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Abstract

Supplier selection and order allocation (SS-OA) are two of the most important

strategic decisions for supply chain network design and operation. If sustainability

and resilience criteria are taken into consideration together and a holistic sustain-

able and resilient SS-OA is carried out, it may enable the supply chain network to

perform better when subjected to disruption scenarios. In order to achieve this ob-

jective, a novel comprehensive multi-phase, multi-period sustainable and resilient

SS-OA decision support framework has been proposed. This framework combines

multi-criteria decision making techniques with multi-objective programming while

taking into account triple bottom line (TBL) sustainability and resilience criteria

simultaneously for optimizing a multi-modal, multi-echelon supply chain network

susceptible to disruption risks.

The proposed decision support framework has been divided into 5 phases. In the

first phase, multi-criteria decision-making (MCDM) techniques fuzzy extended

Analytic Hierarchy Process (FE-AHP) and fuzzy Technique for Order of Prefer-

ence by Similarity to Ideal Solution (FTOPSIS) have been used to evaluate the

potential suppliers in the context of TBL sustainability and resilience criteria. A

multi-objective, mixed-integer nonlinear programming (MOMINLP) mathemati-

cal model has been developed in the second phase for optimal order allocation

to the selected suppliers. The model has been fuzzified to incorporate real-world

uncertainty and solved by using a nonlinear solver and an exact algorithm i.e.

Augmented ε-Constraint 2 (AUGMECON2) method simultaneously for generat-

ing Pareto optimal solutions. TOPSIS augmented with objective functions weights

determined using Criteria Importance through Intercriteria Correlation (CRITIC)

method has been applied in the third phase to rank and select the best solutions.

In the fourth phase, the MOMINLP mathematical model has been reconsidered

and optimized with respect to supply chain network service level while taking into

account the impact of multiple random and intentional disruption scenarios. In

order to arrive at the best performance configuration for the supply chain net-

work, the influence of the disruption scenarios on the service level of the network

has been evaluated and the ideal, no disruption and disruption solutions have



x

been compared against fixed criteria in the fifth and the last phase of the decision

support framework.

The effectiveness of the decision support framework has been demonstrated by

implementing an application case study based on data collected from the pharma-

ceutical industry. The results indicate that among the TBL sustainability criteria

considered, product price, past business, innovative capability, and information

disclosure rank as the most significant sub-criteria for the decision makers (DMs)

in the pharmaceutical industry while robustness and flexibility are considered the

most valued attributes for potential suppliers as far as the resilience criterion is

concerned. Furthermore, transfer cost and custom clearance cost together com-

prise more than two-thirds of the overall cost of the supply chain network. It

has also been noted that inland transportation of goods is dominated by rail as

the most preferred mode of transport. The comparison and analysis of the no

disruption and disruption solutions indicates that the proposed decision support

framework enables the supply chain network to achieve the DMs’ specified per-

formance target. However, in order to maintain the desired service level and to

counter the possibility of a stock-out under the influence of probabilistic and net-

work disruptions, the DMs have to allocate greater financial resources e.g. a 19.2%

raise in the total cost for supplier-2 becoming unavailable, and be willing to accept

a substantial rise in the value of the transportation time (a maximum of 42.3%

for a substitute supplier replacing supplier-2) along with a considerable increase

in environmental impact.
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Chapter 1

Introduction

1.1 Research Background

Sustainability can be defined as creating and maintaining conditions under which

humans and nature co-exist in productive harmony thus ensuring future of present

and coming generations. Sustainable manufacturing refers to the development of

manufactured products through processes that are economically sound, have min-

imal environmental impact, and are firmly based on the principles of energy and

natural resource conservation. It essentially includes employee, community, and

product safety, and leads to a positive societal impact. Supply chain management

is a vital component of any manufacturing operation, thus, supply chain sustain-

ability may be defined as the management of supply chains where all the three

dimensions or aspects of sustainability i.e. economic (or profit), environmental

(or planet), and social (or people), the so called “triple bottom line” or TBL, are

taken into consideration [1].

Sustainable supply chain management aims for voluntary integration of the three

dimensions of sustainability as referred to above with key inter-organizational busi-

ness systems designed for effective and efficient management of material, informa-

tion, and capital flows associated with the procurement, production, and distri-

bution of products [2]. The primary objective of this integration is to achieve an

optimal combination of the three dimensions of sustainability with supply chain

1
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network operations. There is considerable practical evidence around the world and

reported in literature that sustainable supply chains usually offer superior logistics

performance and resources utilization [3]. Thus, sustainability and adherence to

sustainability practices usually serves as a source of competitive advantage for any

organization engaged in international business or trade.

Supplier selection is the process by which firms identify, evaluate, and contract

with suppliers. The main objective of the supplier selection process is to reduce

purchase risk, maximize overall value to the purchaser, and develop long term

relationships between buyers and suppliers [4]. Supplier selection is divided into

two main categories: single sourcing, where only one supplier is able to fulfill

an organization’s demands, and multiple sourcing, where more than one supplier

is selected as no one supplier is single-handedly capable of meeting the demand

requirements of the enterprise. In case of single sourcing, the decision makers

(DMs) have to choose and select only one supplier where as in the case of multiple

sourcing the task of the DMs is more challenging as they have to select best

suppliers out of many and then allocate optimal quantities to each supplier in order

to create an environment of fair play and genuine competition, while maximizing

returns for their own organization at the same time. Usually the practice of

multiple sourcing is preferred due to its inherent characteristics of ensuring order

flexibility, capacity, and timely delivery given the variation that may exist in the

orders that can be placed by any organization [5].

Supplier selection is a complex phenomenon and a multi-criteria decision making

(MCDM) process that requires assessment and evaluation of various conflicting

criteria i.e. cost, product quality, delivery time, volume flexibility etc. that need

to be taken into consideration in order to select consistent suppliers [6, 7]. Sup-

plier selection and order allocation (SS-OA) has been traditionally carried out

using economic or the so called conventional criteria only but lately, the growing

concern for sustainability issues in manufacturing and supply chain management

has shifted the focus towards inclusion of environmental and social criteria in this

process as well. This integration of TBL sustainability criteria with supplier selec-

tion and order allocation leads to adding more complexity to the SS-OA problem

[8]. In sustainable supplier selection and order allocation (SSS-OA), suppliers are
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selected using TBL sustainability criteria whereas order allocation is carried out

using multiple sourcing strategy.

International supply chains are vulnerable to disruptions. In recent years, the

most important among these disruptions has been the outbreak and spread of

the COVID-19 pandemic, which lead to restrictions on goods movement, border

closures, and reduced workforce availability at an unprecedented scale. The impact

of the pandemic caused the world economy to contract by 3.5% in 20201 with

massive loss to global value chain. Natural or manmade accidents can impact

transportation infrastructure, warehouses, and distribution centers. Congestion

or blockage of transportation routes where ships, trains, and trucks are queued

up to unload or load cargo can delay shipments leading to logistic bottlenecks.

The Suez Canal obstruction in 2021 or the ongoing Panama Canal crisis due to

extreme drought conditions is an example of this category of disruptions. The

weeklong 2021 Suez Canal obstruction held up $9 billion in global trade each day

of the blockage2. The nature and extent of global supply chain disruptions and

the magnitude of their fiscal and logistic impact entails a detailed evaluation of

supply chain network performance in terms of resilience.

Resilience is defined as the intrinsic ability of an organization, system, or network

to keep or recover a steady state, thereby allowing it to continue normal operations

after facing a disruptive event [9]. Supply chain resilience may be referred to as

the ability of a supply chain network to both resist disruptions and to recover

operational capability after disruptions have occurred. Disruptions are random

events that cause a supply chain network to stop functioning either completely or

partially for any period of time.

Disruptions are not rare events; given the large number of disruption causes and

the vast scale of modern supply chains, the likelihood of the supply chain network

being disrupted owing to one reason or another in a given time period is quite high.

Certain major natural or manmade (intentional or unintentional) disruptions i.e.

earthquakes, floods, pandemics, territorial conflicts, and industrial accidents hap-

pen quite infrequently but various minor disruptions i.e. power outages, road

1https://www.brookings.edu/
2https://porteconomicsmanagement.org/
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blocks, machine breakdowns etc. occurring along the supply chain network are

fairly common. Whether major or minor, a disruption can lead to a domino effect

through the supply chain network undermining its performance unless there are

measures in place to check or counter the cascading effect of the disruption. In

extant literature, disruptions and their impact is usually discussed as part of the

supply uncertainty. More specifically, disruptions are treated as special cases of

yield, capacity, and lead time uncertainty. Due to the differences between mod-

eling approaches and the managerial insights gained, in the following chapters,

disruptions and the evaluation of their impact is limited to random demand in

order time intervals (leading to probabilistic disruptions), and supplier unavail-

ability, inaccessible facilities, and lost storage capacity (all leading to network

disruptions), which may cause a detrimental effect on the supply chain network

service level [10].

Service level is the supply chain network performance target specified by the DMs.

It is a quantitative measure that identifies inventory performance objectives with

the aim to ensure that all customer orders are fulfilled within acceptable limits of

the performance target. Service level is often measured in terms of an order cycle

time, case fill rate, line fill rate, order fill rate, or any combination of these. All

organizations, manufacturing or otherwise, employ suitable demand forecasting

techniques for estimating order quantities during inventory replenishment cycle

for any given time period. At this stage, demand uncertainty must be taken into

consideration in order to protect against a stock-out situation in which demand

exceeds forecast. This requirement that the probability of inventory on hand

should not fall below a certain critical level by the end of a review period has

been referred to as α service level by Chen and Krass [11]. This type of service

level is consequential when the DMs are more concerned with the likelihood of a

stock-out occurring rather than by its magnitude. A countermeasure employed

in practice for avoiding the possibility of a stock-out is the addition of safety

stock to the base inventory. In this approach the objective is to determine an

inventory replenishment level that will meet a desired performance level such as

a low probability of stock-out for any time period considered. In this situation,

safety stock will act as a buffer to absorb any higher than usual demand during the
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review period plus the demand during the lead time period. It may be concluded

that achieving a target service level can be considered a reliable indicator for a

supply chain network to be regarded as resilient against probabilistic or network

disruptions.

1.2 Research Motivation

In light of the discussion presented in the previous section, it is evident that in-

corporating sustainability in supply chain network operations offers a strategic

advantage to any organization in terms of resource consumption, logistic perfor-

mance, and long-term value creation. However, a sustainable supply chain though

efficient would always be vulnerable to unexpected natural or manmade disasters.

Selecting suppliers that have been evaluated and allocating optimal order quan-

tities that have been determined based on a criteria that incorporates both TBL

sustainability dimensions and resilience aspects concurrently would not only en-

sure an adequately performing sustainable supply chain but will also significantly

reduce the likelihood of disruptions propagating through the network and service

level degradation when the supply chain is disrupted [12].

1.3 Problem Statement

Modern supply chains extend beyond international borders, operate in diverse

economic, environmental, and social settings, and are subject to influence from

multiple types of natural or manmade disruptions. The state of the art literature

lacks an integrated methodology that combines TBL sustainability and resilience

criteria concurrently in both supplier selection and order allocation parts of the

SS-OA problem while taking into account the impact of demand uncertainty and

network disruptions.

The integrated methodology should offer a step by step procedure to select sup-

pliers and to carry out order allocation based on a simultaneous consideration of
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TBL sustainability and resilience criteria, and provide a means to evaluate supply

chain network performance under the influence of multiple disruption scenarios.

1.4 Research Objectives

The principal objectives of the research work presented in this thesis are summa-

rized as follows:

(a) Development of an integrated methodology and a holistic multi-phase, multi-

period decision support framework for sustainable and resilient supplier se-

lection and order allocation (SRSS-OA) problem.

(b) Evaluation of the effectiveness of the proposed decision support framework

by conducting multi-criteria optimization of a real-life complex supply chain

network subject to disruption risks.

(c) Comparison of the ideal, no disruption and disruption solutions and identi-

fication of the best performance configuration for the supply chain network

considered.

A graphical abstract that highlights the key elements of the research work pre-

sented in this thesis has been included in Fig. 1.1.

1.5 Research Contribution

A novel holistic multi-phase, multi-period sustainable and resilient SS-OA deci-

sion support framework has been proposed in this research thesis. The proposed

framework combines fuzzy MCDM techniques with fuzzy multi-objective mixed-

integer nonlinear programming (FMOMINLP) mathematical model to optimize

TBL sustainability and resilience criteria concurrently for a multi-modal, multi-

echelon supply chain network. The efficacy of the decision support framework has
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Figure 1.1: Graphical abstract

been demonstrated by implementing it using data from the pharmaceutical indus-

try, which has emerged as one of the most critical industry sectors considering the

impact of the COVID-19 pandemic globally [13].

The decision support framework has been implemented in 2 parts i.e. in the first

part comprising of phases 1-3, sustainable and resilient SS-OA has been carried

out, which is followed by disruption scenario evaluation and comparison of no

disruption and disruption solutions in the second part consisting of phase 4 and

phase 5, respectively. A conceptual diagram that illustrates the implementation of

the proposed decision support framework on the supply chain network considered

in this research work has been included in Fig. 1.2.

The research work included in the following chapters presents a unique perspec-

tive on supplier selection and order allocation. The proposed decision support

framework is inclined towards the concept of Industry 5.0 and aligned with its

core values i.e. sustainability and resilience [14].

It considers and analyzes SRSS-OA problem with an aim to deliver value added

service to customers by attempting to minimize supply chain vulnerability against

natural or manmade disruptions. Sustainable and resilient supply chain networks

can in turn ensure public well being in times of turmoil and serve to achieve the
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fundamental objectives of the Industry 5.0 paradigm i.e. societal heterogeneity,

environmental and social value, and human-centric technological transformation.

1.6 Thesis Outline

The rest of the thesis has been organized as follows:

Chapter 2

In this chapter, a detailed and contextual overview and comparison of the sus-

tainable and resilient SS-OA literature with reference to supply chain network

disruptions and service level has been presented.

Chapter 3

This chapter introduces the structure and components of the problem that has

been addressed in this research work and presents the complete integrated method-

ology i.e. the decision support framework, the mathematical model, and the solu-

tion approach.

Chapter 4

In this chapter, an application case study has been used to implement and demon-

strate the SRSS-OA part of the decision support framework (represented by phases

1-3) as included in chapter 3.

Chapter 5

This chapter presents a detailed analysis in order to evaluate the performance of

the supply chain network under the influence of multiple disruption scenarios using

the procedure outlined in phase 4 and phase 5 of the proposed decision support

framework as included in chapter 3.

Chapter 6

This chapter concludes the preceding research work and suggests potential research

avenues.
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Chapter 2

Literature Review

Supplier selection and order allocation are generally paired together and treated

as complementary activities. For a DM, supplier selection is usually the first step

in addressing a SS-OA problem. Hence, identifying the right criteria for evaluating

suppliers should be considered a key issue with far-reaching implications in supply

chain management.

2.1 Supplier Selection Criteria

Supplier selection is a well established research area and a diverse body of knowl-

edge exists that covers different aspects of this field of study. Various review

publications have systematically analyzed the progress and development of sup-

plier selection concepts and techniques in general and the evolution of supplier

selection criteria in particular over the years i.e. de Boer et al. [15] (methods),

Bhutta [16] (methodologies), Wu and Barnes [17] (decision making models and ap-

proaches), Ware et al. [18] (criteria, methodologies, and application case studies),

Wetzstein et al. [19] (methodologies), Simic et al. [20] (integration of Fuzzy Set

Theory (FST) with supplier evaluation techniques), Ocampo et al. [21] (methods

and techniques), Aouadni et al. (MCDM techniques and mathematical models for

SS-OA, and application case studies) [22], and Naqvi and Amin [23] (application

of operations research techniques for SS-OA).

10
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2.1.1 The Advent of Conventional Criteria (1966-1999)

The earliest reported criteria for supplier evaluation by Dickson comprised of 23

different attributes [24]. This research work identifies cost, delivery rate, quality,

and supplier efficacy etc. as important criteria for single supplier selection. The

research study aims to examine the various approaches and factors involved in the

vendor selection process and offers insights into the decision making aspects. The

author highlights the significance of vendor selection in achieving supply chain

efficiency and effectiveness. The research work recognizes that selecting the right

vendors is crucial for ensuring product quality, timely delivery, cost-effectiveness,

and overall customer satisfaction. The research study has reviewed different ven-

dor selection systems and methodologies employed by various organizations. It

discusses traditional approaches such as request for proposal (RFP), request for

quotation (RFQ), and request for information (RFI) etc. Additionally, it explores

more advanced techniques, including MCDM methods, data-driven approaches

(relevant to the period of the research study), and optimization models.

Weber et al. [25] presented net price as the main evaluation criteria for any deci-

sion making process concerning supplier selection. The research work emphasizes

that selecting vendors based on appropriate criteria is crucial to meeting customer

demands and maintaining a competitive advantage. Furthermore, the research

study discusses various methods and techniques used for vendor selection. These

methods range from simple scoring models to more advanced MCDM approaches,

such as Analytic Hierarchy Process (AHP) or Data Envelopment Analysis (DEA)

etc. Each method has its own strengths and limitations, and the choice of method

depends on the specific needs and requirements of the organization. The research

work also highlights the importance of aligning the vendor selection criteria with

the organization’s strategic goals and objectives. It emphasizes the need for a

structured and systematic approach to vendor selection that considers both quan-

titative and qualitative factors. Additionally, the authors have pointed out the

usefulness of establishing metrics and indicators to assess vendors’ performance

regularly. This helps in identifying areas for improvement, addressing any com-

munication issues, and ensuring that vendors consistently meet the organization’s
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requirements.

Hong and Hayya [26] performed research supported by real-time data and deter-

mined that sourcing from multiple suppliers can reduce the total purchasing and

inventory holding cost in a manufacturing setup based on just-in-time inventory

system. The authors have discussed the advantages and disadvantages of both

approaches. Single sourcing offers benefits such as simplified coordination, better

communication, and potential cost savings through volume discounts. However, it

carries the risk of disruptions if the sole supplier encounters issues. On the other

hand, multiple sourcing provides diversification, flexibility, and reduced vulnera-

bility to supplier problems. However, it may introduce complexity in coordination,

communication, and logistics, potentially increasing costs. Additionally, the re-

search work explores different scenarios and conditions under which one sourcing

strategy might be more appropriate than the other. It suggests that in situations

with high demand uncertainty, product complexity, or supply disruptions, multi-

ple sourcing may be preferable to mitigate risks. Conversely, in stable demand

conditions, with low product complexity, and strong supplier capabilities, single

sourcing may offer cost and coordination advantages.

Wilson [27] analyzed the correlation among supplier selection criteria and con-

cluded that cost, quality, timely delivery, and vendor service are the key charac-

teristics for single supplier evaluation and selection. The research work highlights

that supplier selection is a crucial decision that can significantly affect supply chain

performance. The author has observed that the relative importance of supplier

selection criteria can vary across industries, organizations, and specific contexts.

The research study emphasizes the need for organizations to align their selection

criteria with their strategic goals and requirements, as well as the characteristics

of the products or services they procure. Furthermore, the author has highlighted

the evolving nature of supplier selection criteria and notes that factors such as

sustainability, innovation capability, and risk mitigation have become more im-

portant in recent years, reflecting the changing business landscape and emerging

trends in supply chain management.

A survey by Swift [28] reported that price, availability, design, vendor’s repute,
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and reliability are the key factors for evaluation of single or multiple suppliers. The

author discusses the importance of conducting thorough assessments of potential

suppliers to ensure their ability to meet these criteria. The research study exam-

ines the role of additional criteria, such as supplier flexibility, innovation capability,

and social responsibility, in supplier selection. It emphasizes the growing impor-

tance of these criteria in today’s business environment, where organizations seek

suppliers who can adapt to changing demands, drive innovation, and demonstrate

ethical and sustainable practices. The author emphasizes the need for a compre-

hensive and structured supplier selection process that considers both quantitative

and qualitative factors. Furthermore, the importance of leveraging supplier per-

formance data, conducting site visits, and engaging in effective communication

and negotiation with potential suppliers has been highlighted.

It has been reported by Vonderembse and Tracey [29] that in manufacturing indus-

try, quality, availability, reliability, and performance are the key evaluation criteria

for supplier selection. The research work recognizes the critical role of suppliers

in achieving manufacturing excellence and emphasizes the need for effective sup-

plier selection processes. The authors have highlighted the importance of selecting

suppliers based on appropriate criteria as it can positively impact manufacturing

performance by ensuring reliable and high quality inputs, reducing lead times, and

enhancing overall supply chain efficiency. Additionally, the research study explores

the concept of supplier involvement, which refers to the extent to which suppli-

ers are engaged in collaborative activities with manufacturers. It investigates the

impact of supplier involvement on manufacturing performance indicators, such as

product quality, delivery performance, cost efficiency, and innovation capability.

The outcomes of the research study suggest that supplier involvement positively

influences manufacturing performance. Close collaboration and communication

with suppliers leads to improved product quality, reduced lead times, enhanced

cost efficiency, and increased innovation. The research work highlights the sig-

nificance of establishing strong and enduring partnerships with suppliers to drive

manufacturing excellence and the need for continuous monitoring and evaluation

of suppliers’ performance to ensure ongoing improvement and alignment with or-

ganizational goals.
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2.1.2 The Transition Era (2001-2010)

Ghodsypour and O’Brien [30] used purchasing cost and quality as assessment cri-

teria to highlight the significance of single and multiple sourcing. The research

work recognizes the importance of considering the total cost of logistics, which

includes various components such as transportation costs, inventory costs, and

order fulfillment costs, in the supplier selection processes. It notes that selecting

the right suppliers while considering these cost factors is crucial for achieving sup-

ply chain efficiency and cost effectiveness. The authors have focused on scenarios

where organizations have multiple sourcing options, multiple criteria to evaluate

suppliers, and capacity constraints that limit the number of suppliers that can

be selected. They present a comprehensive approach to address these complexi-

ties in supplier selection decisions. The research study discusses the formulation

of the supplier selection problem as a mixed-integer linear programming (MILP)

model that considers multiple objectives, including minimizing the total cost of

logistics while satisfying capacity constraints and meeting predefined evaluation

criteria. It presents mathematical formulations and optimization approaches that

can be used to solve the supplier selection problem by applying different heuristic

algorithms, such as Genetic Algorithm (GA), simulated annealing, and ant colony

optimization to find near optimal solutions in complex scenarios.

A comprehensive review on multiple sourcing presented by Minner [31] highlighted

that the practice of selecting more than one supplier can potentially enhance the

bargaining power of the customer. Multiple suppliers can help the customer to

successfully mitigate risks or disruption scenarios and offer competitive advan-

tages between potential suppliers. The author has discussed different approaches,

including deterministic and stochastic models, mathematical programming tech-

niques, simulation methods, and optimization algorithms.

The research work highlights the importance of considering various factors in mul-

tiple supplier inventory models, such as supplier performance, pricing structures,

transportation costs, and demand variability. It emphasizes the need to balance

conflicting objectives, such as minimizing inventory holding costs while maintain-

ing high service levels. The research study examines the impact of uncertainties
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and disruptions on multiple supplier inventory management. It further explores

approaches for mitigating risks and enhancing supply chain resilience, such as

safety stock policies, demand forecasting techniques, and contingency planning.

Ho et al. [32] analyzed the existing literature on supplier selection and deter-

mined that product price, quality, and delivery are the most important selection

criteria. The research work focuses on the importance of supplier evaluation and

selection in supply chain management and the need for robust decision making

frameworks that consider multiple criteria. The authors have systematically ana-

lyzed a range of MCDM methods employed in supplier selection process including

AHP, Technique for Order of Preference by Similarity to Ideal Solution (TOP-

SIS), DEA, Preference Ranking Organization Method for Enrichment Evaluations

(PROMETHEE), and others. Each method is described in terms of its underlying

principles, advantages, and limitations. The research study also highlights the need

for a comprehensive evaluation framework that incorporates both quantitative and

qualitative factors and accounts for the specific requirements and objectives of the

organization.

2.1.3 Emergence of TBL Paradigm (2011 Onwards)

Chang et al. [33] carried out a study of literature to point out that cost, flexibil-

ity, quality, delivery reliability, capacity of related facilities, technology capability,

lead time, reduction on demand change, environmental control, and service level

are the top ten criteria taken into consideration during supplier selection process.

The research study focuses on addressing the challenges of determining the rela-

tive importance of criteria during supplier selection process and highlights their

significance in ensuring effective and efficient supply chain operations. However,

assigning appropriate weights or importance to these criteria can be subjective

and challenging due to uncertainties and vagueness in decision making. To over-

come these challenges, the research work introduces the fuzzy Decision Making

Trial and Evaluation Laboratory (DEMATEL) method as a comprehensive and

systematic approach. The fuzzy DEMATEL method applied in the research work

combines the advantages of fuzzy logic and the DEMATEL technique to address
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the uncertainty and imprecision associated with criteria evaluation. The research

work further outlines the step by step process of applying the fuzzy DEMATEL

method for developing supplier selection criteria.

It involves the identification of criteria, construction of a fuzzy decision matrix,

determination of the fuzzy correlation matrix, calculation of the fuzzy influence

matrix, and the derivation of the final weightages for the criteria. The fuzzy

DEMATEL method enables DMs to consider both the direct and indirect rela-

tionships among criteria, capturing the interdependency and interaction between

them. The fuzzy logic component allows for the representation of linguistic vari-

ables and subjective judgments in the decision making process.

Four supplier evaluation and selection criteria i.e. cost, quality, service, and ca-

pacity have been identified by Kazemi et al. [34] while developing a mathemati-

cal programming model for supplier selection that incorporates uncertainty. The

research work acknowledges that the SS-OA process involves complex decision

making, as organizations need to consider various objectives such as cost mini-

mization, quality maximization, delivery time optimization, and supplier capacity

constraints.

Additionally, DMs often face uncertainty and imprecision in defining these objec-

tives due to subjective judgments or incomplete information. The authors have

addressed these challenges by incorporating fuzzy objectives in the mathematical

model and propose a multi-objective mathematical programming approach that

allows DMs to consider multiple conflicting objectives simultaneously.

Fuzzy objectives have been incorporated using FST, which helps DMs to represent

and handle uncertain or imprecise objectives, as noted earlier. The model considers

the trade offs between different objectives and provides a Pareto optimal solution

set. DMs can analyze this solution set and make informed decisions based on their

preferences or priorities.

It can be seen from the above discussion that in recent years different evaluation

and selection criteria have been identified and used by various authors in published

literature for SS-OA.
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2.2 Sustainable Supplier Selection

The principles and practices of TBL sustainability have been integrated with sup-

ply chain management for past many years. Several research studies have been

conducted to understand and highlight the utility and significance of integrating

sustainability criteria with supply chain management [35].

An evaluation of the state of the art in sustainable supplier selection has been

presented by Gimenez et al. [36] (assessment of managerial practices employed for

sustainable supplier selection), Genovese et al. [37] (development of methodolo-

gies), and Igarashi et al. [38] (evolution of criteria and techniques).

2.2.1 Applications of Single MCDM Techniques

A framework for green supplier selection has been presented by Lee et al. [39] in

which an MCDM technique has been employed for evaluating suppliers based on

quality, life cycle cost, technical capability, greenhouse gas emissions, environmen-

tal monitoring, green competency, and recycling as major assessment criteria.

The research work addresses the increasing importance of environmental sustain-

ability and the need for organizations in the high tech sector to identify suppliers

that align with their green objectives. The research study introduces a green

supplier selection model specifically tailored to the high tech industry. Further-

more, the authors emphasize the importance of collecting and evaluating data on

supplier environmental performance through audits, certifications, and supplier

self-assessment questionnaires.

