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Abstract

The process of identifying the perpetrators accountable for a cyber-attack is known

as cyber-attack attribution. This is a difficult undertaking since attackers con-

ceal their identities using various obfuscation and deception techniques. A digital

forensic investigation is carried out following an attack to collect data from net-

work/system logs. After the investigation is completed, the report is published

in a variety of formats including text and PDF. Due to the lack of standardized

publishing procedures, extracting valuable information from these reports is a dif-

ficult undertaking. Manual feature extraction from unstructured cyber threat in-

telligence (CTI) reports is a challenging task. An automated mechanism is needed

to extract features for threat mapping.

The goal of this research dissertation is to develop a mechanism for attribut-

ing cyber-threat actors (CTAs) using hybrid features (technical and behavioral)

by using machine/deep learning techniques. Previously, this mapping was only

carried out by extracting limited features, i.e., tactics techniques and procedures

(TTPs), tools, and malware. Characteristics such as target country, organization,

and application have not been exploited in the research so far.

The features used in this domain to date do not provide any information about the

behavioral characteristics of the attacker, i.e., objectives, motivations, and goals.

Contextual attacker profiles are required due to the rapid growth of technology and

the continual change of attacker tools and strategies. It is critical to incorporate

behavioral characteristics into the cyber-threat attribution process to understand

the actors and their environment.

This research dissertation proposes an innovative concept of incorporating hybrid

features into the cyber-attack attribution process. A novel model ”attack2vec”

trained for domain-specific embedding has been proposed for feature extraction.

The results of the novel model have been compared with various baseline meth-

ods. Features have been validated against benchmark frameworks such as MITRE

ATT&CK, and threat actor encyclopedia. Optimal characteristics have been

chosen for CTA. Performance metrics that are used in this study include Ac-

curacy, Precision, Recall, and F1-measure. Following experimentation, various



x

machine/deep learning algorithms were employed to achieve 97%, 98%, 98%, and

97% for Accuracy, Precision, Recall, and F1-measure by using the novel embedding

model. These include long short-term memory (LSTM), decision tree, random for-

est, and support vector machine algorithms.

The function of CTI is to deliver advanced feeds for precise attack detection in

IDS. The role of CTI feeds for IDS is also examined in this research dissertation.

Various datasets have been analyzed. With the proposed study, machine learning

algorithms have improved the ability to recognize network attacks. The proposed

model produces 98% Accuracy, 97% Precision, and 96% Recall.
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Chapter 1

Introduction

In today’s interconnected society, cyber-security is critical. It is used for protecting

systems, networks, and data from emerging attacks. A data breach can have

serious consequences for an organization’s reputation. In this chapter importance

of cyber-security, and the role of AI in this domain is elaborated in detail. The

importance of CTI and its life cycle is also discussed.

1.1 Importance of Cyber-Security

Customer trust is difficult to gain and easy to lose. Effective safeguards can assist

in preserving customer, partner, and stakeholder trust. Critical infrastructure is

strongly reliant on interconnected systems [1–3]. In an increasingly digital world,

it is a proactive approach to mitigate risks and protecting against potential dan-

gers [4, 5].

Protecting sensitive data is the main reason businesses invest in cyber-security.

The areas include private intellectual property, financial data, and customer in-

formation. Data breaches caused by cyber-attacks can have serious repercussions,

including monetary losses and reputational harm. Businesses that put cyber-

security as a priority are in a better position to maintain an advantage over rivals

in the marketplace. Businesses can obtain a competitive advantage by focusing on

1
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their core skills and decreasing the risk of cyber threats by implementing effective

security measures [6–9].

New risks are introduced by businesses as they implement new IT solutions and

technology. As cybercrime becomes more professionalized, there are more diverse

and advanced risks. The most cutting-edge cyber-security systems are continually

being circumvented or surpassed by CTAs. These systems conceive, develop, and

update regularly. The current setup like hardware and software firewalls, data

encryption strategy, and user authentication techniques is not enough to cater

the modern-day attacks. Unfortunately, this equipment is not able to secure the

computer networks from cyber-attacks [10–12]. AI plays an important role in

cyber-security, providing increased capabilities in threat detection, response, and

mitigation.

1.2 Role of Artificial Intelligence (AI) in Cyber-

Security

AI can analyze vast amounts of data for patterns and anomalies that could identify

potential cyber threats. Traditional methods are outperformed by machine learn-

ing models that can learn from previous data to detect expected and unexpected

dangers. AI can monitor user and system behaviors to build baselines and detect

deviations that may indicate potential breaches or unauthorized activity [13, 14].

AI-powered technologies, for example, can immediately isolate compromised sys-

tems or prevent unauthorized access, reducing the impact of an attack. The role

of AI in this field is increasing with time and it is widely used in every industry.

By analyzing current and past data, AI can foresee possible security concerns,

allowing organizations to resolve vulnerabilities before they are exploited [15, 16].

Cyber-security and AI have been heralded as transformation technologies that are

far closer than we realize. The role of AI in cyber-security is evolving with more

sophisticated tools and strategies available to battle an increasingly complex and

dynamic threat landscape. As we consider the potential security implications of
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machine learning and AI, it is necessary to first understand the current cyber-

security issues [17–20].

1.3 Cyber-Threat Intelligence (CTI)

CTI is a knowledge base that encompasses context, behavior, actions, and the

results of an assault. This information is gathered, analyzed, and applied to better

understand cyber threats and vulnerabilities. This information is then analyzed

to discover potential cyber risks [21–28]. This knowledge base is made available

by CTI to help organizations defend against cyber-attacks. It also gives them the

chance to access challenges and threats they are currently facing online and to

make informed decisions about potential future attacks. The purpose of CTI is to

proactively detect and reduce potential cyber threats. It assists organizations in

understanding the tools employed by cyber attackers, allowing them to anticipate

and protect against prospective threats [29–31].

It is an emerging field that is crucial to modern cyber-security tactics. As cyber-

threats become more complex and widespread, the demand for rapid, accurate,

and actionable intelligence has never been greater. CTI gives a complete picture

of the threat landscape by combining technical data, like as malware signatures

and network traffic patterns, with behavioral insights, such as attacker motivations

and strategies. This comprehensive strategy not only improves an organization’s

ability to defend against current threats, but also prepares it for future issues,

making CTI an essential component of proactive cyber-security initiatives. It

allows for a more proactive and informed approach to cyber-security, which aids

in the protection of networks, systems, and sensitive data.

Database repositories for individual nations are currently being created [32–34].

It has been advantageous to thwart potential attacks by supplying this database

with security equipment. Today, businesses are concentrating on creating their

knowledge bases using publicly available data. Based on this information, threat

feeds are created in standard structured threat information expression (STIX)

format [35–37].
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1.4 Cyber-Threat Intelligence Life Cycle

CTI life cycle consists of six phases as illustrated in figure 1.1. It is critical for

systematically controlling and mitigating cyber risks. It starts with planning and

direction, which focuses on identifying objectives and connecting intelligence col-

lection with organizational requirements. This phase ensures that efforts are fo-

cused on important threats by establishing clear priorities and determining the

information required, like threat actors or attack pathways. Alignment with se-

curity strategies is critical for effective resource allocation. Following planning,

the collection phase entails acquiring raw data and information from a variety

of sources. This includes identifying sources like open-source intelligence, threat

feeds, and internal logs, as well as gathering data related to identified threats,

such as indications of compromise (IOCs) and threat actor strategies. This stage

is critical because it supplies the raw material required for later analysis.

The processing phase involves transforming the acquired data into a structured

and useful format. It is important process here since they ensure that the data

is correct, comprehensive, and consistent. This preparation is critical for effective

analysis, since it converts raw data into a more digestible and cohesive format.

In the analysis step, the processed data is reviewed to extract useful insights and

actionable intelligence. This entails analyzing data, applying threat modeling

frameworks, and evaluating risks. The purpose is to comprehend the nature of

risks, detect patterns, and assess probable consequences, allowing for more edu-

cated threat mitigation decisions.

Once the analysis is completed, the results are communicated during the dis-

semination phase. Detailed reports, dashboards, or briefings are prepared and

distributed to appropriate stakeholders, such as incident response teams or exec-

utives. Effective dissemination ensures that actionable intelligence reaches those

who require it to make informed decisions and take appropriate action. Finally, the

feedback and review phase entails assessing the effectiveness of the intelligence and

fine-tuning the CTI process based on performance assessments and feedback. This

constant assessment enables changes to methodologies, tools, or sources, ensuring

that intelligence remains relevant and effective as threats emerge [38].
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Figure 1.1: CTI Life Cycle Processes.

1.5 Types of Cyber-Threat Intelligence

There are several types of CTI including tactical, operational, strategic, and tech-

nical as shown in figure 1.2. High-level management uses strategic CTI. This form

of intelligence provides a high-level view of long-term cyber trends and dangers.

It assists organizations in making useful resource allocation, policy formulation,

and overall security strategy decisions. Tactical CTI may provide information on

TTP, malware, and attacker tools. It is advantageous for IT managers and SOC

analysts. It is primarily concerned with the immediate future and assists orga-

nizations in understanding existing threats and vulnerabilities. It offers security

teams with actionable information to respond against imminent threats.

Operational CTI provides information on incoming attacks. It gives insight into a

specific IoC and is beneficial to SOC employees. It is more detailed than strategic

or tactical intelligence and assists organizations in understanding threat actors

TTPs. It can reveal how an attack is carried out and how to protect against

it. Technical intelligence is concerned with the exact technological aspects of cy-

ber threats. This intelligence is essential for identifying and mitigating specific

hazards. [39–42].
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Figure 1.2: Types of CTI.

1.6 Importance and Challenges of CTI

CTI aids in the identification and evaluation of potential threats to an organi-

zation’s infrastructure, systems, and data. Understanding these risks aids in the

effective implementation of mitigation measures. This includes the benefit of iden-

tifying and reducing possible risks before they cause harm. This also saves from

averted security breaches. By integrating high-quality threat information with

additional technologies, threat-detection, and defense capabilities can be greatly

increased [43].

Security teams can effectively respond to threats and lessen the impact of an at-

tack by using this information. It allows organizations to proactively fight against

possible cyber-threats by recognizing and comprehending threat actors techniques.

Organizations can better plan and build their defenses by staying ahead of poten-

tial threats [44, 45].
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1.7 Cyber-Attacks Statistics

In today’s world, cyber-attacks are growing very quickly. There are assaults on

almost every industry. The percentage of the organization that has been attacked

at least once is shown in figure 1.3. It shows that attacks have increased with time

and in 2021 86.2% of organizations were attacked at least one time. An estimate

of a data breach cost is shown in figure 1.4. The cost of data breaches is also in-

creasing very rapidly. According to this graph, cybercrime will cost an estimated

23.82 trillion US dollars in 2027 [46, 47]. As a result, organizations are suffering

significant losses as the percentage of attacks rises. Thus, to safeguard themselves

against cyber-crime, organizations must develop defense mechanisms.

Figure 1.3: Statistics Cyber-Attacks on Organizations.

The amount of information available can be challenging. It is difficult to filter

through massive amounts of data to uncover useful and actionable intelligence.

It is critical to ensure that the acquired data is accurate, relevant, and reliable.

Incorrect assessments and responses might result from false or misleading infor-

mation. Cyber attacker TTPs are always evolving. It is a constant challenge to

stay ahead of these sophisticated threat actors and understand their developing
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Figure 1.4: Estimated Cost of Cyber-crime in Different Years.

techniques [48–50]. One of the biggest challenges of CTI is to extract useful infor-

mation from vast amounts of raw data [51–53].

There are numerous profiles of attackers. From the attack patterns depicted in

CTI reports, security analysts attempt to identify the perpetrators. Numerous

well-known companies, including Fire-eye, Trend Micro, Kaspersky, and Syman-

tec release these reports. This data cannot be decoded by machines, but can only

be read by knowledgeable security analysts. Numerous manual tasks must be

performed to extract useful information from these reports [54, 55].

1.7.1 Case Study

A major cyber-security breach at National Database and Registration Authority

(NADRA) in March 2023 exposed national information. Several weaknesses in

NADRA systems were discovered by a Joint Investigation Team (JIT), which was

established in October 2023. A thorough investigation was conducted by law en-

forcement, cyber security specialists, and experts from the Federal Investigation
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Agency (FIA) as a result of the intrusion, which sparked worries about data secu-

rity and integrity.

The JIT report, which was released in early 2024, identified particular security

flaws and the people in charge of the oversight errors that made the assault pos-

sible. Additionally, it suggested criminal and disciplinary measures, such as firing

specific NADRA officers. The government responded by ordering NADRA to

modernize its systems, put in place stronger cyber-security safeguards, and move

quickly to stop future occurrences of this kind.

This data breach incident exposed the personal data of around 2.7 million persons.

Vulnerabilities in NADRA security system, particularly at its offices in Karachi,

Multan, and Peshawar, where officials were allegedly involved in leaking sensitive

data, was the main cause of the breach. It was discovered that this data has been

exported to Romania and Argentina. Although the precise tactics employed in

the attack are not entirely known, earlier studies identified supply chain attacks

and biometric system defects that might have played a role in the data leak. In

addition to suggesting technology improvements, the JIT suggested disciplinary

and criminal measures against the offending parties.

1.8 Data Sources of Cyber-Threat Intelligence

Since CTI has access to a large amount of data, separating the relevant information

can be difficult. Identifying the data sources for CTI is crucial. While they give

important intelligence, the quality and significance of the information gathered will

be determined by the context, dependability of the sources, and unique needs of the

organization and individual seeking this intelligence. In this research investigation,

unstructured CTI reports have been used for extracting technical features. The

following are available data sources [56, 57].

• CTI feeds (STIX format)

• Open source intelligence (OSNIT)
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• Network/server logs

• Hacker forums

• Social media (twitter, facebook etc.)

• Honeypots

• Unstructured CTI reports

• Common vulnerabilities and exposures (CVE)

• National vulnerability database (NVD)

• Blogs

• Threat advisories

• Security websites

• Dark web

• Repositories e.g., GitHub

1.9 Benchmark Frameworks in CTI

The most widely used framework in this domain is MITRE ATT&CK [58–62]. Ac-

cording to table 1.1 (accessed August 24, 2024), this database provides information

on threat actor’s tactics, techniques, software, mitigation, and data sources. There

are frequent updates to this database. There are 152 cyber-threat actors, 202 tech-

niques, 435 sub-techniques, 14 tactics, 794 software, 43 mitigation techniques, and

41 data sources in this framework.

A model that illustrates the seven phases of the attack process is the cyber-kill

chain (CKC). It was one of the most extensively used models prior to MITRE, It

lays out the stages of a cyber attack, providing an organized approach to analyz-

ing security systems and defense measures at each stage. Within this framework,
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Table 1.1: Number of Features of MITRE Framework.

Sr. # Features Quantity

1. Groups 152

2. Techniques 202

3. Sub-techniques 435

4. Tactics 14

5. Software 794

6. Mitigation 43

7. Data sources 41

there are seven steps: reconnaissance, weaponization, delivery, exploitation, in-

stallation, command & control, and actions on objectives. The cycle starts with

reconnaissance, in which attackers gather extensive knowledge about their target,

such as network structures and potential vulnerabilities, frequently using passive

methods like social engineering or scanning. This is followed by the weaponization

step, in which attackers develop a specialized exploit, such as malware or phishing

emails, to exploit the detected vulnerabilities. During the distribution step, the

weaponized exploit is sent to the victim via a variety of vectors, including email

attachments and malicious websites. Once provided, the exploit code is executed,

allowing the attacker to acquire initial access by leveraging the vulnerability.

Installation phase follows, in which the attacker gets a foothold in the target system

by installing malware or other tools to assure long-term access. During command

and control (C2), the attacker establishes a communication channel to manage

and control the hacked system, frequently employing covert tactics to evade dis-

covery. Finally, during the acts on objectives phase, the attacker focuses on their

core aims, which may involve data exfiltration, system disruption, or deeper infil-

tration. Understanding each level of the Cyber Kill Chain enables organizations

to create tailored defenses and monitoring techniques to successfully detect and

mitigate threats at each stage [63, 64].

This model is important in CTI because it provides a structured framework for
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analyzing and comprehending the course of cyber attacks. The CKC model allows

organizations to identify and manage vulnerabilities at each stage of an attack life

cycle by breaking it down into different phases. Its significance stems from its

ability to enable proactive defense strategies. The CKC model has several advan-

tages, including increased situational awareness, which aids in mapping out attack

strategies and approaches, improved incident response through a better knowledge

of assault patterns, and more effective resource allocation by focusing on impor-

tant phases of the attack.

Another framework used in this domain is CAPEC [65–67]. Each framework offers

unique benefits and focuses on different aspects of CTI. Organizations commonly

combine these frameworks to establish a solid threat intelligence program based

on their specific needs and objectives.

1.10 Time is a Critical Factor in Cyber-Threat

Intelligence

Cyber-threat knowledge aids in the early detection of threats and attacks. The

sooner a company detects an assault, the more time it has to respond, mitigate,

and minimize potential damage. Timely information ensures a quick response to

prevent and lessen the impact of an assault as depicted in figure 1.5. Timely detec-

tion enables security teams to adjust and improve their defense plans in real-time

to effectively tackle new attacks. Access to real-time threat intelligence aids in the

detection of prospective threats before they manifest as full-fledged attacks. This

information enables organizations to put preventative measures in place, lowering

the chance of successful breaches.

Time is an important component in this field. An attack has less effect if it is

detected early. If it is discovered later, the consequences are substantial. The cost

of a breach is estimated at $4.35 million, it takes the industry 197 days to detect

and 69 days to contain[68].

The value of time resides in its ability to deliver timely, relevant, and actionable



Introduction 13

Figure 1.5: Impact of Time in Attack Detection.

information to boost an organization’s defense against fast-growing and sophis-

ticated cyber threats. The faster an organization gathers, analyzes, and acts on

threat intelligence, the better it is ready to defend [69, 70].

1.11 Advanced Persistent Threats (APT)

APT are sophisticated, ongoing, and targeted cyber-attacks carried out by deter-

mined adversaries, i.e., nation-states, organized criminal organizations, or other

well-resourced entities. These are distinguished by their stealth, long-term nature,

and narrowly focused objectives. APT actors are tenacious in their attempts,

employing a deliberate and continuous strategy to infiltrate a target network or

system. They intend to remain unnoticed for as long as possible to fulfill their

objectives. These attacks usually have numerous stages and can last for a long

time. These types of attacks go unnoticed for longer periods. As APT is state-

sponsored therefore attribution is difficult [71–74]. Because of the complexity and

endurance, protecting against them necessitates a multi-layered security approach
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that includes strong cyber-security practices, constant monitoring, and user edu-

cation.

