ1, ρ2], ρθ = [ρ1, ρ2],

ρx = [ρ2, ρ3, ρ4], and ρy = [ρ2, ρ3] are the scheduling parameters.

The values of tmin and γ achieved using the MATLAB functions for the under-

actuated subsystem are presented in Table 4.4. The condition tmin < 0 ensures

robust stability of the closed-loop system, and γ < 4, which is a requirement in

the H∞ control scheme. The controller gains and the positive-definite symmetric
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matrix X at each vertex for the roll angle controller, pitch angle controller, x-

position controller, and y-position controller are presented in Tables 4.5, 4.6, 4.7,

and 4.8, respectively.

Table 4.5: Controller gains and X matrix of roll control

Vertex Controller Gains X > 0

@ vertex-1
[
−0.3417 −0.0086 0.4788

]
106


0.028 −0.426 0.014

−0.426 6.493 −0.211

0.014 −0.211 0.007



@ vertex-2
[
−0.3210 −0.0080 0.4503

]
106


0.032 −0.489 0.016

−0.489 7.434 −0.243

0.016 −0.243 0.008



@ vertex-3
[
−0.2247 −0.0056 0.3151

]
107


0.006 −0.102 0.003

−0.102 1.545 −0.051

0.003 −0.051 0.001



Table 4.6: Controller gains and X matrix of pitch control

Vertex Controller Gains X > 0

@ vertex-1
[
−0.3364 −0.0084 0.4715

]
106


0.029 −0.441 0.014

−0.441 6.716 −0.219

0.014 −0.219 0.007


Continued on next page
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Continued from previous page

Vertex Controller Gains X > 0

@ vertex-2
[
−0.3322 −0.0083 0.4657

]
106


0.030 −0.453 0.015

−0.453 6.896 −0.225

0.015 −0.225 0.007



@ vertex-3
[
−0.2560 −0.0064 0.3600

]
107


0.005 −0.080 0.002

−0.080 1.211 −0.039

0.002 −0.039 0.001


Table 4.7: Controller gains and X matrix of x-position control.

Vertex Controller Gains X > 0

@ vertex-1
[
2.2456 0.7551 −2.9107

] 
47.185 −42.758 25.510

−42.758 62.821 −19.381

25.510 −19.381 14.603



@ vertex-2
[
1.5114 0.6723 −1.0850

] 
12.5559 −8.8900 12.0704

−8.8900 10.5232 −6.8530

12.0704 −6.8530 12.5194



@ vertex-3
[
3.3447 1.4922 −2.3959

] 
18.962 −14.165 11.647

−13.965 18.899 −6.556

11.447 −6.456 7.538



@ vertex-4
[
3.5014 1.5214 −3.9611

] 
18.762 −14.465 11.147

−14.465 18.599 −6.756

11.147 −6.756 7.238


Continued on next page
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Continued from previous page

Vertex Controller Gains X > 0

@ vertex-5
[
2.8091 1.0976 −2.8555

] 
35.174 −30.486 19.511

−30.586 44.782 −13.691

19.511 −13.691 11.484



@ vertex-6
[
2.5091 0.8976 −3.1555

] 
35.074 −30.686 19.311

−30.686 44.682 −13.791

19.311 −13.791 11.384



@ vertex-7
[
4.1207 2.9288 −4.1713

] 
11.1191 −7.6819 7.257

−7.6019 8.6191 −3.740

7.2176 −3.79305 5.238



@ vertex-8
[
4.7202 2.4283 −4.7717

] 
11.1991 −7.6219 7.2976

−7.6219 8.6496 −3.7905

7.2976 −3.7905 5.2889



Table 4.8: Controller gains and X matrix of y-position control.

Vertex Controller Gains X > 0

@ vertex-1
[
−2.4701 −0.7942 3.2797

] 
34.981 −35.581 18.182

−35.581 58.484 −15.077

18.182 −15.077 10.179



@ vertex-2
[
−1.4098 −0.5517 1.1195

] 
24.101 −25.013 12.179

−25.013 41.688 −10.759

12.371 −10.157 7.912


Continued on next page
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Continued from previous page

Vertex Controller Gains X > 0

@ vertex-3
[
−2.7772 −0.9471 3.5963

] 
24.908 −25.083 12.974

−25.083 41.629 −10.256

12.974 −10.256 7.423



@ vertex-4
[
−1.6747− 0.68441.3073

] 
24.908 −25.083 12.974

−25.083 41.629 −10.256

12.974 −10.256 7.423



4.2 LMI-based H∞ Control with Pole Placement

Constraints

To design H∞ control with pole placement constraints, the following steps are

followed.

1. System Modeling:

Develop a mathematical model of the system in state-space form:dx(t)/dt = Apx(t) +Bpu(t)

y(t) = Cpx(t) +Dpu(t)

(4.54)

Here, x(t) represents the state vector, u(t) is the control input, y(t) is the

output, and Ap, Bp, Cp, and Dp are matrices defining the system dynamics.

2. Define Performance Specifications:

Specify the desired performance objectives for the system, such as settling

time, overshoot, and robustness requirements.
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3. LMI Problem Formulation:

Formulate the control problem as an LMI problem. The LMI problem con-

sists of a set of linear matrix inequalities that should be satisfied for the

controller design. The LMIs are typically constructed using the system ma-

trices Ap, Bp, Cp, and Dp, along with weighting functions that capture the

desired trade-offs between performance and robustness.

4. Solve the LMI Problem:

Solve the LMI problem using numerical optimization algorithms available

in software tools like MATLAB. The goal is to find a set of matrices that

satisfy the LMIs, which correspond to the designed controller.

5. Controller Implementation:

Once the LMI problem is solved, the controller matrices are obtained. Im-

plement the controller in the control system using appropriate hardware or

software.