A ranking model for sustainable supplier selection has been proposed by Amin-

doust et al. [40] based on cost, quality, technology capability, pollution, resource

consumption, and information disclosure as the main sustainability attributes.

The research work utilizes a Fuzzy Inference System (FIS) to develop a mathemat-

ical framework that can handle imprecise or uncertain data. The FIS aggregates

the information from various criteria and calculates a comprehensive sustainability

score for each supplier. This score represents the supplier’s overall sustainability
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performance. By considering the linguistic variables and membership functions

associated with each criterion, the model captures the subjective nature of sus-

tainability assessments and provides a more accurate representation of supplier

rankings. The proposed model provides a systematic and objective approach that

can assist organizations in making informed decisions based on their specific sus-

tainability goals and requirements.

A two phase hybrid model for green supplier selection has been proposed by Govin-

dan and Sivakumar [41]. This model evaluates the potential suppliers using criteria

such as cost, quality, timely delivery, recycling capability, and greenhouse gas emis-

sions control. The research study addresses the challenge of integrating sustainabil-

ity considerations into SS-OA decisions in an industry specific context. It proposes

an integrated approach that combines heterogeneous Multi-criteria Group Decision

Making (MCGDM) and multi-objective linear programming (MOLP) techniques.

The MCGDM takes into account the diverse criteria and weights assigned to them

by the DMs. The MOLP approach optimizes the allocation of orders among the

selected suppliers while considering multiple conflicting objectives, such as mini-

mizing costs, carbon emissions, and waste generation etc.

Neumuller et al. [42] have developed a mathematical model to create a collection

of optimal strategic suppliers based on performance objectives and sustainability

targets using a combination of Analytic Network Process (ANP) and Goal Pro-

gramming (GP). The proposed model comprises of three main elements i.e. sup-

plier assessment, supplier classification, and portfolio optimization. In the supplier

assessment phase, the potential suppliers are evaluated based on their sustainabil-

ity performance indicators such as environmental impact, social responsibility, and

economic viability etc. This assessment helps identify suppliers that are aligned

with sustainable practices and have a positive impact on the company’s sustain-

ability objectives. The next step is supplier classification that involves categorizing

suppliers based on their sustainability performance scores. This classification en-

ables companies to differentiate between suppliers and prioritize those that exhibit

stronger sustainability practices. The last stage is portfolio optimization, which

involves selecting suppliers for the strategic portfolio based on their sustainability

performance.
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Mohammed et al. [43] have presented a methodology for evaluating sustainable

livestock suppliers on the basis of criteria such as price, technology, delivery rate,

environmental and refuse management systems, pollution control, safety practices,

and human resource development. The research work emphasizes the importance

of incorporating uncertainty and risks into the decision making process.

It discusses the use of scenario analysis, sensitivity analysis, and risk assessment

techniques to evaluate the robustness and resilience of the proposed methodol-

ogy. By adopting the integrated methodology, organizations can make informed

decisions that balance economic efficiency with sustainability considerations. The

methodology provides DMs with a structured and comprehensive approach to ad-

dress the two stage problem of SS-OA. It supports organizations in building a

sustainable supply chain by selecting suppliers that align with sustainability goals

and optimizing order allocation to minimize costs and environmental impact.

Lo et al. [44] have used a combination of ten sustainability criteria for supplier

performance evaluation. The authors recognize the increasing importance of sus-

tainability in supply chain management and propose an integrated methodology

to effectively handle green SS-OA problems. The integrated methodology com-

bines mathematical programming, MCDM methods, and optimization techniques

to optimize SS-OA while considering environmental factors. The methodology

takes into account criteria such as green performance, carbon emissions, waste

management, and social responsibility when evaluating and selecting suppliers.

Furthermore, the methodology optimizes the allocation of orders among selected

suppliers based on multiple objectives, including cost minimization, environmental

impact reduction, and customer satisfaction. It considers trade offs and constraints

to find the most optimal allocation that balances economic and environmental

goals. The research work highlights the importance of data collection and analysis

to support the model’s implementation. The proposed integrated methodology

has been demonstrated by implementing an application case study based on data

collected from the electronics goods manufacturing industry.

Gören [45] has used thirteen different sub-criteria for assessing suppliers with

regards to TBL aspects of sustainability. The sub-criteria have been analyzed
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through MCDM techniques for determining DM preferences. The framework pro-

posed in this research work incorporates a mathematical model that optimizes SS-

OA while accounting for the potential occurrence of lost sales. Lost sales refer to

the situations where customer demand cannot be fulfilled due to supply shortages

or other constraints. The research work highlights the importance of incorporating

sustainability criteria into the decision framework through which companies can

make more informed and responsible choices regarding their suppliers and order

allocation strategies.

An MCDM technique coupled with fuzzy approach has been used by Memari et

al. [46] to evaluate suppliers based on sustainability attributes like cost, qual-

ity, service, pollution reduction, green competency, and employment practices.

This research work has been implemented through a case study based on automo-

bile/automotive discrete parts manufacturing industry. The proposed framework

addresses the complexities and uncertainties associated with sustainable supplier

selection by incorporating intuitionistic fuzzy sets and TOPSIS.

The framework starts by identifying relevant sustainability criteria followed by ap-

plication of intuitionistic fuzzy sets to handle the imprecision and uncertainty in

assessing supplier performance against chosen criteria. TOPSIS is then utilized to

rank potential suppliers based on their sustainability performance. The proposed

methodology provides a structured approach to handle the uncertainty and com-

plexities of sustainable supplier selection and supports organizations in making

informed decisions that align with their sustainability goals. Khoshfetrat et al.

[47] have used criteria such as cost, technology, environmental management sys-

tem, green design practices, respect for rules and regulations, shareholders’ rights,

and human resource development for supplier evaluation and order allocation. The

research work addresses the need for integrating sustainability considerations into

SS-OA processes and proposes a fuzzy logic based methodology to handle the in-

herent uncertainty and vagueness in sustainable decision making. The authors

have emphasized the significance of selecting suppliers that align with sustainabil-

ity goals and allocating orders in a way that promotes sustainability throughout

the supply chain network. The research study proposes a FIS that utilizes lin-

guistic variables and fuzzy based rules to assess the sustainability performance
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of suppliers. The FIS aggregates different sustainability criteria and calculates

a composite sustainability score for each supplier. This score helps DMs rank

suppliers and make informed choices based on sustainability considerations. By

adopting the fuzzy approach, DMs can effectively handle the complexities of sus-

tainable SS-OA. The approach allows for the integration of multiple sustainability

criteria, subjective judgments, and uncertainty, enabling organizations to make

more sustainable and informed decisions in their supply chain operations.

Tirkolaee et al. [48] have used multiple MCDM techniques to evaluate suppliers

engaged with an electronics goods supply chain using sustainability criteria such

as cost, automation, product shelf life, environmental pollution, customer status,

trust and communication, and human rights. The research work recognizes the

challenge of dealing with imprecise and uncertain data and the need for a compre-

hensive decision making approach. For this purpose, the authors have proposed

a hybrid method that combines fuzzy decision making and multi-objective pro-

gramming (MOP). The fuzzy decision making process allows DMs to assess and

quantify the qualitative and subjective aspects of supplier performance concerning

sustainability and reliability criteria. This enables the representation and handling

of uncertainty in the decision making process.

The MOP aspect of the hybrid method formulates an optimization model that

balances the trade offs between conflicting objectives, such as minimizing environ-

mental impact and maximizing reliability. The model helps identify the optimal

set of suppliers that meet the sustainability and reliability requirements of the two

echelon supply chain considered in this research work. Furthermore, the research

study discusses the integration of the fuzzy decision making and MOP stages

through an iterative process. This enables the DMs to adjust the decision criteria

and weights, evaluate different supplier selection scenarios, and explore trade offs

to achieve the desired sustainable and reliable supply chain design.

A dynamic decision support framework for sustainable supplier selection in the

petro-chemical industry has been proposed by Alavi et al. [49]. This research

work has employed multiple TBL sustainability criteria i.e. cost, quality, flexibil-

ity, waste and environmental management systems, occupational health and safety
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management, and child and forced labor issues for supplier assessment. The pro-

posed framework employs mathematical models, data analytics, and visualization

techniques to assess the sustainability performance of suppliers and support deci-

sion making processes. It provides a structured means to evaluate supplier options,

ranking them based on sustainability criteria, and identifying the most suitable

suppliers for an organization’s specific needs and objectives.

It can be deduced from the above description that over the years, a variety of

MCDM techniques and mathematical modeling approaches have been employed

for sustainable supplier evaluation and selection i.e. AHP, ANP, TOPSIS, DEMA-

TEL, Quality Function Deployment (QFD), DEA, VIseKriterijumska Optimizacija

I Kompromisno Resenje (VIKOR), Delphi method, Additive Ratio Assessment

(ARAS) method, Adaptive Neuro (AN) FIS, Tomada de Decisao Interativa Mul-

ticriterio (TODIM), and Ordinal Priority Approach (OPA) etc. A classification

of modeling approaches related to sustainable supplier selection, monitoring, and

development has been presented by Zimmer et al. [50] and reproduced as Fig. 2.1.

2.2.2 Applications of Combined MCDM Techniques

In extant literature, a combination of two or more MCDM techniques has also

been employed for criteria weighting and for evaluating the priority or ranking of

sustainable suppliers. For instance, Zhou and Xu [51] have proposed an integrated

MCDM model based on DEMATEL, ANP, and VIKOR for sustainable supplier

selection in the retail industry. The research work focuses on integrating multiple

sources of information and criteria to facilitate an effective decision making pro-

cess. The authors have combined different sources of information, including expert

opinions, customer preferences, and objective data, to evaluate and rank poten-

tial suppliers. The research study proposes the application of various techniques,

such as AHP and Weighted Sum Model (WSM), to aggregate and analyze the

information from different sources. These techniques facilitate the integration of

subjective and objective data, enabling a more comprehensive evaluation of sup-

pliers. Furthermore, the authors suggest the use of fuzzy sets and grey systems

theory to handle vague and incomplete information, allowing DMs to make more
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informed and robust decisions. Zhang et al. [52] have proposed a framework for

combining rough DEMATEL and fuzzy VIKOR for calculating weights of sustain-

ability criteria and identifying the most suitable supplier. The rough DEMATEL

method allows for the identification and assessment of the cause and effect rela-

tionships among evaluation criteria. It helps to understand the interdependencies

and influences among criteria, providing a more accurate evaluation. The fuzzy

VIKOR method, on the other hand, is a MCDM approach that considers both

the benefits and costs associated with each alternative. It helps in ranking and

selecting the most suitable sustainable suppliers based on their performance across

multiple criteria. The authors have implemented the proposed approach through

a numerical case study.

Hoseini et al. [53] have employed fuzzy Best Worst Method (BWM) for determin-

ing the weights of sustainability criteria followed by weighted FIS for the ranking

of suppliers in the construction industry. The research work highlights the impor-

tance of sustainable supplier selection in this specific industry sector where factors

such as economic viability, environmental impact, and social responsibility play

crucial roles. The proposed methodology integrates fuzzy logic and MCDM tech-

niques to evaluate and rank potential suppliers based on their sustainability perfor-

mance. The research study utilizes a fuzzy based approach to handle the ambiguity

and uncertainty associated with subjective judgments and linguistic expressions

of DMs. The hybrid fuzzy based approach enables DMs in the construction indus-

try to consider quantitative and qualitative factors simultaneously, facilitating a

more holistic evaluation of supplier sustainability. By integrating fuzzy logic and

MCDM techniques, the methodology provides a robust decision support tool for

sustainable supplier selection. The authors have emphasized the practical appli-

cability of the proposed approach and provided a case study to demonstrate its

implementation. The case study illustrates how the methodology can effectively

assess and select suppliers based on their sustainability performance, taking into

account the specific requirements and objectives of construction projects.

A brief overview and comparison of relevant literature for sub-criteria and solving

techniques applied for supplier selection has been included in Table 2.1.
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Figure 2.1: A classification of modeling approaches for sustainable supplier selection (from [50], with permission)
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Boz et al. [54] have used a combination of fuzzy BWM and fuzzy ARAS method

for sustainable supplier selection in the health care sector with a focus on opti-

mizing logistics performance of the supply chain during COVID-19. The research

work recognizes the increasing importance of sustainability in health care supply

chains and the transformative impact of Logistics 4.0 technologies on supply chain

operations.

The authors have proposed a novel MCDM model that incorporates multiple cri-

teria, such as cost, quality, reliability, environmental impact, and social responsi-

bility, into the supplier selection process. The research study highlights the sig-

nificance of Logistics 4.0 technologies, such as Internet of Things (IoT), big data

analytics, and artificial intelligence, in improving supply chain visibility, traceabil-

ity, and overall performance in the health care sector. The proposed MC- DM

approach takes into account the potential impact of these technological advance-

ments while addressing sustainable SS-OA problem.

Out of all the techniques described above, AHP and TOPSIS or any variations of

these two are the most frequently used MCDM techniques for sustainable supplier

selection problem [7, 55]. A few instances from literature are presented here for

illustrating the wide spectrum of application of these techniques.

Chai et al. [56] have provided an overview of the various decision making ap-

proaches and methodologies used in supplier selection and highlighted their strengths,

limitations, and trends. The research work has adopted a systematic review

methodology, analyzing a wide range of scholarly articles, conference papers, and

other relevant sources. It identifies and categorizes decision making techniques em-

ployed in supplier selection, such as MCDM methods, mathematical programming

models, fuzzy logic, DEA, and expert systems etc.

The authors have discussed the key features and characteristics of each decision

making technique, highlighting their suitability for different supplier selection sce-

narios. They have examined the advantages and limitations of these techniques,

considering factors such as complexity, data availability, DM preferences, and the

treatment of uncertainty. Furthermore, the research study examines emerging

trends and latest developments in the field of supplier selection decision making.
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Table 2.1: Relevant literature for sub-criteria and solving techniques applied for supplier selection

Research Study Sub-criteria MCDM Tech-

nique(s)

Shabanpour et al. [57] Cost, Quality, Financial ability, Eco-design, Energy consumption, Work safety

and labor health

GP, DEA, Robust

Charnes, Cooper,

Rhodes (CCR) Model

Faisal et al. [58] Quality, Price, On time delivery, Flexibility, Waste reduction and recycling,

Environmental purchasing, Reverse logistics, Community initiatives, Ethical

behavior, Health and safety, Workplace diversity

ANP

Ahmadian et al. [59] Cost, Time, Quality, Embodied carbon, Embodied energy, Acoustic perfor-

mance, Safety grade

Building Informa-

tion Modeling (BIM),

TOPSIS

Govindan et al. [60] Cost, Delivery time, Quality certification, Lead time, Flexibility, Eco-design,

Environment related certification, Staff training, Government regulations and

legal compliance

Factor Analysis, AHP,

k -means Clustering

Cheraghalipour and

Farsad [61]

Cost, Quality, Delivery, Environmental commitment and management, Prod-

uct performance, Greenhouse emissions, Occupational and worker health and

safety, Social commitment and management, Wages and working hours

BWM
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Memari et al. [46] Cost, Quality, Service, Environmental efficiency, Pollution reduction, Green

competency, Safety and health, Employment practices

Fuzzy TOPSIS

Tavassoli and Saen [62] Cost, Quality, Delivery, Supplier experience, Energy consumption, Work safety

and labor health

Stochastic DEA, Dis-

criminant Analysis

(DA)

Tirkolaee et al. [48] Cost, Flexibility, Automation, Product shelf life, Integration and partnership,

Market imbalances recognition, Quality improvement, Customer status, Trust

and communication, Development of culture and technology

Fuzzy ANP, Fuzzy DE-

MATEL, Fuzzy TOP-

SIS

Alavi et al. [49] Cost, Quality, Delivery, Reputation, Flexibility, Financial capability, Waste

management, Environmental management system, Respect for environmental

regulations and standards, Utilizing clean and green technology, Attention to

energy consumption and air pollution, Human rights, Occupational health and

safety management system, Information disclosure, Social commitment, Child

and forced labor problem

Fuzzy BWM, FIS

Tayyab and Sarkar [63] Cost, Quality, Time, Energy consumption, Carbon emissions Interactive Weighted

Fuzzy GP
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It discusses the integration of sustainability criteria, the use of hybrid approaches

that combine multiple techniques, the incorporation of machine learning and ar-

tificial intelligence, and the application of decision support systems. The review

also identifies gaps and areas for further research, emphasizing the need for more

comprehensive and integrated decision making models that consider sustainability,

resilience, and dynamic factors in supplier selection.

Awasthi et al. [64] have developed a multi-phase framework based on fuzzy TOP-

SIS for evaluating suppliers using environmental criteria. The proposed framework

considers various environmental factors, such as carbon emissions, waste manage-

ment, energy efficiency, and water usage, among others, while taking into account

the subjective nature of sustainability assessment as well. The framework has been

demonstrated by implementing an application case study problem.

Büyüközkan and Cifci [65] have used a composite framework employing DEMA-

TEL, ANP, and TOPSIS to select green suppliers. The techniques considered

in this research work allow for a comprehensive evaluation of green supplier at-

tributes. Furthermore, all MCDM techniques have been fuzzified to incorporate

real-world uncertainty. The fuzzy DEMATEL method is used to identify and

analyze the interrelationships among various green supplier criteria, such as envi-

ronmental impact, energy efficiency, waste management, and social responsibility.

The fuzzy ANP approach helps determine the relative importance and weights

of these criteria. Finally, the fuzzy TOPSIS technique ranks the green suppliers

based on their performance against the identified criteria. By integrating these

three methods, the composite framework offers a more accurate and comprehensive

assessment of green suppliers.

Kannan et al. [6] have employed fuzzy TOPSIS supported by ad hoc weights to

evaluate green suppliers. In this research work, MOP has been used for order

allocation. The green criteria considered for supplier selection may include factors

such as environmental performance, carbon emissions, waste management, and

social responsibility. The authors have taken into account both quantitative and

qualitative factors, and weights are assigned to different criteria based on their

relative importance. Multiple conflicting objectives, such as minimizing costs and
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carbon emissions, while maximizing customer satisfaction, are considered and op-

timized simultaneously for determining optimal order allocation quantities.

Freeman and Chen [66] have used TOPSIS combined with entropy method and

AHP for evaluating and ranking sustainable suppliers. The research work high-

lights that selecting green suppliers is crucial for organizations aiming to incorpo-

rate sustainability practices into their supply chains. The authors have introduced

the AHP-Entropy-TOPSIS framework as a comprehensive approach to evaluate

and rank potential green suppliers. The AHP method is used to determine the

relative weights of criteria, considering both environmental and non-environmental

factors. The entropy method is applied to calculate the objective weights of cri-

teria, reducing subjectivity and bias. Finally, TOPSIS is utilized to rank the

suppliers based on their performance against the identified criteria. The proposed

framework allows DMs to consider a wide range of criteria, including environ-

mental impact, energy efficiency, waste management, cost, quality, and delivery

performance etc. By incorporating objective weights through entropy and con-

sidering both quantitative and qualitative factors, organizations can make more

informed decisions that align with their green supply chain objectives.

An AHP and VIKOR method based sustainable supplier evaluation and ranking

approach has been proposed by Luthra et al. [67]. The authors have introduced a

framework that combines TBL dimensions of sustainability to guide the supplier

selection and evaluation process. This integrated framework consists of several

stages. It begins with the identification of sustainability criteria relevant to the

organization and the supply chain context. These criteria may include factors such

as greenhouse gas emissions, labor practices, waste management, and product life

cycle considerations. Next, the framework incorporates various assessment tools

and methods to evaluate suppliers against the identified sustainability criteria.

These tools may include questionnaires, audits, certifications, and performance

indicators. The evaluation process provides a holistic overview of suppliers’ sus-

tainability performance and enables organizations to make informed decisions. The

proposed framework emphasizes the importance of collaboration and engagement

with suppliers throughout the process. Effective communication, sharing of sus-

tainability goals, and establishing mutual expectations are crucial for developing
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sustainable partnerships with suppliers.

Mohammed et al. [43] have applied fuzzy AHP and fuzzy TOPSIS for supplier

selection in a livestock supply chain network based on TBL sustainability criteria.

The authors have adopted a three phase methodology. In the first phase, fuzzy

AHP has been used for calculating local weights of the chosen sub-criteria. In the

second phase, fuzzy TOPSIS has been applied for ranking suppliers using global

weights of the conventional, green, and social criteria. In the last phase of the

proposed methodology, a multi-objective mathematical model has been developed

for calculating optimal order allocation quantities. TOPSIS has been once again

applied for assisting DMs in identifying the best solution from the set of Pareto

optimal solutions generated by the optimization methods employed during the

order allocation phase.

Yadavalli et al. [68] have used fuzzy TOPSIS for sustainable supplier assessment

and selection aimed at home appliances manufacturing industry. The research

paper emphasizes the importance of considering customers’ perspectives and sus-

tainability factors in supplier selection processes. The authors acknowledge the in-

creasing demand for sustainable products and the growing influence of customers’

expectations on supply chain decisions. They have presented an integrated opti-

mization model that combines customer expectations and sustainability criteria.

The model aims to identify suppliers that can meet customer requirements while

demonstrating sustainable practices. It incorporates factors such as price, product

quality, delivery performance, and environmental and social responsibility. The op-

timization model considers both quantitative and qualitative data, allowing DMs

to assign weights to different criteria based on customer preferences.

Mohammed et al. [69] have proposed a multi-objective optimization model that

employs fuzzy AHP and fuzzy TOPSIS for evaluation of suppliers based on sustain-

ability criteria. The research work emphasizes the importance of considering trade

offs between conflicting objectives and the need to involve DMs’ preferences and

priorities. The proposed hybrid approach enables DMs to explore different alterna-

tives and make informed decisions that align with their sustainability goals while

achieving economic efficiency. The research study offers a structured framework
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for assessing suppliers using sustainability criteria and optimizing order allocation

to balance multiple objectives. The outcomes of the research study can support

organizations in building a sustainable supply chain and making decisions that

contribute to environmental responsibility and social well being.

A combined Delphi method, fuzzy TOPSIS, and MOP approach has been pre-

sented by Rabieh et al. [70] for evaluating suppliers using TBL sustainability

attributes. The integrated approach starts with the Delphi method, which in-

volves gathering expert opinions through a structured questionnaire and iterative

rounds of consensus building. The Delphi method helps identify and prioritize

relevant sustainability criteria, considering the opinions and expertise of multiple

stakeholders. Next, the fuzzy TOPSIS is employed to evaluate and rank potential

suppliers based on their performance against the identified sustainability crite-

ria. Fuzzy logic allows for the consideration of imprecision and uncertainty in the

evaluation process. Fuzzy TOPSIS calculates the proximity of each supplier’s per-

formance to the ideal solution and the distance from the negative ideal solution,

facilitating the identification of suppliers that offer the best trade offs between sus-

tainability objectives. Lastly, a MOP model is applied to optimize the allocation

of orders among selected suppliers. The model considers various objectives such

as cost minimization, carbon emissions reduction, and customer satisfaction. It

aims to find the Pareto optimal solutions that balance these objectives and meet

sustainability constraints. The approach promotes responsible sourcing, reduces

environmental impact, and supports DMs in building a sustainable supply chain.

Okwu and Tartibu [71] have developed an integrated TOPSIS and ANFIS method-

ology for sustainable supplier selection to be used in consumer goods supply chain.

The proposed methodology begins by identifying and defining sustainability cri-

teria relevant to the retail industry. These criteria may include factors such as

environmental impact, social responsibility, ethical sourcing, product quality, and

delivery reliability. TOPSIS is then employed to evaluate and rank potential sup-

pliers based on their performance against the identified sustainability criteria.

Additionally, the authors have introduced the use of ANFIS, a hybrid computa-

tional intelligence technique that combines the advantages of fuzzy logic and neural

networks. ANFIS is utilized to handle uncertainty and imprecise information in
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the decision making process, providing more accurate and robust evaluations of

supplier sustainability.

In developing countries, solar photovoltaic (PV) systems dominate the renewable

energy landscape. Liaqait et al. [72] have focused on sustainable SS-OA, consid-

ering the unique characteristics and sustainability requirements of the solar PV

industry. The authors acknowledge the growing importance of sustainability in the

renewable energy sector and the need for sustainable practices within the solar PV

panels supply chain. They propose a decision framework that integrates sustain-

ability considerations into SS-OA processes. The decision framework encompasses

several stages. It begins with the identification and evaluation of potential suppli-

ers based on their sustainability performance. Criteria such as economic viability,

environmental impact, and social awareness are considered to assess the suppliers’

sustainability credentials. Once suppliers are selected, the framework moves to the

order allocation stage. It aims to allocate orders to suppliers in a way that opti-

mizes sustainability performance while considering factors such as product price,

product quality, and timely delivery. The allocation decisions are made by using

a multi-objective optimization approach.

Liaqait et al. [73] have proposed a decision support framework that integrates

multiple supplier selection criteria and order allocation objectives to facilitate

sustainable decision making. The proposed framework employs multi-objective

optimization techniques to balance conflicting objectives such as cost minimiza-

tion, environmental impact reduction, and social responsibility. By considering

multiple objectives simultaneously, DMs can explore trade offs and identify op-

timal solutions that align with their sustainability goals. Fuzzy logic has been

incorporated in the proposed framework to handle uncertainty and vagueness in

decision making. The framework provides DMs with a structured and systematic

approach to make informed decisions, optimizing sustainability outcomes, and en-

hancing the overall sustainability performance of the supply chain. The proposed

decision framework has been demonstrated by implementing a case study from the

refrigeration and air-conditioning industry.

It is evident from the above description that AHP and TOPSIS are two of the most
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flexible and diversely used quantitative multi-attribute assessment and decision

making techniques employed for sustainable supplier selection.

2.3 Sustainable Order Allocation

A detailed review and meta-analysis of recent research work related to sustainable

order allocation has been presented by Ghadimi et al. [74] (buyer-supplier rela-

tionships) and Di Pasquale et al. [75] (criteria, models, and planning techniques).

2.3.1 The Traditional Approach

Order allocation is a complex multi-variable decision problem. Over the years

different mathematical models have been developed and solved using various op-

timization techniques. For example, Aissaoui et al. [5] have presented a review

that covers supplier selection and order lot sizing in detail. The supplier selection

process aims to evaluate and select those suppliers that can best meet the require-

ments and objectives of the organization. Order lot sizing refers to determining

the optimal quantity of products or materials to order from the selected suppliers.

This decision is crucial as it affects costs, inventory levels, and overall supply chain

performance. The review presents and compares different mathematical models

and approaches that have been proposed to address order lot sizing challenges

and optimize decision making. The research work further explores various factors

that influence supplier selection and order allocation, including demand variabil-

ity, lead time, transportation costs, and economies of scale. It also highlights the

importance of considering uncertainties and risks in decision making processes.

The authors have classified the available literature on order allocation on the basis

of single or multiple sourcing approaches. Within multiple sourcing category, they

have further subdivided the order allocation activity into single and multi-period

models (Fig. 2.2). The authors have observed that during multi-period order allo-

cation, it is rarely the case that time depending parameters like dynamic demand

or time-varying price discounts etc. are taken into account despite the fact that
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Figure 2.2: Classification of order allocation approaches based on single and
multi-period models (from [5], with permission)

these parameters have a considerable effect on supplier efficiency and customer

requirements.