1.12 Identification of Attack Steps and Patterns

The ability to recognize the attack steps used by attackers, as depicted in figure

1.6, is a significant challenge in this field. These actions describe the attacker’s

entire attack flow. The CKC model specifies these steps. This indicates which

technique or threads the attacker is using at which step [75–77].

Figure 1.6: Steps used by Attackers.

Finding the patterns and regularities is a difficult task. It aids in the identification

of the attacker. It will assist in establishing the connection between the attack’s

various characteristics. [78–81]. It can reveal details about who, what, where,

why, and how the attack occurred.

As seen in figure 1.7, these five parameters provide information about the attack’s

strategy, implementation, and methodology. The who parameter reveals the real

individual, group, or nation responsible for an attack. The identification of an

attack’s true adversary is a crucial step. To lessen the impact of upcoming assaults,

this information may be helpful. What parameter indicates the attack’s general
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scope? It explains the attacker’s goals for this attack. The direction is indicated

by the where parameter. It indicates the exact time of an attack. The attacker’s

aims and goals are revealed by the why parameter. How indicates the instruments

and methods the actor is using [82].

Figure 1.7: Parameters of a Cyber-Attack.

Understanding the TTP that the attacker is using can help counteract future

attacks [83]. Cyber-threat attribution is difficult since attackers typically use a

variety of techniques to hide their identity. Organizations can anticipate future

threats and effectively take preventive action against these attacks.

1.13 Pyramid of Pain Model

The pyramid of pain model [84–89] is depicted in figure 1.8. IOC comes in two

varieties, low and high level. Domain names, source/destination ports, hashes,

and IP addresses are examples of low-level. Due to their transience, these traits

are easily altered by the attacker. Malware, tools, and TTP are high-level IOCs.

These characteristics are permanent, have a big impact, and are difficult for an

attacker to alter.

Low-level IoCs like IP addresses, file hashes, or domain names are not commonly



Introduction 16

employed for cyber-threat attribution as they can be easily altered. These indi-

cations are unreliable for long-term attribution because threat actors can change

them to avoid identity. Additionally, they lack the larger context required to com-

prehend the goals or operational strategies of an attacker. On the other hand,

high-level IoCs like tactics, methods, and procedures (TTPs) offer more reliable

and consistent behavioral patterns that are more difficult to alter without affect-

ing the attacker’s overall plan. Because they reveal more complex elements of an

adversary’s identity and operational objectives, high-level IoCs are more useful for

attribution and enable a more accurate and dependable threat actor identification.

High-level IoCs are a better fit for thorough and long-term threat actor attribution

because of frameworks like MITRE ATT&CK, which track adversary activities.

Figure 1.8: Pyramid of Pain Model.

1.14 Role of Security Devices in CTI

Security devices play a crucial role in the context of CTI. These devices act as

both sources and consumers of threat intelligence, assisting in the defense against

known and developing threats. Firewalls, IDS/IPS systems, antivirus software,

and secure web gateways are all helpful in detecting and preventing various cyber
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Figure 1.9: Types of IDS.

threats. They employ threat-intelligence feeds to identify known malware signa-

tures, suspicious activities, or behaviors that may suggest an impending attack.

These devices serve as the first line of defense in detecting and stopping harmful

activity. Threat intelligence feeds from many sources, including various platforms,

suppliers, open-source feeds, and internal sources are integrated into these devices

[90, 91].

To secure networks, devices like firewalls and IDS/IPS are employed. Businesses

can be destroyed by false positive alarms, which happen frequently, and by fail-

ing to recognize zero-day attacks. To find malicious traffic in the network, IDS

performs deep packet inspection. Every traffic passing through it is scrutinized

and signature databases are used to compare the payload. If a match is found,

the network permits the request to proceed, otherwise, it is blocked [92, 93]. IDS

are of two IDS types as depicted in figure 1.9. NIDS is used for network-based

activity; a HIDS is installed on the host to detect attacks. There are two types of

NIDS. Signature-based is one type. It maintains a repository of all known attack

signatures, so when a request comes in, it first compares to the signature database.

If the request matches, it is denied or rejected. The second type of detection is

based on anomalies or behavior. This type is used to find zero-day attacks [94–96].



Introduction 18

The process of finding patterns in data that deviate from predetermined normal

behavior is known as anomaly detection [97–100].

1.15 Role of AI in CTI and IDS

AI contributes significantly to CTI by improving data gathering, analysis, and

reaction to cyber threats. It aids in the processing and filtering of threat intelli-

gence feeds from many sources, providing security professionals with relevant and

actionable data. The ever-improving computational capabilities of digital sys-

tems, together with upgraded TTPs employed by cyber criminals, do not match

the conventional security mechanism for detecting intrusion and mitigating threats

in today’s cyber-security environment [101, 102].

It is important to highlight that human skill is still required. Because AI sys-

tems may not always understand the greater commercial context or societal con-

sequences behind risks, human analysts are required to assess results. Finally

combining AI and human intelligence in CTI is becoming increasingly crucial to

effectively battle the ever-changing panorama of cyber-threats. [103–106].

Accurate defense measures in the form of ML-based IDS are required to protect

against cyber-attacks. They are being deployed as potential solutions for identify-

ing network attackers [107–109]. AI-powered IDS can handle big and complicated

infrastructures. There is a need for a method to categorize network assaults be-

cause the IDS continues to struggle more accurately with improving detection

accuracy despite the significant research efforts [110, 111]. Several datasets have

been used to evaluate machine learning algorithm’s performance.

1.16 Role of CTI in IDS

CTI regularly updates information and context about cyber-attacks. It provides

multi-source databases that assist cyber defense mechanisms, enabling thorough

monitoring, detection, and reaction to online threats. Without peering beyond
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the network of your organization, it can be challenging to predict when and how

an attack will occur. Using global CTI feeds will give information about how an

attack is happening and who is behind it. Threat feeds will help to develop impor-

tant defensive security strategies. It empowers analysts to decide how to respond

against impending attacks [112].

For generating threat feeds, CTI uses internal community and outside sources.

Data gathered from corporate security solutions like IDS/IPS, firewalls, and an-

tivirus software among others is included in internal feeds. An example of an

external source is a threat feed from a public or a paid private source from several

well-respected and reputable security vendors.

Today, information sharing across organizations in the relevant business is diffi-

cult. Many security organizations (Alien Vault, threat connect, etc.) offer CTI

feeds. They are being integrated into devices. These feeds are constantly updated.

1.17 Dissertation Outline

Chapter 2

This chapter provides a detailed definition of cyber-attack attribution. CTA

methodologies and overall architecture are explained. Various metrics, statistics,

and sources of CTI are expanded. Furthermore, the research motivation, goal

and objectives, problem statement, gaps, research questions, and methodology are

presented.

Chapter 3

A comprehensive literature review is conducted in this chapter for CTA attribu-

tion and accurate detection of attacks in IDS. Critical analysis and challenges of

research work are explained in detail. Finally, important findings of the literature

review are elaborated.

Chapter 4

This chapter provides a detailed explanation of the planned methodology for this

research. The methodology for obtaining technical, behavioral, and hybrid aspects
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is explained. The optimal feature selection strategy is explained. The research dis-

sertation’s experimental approach is explained near the end.

Chapter 5

This chapter outlines the experiment and the outcomes. Results for technical,

behavioral, and hybrid features are presented. Finally, the findings and tests for

optimal feature selection are complete.

Chapter 6

This chapter goes into detail about the research’s conclusion. Furthermore, future

work is described.
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Background

In this chapter cyber-attack attribution, its levels, techniques used in this domain,

architecture, performance metrics, types of features, and dataset used are discussed

in detail. Also, the motivation for the research, research aim/objectives, problem

statement, research challenges and gaps, problem statement, research questions,

methodology, and contributions are discussed.

2.1 Cyber-Attack Attribution

Cyber-attack attribution is to know about the person or organization behind an at-

tack. It aims to pinpoint who is accountable for online activities. Similar to actual

violence, attribution involves both technical and political evaluations. Technical

techniques include virus analysis and scripts that link online influence activities to

well-known individuals. Political approaches are intimately related to intelligence

gathering, analysis, and the political choices that influence whether or not to at-

tribute operations publicly [113, 114].

There are different profiles and various attributes of the attacker. It is a challeng-

ing task to attribute cyber-threat actors based on attack patterns extracted from

unstructured CTI reports. To develop informed decisions regarding the origin and

identity of cyber attackers, attribution is a difficult task that frequently involves

21
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a combination of behavioral analysis, technological forensics, information sharing,

geopolitical context, and other elements[115].

2.2 Levels of Attribution

Figure 2.1 illustrates the various levels of attribution. The first step is knowing

the attacker’s tools, TTP. Understanding the nation that carried out the attack is

second level. It explains the purpose and motivation for the attack. Understand-

ing the perpetrator of the attack is the third and most crucial level. It is very

important to know about the attacker in addition to the attack patterns. This

can help the organizations to protect them from future attacks. It would help

them to know who is the actual attacker and what is his aim behind it [116–118].

Figure 2.1: Levels of Attribution.

2.3 Cyber-Attack Attribution Techniques

Various CTA techniques are shown in figure 2.2. The literature divides attribu-

tion techniques into four categories. The first method is based on high-level IOC

[119–132]. High-level IOC has long-lasting repercussions, making it challenging
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to alter an attacker’s tools and techniques. Because they have a great impact,

their importance has grown through time. A low-level IOC like IP address, hash,

domain name, source/destination port and timestamp is used in the second way of

CTA attribution [133–149]. It doesn’t have much of an effect because it’s so easy

for an attacker to change these features. By extracting it, researchers developed

several CTA attribution techniques.

The third technique for CTA involves looking for patterns and regularities in the

datasets [150–153]. This can help in finding the actual attacker who committed the

assault. These strategies use association rule mining to extract relevant patterns

from the data. Development of CTA frameworks is the fourth strategy [154–162].

These can provide a framework to find the attack culprit.

Figure 2.2: CTA Attribution Techniques.

2.4 General Architecture for CTA Attribution

Figure 2.3 depicts the general architecture. There are three stages involved in

it. The first step is input in which CTI data is collected. The next stage is

feature analytics. Text pre-processing is carried out in this stage. The feature
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extraction step, which follows text pre-processing employs a variety of state-of-

the-art techniques including TF-IDF, word2vec, LSI, and BERT. Following that,

features are verified using benchmark framework like MITRE ATT&CK. The next

stage, known as classification, involves categorizing the cyber threat actor using a

variety of deep/machine learning methods [154, 155, 163].

Figure 2.3: General Framework for CTA Attribution.

2.5 Performance Metrics

The performance metrics mostly used in this domain are Accuracy, Precision, Re-

call, and, F1-measure [119–122, 124, 133, 136], confidence, support and lift [150].

Precision is the most used and effective metric used in the literature.

Accuracy is the percentage of correctly classified instances among all. While it is

an important criterion for evaluating models, it may not always be sufficient, par-

ticularly in imbalanced datasets with uneven distribution of classes. Precision is

the ratio of true positive predictions made by the model. It represents the model’s

ability to prevent false positives. Precision is especially critical in cases where false

positives are costly or unwanted.
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Table 2.1: Datasets used for Cyber-Attack Attribution.

Ref # Features (Reports) Year

[136] 17,000 2017

[138] 18,257 2018

[121] 327 2019

[119] 249 2019

[119] 20,630 2019

[121] Google programmable search engine 2019

[120] 238 2020

[136] 160 2020

[137] 227 2020

Recall calculates the fraction of true positive predictions among all positive in-

stances in the dataset. It represents the model’s capacity to catch all positive

cases without missing any (reducing false negatives). The recall is critical in situ-

ations when all positive cases must be detected, even if it means generating more

false positives. The F1 measure represents the harmonic mean of Precision, and

Recall. It penalizes models with unbalanced precision and recall levels. Confi-

dence, support, and lift are metrics for finding regularities and patterns in the

datasets.

2.6 Datasets for Cyber-Attack Attribution

For extraction of technical features (TTP, tools, malware) unstructured CTI re-

ports are used. They are published in different formats such as PDF and text.

Some of the datasets used for cyber threat attribution are shown in table 2.1.

To establish a knowledge base of threat group profiles, Thailand’s Computer

Emergency Response Team (Thai-cert) has gathered, evaluated, and organized

open-source data. The Threat Actor Encyclopedia [164] was used as the dataset
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for this research endeavor for extracting behavioral features. It provides a thorough

understanding of the motivations and goals of the attack on the part of the threat

actor. All of the information in this dataset came from open sources (OSINT).

The goal of this encyclopedia was to compile all significant known adversaries of

information security. The aim is to increase global threat awareness and aid in

quicker crisis response in the future. Information in this dataset is based on data

shared by the public security community and does not entirely reflect the views of

Thai-cert and ETDA. For maintaining the quality and relevance of this dataset,

the key point is data must be kept current and of high quality.

2.7 Types of Features

There are two types of features used in the research. Technical and behavioral fea-

tures. Attribution is a complex and difficult procedure that frequently necessitates

a combination of these characteristics and additional specialized techniques to ef-

fectively attribute cyber threats. While these qualities can be useful, attributing

cyber threats with absolute confidence can still be challenging and often inconclu-

sive due to the fundamental nature of cyber operations and attackers’ ability to

conceal their identities.

2.7.1 Technical Features

These include IP addresses, malware signatures, TTP, tools, target country, orga-

nization, and application. Technical indicators aid in determining the origin and

characteristics of cyber attacks [119–121]. These are discussed below.

TTP:-Understanding the specific methods, strategies, and approaches used by

threat actors can provide clues about their identity. This includes examining the

tools, procedures, and strategies they employ during an attack. The overarching

strategy or purpose of a cyber attack is referred to as tactics. It describes an at-

tacker’s higher-level goals. The strategy could be data ex-filtration or espionage.
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Techniques are acts employed to carry out the tactics. These may include the

deployment of specialized malware, social engineering, vulnerability exploitation,

phishing, or other methods used during an attack. Procedures are the step-by-

step processes or sequences of actions that threat actors use to carry out an attack.

These include the tools utilized, the order of operations, command and control sys-

tems, and other specifics about the attack process [58, 79].

It entails identifying patterns, behaviors, and consistent methodology utilized by

threat actors throughout multiple attacks. It can give critical insights for cyber-

security professionals, allowing them to anticipate and fight against potential fu-

ture attacks while also connecting current attacks to known threat actors or orga-

nizations.

Malware:- Examining the malware employed in an attack can disclose details

about its origins, code structure, and resemblances to previously known malware,

providing hints about potential attribution [58, 79].

Tools:- Commercial, open-source, built-in, or publicly available software that a

defender, pen tester, red teamer, or attacker could employ. This category includes

both software that is not commonly found on enterprise systems and software that

is commonly available as part of an operating system that is already present in an

environment. PsExec, metasploit and mimikatz are a few examples [58, 79].

Target Country/Organization/Application:- Analyzing these features is crit-

ical in this field, as it provides significant information into the source and nature

of cyber attacks. When analyzing cyber threats, it is critical to have a thorough

grasp of the target country, organization, and application. Understanding geopo-

litical dynamics and relationships across countries might provide insights into po-

tential motivations for state-sponsored cyber assaults. Certain nations may be

embroiled in political tensions or conflicts, which may affect cyber actions against

one another. Different industries are targeted for a variety of objectives, including

financial gain, espionage, etc. Analyzing the industry can shed light on the moti-

vations behind an attack. Understanding flaws in targeted apps or infrastructure

aids in the identification of potential entry points for attackers.
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2.7.2 Behavioral Features

The identifiable actions, patterns, or activities displayed by threat actors or hostile

entities in the cyber domain are referred to as behavioral traits in cyber-attack

attribution. These characteristics are critical for identifying and attributing cyber

threats to specific people, organizations, or entities. Table 2.2 displays the behav-

ioral characteristics associated with a CTA that was discovered using the Threat-

Agent Library (TAL) [165]. These details provide insight into the actions of CTA.

Context-aware profile means identifying the motives and objectives of attackers be-

Table 2.2: Behavioral Features by Threat Agent Library.

Sr. # Features

1. Attack steps

2. Success rate

3. Trace coverage

4. Outcome

5. Attack knowledge

6. Limits

7. Tools complexity

8. Resources

9. Motivation

10. Actions

11. Distance to CP

12. Attacker skill

13. Access

14. Tools complexity

15. Visibility

hind an attack. Features like motivation, first seen, operations performed, sponsor

by, origin country, outcome, and attacker skills have been extracted. More behav-

ioral features can be extracted in the future upon the availability of datasets.
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Threat actors always improve their methods due to the dynamic nature of the

cyber threat ecosystem. Utilizing behavioral analysis, threat intelligence and at-

tribution procedures may be continuously improved to stay up with new threats.

The monitoring and analysis of human and system behavior patterns is done using

behavioral characteristics. The following key points contribute to the establish-

ment of context-aware attacker profiles.

The world of cyber threats is dynamic and attackers frequently change their tac-

tics. The development of adaptive threat detection models that can adapt to new

and emerging threats is made possible by behavioral aspects. These attributes

which comprise regular behavior patterns, access routines, and usage standards,

help create detailed user profiles. Contextual awareness reduces false positives

by assisting security teams in differentiating between legal activity and potential

threats. A context-aware approach to threat identification and response is made

possible by using behavioral aspects.

2.8 Datasets for IDS Analysis

KDD Cup 99 dataset was created in the fifth international conference on knowl-

edge discovery and data mining [166]. Creating a network intrusion detector, a

prediction model that can distinguish between intrusions and attacks. NSL-KDD

dataset [166] was developed in Network Security Laboratory KDD. It contains

forty-one features. KDDTrain+, KDDTest21+, and KDD Test+ which includes

125,973, 11,850, and 22,544 records. Aegean Wi-Fi Intrusion dataset (AWID) [167]

is the most widely used. It is distinguished by character data and an imbalance

between attack and regular data.