4.2.1 H∞ State Feedback Control

H∞ controller is a type of robust control design technique used in control sys-

tems engineering. It aims to design a controller that minimizes the effects of

disturbances and uncertainties in a system while achieving desired performance

specifications. The H∞ control methodology is based on the concept of optimizing

the “H∞-norm” of a system. By minimizing this norm, the controller is designed

to provide the best possible disturbance rejection. It achieves this by optimizing

the “H∞-norm” of the system , which represents the worst-case amplification of

disturbances to the controlled output.

The general control system configuration is depicted in Figure 4.8. P shows the

generalized plant and K depicts the controller gains. The generalized plant is

given in state-space form by [85–87]:
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                   P

K

   w (system exogenous inputs)    z (system exogenous outputs)

  v (system outputs)     u (system control inputs)

Figure 4.8: The structure of closed-loop system.

P :


χ̇ = Ax+ B1w + B2u

z = Cz +D11w +D12u

v = Cvχ+D21w +D22u

(4.55)

The state feedback control law is given as:

u = Kv (4.56)

The feedback gain can be taken as:

K = Y X−1 (4.57)

The LMIs-based linear controller is designed using the following theorems [83, 88,

89].

Theorem 1 (Condition for the H∞ Performance):

The H∞-norm of closed-loop LPV system from exogenous inputs w to exogenous

outputs z will be lower than a positive scalar γ, if and only if there exists a positive-

definite symmetric matrix X, and a non-zero matrix Y for all the admissible values

of time-varying parameter vector ρ satisfying
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

min γ

s.t. X > 0
AX +XAT + B2Y + Y TBT2 B1 XCTz + Y TDT

12

BT1 −γI DT
11

CzX +D12Y D11 −γI

 < 0

(4.58)

4.2.2 Pole Placement in LMI Regions

Theorem 2 (Condition for the Closed-Loop Pole Location):

The closed-loop system’s eigenvalues will be located in the desirable LMI region

D(α,β,φ), if and only if there exist X, and Y , such that


X > 0

2αX +AX + B2Y +XAT + Y TBT2 < 0

2βX +AX + B2Y +XAT + Y TBT2 > 0

(4.59)

and

(XAT +AX + Y TBT2 + B2Y
)
sinφ

(
XAT −AX − B2Y + Y TBT2

)
cosφ(

AX −XAT + B2Y − Y TBT2
)
cosφ

(
AX +XAT + B2Y + Y TBT2

)
sinφ

 < 0

(4.60)

where the LMI region D(α,β,φ) = D(α,β) ∩D(φ). The system will be D-stable if both

conditions (4.59) and (4.60) are satisfied.
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4.2.3 H∞ Design with Desired Pole Region

In many real-world applications, standard H∞ synthesis cannot adequately capture

all design specifications. Pure H∞ synthesis only enforces closed-loop stability and

does not allow for direct placement of the closed-loop poles in more specific regions

of the left-half plane. Since the pole location is related to the time response

and transient behavior of the feedback system, it is often desirable to impose

additional damping and clustering constraints on the closed-loop dynamics. This

makes multi-objective synthesis highly desirable in practice, and LMI theory offers

powerful tools to attack such problems. In the H∞ design with a desired LMI pole

region, the H∞ and closed-loop Eigen value performance requirements are satisfied

simultaneously.

4.2.4 Linear Control Design for Quadcopter

To design a linear controller for a quadcopter, the linear model given in equation

(3.45) is used:

Linear model of fully-actuated subsystem is given by:

G :

z̈ = − u4
mavg

ψ̈ = u3
Izavg

(4.61)

In state space form, we can write:
ż

z̈

ψ̇

ψ̈

 =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0




z

ż

ψ

ψ̇

+


0 0

−1/m 0

0 0

0 1/Izavg


u4
u3

 (4.62)

y1
y2

 =

1 0 0 0

0 0 1 0



z

ż

ψ

ψ̇

 (4.63)
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The representation of the under-actuated subsystem’s linear model of quadcopter

is expressed as follows:

G :



ϕ̈ =
u1
Ixavg

θ̈ =
u2
Iyavg

ẍ = −gθ = −gux

ÿ = gϕ = guy

(4.64)

The representation of the state space equations for the 2-degrees-of-freedom linear

model of quadcopter is as follows:



ϕ̇

ϕ̈

θ̇

θ̈

ẋ

ẍ

ẏ

ÿ



=



0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0





ϕ

ϕ̇

θ

θ̇

x

ẋ

y

ẏ



+



0 0 0 0

1/Ixavg 0 0 0

0 0 0 0

0 1/Iyavg 0 0

0 0 0 0

0 0 −g 0

0 0 0 0

0 0 0 g




u1

u2

ux

uy



(4.65)

(4.66)


y1

y2

y3

y4

 =


1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0





ϕ

ϕ̇

θ

θ̇

x

ẋ

y

ẏ



(4.67)
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4.2.5 Linear Control Design for Fully Actuated Subsystem

Linear controller is devised for the fully actuated subsystem dynamics given in

(4.61) by solving the LMIs given in (4.59) and (4.60). Same weighting functions

and pole region constraints used in LPV control design are used for the linear

control scheme design.

The postive definite matrix X, and the gain matrix, K computed for the altitude

and yaw dynamics are given as:

Xz =


30.35 −18.032 21.66

−18.03 16.796 −11.33

21.66 −11.333 15.88

 > 0, Xψ =


0.26 −0.96 −0.079

−0.96 10.92 0.028

−0.07 0.02 0.068

 > 0

(4.68)

Kz

Kψ

 =

 8.8906 2.7924 −10.1349

−0.0075 −0.0012 −0.0078

 (4.69)

The values of γ for the actuated linear subsystem are given in Table 4.9.