Faez et al. [76] have proposed a scenario based MILP model for order allocation

and solved it using LINGO optimization modeling software. The research work

recognizes the complexities and uncertainties involved in decision making processes

and proposes a hybrid model that combines fuzzy case based reasoning and math-

ematical programming. It emphasizes the importance of selecting the right ven-

dors and allocating orders optimally to ensure efficient supply chain operations. It

highlights the need to consider multiple criteria, such as cost, quality, delivery per-

formance, and capacity, while addressing the inherent uncertainties and vagueness

in decision making. The fuzzy case based reasoning approach allows for the han-

dling of subjective and imprecise information, enabling DMs to draw upon past

experiences and similar cases to make informed judgments. The mathematical

programming component provides an optimization framework to allocate orders

among selected vendors based on the defined criteria and constraints. The research

study discusses the implementation process of the integrated model, including the

collection and analysis of historical data, the construction of fuzzy case libraries,

and the formulation of mathematical programming models. It demonstrates how

the model can effectively evaluate and rank vendors, considering both quantita-

tive and qualitative factors. The research work further highlights the benefits of

the integrated approach, such as improved decision making accuracy, enhanced

efficiency, and the ability to handle uncertainty and subjective assessments. The

research concludes by presenting case studies to showcase the application and ef-

fectiveness of the integrated model in vendor selection and order allocation. It
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demonstrates how the model can be customized and adapted to different supply

chain contexts, considering specific requirements and objectives.

2.3.2 Development of Hybrid Models

A fuzzy MILP model subject to variable price and product uncertainty conditions

has been proposed by Nazari-Shirkouhi et al. [77]. The model has been solved

using an exact algorithm for determining optimal order quantities. The research

work recognizes the significance of selecting the right suppliers and allocating

orders efficiently to ensure smooth operation of the supply chain. The proposed

approach considers multiple objectives and incorporates FST to handle uncertainty

and vague information in decision making. Fuzzy logic is employed to represent

and handle the subjective judgments and imprecision associated with the supplier

evaluation and selection criteria. In the order allocation stage, the calculation and

assignment of order quantities to the selected suppliers is carried out by considering

factors such as cost, demand, and supplier capacities. The approach enables DMs

to generate Pareto optimal solutions that represent the best compromise among

conflicting objectives.

A MILP model has been presented by Torabi et al. [78] taking into account un-

certainty and disruption risks. The model has been optimized using Augmented

ε-Constraint (AUGMECON) method and DEA. The authors have noted that sup-

ply chain networks face various risks, including operational risks such as demand

variability and capacity constraints, as well as disruption risks such as natural

disasters, geopolitical events, and supplier failures etc. They emphasize the need

to consider these risks when selecting suppliers and allocating orders to ensure

the continuity and resilience of the supply chain. The have further proposed a

decision making framework that integrates SS-OA processes. The framework aims

to identify resilient suppliers based on their capabilities to mitigate risks and to

recover quickly from disruptions. It considers both quantitative and qualitative

factors, such as supplier reliability, financial stability, geographical location, and

risk management practices. The research work also discusses the allocation of

orders among selected suppliers to minimize the impact of risks. It proposes a
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Figure 2.3: Sources of uncertainty (from [23], with permission)

mathematical model that optimizes order allocation based on supplier capabili-

ties, costs, and risk mitigation strategies. The model aims to strike a balance

between risk mitigation and operational efficiency, ensuring the resilience of the

supply chain while maintaining cost effectiveness. Additionally, the research study

highlights the importance of considering lead time and inventory management in

the decision making process. It emphasizes the need for robust inventory poli-

cies and supply chain coordination to enhance responsiveness and to mitigate the

effects of disruptions, whether natural or manmade.

Naqvi and Amin [23] have analyzed the extant literature related to SS-OA, pub-

lished between the years 2015-20 and observed that among the uncertain opti-

mization models proposed, the most popular sources of uncertainty considered are

demand, capacity, and cost, respectively. Customer demand has been the leading

factor in 29% of the research articles analyzed in this review, and it is usually

incorporated as a constraint in optimization models developed for order allocation

(Fig. 2.3).

Çebi and Otay [79] have developed a MILP model with multiple product un-

certainty and quantity discounts and optimized it using augmented maximum-

minimum and fuzzy GP algorithms to determine order allocation quantities. The

research work recognizes the complexity of supplier evaluation and order alloca-

tion decisions, which involve multiple factors such as cost, supplier performance,

quantity discounts, and lead time. The research presented by the authors aims to

provide a comprehensive framework that considers these factors and incorporates
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fuzzy logic to handle uncertainties and subjective assessments. In the first stage of

the proposed framework, the authors have developed a fuzzy evaluation model to

assess and rank potential suppliers based on various criteria such as cost, quality,

reliability, and environmental factors. Fuzzy logic allows DMs to express their

subjective judgments and preferences in a more flexible manner. During the sec-

ond stage, a fuzzy order allocation model has been implemented to determine the

optimal order allocation quantity for each selected supplier. The model considers

quantity discounts offered by suppliers, lead time constraints, and other relevant

factors to minimize total cost while meeting the desired service level.

A weighted fuzzy MOLP model has been presented by Bodaghi et al. [80]. This

model addresses the integrated supplier selection, order allocation, and customer

order scheduling problem for a make-to-order manufacturing system. An algorithm

has also been proposed in this research work to solve the model and the model

has been implemented using a numerical problem. The model aims to optimize

supplier selection decisions while considering various factors such as product price,

quality, delivery rate, and supplier reliability. The integration of fuzzy logic allows

for the handling of imprecise and uncertain data, enabling a more realistic and

flexible assessment of suppliers. The weighting mechanism assigns importance to

different criteria based on their relative significance, allowing DMs to customize

the model based on their specific requirements and preferences. The research work

emphasizes the benefits of the integrated model in achieving a balanced approach

to SS-OA. By considering multiple objectives and uncertainties, organizations can

make informed decisions that align with their supply chain goals and optimize

overall performance.

Di Pasquale et al. [75] have carried out an extensive and in depth evaluation of

the order allocation literature spanning the duration 1979-2018. The authors have

focused on identifying and analyzing articles that have considered order allocation

separately from supplier selection. The authors have noted that mathematical pro-

gramming is the most preferred method for order allocation among the research

papers analyzed owing to the multi-objective nature of the optimization problem.

The review also highlights that multi-period and multi-product optimization prob-

lems form the major category of problems addressed in published literature. It has
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Figure 2.4: Distinguishing features of order allocation models (from [75], with
permission)

also been observed that only 37% of the reviewed research articles have considered

stochastic demand (Fig. 2.4). In this regard, many articles have inadvertently

classified fuzzy demand as stochastic as well.

Sustainable order allocation is usually carried out using well defined and distinct

objectives like cost, travel time, environmental impact, or any social criterion etc.

Depending on the nature of the order allocation problem, single or multi-objective

models may be formulated. A multi-objective mathematical programming model

has been developed by Azadnia et al. [81] that minimizes total cost and environ-

mental impact, and maximizes total social score and total economic qualitative

score for optimal order allocation to the selected suppliers. The research work

takes into account both supplier selection and order lot sizing considerations. The

proposed model integrates sustainability criteria such as economic viability, envi-

ronmental impact, and social responsibility, along with cost, quality, and delivery

performance metrics. The decision making process involves evaluating and rank-

ing potential suppliers based on their sustainability performance and assessing the

optimal order lot sizing decisions to minimize costs while meeting stated sustain-

ability objectives. In order to solve the multi-objective optimization problem, the

authors propose using a suitable mathematical programming technique that can

generate a set of Pareto optimal solutions. These solutions represent trade offs

between different objectives and allow DMs to choose the most appropriate sup-

plier and order lot sizing strategy based on their preferences. The research work

emphasizes the practical applicability of the proposed approach by providing an

application case study.

Govindan and Sivakumar [41] employed TOPSIS and a linear programming model
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to minimize cost, acceptable quality limit, late arrival, recycling waste, and green-

house gas emissions. The research work addresses the challenge of integrating

sustainability considerations into SS-OA decisions in an industry specific context

by combining heterogeneous MCGDM and MOLP techniques. The MCGDM ap-

proach takes into account the diverse criteria and weights assigned to them by

the DMs. Subsequently, the research integrates the results of the supplier evalu-

ation into a MOLP model. The MOLP model optimizes the allocation of orders

among the selected suppliers while considering multiple conflicting objectives, such

as minimizing costs, carbon emissions, and waste generation. By combining these

approaches, the research study aims to support DMs in making sustainable choices

in SS-OA, taking into account both quantitative and qualitative criteria. The re-

search article contributes to the field by presenting a novel framework specifically

designed for the low-carbon paper industry, offering insights into the decision mak-

ing processes in the context of sustainability in this particular industry sector.

A mixed-integer nonlinear programming (MINLP) model has been proposed by

Hamdan and Cheaitou [82] as part of a framework that maximizes total value and

minimizes total cost. The framework aims to support DMs in making informed

choices that balance economic and environmental objectives. The research work

incorporates an MCDM process that evaluates potential suppliers based on vari-

ous green criteria, such as carbon footprint, energy efficiency, waste management,

and pollution prevention. Different MCDM methods, such as AHP, TOPSIS, and

WSM, are employed to rank and select suppliers based on their green performance.

Furthermore, the research study incorporates multi-objective optimization to de-

termine order allocation quantities for the selected suppliers. The optimization

model aims to minimize total costs and environmental impact, taking into ac-

count factors such as transportation costs, order quantities, and carbon emissions.

By combining MCDM and multi-objective optimization, the methodology enables

DMs to evaluate suppliers based on their green criteria and allocate orders in a

way that optimizes economic and environmental objectives simultaneously. A case

study has also been presented that demonstrates how the methodology can effec-

tively evaluate suppliers, allocate orders, and support decision making processes

in a real-world context.
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Gören [45] has applied fuzzy DEMATEL for calculating weights of sustainability

criteria. These weights are used as inputs in Taguchi loss functions for ranking

the potential suppliers. The rating values of suppliers are subsequently used for

determining optimal order allocation quantity for each selected supplier through

bi-objective optimization i.e. minimizing total cost while maximizing total sustain-

able purchasing. The author has demonstrated the practical applicability of the

proposed integrated framework using data from the travertine/marble processing

industry under deterministic customer demand conditions.

Moheb-Alizadeh and Handfield [83] have proposed a multi-objective MILP model

that incorporates total cost, carbon emissions, and social responsibility as the

three principal objective functions where cost and emissions are to be minimized

while social responsibility is to be maximized. The proposed model aims to opti-

mize SS-OA by finding a set of Pareto optimal solutions that represent the best

trade offs between conflicting objectives. In order to solve the model, the authors

have introduced a hybrid solution approach that combines mathematical program-

ming and metaheuristic algorithms. This approach leverages the strengths of both

methods to improve the efficiency and effectiveness of the solution process. The

research work further emphasizes the significance of incorporating sustainability

constraints and preferences into the model. DMs can specify sustainability re-

lated constraints, such as carbon emissions limits or waste reduction targets, and

express their preferences for different sustainability objectives.

You et al. [84] have proposed an integrated methodology employing a MOLP

model that minimizes total cost, defective item rate, and late delivery while at

the same time maximizing the total value of sustainable purchasing. The authors

have used Pivot Pairwise Relative Criteria Importance Assessment (PIPRECIA)

method for determining the weights of the selection criteria and ranked the po-

tential sustainable suppliers using extended Decision Field Theory (DFT). The

research work recognizes the need to consider multiple criteria, such as cost, qual-

ity, environmental impact, social responsibility, and delivery reliability, to ensure

the selection of suppliers aligned with sustainability goals. The proposed approach

integrates MCDM techniques, such as AHP and TOPSIS, with MOLP to formu-

late an optimization model. The model aims to identify sustainable suppliers and
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allocate orders optimally based on multiple objectives, including sustainability

performance, cost efficiency, and customer satisfaction. The MCDM techniques

enable DMs to assess the relative importance of criteria and evaluate the perfor-

mance of suppliers based on these criteria. The MOLP component considers the

trade offs among conflicting objectives to determine the Pareto optimal solutions

that provide the best compromise between different objectives.

A multi-objective integer linear programming (MOILP) model has been proposed

by Beiki et al. [85]. The model intends to minimize total cost and carbon foot-

print while maximizing the total value of sustainable purchasing. The research

work presents a comprehensive approach that combines sustainability criteria with

cost and quality considerations in the SS-OA process. The authors have employed

Language Entropy Weight Method (LEWM) for supplier assessment and selec-

tion, while the decision variables have been formulated and optimized through the

aforementioned mathematical programming technique. The research work high-

lights the practical application of the unified approach by using an application

case study from the automobile manufacturing industry. It demonstrates the im-

plementation of the decision making process, the evaluation of different supplier

options, and the optimal allocation of orders based on the integrated sustainability

and operational objectives.

A variety of exact, heuristic, and metaheuristic problem solving algorithms have

been used for evaluating and optimizing objective functions for sustainable or-

der allocation. AUGMECON, WSM, Weighted Additive Model, GP, Dynamic

Programming, GA, and DEA are some of the frequently used techniques in pub-

lished literature as reported by Rashidi [86]. This meta-review further explores

various methodologies, models, and criteria used in the literature to evaluate and

select sustainable suppliers and to perform robust order allocation based on TBL

sustainability considerations. It examines multiple studies and synthesizes their

findings to identify common trends, challenges, and gaps in the field. The author

has highlighted the need for a holistic approach that considers multiple dimensions

of sustainability such as economic viability, environmental impact, and social re-

sponsibility in both supplier selection and order allocation parts of the SS-OA

problem.
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A brief overview and comparison of relevant literature for mathematical mod-

els, objectives, and solution approaches employed for order allocation has been

included in Table 2.2.

2.4 Sustainable and Resilient Supplier Selection

and Order Allocation

Different approaches have been adopted by researchers for evaluating supply chain

network performance under the influence of natural or manmade disruptions. The

response of the supply chain when subjected to such mishaps is almost always

associated with the inherent resilience of the supply chain network and/or its com-

ponents. Resilience can be considered a performance evaluation criteria alongside

TBL sustainability in SS-OA problems and its sub-criteria can be identified in

the same manner as economic, environmental, or social sub-criteria. This inte-

gration of TBL sustainability and resilience parameters leads to a single coherent

supply chain management paradigm that can be represented by the 04 sides of a

performance evaluation pyramid (Fig. 2.5). The 04 sides of the pyramid are the

four points of view for the DMs, through which they can analyze the design and

functioning of the supply chain network or any of its nodes or links in a holistic

manner.

As the combination of TBL sustainability with SS-OA transformed it into sustain-

able supplier selection and order allocation or SSS-OA problem, the grouping of

resilience with sustainability criteria will transform it into sustainable and resilient

supplier selection and order allocation or SRSS-OA problem. A resilience based

supplier selection approach has been presented by Rajesh and Ravi [87] using Grey

Relational Analysis (GRA), AHP, and ANP. Supply chain velocity, supply chain

visibility, supply chain vulnerability, and supply chain continuity management are

some of the resilience sub-criteria included in this research work. The authors

acknowledge the increasing importance of resilience in supply chain management,

particularly in the face of uncertainties and disruptions, and highlight the need to

select suppliers that can effectively contribute to the resilience of the supply chain.
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Table 2.2: Relevant literature for mathematical models, objectives, and solution approaches for order allocation

Research Study Mathematical

Model

Objectives Solution Approach

Babbar and Amin [88] Stochastic MILP Total cost, Defect rate,

Carbon emissions, Supplier

weights, On time delivery

Fuzzy QFD

Gören [45] Bi-objective mixed-

integer programming

(MIP)

Total cost, Total value of

purchasing

Weighted Compre-

hensive Criterion

Method

Hadian et al. [89] MOLP Total cost, Defect rate,

Late delivery, Total purchase

value

AHP

Hu et al. [90] Multi-objective

MINLP

Total profit, Stakeholders

satisfaction

GA

Aggarwal et al. [91] Multi-objective opti-

mization

Total cost, Total quality of

purchased products, Total

lead time

Chance Constrained

Approach
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Arabsheybani et al.

[92]

Multi-objective non-

linear programming

(MONLP)

Total profit, Lost sale bal-

ance, Total discount risk

Fuzzy GP

Yadavalli et al. [68] Bi-objective MILP Total cost, Sustainable value

purchase

Weighted GP

You et al. [84] MOLP Purchasing cost, Defective

quantity, Delayed delivery

quantity, Total sustainable

value of purchasing

LP-metric Method

Beiki et al. [85] MOILP Total cost, Total carbon

emission, Total purchase

value

Max-min Operator

Method

Nasr et al. [93] Multi-objective MILP Total cost, Environmental

impact, Employment oppor-

tunity, Lost sales, Procure-

ment value

Fuzzy BWM
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Figure 2.5: Integrated TBL sustainability + resilience performance evaluation
pyramid

The proposed approach, GRA, is a decision making technique that can handle un-

certainties and vagueness in supplier evaluation. GRA involves converting quan-

titative or qualitative data into grey numbers and calculating the grey relational

coefficient to determine the relative closeness between alternatives. The research

work explains that GRA approach allows DMs to evaluate suppliers based on

multiple criteria, such as financial stability, flexibility, risk management capabili-

ties, and responsiveness to disruptions. It provides a systematic and quantitative

method to assess supplier performance in terms of resilience. By applying GRA,

DMs can rank potential suppliers based on their grey relational grade, with higher

grades indicating stronger resilience performance. This ranking helps organiza-

tions identify suppliers that can contribute to the resilience of their supply chain

and mitigate risks associated with disruptions. The research study also high-

lights the importance of considering the specific context and requirements of the

supply chain when applying GRA. The selection criteria and weightages should

be customized to the unique needs and characteristics of the supply chain under

consideration.

Hosseini et al. [12] have evaluated the resilient SS-OA problem using sub-criteria

such as backup supplier, surplus and restorative capacity, and supplier segrega-

tion. They have used stochastic bi-objective MIP for both supplier selection and

order allocation. The research work emphasizes the importance of supply chain

resilience in mitigating risks and ensuring continuity of operations. The authors

have incorporated disruption risks into the supplier selection process by consid-

ering factors such as supplier reliability, geographical location, financial stability,
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and contingency planning with the aim to identify suppliers that are resilient and

capable of withstanding potential disruptions. Furthermore, the research study

optimizes the allocation of orders among selected suppliers while minimizing total

cost and potential disruption impact.

Mohammed et al. [94] have integrated resilience with economic and environment

criteria for network design in livestock supply chain using MCDM techniques and

fuzzy MOP. Social sub-criteria have not been considered in this research work. The

research work aims to optimize the design of a supply chain network by consid-

ering multiple objectives such as cost minimization, carbon emissions reduction,

transportation efficiency, and supplier reliability. Fuzzy logic has been used to

handle uncertainties and subjective judgments associated with these objectives.

Yavari and Zaker [95] have developed a supply chain network by combining eco-

nomic, environmental, and resilience criteria using MILP. The social dimension

of sustainability has been excluded from this research work also and only one re-

silience sub-criteria has been considered i.e. power disruption. The research work

acknowledges the challenges of managing perishable products in supply chains, in-

cluding their vulnerability to disruptions and the importance of sustainable prac-

tices. It emphasizes the need for a resilient and environmentally friendly supply

chain design that can effectively cope with disruptions while minimizing environ-

mental impact. The authors have introduced a two layer network model that

integrates the design of the supply chain and distribution of perishable products

within the network. The model incorporates various factors, such as facility lo-

cation, transportation routes, inventory management, and product recovery, to

optimize the design of a potentially resilient and green closed loop supply chain.

Additionally, the research study aims to identify optimal strategies for mitigat-

ing disruptions, such as contingency plans, alternative sourcing, or re-routing of

transportation. It also emphasizes the importance of incorporating closed-loop

practices into supply chain design while addressing issues like product recovery,

recycling, and re-manufacturing, with the objective of minimizing waste and pro-

moting sustainability. The closed-loop approach enables the reuse and recycling

of materials, reducing the environmental footprint of the supply chain. The find-

ings of the research work demonstrate the effectiveness of the proposed model in
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designing a resilient, green, and closed-loop supply chain for perishable products.

A supplier selection approach has been presented by Xiong et al. [96] based only on

environmental and resilience criteria. In this research work Weighted Aggregated

Sum Product Assessment (WASPAS), BWM, and TOPSIS have been used to

evaluate suppliers using surplus inventory, factory segregation, and reorganization

as resilience sub-criteria. The social aspect of TBL sustainability has been omitted

from the supplier evaluation process in this research work as well. To address

the complexities of supplier selection, the authors propose a multi-step approach.

Firstly, the WASPAS method is employed for assigning weights to the criteria and

sub-criteria, reflecting their relative importance in the decision making process.

Secondly, the BWMmethod is used for determining the best and worst alternatives

for each criterion, providing insights into the strengths and weaknesses of suppliers

in relation to the selected criteria. Lastly, TOPSIS is applied to rank the suppliers

based on their overall performance and determine the most suitable supplier for

selection.

A state of the art review that deals with analyzing the development of SRSS-OA

as an emerging research area has been presented by Negri et al. [97].

An overview and comparison of relevant literature for SRSS-OA has been included

in Table 2.3. (In this table and in all subsequent tables in the following chapters,

EC = Economic Criteria, EnC = Environment Criteria, SC = Social Criteria, and

RC = Resilience Criteria, when used.)

2.5 Supply Chain Disruptions and Service Level

A detailed assessment of research publications related to supply chain network

disruptions prior to the outbreak of the COVID-19 pandemic has been presented

by Ivanov et al. [98] (focusing on impact of disruptions and supply chain recovery)

and Xu et al. [99] (based on extended bibliometric analysis). The impact of supply

chain network disruptions caused by the global spread of COVID-19 has been

evaluated by many researchers around the world. An evaluation of the published
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research coinciding with the spread and right after the subsiding of the pandemic

has been presented by Katsaliaki et al. [100] (involving modeling approaches

and application of information technology tools), Rinaldi et al. [101] (considering

quantitative models), and Novoszel and Wakolbinger [102] (taking into account

both quantitative studies and qualitative content, and conducting bibliometric

assessment).

Various authors have evaluated supply chain network disruptions and their impact

on the inventory management strategies employed for achieving a predefined or

target service level over the years. A brief summary of this evaluation for the

duration 2001-2023 relevant to the current research work is presented below.

Chen and Krass [11] have investigated inventory models in which the stock-out

cost is replaced by a minimum service level constraint requiring that a certain

service level be met during each review period. The research work focuses on in-

ventory control models that aim to balance the trade off between inventory costs

and customer service levels. It examines various mathematical models and opti-

mization techniques used to determine optimal inventory policies under minimal

service level constraints. The research study discusses the concept of service level,

which represents the probability of meeting customer demand during a specified

time frame. It emphasizes the need to define a minimum acceptable service level

to ensure customer satisfaction and avoid potential stock-outs.

The research work further explores different inventory control strategies, such as

periodic review and continuous review systems, and evaluates their performance

in meeting service level constraints. It also considers factors such as demand vari-

ability, lead time variability, and cost structures in the development of inventory

models. The authors have highlighted the challenges in implementing minimal ser-

vice level constraints, including the need for accurate demand forecasting, reliable

lead time estimation, and effective inventory management techniques. They have

discussed the implications of these constraints on inventory costs, order quanti-

ties, and reorder points. Hwang [103] has optimized the performance of a logistics

system subject to required service levels both in the number of warehouses or

distribution centers and vehicle routing schedule.
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Table 2.3: Relevant literature for sustainable and resilient supplier selection and order allocation

Research Study EC EnC SC RC SS Technique(s) OA Technique(s) Application Case

Study

Rajesh and Ravi [87] ✓ GRA, AHP, ANP Electronics devices

manufacturing in-

dustry

Sen et al. [104] ✓ ✓ TODIM Numerical problem

Amindoust [105] ✓ ✓ ✓ ✓ FIS, Assurance Re-

gion (AR) DEA

Alloy manufactur-

ing industry

Jabbarzadeh et al.

[106]

✓ ✓ ✓ ✓ Stochastic bi-

objective optimiza-

tion

Plastic goods man-

ufacturing industry

Mohammed et al.

[94]

✓ ✓ ✓ Fuzzy AHP, TOP-

SIS

Fuzzy multi-

objective program-

ming

Food supply chain

Hosseini et al. [12] ✓ ✓ Stochastic bi-

objective mixed-

integer programming

Numerical problem
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Yavari and Zaker [95] ✓ ✓ ✓ Mixed-integer lin-

ear programming

Dairy supply chain

Fallahpour et al.

[107]

✓ ✓ ✓ ✓ Fuzzy DEMATEL,

Fuzzy ANP, Fuzzy

BWM, FIS

Palm oil industry

Fazlollahtabar and

Kazemitash [108]

✓ ✓ ✓ ✓ Authors’ custom

technique, DEA

Electrical equip-

ment manufactur-

ing industry

Mahmoudi et al.

[109]

✓ ✓ Fuzzy OPA Numerical problem

Proposed framework ✓ ✓ ✓ ✓ Fuzzy AHP, Fuzzy

TOPSIS

Fuzzy multi-

objective mixed-

integer nonlinear

programming

Pharmaceutical in-

dustry
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The research work addresses the challenge of designing a supply chain logistics

system that meets customer service level requirements while minimizing cost and

maximizing efficiency. It emphasizes the need to strike a balance between service

level objectives and operational constraints and presents a framework to achieve

this goal. The proposed framework incorporates several key elements. First, it

considers the design of the supply chain network, including the selection of distri-

bution centers and the allocation of inventory. The aim is to optimize the network

configuration to ensure timely and reliable deliveries that meet customer expecta-

tions. Secondly, the research study incorporates inventory management strategies,

such as safety stock levels and order policies, to support the desired service level.

By accurately managing inventory, the logistics system can effectively respond

to customer demands and maintain high service levels. Furthermore, the research

work highlights the importance of transportation management in achieving service

level objectives. It considers factors such as transportation mode selection, rout-

ing, and scheduling to optimize delivery times and minimize delays. The authors

have emphasized the integration of information technology and real-time data to

enable visibility and coordination across the supply chain. By leveraging tech-

nology, companies can monitor and manage the logistics system more effectively,

leading to improved service levels.

A single-period two-stage service-constrained supply chain under the condition of

variations in demand forecast has been evaluated by Sethi et al. [110]. The au-

thors have determined the optimal ordering policy under service constraints and

incorporated the effects of forecast quality in their analysis. The research work

recognizes that maintaining a satisfactory service level is crucial for customer satis-

faction and overall supply chain performance. The authors have further discussed

strategies for integrating information from various sources, including customers,

suppliers, and internal systems, to improve supply chain responsiveness and service

level performance. The research study highlights the benefits of the information

updated supply chain, including improved customer service, reduced stock-outs,

enhanced supply chain visibility, and better decision making capabilities.

Lee et al. [111] have presented a continuous review inventory model that takes

into account lead time demand along with controllable exponential backorder rate.
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The authors have proposed two computational algorithms for determining optimal

values of order quantity and lead time. The research work attempts to solve

an inventory management problem with a service level constraint, the lead time

demand following a mixture of distributions, and the backorder rate modeled and

controlled using a negative exponential distribution. The research study recognizes

the challenge of simultaneously considering multiple factors that affect inventory

management decisions and offer the two computational algorithms as decision

making aids in determining appropriate inventory policies that meet service level

requirements under operational restrictions.

A transshipment policy in which service level has been used as a deciding factor for

calculating the quantity for lateral transshipment has been proposed by Lee et al.