Yahoo Web scope S5 dataset [166] consists of annotated anomalous points in real

and artificial time series. It examines the precision with which different anomaly

categories like outliers and change-points may be detected. Numenta Anomaly

Benchmark (NAB) dataset [168] is intended to assess algorithms for detecting

anomalies in streaming web applications. It includes more than fifty annotated

real-world and synthetic time series data files. Kyoto 2006+ dataset [169] is based
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on actual network traffic data collected over three years and classified as normal

and attack traffic.

UNSW-NB 15 [170] was generated by the Australian Center for Cyber Security

(ACCS) to produce a combination of genuine current normal activities and syn-

thetic contemporary attack behaviors. UNSW Canberra Cyber Range Lab gath-

ered Bot-IoT dataset [171] by simulating a network environment.

The traffic comprises both regular and botnets. ISCX IDS 2012 dataset [172]

was developed in 2012. The fundamental concept is based on profiles, lower-level

network elements as well accurate descriptions of intrusions. CSE-CIC-IDS2018

dataset introduced the concept of profiles. It had gathered 16,000,000 occurrences

in ten days.

This is the latest publicly accessible big data intrusion detection dataset and it

encompasses a wide spectrum of attack strategies. This dataset is perfect for test-

ing machine learning models and intrusion detection systems since it replicates

real-world network traffic and includes labeled data for both b A summary of the

datasets is shown in table 2.3.

2.9 Motivation for Research

Following a thorough review of the literature, it was determined that the threat

landscape is always evolving. As a result, there is a requirement to identify the at-

tacker using comprehensive features that include context or motives. Recognizing

attackers with behavioral characteristics is a highly significant and difficult task.

The key problem in this field is locating a good dataset for feature extraction.

A more thorough understanding of cyber-threat actors is the driving force for the

inclusion of behavioral elements in this research. Technical features offer useful

information, but they frequently lack the context needed to pinpoint the particular

characteristics and intentions of attackers. Threat actors intent and strategy can

be inferred from behavioral characteristics.
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Table 2.3: Datasets for IDS Analysis.

Ref # Data set Year No. of Features

[166] KDD-Cup99 1998 41

[166] NSL-KDD 1999 41

[167] AWID dataset 2015 155

[166] Yahoo Web scope s5 2015 4 Classes

[168] NAB dataset 2015 58 Data Streams

[169] Kyoto 2006+ 2006 24

[170] UNSW NB-15 dataset 2015 49

[171] BoT IoT dataset 2019 46

[172] ISCX IDS 2012 2012 16

[172] CSE-CIC-IDS2018 2018 81

Researchers can more precisely differentiate between actors who may have identical

characteristics but operate in different regions with different goals by examining

behavioral features.

By providing a more thorough profile that increases detection accuracy and en-

ables proactive defense tactics against known threat actors, this richer, contextual

information improves the accuracy of attribution.

Analyzing behavioral features for the identification of patterns and trends asso-

ciated with specific threat factors is a challenging task in this domain. It can

assist in better understanding the goals and objectives of the attacker. Identifying

threat actors motivations and targets allows organizations to develop more effec-

tive defense mechanisms. Although technical indicators like malware signatures

are important, threat actors can swiftly change them. Behavioral features provide

a more stable and reliable foundation for attribution. Behavioral analysis facili-

tates the continuous development of threat intelligence in order to stay up with

new threats [129].
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2.10 Research Aim and Objectives

To date, the literature has attributed cyber-threat actors using characteristics like

TTP, tools, and malware [121]. Attribution has only been performed so far in the

research using a limited number of features. This might not offer comprehensive

information on the attacker’s profile. Focusing on the specific feature set, which

also includes the attacker’s context, motivations and objectives is necessary to

make an accurate assessment of the actor.

The attribution process for cyber-threats will be enhanced by the use of detailed

features. The attributes employed in previous research have not proven to be

reliable in identifying sophisticated attackers of today. These patterns lack detailed

information about the attacker profile, leaving out the objectives and driving forces

of the attacker. The attacker’s nature and the attack surface are always changing,

so it’s imperative to have a comprehensive feature set that covers not only tools

and tactics but also the context, intentions, and goals of an attack.

In this study, the impact of behavioral traits is investigated. These characteristics

may be included in addition to technical for a precise evaluation of the attacker.

The impact of hybrid features is also examined. The optimal feature will ultimately

be chosen for attribution.

2.11 Research Gaps

Attribution is critical for responding to and preventing similar attacks, but the na-

ture of cyberspace provides several obstacles. It is a complicated and growing field,

and closing these gaps is critical to improving CTI efficacy. Here are some examples

of potential research gaps. The accuracy and reliability of cyber-attack attribution

methodologies must be improved. It is imperative to enhance the precision and

dependability of cyber-attack attribution procedures since these approaches are

fundamental to pinpointing the accountable entities for attack occurrences. The

technical data that is analyzed by current attribution methods like IP addresses,

virus signatures, and code similarities can be altered or misconstrued, producing
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inaccurate results. The attribution procedure is further complicated by the fact

that attackers frequently employ sophisticated methods to conceal their identity,

such as proxy servers and credentials theft. To improve these approaches, cutting-

edge technology like big data analytic, machine learning, and artificial intelligence

must be integrated in order to better evaluate the patterns and behaviors linked

to assaults. It is necessary to develop and test more robust techniques, taking into

account false positives and negatives as well.

2.11.1 No Standard Format of Reports

There is no standard format of reports and they are mostly unstructured, so it is

difficult to extract useful information. The absence of common reporting formats

is a significant challenge in this domain. The structure, vocabulary, and content

presentation frequently vary greatly, which causes discrepancies and makes infor-

mation extraction and analysis challenging. Because the reports are unstructured,

it is difficult for analysts to evaluate data in a methodical way, spot trends, and

determine threat actors with precision. The lack of a standard format makes it

more difficult for many companies to share and use vital intelligence, which in

turn affects the effectiveness and precision of attempts to attribute cyber-threats.

2.11.2 Limitation of Datasets

There is a limitation of datasets in this domain. The primary challenge in the

area of cyber-threat attribution is the problem of class imbalance. Data on cyber-

threats is limited for less well-known actors or uncommon attack patterns, but

they sometimes include a unequal number of records linked to specific well-known

threat actors. Since machine learning models are generally inclined toward classes

with more samples, this imbalance skews the training process. Therefore, they

may be very accurate for the majority class but fail to detect or attribute attacks

to underrepresented some actors. The models capacity to generalize across all

classes may be hampered by this imbalance, which could result in less-than-ideal
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attribution outcomes, especially for new or under-reported threat actors..There is

no benchmark datasets in this field. The problem is crucial in this domain since it

could lead security teams to ignore or mistakenly attribute attacks from unknown

but potentially harmful actors. To build a more accurate and complete attribution

model that can identify a wide variety of threat actors and attack behaviors,

class imbalance must be addressed using methods like resampling, synthetic data

generation, or algorithms that can manage imbalanced data.

The scarcity of high-quality datasets obtained presents a significant barrier for

researchers working in this field. Accessible datasets are frequently imbalanced.

Analytical model results may be skewed by this imbalance, making it challenging to

reach reliable conclusions. To make matters more complicated, researchers in this

discipline are unable to compare the efficacy and accuracy of various attribution

approaches because there is no common reference dataset. Previous research work

was done on different datasets, so it is difficult to compare various techniques with

each other.

2.11.3 Extraction of Features

It is challenging to extract all features from a report as there can be missing values.

False flags are commonly used by attackers to confuse investigators, making attri-

bution difficult. It is the need of time to investigate approaches for detecting and

mitigating false flag activities in cyber threats, to enhance attribution reliability.

Traditional approaches emphasize technological evidence, while behavioral studies

of attackers should be prioritized. Investigate strategies for attributing threats

based on an examination of attackers’ behavioral patterns.

The lack of standardized frameworks for attribution impedes interoperability and

consistency across the CTI ecosystem. Propose and assess standardized frame-

works for attribution of cyber threats in order to promote a more unified approach

among the CTI community. It is critical to create more rigorous and standardized

attribution mechanisms. Research could concentrate on improving existing models



Background 35

or developing new ones that take into account various assault vectors, strategies,

and techniques.

2.12 Problem Statement

Cyber-attack attribution is complex due to several factors. Cyber attackers fre-

quently utilize sophisticated strategies, tools, and procedures to mask their identi-

ties, making it difficult to correctly identify their origin. Attackers frequently em-

ploy false flags or other methods to deceive investigators, resulting in misleading

trails and hampering proper attribution. In some situations, the evidence gath-

ered may not be sufficient or precise enough to link an assault to a specific source.

Advancements in technology, collaboration between international intelligence and

law enforcement agencies, sharing threat intelligence, developing stronger forensic

analysis capabilities, and enhancing cyber-security measures all contribute to ef-

forts to improve cyber-attack attribution.

In the past, cyber-attack attribution was done by identifying IoCs found during

a forensic investigation. Examples include malware hashes, virus signatures, do-

main names, and IP addresses. IOCs would then be linked to the TTPs of known

threat actors. Attackers impersonate other malicious actors to deflect blame or

deliberately carry out false flag operations to harm a rival competitor. These

characteristics may not be sufficient to identify the threat actor. Because these

attributes can be faked, altered, or shared among various threat actors, it may

result in an incomplete or wrong attribution.

Using only technical indications may lead to false positives or false negatives. False

positives can falsely accuse innocent persons or misattribute attacks, while false

negatives can cause legitimate threats to be dismissed. Technical characteristics

do not reveal the motivation or intent behind an attack. Understanding the bigger

context, geopolitical considerations, historical behavior, and threat actor aim is

required for attribution. By combining these elements a more precise attribution

can be obtained.
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It is not an easy task to extract attack patterns from cyber-threat intelligence

reports. To date, the literature has identified CTA using features like malware,

tools, and TTP. Based on context, these characteristics are not able to reliably

identify sophisticated attackers of today. These patterns lack detailed information

about the attacker profile, leaving out the objectives and driving forces of the at-

tacker.It is essential to have a rich feature set that encompasses not only tools and

techniques but also the objectives, intents, and goals of an attack. The impact of

behavioral and hybrid features needs to be investigated since the attack surface

is constantly shifting. Behavioral characteristics must be included in addition to

technical ones for an accurate evaluation of the attacker.

2.13 Research Challenges

Various research issues in this domain must be solved. One of the most significant

issues is the massive amount of data. It needs to be collected, processed, and

analyzed to generate actionable insight. Another problem is that cyber threats

are always developing, necessitating regular updates and agility in information-

gathering techniques. Another important research challenge is providing reliable

CTI and partnering with other organizations to improve security measures. Over-

all, the value of CTI is derived from its capacity to offer organizations useful

information about prospective threats.

Cyber-attack attribution allows organizations and countries to take appropriate

legal or diplomatic action against those involved in the attack. Furthermore, at-

tribution serves as a deterrence for future cyber-attacks by highlighting malicious

cyber-activity. To summarize, organizations must use CTI and participate in

threat information sharing to improve their security posture and effectively de-

fend against emerging threats. Finally, organizations must recognize its value and

invest in the resources and capabilities required to provide accurate and actionable

information.
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2.14 Research Questions (RQ)

RQ-1 What is the impact of adding detailed technical features in the cyber-attack

attribution process?

Objective: The goal of this research question is to examine the detailed techni-

cal aspects of the cyber-attack attribution process. Comprehensive, accurate, and

trustworthy attack attribution will be aided by this research work.

Methodology: Technical features from unstructured CTI reports will be ex-

tracted. So far characteristics like TTP, tools, and malware have been utilized

in the research. A novel embedding model called ”attack2vec” has been trained

on domain-specific embedding to extract features. The additional features have

been extracted which are target organization, country, and application to improve

the accuracy of CTA detection. These features will be verified using benchmark

framework like the MITRE. Attack attribution will be carried out following fea-

ture validation to identify the CTA.

RQ-2. What is the impact of behavioral features in cyber-attack attribution?

Objective: Behavioral characteristics are critical in CTA attribution. It includes

numerous aspects of the attacker’s behavior. This study’s goal is to examine the

role of behavioral characteristics. The study of extracting these features has not

yet been done in research so far. In the process of attributing cyber threats, be-

havioral features need to be analyzed. It will reveal the context, motivations, and

objectives of an assault.

Methodology: The threat-actor encyclopedia dataset, which contains behavioral

features will be used to provide an answer to this research question. The goal is to

create a CTA profile based on context, motivations, and objectives. There will be

a comparison with baseline techniques. In the end, classification algorithms will

be used to identify the perpetrator of an attack.

RQ-3 What is the impact of hybrid features (technical and behavioral) in the

process of cyber-attack attribution?

Objective: Analyzing the impact of hybrid features is the goal of this research

question. They have not yet been incorporated by researchers so far. They will



Background 38

be analyzed to determine how they affect the attribution process.

Methodology: The extraction of features will make use of the innovative embed-

ding model attack2vec. Different machine/deep learning techniques will be used

to determine the performance metrics.

RQ-4 Which set of features are optimal in cyber-attack attribution process?

Objective: The objective of this research question is to identify the optimal fea-

ture set for the attack attribution process.

Methodology: The best feature set will provide the answer to this research ques-

tion. PCA and genetic algorithms among selection techniques will be used. To

determine the ideal feature set, machine, and deep learning algorithms will be

used.

RQ-5 What is the impact of feature selection techniques in better attack detection

in IDS?

Objective: This research question aims to analyze feature selection techniques

for improved and precise attack detection for IDS.

Methodology: The methodology uses feature selection techniques to choose the

best features for this domain from a variety of datasets for IDS. The classification

algorithms determine whether the attack is normal or attack.

2.15 Research Methodology

The research methodology consists of the following phases:

Technical Feature Attribution

Technical features are extracted in the first phase. Data collection, feature extrac-

tion, and cyber-attack attribution make up the step-by-step methodology for the

extraction of technical features.

Behavioral Feature Attribution

The second phase involves extracting behavioral features. Data gathering, feature

analysis, and threat attribution are the phases used for extracting behavioral fea-

ture attributes.
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Hybrid Feature Attribution

The third phase is the evaluation of hybrid features. To understand the impact,

technical and behavioral features are extracted. CTA is categorized using ma-

chine/deep learning models based on the attack patterns that are taken from

unstructured CTI reports and threat actor encyclopedia dataset.

Optimal Feature Selection

The fourth phase involves selecting the best features. Finding the best features

for the process of CTA attribution is the goal of this phase.

Attack Detection in IDS

It involves feature selection techniques in IDS to precisely and accurately detect

attacks.

2.16 Research Advantages

Finding the perpetrator of a cyber-attack is a difficult task. Knowing who is re-

sponsible for an attack is a crucial step because it enables a nation or business to

take precautions against possible future attacks. Finding the attacker from the at-

tack pattern is a challenging undertaking. The goal of this research investigation is

to identify the attacker based on its behavioral characteristics. The organizations

will be able to accurately identify the attacker with this analysis. The feature set

will be more comprehensive as a result of the incorporation of behavioral traits,

assisting enterprises in thwarting future attacks. The inclusion of hybrid features

will determine the attacker’s goals and objectives. Finding the optimal set will

assist researchers and businesses. Security companies will be able to attribute

cyber-threat actors with the aid of this research investigation. If a feature set is

provided, it will attribute cyber-threat actors without a report.

This research work is not primarily focused on a specific sector or industry, it is

applicable across various domains, without being limited to any specific one. This

study is to offer useful insights and technologies that can be leveraged by orga-

nizations in varied fields including manufacturing, defense, critical infrastructure,

banking, healthcare, and so on. This adaptability guarantees that the methods
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and conclusions derived from our research will be implemented to improve cyber-

attack attribution in almost any sector, rendering contribution globally applicable

and significant.

Customers who use CTI services and feed as well as security vendors can both

profit from this research. It will help security companies identify cyber-attackers

based on their attack patterns, i.e., the equipment and methods the attackers

used. Organizations will be able to better understand the types of attackers who

are interested in breaking into their systems. Our model will be given any un-

structured, unseen report and it will identify the attacker. Our work will benefit

the defense industry. Forensic investigations conducted by these organizations do

not rely on external security experts. They can use this methodology to more

precisely attribute cyber threat actors.

2.17 Research Contributions

In this research work, the problem of cyber-attack attribution and the role of IDS

for better attack detection has been addressed. Following are the contributions of

this research work.

1. A framework for CTA attribution is suggested. A thorough analysis of the

literature is done to analyze the methods employed. Important components of the

literature review in this field are also emphasized.

2. Moreover, the addition of comprehensive technical features is a research con-

tribution in this domain. It includes a novel concept of adding attributes target

country, industry, and application to profile CTA. Earlier studies only used features

like tools, malware, and TTP. Up until now, research has not utilized characteris-

tics like target country, organization, and application in this domain.

3. The development of the novel embedding model ”attack2vec” is one of this

work’s main contribution, as general models perform poorly in fields like cyber-

security. Datasets from the field of CTI were used to train this model.

4. The impact of analyzing behavioral attributes in this domain is another impor-

tant contribution. Adding these characteristics is a novel concept in this domain.
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To our knowledge, behavioral characteristics have not been used to identify cyber-

threat actors.

5. This research investigation analyzes the influence of hybrid features in the

cyber-attack attribution process.

6. The selection of the best features is a major contribution in this domain.

7. The creation of a customized dataset that includes hybrid feature will help for

future research in this domain.

8. Using CTI feeds for accurate attack detection in IDS is a contribution of this

research work.



Chapter 3

Literature Review

3.1 Introduction

In this chapter detailed research literature review is conducted for the cyber-attack

attribution process. Also, a detailed study of accurate detection in IDS is reviewed.

The role of machine/deep learning is also analyzed. Various techniques proposed

by researchers are elaborated comprehensively.

3.2 Cyber-Attack Attribution Literature Review

This paper [119] elaborates on the benefits of domain-specific embedding in the

realm of cyber-security. According to the authors, adopting domain-specific em-

bedding can result in high performance. One model is trained on 20,000 un-

structured cyber threat intelligence reports, while the second is trained on online

pages crawled from Wikipedia. The results demonstrated that a model trained

on domain-specific embedding generates better outcomes than web pages crawled

from Wikipedia.

A model for attribution of cyber-threat actors was proposed in this research pa-

per [120]. To extract features from unstructured CTI reports, a novel technique

called similarity-based vector representation (SIMVER) is proposed. Word2vec

42
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and smoothed binary vector algorithms (SMOBI) are used to compare perfor-

mance. 238 CTI reports are used for analysis. To attribute various cyber-threat

actors, deep learning models are deployed.