Table 4.9: γ values of full actuated linear subsystem.

Name Altitude Yaw Angle

γ 1.0 1.0

The condition γ < 4 ensures robust performance of the closed-loop system.

4.2.6 Linear Controller for Under-Actuated Subsystem

Linear controller is devised for the under-actuated subsystem dynamics given in

(4.64) by solving the LMIs in (4.59) and (4.60). Same weighting functions and pole

region constraints are used for the control design. The positive definite matrix X,

and the gain matrix K computed for the roll, pitch, x-position, and y-position

dynamics are:
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Xϕ = 107

 0.012 −0.140 0.008

−0.140 1.583 −0.093

0.008 −0.093 0.005

 > 0, Xθ = 107

 0.011 −0.128 0.007

−0.128 1.455 −0.085

0.007 −0.085 0.005

 > 0

(4.70)

Xx =

 296.16 −200.63 397.17

−200.63 168.14 −262.60

397.17 −262.60 534.44

 > 0, Xy =

 172.88 −128.37 205.51

−128.37 127.33 −146.31

205.51 −146.31 246.01

 > 0

(4.71)
Kϕ

Kθ

Kx

Ky

 =


−0.2601 −0.0067 0.2948

−0.2717 −0.0070 0.3081

4.7186 1.0533 −2.9967

−4.3824 −1.0145 3.0649

 (4.72)

The values of γ for the under-actuated subsystem are given in Table 4.10.

Table 4.10: γ values of under-actuated linear subsystem.

Name Roll Angle Pitch Angle x-position y-position

γ 1.0 1.0 1.718 1.292

The quantity γ < 4, which ensures the closed-loop system’s robust performance.

4.3 Chapter Summary

This chapter begins with the general formulation of LPV control design scheme.

The next section provides the design of LMIs-based LPV control scheme for quad-

copter with variable payload. LMIs of H∞ and pole placement constraints in the

LMI region are used to design the LPV control scheme for the quadcopter position

control. The robust stability and quadratic H∞ performance are assessed by LMIs.

Finally, in the last section, the formulation and design of H∞ control design with

pole placement constraint is presented. The simulations conducted to assess the

effectiveness of the designed control techniques are covered in the next chapter.



Chapter 5

Simulation Results and

Discussion

In this chapter, simulation results for three distinct control strategies, namely,

the LPV control scheme, the H∞ control scheme, and the SMC control scheme,

designed for precise quadcopter position tracking, are presented. The simulations

are performed in MATLAB/SIMULINK for the quadcopter’s position tracking

in x, y and z direction and yaw angle ψ stabilization. The simulations utilize

the nonlinear model of the quadcopter with variable load, as outlined in Equa-

tion (3.26). Several factors, such as varying parameters, model uncertainties, step

disturbances, wind disturbance, noise, and actuator saturation, are taken into ac-

count to evaluate the proposed control schemes’ ability to maintain the desired

output. The effectiveness of these schemes is assessed using performance parame-

ters such as rise time (tr), settling time (ts), overshoot (OS), root mean squared

error (RMSE), and robustness.

5.1 Simulation Results of the LPV Scheme

To evaluate the trajectory tracking performance of the LPV scheme in the presence

of wind disturbance and variations in payload, wind disturbances are introduced

90
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Figure 5.1: Variation in the wind velocities with time

Figure 5.2: Variation in the water level with time
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Figure 5.3: Quadcopter positions (x, y, z) with wind disturbance and varying
payload

at t = 8 sec, while payload variation is applied at t = 10 sec. The Horizontal Wind

Model in SIMULINK is used for wind generation. The wind is specified by wind

speed and wind direction in inertial frame. The Horizontal Wind Model block

computes the wind velocity in body frame. Using the rotation matrix Ri
b given

in equation (3.5), the wind velocities are transformed into inertial frame wind

velocities represented in equation (3.15). A constant North-East wind velocity of

4.3 m/s is considered. The wind velocity is set to zero from t = 0 to t = 8 sec,

4.3 m/s from t = 8 to t = 30 sec, and back to zero from t = 30 to t = 40 sec.
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Figure 5.4: Error plots (ex ,ey, ez) in the presence of wind disturbance and
varying payload.

Figure 5.1 displays the wind velocities. Additionally, the variation in the liquid

flow rate is assumed to be 0.002 kg/s. Figure 5.2 illustrates the variation in the

water level over time.

A square type reference signal is applied to the x and y positions, and a step

signal is applied to the z position as reference signals. Figure 5.3 presents these

reference signals alongside the quadcopter’s positions in the presence of varying

payload and wind disturbances. It is observed that the quadcopter efficiently

tracks the reference signals, even when large tilt angles are required due to wind
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Figure 5.5: Attitude (ϕ, θ, ψ) with wind disturbance and varying payload.

Figure 5.6: Motor commands (∩1, ∩2, ∩3, ∩4) with wind disturbance and
varying payload.
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disturbances and variable payload. Figure 5.4 shows the error plot, indicating

that the proposed scheme drives the error signals to zero in the steady state and

is capable of rejecting wind disturbances within 2 sec. The controller generates

significant roll and pitch angles to follow the x and y trajectories in the presence of

wind disturbances while maintaining the yaw angle at 0◦, as shown in Figure 5.5.

Figures 5.7 and 5.6 illustrate the control signals and motor reference commands,

respectively. It is evident from the control signals that there is no saturation,

and the motor commands are within the limits. Actuator saturation occurs if the

motor command value reaches 500 rad/sec.
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Figure 5.7: Control inputs (U1, U2, U3, U4) with wind disturbance and varying
payload.
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Figure 5.8: Response of quadcopter positions (x, y, z) to varying payload in
a step input scenario.