[112]. The authors have evaluated their model using a two echelon supply chain

network and observed that their proposed policy effectively responds to changes in

demand, ordering cost, and penalty cost. The research work recognizes the impor-

tance of maintaining high service levels to meet customers’ demand and improve

overall supply chain performance. It addresses the challenge of achieving this ob-

jective while minimizing inventory costs and avoiding stock-outs. The research

study presents an effective algorithm for determining when and how much inven-

tory should be transshipped between locations. The algorithm considers factors

such as demand patterns, lead times, and inventory levels at different locations.

Furthermore, the research work emphasizes the importance of information sharing

and collaboration among supply chain partners for successful lateral transshipment

implementation.

Farahani and Elahipanah [113] have developed a bi-objective mathematical model

for a supply chain network operating on just-in-time distribution paradigm. The

research work recognizes the significance of cost optimization and service level

management in a just-in-time distribution system that aims to minimize inventory

holding cost while ensuring timely delivery and customer satisfaction, and presents

GA as a powerful optimization technique to find the optimal solution to this

type of complex problems. The research study describes the formulation of the

optimization problem, considering factors such as transportation costs, inventory

costs, customer service level, and order fulfillment constraints. It explains how GA
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is utilized to search for the best combination of variables that minimizes total cost

while meeting service level requirements. Additionally, the GA approach allows

for flexibility and adaptability in addressing changing conditions and requirements

within the supply chain. Application case studies have also been presented in this

research work to demonstrate the effectiveness of the GA approach and to showcase

how the algorithm can generate near optimal solutions and improve supply chain

performance.

An inventory management methodology to handle variable demand requirements

during supply chain network operations has been presented by Jeffery et al. [114].

The proposed methodology can be used to determine a near optimal value of cus-

tomer service level from the supplier’s perspective. The methodology has been

implemented using data from the semiconductor industry. The authors acknowl-

edge that providing higher levels of customer service often leads to increased cus-

tomer satisfaction, loyalty, and potentially higher sales. However, they also rec-

ognize that higher service levels come with additional costs, such as inventory

holding costs, order processing expenses, and transportation costs. The research

work proposes a framework for determining a cost effective customer service level

by considering various factors. These factors include customer demand patterns,

service level requirements, costs associated with different service levels, and the

impact of service levels on customer satisfaction and revenue. The authors suggest

that organizations should conduct a thorough analysis of their customer base, in-

cluding understanding customer preferences, needs, and behaviors. By segmenting

customers based on their value and demand patterns, organizations can tailor their

service levels to different customer groups, ensuring a more efficient allocation of

resources. The authors have emphasized the importance of using mathematical

models and optimization techniques to find the optimal balance between customer

service and costs.

Yang et al. [115] have proposed a game theory based model of a supply chain

network comprising of a single supplier and two risk-averse distributors based on

economic order quantity production-inventory policy using price, service level, and

lot size as the decision or evaluation criteria. The research study recognizes the
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importance of considering retailers’ risk aversion in supply chain decision mak-

ing. It acknowledges that risk-averse retailers are more cautious in their decision

making and tend to prioritize factors such as profit stability and inventory risk.

The research work examines the interplay between cost, service level, and order

lot size decisions in a supply chain context. It explores the impact of risk aversion

on these decisions and their implications for practitioners. The findings suggest

that risk-averse retailers tend to set higher prices and target lower service levels

to mitigate potential losses and stabilize their profits. They also prefer smaller

lot sizes to reduce inventory risk and avoid excessive stock holding. The authors

emphasize that these decisions have implications for the overall performance of

the supply chain and discuss how higher prices and lower service levels can im-

pact customer demand, market share, and overall profitability. The research study

also highlights the trade offs between risk reduction and customer satisfaction in

supply chain decision making. It offers insights into the coordination mechanisms

that can improve supply chain performance in the presence of risk-averse retail-

ers and suggests strategies such as revenue sharing contracts, quantity flexibility

contracts, and risk sharing agreements to align the interests of the supply chain

partners and promote overall supply chain efficiency.

Schmitt [116] has presented a model for a multi-level supply chain network suscep-

tible to disruptions. The numerical analysis carried out to demonstrate the model

has revealed that strategic placement of proactive inventory to cover short term

disruptions or the beginning of long term disruptions, and using reactive backup

practices to enable supply chain recovery after extended or permanent disruptions

can lead to significant service level improvements. The research work explores dif-

ferent strategies to mitigate the impact of disruptions and to ensure satisfactory

customer service. It investigates various strategies that can be employed at differ-

ent echelons of the supply chain network to protect customer service level. These

strategies include inventory positioning, safety stock allocation, order reschedul-

ing, and collaboration between supply chain partners. The authors have discussed

the benefits and limitations of each strategy and analyzed their effectiveness in

mitigating the impact of disruptions on customer service level. They have consid-

ered factors such as lead time, demand variability, and disruption probability in
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evaluating the performance of these strategies.

A stochastic mathematical formulation for designing a multi-product supply chain

network that takes into account both supply-side and demand-side uncertainty

simultaneously has been developed by Baghalian et al. [117]. The mathemati-

cal model proposed in this research work considers extra and shortage costs in

the retailing facilities to achieve a predetermined value of service level for the

customers. The mathematical formulation has been illustrated using a numerical

example from the agri-food industry. The research work recognizes that supply

chain disruptions and demand uncertainties can significantly impact the perfor-

mance and service levels of supply chain networks. Therefore, it aims to develop

a robust network design that can withstand these challenges and ensure customer

satisfaction. The research study utilizes mathematical modeling and optimization

techniques to design a resilient supply chain network. It considers various factors

such as facility location, transportation routes, inventory placement, and capacity

allocation. The objective is to minimize costs while maximizing service levels un-

der different disruption scenarios and demand variations. To achieve robustness,

the model incorporates different levels of service and develops contingency plans

to mitigate the impact of disruptions. It considers backup facilities, alternative

transportation routes, and inventory buffers to enhance the network’s ability to

meet customers’ demand during disruptions or fluctuations in demand. The re-

search work provides a real-life case study to demonstrate the application and

effectiveness of the proposed approach.

Uthayakumar and Priyan [118] have presented an inventory model for a phar-

maceutical manufacturer and a hospital supply chain that integrates continuous

review with production and distribution of medical supplies. The model has been

demonstrated using a numerical example to determine optimal values of order

lot size, lead time, and delivery rate for achieving hospital service level targets

with minimum cost for the supply chain network. The research work takes into

account the unique challenges in the pharmaceutical supply chain, including prod-

uct perishability, regulatory requirements, demand uncertainty, and the need for

efficient inventory management. It presents optimization models for both phar-

maceutical companies and hospitals. For pharmaceutical companies, the research
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study explores inventory management strategies that consider production capac-

ities, lead times, demand variability, and service level requirements. The models

aim to minimize inventory holding costs and stock-outs while meeting customer

demand and ensuring product availability. In the context of hospitals, the re-

search work addresses the challenges of managing pharmaceutical inventory with

fluctuating patient demand and limited storage space. It proposes models that op-

timize order quantities and reorder points based on demand patterns, lead times,

and service level obligations. The goal is to reduce inventory holding costs, min-

imize stock-outs, and maintain an appropriate level of pharmaceutical supplies

for patient care. The authors have also discussed the integration of information

technology and advanced analytics in pharmaceutical supply chain and inventory

management.

The uncertainty introduced in the supply chain network due to the variation in

the service rates of the manufacturing units constituting the supply chain has

been evaluated by Almaktoom et al. [119]. The authors have presented a robust

design optimization methodology that takes into account production uncertainty

and transportation delays in order to satisfy service level rate requirements of

the overall network and to ensure its robustness. The research study focuses on

the complexity of modern supply chain networks, which involve multiple inter-

connected entities such as suppliers, manufacturers, distributors, and retailers. It

highlights that disruptions at any point in the network can have cascading ef-

fects on the overall system performance and service level. To address this issue,

the authors propose an approach to assess and enhance the robustness of sys-

tem service level within a supply chain network. The approach involves analyzing

the vulnerabilities and dependencies within the network, identifying critical nodes

and links, and evaluating the potential impact of disruptions on the service level.

The research work suggests employing mathematical modeling, simulation tech-

niques, and data analysis to quantify the effects of disruptions and to evaluate the

resilience performance of the supply chain network.

Sawik [120] has analyzed the SS-OA problem in the presence of disruption risks

from the perspective of single or multiple sourcing strategies. The mathemati-

cal model proposed optimizes cost and service level and the risk-averse solutions



Literature Review 57

that optimize the worst case performance of the supply chain network under dis-

ruption risks have been compared for the two sourcing strategies and the two

objective functions. The research work considers factors such as supplier relia-

bility, lead time variability, and disruption probability. By comparing the results

of the optimization model, the authors have evaluated the performance of single

sourcing and multiple sourcing strategies. They investigate how each strategy im-

pacts total cost and service level particularly in the presence of disruption risks.

The research study further discusses the findings related to the trade offs between

cost and service level in both sourcing strategies. It explores scenarios where one

strategy outperforms the other based on specific cost and service level objectives.

The analysis provides insights into the benefits and limitations of each strategy in

managing supply chain disruption risks. The research work highlights that orga-

nizations need to carefully evaluate their specific circumstances and requirements

when choosing between single sourcing and multiple sourcing strategies. Factors

such as product criticality, supplier capability, and risk tolerance should be con-

sidered in this regard.

A decision making problem of a fair optimization between cost and service level

in the presence of supply chain network disruption risks has been presented by

Sawik [121]. The problem has been formulated as a combinatorial stochastic opti-

mization problem and it has been implemented using a numerical case study. The

research work recognizes that disruptions in the supply chain can lead to increased

costs and reduced customer service level. It emphasizes the need for a fair and

balanced approach to optimization that takes into account both cost and service

level objectives. The author presents a mathematical model that incorporates dis-

ruption risks and aims to optimize the trade off between cost and customer service

level. The model accounts for various factors such as supplier reliability, lead time

variability, and disruption probability. One key aspect of the model is the intro-

duction of a fairness constraint that ensures an equitable distribution of costs and

service level impacts among different parties in the supply chain network. The fair-

ness constraint helps prevent any single entity from disproportionately bearing the

negative consequences of disruptions. The findings of the research study highlight

that under the conditions of increasing disruption probability or reduced service
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Figure 2.6: Disruption probability vs. product price (from [121], with per-
mission)

level, for the minimum cost objective, the cheapest supplier is usually selected,

whereas for the maximum service level objective, a subset of most expensive and

most reliable suppliers will be chosen. The equitably efficient supply portfolio

will normally combine the most reliable and the cheapest suppliers under these

conditions (Fig. 2.6).

Radasanu [122] has evaluated the link between safety stock and service level and

the design and execution of a successful inventory management policy. In this re-

search work, a statistical model has also been proposed for calculating the quantity

of safety stock that enables prevention of a stock-out situation with respect to a

predefined customer service level. The research work recognizes the importance of

inventory management in meeting customer demand while maintaining adequate

service level. It emphasizes the need to strike a balance between inventory costs

and customer service objectives. The author has discussed that service level is

influenced by various factors i.e. lead time, demand variability, inventory avail-

ability etc. and highlighted the role of safety stock in improving service level by

ensuring that stock-outs are minimized and customer demand is met consistently.

The research work further explores different approaches and mathematical models

used in determining the appropriate level of safety stock. It discusses techniques

such as the reorder point model, probabilistic models, and optimization methods
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to calculate safety stock quantities based on desired service levels and other rele-

vant factors. The research study emphasizes the need for organizations to consider

both costs and service level requirements when making decisions regarding inven-

tory management. It highlights the trade offs between carrying excess inventory

(increasing service level but incurring higher costs) and carrying insufficient inven-

tory (risking stock-outs and lower service levels). Effective inventory management

practices including appropriate safety stock levels contribute to improved customer

satisfaction, reduced stock-outs, and overall supply chain performance.

A two echelon supply chain network with a single manufacturer and two inde-

pendent retailers where the manufacturer is facing disruptions while the retailers

compete on price and service level has been analyzed by Giri and Sarkar [123].

The supply chain system has been modeled as a manufacturer-Stackelberg game

and a numerical case study has been employed to assess the impact of disruptions

on the equilibrium behavior and performance of the supply chain network. The

researchers consider a scenario where a disruption in production occurs, leading

to limited supply from the manufacturer. The retailers compete with each other

based on both price and service level. The objective is to find a coordination mech-

anism that minimizes the total cost of the system and ensures a fair distribution

of profits among the participants. To address this problem, the study proposes

a contract framework that encourages cooperation between the manufacturer and

retailers.

The contract includes a wholesale price, an allocation rule, and a buyback mech-

anism. The allocation rule determines the proportion of supply allocated to each

retailer while the buyback mechanism enables the return of unsold goods to the

manufacturer. The authors have analyzed the optimal contract parameters and

find that the coordination mechanism significantly improves the performance of

the supply chain. It leads to lower total costs, higher profits for the manufacturer

and the two retailers, and a fair distribution of profits. The research work also

highlights the importance of considering both price and service level competition

when designing coordination mechanisms in disrupted supply chains. Adenso-

Diaz et al. [124] have developed a metric for evaluating the robustness of a supply

chain network under the impact of successive collapse of its transportation links.
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The analysis of the results of the numerical experiments conducted to evaluate

the performance of the metric shows that flow complexity and service level after

disruptions are two of the most significant factors affecting supply chain network

robustness. The research work discusses various methodologies and models that

can be used to simulate and evaluate the effects of link failures on the supply chain

network. This analysis includes estimating the impact on key performance indi-

cators like delivery time, cost, or customer satisfaction. Additionally, the authors

emphasize the need for proactive measures to enhance supply chain robustness.

They have suggested strategies like diversifying suppliers, establishing redundan-

cies, and implementing contingency plans to minimize the negative impact of link

failures.

A supply chain comprised of one supplier and one retailer in which demand un-

certainty has been addressed using service level constraint and put options has

been evaluated by Chen et al. [125]. It has been observed that during the periods

of greater demand variability, with put options the retailer usually offers higher

service level. Put options provide the right to sell assets at a predetermined price,

offering protection against potential losses caused by price fluctuations or disrup-

tions. The research work has presented an optimization approach that incorporates

put options and service level constraints into supply chain risk management. It

aims to identify optimal strategies that balance risk mitigation and customer ser-

vice. Case studies and practical applications have been included in the research

work to illustrate the implementation and effectiveness of the proposed approach.

Yan et al. [126] have evaluated the efficacy of multi-channel ordering decisions for

a two echelon supply chain network in order to identify the best possible price and

logistic service level combinations. The models presented in this research work

employ Stackelberg game and consumer utility function to analyze the profits of

both the retailer and the manufacturer for arriving at an optimal channel strat-

egy. The research work presents a quantitative model that incorporates various

factors, including customer preferences, demand patterns, transportation costs,

inventory holding costs, and service level constraints. The model aims to opti-

mize the logistic service level decision in the context of the multi-channel supply
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chain. Furthermore, the authors have discussed the implications of different lo-

gistic service levels on the overall performance of the supply chain. They have

examined how varying service levels can impact customer satisfaction, channel

revenues, inventory levels, and transportation costs. The findings of the research

study indicate that the choice of logistic service level has a notable influence on

the multi-channel decision of the supply chain network. It emphasizes the im-

portance of considering factors such as demand variability, customer preferences,

and operational capabilities when determining the optimal service level for each

channel.

Arana et al. [127] have proposed an optimal supply methodology for improving

the service level of a two echelon supply chain network. The proposed method-

ology has been demonstrated by implementing it based on data collected from

the pharmaceutical industry. The research work recognizes the criticality of an

efficient and effective pharmaceutical supply chain in ensuring timely availability

of medications and health care products. It aims to evaluate the current service

level and proposes an optimal policy to enhance the supply chain performance. In

order to achieve this goal, various factors impacting the service level i.e. inventory

management, transportation means, lead time, and demand patterns etc. have

been considered.

The research study employs optimization techniques and mathematical models

to identify an optimal policy that can maximize the service level of the pharma-

ceutical supply chain while minimizing costs and inventory levels. By adopting

an approach that considers inventory management, transportation efficiency, and

other relevant factors, pharmaceutical firms can achieve better service level per-

formance and meet the health care needs of the population more effectively.

A supply chain network model with demand uncertainty and service level con-

straints has been presented by Bhuniya et al. [128]. The model has been evaluated

using various business strategies with total cost reduction as the primary optimiza-

tion criteria. The research work develops a mathematical model that takes into

account various factors such as demand variability, lead time uncertainty, and

inventory management strategy. The model aims to optimize the supply chain
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network performance by determining the optimal order quantities, reorder points,

and safety stock levels that ensure the desired service level is always met. The

authors have emphasized the significance of considering service level constraints

i.e. desired levels of product availability and customer satisfaction in supply chain

decision making. In order to address uncertainty, the research work has employed

probabilistic techniques such as stochastic programming and simulation to capture

the random variation in demand and lead time. These techniques enable DMs to

evaluate and compare different strategies under various uncertainty scenarios while

considering factors such as fill rate, backorders, or stock-outs.

Sinha et al. [129] have developed a modeling approach for optimal functional-

ity of a COVID-19 vaccine distribution network subject to lead time disruption

risk and service level constraint. In this research work, strategic placement of

inventory reserves at critical nodes has been proposed as a remedial measure for

addressing any shortcoming to the fulfillment of objective service level in the face

of infrastructure limitations.

The research work describes the critical role of efficient vaccine supply chains

in combating the COVID-19 pandemic and emphasizes the need to ensure an

adequate and timely supply of vaccines to achieve herd immunity. It highlights

the unique challenges faced by the DMs in an Indian context such as a large

population, diverse geography, and logistical complexities.

The authors propose strategies to enhance the service level in the vaccine supply

chain and emphasize the importance of demand forecasting and inventory man-

agement to prevent stock-outs thus ensuring a steady supply of vaccines. They

also suggest the implementation of distribution network optimization to improve

the efficiency of vaccine delivery across different regions.

Furthermore, the research study discusses the significance of collaboration and

coordination among stakeholders, including vaccine manufacturers, transportation

service providers, health care facilities, and government agencies. It emphasizes

the need for information sharing, real-time monitoring, and agile decision making

to address supply chain disruptions and ensure the availability of vaccines.
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2.6 Discussion

An extensive literature review and discussion concerning supplier selection, order

allocation, TBL sustainability, resilience, and supply chain network disruptions

has been presented in the preceding sections.

A few observations regarding the broader research area pertaining to sustain-

able supplier selection seems relevant here. A lack of consistent frameworks for

sustainable SS-OA has been observed. Different research studies adopt varying

criteria, metrics, and methodologies, making it challenging to compare and gener-

alize findings. There is a need for standardized frameworks that consider all TBL

dimensions of sustainability to ensure coherence and comparability across studies.

The environmental sustainability dimension receives considerable attention in the

literature but there is a relative lack of emphasis on social dimension.

The literature lacks a thorough analysis of the financial implications of SSS-OA

as well. While environmental and social considerations are critical, organizations

also need to evaluate the financial feasibility and cost-effectiveness of sustainable

practices. Lastly, while the literature provides insights into the theoretical aspects

of SSS-OA, there is limited discussion on the practical challenges and barriers

that organizations face during implementation. Identifying and addressing these

implementation challenges would facilitate the successful adoption of sustainable

practices.

An objective evaluation of the literature search and analysis presented in the

sections 2.2 and 2.3 leads to the critical observation that SSS-OA has been mostly

studied separately from resilient SS-OA. In recent times, the emergence and global

spread of COVID-19 pandemic has highlighted the limitation of this approach as

it is not always the case that a sustainable supplier will be a resilient supplier as

well. The performance of such a supplier will mostly be far from ideal under the

impact of supply chain network disruptions.

Furthermore, based on the literature review and comparison presented in section

2.4, it is concluded that even if sustainability and resilience have been considered
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together, resilience sub-criteria have been usually incorporated in the supplier se-

lection process only and rarely in the order allocation part. It has also been noted

that resilience sub-criteria considered in many research studies are vague or inade-

quately defined with limited scope and application e.g. general disruption, general

risk etc., which limits their usefulness for evaluating the dynamics of supply chain

network operations under the influence of disruption scenarios. The current liter-

ature on SRSS-OA lacks application of objective, quantitative MCDM techniques

for supplier selection and presents very little effort towards development of detailed

mathematical models for order allocation based on combined TBL sustainability

and resilience criteria.

In light of the literature survey and discussion presented in section 2.5, it can

be concluded that the impact of disruptions on the service level of a supply chain

network has been analyzed by many researchers over the years. This analysis how-

ever, has been usually carried out without reference to any quantitative measure

of the sustainability or resilience performance of the supply chain or any of its

components being taken into account.

In addition to the bibliographic review presented in this chapter, an analysis of

the extant literature pertaining to SSS-OA available for the duration 2010-21 has

been performed with the objective to identify the types of application case studies

considered. The summary of the analysis has been included in Fig. 2.7. Besides

numerical problems, the main focus of the researchers for the last many years has

been the automobile/automotive parts and electrical/electronics goods manufac-

turing industries, respectively.

In order to address the shortcomings of the extant literature highlighted above, a

sustainable and resilient SS-OA methodology has been presented in the following

chapter. For implementing this methodology, a multi-phase, multi-period deci-

sion support framework has been developed. The effectiveness of the decision

support framework has been evaluated by considering the attainment of a pre-

determined service level by the supply chain as a performance target under the

influence of random (probabilistic) and network (topology) disruptions. The or-

der allocation solutions have been compared for both no disruption and disruption
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Figure 2.7: Industry sector-wise distribution of application case studies

situations with the aim of identifying the best performance configuration for the

multi-modal, multi-echelon supply chain network considered for the application

case study problem.



Chapter 3

Proposed Methodology

3.1 Introduction

In this research work, a multi-modal, multi-echelon supply chain network consist-

ing of supplier “i”, seaport “j”, dry port “k”, warehouse “l”, and customer “c”

has been investigated (Fig. 3.1). The suppliers can ship order quantities either

through seaport or dry port depending upon their geographical location through

various transportation modes “m” at any time period “t”.

The inclusion of a dedicated dry port is a distinct feature of this network as it

facilitates those suppliers that are located in geographically congruent countries

where transportation of order quantities through rail or road is considered more

feasible or economical as compared to transportation by sea.

3.2 Proposed Decision Support Framework for

SRSS-OA

A multi-phase, multi-period decision support framework has been developed for

addressing the issue of sustainable and resilient SS-OA under the influence of

disruption scenarios. The detailed schematic of the framework has been presented

in Fig. 3.2. The decision support framework has been divided into five phases.

66
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Figure 3.1: The supply chain network under evaluation

In the first phase, MCDM techniques fuzzy extended AHP (FE-AHP) and fuzzy

TOPSIS (FTOPSIS) have been applied to evaluate potential suppliers based on

TBL sustainability and resilience criteria. A fuzzy multi-objective, mixed-integer

nonlinear programming (FMOMINLP) mathematical model has been developed in

the second phase for optimal order allocation to the selected suppliers. This model

has been solved by using a nonlinear solver and an exact algorithm i.e. Augmented

ε-Constraint 2 (AUGMECON2) method simultaneously for extracting a candidate

list of best solutions.

TOPSIS augmented with objective functions weights determined using Criteria

Importance through Intercriteria Correlation (CRITIC) method has been applied

in the third phase to rank and select the best solutions. In the fourth phase,

the MOMINLP mathematical model has been reconsidered and optimized with

respect to supply chain network service level while taking into account multiple

random and intentional disruption scenarios.

In order to arrive at the best performance configuration for the network, the

impact of the disruption scenarios on the service level of the supply chain has been

evaluated and the different solutions have been compared against fixed criteria in

the fifth and the last phase of the decision support framework.
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A brief description of the steps involved in each phase of the decision support

framework has been included below:

Phase 1: Sustainable and Resilient Supplier Selection

(a) Step-1: Identification of potential suppliers to be evaluated using TBL sus-

tainability and resilience criteria.

(b) Step-2: Identification of sub-criteria for each TBL sustainability and re-

silience criterion (Table 3.1).

(c) Step-3: Application of FE-AHP for evaluating relative weights of each sup-

plier’s selection criteria.

(d) Step-4: Application of FTOPSIS to rank the suppliers.

(e) Step-5: Preliminary selection of suppliers on the basis of defined thresholds

of the closeness coefficient.

(f) Step-6: Sensitivity analysis to evaluate the robustness of the selected sup-

pliers (based on the method identified by Forghani et al. [130]).

Phase 2: Order Allocation

(a) Step-7: Identification of objectives for allocating optimal quantities to the

potential suppliers. (The objectives are: total cost, total travel time, envi-

ronmental impact, acceptable quality limit, total value of sustainable pur-

chasing.)

(b) Step-8: Development of MOMINLP mathematical model along with de-

mand, resource, and capacity constraints.

(c) Step-9: Include uncertainty by developing the fuzzy MOMINLP mathemat-

ical model.

(d) Step-10: Solve the model using nonlinear solver to determine minimum and

maximum values of objective functions.
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(e) Step-11: Solve the model using AUGMECON2 and extract Pareto optimal

solutions.

Phase 3: Best Solution Selection

(a) Step-12: Use CRITIC method for determining objective functions’ weights

for extracting best 20 Pareto solutions.

(b) Step-13: Apply TOPSIS for ranking of best solutions for the time period

considered.

Phase 4: Disruption Scenario Evaluation

(a) Step-14: Include service level with MOMINLP mathematical model.

(b) Step-15: Introduce random and intentional disruption scenarios.

(c) Step-16: Determine optimal solution for each disruption scenario considered.

Phase 5: Disruption and No Disruption Solution Comparison

(a) Step-17: Compare disruption solutions with no disruption solutions on the

basis of pre-identified comparison criteria.

(b) Step-18: Identify best performance configuration for the supply chain net-

work.

3.3 Identification of Supplier Selection Criteria

In order to perform sustainable and resilient supplier selection, a set of 20 sub-

criteria has been identified based on the literature review and discussion presented

in sections 2.1, 2.2, and 2.4 of the previous chapter. The list of the sub-criteria

chosen for use in this research work along with their brief descriptions has been
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included in Table 3.1.

Table 3.1: Sub-criteria for sustainable and resilient supplier ranking

Criteria Sub-criteria Description

Economic Product Price The minimum bidding price received

from a supplier [28].

Payment Terms The terms and conditions included in

the payment schedule [25].

Product Quality The inherent characteristics of the prod-

uct for which the customer is paying for

[32].

Use of Technology The application of technology solutions

for achieving maximum customer satis-

faction [39].

Volume Flexibil-

ity

The ability of a supplier to address vari-

ations in demand [33].

Vendor’s Reputa-

tion

The repute and standing of a supplier

among competitors [28].

Responsiveness The objective and purposeful response

of a supplier aimed at addressing cus-

tomer’s demand in a given timeframe

[48].

Product Mix The capacity of a supplier to address

customer’s demand through multiple

products [31].

Past Business The scale and value of projects carried

out by a supplier in the past [29].

Environment Environmental

Management

System

The supplier has implemented a recog-

nized environmental management sys-

tem [47].
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Energy Consump-

tion

The type of conventional or renewable

energy resources used in the production

facilities of a supplier [40].

Waste Manage-

ment System

The type and efficacy of the waste col-

lection, segregation, transportation, and

disposal procedures implemented by a

supplier [43].

Innovative Capa-

bility

The ability of a supplier to incorporate

green design strategies in all stages of

the value addition process [45].

Social Employee Health

& Safety

The supplier offers health incentives and

implements rigorous standards and pro-

cedures for ensuring safety at workplace

[49].

Staff Personal &

Technical Devel-

opment

The availability of opportunities for per-

sonal and professional growth offered by

a supplier to its employees [60].