It was suggested in this study [121] that cyber-threat actors employ a variety of

tools and techniques when targeting enterprises. Changing an attacker’s tools can

be challenging. As a result, it is crucial to recognize an attacker from their attack

patterns. This will assist groups in defending themselves from upcoming assaults.

Particularly in the finance sector, identification of these attack patterns is partic-

ularly beneficial. In this study, attributes used to identify cyber-threat actors are

derived from unstructured CTI information.

In this study, it was hypothesized [154] that most of the information about TTP

is available in a human-readable format. It is considered an important feature.

Organizations can safeguard themselves against future assaults by extracting it

from unstructured data. It forces the attacker to change its tools and techniques,

as this is quite a difficult task for the attacker.

In this research work, it was proposed [133] that threat actions can be extracted

from threat-related articles. Latent semantic indexing (LSI) and cosine similarity

are used to extract features from the dataset. The taxonomy used in this work is

MITRE ATT&CK.

In this work [122], different classification approaches to extract features from un-

structured text are evaluated. MITRE ATT&CK is used as a benchmark. A tool

named reports classification by adversarial tactics and techniques (Rcatt) is de-

veloped to extract features from unstructured data. This tool generates reports

in STIX format.

There is a lot of raw information present for the CTI [150], extracting it and con-

vert into intelligence can be very useful. To extract it from raw data and draw

patterns, the ARM technique is used. It produces rules to find various TTP pat-

terns.

Anti-malware systems are used to detect malicious code or activity within the

system [134]. It is out of scope for these systems to detect the attacker behind an
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attack and its intent. A lot of raw data for CTI exists in the world today. Manual

extracting of information from this raw data is nearly impossible. There is a need

to design an automated mechanism to extract useful information from this data

and convert it into intelligence.

The studies [123, 124, 135], elaborated that the need for information security is

increasing with the development of new technologies and infrastructures. Security

analysts and experts face a huge challenge because of increasing security threats.

This has led to the emergence of a new field called CTI. This field is gaining pop-

ularity in the world today and its importance is growing.

According to [155], modern attackers require expertise to perform cyber-attacks

effectively. They employ a variety of preventive measures to avoid detection for

an extended length of time. Organizations are concerned about protecting their

assets. These attacks have the potential to harm their reputation and cause in-

formation leaks. As a result, cyber attribution analysis is a critical and complex

process that necessitates a high level of skill.

In this research work [125], it is elaborated that there is no fully automatic and

online tool available that extracts meaningful and structured information from raw

text. In this work ”STIXGEN”, an online tool for the development of structured

information in STIX format is proposed. This tool will be helpful for organizations

to produce structured information.

The work [163] describes levels of attribution. The first level is the host which has

started the attack process. The second level is the agent host which has assisted in

conducting the attack. The third level is the service provider through which traffic

passes. The fourth level is the specific person conducting the attack. The fifth

level is the organizations and government agencies who have helped in conducting

the attack. The sixth level is from where the assault originated. Attributing the

attacker is a powerful preventive defense against the cyber-attacks.

This study [136], proposed an automatic extraction method named ”TTPDrill”

which automatically extracts threat-related data from unstructured CTI reports.

It develops feeds in an STIX format. This method customizes some of the NLP

techniques and develops a technique that can automatically extract threat-related
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data.

This study [137] proposed a novel approach for analyzing CTI reports and extract-

ing threat-related information from the security corpus. The first contribution is

the extraction of features from the CTI reports. This study annotates different

threat-related texts. A major contribution is the generation of a 498,000 tag

dataset.

In this research work [138], high-level IoC are extracted from threat-related re-

ports. In this work bias correction methods are used to remove biases of data

collected from different sources. This method is compared with TTPDrill and it

outperforms by producing an Accuracy of 78%.

In the modern world [173], there is a vast amount of text data available. It is

difficult to extract useful information. The data is so scarce, that procedures for

feature extraction and selection are used as they make the data easier to manage.

This study reviews several feature extraction methods and machine learning algo-

rithms for classifying texts.

In this work [139], a framework is proposed known as IL-CyTIS based on the stan-

dard STIX format. This work aims to extract the threat actions from CTI reports

in a more effective way to attribute the CTA.

In the proposed study [140], different threat actions e.g., tools, file types, and

organizations are extracted from the unstructured CTI reports. Reinforcement

algorithms are used to evaluate performance measures.

These studies [141, 151], proposed a method for identifying malware and extract-

ing threat actions from CTI reports, honeypot, GitHub, GUN open-source project

foundation, and Windows system files. Various machine and deep learning algo-

rithms are used for the classification.

In this investigation [142] a model DeLP was proposed. The goal is to make ex-

traction easier and more accurate to attribute cyber threats. This methodology

has made attribution more effective.

An automated mechanism for extracting CTA is proposed in this study paper

[174]. Cosine similarity is applied to validate the extracted feature from the
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ATT&CK framework. Twenty-seven distinct organizations provide advanced per-

sistent threat (APT) reports.

In this study [175], a threat model is proposed for extracting features from cyber

warfare events such as surveillance, data theft, and espionage. This model helps

in the extraction of threat actions.

This paper [126], proposed a method for extraction of low-level IoC to attribute

CTA. Several frameworks in the literature such as Chain Smith, IOCMiner, and

STIXGEN have been proposed for the extraction of threat actions.

In this study [127], a model is proposed for the automatic extraction of threat

actions. From APT reports, this model extracts threat actions. TTP is extracted

from 521 APT reports. It yields Precision, Recall, and F1-score of 96%, 97%, and

96%, respectively.

In these studies [156, 176], attribution of CTA is proposed. CTI modeling is done

using a framework. Identifying various threat categories is the main goal of this

work.

For modeling of CTI an automated framework “DLTIF” [157] is developed which

can identify various threat types. The aim is to formulate CTI modeling and to

identify different threat types.

An innovative method for APT attribution is provided in this paper [143]. The

method combines code and the string feature. It uses a bag of word models to rep-

resent vectors. Identification of network assaults and threat information is aided

by this methodology.

In this work [144], proposed a threat-modeling technique known as ”HinCTI”. It

extracts high-level IOC from CTI data and draws a semantic relationship. It helps

in the identification of threat types more accurately and precisely. Comparison

with baseline methods is also performed to show the performance of this novel

model.

In this approach [177], the Azure Hacker Asset portal is presented to gather CTI

data. Various cyber-security platforms offer situational awareness about different

parameters. A lot of useful information is present in the dark web. This approach

analyzes reports on the dark web to collect insight into CTI for more efficient
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utilization.

In the proposed method [128], a honeypot is deployed on an Amazon web service

to collect data. After text pre-processing different machine learning algorithms

are used to attribute CTA. Out of the used model, support vector machine (SVM)

produces a high Accuracy of 94.7%.

In this research work [178], analysis for various types of data is conducted to pro-

tect organizations from cyber-attacks. It is important to analyze various types of

CTI data. It is now essential to formulate contextual semantic relations in cyber

threat text. In this approach, a model known as security open source intelligence

framework (OSIF) is developed to analyze CTI unstructured data. Common vul-

nerabilities and exposures (CVE) dataset is used for cyber-actor profiling.

In this approach [145], a model known as ”TIMiner” is proposed for sharing CTI

data gathered from social media. Convolutional neural network (CNN) is used to

classify various types of IOC from the dataset. This model generates CTI with

domain tags.

In the proposed technique [152], the problem of CTA attribution is discussed. It

is a challenging task to attribute cyber-threat actors. Attackers mostly conduct

attacks behind proxies so it becomes difficult to identify the initiator of attack.

In this study [179], a literature review is conducted on the techniques that extract

useful information from unstructured text. A total of 28,484 articles are collected.

From the analysis, it is identified that the most useful keywords in the field of

NLP are topic classification, keyword identification, and semantic relationship.

In this proposed method [146], a system known as feature-smith is developed to

extract features for Android malware. This system improves the overall accuracy

of extracting security actions. APT has become a major threat to countries and

organizations in the recent past. As it is somewhat difficult for organizations to

detect such types of attacks.

A triangle model is developed in this study [129]. It creates a link for attribut-

ing CTAs using three criteria (TTP, sector, and tools). The MITRE ATT&CK

benchmark framework is used to draw relationships. The suggested paradigm will

aid in more precise attribution of CTA.
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A methodology [158] for conducting correlation analysis of cyber incidents is de-

scribed in this article. During a cyber-attack, this framework aids in the correlation

of cyber incident occurrences.

Deep learning neural networks are employed in this suggested framework [130] to

analyze nation-state attackers. Attributing key players is a difficult undertaking,

but it will be useful in the attribution process. These kinds of attacks are often

slow-moving and hard to foresee. They may trigger at a specific time, therefore it

is difficult to identify them.

In this study[147], several machine learning techniques were used to extract threat

actions from various hacker forums. For analysis, only posts written in English

were considered. Manual extraction of information from hacker forums is a diffi-

cult undertaking due to the high volume of information.

The procedure for attribution is discussed in this article [180]. Various methods

exist that aid in proper attribution. The legal and technological components of

the process need to be addressed more effectively. It is a challenging task to iden-

tify an attacker from an attack pattern in the present world due to the complex

attacker nature. The suggested study explains various techniques for cyber-attack

attribution.

This research paper[159] established a methodology for analyzing CTI data and

producing association graphs. This approach helps organizations to assess poten-

tial dangers in the future. Here, a tool is developed for the visualization, analysis,

and relationship-building of cyber-threat actions by identifying the organization

and attacker responsible for an attack.

Several cyber-attack attribution elements [160] can help with future advancements.

It is vital to understand the distinctions between different types, such as strategic

and public. In this procedure, the victim’s role is critical. Information can be

gathered via real-time data or logs.

In proposed studies [131, 148, 149, 153, 181], features are extracted from vari-

ous sources e.g., dark web and unstructured text. Knowledge base graphs are

produced which help in the automated detection of attacks. It is a viable and

effective method for converting massive amounts of CTI data into high quality for
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analysis.

The effectiveness of high-level assault patterns over low-level ones is examined in

this research work [132] to attribute cyber attacks to their perpetrators. The rele-

vant gold standard datasets are necessary to empirically analyze and compare the

effectiveness.

This research work [182], presented a thorough framework for CTI implementa-

tion. A detailed literature assessment highlighted critical components required for

practical CTI, such as data collection, processing, analysis, and dissemination. It

could be useful for organizations looking to strengthen their CTI capabilities.

In this paper [161], a novel CTI analysis system, CTI view is developed to au-

tomatically extract and analyze the text information of CTI released by security

vendors. To be more explicit, this study provides an information extraction strat-

egy based on multiple NLP technologies for extracting APT CTI capabilities.

In this paper [183], a classification strategy for organizing and categorizing exist-

ing research works based on the goals of CTI knowledge acquisition is discussed.

Current works, including cyber-security-related entities and events, cyber attack

TTP, profiles of hackers, and threat hunting methods are elaborated.

In this survey paper [184] techniques for APT attribution are discussed. Accord-

ing to this study, they are divided into four models hierarchical, diamond, Q, and

commercial.

The results of this work [185] show that a lightweight technique that leverages

fuzzy hashes as natural language input for machine learning classifiers can serve

as a credible and fast engine for automated attribution of state-sponsored malware

samples for assault analysis .

In this work [162] a framework is developed that asks simple questions at different

levels and then combines these primitives to perform the complicated issue of APT

attribution. This paradigm aids in reasoning about the process. Furthermore, this

design improves the separation of roles, processes, and timing cycles among the

various actors participating in the attribution process.

This research [186] presents a mechanism for visually analyzing CTI data using

machine learning techniques. The method presented here allows security analysts
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to extract relevant patterns from CTI and conduct analysis from numerous an-

gles. The security analyst can recognize common TTP, domains, IP addresses,

and file types from previous cyber-attacks. The period of a certain incident is also

reported in the visual analysis.

In this paper [187] current state of CTI-based taxonomies and knowledge graphs

are investigated. The author has revealed that in recent years, the internet of

things (IoT) and cyber-physical systems (CPS) have seen extraordinary growth

and numerous success stories.

This study [188] suggests an attack intelligence architecture. An attribution mod-

ule is proposed that makes use of a variety of deep and machine-learning methods

to identify attacks.

This paper [189] presents a solution to facilitate technical attack attribution, im-

plemented as a machine learning model extending the Open-CTI platform. Trans-

lated the technical attack attribution problem to the supervised machine learning

domain.

In this work [190], a mechanism for identifying CTA by extracting attributes from

CTI reports is proposed. Furthermore, an approach for extracting information

from unstructured CTI data using natural language processing (NLP) techniques

and then identifying CTA using machine learning algorithms is proposed. Us-

ing the unique embedding model ”Attack2vec” that is trained on domain-specific

embeddings, features such as tactics, techniques, tools, malware, target organiza-

tion/country, and application are extracted. In Table 3.1 comparison of various

techniques is shown.

3.2.1 Critical Analysis

A significant issue for attributing CTA is the lack of availability of CTI reports.

As the forensic investigation is carried out by security vendors, making these find-

ings publicly available is a significant barrier to maintaining user privacy. Due to

dataset limitations, analysis is conducted on unbalanced datasets which may have

an impact on accuracy and performance. Different benchmark frameworks are
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Table 3.1: Comparison of Various Techniques.

Ref. Features NLP Tech. ML Algo. Dataset
(Reports)

Results
(Precision)

[129] TTP,tools,
sector

- - - -

[175] Threat ac-
tions

- - - -

[120] TTP SIMVER Neural
Network

238 95%

[121] TTP, tools LSI,
Cosine
Similarity

Navies
Bayes
KNN,
DT,RF

327 92%

[122] Tactics,
techniques

LSI,
TFIDF
word2vec

DT,RF
Ada boost

MITRE 79%

[136] TTP LSI BR-Naive
Bayes
BR-SVM
LP-SVM

Threat ar-
ticles

59.50%

[119] TTP SMOBI XG
BOOST

249 &
20,630

55%

utilized for feature validation. For producing accurate results, a single benchmark

may be employed.

A report contains a lot of irrelevant information and just a small number of sen-

tences contain information regarding attack patterns, making it difficult to extract

meaningful information from this mass of data. The availability of trustworthy

reports presents another difficulty. Results may be erroneous and prejudiced if

reports are skewed or from unreliable sources.

Since there is no standard format for these reports, this presents another difficulty.

Security vendors published it in various formats according to needs and require-

ments. Therefore, it becomes difficult to retrieve useful information from different
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formats. Data is also available in bulk (unstructured reports, blogs, threat warn-

ings, hacker forums, social media, CVE, national vulnerability database (NVD),

dark web), so it is difficult to extract meaningful information.

Designing a completely automated mechanism that can depict the complete path

of an assault is a problem in the attribution of an actor. Designing a comprehen-

sive automated system for cyber-attack attribution is difficult since attackers use

a variety of phases and strategies to carry out attacks. To attribute a threat actor,

semi-automated approaches for characterizing an attack flow are available. It is

difficult to determine the connections between various incidents of compromise,

including TTP malware and tools, in this field.

Evaluating the outcomes of numerous research initiatives that have been conducted

on various datasets is a very difficult task. There are only a certain number of

datasets available in this business. As a result, some important details will prob-

ably be missed. There have only been a few features employed in the research so

far. They do not offer in-depth information on the attacker’s profile. However,

little has been done to create a context-aware profile of the attacker up until this

point. It is necessary as technology advances, the attack surface, and attacker

context are changing very rapidly.

It is also vital to assess the objectives and drives of the attacker. These factors

may aid in this process as they give the attacker more information, motivations,

and goals. The process of attribution for CTA is complicated. The datasets to

extract behavioral traits is still not available. For information on cyber threats,

there is a ton of raw data that may be acquired from various sources. It is chal-

lenging to draw insight from such a large volume of data.

So far a small number of features (TTP, tools) have been extracted for CTA attri-

bution. There are other important attributes such as target organization/ coun-

try/application which may improve the cyber-attack attribution process. This

may provide detailed information about the attacker’s profile. This study [119]

proposed an embedding model known as SMOBI. This technique [121] extracted

tools and TTP from unstructured reports. LSI is modified according to the author

but is not explained in detail. The authors [120] extracted tools and TTP from
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unstructured reports. They proposed an embedding model known as SIMVER.

Detailed feature set has not been used in this work. Various research generates

results on different datasets, so they cannot be compared.

So far, no fully automated mechanism has been designed for cyber-attack attribu-

tion. There are semi-automated mechanisms that design the attack flow process.

Analysis has been conducted on different frameworks such as the diamond model,

CKC, F2T2EA, and MITRE framework.

There is a need for a single benchmark, based on which experimentation may be

performed for comparative analysis. In the literature, so far relationship between

different TTP is drawn. It will be better to provide a more detailed relationship

between various attributes. Pros and cons of various techniques are illustrated in

table 3.2.

3.2.2 Important Aspects of Literature Review

Important aspects in this domain like NLP and machine learning techniques,

features, results generated, performance metrics, cyber-threat actors, tools, and

frameworks developed in this domain are highlighted below. These aspects are as

follows.

Q-1. Which Natural Language Processing (NLP) techniques have been effective

in this domain?

(NLP) is a branch of artificial intelligence (AI) that studies how computers and

human language interact. It entails creating models and algorithms that allow ma-

chines to meaningfully and practically comprehend, interpret, produce, and work

with human language.

NLP is used for text cleaning processes like removal of stop words, punctuation,

tokenization, stemming, lemmatization, and extraction of features. Effective tech-

niques used in this domain are frequency-based, i.e., term frequency - inverse
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Table 3.2: Pros and Cons of Techniques.

Ref Pros Cons

[129] Creative methodology.
Practical to implement.
Robust framework.
Detailed work flow.

Limited scope.
Dependent on accurate data.
Dependent on static indicators.

[175] Comprehensive approach.
Real time examples.

Heavily focused on state actors.
Privacy implications.

[120] High level of information.
Innovative approach.
Domain specific embeddings.
Feature engineering.

Limited dataset.
Overfitting.
Relies on quality of data.
Computational complexity.
Pre-processing challenges.

[121] Detailed analysis of techniques
for imbalanced data.
Best metrics like ROC used for
imbalanced datasets.
Addresses challenges in mutli-
label classification.

No case study to prove results.
Limited discussion on hybrid
methods.
Not adressing on computational
complexity.