5.2 Comparison with H∞ Controller

In this section, we present a comparison of the simulation outcomes derived from

the control strategies we formulated. We compared the response of the LPV con-

troller, specifically designed for the LPV model, with the H∞ controller designed

for the quadcopter’s linear model. The latter was obtained using the small angle
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assumption and nominal values of mass and inertia parameters. Various scenar-

ios were explored in the simulations. In the first scenario, the control schemes

we devised were evaluated for their ability to track the reference position of the

quadcopter with variable payload and external output disturbances. The second

scenario introduced uncertainty by incorporating fluctuations in the inertia pa-

rameters. Wind disturbance was incorporated in the third scenario, and in the

fourth scenario, noise was introduced into the system states.

Figure 5.9: Attitude angles (ϕ, θ, ψ) of quadcopter with varying payload.

Case 1 (Position Tracking and Yaw Angle Control):

In this case, we assess the quadcopter’s ability to track its position and maintain a

yaw angle of ∠0◦ under varying payload. A step input signal is applied to all three

position states (x, y, z) of the quadcopter. The results presented in Figure 5.8
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demonstrate precise position tracking without overshoot (OS) for both control

techniques, with some differences observed between them.

To analyze the robustness of the controllers, a step disturbance is introduced at

10 sec. The LPV controller robustly rejects the disturbance effects, while the H∞

controller produces an oscillatory response, particularly evident in the attitude

angles, as illustrated in Figure 5.9.

Table 5.1: The closed-loop performance parameters with varying payload.

Performance Parameters H∞ LPV % Improvement

x
-p
os
it
io
n

tr 2.8931 sec 2.0841 sec 27.96

ts 5.3687 sec 3.9667 sec 26.11

RMSETR 0.3902 m 0.3775 m 3.25

RMSESSR 0.0493 m 0.03765 m 23.63

y
-p
os
it
io
n

tr 2.8515 sec 2.0836 sec 26.93

ts 5.3132 sec 3.9606 sec 25.46

RMSETR 0.3893 m 0.3725 m 4.32

RMSESSR 0.0459 m 0.0367 m 20.04

z-
p
os
it
io
n

tr 2.7062 sec 2.2461 sec 17

ts 4.9786 sec 3.9287 sec 21.09

RMSETR 0.4039 m 0.3803 m 5.84

RMSESSR 0.0739 m 0.0049 m 93.37

Y
aw

an
gl
e

RMSETR 0.0089 rad 0.0024 rad 73.03

RMSESSR 0.2685 rad 0.0674 rad 74.9
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Table 5.2: The RMS comparison of control signals of LPV and H∞ with
varying payload.

Performance Parameters H∞ LPV % Improvement

RMS of U1 1.4103× 10−3 8.3014× 10−4 41

RMS of U2 1.6362× 10−3 7.8155× 10−4 52

RMS of U3 3.5155× 10−5 8.9423× 10−6 74

RMS of U4 9.2252× 10−1 8.7228× 10−1 6

Figure 5.10: Control inputs (U1, U2, U3, U4) with varying payload.
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The control inputs are depicted in Figure 5.10. The first three subplots represent

the rolling, pitching, and yawing moments as U1, U2, and U3, respectively. U4

represents the thrust force, which reaches saturation limits for the H∞ controller.

Motor reference commands are illustrated in Figure 5.11, calculated using Equa-

tion (3.25) from the control inputs U1, U2, U3, and U4. For the H∞ controller, the

motor speed reaches its maximum value of 500 rad/sec.

Figure 5.11: Motor commands (∩1, ∩2, ∩3, ∩4) with varying payload.
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Furthermore, a quantitative analysis of both techniques is presented in Tables 5.1

and 5.2. System rise time (tr), system settling time (ts), root mean squared

error during the transient stage (RMSETR), and RMSE for steady-state response

(RMSESSR) are compared for positions (x, y, z) and yaw angle (ψ). Moreover,

the root mean squared values of the control inputs are also compared. The results

indicate a significant improvement in tr, ts, RMSETR, RMSESSR, and RMS, up to

28%, 26%, 73%, 93%, and 74%, respectively, highlighting the effectiveness of the

LPV control strategy. This 93% improvement signifies that the RMSESSR achieved

with the LPV approach is 93% lower than that attained with the H∞ controller.
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Figure 5.12: Variation in the inertia parameters with mass.
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Figure 5.13: Positions (x, y, z) of quadcopter with 30% variation in the
inertia.

Case 2 (Performance Comparison under Uncertainty in Inertia Param-

eters):

In the second case, we illustrate the performance comparison of both control tech-

niques in the presence of uncertainty in the inertia parameters (Ix, Iy, Iz) caused

by tilt angles (ϕ, θ). The inertia parameters can vary due to the tilting of the

quadcopter with a variable payload. A 30% uncertainty is introduced to account
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for the change in the inertia parameters during tilting. Figure 5.12 illustrates the

variation in inertia due to mass for both untilted and tilted positions.

Time (sec)}

Figure 5.14: Attitude angles (ϕ, θ, ψ) of quadcopter with 30% variation in
the inertia.

The performance evaluation involves applying a steer case reference signal on the

x, y, and z states and introducing a step disturbance in position at 6 sec. Fig-

ure 5.13 presents the position tracking and disturbance rejection responses of the

controllers. Both techniques adequately track the reference signal. However, the

disturbance rejection, especially along the z-axis, is significantly poorer in the H∞

controller compared to LPV.
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Table 5.3: The RMSE with 30% uncertainty.

Performance Parameters H∞ LPV % Improvement
x
-p
os
it
io
n

RMSE 0.3712 m 0.3524 m 5.06

y
-p
os
it
io
n

RMSE 0.3748 m 0.3516 m 6.19

z-
p
os
it
io
n

RMSE 0.2089 m 0.1701 m 18.57

Y
aw

an
gl
e

RMSE 0.3809 rad 0.032 rad 91.59

Table 5.4: The RMS comparison of control signals of LPV and H∞ with 30%
uncertainty.