Information Dis-

closure

The implementation of procedures to

curtail any unwanted disclosure of per-

sonal or corporate information [40].

Resilience Robustness The ability of a supplier to resist or avoid

any unwanted change [124].

Agility The ability of a supplier to quickly ad-

just its strategy in order to meet rapidly

changing supply chain requirements [95].

Leanness The supplier has implemented proce-

dures to eliminate waste across all func-

tions, which can help to reduce lead time

[111].

Flexibility The ability of a supplier to efficiently re-

spond to market uncertainty [87].
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3.4 Supplier Selection Techniques

A brief overview of the supplier selection process and techniques used in this

research work has been presented below.

The supplier selection process comprises of two steps. In the first step, the TBL

sustainability and resilience criteria and sub-criteria are ranked by determining

their relative weights. This step has been implemented using FE-AHP technique.

In the second step, the sub-criteria weights calculated in the previous step have

been employed in the FTOPSIS technique in order to determine a ranking of the

potential suppliers. FST has been used to incorporate the impact of the varia-

tion in human judgment in both MCDM techniques. Triangular Fuzzy Numbers

(TFNs) a, n, m have been used in this research work to signify DM preferences

regarding alternatives, where a, n, m represent the least, average, and maximum

values, respectively. The membership function used in the supplier selection anal-

ysis has been adapted from Chang [131] and included in Eq. 3.1.

V (
∼
Mi ≥

∼
Mj ) =


1 if n2 ≥ n1

(a1 −m2)

(n2 −m2)− (n1 − a1)
otherwise

0 if a1 ≥ m2

(3.1)

where,

M1 = (a1, n1,m1), M2 = (a2, n2,m2)

FE-AHP has been used to calculate the weights of TBL sustainability and re-

silience criteria and sub-criteria in this research work. The linguistic variables

(adapted from Chen [132]) that have been used for implementing both MCDM

techniques have been included in Tables 3.2 and 3.3, respectively.

A graphical representation of the triangular membership function for evaluation

of TBL sustainability and resilience criteria and sub-criteria has been included in

Fig. 3.3. FE-AHP has been implemented based on the methodology presented
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by Wang et al. [133]. The various steps of the implementation process have been

included in Fig. 3.4. FTOPSIS has been used to determine the ranking of suppliers

based on the values of the sub-criteria weights determined through FE-AHP. The

linguistic variables used for implementing the technique have been included in

Table 3.3. FTOPSIS has been implemented based on the procedure followed by

Gupta and Barua [134]. The various steps of the implementation process have

been included in Fig. 3.5.

Table 3.2: Linguistic variables used for FE-AHP

Importance of Criteria

Linguistic Variable Fuzzy Number

Weakly Important (WI) (0.1, 0.1, 0.3)

Moderately Important (MI) (0.1, 0.3, 0.5)

Important (I) (0.3, 0.5, 0.7)

Strongly Important (SI) (0.5, 0.7, 0.9)

Extremely Important (EI) (0.7, 0.9, 1)

Table 3.3: Linguistic variables used for FTOPSIS

Performance Ranking of Alternatives

Linguistic Variable Fuzzy Number

Very Low (VL) (1, 1, 3)

Low (L) (1, 3, 5)

Medium (M) (3, 5, 7)

High (H) (5, 7, 9)

Very High (VH) (7, 9, 10)
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Figure 3.3: Membership function for evaluation of criteria and sub-criteria

3.5 Development of Mathematical Model for Or-

der Allocation

The development of the MOMINLP mathematical model has been presented in

this section. FST has been applied to incorporate real-world uncertainty in the

mathematical model. The objective functions along with the assumptions, sets,

parameters, and variables used in the mathematical model have been included

below:

Assumptions

(1) The model is a multi-period model. (2) The shipments are considered as less

than container load (LCL) shipments. (3) The transfer cost and transfer time can

only be applied at the nodes. (4) The custom clearance cost and custom clearance

time can only be applied while moving through port. (5) Custom clearance can

only take place at one port for a shipment i.e. either at seaport or dry port.

Sets

i=1,2,3,...,I Set of suppliers

j=1,2,3,...,J Set of seaports

k=1,2,3,...,K Set of dry ports

l=1,2,3,...,L Set ofwarehouses

c=1,2,3,...,C Set of customers
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Figure 3.4: Flow chart for implementation of FE-AHP
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Figure 3.5: Flow chart for implementation of FTOPSIS
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t=1,2,3,...,T Set of time periods

m = 1, 2, 3, ...,M Set of transportationmodes

n = 1, 2, 3, ..., N Set of transportationmodes

For intermodal transfer decisions

Parameters

Cp
it = Purchasing cost per kg from supplier i for time period t

Oit = Ordering cost incurred by customer for ith supplier for time period t

Hot = Inventory holding cost per kg incurred by customer for time period t

TCmt = Transportation cost per km for modem for time period t

T rCmnt = Transfer cost frommodem tomoden for time period t

CCijt = Custom clearance cost whilemoving from supplier i to seaport j

for time period t

CCikt = Custom clearance cost whilemoving from supplier i to dry port k

for time period t

T rTmnt = Transfer time frommodem tomoden for time period t

CCTijt = Custom clearance time from supplier i to seaport j for time period t

CCTikt = Custom clearance time from supplier i to dry port k for time period t

dijm = Distance from supplier i to seaport j throughmodem

djlm = Distance from seaport j towarehouse l throughmode m

dlcm = Distance fromwarehouse l to customer c throughmode m

dikm = Distance from supplier i to dry port k through mode m

dklm = Distance fromdry port k to warehouse l through mode m

djkm = Distance from seaport j to dry port k throughmode m

wi
eco = Weights of economic criteria obtained from fuzzy E-AHP for supplier i

we
i = Weights of environmental criteria obtained from fuzzy E-AHP for supplier i

ws
i = Weights of social criteria obtained from fuzzy E-AHP for supplier i

WEconomic
i = Weights of supplier i from fuzzyTOPSIS for economic criteria

WEnvironmental
i = Weights of supplier i from fuzzyTOPSIS for environmental

criteria

W Social
i = Weights of supplier i from fuzzyTOPSIS for social criteria

wi
Risk = Risk weight of supplier i normalized by results of risk expectation value

CO2ijmt = Carbondioxide emissions in gramper kmwhile traveling from supplier i

to seaport j throughmodem for time period t
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CO2jlmt = Carbon dioxide emissions in gramper kmwhile traveling from seaport j

towarehouse l throughmodem for time period t

CO2lcmt = Carbon dioxide emissions in gramper kmwhile traveling from

warehouse l to customer c throughmode m for time period t

CO2ikmt = Carbondioxide emissions in gramper kmwhile traveling from supplier i

to dryport k throughmodem for time period t

CO2klmt = Carbondioxide emissions in gramper kmwhile traveling from dryport k

towarehouse l throughmodem for time period t

CO2jkmt = Carbondioxide emissions in gramper kmwhile traveling from seaport j

to dryport k throughmodem for time period t

Sit = Maximumcapacity of ith supplier for time period t

Dct = Demand of cth customer for time period t

αit = Acceptable quality limit of ith supplier for time period t

CAPwlt = Capacity of lth warehouse for time period t

vm = Velocity ofmode m

Capmt = Capacity of vehicle usedwhilemoving throughmodem for time period t

Cap(m=2)t = Maximumcapacity of rail for time period t

Cap(m=3)t = Maximum capacity of road for time period t

Integer Variables

Xijmt = Quantity shipped from supplier i to seaport j throughmodem for time

period t

Xjlmt = Quantity shipped from seaport j towarehouse l throughmodem for time

period t

Xlcmt = Quantity shipped fromwarehouse l to customer c throughmodem for time

period t

Xikmt = Quantity shipped from supplier i to dryport k throughmodem for time

period t

Xklmt = Quantity shipped fromdry port k towarehouse l throughmodem for time

period t

Xjkmt = Quantity shipped from seaport j to dry port k throughmodem for time

period t
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Binary Variables

Yit =

1 if supplier i is selected

0 otherwise

Zlt =

1 if warehouse l is selected

0 otherwise

ajt =

1 if transfer from mode m to n at node j

0 otherwise

akt =

1 if transfer from mode m to n at node k

0 otherwise

alt =

1 if transfer from mode m to n at node l

0 otherwise

Objective Function 1: Total Cost (TC)

This objective function minimizes the sum of purchasing cost, ordering cost, in-

ventory holding cost, transportation cost, transfer cost, and the custom clearance

cost that takes place throughout the supply chain network.

Transfer cost is the labor cost incurred when goods are transferred from one mode

of transport to another while custom clearance cost is the cost of preparation and

processing of custom entry documents at the port.

In order to incorporate the effects of resilience criteria in order allocation, risk

weights for ordering from each supplier are determined and included in the objec-

tive function (Appendix B).

It is important to note here that TC will be used as the main or principal objective

function during multi-objective optimization being carried out through the chosen

solving algorithm in subsequent chapters.
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Min TC=
I∑

i=1

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

(CP
itXijmt + CP

itXikmt)(1 + wRisk
i )Yit+

I∑
i=1

T∑
t=1

OitYit+

I∑
i=1

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

Xijmt +Xikmt

2
(Hot)+

I∑
i=1

J∑
j=1

M∑
m=1

T∑
t=1

TCmtdijm
Xijmt

Capmt

(1 + wRisk
i )Yit+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

TCmtdikm
Xikmt

Capmt

(1 + wRisk
i )Yit+

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

TCmtdjkm
Xjkmt

Capmt

+

J∑
j=1

L∑
l=1

M∑
m=1

T∑
t=1

TCmtdjlm
Xjlmt

Capmt

+

K∑
k=1

L∑
l=1

M∑
m=1

T∑
t=1

TCmtdklm
Xklmt

Capmt

+

L∑
l=1

C∑
c=1

M∑
m=1

T∑
t=1

TCmtdlcm
Xlcmt

Capmt

+

J∑
j=1

K∑
k=1

M∑
m=1

N∑
n=1

T∑
t=1

TrCmntajtXjkmt+

J∑
j=1

L∑
l=1

M∑
m=1

N∑
n=1

T∑
t=1

TrCmntajtZltXjlmt+

K∑
k=1

L∑
l=1

M∑
m=1

N∑
n=1

T∑
t=1

TrCmntaktZltXklmt+

L∑
l=1

C∑
c=1

M∑
m=1

N∑
n=1

T∑
t=1

TrCmntaltZltXlcmt+

I∑
i=1

J∑
j=1

M∑
m=1

T∑
t=1

CCijtXijmtYit+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

CCiktXikmtYit

(3.2)

Objective Function 2: Total Travel Time (TTT)

This objective function minimizes the total travel time from the supplier to the
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customer. Total travel time is given as a sum of transportation time, transfer time,

and custom clearance time. Transfer time is the time required for transfer of goods

from one mode of transport to another while custom clearance time refers to the

time it takes for the preparation and processing of custom entry documents at the

port. The impact of resilience criteria is incorporated by including risk weights

for each supplier in this objective function as well (Appendix B).

Min TTT =
I∑

i=1

J∑
j=1

M∑
m=1

T∑
t=1

dijmXijmt

vmCapmt

(1 + wRisk
i )Yit+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

dikmXikmt

vmCapmt

(1 + wRisk
i )Yit+

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

djkmXjkmt

vmCapmt

+

J∑
j=1

L∑
l=1

M∑
m=1

T∑
t=1

djlmXjlmt

vmCapmt

+

K∑
k=1

L∑
l=1

M∑
m=1

T∑
t=1

dklmXklmt

vmCapmt

+

L∑
l=1

C∑
c=1

M∑
m=1

T∑
t=1

dlcmXlcmt

vmCapmt

+

J∑
j=1

M∑
m=1

N∑
n=1

T∑
t=1

TrTmnt
Xjlmt

Capmt

+

K∑
k=1

M∑
m=1

N∑
n=1

T∑
t=1

TrTmnt
Xklmt

Capmt

+

J∑
j=1

M∑
m=1

N∑
n=1

T∑
t=1

TrTmnt
Xjkmt

Capmt

+

L∑
l=1

M∑
m=1

N∑
n=1

T∑
t=1

TrTmnt
Xlcmt

Capmt

+

I∑
i=1

J∑
j=1

M∑
m=1

T∑
t=1

CCTijtXijmtYit

Capmt

+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

CCTiktXikmtYit

Capmt

(3.3)

Objective Function 3: Environmental Impact (EI)
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This objective function minimizes the total carbon dioxide emissions throughout

the transportation process for all 03 transportation modes i.e. sea, rail, and road.

Min EI =
I∑

i=1

J∑
j=1

M∑
m=1

T∑
t=1

CO2ijmt

[
Xijmt

Capmt

]
dijm+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

CO2ikmt

[
Xikmt

Capmt

]
dikm +

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

CO2jkmt

[
Xjkmt

Capmt

]
djkm+

J∑
j=1

L∑
l=1

M∑
m=1

T∑
t=1

CO2jlmt

[
Xjlmt

Capmt

]
djlm+

K∑
k=1

L∑
l=1

M∑
m=1

T∑
t=1

CO2klmt

[
Xklmt

Capmt

]
dklm +

L∑
l=1

C∑
c=1

M∑
m=1

T∑
t=1

CO2lcmt

[
Xlcmt

Capmt

]
dlcm

(3.4)

Objective Function 4: Acceptable Quality Limit (AQL)

This objective function minimizes the acceptable quality limit of the selected sup-

pliers based on different types of defects and their ranges usually employed for

order lot size quality assurance.

Min AQL =
I∑

i=1

J∑
j=1

M∑
m=1

T∑
t=1

αitXijmtYit+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1

αitXikmtYit

(3.5)

Objective Function 5: Total Value of Sustainable Purchasing (TVSP)

This objective function maximizes the total value of purchased goods by maximiz-

ing the economic, environmental, and social criteria weights. The TBL sustain-

ability criteria weights determined using FE-AHP are multiplied by the suppliers’

weights calculated using FTOPSIS and the ordered quantity from the supplier.



Proposed Methodology 84

Max TVSP =
I∑

i=1

J∑
j=1

M∑
m=1

T∑
t=1


WEconomic

i weco
i Xijmt+

WEnvironmental
i we

iXijmt+

W Social
i ws

iXijmt

+

I∑
i=1

K∑
k=1

M∑
m=1

T∑
t=1


WEconomic

i weco
i Xikmt+

WEnvironmental
i we

iXikmt+

W Social
i ws

iXikmt


(3.6)

Constraints

The supply constraint represented by Eq. 3.7 ensures that the total order quantity

received from the selected suppliers is always less than or equal to the cumulative

stated capacity of the suppliers.

J∑
j=1

K∑
k=1

M∑
m=1

T∑
t=1

(Xijmt +Xikmt) ≤ SitYit ∀i ∈ I (3.7)

The demand constraint ensures that the order quantity shipped from the selected

suppliers and transferred to the customers after passing through ports and ware-

houses is in effect equal to the actual demand of the customers. This constraint

is represented by Eqs. 3.8, 3.11, and 3.13, respectively.

I∑
i=1

M∑
m=1

T∑
t=1

(Xijmt +Xikmt) = Dct ∀j ∈ J, ∀k ∈ K (3.8)

The equality constraint ensures that the order quantity shipped from the suppliers

to the ports is equal to the order quantity that is transferred from the ports to

the warehouses and eventually transported to the customers. This constraint has

been implemented through Eqs. 3.9, 3.10, and 3.12, respectively.

I∑
i=1

M∑
m=1

T∑
t=1

(Xijmt +Xikmt) =
L∑
l=1

M∑
m=1

T∑
t=1

(Xjlmt +Xklmt) ∀j ∈ J, ∀k ∈ K (3.9)
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L∑
l=1

M∑
m=1

T∑
t=1

(Xjlmt +Xklmt) =
C∑
c=1

M∑
m=1

T∑
t=1

Xlcmt ∀j ∈ J, ∀k ∈ K (3.10)

L∑
l=1

M∑
m=1

T∑
t=1

(Xjlmt+Xklmt) = Dct ∀j ∈ J,∀k ∈ K (3.11)

L∑
l=1

M∑
m=1

T∑
t=1

(Xjlmt +Xjkmt +Xklmt) =
C∑
c=1

M∑
m=1

T∑
t=1

Xlcmt ∀j ∈ J, ∀k ∈ K (3.12)

C∑
c=1

M∑
m=1

T∑
t=1

Xlcmt = Dct ∀l ∈ L (3.13)

The mode capacity constraint ensures that the order quantities transported through

various modes should be less than or equal to the maximum capacity of the mode.

This constraint has been included in the mathematical model by using Eqs. 3.14-

3.24.

I∑
i=1

J∑
j=1

T∑
t=1

Xij(m=1)t ≤ Cap(m=1)t ∀m ∈ M (3.14)

J∑
j=1

K∑
k=1

T∑
t=1

Xjk(m=2)t ≤ Cap(m=2)t ∀m ∈ M (3.15)

J∑
j=1

K∑
k=1

T∑
t=1

Xjk(m=3)t ≤ Cap(m=3)t ∀m ∈ M (3.16)

J∑
j=1

L∑
l=1

T∑
t=1

Xjl(m=2)t ≤ Cap(m=2)t ∀m ∈ M (3.17)

J∑
j=1

L∑
l=1

T∑
t=1

Xjl(m=3)t ≤ Cap(m=3)t ∀m ∈ M (3.18)

L∑
l=1

C∑
c=1

T∑
t=1

Xlc(m=2)t ≤ Cap(m=2)t ∀m ∈ M (3.19)
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L∑
l=1

C∑
c=1

T∑
t=1

Xlc(m=3)t ≤ Cap(m=3)t ∀m ∈ M (3.20)

I∑
i=1

K∑
k=1

T∑
t=1

Xik(m=2)t ≤ Cap(m=2)t ∀m ∈ M (3.21)

I∑
i=1

K∑
k=1

T∑
t=1

Xik(m=3)t ≤ Cap(m=3)t ∀m ∈ M (3.22)

K∑
k=1

L∑
l=1

T∑
t=1

Xkl(m=2)t ≤ Cap(m=2)t ∀m ∈ M (3.23)

K∑
k=1

L∑
l=1

T∑
t=1

Xkl(m=3)t ≤ Cap(m=3)t ∀m ∈ M (3.24)

The warehouse capacity constraint ensures that the order quantity that is either

received or shipped from a warehouse is always less than or equal to the stated

storage capacity of the warehouse. This constraint is represented by Eqs. 3.25-

3.27.

J∑
j=1

M∑
m=1

T∑
t=1

Xjlmt ≤ CAPwltZlt ∀l ∈ L (3.25)

K∑
k=1

M∑
m=1

T∑
t=1

Xklmt ≤ CAPwltZlt ∀l ∈ L (3.26)

C∑
c=1

M∑
m=1

T∑
t=1

Xlcmt ≤ CAPwltZlt ∀l ∈ L (3.27)

The non-negativity constraint ensures that all order quantities within the supply

chain network should always be greater than 0. This constraint has been imple-

mented by Eq. 3.28. The variables that can only take on a binary value are

represented by Eq. 3.29.
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Xijmt, Xjlmt, Xlcmt, Xikmt, Xklmt, Xjkmt ≥ 0 ∀i, j, k, l, c,m (3.28)

Yit , Zlt, ajt, akt, alt ∈ {0, 1} ∀i, l (3.29)

The constraints should be satisfied with a confidence value ϕ determined by the

DMs. As noted earlier, using FST helps to address the uncertainty of human

judgment and enables a more precise and objective representation of real-world

systems. Based on fuzzy formulation, each objective function corresponds to an

equivalent linear membership function, whose value can be calculated by using Eq.

3.30.

µb =


1 if Zb ≤ Maxb

Maxb − Zb

Maxb −Minb

if Minb ≤ Zb ≤ Maxb

0 if Zb ≥ Minb

(3.30)

In the above equation, Z b represents the value of the bth objective function, and

Max b and Minb represent the maximum and minimum values of the bth objective

function, respectively [135]. The maximum and minimum values of the member-

ship functions for the objectives have been further illustrated in Fig. 3.6.

Supplier vulnerability is an ever present concern for the DMs. In order to quantify

the anticipated risk while evaluating a potential supplier, a risk criteria weight is

calculated based on the procedure adopted from Li et al. [136]. In this proce-

dure, for all suppliers being evaluated, DMs’ scores for the resilience sub-criteria

are combined with the resilience sub-criteria weights determined through a suit-

able MCDM technique (E-AHP for the purpose of this research work). For each

supplier, a risk expectation value is calculated using Eq. 3.31.

Rs =
n∑

j=1

F (Cj) · wj (3.31)
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Figure 3.6: Membership functions for TC, TTT, EI, AQL, and TVSP

In the above equation, F (C j ) denotes the risk value and w j is the optimal weight

of the resilience sub-criterion C j , respectively. In the next step, a risk threshold αR

is considered based on the expected risk-bearing capacity of the supplier and the

risk preference of the DM. Risk expectation values of all suppliers being evaluated

are determined using Eq. 3.31 and compared with αR. Only those Rs values are

retained that fall below DM specified risk threshold and are re-labeled as R
′
s . The

normalized risk weight w i
Risk for each alternative supplier can then be calculated

using Eq. 3.32.

wRisk
i =

R′
s

I∑
i=1

R′
s

(3.32)

The risk weights calculated using the procedure outlined above are applied in those

sections of the MOMINLP mathematical model that deal with total cost and total

travel time in order to incorporate resilience in the order allocation part of the

SRSS-OA problem presented in this research work.
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3.6 Solving Algorithm for Order Allocation

AUGMECON2 has been used for solving the fuzzified MOMINLP mathematical

model [137]. This solving algorithm is an improved version of the ε-Constraint

method proposed by Mavrotas [138]. AUGMECON2 provides exact Pareto set

and it is more suitable for solving multi-objective, mixed-integer, non-linear opti-

mization problems. Even when compared with the recent developments of AUG-

MECON i.e. Robust Augmented ε-Constraint (AUGMECON-R) or the Python

Framework for Augmented ε-Constraint (AUGMECON-Py), which are at present

being only applied to linear programming problems, AUGMECON2 finds wider ap-

plication for being considered a tested and established version of the ε-Constraint

method [139, 140]. This method transforms a multi-objective problem into a mono-

objective problem by considering one of the objectives as the main or principal

objective while treating other objectives as constraints subject to certain ε values.

The algorithm introduces slack variables at each iteration to adequately address

and handle the complexities of discrete variables and non-convex problems. A

generic mathematical model of the method is given by Eq. 3.33.

max
(
f1(x) + eps

(
S2

r2
+
(
(10− 1)S3

r3

)
+ ...+

(
10− (n− 2)Sn

rn

)))
(3.33)

subject to,

f2(x)− S2 = ε2

f3(x)− S3 = ε3

...

fn(x)− Sn = εn

where, ε2, ε3, ..., εn are the right-hand side values for each objective function,

S 2, S 3, ..., S n are the slack variables, r 2, r 3, ..., rn are the ranges of n objective

functions, and eps ∈ [10−6,10−3]. In order to generate exact Pareto sets, AUGME-

CON2 facilitates lexicographic optimization of objective functions f 2, f 3, ..., f n .

The mathematical model is transformed as presented below to generate the Pareto



Proposed Methodology 90

optimal solutions. For the purpose of this research work, TC has been considered

as the main objective function as represented by Eq. 3.34.

MinZ = MinTC (3.34)

subject to Eqs. 3.7-3.29, and:

MinTTT ≤ ε2

[MinTTT ]min ≤ ε2 ≤ [MinTTT ]max

MinEI ≤ ε3

[MinEI]min ≤ ε3 ≤ [MinEI]max

MinAQL ≤ ε4

[MinAQL]min ≤ ε4 ≤ [MinAQL]max

MaxTV SP ≤ ε5

[MaxTV SP ]min ≤ ε5 ≤ [MaxTV SP ]max

A generalized graphical representation of the AUGMECON2 method has been

included in Fig. 3.7.

3.7 Selection of Best Pareto Optimal Solution

The large number of optimal solutions generated by the solving algorithm neces-

sitates that an analytical approach must be adopted for identifying and selecting

the best solution.

The CRITIC method has been used to calculate objective functions weights in

order to select the best 20 Pareto solutions generated using AUGMECON2 [141].

Four best solutions for each confidence value ϕ are determined.

This is followed by TOPSIS for ranking and identification of the best Pareto

optimal solution for each time period t. A graphical representation of the procedure

implemented for selection of the best Pareto solution has been included in Fig. 3.8.
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Figure 3.7: Flowchart of the AUGMECON2 method
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3.8 Evaluation of Disruption Scenarios

The performance of the proposed decision support framework has been evaluated

under the influence of multiple types of disruption scenarios and a detailed analysis

has been included in Chapter 5.

This evaluation takes into account two types of disruptions i.e. random disruptions

that are probabilistic in nature and intentional disruptions that are associated with

the topology of the supply chain network.

A procedure has been presented that evaluates the impact of demand uncertainty

on the target service level of a supply chain network as specified by the DMs.

Probabilistic demand can give rise to lead time disruptions and in the absence of

careful planning such disruptions usually lead to stock-out situations. A quantita-

tive metric termed Supply Chain Index (SCI) developed by Plaganyi et al. [142]

for identifying key nodes and links within a supply chain network has been im-

plemented followed by a systematic disabling of certain nodes in order to evaluate

the impact of these so called intentional knockout actions on the performance of

the overall network measured in terms of predefined comparison criteria.

3.9 Conclusion

In order to demonstrate the utility and potential of the proposed decision support

framework in carrying out SRSS-OA under the influence of multiple types of dis-

ruption scenarios, it has been implemented using data from the pharmaceutical

industry.

The MCDM techniques FE-AHP and FTOPSIS have been implemented using MS

Excel (2021) while Python 3.7 has been used for solving the FMOMINLP math-

ematical model. Both software packages were run using a Core i5/2.5 GHz/8.0

GB RAM personal computer. The detailed results and their analysis has been

presented in the following chapter.
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Figure 3.8: Flowchart of TOPSIS augmented with objective functions weights
determined using CRITIC



Chapter 4

Sustainable and Resilient Supplier

Selection and Order Allocation

In this chapter, the proposed methodology has been demonstrated by implement-

ing phases 1-3 of the decision support framework that deal with SRSS-OA using

data from the pharmaceutical industry. In the wake of COVID-19 pandemic,

pharmaceutical industry has emerged as one of the most important and critical

contributors to the global health care system.

Around the world, pharmaceutical firms have developed complex, international

supply chain networks susceptible to disruptions. While SSS-OA ensures the well-

being of the pharmaceutical industry under ordinary circumstances, incorporating

resilience in this activity can help mitigate the adverse effects of disruptions, nat-

ural or otherwise, to the supply chain network.

All data concerning the number of suppliers, warehouses, transportation modes,

capacity, and demand etc. was acquired from reputable firms engaged in manu-

facturing pharmaceutical items for decades. The relevant data has been included

in Appendix C. The pharmaceutical supply chain considered comprises of 05 sup-

pliers, 01 seaport, 01 dry port, 03 warehouses, and 02 customers.

94
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4.1 Sustainability and Resilience Criteria Weight-

ing

FE-AHP has been used for determining the weights of the sustainability and re-

silience criteria and sub-criteria based on the preferences of 04 DMs associated

with the pharmaceutical industry. Value of the consistency ratio was calculated

for all criteria collectively and for all sub-criteria entries within each criterion in

order to ensure the soundness of the DMs’ responses. The global and local weights

of the criteria and sub-criteria along with the ranking of the sub-criteria have been

included in Table 4.1.