[122] Integrates multiple sources of
data.
More accurate identification of
threat actors.
Broad applicability to various in-
dustries.
Rich dataset.

Increased complexity.
Data management challenges.
Issues of data quality.
Scalability issues.

[136] Improved cyber-threat attribu-
tion.
Comprehensive dataset.
Industry wise applicability.
Detailed methodology.

Complexity in implementation.
Data availability issues.
Computational requirements.
Potential biases.

[119] Innovative approach.
Effective use of NLP and ML.

Dataset limitation
Manual label required.
Dependence on report quality.
Lack of real time analysis.
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document frequency (TF-IDF), and context-based, i.e., LSI etc. Some novel mod-

els have also been developed by the researchers for extraction of features.

After the literature survey, it is identified that TF-IDF, latent semantic indexing

(LSI), and named Frequency of NLP techniques are shown in figure 3.1.

Figure 3.1: NLP Techniques used in the Literature.

Q-2. Which machine/deep learning models have been effective in this domain?

In this research question, machine/deep learning models used in this domain have

been highlighted. The effective techniques used in the literature are random forest,

deep learning neural networks, decision trees, long short term memory (LSTM),

and SVM models. They are effective in producing high results. To solve this

problem in the literature various techniques like BR-SVM, BR-DT, LP-SVM, and

LP-Naive Bayes have been applied. The frequency of techniques used in the liter-

ature is shown in figure 3.2.

Q-3. What kind of performance metrics have been used in the literature & which

metric is most used?

The performance metrics mostly used in this domain are Accuracy, Precision, Re-

call, F1-measure, confidence, support, and lift. Precision is the most used and

effective metric used in the literature. Other used metrics are Recall, F1-measure,

and accuracy. Confidence, support, and lift are metrics for finding regularities and

patterns in the datasets. The frequency of performance metrics used in different
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Figure 3.2: Frequency of ML/Deep Learning Algorithms.

Figure 3.3: Frequency of Performance Metrics.

work is shown in figure 3.3.

Q-4. Which features have been used in this domain & are considered most im-

portant for cyber-attack attribution?

There are two types of features commonly used in this domain. High-Level and

Low-Level IoC. After the literature review, it is evident that TTP is the most used

feature in this domain. For experiments, now researchers are mostly focusing on

high-level IoC, as their impact is high and everlasting. Identifying them can force

the attackers to change their tools which is a very difficult task. The frequency of

features used in various works is shown in figure 3.4.

Q-5. What results have been generated by different techniques?

The results are shown in table 3.3.
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Figure 3.4: Frequency of Features.

Q-6. Which feature selection techniques have been used in literature?

Table 3.3: Attribution Results.

Author/Ref Accuracy (%) Precision(%) Recall(%) F1-Measure(%)

S. Naveen[120] 86.5 95.4 83.3 87.9

U. Noor[121] 94 92 89 89

L. Perry[119] 58.4 55 52.4 -

Information gain has been mostly used in this area. It is the commonly used

technique identified for feature selection. Its role is to identify the most effective

feature from the dataset.

Q-7. What are the most used benchmark frameworks in the literature?

Different benchmarks used have been identified in this research question. MITRE

ATT&CK is the most used framework in this domain. The purpose of these bench-

mark frameworks is to validate a feature. CKC is also used by the researchers

before the development of the MITRE framework. CVE database is also used for

the extraction of features.

Q-8. Which cyber-threat actors (CTA) are mostly used in the research?

Cyber-threat actors are the attacker or person behind a cyber-attack. In the lit-

erature a CTA has been used by different names, so aliases are also identified by
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the researchers.0.25cm

Mostly used CTA in the research are APT28, Lazarus, Turla, Oil Rig, APT17,

Fin7, APT29, menu Pass, Deep panda, APT1, admin338, Rocket Kitten, APT12,

APT16, APT18, APT30, APT 32, APT34, Equation, FIN5, FIN6, Gamere-

don, Rocket Kitten, CGMAN, Group5, Ke3chang, Lotus Blossom, Magic Hound,

Moafee, Winntie, APT3, APT17, APT28, Molerats, Bronze Butler, Carbanak,

Cleaver, Dark hotel, Copy Kittens, Dragonfly, Dragon OK, Dust Storm, Fin10,

Copy Kittens.

Q-9. What are the most important tools, standards, expressions, and information-

sharing platforms used in the literature? 0.25cm

In this research question, the identification tools, expressions, and information-

sharing platforms used in the literature have been identified. STIX is considered

the most used expression for cyber threat intelligence. Trusted Automated Ex-

change of Indicator Information (TAXII) and Open-IOC are the platforms for

extracting threat feeds. Open-source intelligence (OSNIT) is also used by the

researchers. It is an open-source repository for collecting information about the

attacker.

Q-10. What are the novel frameworks/tools developed in this domain?

In this research question the novel frameworks and tools developed have been

identified. Some of them are explained below.

STIXGEN: - It is a tool developed for the generation of CTI feed in a more de-

tailed and comprehensive manner from raw text data. It will ensure the sharing

and availability of CTI feeds among various organizations.

Action-Miner: - The goal of this tool is to extract low-level IoC from CTI feeds

more efficiently and accurately as compared to other tools.

ATIS: - Automated threat intelligence fusion framework considers different sources

to create intelligence from various data sources. It is a collection tool to collect

meaningful information and draw relationships from this data.

Six-gill: - It is a tool used in the dark web that collects hacker information from

different sources. This tool aims to extract features from the dark web.
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TTP-Drill: - This tool extracts threat action, and then converts it into STIX for-

mat from unstructured CTI reports.

IoCMiner: - It is a framework for extracting IoC from unstructured text from

Twitter.

Feature Smith: - It is a system to generates a feature set for detecting malware

on the Android platform.

SMOBI: - It is an improved bag of word models. It assigns weights to each entry

in the model. Then it finds words in the vocabulary with similar embedding based

on cosine similarity.

SIMVER: - It is a way of representing neural embedding. Use similar words, if a

word is available in the datasets, assign the current index in the matrix. It uses

the skip-gram model.

Q-11. Which security vendor and external sources are mostly used by the re-

searchers?

In this question security vendors and external sources used in this domain are

identified. It is important to know the reliable vendors and sources used by the

researchers. Symantec, fire-eye, crowd strike, and trend-micro are mostly used.

For extraction of threat actions from raw data twitter stream is mostly used.

3.3 IDS Literature Review

In this study [191], a classifier approach for NIDS by using a tree algorithm is

applied for detecting attacks. The author has proposed a combining tree classifier

approach for detecting network attacks. First implemented individual tree algo-

rithms (Random tree, C4.5, NB Tree) on NSL-KDD data to know the accuracy

of individual algorithms for detecting attacks. Then different algorithms are com-

bined to determine the accuracy.

In this study [192], the IDS framework is proposed. The NSL-KDD dataset is
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used as a benchmark. The wrapper approach was used for feature scaling. After

applying this technique, 16 feature sets were used to obtain results instead of the

actual 41 features.

In this study [193], ml techniques are used to detect security attacks. SVM is uti-

lized in this strategy to enhance the accuracy of attack detection. The NSL-KDD

dataset is employed. The 41-feature set is separated into three categories: basic,

content, and traffic.

The study [194] investigated the viability of merging fuzzy logic with machine

learning techniques to detect intrusions. The suggested architecture mined fuzzy

association rules using machine learning methods, extracting the best possible

rules using a genetic algorithm.

The author [195], presented a novel concept for attack detection. The proposed

study proved that if k-means clustering is applied, IDS accuracy improves in de-

tecting attacks. This model performs best when given multiple clusters that cor-

respond to the number of data types in the dataset. When the number of clusters

changes, the performance of K-means degrades.

In this study [196], it has been elaborated that entropy can detect abnormal net-

work behavior but with a high false rate. The SVM model can classify traffic as

normal or malicious by learning different features of the network. The goal of this

study is to overcome the shortcomings of entropy and SVM. So, the authors pro-

duced a hybrid solution for attack detection. The dataset used in this proposed

method is provided by MIT Lincoln Laboratory.

In this research work [197], authors have used k-means with a naive bayes algo-

rithm in IDS. This study shows that the k-means is not appropriate for anomaly

detection because in some cases (especially in passive and observatory attacks,

etc.) intrusion behavior is almost the same as normal. If the k-means algorithm is

used with naive bayes, the detection rate increases with low false alarms. Authors

have conducted experiments on the Kyoto 2006+ dataset.

In this study [198], a detailed review of anomaly-based detection in which single,

hybrid, and ensemble machine learning models are used to evaluate different data
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sets. This comparison shows that both models provide higher accuracy and detec-

tion rates.

This study [199], presented a hybrid system that uses two detection systems.

KDD-Cup dataset is used for the training of the system and about 30,000 files

from window XP are used to perform experiments.

Using the NSL-KDD dataset, these studies [200, 201] compared the performance

of two supervised machine learning models. Four ML algorithms are used to create

an ensemble model. Two data sets, UNSW NB-15 and UGR-16, random forest,

KNN, SVM, and logistic regression are applied on emulated and actual network

traffic.

In this study [202], to detect intrusion in a computer network four ML algorithms

are applied to the KDD Cup dataset to analyze performance. These algorithms

performed best on test datasets.

These papers [203–205] investigate ML/DLNN models for IDS. Various machine

learning algorithms are used and their performance is tested using KDD cup data

in terms of various performance metrics. Random forest performs well with overall

94% accuracy.

In this paper [206], a one-dimensional CNN-based deep learning method for cre-

ating an effective and flexible IDS is presented. Normal and abnormal network

traffic are classified and labeled for supervised learning in the 1D-CNN. Tested this

proposed model using the UNSW-NB15 IDS dataset to demonstrate the efficacy

of the approach.

This study [207] key contribution is the presentation of a HIDS that builds on the

well-known consolidated tree construction (CTC) technique to effectively handle

class-imbalanced data. At the pre-processing step, a supervised relative random

sampling (SRRS) technique was developed to get a balanced sample from a high-

class imbalanced dataset. In addition, an advanced multi-class feature reduction

approach was devised and built as a filter element to deliver the best standout

features from IDS datasets for effective intrusion detection.

This investigation [208] improves IDS detection mechanisms through two pro-

cesses: a DLNN model with new features for threat detection and a comprehensive
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solution that combines the DLNN model and PCA to increase security and per-

formance. According to analytical and software results, the suggested detection

system, which integrates DLNN, PCA, statistical, and knowledge-based method-

ologies, surpasses existing IDS.

In this paper, IMIDS [209] was proposed as an intelligent IDS to protect Internet

of Things (IoT) devices. The heart of IMIDS is a lightweight CNN model that

can classify a wide range of cyber threats.

This article proposes an attack data generator driven by a conditional generative

adversarial network to assist the problem of a shortage of training data. IMIDS

beats its competitors in the testing, detecting nine different types of cyber-attacks

with an average F1-measure of 97.22%.

This work [210] presented the Intrusion Tree (IntruD-Tree) machine-learning-based

model, which first considers the ranking of security elements according to their

value. This approach reduces computing complexity by reducing feature dimen-

sions, making it beneficial in terms of prediction accuracy for previously unseen

test scenarios. Finally, experiments were run on cyber-security datasets to test the

effectiveness of this model and the Precision, Recall, F1-score, and ROC values

were calculated. In table 3.4 results of various techniques are compared.

3.3.1 Critical Analysis

There are various research issues in accurate attack detection in IDS employing

ML techniques. Some of the most common obstacles that researchers face in this

field are as follows.

Many ML models necessitate a significant amount of computational power, which

can be a barrier to real-time processing in large-scale network setups. A significant

difficulty is developing efficient real-time algorithms. It is a constant challenge to

strike a balance between properly detecting anomalies (attacks) and minimizing

false positives. A high percentage of false positives might cause alert fatigue and

a loss of faith in the IDS. It is critical to create ML models that can scale with

the increasing number and complexity of network data.
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Table 3.4: Comparison of Different Techniques.

Author/Year Dataset Technique Results (%)

A. Alzahrani et al.
/2021

NSL-KDD XGBoost Precision 92
Recall 89
F1-Measure 90

V. Pai et al. /2021 NSL-KDD RF Accuracy 91
Precision 92
Recall 90
F1-Measure 92

A. Halimaa et al.
/2019

NSL-KDD SVM Accuracy 93

K. Abu et al/2019 CICIDS-2018 ANN Accuracy 91

M. Fawareh et al.
2022

CICIDS-2018 DLNN-PCA Accuracy 96

J. Kim et. al. /
2019

CICIDS-2018 CNN Accuracy 95

V. Kanimozhi et al.
/2019

CICIDS-2018 ANN, RF, KNN,
SVM, Ada-boost

Accuracy 96
Precision 90
Recall 95
F1- Score 90

The problem is to create models that remain successful as the volume of data

grows. Some ML models’ lack of interoperability makes it difficult for security

analysts to comprehend why a given choice was taken. Building trust in the sys-

tem requires development of interoperable models. There are resource limits in

many network scenarios, particularly in IoT or edge computing. It is difficult to

create lightweight ML models that can function efficiently in resource-constrained

contexts. It is difficult to ensure that ML models can adapt to changes in network

behavior over time. Continuous learning techniques that allow models to update

themselves without having to retrain from scratch should be investigated further.

Researchers are actively working to address these issues to improve the perfor-

mance of ML-based intrusion detection systems in dynamic and complex network

environments.
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Many machine learning models, particularly complicated ones DLNN, lack inter-

operability, making it difficult to grasp the reasoning behind their judgments. This

is a challenge for security analysts, who may find it difficult to comprehend and

trust the data.

The quality of training data is critical for machine learning models. Inaccurate

models might result if the training dataset is biased or incomplete. Preprocessing

issues like coping with imbalanced datasets and noisy data, might have an im-

pact on the performance of ML-based IDS. Adversarial attacks, in which attackers

modify input data to mislead the system, can make ML models vulnerable. Ad-

versarial assaults, if not addressed properly, might undermine the effectiveness of

ML-based IDS.

In conclusion, while ML-based IDS has shown significant promise in terms of

improving the accuracy and adaptability of attack detection, addressing issues

(interoperability, data quality, adversarial attacks, and resource requirements) is

critical for their widespread and effective deployment in real-world scenarios. On-

going research efforts are aimed at overcoming these obstacles and boosting the

capabilities of ML-based intrusion detection systems.

Imbalanced datasets are a major issue in this domain. When compared to normal

behavior, a small number of real attacks can lead to an imbalanced dataset. This

has an impact on the ML model’s capacity to generalize well to real-world circum-

stances. New attacks are emerging very rapidly. Cyber-attacks are continually

developing, and new attack methods appear regularly. ML models must adjust

to these changes and learn from new patterns, making maintaining high accuracy

difficult.

Attackers may purposefully modify training data to deceive ML models. The focus

of research should be on constructing robust models that are resistant to adver-

sarial attacks. It is critical to identify significant traits for assault detection. It is

difficult to choose and extract features that represent the essence of both regular

and malicious behavior, especially in complicated and high-dimensional data.

A critical analysis of studies for attack detection in IDS utilizing ML approaches

includes assessing the literature’s strengths, limitations, and contributions.
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ML approaches have shown great Accuracy in identifying numerous sorts of as-

saults, both known and unknown. They can process enormous amounts of data

efficiently, making them suited for real-time detection in dynamic network con-

texts. ML models can adapt to changing attack patterns, providing a level of

flexibility that classic rule-based intrusion detection systems may lack. They learn

and update their expertise over time, allowing them to detect emerging risks more

effectively. ML is skilled at identifying relevant aspects from raw data, allowing

for the detection of minor patterns indicative of assaults. Feature extraction can

improve detection Accuracy while decreasing false positives.



Chapter 4

Research Methodology

4.1 Introduction

It is critical to take into account the possible exploitation in a variety of scenarios

when discussing cyber attack attribution. Tools are utilized appropriately and do

not contribute to unjustified breaches of privacy or misuse of sensitive information

would be among the ethical considerations. It is ensured that the use of behav-

ioral data in CTA attribution is both beneficial and respects people’s privacy and

rights. It is crucial to address ethical issues. The requirement for cyber-security

precautions and the defense of core ethical ideals must be balanced. People should

be made aware of the gathering of their behavioral data and be allowed to expres-

sively consent to its use in cyber-security measures. To safeguard behavioral data

against unauthorized access, breaches, or cyber-attacks that can jeopardize peo-

ple’s privacy. Strict security measures must also be in place.

This dissertation methodology consists of the following phases.

i. Technical feature attribution

ii. Behavioral feature attribution

iii. Hybrid feature attribution

iv. Optimal feature selection

v. Attack detection in IDS

66
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4.2 Technical Feature Attribution

The extraction of technical features consists of three phases, i.e., data collection,

feature extraction and threat attribution. To attribute CTA a framework is pro-

posed.

4.2.1 Proposed Framework for Technical Features

Figure 4.1 illustrates the proposed framework. It consists of three stages. Data is

collected in the first phase in the form of unstructured CTI reports. Data is stored

in the CTI corpus manager. The feature analysis or extraction phase comes next.

Text pre-processing like removal of stop words, punctuation, special characters,

tokenization, and lemmatization is performed in this phase to clean the text. The

Nltk package is used to remove stop words.

The feature extraction engine phase comes next. During this step, features are

extracted from text using the novel embedding model attack2vec, which has been

trained on domain-specific embedding. The vocabulary size of the model is ap-

proximately two million. Then these extracted features are saved in an index

archive. Using cosine similarity, these derived features are compared to bench-

mark framework like MITRE ATT&CK.

Following feature validation, the CTA attribution phase is initiated, during which

the CTA is identified using various classification approaches like decision tree, ran-

dom forest, and support vector machine. The purpose of CTA attribution is to

identify the actual attacker who has carried out the attack.

4.2.2 Data Flow for Technical Features

Figure 4.2 depicts a data flow diagram. CTI reports are used as input in this flow.

The text is then cleaned using text pre-processing techniques such as the removal



Research Methodology 68

Figure 4.1: Proposed Framework (For Technical Features).

of stop words, punctuation, and lemmatization. Then, using the innovative embed-

ding model attack2vec, features are retrieved. Following feature extraction, these

are evaluated against benchmark frameworks e.g., MITRE ATT&CK, CAPEC,

APT group, and operations using cosine similarity. If a feature matches one of

the benchmark frameworks, it is included in the corpus; otherwise, the feature

is rejected and the search for the next word begins. The next step after feature

validation is CTA attribution. Classification is carried out to identify the perpe-

trators of incident. Data for the classification algorithm is separated into training

and testing. Following that, CTA attribution is carried out.