Performance Parameters H∞ LPV % Improvement

RMS of U1 4.5911× 10−3 1.1185× 10−3 75

RMS of U2 4.6314× 10−3 9.1573× 10−4 80

RMS of U3 5.7893× 10−5 4.2431× 10−6 92

RMS of U4 9.1312× 10−1 8.7860× 10−1 4

Furthermore, Figure 5.14 demonstrates the substantial variation and oscillation

in the attitude angles. Additionally, the H∞ technique requires considerably more

control effort compared to LPV, as evident in the Figure 5.15. The Figure 5.16

shows that the motor speeds for the LPV methodology remain well within the

maximum range limit.
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Figure 5.15: Control inputs (U1, U2, U3, U4) with 30% variation in the inertia.

Quantitative analysis of the system response is presented in Tables 5.3 and 5.4.

The results reveal a significant improvement in the disturbance rejection ability

along the z-axis and yaw angle stabilization for the LPV control as compared to

the H∞ scheme.
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Figure 5.16: Motor commands (∩1, ∩2, ∩3, ∩4) with 30% variation in the
inertia.

Case 3 (Position Tracking under Wind Disturbance and Variable Pay-

load:)

In the third case, we conduct a performance comparison of the H∞ and LPV con-

trol schemes for quadcopter position tracking, subject to varying payloads and
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wind disturbance. To assess reference tracking performance in the presence of si-

multaneous wind disturbance and variable payloads, a steer-case reference signal

is applied to the longitudinal and latitudinal positions (x, y), and a step signal

is applied to the z-position (z). Payload variation is introduced at t = 7.5 sec,

and wind disturbance is applied at t = 10 sec. A constant north-east wind speed

of 5.8 m/s is considered, as shown in Figure 5.17. Both control schemes success-

fully track the reference signals in the presence of wind disturbance and payload

variation. However, the LPV scheme outperforms by providing superior track-

ing and wind disturbance rejection, particularly in altitude tracking, as evident

in Figure 5.18. In contrast, the H∞ controller induces significant oscillations in

the quadcopter’s attitude, as depicted in Figure 5.19. Figure 5.20 illustrates the

control signals, revealing that the H∞ controller necessitates large control efforts

and exhibits pronounced oscillations. Furthermore, the motor commands reach

their maximum values, as depicted in Figure 5.21.

Figure 5.17: Variation in the wind velocities with time.
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Figure 5.18: Positions (x,y,z) of quadcopter with payload variation and wind
disturbance.

Table 5.5: The RMS comparison of control signals of LPV and H∞ with wind
disturbance and variable payload.

Performance Parameters H∞ LPV % Improvement

RMS of U1 4.4891× 10−4 2.5151× 10−4 44

RMS of U2 4.9912× 10−4 2.8707× 10−4 43

RMS of U3 4.9607× 10−6 1.5784× 10−6 68

RMS of U4 1.0689× 100 9.64× 10−1 10
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Figure 5.19: Attitude angles (ϕ, θ, ψ) of quadcopter with payload variation
and wind disturbance.

Table 5.6: The RMSE with wind disturbances and variable payload.

Performance Parameters H∞ LPV % Improvement

x
-p
os
it
io
n

RMSE 0.3162 m 0.3051 m 3.51

y
-p
os
it
io
n

RMSE 0.3085 m 0.2962 m 3.98

z-
p
os
it
io
n

RMSE 0.1955 m 0.1474 m 24.60

Y
aw

an
gl
e

RMSE 0.054 rad 0.0096 rad 82.22



Simulation Results and Discussion 110

Tables 5.6 and 5.5 showcase quantitative results, underscoring a significant en-

hancement in altitude, yaw angle stabilization, and control signals (U1,U2,U3,U4)

performance for the LPV control scheme when compared with the H∞ approach.

This implies that the LPV control strategy outperforms the H∞ approach across

multiple key parameters, demonstrating its efficacy in the presence of variation in

the payload and wind disturbance that are considered simultaneously.
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Figure 5.20: Control inputs (U1, U2, U3, U4) with payload variation and wind
disturbance.
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Figure 5.21: Motor commands (∩1, ∩2, ∩3, ∩4) with payload variation and
wind disturbance.

Case 4 (Performance Comparison under Noise and Variable Paylaod):

In this scenario, Gaussian noise N(µ, σ2) is introduced into the quadcopter out-

puts, and results of both control techniques are compared [90]. Noise N(0, (1 cm)2)

is added to the x, y, and z positions, while N(0, (0.51◦)2) is introduced to the yaw,

pitch, and roll angles. Figure 5.22 illustrates that both algorithms can track the
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steer-type signal in the x and y directions and the step signal in the z-direction.

The LPV controller demonstrates better tracking performance. Noticeable devi-

ations from the reference trajectory, particularly in the z-direction, are observed

in the case of the H∞ controller. Figure 5.23 shows attitude angles, indicating

significant peaks and oscillations in the H∞ controller case.

5 6 7 8
-1.05

-1

-0.9

Figure 5.22: Positions (x, y, z) of quadcopter with payload variation and
noise.

Control signals are presented in Figure 5.24, where saturation can be observed in

the control input for the H∞ controller. Motor reference commands in Figure 5.25

demonstrate that motor commands remain within limits in the case of the LPV

controller. Quantitative results are summarized in Tables 5.7 and 5.8 , indicating

a substantial improvement in altitude, yaw angle stabilization, and control inputs

with the LPV control compared to the H∞ scheme.
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Figure 5.23: Attitude of quadcopter with payload variation and noise.