Table 4.1: FE-AHP weights for sustainability and resilience criteria and sub-
criteria

Criteria
Global
Weights

Sub-criteria
Local

Weights
Ranking

Economic 0.6

Product Price
Payment Terms
Product Quality
Use of Technology
Volume Flexibility
Vendor’s Reputation
Responsiveness
Product Mix
Past Business

0.02
0.02
0.03
0.03
0.07
0.07
0.12
0.15
0.15

5
5
4
4
3
3
2
1
1

Environment 0.19

Environmental Management
System
Energy Consumption
Waste Management System
Innovative Capability

0.01

0.02
0.02
0.03

3

2
2
1

Social 0.14

Employee Health & Safety
Staff Personal & Technical
Development
Information Disclosure

0.01
0.02

0.13

3
2

1

Resilience 0.06

Robustness
Agility
Leanness
Flexibility

0.03
0.02
0.02
0.03

1
2
2
1

The sustainability and resilience criteria were presented as economic > environ-

ment > social along with resilience as an additional parameter for evaluation to
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Table 4.2: Ranking of suppliers using FTOPSIS

Supplier EC EnC SC RC Overall CC Ranking

Supplier-1 0.69 0.12 0.36 0.15 0.57 1

Supplier-2 0.68 0.16 0.14 0.15 0.559 2

Supplier-3 0.64 0.23 0.54 0.92 0.553 3

Supplier-4 0.5 0.3 0.68 0.61 0.407 4

Supplier-5 0.2 0.87 0.86 0.42 0.38 5

the DMs. Economic criteria was ranked as the most important one followed by

environment, social, and then the resilience criteria. For the economic sub-criteria,

past business and product mix have been identified as the most significant sub-

criteria. Innovative capability has been ranked as the highest environment sub-

criterion while information disclosure has been considered the most important

social sub-criterion.

The DMs have ranked robustness and flexibility as the most important resilience

sub-criteria. This discernable ranking of sub-criteria based on DMs’ response

serves as an aid for making informed decisions and to select only those suppliers

that fulfill the sustainability and resilience criteria at the same time.

4.2 Sustainable and Resilient Supplier Ranking

FTOPSIS has been applied for ranking the potential suppliers using the weights of

the sustainability and resilience criteria calculated in the preceding section and the

response collected from the previously identified DMs. The closeness coefficient

threshold for supplier ranking has been set at 0.5 and based on this value supplier-

1, supplier-2, and supplier-3 have been selected for optimum order allocation while

supplier-4 and supplier-5 have been retained as backup suppliers in case any of

the selected suppliers becomes unavailable.
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Using a modification of the procedure identified by Forghani et al. [130], a sen-

sitivity analysis has been performed to evaluate the robustness of the selected

suppliers. Based on the feedback received from the DMs, 08 sub-criteria have

been short-listed for inclusion in the sensitivity analysis i.e. economic (product

price, payment terms, responsiveness, and vendor’s reputation), environment (en-

vironmental management system and innovative capability), social (information

disclosure), and resilience (flexibility). A set of 06 different cases of varying de-

grees of sub-criteria weights has been considered and evaluated with reference to

the current values of sub-criteria weights. In spite of the variations introduced

in the sub-criteria weights, the ranking of the suppliers has remained unchanged.

The outcome of the sensitivity analysis indicates that the MCDM methods applied

have produced robust results for the sustainable and resilient supplier evaluation

and selection problem. The final ranking of the potential suppliers has been in-

cluded in Table 4.2. The details of the MCDM analysis have been presented in

Appendix A.

Table 4.3: Optimum solutions of objective functions for time period t using
nonlinear solver

Time Period Objective Function Ideal Solution

t1

TC
TTT
EI

AQL
TVSP

$91136983.38
621.6 h

750915.35 gm
18680.02 kg
117241.22

t2

TC
TTT
EI

AQL
TVSP

$93435628.21
645.3 h

892574.29 gm
18721.19 kg
116272.51

t3

TC
TTT
EI

AQL
TVSP

$95265437.07
634.2 h

957297.42 gm
19938.52 kg
117252.96

t4

TC
TTT
EI

AQL
TVSP

$96521876.81
655.7 h

869374.61 gm
19132.52 kg
119935.22
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4.3 Sustainable and Resilient Order Allocation

The FMOMINLP mathematical model has been solved in two phases. First each

objective function has been optimized individually using a nonlinear solver and

ideal solutions have been determined as included in Table 4.3. In the second phase,

AUGMECON2 has been employed for solving all objective functions simultane-

ously. Pareto solutions have been generated for each time period considered i.e.

t1-t4 that correspond to quarters 1-4 of the calender year 2022, respectively, in

order to determine the optimal order quantity for all selected suppliers using the

fuzzified input data as included in Appendix C.

The accuracy and validity of the multi-objective optimization results is of vital im-

portance as without reference to a benchmark value, any optimal solution will not

be considered reliable. The results of the optimization of each objective function

carried out separately using the nonlinear solver can help to address this issue. If

the results of the multi-objective optimization have a close similarity to the results

attained using the nonlinear solver, it can be established reliably that the solving

algorithm has been able to handle the complexity of the multi-objective problem

satisfactorily thus generating provable results.

In order to perform multi-objective optimization, AUGMECON2 first generates a

payoff table for each time period t (Table 4.4). The maximum/minimum values

of all objective functions are calculated by solving Eqs. 3.2-3.29 and the results

have been presented in Tables 4.5 and 4.6, respectively. In the following step, the

maximum and minimum values are divided into 10 segments and each segment is

individually assigned to ε2, ε3, ε4, and ε5 with the step interval of 2 by using Eq.

3.33. These values have been included in Table 4.7.

The DMs have assigned 04 ϕ levels i.e. 0.25, 0.5, 0.75, and 1.0 for each solution

with an incremental step of 0.25. The algorithm will run for every combination

of ε values for all ϕ levels in order to generate Pareto optimal solutions. The

maximum number of iterations allowed is 50,000. The last step in the sustainable

and resilient order allocation process is the selection of the best solution from the

set of Pareto optimal solutions generated by AUGMECON2.
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Table 4.4: Payoff table using AUGMECON2 for time period t

Time
Period

Objective
Function

TC ($) TTT (h) EI (gm) AQL (kg) TVSP

t1

TC
TTT
EI

AQL
TVSP

92804282.45
93631359.24
93631359.24
93631340.95
95162050.42

823.33
608.86
608.86
608.85
611.33

1755576.8
849670.38
849670.38
849652.81
850116.42

18475
19475
19475
19475
18975

105930.56
119085.76
119085.76
119085.76
119485.76

t2

TC
TTT
EI

AQL
TVSP

91254980.23
93473964.17
93912579.05
93624579.66
97253427.49

797.25
657.61
629.43
602.43
638.29

1564291.6
873693.43
865298.66
869764.34
868265.55

18356
18929
19574
19578
19649

143597.22
116293.91
116369.32
116297.49
115679.64

t3

TC
TTT
EI

AQL
TVSP

92673456.22
95876521.09
97648761.22
95790352.62
96542752.79

643.53
687.47
678.32
654.91
667.01

1427941.3
942654.39
956482.21
954278.23
957267.25

19246
19925
19643
19587
19647

152457.87
117562.82
117465.97
117790.11
117025.09

t4

TC
TTT
EI

AQL
TVSP

97825790.25
96257860.29
96843789.34
96894392.55
96654872.46

686.38
652.71
652.82
655.72
679.31

1374825.2
868734.56
873484.43
862564.52
865782.37

19835
19897
19642
19528
19874

137923.34
116432.66
119843.21
119532.62
119376.01
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Table 4.5: Maximum and Minimum Values of Objective Functions for t1 and
t2

Objective
Function

t1 t2

Max Min Max Min

TC ($) 95162050.42 92804282.45 97253427.49 91254980.23

TTT (h) 823.33 608.85 797.25 602.43

EI (gm) 1755576.8 849652.81 1564291.6 865298.66

AQL (kg) 19475 18475 19649 18356

TVSP 119485.76 105930.56 143597.22 116293.91

Table 4.6: Maximum and Minimum Values of Objective Functions for t3 and
t4

Objective
Function

t3 t4

Max Min Max Min

TC ($) 97648761.22 92673456.22 97825790.25 96257860.29

TTT (h) 687.47 643.53 686.38 652.71

EI (gm) 1427941.3 942654.39 1374825.2 862564.52

AQL (kg) 19647 19246 19897 19528

TVSP 152457.87 117025.09 137923.34 116432.66

This step is carried out by employing TOPSIS. The objective functions weights

were calculated using CRITIC method and these values have been presented in

Table 4.8. Only one solution can be selected by the DMs for each time period. The

values of the relative closeness coefficient for the best 20 Pareto optimal solutions

for the time periods t1-t4 have been included in Table 4.9. The best solution for

each time period has been presented in Table 4.10.
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Table 4.7: ε-Values of TTT, EI, AQL, and TVSP

Time
Period

ε-values

ε1 ε2 ε3 ε4

1

t1
t2
t3
t4

608.85
716.09
823.33
608.85

849852.81
849652.71
849652.21
1302614.8

18475
18425
18375
18475

105930.56
109831.37
110718.26
115701.11

2

t1
t2
t3
t4

608.85
716.09
823.33
608.85

1302614.8
849652.81
849652.81
849752.81

18375
19575
17965
17985

105930.16
108921.84
112222.01
117728.19

3

t1
t2
t3
t4

608.85
716.09
823.33
608.85

1302614.8
859252.81
889652.61
819652.01

18355
18925
18765
19971

105930.06
111392.11
112421.17
116133.15

4

t1
t2
t3
t4

608.85
823.33
608.85
823.33

859652.81
846652.91
849752.81
1302614.8

19975
19673
18455
19415

105930.06
111929.72
114441.06
115792.19

5

t1
t2
t3
t4

823.33
608.85
823.33
608.85

1302614.8
849652.33
847652.61
845652.09

19815
18415
19121
18415

105930.72
109431.82
112416.15
115719.82

6

t1
t2
t3
t4

608.85
608.85
716.09
823.33

849652.81
849752.91
848652.29
849752.81

19415
19411
18471
19471

105930.28
106931.65
114563.12
115708.11

7

t1
t2
t3
t4

608.85
716.09
823.33
608.85

889652.86
848652.81
889652.88
1302614.8

19915
19915
19915
19915

105930.52
105930.86
112518.15
114401.26

8

t1
t2
t3
t4

823.33
608.85
823.33
608.85

1755576.8
849652.86
848652.81
889652.97

18915
19975
19915
19414

105930.26
107531.52
114478.12
117719.11

9

t1
t2
t3
t4

823.33
608.85
823.33
608.85

849672.81
848652.91
859652.88
1755576.8

18425
18415
19371
19275

105930.23
104948.35
114545.11
118715.16

10

t1
t2
t3
t4

823.33
608.85
823.33
608.85

1755576.8
849652.86
848652.81
839672.69

18415
18585
19471
19475

105930.15
110943.54
111927.14
117934.29
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Table 4.8: CRITIC Weights for Objective Functions for t1-t4

Objective
Function

Weight

t1 t2 t3 t4

TC 0.21 0.21 0.2 0.25

TTT 0.1 0.1 0.15 0.15

EI 0.1 0.1 0.17 0.12

AQL 0.25 0.22 0.2 0.18

TVSP 0.34 0.37 0.28 0.3

Table 4.9: Relative Closeness Coefficient (CC) Matrix for Pareto solutions of
AUGMECON2 for t1-t4

Time Period

t1 t2 t3 t4

CC 1 0.944 0.742 0.961 0.958

2 0.885 0.692 0.838 0.974

3 0.851 0.852 0.659 0.862

4 0.788 0.952 0.271 0.681

The details of the MCDM analysis performed for identifying the best solution have

been included in Appendix D. This analysis is based on applying fuzzy E-AHP

for determining global and local weights of all sustainability and resilience criteria

and sub-criteria. These weights are used in fuzzy TOPSIS to rank all suppliers.

Once an initial ranking of suppliers has been determined, a sensitivity analysis is

applied to evaluate the selected suppliers to see how they will react to any random

changes in the values of DM identified sub-criteria.
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Table 4.10: Best optimal solution of each objective function for t1-t4

CC TC ($) TTT (h) EI (gm) AQL (kg) TVSP

t1 0.944 93224195.91 736.22 849670.38 18564 108357.88

t2 0.952 94678327.81 699.13 887235.25 19741 112319.02

t3 0.961 92675287.52 647.02 957162.45 19623 115791.21

t4 0.974 96589852.26 691.72 878519.31 19738 117301.06

4.4 Discussion

The literature analysis presented in Chapter 2 has revealed that SRSS-OA problem

has been studied extensively over the years but with certain limitations. For

example, Sen et al. [104] and Mahmoudi et al. [109] have considered environmental

and resilience criteria for the purpose of supplier selection but the remaining TBL

sustainability criteria and the order allocation part of the SRSS-OA problem has

been ignored in their modeling approach. Amindoust [105], Jabbarzadeh et al.

[106], and Fallahpour et al. [107] have employed TBL sustainability and resilience

criteria for supplier selection but order allocation has not been taken into account

in any of these research studies.

Hosseini et al. [12] have presented a mathematical model for order allocation

based only on economic and resilience criteria and the supplier selection part has

not been considered while implementing this research work. A propensity for

partial inclusion of assessment criteria and concentration on any one component

of the sustainable and resilient SS-OA problem is a major shortcoming of extant

literature. To address this shortcoming, the proposed integrated methodology

has been implemented through a holistic decision support framework employing

relevant, systematically chosen TBL sustainability and resilience criteria. The

utility and potential of the decision support framework has been demonstrated

using data from the pharmaceutical industry, which has not been carried out

earlier in any of the research works highlighted above.
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It has been observed that the Pareto optimal solutions generated through multi-

objective optimization have close similarity to the ideal solutions calculated using

the nonlinear solver, as included in Section 4.3. Multi-objective optimization is

computationally more challenging as compared to solving each objective function

individually.

However, it has been observed that AUGMECON2 as a solving algorithm can

handle the complexity of the extensive supply chain network presented in Fig.

3.1 without recourse to specialized computational resources. The combination of

sustainability and resilience criteria for supplier selection and the inclusion of re-

silience criteria weights in the FMOMINLP mathematical model has enabled a

more holistic evaluation of the SRSS-OA problem in the context of the pharma-

ceutical industry. A graphical representation of the order quantities allocated to

the selected suppliers has been presented in Figs. 4.1 and 4.2 for all time periods

considered.

In order to assess the effectiveness of the proposed methodology in handling the

impact of natural or manmade disruption scenarios on the performance of the

pharmaceutical supply chain network, multiple random and intentional disruptions

have been introduced and evaluated based on the procedure outlined in phase 4

and phase 5 of the decision support framework.

The details of the implementation and results of the analysis have been presented

in the following chapter. It is pertinent to note that the contents of Chapter 4

and Chapter 5 together present the complete demonstration of the multi-phase

decision support framework. Any meaningful inference about the performance of

the decision framework can only be made if the implementation and results of the

application case study are analyzed in their entirety.

This brief discussion serves as a link to connect the implementation and results

of the first 3 phases of the decision support framework (dealing with SRSS-OA)

to those of the last 2 phases of the decision framework (dealing with disruption

scenario evaluation) presented in Chapter 5. The theoretical and managerial sig-

nificance of the results of the complete implementation of the decision support

framework has been included in Chapter 6.
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Figure 4.1: Breakdown of Order Allocation Quantities for t1 and t2
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Figure 4.2: Breakdown of Order Allocation Quantities for t3 and t4



Chapter 5

Evaluation of Demand

Uncertainty and Network

Disruptions

For the integrated SRSS-OA methodology developed in the present research work,

the effectiveness of the multi-phase, multi-period decision support framework has

been evaluated by considering the attainment of a predetermined service level by

the supply chain as a performance target under the influence of random (prob-

abilistic) and intentional (network) disruptions. The order allocation solutions

generated using the FMOMINLP mathematical model have been compared for

both ideal, no disruption and disruption situations in order to identify the best

performance configuration for the multi-modal, multi-echelon supply chain net-

work considered in the application case study problem.

5.1 Random (Probabilistic) Disruptions

If the demand rate is constant and deterministic throughout the year, all inventory

replenishment decisions can be made using the economic order quantity (EOQ)

model. On the other hand, if the demand is variable or probabilistic, then it can

only be described by a probability distribution and the EOQ model is no longer

107
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applicable. With probabilistic demand, inventory decisions become more compli-

cated as the time the reorder point will be reached, the time between reorders, or

the time the order will arrive in the inventory cannot be determined in advance.

This lead time uncertainty may cause occasional shortages or stock-outs and the

supply chain network service level may be affected.

A number of probability distributions have been used for inventory decisions with

regard to demand uncertainty in extant literature, the most basic and widely used

being the normal distribution. When lead time disruptions are taken into account

for evaluating the impact of demand uncertainty on supply chain network service

level, a continuous probability distribution i.e. normal or a discrete probability

distribution i.e. Poisson or binomial may be used [11, 111, 143].

In supply chain networks, inventory control defines how often inventory levels are

reviewed in order to determine when and how much to order. This is usually car-

ried out either by implementing a continuous review or a periodic review inventory

system. In a continuous review inventory system, the state of the inventory is mon-

itored continuously so that an order can be placed whenever the reorder point is

reached whereas in a periodic review inventory system, the inventory is checked

and reordering is only carried out at fixed intervals of time. Both inventory sys-

tems have their benefits and limitations and the choice is usually made depending

upon the design and operation of the supply chain network being evaluated.

The demand forecast data of last 05 years for the pharmaceutical supply chain

network presented in this research work shows considerable variation (Appendix

E). The demand uncertainty has an impact on the service level of the supply

chain network and the DMs are always concerned that in the face of demand

fluctuations, a stock-out might occur. In order to mitigate this situation, a 01%

chance of stock-out is introduced, which reduces the service level of the supply

chain network to 99%.

This possibility of a stock-out happening is a random and a lead time disruption

and to ensure that the service level is maintained by the supply chain for the

review period considered i.e. 03 months or 01 quarter, a safety stock is required

over and above the forecast demand quantity.
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The two customers serviced by the supply chain network are in fact two different

manufacturing units owned and operated by one pharmaceutical firm. Both man-

ufacturing units are autonomous and produce medicament items like veterinary

medicine and health supplements. The raw materials consumed by both manu-

facturing units are similar therefore their separate demand order quantities have

been consolidated for evaluation purposes in the following analysis.

The particular type of product (or the raw material for the two customers) that has

been considered while implementing the application case study problem is acquired

from overseas suppliers and involves extended durations of transportation time.

The two customers have adopted a periodic review system for inventory control

partly due to the multi-product nature of their manufacturing operation and in

response to the logistics of the import and procurement operation as well.

The lead time although considerable is assumed shorter than the length of the

review period and any order placed at a review period will be received prior to

the next review period. For the periodic review inventory system, the how much

to order decision for any review period is given by Eq. 5.1 where, Q is the order

quantity, M is the replenishment level, and H is the inventory on hand at the

review period.

Q = M −H (5.1)

The order quantity at each review period must be sufficient to cover demand for

the review period plus the demand for the following lead time. That is, the order

quantity that brings the inventory position up to the replenishment level M should

last until the order made at the next review period is received in the inventory.

In this case the total duration considered will be equal to the review period plus

the lead time. The normal probability distribution of demand during the review

period and the lead time for the application case study problem has been included

in Fig. 5.1.

The mean value µ of the demand is 3,65,866 kg with a standard deviation σ of

1,46,720 kg. Using the normal probability distribution, the relation for M is given
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Figure 5.1: Probability distribution of demand during the review period and
lead time

by Eq. 5.2 where, z is the number of standard deviations required to achieve the

acceptable stock-out probability.

M = µ+ zσ (5.2)

Using Eq. 5.2 and substituting the values of µ and σ from Fig. 5.1 and the value of

z from the normal probability distribution table for 01% probability of stock-out,

the value of replenishment level M is calculated as 7,07,725 kg (Fig. 5.2).

Figure 5.2: Replenishment level M that allows a 01% stock-out probability
or 99% service level

The value of the safety stock required to ensure a 99% service level for the supply

chain network can be calculated by using Eq. 5.1 by substituting the values of the

forecast inventory at the start of the review period and of the replenishment level

determined above. For the application case study presented here and the review

period considered, this value comes out to be 1,17,742 kg.
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The value of replenishment level M has been used to determine revised demand

values for both customers and the FMOMINLP mathematical model has been re-

implemented using quarter-1 (Q1)1 data (Appendix E) in order to generate Pareto

optimal values of all objective functions with 01% stock-out probability or 99%

service level. The results have been included in Table 5.1.

Table 5.1: Optimal results for lead time disruption (Q1 data)

TC ($) TTT (h) EI (gm) AQL (kg) TVSP

109565460.290 1041.448 2480202.685 22198.113 134590.410

5.2 Intentional (Network) Disruptions

A supply chain network is composed of different organizational entities that are

connected by the physical flow of materials. These entities located along the

network are referred to as nodes and they may be involved with the conversion,

logistics, or the selling of materials. The inter-node relationships or the movement

of materials among these entities is identified by using unidirectional or bidirec-

tional arrows that may be termed as arcs or edges of the supply chain network.

A complete representation of a supply chain would usually involve locating all

nodes and all edges between a specific point of origin and a specific point of final

consumption. This set of nodes and the associated pattern of edges among these

nodes may be referred to as the supply chain network design. The performance of

a supply chain is ultimately linked with the interconnectivity of its constituting

elements i.e. nodes and edges. An evaluation of this interconnectivity may help to

identify those nodes and edges that are critical for the proper functioning of the

network.

A multi-method, multi-source empirical research study has been employed by

Craighead et al. [144] for identifying three design characteristics that greatly

influence supply chain network performance in the face of disruptions i.e. supply

1Q1 refers to quarter-1 of the calender year 2022.
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chain density, supply chain complexity, and node criticality. Supply chain density

signifies the geographical spacing of nodes within a supply chain network i.e. in a

dense supply chain, the nodes are located closer together and vice versa. Supply

chain complexity is defined as the sum of the total number of nodes and the total

number of forward, backward, and within-tier material flows within a supply chain

network being evaluated. Node criticality refers to the relative importance of a

node within a supply chain and can be used either to characterize a specific node

within a supply chain network or a property of the entire supply chain.

All nodes within a supply chain network, in theory, should play a value addition

role, and all nodes are considered important and significant to the smooth oper-

ation of the supply chain. But in practice, some nodes within the supply chain

network may be deemed more important than the others due to their location

or due to the contribution they make to the value addition process i.e. a criti-

cal supplier, a vital point of entry to a geographical location, or an indispensible

distribution center etc.

The degree of connectivity and throughput rate of a node may be used as two

characteristics that signify the relative importance of a node within a supply chain

network. A simple quantitative metric that combines these two attributes in order

to identify critical nodes has been proposed by Plaganyi et al. [142]. For a supply

chain node j being evaluated, this quantitative metric termed Supply Chain Index

(SCI) can be calculated using Eq. 5.3.

SCIj =
n∑

i=1

sjip
2
j (5.3)

For a supply chain model comprising of n nodes, s j i represents the proportion of

the total product that a receiver node j receives from a supplier node i relative

to all product flowing into the receiver node j, such that for node j, the following

condition as given by Eq. 5.4 is satisfied.

∑
i

si = 1 (5.4)
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In Eq. 5.3, the variable pj measures the proportion of the total product in the

supply chain network that flows into the receiver node j, so that the product of

the two variables s and j represents both connectance and magnitude of flow. The

node(s) with the highest SCI score(s) will be identified as the critical node(s).

The SCI can be applied by using either the volume of the product handled by the

supply chain or the value added at different stages as the product flows along the

network depending upon the type of the system being considered or suitable data

being available. The ability of SCI to handle supply chain complexity and node

criticality together, and to evaluate all network components based on this unified

criterion with due concern for supply chain response to potential disruptions makes

it highly useful, in comparison with other methods presented in extant literature.

The pharmaceutical supply chain network presented in this research work has been

evaluated using SCI in order to identify critical nodes based on the order quantity

data of the two customers. The results for the Q1 data have been included in

Table 5.2 where port-1 refers to the seaport and port-2 refers to the dry port. The

terminal elements of the supply chain network i.e. suppliers and customers have

been excluded from this analysis. The details of the critical node and link analysis

have been presented in Appendix F.

Table 5.2: SCI scores for pharmaceutical supply chain network (Q1 data)

Node Port-1 Port-2 Warehouse-1 Warehouse-2 Warehouse-3

SCI 0.11857 0.00129 0.16127 0.10864 0.02962

From the data presented in Table 5.2 and graphically compared in Fig. 5.3, the

seaport and warehouse-1 have been identified as the critical nodes as they carry

the maximum values of SCI score in their respective categories. The seaport

is indispensible to the operation of the supply chain network considered in the

application case study as it serves as a key entry point for goods acquired from

overseas suppliers. In this instance, the volume of goods transported through the

seaport is such that if it is knocked out, the entire supply chain will collapse. As

the intentional knocking out of different components of the supply chain network
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Figure 5.3: A comparison of SCI scores of pharmaceutical supply chain net-
work nodes

is based on a random choice, any node can be chosen for demonstrating the impact

of the intended disruption. The SCI score of the dry port is only a fraction of the

value determined for the seaport yet the dry port may have an important role to

play as it facilitates overland shipments by a supplier located in a geographically

contiguous country.

In order to analyze the performance of the pharmaceutical supply chain network

in maintaining a predetermined value of the service level i.e. 99% (same as that

considered for the lead time disruption for comparison purposes) in the face of dis-

rupting events that knockout one or more of the supply chain components, certain

nodes have been intentionally removed from the network, and the FMOMINLP

mathematical model has been re-implemented using Q1 data with revised demand

values.

Three disruption scenarios have been considered and evaluated one by one while

keeping the rest of the problem settings constant: (a) supplier-2 not available,

(b) port-2 not functional, and (c) warehouse-2 out of service. For mitigating the

adverse effects caused by the unavailability of supplier-2, supplier-4 has been in-

corporated as a substitute supplier. The results for the three network disruption

scenarios considered have been included in Tables 5.3-5.5.
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Table 5.3: Optimal Results for Supplier-2 Not Available (Q1 data)

TC ($) TTT (h) EI (gm) AQL (kg) TVSP

111133593.220 1047.350 2510740.612 27488.138 125006.218

Table 5.4: Optimal Results for Port-2 Not Functional (Q1 data)

TC ($) TTT (h) EI (gm) AQL (kg) TVSP

109606018.440 872.508 1713678.691 25137.492 132992.103

Table 5.5: Optimal Results for Warehouse-2 out of Service (Q1 data)

TC ($) TTT (h) EI (gm) AQL (kg) TVSP

109494201.010 809.444 1070580.615 22524.350 135190.722

5.3 Comparison of No Disruption and Disrup-

tion Scenarios

A brief evaluation and comparison of the no disruption solution to the results of

the supply chain network being assessed under the influence of 01 probabilistic and

03 network disruptions as described in the previous sections has been presented

below.

A substantial increase in the value of the total cost has been observed between the

no disruption solution and the results for all 04 disruption scenarios considered

(Fig. 5.4, Part (a)). For the target service level i.e. 99% maintained by the

supply chain network, only a minor variation exists between the optimal values

of the total cost determined for all disruption scenarios when evaluated using the

FMOMINLP mathematical model.

An increasing trend has been observed in the values of the total travel time be-

tween the no disruption solution and disruptions caused by the lead time variation
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Figure 5.4: Comparison of No Disruption and Disruption Solutions

and unavailability of supplier-2 (Fig. 5.4, Part (b)). In case of the disruption sce-

narios created due to the dry port and warehouse-2 being knocked out, the total

travel time is reduced as the goods are transported through alternate routes. This

reduction in the total travel time has its downside as well as the value of the total

cost increases and the storage capacity of the remaining two warehouses may be

constrained to the limit.