4.2.3 Phases for Extraction of Technical Features

It consists of following phases.

4.2.3.1 Data Collection

The goal of this phase is to collect unstructured CTI reports from various sources.

Data was gathered from studies released by the research community, security firms,
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Figure 4.2: Data Flow Diagram for technical Features.

and a Google programmable search engine. The number of datasets available

in this domain is limited. So, the goal of this phase is to collect datasets to

conduct experiments. So, in this phase around 27,000 CTI reports are collected

for experimentation having twelve cyber-threat actors.

4.2.3.2 Feature Extraction

Feature extraction refers to the process of discovering and selecting important

and meaningful traits or attributes from raw data to aid in the identification and

analysis of potential cyber threats. It is a critical phase in the development of

models for threat detection, classification, and prediction. The feature extraction

procedure is divided into three parts. The first stage is text pre-processing, often

known as text cleaning.

The second step is feature extraction which involves training an embedding model

known as attack2vec. It is trained on domain-specific embedding. The third step

is semantic mapping, which uses cosine similarity to detect similarities between
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distinct documents. This stage validates extracted features against benchmark

frameworks. The extraction of features is an important step in the process since

the quality of features has a direct impact on the effectiveness of threat detection

and mitigation.

4.2.3.3 Text Pre-processing

Text pre-processing is an important stage in NLP that entails converting raw text

input into a more usable and analyzable format for ML and other NLP activities.

Its goal is to clean, standardize, and organize text data to improve its quality and

prepare it for future analysis. Processes like converting text to lowercase, removal

of stop words, punctuation, special characters, tokenization, and lemmatization

have been performed. These words may affect the performance of the model, so it

is necessary to remove common words and clean the text.

In order to extract valuable features, this study used a variety of NLP approaches

to preprocess and clean unstructured text data from CTI reports. Every stage of

the text-cleaning procedure is selected with care to strengthen the models capacity

to accurately ascribe CTA based on textual patterns and to improve the quality

of data. Preprocessing began with the removal of stop words. Words like ”and,”

”the,” ”is,” and ”it,” which are often used in the English language, have little

semantic significance by themselves but can introduce extraneous noise into text

data. We make sure that the analysis concentrates on more important phrases

that are pertinent to the circumstances surrounding the threat actor’s activities

or motivations by removing these words.

Punctuation and special characters, which frequently occur in unstructured text

but offer no helpful information for threat attribution, were then eliminated. Be-

cause different reports may employ different punctuation styles, this process also

standardizes the text data. To maintain consistency, special characters like hash-

tags, asterisks, and other symbols were removed from the text, which made it

simpler to use feature extraction techniques efficiently. After that, the text was

changed to lowercase, which is a crucial step in preserving uniformity throughout
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the dataset. We avoid unnecessary feature representation by decreasing the case

of each phrase, ensuring that capitalization variants (such as ”Malware” vs. ”mal-

ware”) are recognized as equivalent terms. In text classification tasks, this step

is especially crucial because it minimizes the vocabulary size and stops the model

from treating different capitalization as distinct entities.

The next step was tokenization, which included dividing the text into discrete

words or tokens. Since each token represents a sentence meaning unit, tokeniza-

tion serves as the basis for additional text processing. We employed word-level

tokenization in this study to record particular phrases related to threat actors,

instruments, strategies, and tactics. In order to facilitate the analysis of technical

jargon and abbreviations commonly seen in CTI reports, tokenization parameters

were specified to ignore non-alphanumeric characters and to guarantee consistency

in the breakdown of difficult phrases.

Lastly, each word was reduced to its root or base form via lemmatization. A

linguistic technique called lemmatization takes into account each word’s context

and returns inflected forms (such as ”running,” ”ran,” and ”runs”) to their base

form (”run”). Lemmatization is more accurate and context-aware than stemming,

which only eliminates suffixes and could produce erroneous word forms. This

makes it perfect for extracting consistent and coherent features. Lemmatization

enhanced the quality of the dataset in this study by lowering word variations,

which helps create a model that more accurately detects patterns.

To customize the cleaning procedure for CTI data, each of these preprocessing pro-

cesses was carried out with particular parameter settings. When combined, these

NLP techniques enhance the text data quality and relevance, making it possible

to extract technical and behavioral aspects more precisely. This, in turn, improves

the attribution model’s ability to recognize and distinguish between CTA.

Each of these processes tries to improve text data quality and consistency, mak-

ing it more suited for analysis and modeling. Text pre-processing is not always

a one-size-fits-all procedure; the stages required might be tailored to the task at

hand and the nature of text input. For the removal of stop words NLTK library

is used in Python. The process of text pre-processing is shown in figure 4.3.
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Figure 4.3: Text Pre-processing.

4.2.3.4 Attack2vec Embedding Model

Following text cleaning, the next objective is to extract features from unstruc-

tured CTI reports. For this, a unique embedding model known as ”attack2vec”

was created. It is based on the cutting-edge word2vec model. General embedding

models do not yield satisfactory results in domain-specific environments such as

cyber-security. A model trained on domain-specific embedding is required. Be-

cause the word2vec model is trained on Wikipedia pages, it does not perform well

in domain-specific domains. Attack2vec is trained on domain-specific embedding

to circumvent this constraint.

Datasets from cyber-security fields are collected for training the attack2vec model

on domain-specific embedding. The model has a vocabulary of two million words.

The datasets used for training is shown below.

a. 20,630 CTI reports [119]

b. 18,257 CTI reports [138]

c. 17,000 CTI reports [128]
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e. Malware Samples [142, 143, 146, 185]

The Attack2vec model is made up of three layers: input, hidden, and output.

Weights have been assigned. It is illustrated below. The model input to the neu-

ral network is displayed in figure 4.4.

Attack2vec Algorithm

Input

F - CTI corpus

WF - Word corpus, set of words in the corpus

WD - Word corpus after text pre-processing

Wu – Unique words vocabulary

Output

V: Vector representation

Initialize WF of size |max | with words from text files F

x:= 0

WD ← NLTK (WF [max])

For i: = 0 to |max| do

temp: = WD [i]

If temp: = € S

S [x] := temp

x: = x +1

i ← i+1

V ← S

The technical features extracted in this phase as shown in table 4.1 are TTP,

tools, malware, target country, organization, and application.

4.2.3.5 Semantic Mapping

In this step, extracted features are validated against benchmark frameworks like

MITRE ATT&CK, global industry standards, and alternative country and appli-

cation names from Wikipedia. The extracted feature is tested against framework

benchmarks. If it is validated, it is included in the corpus. TTP and malware are

validated from the MITRE framework. The feature target industry is compared
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Figure 4.4: Attack2vec Neural Network.

to sp-global [211], country names are compared to Wikipedia alternative country

names [212], and software is compared to Wikipedia list of software’s [213]. Cosine

similarity is used to validate the feature set against the corpus. Figure 4.5 depicts

the procedure.

A customized semantic mapping for identifying CTA based on unstructured CTI

reports is developed in this research work. The mapping for features like TTP,

tools and malware exists but features like target country/organization/ application

for which mapping does not exists. Existing mappings frequently fail to capture

the contextual variances found in data, which are critical for reliable threat attri-

bution.

Furthermore, the continually changing cyber threat landscape demands an adap-

tive solution, as domain-specific mappings may not be updated frequently. This

proprietary mapping improves the accuracy of attribution method, resulting in

a more exact alignment with the dataset. This personalized approach not only
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Table 4.1: Features Extracted.

Sr. # Features Remarks

1. CTA Class

2. TTP High level IoC

3. Malware High level IoC

4. Tools High level IoC

5. Target organization -

6. Target country -

7. Target application -

addresses the limits of existing mappings, but it also contributes to the field by

introducing a new method that can be used in future study with similar unstruc-

tured datasets.

Figure 4.5: Semantic Mapping of Various Features.
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4.3 Cyber-Threat Attribution

In this step various ML/Deep learning models are used. These are described below.

Decision Tree It is one of the simplest classification algorithms. It is well

suited for categorical types of datasets. It is a supervised ml algorithm that is

used to solve classification and regression problems. In it a tree is made which has

two types of nodes; one is a root node and the other is a leaf node. Prediction

starts from the root node. A major challenge in this algorithm is the selection

of the root node. Different algorithms such as ID3, CHAID, C4.5, CART, and

MAR can be used in it depending on the classification problem. The logic of this

algorithm is easy, so it is easy to understand.

It starts from the root node and goes down to the leaf node for the selection of

an attribute. Information gain and the Gini index are used for feature selection.

It requires less data cleaning, and it helps in identifying all possible outcomes.

Entropy and information gain are important factors in deciding the appropriate

attribute to split the dataset at each node. The primary functions of entropy and

information gain in decision trees are as follows.

Entropy measures impurity or disorder in a dataset. It quantifies randomness in

the data class distribution. A dataset with low entropy is pure (all data points

belong to the same class), whereas a dataset with high entropy is impure. The

formula is defined as:

Entropy(S) = −
c∑

i=1

pi log2(pi)

Information gain is utilized to determine which attribute to split on at each node

of the decision tree. It calculates the amount of information acquired from splitting

the dataset depending on a specific attribute. The splitting criterion is set based

on which property maximizes information gain when split. The formula is defined
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as:

Information Gain(S,A) = Entropy(S)−
∑

v∈values(A)

|Sv|
|S|
× Entropy(Sv)

Random Forest A popular ensemble learning technique for classification and

regression applications is random forest. Building a sizable collection of decision

trees, each trained on a different portion of the dataset, is how it works. Based

on a distinct sampling of the data (a technique called bootstrap sampling) and a

random subset of the attributes taken into account at each split within the tree,

each tree in this ensemble provides an individual forecast. Each tree is distinct due

to this unpredictability at the data and feature levels, which lowers the possibility

of over fitting and increases the model’s overall accuracy by lowering correlation

between the trees.

Each tree ”votes” on the anticipated class in the classification setting, and the

Random Forest uses the majority vote to determine the final prediction. The final

result for regression tasks is calculated by averaging the predictions made by each

tree. Random Forest measures the ”purity” of nodes in classification tasks using

entropy or gini impurity to construct each decision tree. For example, entropy

measures the degree of disorder in a node, whereas gini impurity determines the

probability that a sample would be incorrectly classified if it were randomly allo-

cated a class based on the distribution in that node. The formula for gini impurity

is defined as:

Gini = 1−
C∑
i=1

p2i

Mean squared error, which calculates the deviation between forecasts and actual

values within each node, is frequently used for regression tasks with the goal of

minimizing this error through split creation. The formula is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2
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prediction using Random Forest majority voting formula:

ŷ = argmaxc

(
K∑
k=1

I(ŷk = c)

)

This model has a number of advantages. Random Forest is more robust than single

decision trees because it lowers the chance of over fitting by averaging predictions

over several trees. In order to determine which features are most important for the

model, Random Forest can also rank features according to how much they lower

impurity across all trees. Despite its versatility and resilience, Random Forest can

be computationally demanding, particularly when dealing with high-dimensional

datasets or a large number of trees. Additionally, because of the complexity of

having numerous trees, Random Forest is usually less interpretable than single

decision trees.

Support Vector Machine It is a supervised machine learning technique that

is mainly employed for classification tasks. Finding a hyperplane in a high-

dimensional space that optimally divides the data into classes while maximizing

the margin—the distance between the nearest data points from each class and

the hyperplane—is the fundamental concept of support vector machines (SVM).

These nearest points, referred to as ”support vectors,” are the most important

informational points for identifying the best decision boundary. By addressing an

optimization problem in which the objective is to maximize the margin while de-

creasing classification mistakes, the SVM method aims to create this hyperplane.

In SVM, prediction aggregation is the process of integrating the separate predic-

tions of several support vectors to get a final prediction for a new data point. Find-

ing the optimum hyperplane (also known as a decision border) to divide classes

in a feature space is how it method operates. This hyperplane is defined in large

part by each support vector, which is a data point that is closest to the decision

border. The formula is defined as:

f(x) = sign

(
l∑

i=1

αiyiK(x, xi) + b

)
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Nonetheless, a number of techniques can be used to expand SVMs to manage more

than two classes in multi-class classification tasks. The One-vs-One (OvO) and

One-vs-Rest (OvR) techniques are the most widely used strategies. A distinct

binary SVM is trained for every class in the One-vs-Rest (OvR) technique, and

each classifier separates one class from every other class. For each pair of classes in

the One-vs-One (OvO) approach, a binary SVM is learned. Both approaches are

predicated on the core ideas of support vector machines (SVM), which determine

the decision boundary by optimizing the margin between classes and base the fi-

nal prediction for a new data point on the sum of the output from each classifier.

To ensure that each classifier adequately separates the classes, multi-class SVM

extends the kernel function and decision boundaries to accommodate the many

classes. OvO can occasionally provide better classification performance, particu-

larly in situations with clearly defined decision boundaries, even if OvR is typically

simpler and more effective in terms of the number of classifiers.

Long Short-Term Memory (LSTM) It is an RNN architecture designed to

overcome typical constraints in capturing and learning long-term dependencies in

sequential input. It is particularly effective in jobs involving time series data, NLP,

speech recognition, and other similar tasks. LSTM is frequently implemented in

practical applications using deep learning frameworks such as tensor-flow, Keras,

Pytorch, and others, where developers and researchers can easily build, train, and

deploy LSTM models for a variety of purposes such as time series prediction,

language translation, sentiment analysis, and more. The LSTM gate equations

are:

it = σ(Wiixt + bii + Whiht−1 + bhi)

ft = σ(Wifxt + bif + Whfht−1 + bhf )

gt = tanh(Wigxt + big + Whght−1 + bhg)

ot = σ(Wioxt + bio + Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(4.1)



Research Methodology 80

This code represents the equations for input gate ( it), forget gate (ft), cell state

(ct), and output gate (ot) of an LSTM cell. In these equations, ht represents the

hidden state at time step t, ct represents the cell state at time step t, xt represents

the input at time step t, Wf ,Wi,Wg,Wo are weight matrices for the forget gate,

input gate, input modulation gate, and output gate respectively, and bf , bi, bg, bo

are bias vectors for the corresponding gates.

For multi-class classification applications involving sequential data, including text,

audio, or time-series analysis, they are ideally suited. This model updates its inter-

nal memory and hidden states at each time point as it processes input sequences in

a multi-class classification problem. The input, forget, and output gates and mem-

ory cells that make up the architecture enable it to efficiently retain or discard

data over time and capture long-term dependencies. A fully connected (dense)

layer is applied to the model’s final hidden state after the entire sequence has been

processed, yielding a set of raw output scores. The softmax activation function

is then used to normalize these scores, turning them into summable probabilities,

each of which represents the likelihood that the input sequence falls into a partic-

ular class. The class with the highest probability is chosen as the final prediction.

Even in applications with lengthy sequences or complicated dependencies,they can

accurately classify data because of their exceptional ability to handle complex tem-

poral patterns. The softmax function is shown by the equation

P (y = k | x) =
ezk∑K
j=1 e

zj

This model have a number of benefits, especially when managing sequential data.

They successfully overcome the vanishing gradient issue that plagues conventional

RNN and capture long-term interdependence. This makes them perfect for tasks

like speech recognition, natural language processing, and time-series forecasting

that call for the learning of intricate temporal patterns. They can adjust to data

with complex, dynamic relationships and are resilient to different sequence lengths.

They are also very adaptable and accurate for sequential and multi-class classi-

fication issues because of their capacity to selectively store, forget, and output

information utilizing memory cells, which improves their performance in tasks
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requiring long- and short-term dependencies.

4.3.0.1 Cyber-Threat Attribution

The next step is cyber-threat attribution, which involves determining who is re-

sponsible for a cyber-attack. The use of machine learning in cyber-threat attribu-

tion has grown in recent years. It is becoming increasingly significant and is also

a pressing requirement. Accurate defense strategies are required to safeguard or-

ganizations from future attacks. It is required to diversify a method that detects

attacks with more Precision to make an informed decision on attack detection,

Despite significant efforts by researchers, cyber-threat attribution continues to en-

counter hurdles in improving detection accuracy, necessitating the development of

methodologies to better characterize attribution. Many researchers used ML tech-

niques to evaluate their performance. Single, hybrid, and ensemble ml algorithms

are used. They will aid in precise prediction. The dataset created in the previous

phase is used for attribution in this phase.

The notions of testing and training datasets are fundamental to the process of

developing and evaluating predictive models in ml. Typically, the dataset is sep-

arated into two subsets: the training and testing dataset. The training dataset is

a subset of the whole dataset used to train the ML model. It uses this dataset

to learn the patterns, relationships, and characteristics in the data. To create

predictions or classifications, the model modifies its parameters and learns from

the training data. The testing dataset is a subset of the whole that is not used

during training. After training the dataset, the model is evaluated on the testing

to determine its performance and generalization capabilities. The testing dataset

assists in estimating how well the model will perform on new, previously unseen

data. The separation of the dataset into training and testing sets is critical for

appropriately evaluating the performance of the model.

In practice, a third subset known as the validation dataset is also frequently uti-

lized. Various ML algorithms are used during this step. Because there are more

than two classes, this is a multi-class classification problem. The number of CTAs

in this investigation is twelve. The proposed study employs the categorization
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techniques decision tree, random forest, and SVM. These algorithms were chosen

because they perform well on textual data.

4.4 Behavioral Feature Attribution

Behavioral feature extraction methodology in cyber-threat attribution is a critical

procedure that involves identifying and characterizing the behavioral patterns and

properties of cyber threats. This methodology seeks to analyze and extract essen-

tial behavioral characteristics from various cyber-attacks, allowing cyber-security

specialists to attribute these attacks to specific threat actors, groups, or entities.

Organizations may strengthen their threat-intelligence skills and overall security

posture by understanding the distinct behavioral traits associated with different

cyber threats. The proposed methodology consists of the three steps listed be-

low. The phase of data collection comes first. During this stage, data is obtained.

The second level is feature analysis. This step extracts features after doing the

necessary text pre-processing. The third stage is threat attribution.

4.4.1 Proposed Framework for Behavioral Features

The framework is depicted in figure 4.6. The initial stage of data pre-processing is

the collection of a dataset for experimentation. Stop words and special characters

are removed using NLP approaches at this level. Following that, the text is cleaned

up using methods such as lowercase conversion, tokenization, and lemmatization.