Table 5.7: The RMSE with noise and variable payload.

Performance Parameters H∞ LPV % Improvement

x
-p
os
it
io
n

RMSE 0.6298 m 0.6072 m 3.59

y
-p
os
it
io
n

RMSE 0.6269 m 0.5985 m 4.53

z-
p
os
it
io
n

RMSE 0.1972 m 0.1701 m 13.74

Y
aw

an
gl
e

RMSE 0.3667 rad 0.02687 rad 26.73
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Figure 5.24: Control inputs (U1, U2, U3, U4) with payload variation and noise.

Table 5.8: The RMS comparison of control signals of LPV and H∞ with
payload variation and noise.

Performance Parameters H∞ LPV % Improvement

RMS of U1 4.5701× 10−3 8.2550× 10−4 82

RMS of U2 5.6669× 10−3 8.5119× 10−4 85

RMS of U3 5.6954× 10−5 4.1134× 10−5 28

RMS of U4 9.2431× 10−1 8.9214× 10−1 4
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Figure 5.25: Motor commands (∩1, ∩2, ∩3, ∩4) with payload variation and
noise.

5.3 Comparison with SMC Controller

This section presents a comparative analysis between the conventional SMC con-

troller proposed in [91] and the suggested LPV scheme applied to a quadcopter

experiencing fixed mass, varying mass, and wind disturbance. In Figure 5.26, the

outputs (x, y, z) of the quadcopter with fixed mass are depicted in response to a
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step reference signal and a step disturbance introduced at t=10 sec. The simula-

tion results reveal that both controllers demonstrate effective position tracking and

disturbance rejection. However, the LPV controller exhibits superior performance

parameters, as highlighted in Table 5.9. The enhancements in tr, ts, RMSETR,

and RMSESSR are up to 7%, 17%, 25%, and 44%, respectively, attributed to the

implementation of the LPV controller. This 44% enhancement indicates that the

RMSESSR obtained through the LPV approach is 44% less than the one achieved

with the SMC controller.

10 12 14

-1.2

-1

10 12 14

1

1.2

10 12 14

1

1.2

Figure 5.26: Positions (x, y, z) of quadcopter with fixed mass.



Simulation Results and Discussion 117

Figure 5.27 depicts the positions (x, y, z) of the quadcopter with varying mass,

responding to a step reference signal and a step disturbance introduced at t = 10

sec. The simulation results reveal that the LPV controller outperforms the SMC

controller in achieving superior position tracking amidst varying mass and step

disturbance. Notably, pronounced oscillations are observed in the x-position and

y-positions, while steady-state error is evident in the z-position when employing

the SMC controller. The enhancements in tr, ts, RMSETR, and RMSESSR reach

up to 26%, 55%, 19%, and 51%, respectively, as detailed in Table 5.11.

4 5 6 7 8 9
-1.02

-1

-0.98

18 19 20
-1.05

-1

Figure 5.27: Positions (x, y, z) of quadcopter with varying mass.
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Figure 5.28: Positions (x, y, z) of quadcopter with varying mass and wind
disturbance.

Figure 5.28 depicts the quadcopter’s position in response to a square reference

signal for x and y positions, and a unit step signal for z position, in the presence

of varying mass and wind disturbance introduced simultaneously at t = 6 sec.

The simulation results reveal that the SMC controller exhibits more deviations

from the reference trajectory compared to the LPV controller, which efficiently

follows the trajectory. The wind speed is considered to be 2.3 m/sec. Improved
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performance by the LPV controller is highlighted in Table 5.10 in comparison to

the SMC control scheme.

Table 5.9: The closed-loop performance parameters with fixed mass.

Performance Parameters SMC LPV % Improvement

x
-p
os
it
io
n

tr 2.159 sec 2.0837 sec 3.49

ts 4.4922 sec 3.96 sec 11.85

RMSETR 0.50367 m 0.3776 m 25.03

RMSESSR 0.05897 m 0.03754 m 39.88

y
-p
os
it
io
n

tr 2.2419 sec 2.0832 sec 7.08

ts 4.7675 sec 3.9587 sec 16.96

RMSETR 0.4874 m 0.3726 m 23.55

RMSESSR 0.06210 m 0.0347 m 44.08

z-
p
os
it
io
n

tr 2.1674 sec 2.2458 sec −3.62

ts 3.9858 sec 3.9284 sec 1.44

RMSETR 0.3489 m 0.3809 m −9.18

RMSESSR 0.0488 m 0.02823 m 42.16

Table 5.10: The RMSE with varying mass and wind disturbance.

Performance Parameters SMC LPV % Improvement

x
-p
os
it
io
n

RMSE 0.6172 m 0.3671 m 40.52

y
-p
os
it
io
n

RMSE 0.6147 m 0.3592 m 41.56

z-
p
os
it
io
n

RMSE 0.2174 m 0.1702 m 21.71
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Table 5.11: The closed-loop performance parameters with varying mass.

Performance parameters SMC LPV % Improvement
x
-p
os
it
io
n

tr 2.8266 sec 2.0841 sec 26.27

ts 8.9104 sec 3.9667 sec 55.48

RMSETR 0.4653 m 0.3775 m 18.87

RMSESSR 0.0725 m 0.0353 m 51.24

y
-p
os
it
io
n

tr 2.5155 sec 2.0836 sec 17.17

ts 8.8950 sec 3.9606 sec 55.47

RMSETR 0.4619 m 0.3725 m 19.35

RMSESSR 0.0572 m 0.0345 m 39.61

z-
p
os
it
io
n

tr 2.2825 sec 2.2461 sec 1.59

ts 4.2723 sec 3.9287 sec 8.04

RMSETR 0.3471 m 0.3803 m −9.58

RMSESSR 0.05704 m 0.0283 m 50.41

Figure 5.29: Mass variation with time [44].
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The outcomes of the LPV control approach are compared with the ASMC control

algorithm proposed in [44]. The evolution of mass over time is illustrated in

Figure 5.29. The mass remains constant until 4sec, at which point a step change of

2kg is introduced, followed by an exponential decay in mass starting at t = 30sec.