The variation in the values of the total travel time is closely linked with the

environmental performance of the supply chain network (Fig. 5.4, Part (c)). A

sharp increase has been observed in the values of the environmental impact for

the lead time disruption and the substitution of the backup supplier. As total
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travel time is reduced due to removal of the dry port and the warehouse-2 from

the supply chain network, the environmental impact is correspondingly reduced.

An increase or decrease in the value of the environmental impact is only linked

with the total cost through a relative variation in the value of the total travel time.

A noticeable difference in the values of the acceptable quality limit has been ob-

served for the no disruption and disruption solutions presented in Fig. 5.4, Part

(d). The maximum increase in the value of the acceptable quality limit is associ-

ated with the substitution of the backup supplier for replacing supplier-2.

An increase has been observed in the total values of sustainable purchasing for all

disruption scenarios considered (Fig. 5.4, Part (e)). This increase is attributable to

the service level requirement imposed on the supply chain network. The reduced

risk performance of the backup supplier (ranked 4 out of the total 5 suppliers

considered) is reflected by its total value of sustainable purchasing, which is the

lowest among all disruption scenarios presented in Fig. 5.4, Part (e).

In summary, any strategy adopted for countering the impact of disruptions will

generally lead to an increase in the cost, transportation time, or environmental

impact of the supply chain network operations, or it may cause inadvertent lapses

in quality control and reliability procedures while accommodating new suppliers

and/or logistic or distribution partners etc.

It is the delicate task of the DMs to take a holistic view of the situation while eval-

uating a potential disruption scenario and suggest suitable countermeasures. The

SRSS-OA methodology presented in this research work coupled with the strategy

for evaluating the impact of supply chain disruptions can be applied as a useful

aid for this purpose.

A graphical representation of the breakdown of the optimal order allocation quan-

tities for all 04 disruption scenarios considered above determined using Q1 data

has been included in Figs. 5.5 and 5.6, respectively. The extent of the variation

of optimal order quantities that exists among different nodes of the supply chain

network for no disruption and disruption solutions can be noticed by a visual

comparison of the aforementioned figures with Fig. 4.1, Part (a).
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Figure 5.5: Breakdown of Order Allocation Quantities for t1 Under Disruption
Scenarios 1 and 2
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Figure 5.6: Breakdown of Order Allocation Quantities for t1 Under Disruption
Scenarios 3 and 4



Chapter 6

Conclusion and Future Work

6.1 Conclusions

In this research thesis, a novel comprehensive multi-phase, multi-period decision

support framework has been proposed for sustainable and resilient SS-OA sub-

ject to disruption risks. The proposed framework has been demonstrated using

real-time data collected from the pharmaceutical industry. The decision support

framework has been implemented in 2 parts i.e. in the first part comprising of

phases 1-3, sustainable and resilient SS-OA has been carried out, which is fol-

lowed by disruption scenario evaluation and comparison of no disruption and dis-

ruption solutions in the second part consisting of phase 4 and phase 5, respectively.

The following conclusions may be drawn from the results gained by implementing

phases 1-3 of the decision support framework:

(a) The TBL sustainability sub-criteria product price, past business, innovative

capability, and information disclosure have been ranked as the most im-

portant attributes for supplier evaluation and selection by the DMs in the

pharmaceutical industry.

(b) The resilience sub-criteria robustness and flexibility are considered the most

valued characteristics in the potential suppliers as reported by the DMs.

120
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(c) The transfer cost and custom clearance cost comprise 69.4% of the total cost

of the supply chain network. On the other hand, transfer time and custom

clearance time comprise only 24.7% of the total transportation time.

(d) Transportation by sea has the least impact on environment (8.2%) while

transportation by rail has the highest rate of environmental impact (62.5%)

followed by transportation by road (29.5%).

(e) Transfer of goods by rail is the most preferred mode for inland transporta-

tion. This mode of transportation is also favored by potential suppliers

located in geographically contiguous countries.

The uncertainty encountered in actual supply chain network operations has been

incorporated both in the supplier selection and the order allocation parts of the

proposed framework using FST. The input data collected from the industry has

also been fuzzified in order to make the modeling more realistic and closer to

real-time situations. The SRSS-OA problem has been previously addressed by

many researchers in extant literature but with certain critical limitations i.e. the

tendency towards selective evaluation of TBL sustainability and resilience criteria,

omitting risk/resilience criteria from order allocation, or excluding either supplier

selection or order allocation from the analysis all together etc.

A significant contribution of the research work presented in this thesis is that it

addresses all these shortcomings and leads to a holistic and inclusive integrated

methodology for supplier evaluation and selection, and optimal order quantity

allocation based on all TBL sustainability criteria coupled with resilience in all

parts of the SRSS-OA problem. The effectiveness of this integrated methodology

has been evaluated by considering and incorporating the effects of contingency or

disruption scenarios on the performance of the supply chain network by using a

simplified yet effective procedure as outlined in phase 4 and phase 5 of the decision

support framework. Based on this evaluation, following conclusions are pertinent:

(f) It has been observed that all disruption scenarios being evaluated lead to

a significant increase in the total cost when compared with the no disrup-

tion solution due to the enhanced order quantities required for achieving and
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maintaining the target supply chain network service level. A maximum in-

crease of 19.2% has been observed for the disruption scenario when supplier-2

becomes unavailable.

(g) Lead time variation and the unavailability of a supplier causes an increase

in the total travel time while the disabling of nodes and links within the

supply chain network leads to a reduction in the total travel time as the order

quantity is transported through alternate routes with shorter distances. This

may also cause the volume of the order quantity being transported along a

particular route to increase and lead to constraining the capacity of the

transportation mode or the warehouse handling the shipment. A maximum

increase of 42.3% has been noticed in the value of TTT when the backup

supplier is substituted to replace supplier-2 with lead time disruption a close

second at 41.5%.

(h) Any variation in the logistics performance of the supply chain network is

directly linked with a change in the value of the environmental impact. Lead

time disruption and the replacement of supplier-2 with the backup supplier

bring about almost a threefold increase in the value of EI when compared

with the no disruption solution, respectively.

(i) The substitution of a backup supplier is always a contingency measure. It

has been noted that this substitution causes maximum variation in the value

of the AQL (a 48.1% increase) that can lead to a negative impact on the

quality control practices of the customers. The results also indicate that the

relatively low risk performance of the backup supplier may cause a detri-

mental effect on the TVSP value of the supply chain network operation as

well.

The comparison and analysis of the results indicates that a successful implementa-

tion of the decision support framework enables the supply chain network to achieve

the performance target however in order to maintain a desired service level and

to counter the possibility of a stock-out under the influence of probabilistic and

network disruptions, the DMs have to allocate greater financial resources and be
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willing to accept substantial increase in transportation time and environmental

impact.

6.2 Managerial Implications

The managerial implications of the research work presented in this thesis are in-

cluded as below:

(a) Under network disruptions, supply chain service level can only be maintained

at the expense of a significant increase in total cost.

(b) Lead time variation is a major contributor of increase in total transportation

time.

(c) Supply chain disruptions always lead to an increase in the environmental

impact.

(d) Low risk performance of a supplier has a negative impact on the total value

of sustainable purchasing.

(e) Using backup suppliers may lead to major quality control issues in critical

industry sectors i.e. pharmaceutical industry.

6.3 Research Limitations

The limitations of the research work included in the preceding chapters are as

under:

(a) The take-make-dispose model offered by a linear supply chain is inherently

at odds with the concept of sustainability. As most of the existing supply

chains usually do not follow a closed loop model, the supply chain network

considered for evaluation in this research work is a linear one.
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(b) The single product, multiple customers approach adopted for developing

the proposed decision support framework can limit its scope and range of

application.

(c) The impact of quantity discounts and other similar incentives on the in-

ventory control practices of the customers has not been incorporated in the

MOMINLP mathematical model.

6.4 Future Work

Based on the development and results presented in the preceding chapters, some

recommendations for future research have been included below:

(a) In future applications of the integrated methodology, new and improved sets

of sustainability and resilience sub-criteria should be identified and used in

the MCDM process either by conducting a literature review or an industry

survey.

(b) The usefulness and potential of the proposed multi-phase, multi-period de-

cision support framework can be further explored by extending its applica-

tion to various other industry sectors i.e. electrical power generation and

transmission, food production, processing and distribution, telecommunica-

tion networks infrastructure, or medical and surgical goods manufacturing

industry etc.

(c) An interesting avenue for future research is the application of the proposed

decision support framework to optimize a closed-loop supply chain network

facing disruption risks.

(d) The case study presented in this research work employs a periodic review

model to calculate a replenishment level for depleting inventory. As a future

application of the decision support framework, different scenarios should be

considered and evaluated where other categories or variations of inventory

models with probabilistic demand have been used. The impact of using



Conclusion and Future Work 125

multiple probability distributions for describing demand can be incorporated

in this analysis as well.

(e) The proposed decision support framework can only handle one product at

any one time period considered. This issue can be addressed by modifying

and improving the decision framework to incorporate multi-product scenar-

ios.
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Appendix A

MCDM Analysis

1. Calculation for Consistency Index

� Combined Decision Matrix

Economic Environment Social Resilience

Economic 1.00 7.00 5.00 7.00

Environment 0.14 1.00 0.33 1.00

Social 0.20 3.00 1.00 1.00

Resilience 0.14 1.00 1.00 1.00

Sum 1.49 12.00 7.33 10.00

� Normalized Decision Matrix

Economic Environment Social Resilience

Economic 0.67 0.58 0.68 0.70

Environment 0.10 0.08 0.05 0.10

Social 0.13 0.25 0.14 0.10

Resilience 0.10 0.08 0.14 0.10

144
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� Weight Matrix

Economic 0.66

Environment 0.08

Social 0.16

Resilience 0.10

� Weight Normalized Matrix

Economic Environment Social Resilience

Economic 0.66 0.57 0.78 0.73

Environment 0.09 0.08 0.05 0.10

Social 0.13 0.24 0.16 0.10

Resilience 0.09 0.08 0.16 0.10

� Eigen Value (λmax ) = 4.12

� Consistency Index = 0.04

� Consistency Ratio = 0.05



MCDM Analysis 146

2. Calculation for Fuzzy E-AHP

(a) Calculation of Weights for TBL Sustainability & Resilience Criteria

� Combined Decision Matrix

Economic Environment Social Resilience

Economic 2.00 15.00 13.33 14.00

Environment 0.29 2.00 10.67 5.33

Social 0.38 0.87 2.00 9.67

Resilience 0.30 1.13 0.92 2.00

� Extended Normalized Fuzzy Decision Matrix

a n m

Economic 0.24 0.60 1.26

Environment 0.05 0.22 0.68

Social 0.06 0.13 0.47

Resilience 0.05 0.05 0.73

� Degree of Possibility

S1>S2 0.53

S1>S3 0.33

S1>S4 0.47

S2>S1 1.00

S2>S3 0.83

S2>S4 0.80

S3>S1 1.00

S3>S2 1.00
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S3>S4 0.90

S4>S1 1.00

S4>S2 1.00

S4>S3 1.00

� Weight Vector

Economic 0.331

Environment 0.803

Social 0.896

Resilience 1.000

� Normalized Weight Vector

Economic 0.11

Environment 0.26

Social 0.30

Resilience 0.33

� Global Weights

Economic 0.602

Environment 0.193

Social 0.140

Resilience 0.065
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(b) Calculation of Weights for Economic Sub-criteria

� Weight Matrix

Product Price 0.247

Payment Terms 0.189

Product Quality 0.136

Use of Technology 0.109

Volume Flexibility 0.067

Vendor’s Reputation 0.066

Responsiveness 0.044

Product Mix 0.045

Past Business 0.097

� Extended Normalized Fuzzy Decision Matrix

a n m

Product Price 0.06 0.20 0.54

Payment Terms 0.06 0.18 0.54

Product Quality 0.05 0.16 0.46

Use of Technology 0.05 0.14 0.40

Volume Flexibility 0.03 0.09 0.27

Vendor’s Reputation 0.04 0.09 0.22

Responsiveness 0.02 0.05 0.14

Product Mix 0.02 0.04 0.08

Past Business 0.04 0.04 0.10

� Degree of Possibility

S1>S2 0.97 S4>S1 1.00 S7>S1 1.00
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S1>S3 0.91 S4>S2 1.00 S7>S2 1.00

S1>S4 0.85 S4>S3 1.00 S7>S3 1.00

S1>S5 0.65 S4>S5 0.80 S7>S4 1.00

S1>S6 0.60 S4>S6 0.76 S7>S5 1.00

S1>S7 0.37 S4>S7 0.51 S7>S6 1.00

S1>S8 0.13 S4>S8 0.22 S7>S8 0.78

S1>S9 0.20 S4>S9 0.30 S7>S9 0.85

S2>S1 1.00 S5>S1 1.00 S8>S1 1.00

S2>S3 0.95 S5>S2 1.00 S8>S2 1.00

S2>S4 0.89 S5>S3 1.00 S8>S3 1.00

S2>S5 0.69 S5>S4 1.00 S8>S4 1.00

S2>S6 0.64 S5>S6 1.02 S8>S5 1.00

S2>S7 0.40 S5>S7 0.76 S8>S6 1.00

S2>S8 0.15 S5>S8 0.48 S8>S7 1.00

S2>S9 0.22 S5>S9 0.57 S8>S9 1.06

S3>S1 1.00 S6>S1 1.00 S9>S1 1.00

S3>S2 1.00 S6>S2 1.00 S9>S2 1.00

S3>S4 0.95 S6>S3 1.00 S9>S3 1.00

S3>S5 0.75 S6>S4 1.00 S9>S4 1.00

S3>S6 0.71 S6>S5 1.00 S9>S5 1.00

S3>S7 0.47 S6>S7 0.74 S9>S6 1.00

S3>S8 0.21 S6>S8 0.45 S9>S7 1.00

S3>S9 0.28 S6>S9 0.54 S9>S8 1.00
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� Weight Vector

Product Price 0.132

Payment Terms 0.155

Product Quality 0.210

Use of Technology 0.220

Volume Flexibility 0.481

Vendor’s Reputation 0.447

Responsiveness 0.783

Product Mix 1.000

Past Business 1.000

� Normalized Weight Vector

Product Price 0.03

Payment Terms 0.03

Product Quality 0.05

Use of Technology 0.05

Volume Flexibility 0.11

Vendor’s Reputation 0.10

Responsiveness 0.18

Product Mix 0.23

Past Business 0.23

� Local Weights

Product Price 0.02

Payment Terms 0.02

Product Quality 0.03
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Use of Technology 0.03

Volume Flexibility 0.07

Vendor’s Reputation 0.07

Responsiveness 0.11

Product Mix 0.14

Past Business 0.14

(c) Calculation of Weights for Environment Sub-criteria

� Weight Matrix

Environmental Management System 0.510

Energy Consumption 0.248

Waste Management System 0.187

Innovative Capability 0.055

� Extended Normalized Fuzzy Decision Matrix

a n m

Environmental Management System 0.13 0.47 1.32

Energy Consumption 0.07 0.32 0.93

Waste Management System 0.13 0.16 0.45

Innovative Capability 0.03 0.05 0.73

� Degree of Possibility

S1>S2 0.85

S1>S3 0.52

S1>S4 0.59

S2>S1 1.00
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S2>S3 0.70

S2>S4 0.70

S3>S1 1.00

S3>S2 1.00

S3>S4 0.84

S4>S1 1.00

S4>S2 1.00

S4>S3 1.00

� Weight Vector

Environmental Management System 0.516

Energy Consumption 0.704

Waste Management System 0.836

Innovative Capability 1.000

� Normalized Weight Vector

Environmental Management System 0.17

Energy Consumption 0.23

Waste Management System 0.27

Innovative Capability 0.33

� Local Weights

Environmental Management System 0.01

Energy Consumption 0.02

Waste Management System 0.02

Innovative Capability 0.03
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(d) Calculation of Weights for Social Sub-criteria

� Weight Matrix

Employee Health & Safety 0.593

Staff Personal & Technical Development 0.265

Information Disclosure 0.143

� Extended Normalized Fuzzy Decision Matrix

a n m

Employee Health & Safety 0.09 0.63 2.03

Staff Personal & Technical Development 0.07 0.33 1.07

Information Disclosure 0.15 0.05 0.12

� Degree of Possibility

S1>S2 0.77

S1>S3 0.04

S2>S1 1.00

S2>S3 0.14

S3>S1 1.00

S3>S2 1.00

� Weight Vector

Employee Health & Safety 0.043

Staff Personal & Technical Development 0.141

Information Disclosure 1.000



MCDM Analysis 154

� Normalized Weight Vector

Employee Health & Safety 0.04

Staff Personal & Technical Development 0.12

Information Disclosure 0.84

� Local Weights

Employee Health & Safety 0.01

Staff Personal & Technical Development 0.02

Information Disclosure 0.12

(e) Calculation of Weights for Resilience Sub-criteria

� Weight Matrix

Robustness 0.534

Agility 0.240

Leanness 0.170

Flexibility 0.056

� Extended Normalized Fuzzy Decision Matrix

a n m

Robustness 0.13 0.49 1.45

Agility 0.09 0.28 0.96

Leanness 0.07 0.19 0.56

Flexibility 0.04 0.04 0.73

� Degree of Possibility

S1>S2 0.79
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S1>S3 0.59

S1>S4 0.57

S2>S1 1.00

S2>S3 0.84

S2>S4 0.72

S3>S1 1.00

S3>S2 1.00

S3>S4 0.81

S4>S1 1.00

S4>S2 1.00

S4>S3 1.00

� Weight Vector

Robustness 0.566

Agility 0.724

Leanness 0.811

Flexibility 1.000

� Normalized Weight Vector

Robustness 0.18

Agility 0.23

Leanness 0.26

Flexibility 0.32

� Local Weights

Robustness 0.030
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Agility 0.016

Leanness 0.016

Flexibility 0.030
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3. Calculation for Fuzzy TOPSIS

(a) Calculation of Relative Closeness Matrix for TBL Sustainability & Re-

silience Criteria

� Combined Decision Matrix

Economic Environment Social Resilience

Supplier-1 0.69 0.12 0.36 0.15

Supplier-2 0.68 0.16 0.14 0.15

Supplier-3 0.64 0.23 0.54 0.92

Supplier-4 0.50 0.30 0.68 0.61

Supplier-5 0.20 0.87 0.86 0.42

� Normalized Combined Decision Matrix

Economic Environment Social Resilience

Supplier-1 0.54 0.12 0.28 0.13

Supplier-2 0.53 0.17 0.11 0.13

Supplier-3 0.50 0.24 0.42 0.77

Supplier-4 0.39 0.31 0.53 0.51

Supplier-5 0.16 0.90 0.67 0.35

� Weighted Normalized Combined Decision Matrix

Economic Environment Social Resilience

Supplier-1 0.32 0.02 0.04 0.01

Supplier-2 0.32 0.03 0.02 0.01

Supplier-3 0.30 0.05 0.06 0.05

Supplier-4 0.23 0.06 0.07 0.04

Supplier-5 0.09 0.17 0.09 0.02
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� Positive Ideal (Best) & Negative Ideal (Worst) Solution

Economic Environment Social Resilience

Z+ 0.32 0.17 0.09 0.05

Z- 0.09 0.02 0.02 0.01

� Euclidean Distances

Sep+ Sep-

Supplier-1 0.175 0.231

Supplier-2 0.177 0.225

Supplier-3 0.261 0.217

Supplier-4 0.231 0.159

Supplier-5 0.273 0.167

� Closeness Coefficient Values

Supplier-1 0.570

Supplier-2 0.559

Supplier-3 0.553

Supplier-4 0.407

Supplier-5 0.380
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(b) Calculation of Relative Closeness Matrix for Economic Criterion

� Combined Decision Matrix

Product Price Payment Terms Product Quality

Supplier-1 1 4.5 9 1 6.5 10 5 8 10

Supplier-2 1 5 9 1 6.5 10 5 8 10

Supplier-3 1 5 9 3 6.5 10 5 8 10

Supplier-4 1 4.5 9 3 7 10 3 7 10

Supplier-5 1 5 9 3 6.5 10 3 6.5 9

Use of Technology Volume Flexibility Vendor’s Reputation

Supplier-1 3 7.5 10 3 7 10 5 8.5 10

Supplier-2 5 8 10 3 7 10 5 8.5 10

Supplier-3 3 7 10 3 6.5 9 5 7.5 10

Supplier-4 3 6 9 1 5.5 9 5 7.5 10

Supplier-5 1 6 9 3 6 9 3 7 10
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Responsiveness Product Mix Past Business

Supplier-1 5 8 10 1 6 10 5 8.5 10

Supplier-2 5 8 10 1 6 10 5 8.5 10

Supplier-3 5 8 10 1 5.5 9 5 8 10

Supplier-4 5 8 10 1 5.5 9 3 7 10

Supplier-5 5 8 10 1 5.5 9 1 6.5 10

� Normalized Combined Decision Matrix

Product Price Payment Terms Product Quality

Supplier-1 0.03 0.15 0.30 0.03 0.22 0.34 0.17 0.27 0.34

Supplier-2 0.03 0.17 0.30 0.03 0.22 0.34 0.17 0.27 0.34

Supplier-3 0.03 0.17 0.31 0.10 0.22 0.34 0.17 0.28 0.34

Supplier-4 0.03 0.16 0.31 0.10 0.24 0.35 0.10 0.24 0.35

Supplier-5 0.04 0.17 0.31 0.10 0.22 0.34 0.10 0.22 0.31
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Use of Technology Volume Flexibility Vendor’s Reputation

Supplier-1 0.10 0.25 0.34 0.10 0.24 0.34 0.17 0.29 0.34

Supplier-2 0.17 0.27 0.34 0.10 0.24 0.34 0.17 0.29 0.34

Supplier-3 0.10 0.24 0.34 0.10 0.22 0.31 0.17 0.26 0.34

Supplier-4 0.10 0.21 0.31 0.03 0.19 0.31 0.17 0.26 0.35

Supplier-5 0.03 0.21 0.31 0.10 0.21 0.31 0.10 0.24 0.34

Responsiveness Product Mix Past Business

Supplier-1 0.17 0.27 0.34 0.03 0.20 0.34 0.17 0.29 0.34

Supplier-2 0.17 0.27 0.34 0.03 0.20 0.34 0.17 0.29 0.34

Supplier-3 0.17 0.28 0.34 0.03 0.19 0.31 0.17 0.28 0.34

Supplier-4 0.17 0.28 0.35 0.03 0.19 0.31 0.10 0.24 0.35

Supplier-5 0.17 0.28 0.34 0.03 0.19 0.31 0.03 0.22 0.34
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� Weighted Normalized Combined Decision Matrix

Product Price Payment Terms Product Quality

Supplier-1 0.002 0.030 0.164 0.002 0.039 0.182 0.008 0.043 0.155

Supplier-2 0.002 0.034 0.164 0.002 0.039 0.182 0.008 0.043 0.155

Supplier-3 0.002 0.034 0.167 0.006 0.040 0.186 0.009 0.044 0.158

Supplier-4 0.002 0.031 0.169 0.006 0.044 0.188 0.005 0.039 0.160

Supplier-5 0.002 0.034 0.167 0.006 0.040 0.186 0.005 0.036 0.143

Use of Technology Volume Flexibility Vendor’s Reputation

Supplier-1 0.005 0.035 0.135 0.003 0.021 0.091 0.007 0.026 0.074

Supplier-2 0.008 0.038 0.135 0.003 0.021 0.091 0.007 0.026 0.074

Supplier-3 0.005 0.034 0.138 0.003 0.020 0.084 0.007 0.023 0.076

Supplier-4 0.005 0.029 0.125 0.001 0.017 0.085 0.007 0.024 0.077

Supplier-5 0.002 0.029 0.124 0.003 0.019 0.084 0.004 0.022 0.076
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Responsiveness Product Mix Past Business

Supplier-1 0.003 0.013 0.047 0.001 0.008 0.027 0.007 0.011 0.034

Supplier-2 0.003 0.013 0.047 0.001 0.008 0.027 0.007 0.011 0.034

Supplier-3 0.003 0.014 0.048 0.001 0.008 0.025 0.007 0.011 0.034

Supplier-4 0.003 0.014 0.049 0.001 0.008 0.025 0.004 0.010 0.035

Supplier-5 0.003 0.014 0.048 0.001 0.008 0.025 0.001 0.009 0.034

� Positive Ideal (Best) & Negative Ideal (Worst) Solution

Product Price Payment Terms Product Quality

Z+ 0.002 0.030 0.164 0.006 0.044 0.188 0.009 0.044 0.160

Z- 0.002 0.034 0.169 0.002 0.039 0.182 0.005 0.036 0.143

Use of Technology Volume Flexibility Vendor’s Reputation

Z+ 0.008 0.038 0.138 0.003 0.021 0.091 0.007 0.026 0.077

Z- 0.002 0.029 0.124 0.001 0.017 0.084 0.004 0.022 0.074
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Responsiveness Product Mix Past Business

Z+ 0.003 0.014 0.049 0.001 0.008 0.027 0.007 0.011 0.035

Z- 0.003 0.013 0.047 0.001 0.008 0.025 0.001 0.009 0.034

� Euclidean Distances

Sep+ Sep-

Supplier-1 0.014 0.031

Supplier-2 0.015 0.032

Supplier-3 0.017 0.031

Supplier-4 0.024 0.024

Supplier-5 0.040 0.010

� Closeness Coefficient Values

Supplier-1 0.69

Supplier-2 0.68
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Supplier-3 0.64

Supplier-4 0.50

Supplier-5 0.20

(c) Calculation of Relative Closeness Matrix for Environment Criterion

� Combined Decision Matrix

Environmental
Management System

Energy Consumption

Supplier-1 3 7 10 3 7.5 10

Supplier-2 3 7 10 3 7 10

Supplier-3 3 5.5 9 3 6.5 9

Supplier-4 3 5.5 9 3 6 9

Supplier-5 1 4.5 9 1 5 9

Waste Management
System

Innovative Capability

Supplier-1 1 5.5 10 3 7.5 10

Supplier-2 1 5.5 10 3 7.5 10
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Supplier-3 1 5.5 9 3 7 10

Supplier-4 1 5.5 9 3 7 10

Supplier-5 1 5 9 1 6.5 10

� Normalized Combined Decision Matrix

Environmental
Management System

Energy Consumption

Supplier-1 0.217 0.506 0.722 0.217 0.542 0.722

Supplier-2 0.221 0.515 0.736 0.221 0.515 0.736

Supplier-3 0.244 0.446 0.731 0.244 0.528 0.731

Supplier-4 0.249 0.456 0.746 0.249 0.497 0.746

Supplier-5 0.094 0.424 0.849 0.094 0.471 0.849

Waste Management
System

Innovative Capability

Supplier-1 0.072 0.397 0.722 0.217 0.542 0.722

Supplier-2 0.074 0.405 0.736 0.221 0.552 0.736
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Supplier-3 0.081 0.446 0.731 0.244 0.568 0.812