The next step is the feature analysis phase. Word embedding models such as

CBOW and skip-gram are used at this level.

For feature extraction, a novel embedding approach based on domain-specific data

named attack2vec [190] is used. The data is separated into training and testing

data in the third stage, CTA attribution. The data used for training and testing

is divided in an 80:20 ratio.



Research Methodology 83

Figure 4.6: Proposed Framework for Behavioral Features.

4.4.2 Data Flow for Behavioral Features

A data flow diagram for the proposed methodology is shown in figure 4.7. The

dataset used as input in this flow diagram is the threat actor encyclopedia. Text

pre-processing is the next step. Following this stage, data is gathered to extract

behavioral features. The classification step, which follows the extraction of behav-

ioral data, involves a range of machine/deep learning approaches.

4.4.3 Phases for Extraction of Behavioral Features

4.4.3.1 Data Gathering

The initial stage is to gather essential data on the cyber-attacks under investi-

gation. This data may comprise network traffic logs, system event logs, malware
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Figure 4.7: Flow Diagram for Behavioral Features.

samples, attack patterns, and any other relevant information that can provide in-

sights into how cyber threats behave. For technical considerations, datasets in the

form of unorganized CTI reports are accessible for information extraction. The

availability of datasets remains a challenge in this domain for extracting behav-

ioral features. So yet, the research has not examined their impact. Because attack

methods are always evolving, it is critical to identify cyber threat actors based on

behavioral characteristics. Incorporating these traits into this domain will aid in

locating the context of threat actors.

In this regard, the threat-actor encyclopedia is a dataset provided by Thai Cert

in 2019. This dataset investigates the attacker’s behavioral traits. This data

collection indicates the attacker’s intentions and reasons behind an attack.

4.4.3.2 Text Pre-processing

After collecting the data, it must be pre-processed to remove any noise or useless

information. This stage entails cleaning, normalization, and transformation of

data to ensure that it is in a format appropriate for future analysis. In this phase,

the text was cleaned using several NLP methods, as shown in figure 4.8 (removal

of stop words, punctuation, and lemmatization). The text is first changed to
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lowercase. The text is stripped of stop words, punctuation, and special characters.

Tokenization is then carried out. Finally, the text is trimmed using lemmatization.

Figure 4.8: Text Pre-processing.

4.4.3.3 Feature Analytic

In the context of data analysis and ML, feature analysis refers to the process of

studying and comprehending the significance and influence of numerous character-

istics or variables inside a dataset. The measurable aspects of data that are used

as inputs for an ML model to create predictions or classifications are referred to as

features. Feature analytics entails investigating the correlations and patterns that

exist between these features to obtain insight into their individual significance and

collective influence on the model’s prediction performance. The second phase is

the extraction of features from the dataset.

Data scientists and analysts can use feature analysis to improve the performance

of machine learning models, improve predicted accuracy, minimize computational

costs, and obtain a better understanding of the underlying data patterns. This
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method is vital for developing robust and efficient models, particularly in compli-

cated real-world applications where feature quality and relevance are critical to

the model’s predictive accuracy and generalization capabilities.

4.4.3.4 Feature Extraction

The collected data is then subjected to feature extraction algorithms to gain useful

insights and identify significant behavioral patterns linked with cyber threats. This

may entail extracting relevant behavioral features from a dataset using statistical

analysis, ML algorithms, or other data mining techniques. The data set’s features

are extracted at this stage. For this, the innovative embedding model ”attack2vec”

is used. This model was created by combining domain-specific embedding and

cyber-threat intelligence. Model performance is determined using models such as

skip-gram and CBOW. They are the most commonly used in the literature and

are regarded as the best in this discipline. In the proposed work, these two models

are evaluated using a variety of classifiers, including decision trees, random forests,

support vector machines, and the deep learning classifier long short-term memory

(LSTM).

4.4.3.5 Vector Conversion

Converting text into vectors is a fundamental process in NLP that allows machines

to understand and process textual data. The choice of vectorization technique

depends on the task at hand and the nature of text data being processed. Vector

embedding is one of the most exciting methods. Many NLP recommendations

and search algorithms rely on them. Vector embedding is a critical component of

NLP.

These models may efficiently handle and analyze textual data for diverse tasks

such as querying, classification, and sentiment analysis by representing words or

phrases as high-dimensional mathematical vectors. While the concept of vectors

applies to many disciplines, it is critical to recognize that mathematical vectors are
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not constrained by the dimensions of the physical world. In this phase, text data

is converted into vectors for effective utilization of machine learning algorithms.

4.4.3.6 Threat Attribution

The goal of this step is to identify the cyber-threat actor attack patterns. Dur-

ing this stage, the dataset is mined for behavioral elements. This phase employs

a variety of ML and deep learning algorithms, including decision trees, random

forests, and LSTM. The usage of decision trees allows for the creation of subset

characteristics at various phases of development.

Furthermore, data scaling and normalization are not required. A supervised ma-

chine learning classifier known as the random forest is made up of several decision

trees. It generates a smaller data collection, which improves classification accu-

racy.

The bagging model enhances the classifier’s performance. It outperforms decision

trees in most instances. Even when there are missing values in the data collection,

the findings are still satisfactory. Even without hyper-parameter adjustment, it

can yield good results. It also overcomes the problem of over fitting in decision

trees.

LSTM, a deep-learning recurrent neural network, is used for text classification.

LSTM surpasses recurrent neural networks in terms of performance because it

overcomes the issue of long-term dependency. The LSTM architecture employed

in this study is depicted in figure 4.9.

It is made up of three layers: the input layer, the concealed layer, and the output

layer. Threat attribution employs both behavioral and hybrid aspects.

Table 4.2 displays the extracted features. Motivation, first observed, operations

executed, sponsor by, origin nation, outcome, and attacker skill are the behavioral

features derived from the dataset.
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Figure 4.9: LSTM Architecture for Attack Attribution.

Table 4.2: Behavioral Features in Attack Attribution.

Sr. # Features used

1. Motivation

2. First seen

3. Operations performed

4. Sponsor by

5. Origin country

6. Outcome

7. Attacker skill

4.5 Hybrid Feature Attribution

To obtain overall knowledge of feature relevance, hybrid attribution may involve

combining and exploiting the capabilities of these distinct methodologies. The

combined effect of hybrid features is evaluated to analyze the impact on attribu-

tion process.

To determine the influence, hybrid features are merged in this stage. These hy-

brid traits employed are shown in table 4.3. The proposed framework for hybrid
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Table 4.3: Hybrid Features.

Sr. # Features

1. TTP

2. Malware

3. Tools

4. Target organization

5. Target country

6. Target application

7. Motivation

8. First seen

9. Operations performed

10. Sponsor by

11. Origin country

12. Outcome

13. Attacker skill

features is shown in figure 4.10.

Figure 4.10: Proposed Framework for Hybrid Features.
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4.6 Optimal Feature Selection

There is a need to select optimal features for cyber-threat actor attribution because

not all of hybrid features do not carry the same level of relevance or predictive

power for identifying specific threat actors. Not every feature in the 13-set will

contribute equally to distinguishing between different threat actors, and some may

be redundant or less relevant to the specific patterns of behavior associated with

an attacker. By selecting optimal features, the model focuses on those that pro-

vide the highest relevance. By utilizing the most important variables—which are

essential for differentiating between threat actors this feature selection process im-

proves the models performance and makes it easier to understand. As a result,

choosing the best features contributes to increasing the precision and effectiveness

of cyber-threat attribution, making it a more trustworthy method of locating at-

tackers in intricate, real-world situations.

The process of selecting a subset of relevant features or variables from a broader

collection of available features in a dataset is referred to as feature selection

methodology. The goal is to discover and maintain the most critical and use-

ful properties while removing irrelevant, redundant, or noisy. This is a technique

that is extensively used in machine learning and data analysis to improve model

performance, reduce over-fitting, and increase computing efficiency. To begin, un-

derstand the problem domain and the facts at hand. Determine the goal of feature

selection—whether it is to reduce dimensionality, improve model accuracy, or sim-

plify model interpretation. The proposed framework for optimal features is shown

in figure 4.11.

4.6.1 Need of Feature Selection

Choosing the best features for ml and data analysis is crucial. It entails select-

ing the most relevant features from a dataset while rejecting unnecessary, redun-

dant, or noisy ones. This procedure is critical for increasing model performance,

decreasing over-fitting, and improving model interoperability. Feature selection
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Figure 4.11: Proposed Framework for Optimal Features.

techniques are crucial in machine learning and data analysis for several reasons.

Unnecessary or duplicated information is avoided by picking the most relevant

features. Avoiding over-fitting and enhancing generalization to new data, can lead

to more accurate and efficient models. This is especially useful for large datasets

or sophisticated models.

4.6.2 Process of Feature Selection

Understanding the major factors that influence the models predictions is aided

by feature selection. It simplifies the model by emphasizing the most critical as-

pects, making it easier to explain and interpret. Models that are smaller and more

streamlined are easier to deploy, maintain, and update particularly in real-time

or resource-constrained contexts. In high-dimensional datasets, feature selection

aids in mitigating the curse of dimensionality by enhancing model performance

and lowering the chance of errors or inefficiencies. Feature selection can direct

these efforts by emphasizing the most important attributes; hence reducing time

and effort in the feature generation process. These advantages add up to more

efficient, accurate, and interoperable machine learning models, making feature se-

lection techniques an essential part of data preparation and model construction in
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a variety of areas.

The purpose is to find the optimal feature set for attribution. Hybrid features are

used in this technique to select the best one for threat attribution. Among various

feature selection procedures are filter-based, wrapper-based, embedding methods,

and hybrid approaches. Filter-based procedures include the chi-square test, the

Fisher score, the correlation coefficient, the variance threshold, and the mean ab-

solute difference. Wrappers are used to implement forward, backward, exhaustive,

and recursive feature selection algorithms. LASSO and random forest regulariza-

tion are examples of embedded approaches. Each methodology has advantages

and disadvantages, and the approach chosen typically depends on the nature of

the problem, the dataset, and the machine learning algorithm utilized. To develop

an efficient and accurate model, a compromise between lowering dimensionality

and maintaining significant information must be struck.

4.6.3 Genetic Algorithm

The genetic algorithm is also employed as a feature selection tool at this level. Ge-

netic algorithms excel at optimizing complicated landscapes with many variables,

particularly when standard methods fail because of the large search space. They

are particularly effective in high-dimensional and non-linear optimization issues.

It excels at optimizing complicated landscapes with many variables, particularly

when standard methods fail due to the large search space. They are particularly

effective in high-dimensional and non-linear optimization issues. When compared

to other techniques, it is comparatively easy to implement and understand.

It includes basic genetics-inspired procedures like selection, crossover, and muta-

tion, making them easy to install and experiment with. The process of the genetic

algorithm is depicted in figure 4.12. In this study, feature selection for cyber-

threat attribution was optimized using a genetic algorithm (GA). Classification

accuracy was used as the fitness function to evaluate the performance of each of

the initialized 30 candidate feature subsets in the population.To increase attribu-

tion accuracy, the GA iteratively refined these subgroups over a 20-generation.
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The idea of crossover is adaptable and has uses in a variety of industries. It

describes how chromosomes exchange genetic material during meiosis, which con-

tributes to genetic variety in progeny, in the field of genetics. With a crossover rate

of 0.8, 80% of the population experienced crossover, allowing features from differ-

ent subgroups to recombine and produce new candidates. Furthermore, controlled

randomness was provided with a mutation rate of 0.05, preserving population di-

versity and avoiding convergence on less-than-ideal solutions.

The model’s capacity to correctly categorize cyber-threat actors was improved by

the extraction of a hybrid collection of attributes made possible by this method.

In this phase, the genetic algorithm is used to pick features. It outperforms other

approaches to feature selection. One advantage is that it works better and gives

higher-quality results with larger data sets.

After applying feature selection techniques to a total of 13 features (TTP, tools,

malware, target country, target organization, application, motivation, first seen,

operations performed, sponsor by and origin country), seven features TTP, tools,

malware, motivation, sponsor by, outcome and attacker skill are chosen. These

are regarded as the most appropriate and optimum characteristics for cyber-threat

attribution. The generation view is shown in figure 4.13.

4.7 Attack Detection in IDS

To successfully identify and respond to potential threats or assaults in a network,

an IDS employs a combination of tactics, strategies, and technologies. Define the

sorts of threats to be detected, as well as the scope and criteria for evaluating the

IDS performance. Use cyber-threat intelligence insights to improve IDS signatures.

These are patterns or specific IoC used to detect known threats. Mapping threat

intelligence data to IDS signatures allows to construct more precise and tailored

detection rules. Integrate behavioral analysis techniques into IDS to detect aber-

rant behavior that could indicate a cyber-attack. Cyber-threat information can

help us determine what constitutes aberrant behavior based on recognized threat
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Figure 4.12: Genetic Algorithm Process of Feature Selection.

Figure 4.13: Generation View of Optimized Feature Selection.

actors’ TTP. Unstructured CTI reports provide useful information on emerging

threats, attack patterns, and adversary behaviors. While unstructured data can

be difficult to analyze, natural language processing (NLP) techniques can be used

to extract essential elements and put them into a structured format appropriate

for IDS analysis. The organized data can then be utilized to create or enhance

IDS signatures. Customized signatures and rules based on CTI behavioral charac-

teristics can be developed. These signatures and rules are designed to identify IoC

linked with known threat actors, such as IP addresses, domain names, file hashes,
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and network traffic patterns. Threat intelligence inputs from CTI sources can be

integrated into IDS infrastructure. These feeds offer real-time or near-real-time

updates on emerging threats, such as new TTP, malware variants, and targeted

vulnerabilities.

Security events detected by IDS can be co-related to attribute data from CTI

sources. By analyzing the context provided by CTI, such as assigning an attack to

a specific threat actor group, security analysts can better prioritize and examine

IDS warnings. CTI data can be used to improve the contextual analysis capabili-

ties of IDS.

By incorporating information about threat actor goals, sponsorship’s, and geopo-

litical affiliations, IDS can gain a better understanding of the larger context of iden-

tified security events and analyse their possible impact on organization. The sug-

gested methodology examines two data sets: NSL-KDD and CSE-CIC-IDS2018.

These are the two most utilized data sets in IDS analysis of attack detection.

The study concentrated only on the theoretical and computational elements of in-

tegrating CTI with machine learning models for attack detection, without delving

into the actual implementation or modification of IDS tools and accompanying

rule sets.

4.8 Methodology for NSL-KDD Dataset

There are three stages to the suggested methodology for analyzing the NSL-KDD

dataset. In the first stage, data transformation techniques are used. The second

phase is the reduction of features. The third phase is using classification methods

like SVM, random forest, and decision tree.

The proposed technique for the NSL-KDD dataset is shown in figure 4.14. The

proposed methodology is divided into three stages. The initial stage is data pre-

processing. At this stage, the dataset is translated into numerical values using data

transformation techniques such as label encoder. Because ML algorithms perform



Research Methodology 96

Figure 4.14: Proposed Methodology for NSL-KDD Dataset

best on single-value datasets, data transformation techniques are employed to con-

vert the dataset to a single numerical value. The second stage is feature reduction.

Techniques such as PCA are used to minimize the feature set.

4.8.0.1 Data Transformation Phase

The NSL-KDD dataset consists of both numerical and nominal values. All are

converted to numerical in this phase. Transformation in the context of machine

learning refers to the process of transforming or converting data from its original

format into a different format that is more suitable for analysis, model training,

or downstream processes.

Data transformation is an important stage in the machine learning pipeline since it

improves data quality and makes it more compatible with the algorithms or mod-

els being employed. These transformations are carried out to improve the quality

of data, reduce noise, and ensure that the machine-learning model can learn effec-

tively from the provided data. These transformations are carried out to improve

the quality of data, reduce noise, and ensure that the machine-learning model can

learn effectively from the provided data. It is critical to the success of machine
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learning models because the quality of input data has a substantial impact on the

performance and accuracy of the models trained on it. Using a label encoder for

this transformation is employed since it is the most widely used method. Convert-

ing values to a single value has the advantage of generating correct results because

machine learning algorithms work well on single types of values.

Label encoding is simple and easy to implement. It gives each category a unique

numerical value, making it easy to work with categorical data in numerical form.

It saves the information included in the categories. Each category is given a unique

numerical value that can be used to represent it in computations. Numerical in-

puts are required by many machine learning algorithms and libraries.

Label encoding is very useful when utilizing algorithms that are designed to work

with numbers like decision trees or random forests. Label encoding often has a min-

imal computational cost because it simply substitutes categorical variables with

numeric values, which eliminates the need for considerable computer resources.

4.8.0.2 Feature Reduction Phase

Feature reduction, also known as dimensionality reduction, is an important stage

in machine learning and data analysis, especially when working with datasets with

many variables or features. The basic goals of feature reduction are to simplify

the model by minimizing the number of features while maintaining performance,

to reduce the computational load and time necessary for model training, and to

reduce the risk of over-fitting, redundant, or irrelevant features being removed.

The goal of this phase is to save processing power because the dataset has forty-

one features that demand more processing power to compute the values. Several

feature reduction methods are used in the literature, including genetic algorithms,

linear discriminant analysis (LDA), principal component analysis (PCA), infor-

mation gain, and generalized discriminant analysis (GDA). PCA is the feature

reduction method that is currently most widely utilized around the world. PCA

is used in this case because it is easy to calculate and produces accurate results.
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Table 4.4: Optimal Features for NSL-KDD Dataset.

Sr. # Features

1. Duration

2. Protocol type

3. Src bytes

4. Dst bytes

5. logged in

6. Count

7. Service

8. Num failed logins

9. Error rate

10. Root shell

11. Serror rate

12. Dst srv rate

13. Hot

14 Is guest login

Problem-solving is straightforward for computing systems. Lowering dimensional-

ity improves the performance of machine learning algorithms. PCA has the advan-

tage of reducing data noise. The genetic algorithm, for example, has a significant

computing cost. Data with large dimensions is difficult to visualize; so, PCA sim-

plifies data visualization by reducing the dimension. The proposed study’s feature

set consists of 41 features. The initial forty-one set is reduced using PCA, and the

fourteen best features are picked. A threshold is specified, and values more than

0.60 are considered features.