Figure5.30 displays the quadcopter’s altitude tracking for a ramp reference input.

The findings suggest that the ASMC control scheme effectively follows the ramp

reference input in the presence of varying mass, in contrast to the SMC scheme,

which exhibits deviation from the reference signal.

Figure 5.30: Altitude ramp tracking of quadcopter in the presence of varying
mass using ASMC [44].

The effectiveness of the proposed LPV control scheme in achieving ramp altitude

tracking for a quadcopter, despite fluctuations in mass, is depicted in Figure 5.31.

The visualization highlights the LPV controller’s ability to successfully track a

ramp reference signal even when faced with variations in mass over time. This

observation underscores the robust performance of the LPV control scheme in
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addressing the challenges posed by dynamic changes in the system’s mass during

altitude tracking.

0 1.5 3

-0

0.3

Figure 5.31: Altitude ramp tracking of quadcopter in the presence of varying
mass using LPV.

5.4 Chapter Summary

This chapter contains the simulation findings for the three control design tech-

niques. Main focus of this chapter revolved around the discussion on achieved

results through simulation using MATLAB/SIMULINK. Different scenarios are

considered to test the validity of the designed schemes. Section 5.1 provides the
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simulation results of the LPV control scheme. In Section 5.2, a comparison of the

LPV control strategy with the H∞ control design with pole placement constraint

is carried out to ascertain which approach is more efficient for quadcopter position

control with variable payload. LPV control scheme has achieved better results as

compared to the linear control approach. Finally, In Section 5.3, we compare three

different ways of controlling a quadcopter: the LPV strategy, the SMC design, and

the ASMC algorithm. We want to find out which one works better for keeping the

quadcopter in position, especially when dealing with changes in payload weight

and windy conditions. This comparison helps us understand how well each control

method performs in real-world situations.



Chapter 6

Conclusion and Future Work

The control design of an under-actuated dynamical system in the presence of vary-

ing parameters, external disturbances, and actuator constraints is a challenging

control problem. The effect of these variable parameters, outside disturbances,

and actuator limitations on the system dynamics should be carefully considered

during the control scheme design phase, as these perturbations can aggravate the

system’s performance and/or even cause instability in the system. For these rea-

sons, the control design problem for under-actuated system has become a principal

area of research. Quadcopter is an under-actuated dynamical system whose ap-

plication with varying payload is increasing day by day. Quadcopters used for

spraying chemicals have a variable payload. The mass is not fixed and varies over

time. The variation in mass will alter the moment of inertia. These variations in

parameters, in addition to the complex dynamics of quadcopter, such as nonlin-

earities, under-actuation, external disturbances, actuator constraints, sensor noise,

etc., make the control system design a challenging problem.

6.1 Conclusion

Based on the research work, the thesis summary is revealed as follows:

124
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The dynamics of the quadcopter with variable payload is presented in Chap-

ter 3. Varying parameters of the quadcopter are found using the 3D-CAD (3-

dimensional computer-aided design) model of the quadcopter with payload de-

veloped in SOLIDWORKS. Model equations are obtained for the varying mass

and inertia parameters using empirical modeling. The RMSE is used for assess-

ing the accuracy of predictive models. The RMSE of the fitted curve for mass

is 5.352 × 10−7, for inertia about x-axis is 3.366 × 10−7, for inertia about y-axis

is 3.448 × 10−7 and for inertia about z-axis is 6.196 × 10−8. The small values of

RMSE indicate the goodness of fit. The derived equation for mass illustrates how

the quadcopter’s mass parameter changes as the liquid level in the tank decreases.

Similarly, the obtained equations for inertia parameters reveal the variations in

these parameters with the changing mass. An LPV model is developed to rep-

resent the nonlinear quadcopter system with a variable payload. To ensure its

accuracy, the LPV model’s response is compared with that of the nonlinear model

for validation purposes. Additionally, a linear model is introduced for the quad-

copter’s nonlinear dynamics and is presented in Section 3.3.2. The improvement

in RMSE for fully actuated dynamics (altitude and yaw) of the quadcopter is 85%

and 84%, respectively. In the under-actuated dynamics (roll, pitch, x-position, and

y-position), the RMSE improvement is 84%, 90%, 78%, and 71%, respectively. The

results presented in Section 3.4 demonstrate that the LPV model outperforms the

linear model significantly, especially for quadcopters with variable payloads.

Linear matrix inequalities (LMIs)-based linear parameter varying (LPV) control

algorithms are proposed for the full motion control of a 6-DOF (degrees of free-

dom) quadcopter model. Chapter 4 discusses the design of LMIs-based LPV and

linear control schemes. The LPV control algorithm is an optimal, robust control

technique whose gains vary with the scheduling parameters. The main objective

of an LPV control methodology was to control the plant over a predefined oper-

ating range. LMIs-based LPV control scheme is proposed for quadcopter position

control subject to varying mass, varying inertia, mass flow rate, large tilt angles,

and external disturbances. LMIs of quadratic H∞ performance and D-stability

are used to design the LPV control strategy for the LPV model. The quadrtaic
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stability and H∞ performance are analyzed. The achieved values of quantity tmin

is negative (i.e., tmin < 0) which indicates the robust stability of the closed loop

system. The quadratic H∞ performance γ is less than 4, which is required in

H∞ control design framework. Moreover, a multi-objective linear time invariant

(LTI) controller based on the LMIs of H∞ performance and pole placement in LMI

regions is designed for the linear model of quadcopter.