Supplier-4 0.083 0.456 0.746 0.249 0.580 0.829

Supplier-5 0.094 0.471 0.849 0.094 0.613 0.943

� Weighted Normalized Combined Decision Matrix

Environmental
Management System

Energy Consumption

Supplier-1 0.028 0.238 0.953 0.015 0.173 0.672

Supplier-2 0.029 0.242 0.972 0.015 0.165 0.685

Supplier-3 0.032 0.210 0.964 0.017 0.169 0.679

Supplier-4 0.032 0.214 0.985 0.017 0.159 0.694

Supplier-5 0.012 0.199 1.120 0.007 0.151 0.789

Waste Management
System

Innovative Capability

Supplier-1 0.009 0.064 0.325 0.006 0.027 0.527

Supplier-2 0.010 0.065 0.331 0.007 0.028 0.537
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Supplier-3 0.011 0.071 0.329 0.007 0.028 0.593

Supplier-4 0.011 0.073 0.336 0.007 0.029 0.605

Supplier-5 0.012 0.075 0.382 0.003 0.031 0.688

� Positive Ideal (Best) & Negative Ideal (Worst) Solution

Environmental
Management System

Energy Consumption

Z+ 0.032 0.242 1.120 0.017 0.173 0.789

Z- 0.012 0.199 0.953 0.007 0.151 0.672

Waste Management
System

Innovative Capability

Z+ 0.012 0.075 0.382 0.007 0.031 0.688

Z- 0.009 0.064 0.325 0.003 0.027 0.527
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� Euclidean Distances

Sep+ Sep-

Supplier-1 0.291 0.040

Supplier-2 0.263 0.051

Supplier-3 0.241 0.070

Supplier-4 0.210 0.092

Supplier-5 0.044 0.291

� Closeness Coefficient Values

Supplier-1 0.12

Supplier-2 0.16

Supplier-3 0.23

Supplier-4 0.30

Supplier-5 0.87
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(d) Calculation of Relative Closeness Matrix for Social Criterion

� Combined Decision Matrix

Employee Health
& Safety

Staff Personal &
Technical Development

Information
Disclosure

Supplier-1 3 8 10 5 7.5 10 1 5.5 10

Supplier-2 7 9 10 5 7.5 10 1 6 10

Supplier-3 5 7.5 10 5 7 9 1 5 9

Supplier-4 3 7 10 5 7 9 1 5 9

Supplier-5 1 6 10 5 7 9 1 5 9

� Normalized Combined Decision Matrix

Employee Health
& Safety

Staff Personal &
Technical Development

Information
Disclosure

Supplier-1 0.245 0.652 0.815 0.408 0.611 0.815 0.082 0.448 0.815

Supplier-2 0.532 0.684 0.760 0.380 0.570 0.760 0.076 0.456 0.760

Supplier-3 0.438 0.657 0.876 0.438 0.613 0.789 0.088 0.438 0.789

Supplier-4 0.271 0.631 0.902 0.451 0.631 0.812 0.090 0.451 0.812
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Supplier-5 0.095 0.572 0.953 0.477 0.667 0.858 0.095 0.477 0.858

� Weighted Normalized Combined Decision Matrix

Employee Health
& Safety

Staff Personal &
Technical Development

Information
Disclosure

Supplier-1 0.022 0.411 1.655 0.029 0.202 0.872 0.012 0.022 0.098

Supplier-2 0.048 0.431 1.542 0.027 0.188 0.813 0.011 0.023 0.091

Supplier-3 0.039 0.414 1.779 0.031 0.202 0.844 0.013 0.022 0.095

Supplier-4 0.024 0.398 1.830 0.032 0.208 0.868 0.014 0.023 0.097

Supplier-5 0.009 0.360 1.936 0.033 0.220 0.918 0.014 0.024 0.103

� Positive Ideal (Best) & Negative Ideal (Worst) Solution

Employee Health
& Safety

Staff Personal &
Technical Development

Information
Disclosure

Z+ 0.048 0.431 1.936 0.033 0.220 0.918 0.014 0.024 0.103

Z- 0.009 0.360 1.542 0.027 0.188 0.813 0.011 0.022 0.091
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� Euclidean Distances

Sep+ Sep-

Supplier-1 0.195 0.111

Supplier-2 0.298 0.047

Supplier-3 0.140 0.163

Supplier-4 0.098 0.206

Supplier-5 0.047 0.298

� Closeness Coefficient Values

Supplier-1 0.36

Supplier-2 0.14

Supplier-3 0.54

Supplier-4 0.68

Supplier-5 0.86
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(e) Calculation of Relative Closeness Matrix for Resilience Criterion

� Combined Decision Matrix

Robustness Agility Leanness Flexibility

Supplier-1 1 5.5 9 1 5.5 9 1 6.5 10 3 7 10

Supplier-2 1 5.5 9 1 5.5 9 1 6.5 10 3 7 10

Supplier-3 1 5.5 9 1 5 9 1 5.5 9 3 6.5 10

Supplier-4 1 5 9 1 5.5 9 1 5.5 9 3 7 10

Supplier-5 1 5.5 9 1 5.5 9 1 5.5 9 3 7 10

� Normalized Combined Decision Matrix

Robustness Agility Leanness Flexibility

Supplier-1 0.081 0.446 0.731 0.081 0.446 0.731 0.081 0.528 0.812 0.244 0.568 0.812

Supplier-2 0.081 0.446 0.731 0.081 0.446 0.731 0.081 0.528 0.812 0.244 0.568 0.812

Supplier-3 0.088 0.487 0.796 0.088 0.442 0.796 0.088 0.487 0.796 0.265 0.575 0.885

Supplier-4 0.086 0.431 0.776 0.086 0.474 0.776 0.086 0.474 0.776 0.259 0.604 0.862
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Supplier-5 0.085 0.465 0.761 0.085 0.465 0.761 0.085 0.465 0.761 0.254 0.592 0.846

� Weighted Normalized Combined Decision Matrix

Robustness Agility Leanness Flexibility

Supplier-1 0.011 0.219 1.059 0.007 0.125 0.701 0.006 0.100 0.455 0.010 0.023 0.593

Supplier-2 0.011 0.219 1.059 0.007 0.125 0.701 0.006 0.100 0.455 0.010 0.023 0.593

Supplier-3 0.012 0.238 1.155 0.008 0.124 0.764 0.006 0.092 0.446 0.011 0.023 0.646

Supplier-4 0.011 0.211 1.125 0.008 0.133 0.745 0.006 0.090 0.435 0.010 0.024 0.629

Supplier-5 0.011 0.228 1.104 0.008 0.130 0.731 0.006 0.088 0.426 0.010 0.024 0.618

� Positive Ideal (Best) & Negative Ideal (Worst) Solution

Robustness Agility Leanness Flexibility

Z+ 0.012 0.238 1.155 0.008 0.133 0.764 0.006 0.100 0.455 0.011 0.024 0.646

Z- 0.011 0.211 1.059 0.007 0.124 0.701 0.006 0.088 0.426 0.010 0.023 0.593
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� Euclidean Distances

Sep+ Sep-

Supplier-1 0.124 0.023

Supplier-2 0.124 0.023

Supplier-3 0.013 0.136

Supplier-4 0.057 0.090

Supplier-5 0.083 0.059

� Closeness Coefficient Values

Supplier-1 0.15

Supplier-2 0.15

Supplier-3 0.92

Supplier-4 0.61

Supplier-5 0.42
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4. Calculation for Sensitivity Analysis

� Sub-criteria Weights from FE-AHP

a n m

Current Case

Product Price 0.06 0.20 0.54

Payment Terms 0.06 0.18 0.54

Responsiveness 0.02 0.05 0.14

Vendor’s Reputation 0.04 0.09 0.22

Environmental Management System 0.13 0.47 1.32

Innovative Capability 0.03 0.05 0.73

Information Disclosure 0.15 0.05 0.12

Flexibility 0.04 0.04 0.73
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� Variations in Sub-criteria Weights from FE-AHP

a n m a n m a n m

Case 1 Case 2 Case 3

Product Price 0.057 0.197 0.537 0.053 0.193 0.533 0.050 0.190 0.530

Payment Terms 0.057 0.177 0.537 0.053 0.173 0.533 0.050 0.170 0.530

Responsiveness 0.018 0.047 0.137 0.015 0.043 0.133 0.013 0.040 0.130

Vendor’s Reputation 0.037 0.087 0.217 0.033 0.083 0.213 0.030 0.080 0.210

Environmental Management System 0.134 0.474 1.324 0.137 0.477 1.327 0.141 0.481 1.331

Innovative Capability 0.034 0.054 0.734 0.037 0.057 0.737 0.041 0.061 0.741

Information Disclosure 0.154 0.054 0.124 0.157 0.057 0.127 0.161 0.061 0.131

Flexibility 0.044 0.734 0.734 0.047 0.737 0.737 0.051 0.741 0.741

Case 4 Case 5 Case 6

Product Price 0.046 0.186 0.526 0.043 0.183 0.523 0.039 0.179 0.519

Payment Terms 0.046 0.166 0.526 0.043 0.163 0.523 0.039 0.159 0.519
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Responsiveness 0.010 0.036 0.126 0.008 0.033 0.123 0.005 0.029 0.119

Vendor’s Reputation 0.026 0.076 0.206 0.023 0.073 0.203 0.019 0.069 0.199

Environmental Management System 0.144 0.484 1.334 0.148 0.488 1.338 0.151 0.491 1.341

Innovative Capability 0.044 0.064 0.744 0.048 0.068 0.748 0.051 0.071 0.751

Information Disclosure 0.164 0.064 0.134 0.168 0.068 0.138 0.171 0.071 0.141

Flexibility 0.054 0.744 0.744 0.058 0.748 0.748 0.061 0.751 0.751

� Relative Closeness Coefficient Values from FTOPSIS

Economic Environment Social Resilience

Current Case

Supplier-1 0.69 0.12 0.36 0.15

Supplier-2 0.68 0.16 0.14 0.15

Supplier-3 0.64 0.23 0.54 0.92

Supplier-4 0.50 0.30 0.68 0.61

Supplier-5 0.20 0.87 0.86 0.42
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� Variations in Relative Closeness Coefficient Values from FTOPSIS

Economic Environment Social Resilience Economic Environment Social Resilience

Case 1 Case 2

Supplier-1 0.69 0.12 0.36 0.15 0.69 0.12 0.36 0.15

Supplier-2 0.68 0.16 0.14 0.15 0.68 0.16 0.14 0.15

Supplier-3 0.64 0.23 0.54 0.85 0.65 0.23 0.54 0.85

Supplier-4 0.50 0.30 0.68 0.63 0.50 0.31 0.68 0.63

Supplier-5 0.20 0.87 0.86 0.43 0.32 0.87 0.87 0.43

Case 3 Case 4

Supplier-1 0.69 0.12 0.36 0.15 0.69 0.12 0.36 0.15

Supplier-2 0.69 0.16 0.14 0.15 0.69 0.16 0.14 0.15

Supplier-3 0.65 0.23 0.54 0.85 0.65 0.23 0.54 0.85

Supplier-4 0.49 0.31 0.68 0.63 0.49 0.31 0.68 0.63

Supplier-5 0.19 0.86 0.87 0.43 0.18 0.86 0.87 0.43
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Case 5 Case 6

Supplier-1 0.70 0.13 0.36 0.15 0.70 0.13 0.36 0.15

Supplier-2 0.69 0.17 0.14 0.15 0.69 0.17 0.14 0.15

Supplier-3 0.65 0.23 0.54 0.85 0.65 0.23 0.54 0.85

Supplier-4 0.49 0.31 0.68 0.63 0.49 0.31 0.68 0.63

Supplier-5 0.18 0.86 0.87 0.43 0.18 0.86 0.87 0.43

� Sensitivity Analysis Results

Current Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Supplier-1 0.57 0.57 0.50 0.57 0.58 0.58 0.58

Supplier-2 0.56 0.56 0.49 0.57 0.57 0.57 0.58

Supplier-3 0.55 0.56 0.59 0.56 0.57 0.57 0.57

Supplier-4 0.41 0.40 0.32 0.40 0.41 0.41 0.41

Supplier-5 0.38 0.38 0.42 0.37 0.37 0.37 0.37



Appendix B

Risk Criteria Weights

� Resilience Sub-criteria Weights from E-AHP

Robustness 0.183

Agility 0.233

Leanness 0.262

Flexibility 0.322

� Resilience Sub-criteria Scores from DMs

Robustness Agility Leanness Flexibility

Supplier-1 5 5 3 5

Supplier-2 7 5 3 5

Supplier-3 7 5 3 5

Supplier-4 5 7 3 7

Supplier-5 7 7 3 7

Sum 31 29 15 29
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� Normalized Values

Supplier-1 0.16 0.17 0.20 0.17

Supplier-2 0.23 0.17 0.20 0.17

Supplier-3 0.23 0.17 0.20 0.17

Supplier-4 0.16 0.24 0.20 0.24

Supplier-5 0.23 0.24 0.20 0.24

� Risk Expectation Value (Rs)

Rs

Supplier-1 0.18

Supplier-2 0.19

Supplier-3 0.19

Supplier-4 0.22

Supplier-5 0.23

� Risk Weights of Suppliers

w

Supplier-1 0.18

Supplier-2 0.19

Supplier-3 0.19

Supplier-4 0.22

Supplier-5 0.23
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Input Data

� No. of suppliers = 03

� No. of ports = 02

� No. of warehouses = 03

� No. of customers = 02

� No. of transportation modes = 03 (Sea, Rail, Road)

� Purchasing cost for each supplier ($/kg)

C p
1 = 0.68, 0.715, 0.76

C p
2 = 0.79, 0.825, 0.87

C p
3 = 0.65, 0.695, 0.73

� Ordering cost for each supplier ($)

O1 = 156.2, 158.2, 160.2

O2 = 140.7, 142.7, 144.7

O3 = 163.8, 165.8, 167.8

� Inventory holding cost ($/kg)

H o = 0.026, 0.036, 0.046

� Transportation cost ($/km)

TC Sea = 0.21, 0.41, 0.61

TCRail = 0.53, 0.73, 0.93

TCRoad = 0.75, 0.95, 1.15

� Transfer cost matrix ($/kg): TrCmn = Transfer cost from mode “m” to mode

“n”

183
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Sea Rail Road

Sea 1.2 0.9 0.7

Rail 0.9 1.0 1.1

Road 0.7 1.1 0.6

� Custom clearance cost ($/kg): CC ij = Custom clearance cost while moving

from supplier “i” to port “j”

CC 11 = 1.15×Cp
1

CC21 = 1.15× Cp
2

CC31 = 1.15× Cp
3

� Transfer time matrix (h/Container): TrTmn = Transfer time from mode “m”

to mode “n”

Sea Rail Road

Sea 0.7 0.17 0.17

Rail 0.17 0.4 0.12

Road 0.17 0.12 0.1

� Custom clearance time (h/Container): CCT ij = Custom clearance time from

supplier “i” to port “j”

CCT 11 = 4

CCT 21 = 4

CCT 31 = 4

� Maximum capacity of supplier “i” (kg): S i = Maximum capacity of i th sup-

plier

S 1 = 24,00,00, 26,00,00, 28,00,00

S 2 = 23,00,00, 25,00,00, 27,00,00

S 3 = 21,00,00, 23,00,00, 25,00,00

� Capacity of warehouse “k” (kg): CAPwk = Capacity of k th warehouse

CAPw 1 = 30,50,00, 32,50,00, 34,50,00

CAPw 2 = 34,50,00, 36,50,00, 38,50,00

CAPw 3 = 38,50,00, 40,50,00, 42,50,00
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� Velocity of mode “m”: (Adapted from [145])

Mode Velocity (km/h)

Sea 35

Rail 60

Road 90

� Capacity of mode “m”:

Mode Capacity/Carrier (kg)

Sea 250,000,000

Rail 300,000

Road 20,000

For logistic decisions, it is considered that New-Panamax ship has an average

capacity of 12,500 Twenty-foot Equivalent Units (TEUs)1 while 15 TEUs each

having a capacity of 800 bags (25 kg/bag) per container are permissible for

each train.

� CO2 emissions (gm/km) (Adapted from [43])

For Sea: 6.04

For Rail: 17

For Road: 50

� Demand of customers (kg)

D1 = 22,75,00, 24,00,00, 25,35,00

D2 = 32,20,00, 35,00,00, 37,50,00

(Q1 demand values included as exemplar to illustrate the fuzzification of de-

mand data.)

� Acceptable quality limit of supplier “i” (kg)

α1 = 0.04

α2 = 0.04

α3 = 0.03

1https://transportgeography.org/



Appendix D

MCDM for OA Results

1. Calculation for CRITIC Weights

� Normalized Decision Matrix

f 1 f 2 f 3 f 4 f 5

1 0.23 0.90 0.91 0.88 0.26

2 0.45 1.00 1.00 0.91 0.18

3 1.00 0.75 0.78 1.00 0.00

4 0.54 0.69 0.73 0.53 0.47

5 0.31 0.73 0.78 0.88 0.24

6 0.46 0.98 0.97 0.50 0.50

7 0.24 0.81 0.84 0.50 0.56

8 0.48 0.00 0.00 0.50 0.50

9 0.51 0.81 0.84 0.50 0.50

10 0.23 0.78 0.81 0.50 0.56

11 0.48 0.80 0.83 0.50 0.50

12 0.00 0.75 0.77 0.00 1.00

13 0.29 0.70 0.73 0.50 0.55

14 0.00 0.79 0.80 0.00 1.00
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15 0.00 0.73 0.75 0.00 1.00

16 0.00 0.79 0.80 0.00 1.00

17 0.00 0.73 0.75 0.00 1.00

18 0.00 0.75 0.77 0.00 1.00

19 0.00 0.76 0.78 0.00 1.00

20 0.00 0.79 0.80 0.00 1.00

Standard
Deviation

0.27 0.20 0.20 0.36 0.33

� Symmetric Matrix

f 1 f 2 f 3 f 4 f 5

f 1 1.00 -0.09 -0.08 0.81 -0.87

f 2 -0.09 1.00 1.00 0.08 -0.05

f 3 -0.08 1.00 1.00 0.10 -0.07

f 4 0.81 0.08 0.10 1.00 -0.99

f 5 -0.87 -0.05 -0.07 -0.99 1.00

� Conflict Measurement

f 1 f 2 f 3 f 4 f 5 Sum

f 1 0.00 1.09 1.08 0.19 1.87 4.22

f 2 1.09 0.00 0.00 0.92 1.05 3.07

f 3 1.08 0.00 0.00 0.90 1.07 3.05

f 4 0.19 0.92 0.90 0.00 1.99 4.00

f 5 1.87 1.05 1.07 1.99 0.00 5.99
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� Quality of Information

f 1 1.15

f 2 0.60

f 3 0.60

f 4 1.43

f 5 1.99

Sum 5.76

� Objective Weights

f 1 0.21

f 2 0.10

f 3 0.10

f 4 0.25

f 5 0.34

(The CRITIC weights have been determined in the preceding tables using Q1

data as exemplar to illustrate the calculation procedure. Similar procedure

has been followed for calculating CRITIC weights for the remaining three

quarters.)
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2. Calculation for TOPSIS Augmented with CRITIC Weights

� Normalized Decision Matrix

f 1 f 2 f 3 f 4 f 5

1 0.223655 0.206637 0.183649 0.217831 0.213605

2 0.223266 0.195232 0.162620 0.217416 0.211730

3 0.222287 0.222441 0.217232 0.216368 0.206987

4 0.223110 0.229085 0.229214 0.221852 0.219026

5 0.223526 0.224965 0.216554 0.217723 0.213138

6 0.223248 0.197221 0.169366 0.222223 0.219840

7 0.223653 0.216423 0.201930 0.222223 0.221319

8 0.223218 0.305998 0.407058 0.222223 0.219840

9 0.223157 0.216539 0.201937 0.222223 0.219840

10 0.223655 0.219338 0.208614 0.222223 0.221319

11 0.223219 0.217513 0.204651 0.222223 0.219840

12 0.224068 0.222904 0.219971 0.228079 0.232693

13 0.223563 0.228883 0.229200 0.222223 0.221020

14 0.224072 0.218466 0.211943 0.228079 0.232693

15 0.224073 0.224861 0.224610 0.228079 0.232693

16 0.224072 0.218466 0.211943 0.228079 0.232693

17 0.224073 0.224861 0.224610 0.228079 0.232693

18 0.224068 0.222655 0.219428 0.228079 0.232693

19 0.224070 0.221316 0.217113 0.228079 0.232693

20 0.224072 0.218466 0.211943 0.228079 0.232693
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� Weighted Normalized Decision Matrix

f 1 f 2 f 3 f 4 f 5

1 0.044731 0.020664 0.018365 0.054458 0.072626

2 0.044653 0.019523 0.016262 0.054354 0.071988

3 0.044457 0.022244 0.021723 0.054092 0.070376

4 0.044622 0.022908 0.022921 0.055463 0.074469

5 0.044705 0.022496 0.021655 0.054431 0.072467

6 0.044650 0.019722 0.016937 0.055556 0.074746

7 0.044731 0.021642 0.020193 0.055556 0.075248

8 0.044644 0.030600 0.040706 0.055556 0.074746

9 0.044631 0.021654 0.020194 0.055556 0.074746

10 0.044731 0.021934 0.020861 0.055556 0.075248

11 0.044644 0.021751 0.020465 0.055556 0.074746

12 0.044814 0.022290 0.021997 0.057020 0.079115

13 0.044713 0.022888 0.022920 0.055556 0.075147

14 0.044814 0.021847 0.021194 0.057020 0.079115

15 0.044815 0.022486 0.022461 0.057020 0.079115

16 0.044814 0.021847 0.021194 0.057020 0.079115

17 0.044815 0.022486 0.022461 0.057020 0.079115

18 0.044814 0.022265 0.021943 0.057020 0.079115

19 0.044814 0.022132 0.021711 0.057020 0.079115

20 0.044814 0.021847 0.021194 0.057020 0.079115

V+ 0.044457 0.019523 0.016262 0.054092 0.070376

V- 0.044815 0.030600 0.040706 0.057020 0.079115
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� Euclidean Distance

S+ S-

1 0.003316 0.025427

2 0.001645 0.027895

3 0.006101 0.022699

4 0.008629 0.019987

5 0.006517 0.021897

6 0.004666 0.026544

7 0.006775 0.022762

8 0.027230 0.004612

9 0.006424 0.022848

10 0.007275 0.022045

11 0.006626 0.022567

12 0.011209 0.020471

13 0.008979 0.019842

14 0.010715 0.021385

15 0.011502 0.019968

16 0.010715 0.021385

17 0.011502 0.019968

18 0.011175 0.020531

19 0.011026 0.020797

20 0.010715 0.021385
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� Performance Score

S-/(S+S-)

1 0.944

2 0.885

3 0.851

4 0.788

5 0.771

6 0.698

7 0.771

8 0.145

9 0.781

10 0.752

11 0.773

12 0.646

13 0.688

14 0.666

15 0.635

16 0.666

17 0.635

18 0.648

19 0.654

20 0.666

Max 0.944

Min 0.145

(TOPSIS has been implemented in the preceding tables using Q1 data as

exemplar to illustrate the calculation procedure. Similar procedure has been
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followed for ranking the best Pareto optimal solutions for the remaining three

quarters.)



Appendix E

05 Years Demand Data

Quarter
D1 (kg)

[25 kg Bag]
D2 (kg)

[25 kg Bag]
D1+D2 (kg)
[25 kg Bag]

Jan-Mar, 2018
97000
[3880]

276950
[11078]

373950
[14958]

Apr-Jun, 2018
163000
[6520]

203900
[8156]

366900
[14676]

Jul-Sep, 2018
110000
[4400]

192150
[7686]

302150
[12086]

Oct-Dec, 2018
153000
[6120]

246000
[9840]

399000
[15960]

Jan-Mar, 2019
56000
[2240]

275000
[11000]

331000
[13240]

Apr-Jun, 2019
191000
[7640]

178000
[7120]

369000
[14760]

Jul-Sep, 2019
175000
[7000]

190000
[7600]

365000
[14600]

Oct-Dec, 2019
184000
[7360]

254000
[10160]

438000
[17520]

Jan-Mar, 2020
198500
[7940]

225400
[9016]

423900
[16956]

Apr-Jun, 2020
136000
[5440]

60000
[2400]

196000
[7840]

Jul-Sep, 2020
20000
[800]

50000
[2000]

70000
[2800]

Oct-Dec, 2020
24000
[960]

49000
[1960]

73000
[2920]
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Jan-Mar, 2021
85150
[3406]

149800
[5992]

234950
[9398]

Apr-Jun, 2021
152900
[6116]

193000
[7720]

345900
[13836]

Jul-Sep, 2021
134000
[5360]

195500
[7820]

329500
[13180]

Oct-Dec, 2021
130000
[5200]

196640
[7866]

326640
[13066]

Jan-Mar, 2022
240000
[9600]

350000
[14000]

590000
[23600]

Apr-Jun, 2022
226500
[9060]

375500
[15020]

602000
[24080]

Jul-Sep, 2022
238000
[9520]

322000
[12880]

560000
[22400]

Oct-Dec, 2022
229000
[9160]

356000
[14240]

585000
[23400]

Jan-Mar, 2023
150200
[6008]

251100
[10044]

401300
[16052]

Average
147297.62
[5892]

218568.57
[8743]

365866.19
[14635]

Standard
Deviation

65139.51
[2606]

93079.73
[3723]

146720.91
[5869]
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Critical Node & Link Analysis

� Calculation of s ji

S1 S2 S3 P1 P2 W1 W2 W3 C1 C2

S1 0 0 0 0.364 0 0 0 0 0 0

S2 0 0 0.399 0 0 0 0 0 0

S3 0 0.235 0.388 0 0 0 0 0

P1 0 0.611 0.964 0.934 0.872 0 0

P2 0 0.035 0.065 0.127 0 0

W1 0 0 0 0.266 0.531

W2 0 0 0.661 0.163

W3 0 0.071 0.304

C1 0 0

C2 0

Sum 0 0 0 0.998 0.999 0.999 0.999 0.999 0.998 0.998

In the above table, the variable S represents suppliers, P represents ports, W

represents warehouses, and C represents customers, respectively.
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� Calculation of p2
j

S1 S2 S3 P1 P2 W1 W2 W3 C1 C2

S1 0 0 0 0.12603 0 0 0 0 0 0

S2 0 0 0 0.15132 0 0 0 0 0 0

S3 0 0 0 0.05244 0.00068 0 0 0 0 0

P1 0 0 0 0 0.00168 0.16728 0.11628 0.03386 0 0

P2 0 0 0 0 0 0.00023 0.00058 0.00073 0 0

W1 0 0 0 0 0 0 0 0 0.01166 0.09986

W2 0 0 0 0 0 0 0 0 0.07182 0.00941

W3 0 0 0 0 0 0 0 0 0.00084 0.03276

C1 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0
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� Calculation of SCI j

S1 S2 S3 P1 P2 W1 W2 W3 C1 C2

S1 0 0 0 0.04587 0 0 0 0 0 0

S2 0 0 0 0.06038 0 0 0 0 0 0

S3 0 0 0 0.01232 0.00026 0 0 0 0 0

P1 0 0 0 0 0.00103 0.16126 0.10861 0.02952 0 0

P2 0 0 0 0 0 0.0000079 0.000037 0.000093 0 0

W1 0 0 0 0 0 0 0 0 0.0031 0.05302

W2 0 0 0 0 0 0 0 0 0.04748 0.00153

W3 0 0 0 0 0 0 0 0 0.00006 0.00996

C1 0 0 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0

Sum 0 0 0 0.11857 0.00129 0.16127 0.10864 0.02962 0.05064 0.06452



Critical Node & Link Analysis 199

(SCI has been determined in the above table using Q1 data as exemplar to

illustrate the calculation procedure. Similar procedure has been followed for

calculating SCI values for the remaining three quarters.)
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