To evaluate the efficacy of the proposed LPV scheme, simulations are performed in

MATLAB/SIMULINK for the desired position tracking of the quadcopter. Chap-

ter 5 discusses the simulation results of the LMIs-based control schemes. The

simulation results of the LPV control scheme is presented in Section 5.1. The

results indicate that the quadcopter is efficiently tracing the reference trajectory

in the presence of varying payload and wind disturbance simultaneously. The sug-

gested control scheme forces the error signals to zero in the steady state without

actuator saturation.

The outcomes of the LPV algorithm are compared with the H∞ control design

with pole placement constraints. Several scenarios are simulated and studied. The

comparison of the results is provided in Section 5.2. In Case 1, the quadcopter’s

position is required to track a unit step signal, while the yaw angle needs to be

maintained at ∠00. A unit step signal was applied in the presence of full payload,

varying payload, and empty payload. The tracking performance was examined in

terms of system rise time , settling time, overshoot, and root mean squared error.

The values of the performance parameters and percentage improvements are listed

in Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8, respectively. Better position

tracking and yaw angle stabilization were accomplished in the presence of variable

mass and moment of inertia using the LPV scheme as compared to the linear

control scheme. The proposed LPV scheme improves the rise time up to 28%, the

settling time up to 26%, root mean squared error up to 91%, and root mean squared

of control signal up to 92%. In Case 2, 30% variation in the inertia parameters

were considered and the results of the two schemes were compared. In Case 3,

position tracking in the presence of dynamic payload and wind disturbance was

considered. In Case 4, Gaussian noise N(µ, σ2) was introduced into the quadcopter
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outputs, and the performance of the control schemes were tested and compared.

The numerical results indicate that the recommended LPV approach can achieve

better position tracking in the presence of variable mass, variable inertia, mass

flow rate, wind disturbance, and noise without actuator saturation in contrast to

the LTI H∞ control scheme.

The effectiveness of the LPV scheme is further assessed through a comparison

with the SMC controller across various scenarios, including fixed mass, variable

mass, and wind disturbance. The performance parameter values are detailed in

Tables 5.9, 5.10, and 5.11, corresponding to each scenario. The findings highlight

that the LPV control scheme demonstrates good position tracking when contrasted

with the SMC control scheme. Specifically, the LPV scheme enhances the rise

time, settling time, and root mean squared error by up to 26%, 55%, and 42%,

respectively.

The conclusion drawn from the overall dissertation is as follows:

1. Development of LPV model of quadcopter with varying payload, large tilt

angles, and wind disturbance.

2. Validation of the LPV model of the quadcopter by comparing its response

with the nonlinear 6-DOF model with varying payload.

3. Design and development of LMIs-based LPV control for quadcopter position

control in the presence of varying payload and wind disturbance.

4. Analysis of robust stabilty and quadratic H∞ performance of closed loop

system using LMIs.

5. The efficacy of the proposed robust multi-objective LMIs-based LPV control

is established using simulations in MATLAB/SIMULINK. The simulation

results indicate that the proposed framework addresses the position control

problem of quadcopter with varying payload in a comprehensive way.

6. The results of the multi-objective LMIs-based H∞ and SMC control strate-

gies are compared with the LPV scheme. The simulation results show that
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the LPV framework gives better position tracking in the presence of variable

payload and wind disturbance.

7. Improvement is achieved in the performance parameters such as tr, ts, RMSE,

and RMS of control signal. Moreover, smooth control action without actua-

tor saturation and smooth transition in the tilt angles are achieved with the

LPV scheme in contrast to the LTI control approach.

6.2 Future Directions

The study work that is presented in this thesis can be expanded in plenty of ways.

Certain problems are highlighted that can be broadened for quadcopters with

varying payload. Future tasks recommended for quadcopter control with variable

payload are outlined as:

1. Estimation of the system states

2. Pressure pump dynamics in the quadcopter model

3. Real-time implementation of the proposed LMIs-based LPV technique

Estimation of the system states:

In many control systems designs, not every state of the system can be directly

measured. State estimation techniques allow the estimation of unmeasured states

based on available measurements. For the suggested LPV model of quadcopter,

an LPV observer may be developed to estimate the states of the system. LMIs-

based LPV controller with observer can be designed for the position tracking of

quadcopter with varying payload. The stability of the closed-loop system with

observer may be assessed and the effectiveness and precision of the LPV controller

with observer can be evaluated.

Inclusion of the sprayer pump in the quadcopter dynamic model:

Quadcopters used for spraying chemicals have a spray system attached to it. The
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components of the spray system include a liquid tank, a sprayer pump, and nozzles.

A water pump is used in the sprayer drone to maintain the flow rate of liquid.

When the pump is turned on, the liquid in the tank is pumped to the nozzles,

where it is then released as a spray. The pressure pump dynamics have not been

added to the quadcopter model developed in this thesis. The dynamics of the

pressure pump can be included in the quadcopter model.

Real-time implementation of the LMIs-based LPV technique:

Real-time implementation of control design approaches is of paramount impor-

tance in control systems. Implementing a control design scheme in a physical sys-

tem allows researchers to evaluate the stability and performance of the proposed

methodology. It helps to validate and verify the robustness and effectiveness of the

design control algorithms. It allows the researchers to compare the simulation re-

sults with the actual system results, ensuring that the control scheme design fulfil

the required objectives. The proposed LPV control approach can be implemented

in real-time for quadcopter with varying payload, and its stability, robustness,

efficacy, and performance for position tracking can be tested.

6.3 Chapter Summary

In this chapter, final remarks were developed, followed by suggestions for the

continuation of this dissertation study. Section 6.1 of this chapter provides a

conclusion on the results achieved. In Section 6.2, the future work based on this

research work is presented.
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