In this sense, fourteen feature sets have been chosen. These approaches have the

advantage of speeding up the system and utilizing fewer processing resources by

reducing the amount of data set features. Table 4.4 shows the ideal 14-feature set

derived via PCA.
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4.8.0.3 Classification Phase

The next phase is applying a classification algorithm on the data extracted from

phase 2 with fourteen features. For classification, the SVM, RF, and DT are uti-

lized. Figure 4.15 displays a flow diagram. The NSL-KDD data set serves as the

system’s input. Using data transformation techniques, the data is reduced to a

single numerical value. The features in the data set are then reduced using fea-

ture reduction techniques. To distinguish between legitimate and malicious traffic,

classification algorithms are used after feature reduction procedures.

Figure 4.15: Flow Diagram-NSL-KDD Dataset

In this phase, 41 characteristics are reduced to fourteen. When more features are

used in the dataset, computational power increases. As a result, feature reduction

techniques are used to conserve computational resources.

The third stage involves using machine learning methods for classification. In this

step, the decision tree, random forest, and SVM algorithms are used to categorize

data. The datasets for training and testing are split 80:20. Machine learning

techniques identify whether the data is an attack or legitimate/normal traffic.
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4.9 Methodology for CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 dataset analysis is divided into three steps. The first

stage is the normalization phase, which includes approaches such as z-score and

min max. The second phase employs feature reduction techniques such as PCA,

while the third employs classification methods such as SVM, RF, and DT.

The proposed technique for the CIC-IDS2018 data set is shown in figure 4.16. The

proposed methodology is divided into three stages. The first stage is the normal-

ization phase. In it, the data set is normalized using normalization techniques

such as z-score.

Normalization is a widely used method for preparing data machine learning. The

process of transforming numeric column values in a dataset to a standard scale

while preserving information and not distorting the value ranges is known as for-

malization. The second stage consists of reduction. Techniques such as PCA are

used to minimize the feature set at this phase. The third phase is classification.

Figure 4.16: Proposed Methodology of CIC-IDS2018 Dataset
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4.9.0.1 Normalization Phase

The first step is to standardize the data. Because values in several columns of

datasets are pretty high. To balance the values in data, normalization procedures

are applied. The benefit of adopting these techniques is that it equalizes all of the

column values. Z-score is utilized for this purpose. It is also known as a standard

score, which is a statistical metric that defines the relationship of a value to the

mean of a collection of values in terms of standard deviations from the mean.

It is a method of standardizing disparate datasets so that they may be compared.

The Z-score reveals how far a data point deviates from the mean. A Z-score of zero

indicates that the data point is exactly at the mean. A positive z-score indicates

that the data point is above the mean, whereas a negative z-score indicates that

it is below the mean.

The greater the deviation from zero, the more exceptional or extreme the data

point is compared to the remainder of the dataset. It is especially useful for com-

paring diverse datasets with varied means and standard deviations, allowing for a

standardized comparison. They aid in the identification of outliers, comprehend-

ing the relative position of a certain data point within a dataset, and permitting

more meaningful comparisons between different sets of data.

4.9.0.2 Feature Reduction Phase

In the second phase, a normalized dataset is used for feature reduction because

it has eighty-one features that demand more computational power and resources

to employ. PCA is used here for reduction. In it, the co-variance of features is

calculated to determine the subset. The formula of co-variance is:

cov(Xi, Xj) =
1

n− 1

n∑
k=1

(Xki − X̄i)(Xkj − X̄j)

The cutoff is set at 0.60. Values greater than this criterion are chosen. A total of

81 feature sets are reduced to 53.
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4.9.0.3 Classification Phase

The next phase is applying a classification algorithm on the data extracted from

phase 2 with fourteen features. For classification, the SVM, RF, and DT are

employed. Figure 4.17 displays a flow diagram. The CSE-CIC-IDS2018 dataset

serves as the system input.

Using normalization techniques, the data is normalized. Then the dataset features

are reduced using feature reduction techniques. To distinguish between legitimate

and malicious traffic, classification algorithms are used after feature reduction

procedures.

Figure 4.17: Flow Diagram CIC-IDS2018 Dataset

Here eighty-one qualities are reduced to fifty-three. The computing power of a data

set grows as more features are used. As a result, feature reduction techniques are

used to conserve computational resources.

The third stage involves using machine learning methods for classification. In this

step, the decision tree, random forest, and SVM algorithms are used to categorize

data. The datasets for training and testing are split 80:20. Machine learning

techniques identify whether the data is an attack or legitimate/normal traffic.
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4.10 Catering Zero-day Attacks

The methodology adopted in this research dissertation is well-suited to counter

zero-day attacks. They use undiscovered vulnerabilities and frequently employed

methods that have never been seen before. Thus making it challenging for systems

that depend on known signatures to identify them. However, by concentrating on

the methods that are typical of different actors and campaigns, this methodology

makes use of optimal features acquired from previous threat actor behavior and

attack patterns, enabling it to detect even zero-day attacks.

It creates a profile that captures the patterns of threat actors by utilizing both

technical and behavioral features. Furthermore, the validation of features from the

MITRE ATT&CK framework improves its resistance to zero-day attacks. With its

extensive coverage, this framework provides a thorough benchmark for evaluating

novel attack behaviors.

Finally, by utilizing the optimization of particular characteristics, this model can

identify CTA in real-time, removing the need for extensive CTI data. This iden-

tification is essential for reacting early to the zero-day attack.

This approach allows for proactive defense against attackers who try to avoid

detection by using creative exploits by establishing a detection model that rec-

ognizes threat actors based on widely applicable properties. Even in the case of

zero-day attacks, this method efficiently attributes cyber-threat actors, enhancing

organizational resilience.

4.11 Catering Fake Threat Advisories

This adapted model emphasis on key features like TTPs, tools, target country,

and motivating taken from trustworthy threat actor profiles helps to reduce fake

advisories, which are frequently created to deceive by inflating or inaccurately

attributing assaults. It uses CTI reports from well known security vendors, thus
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reducing the chance of fake advisories. Furthermore, by validating features against

realistic, well-known threat frameworks like MITRE ATT&CK architecture helps

to identify inconsistencies in the event that a threat advisory describes tactics

that do not match actual adversary patterns. The model emphasis on optimal

attributes increases its resistance to fake reports. The model can preserve accu-

rate threat attribution by using behavioral consistency checks and focusing solely

on the most pertinent features, weeding out possible false information from fake

advisories.

4.12 Experimentation Methodology

Keeping in view our objective and skewed datasets, we adopted an experimental

methodology that is used in various studies. Following this, we first perform several

experiments to evaluate the results. Figure 4.18 illustrates the experimentation

methodology. It demonstrates that gathering data is the initial step. For the same,

a variety of datasets, including CTI reports, threat actor encyclopedia, NSL-KDD,

and CIC-IDS2018, have been gathered.Following data collection, the threat-actor

encyclopedia is used to carry out behavioral and technical feature attribution using

the CTI reports that have been gathered. After that, the resulting dataset is used

to perform hybrid feature attribution. To identify the optimum features for the

attack attribution procedure, optimal feature selection is then carried out.

Figure 4.18: Experimentation Methodology
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4.13 Summary

In this chapter, the methodology for cyber-attack attribution that incorporates

both technical and behavioral elements is elaborated in detail. Initially, methods

for attributing technical aspects are described, including a flowchart and a descrip-

tion of the text pre-processing stages. Domain-specific cyber-security embedding

are used with classification algorithms such as decision tree, random forest, and

support vector machine to analyze performance metrics such as Accuracy, Preci-

sion, Recall, and F1-measure.

The chapter then moves on to behavioral feature extraction, which includes text

pre-processing and feature analytic. The suggested approach for this procedure

is thoroughly developed, and performance measures are once again employed to

evaluate the classification algorithms. The threat actor encyclopedia released by

Thai CERT is the source of the behavioral characteristics employed in this model

for cyber-threat attribution. Only these particular behavioral characteristics can

be extracted due to the limitations of the dataset. Till now, there is no other

dataset available for behavioral feature extraction. Hybrid features are employed

by merging technical and behavioral ones, and their performance is analyzed sim-

ilarly. Finally, the chapter discusses selection of optimal features for cyber attack

attribution, which uses a genetic algorithm to improve the entire attribution pro-

cess.



Chapter 5

Experimentation and Results

5.1 Introduction

Technical, behavioral, hybrid, optimal feature selection, and accurate attack de-

tection in IDS methods have been evaluated in this chapter. Python is used for

implementation. For performing experiments system used is a Core I-7 with 16

GB of RAM.

Embedding models are classified into two categories. Figure 5.1 depicts the CBOW

with skip-gram. CBOW approach searches context words for the target word.

Context word is sought from the appropriate target word in the skip-gram model.

It is preferred where context is critical.

Both models were tested in this analysis. Different window sizes of n=3, 5, and

7 are employed. The associated vector size is 100. Skip-gram model outperforms

CBOW in terms of results, hence it is favored over CBOW.

5.2 Results for Technical Feature Attribution

In this section results for technical features attribution were conducted to know

the performance of various models. Firstly CBOW and skip-gram performance is

evaluated. Then the final results for technical feature attribution are discussed.

106
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Figure 5.1: Comparison of CBOW and Skip-gram Model.

5.2.1 Model Performance

Embedding models with different machine learning algorithms such as decision

trees, random forests & support vector machines are used. Performed various

experiments with different window sizes of n=3, 5, and 7. The context window

size (n) is the number of words before and after the target word that the model

considers contextual. As the context window size increases, the model captures

more distant word associations. With a smaller context window, the model can

catch more local word associations.

It may excel at recognizing syntactic links and closely related concepts. However, it

may struggle to capture distant semantic links. As the context window size grows,

the model collects a wider range of contexts around each word. Tasks requiring

an awareness of broader semantic linkages, such as word similarity or semantic

relatedness, may increase performance. With a bigger context window size, the

model captures more semantic links. Performance may be improved for tasks such

as word analogies and document-level semantics. However, it may become more

computationally expensive and memory-hungry.

With a window size of three, the CBOW model takes three context words on

either side of the target word. Training loss lowers significantly over epochs as the

algorithm improves its ability to predict target words. Validation loss is initially

lower but may increase as the model begins to overfit the training data. The
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model’s accuracy on the training and validation sets may improve as it learns

stronger word representations.

However, there may be a trade-off between computational efficiency and memory

utilization. With a window size of 5, the CBOW model considers five context

words on both sides of the target word. This wider context allows the model to

capture more contextual information about the target word. In the performance

graphs, there might be a smoother convergence of the training loss compared to

n=3. The validation loss might be more stable, reflecting the model’s ability to

generalize better with a larger context window.

To summarize, as the window size rises, CBOW models may be able to capture

greater contextual information, leading to improved performance in tasks such as

word prediction, language modeling, and sentiment analysis. Accuracy might be

slightly higher than in the n=3 case.

When CBOW is used with a decision tree for n=5, Accuracy, Precision, Recall,

and F1-measure of 84%, 85%, 83.8%, and 84% are recorded. When CBOW is

used with a random forest classifier, for n=5 we get Accuracy, Precision, Recall,

and F1-measure of 87%,88.6%,87.1%, and 87%. With CBOW with SVM for n=5,

Accuracy, Precision, Recall, and F1-measure of 85%, 83%, 85.9%, and 89.5% is

recorded.

5.2.2 Skip Gram Model Performance

The performance of the skip-gram model is relatively better with different machine

learning algorithms. When the decision tree is implemented, for n=5 highest

Accuracy, Precision, Recall, and F1-measure of 85%, 83%, 85.9%, and 89.5% are

seen. When skip-gram is used with random forest it produces the highest results

overall. The Accuracy, Precision, Recall, and F1-measure are 96%, 96.6%, 95.58%,

and 92% is recorded. When the skip-gram model is used with SVM, for n=5

highest Accuracy, Precision, Recall, and F1-measure of 89%, 91.2%, 91.5%, and

90.3% are recorded. The results of these experiments are shown in figure 5.2-5.7.
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Figure 5.2: Performance of CBOW with Decision Tree.

Figure 5.3: Performance of CBOW with Random Forest.

Figure 5.4: Performance of CBOW with SVM.
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Figure 5.5: Performance of Skip-gram with Decision Tree.

Figure 5.6: Performance of Skip-gram with Random Forest.

Figure 5.7: Performance of Skip-gram with SVM.
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5.2.3 Results for Technical Features

The outcomes of several models based on attack patterns retrieved from unstruc-

tured CTI reports are assessed in this section. Accuracy, Precision, Recall, and

F1-measure are the performance metrics employed in this work. The accuracy of

model tells us about its overall performance. Precision indicates the percentage

of tuples that the classifier labels as positive. Recall, also called sensitivity, indi-

cates the percentage of relevant results correctly predicted by the classifier. The

harmonic mean of Precision and Recall is the F1 measure. These metrics were

calculated using the formulas described below. The training-to-testing data ratio

is 80:20. The formulas for these metrics are defined below.

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP/ (TP + FN)

F1-Measure = 2 x ((P x R) / (P+R))

Figure 5.8 depicts the implementation of a heat map. It is an effective way to

examine and comprehend complex data relationships as they are commonly used

in data analysis and machine learning to generate insights. It is a data visualiza-

tion that employs color to convey the magnitude of phenomena or the strength of

a link between elements. It is especially effective in displaying relationships and

trends in vast datasets. These show the relationship between several features in a

dataset. Each cell in the matrix indicates the correlation between two variables,

with the color intensity or shading representing the degree and direction (positive

or negative) of the connection.

True Positives (TP), True Negatives (TN), False Positives (FP), and False Neg-

atives (FN) are computed for each class separately in a multi-class classification

task. TP is the number of correctly predicted instances of a class (e.g., Class 0

in this confusion matrix; the value on the main diagonal is 2145 for Class 0). As

the values in the row for that class excluding the diagonal element, such as 12, 0,

13, etc., for Class 0, FN is the total of misclassified instances that truly belong to

that class but were expected to be other classes. FP is the number of cases that

belong to other classes but were mistakenly anticipated to be that class (values in
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the column for that class excluding the diagonal element). TN is the total number

of accurately categorized instances (all other values outside that row and column)

that are neither projected to belong to that class nor do so in reality. Metrics like

precision, recall, and F1-score can then be assessed across all classes by computing

TP, FP, FN, and TN for each class.

Figure 5.8: Heat Map for Technical Features.

Figure 5.9 depicts independent and dependent feature sets in Python implemen-

tation. Independent features are the variables that the machine learning model

uses as input. They are the predictors or factors on which the model bases its

predictions. The qualities, properties, or variables that are changed or controlled

to monitor their effect on the dependent variable are referred to as independent

features. These variables are utilized to train the model and predict the depen-

dent variable. Dependent features are the variables that the machine learning

model attempts to predict using the independent variables. The model attempts

to explain or forecast the result or variable of interest. The model is trained on

historical data that includes both the independent and dependent variables, and

it learns the link between independent and dependent variables.

The purpose of developing a machine learning model is to establish a relationship
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between the independent and dependent variables, allowing the model to make

accurate predictions on fresh, unseen data based on the patterns learned from

the training data. It is critical to select the independent qualities that have a

considerable influence on forecasting the dependent variable. To provide the best

representation of the relationships between independent and dependent variables,

feature selection, engineering, and pre-processing are critical phases in preparing

the data for a machine learning model.

Figure 5.9: Independent and Dependent Features.

Figure 5.10 depicts the sample shape of a data collection in Python implementa-

tion. Understanding the form of the dataset is critical for various pre-processing

activities as well as effectively configuring machine learning models, as the data in-

put shape should match the input layer of the model. Curse of dimensionality can

occur when there are many features or dimensions. Understanding the shape aids

in procedures such as dimensionality reduction and feature selection. Knowing

the shape of the dataset aids in visualizing it, comprehending its structure, and

selecting appropriate visualization approaches. Understanding and interpreting

dataset shapes is critical for working well with machine learning models. Cross-

validation is employed in this work. It splits the original data collection into two

halves. The dataset is partitioned into k-sections with k equal to 10. The amount
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Figure 5.10: Shape of Dataset.

and frequency of reports on a cyber-threat actor can vary greatly depending on

their activity, visibility, and impact on various organizations or industries. These

reports can come from a variety of sources, including cyber-security companies,

government agencies, and independent security experts. Table 5.1 shows the num-

ber of reports for each CTA.

5.2.4 Individual Threat-Actor Performance

Individual threat actor performance reveals that the majority of threat actors are

correctly predicted. APT3, APT17, APT28, APT29, Deep-panda, Fin7, Lazarus,

Menu pass, and Oilrig have 100% Precision, Recall, and f1-measure. Rocket kitten

has 80% Precision, 100% Recall, and 89% f1-measure, while Turla threat actor has

80% Precision, 80% Recall, and 80% F1-measure, and Winntie threat actor has

100% Precision, 67% Recall, and 80% F1 measure as depicted in table 5.2.
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Table 5.1: Cyber-Threat Actors.

Group Aliases No. of reports

APT3 Gothic panda, pirpi 2230

APT17 Deputy dog, axiom 2250

APT28 Sednit, Fancy bear 2200

APT29 Euroapt, cozy bear 2290

Deep panda Shell crew, webmasters 2212

Fin7 Fin7 2280

Lazarus Hidden Cobra, Zinc 2220

Menu Pass APT10, Hogfish 2250

Oilrig APT34, Crambus 2240

Rocket Kitten Shamoon, Magic Hound 2230

Total 26,910

Table 5.2: Individual CTA Results.

Class Actor Precision (%) Recall (%) F1-measure (%)

0 APT3 100 100 100

1 APT17 100 100 100

2 APT28 100 100 100

3 APT29 100 100 100

4 Deep Panda 100 100 100

5 Fin7 100 100 100

6 Lazarus 100 100 100

7 Menu pass 100 100 100

8 Oilrig 100 100 100

9 Rocket kitten 80 100 89

10 Turla 80 80 80
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These results show that using detailed features in attributing CTA improves the

overall performance of the model. Results of the detailed feature set are shown in

table 5.3. In this study, many classifiers are used to ascribe CTA. Random forest,

decision tree, and support vector machine are the classifiers employed. Random

forest outperforms the other two classifiers in terms of Accuracy, Precision, Recall,

and F1-measure, with values of 96.6%, 96.68%, 95.58%, and 95.75%, respectively.

Table 5.3: Machine Learning Model Performance.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

Random Forest 96.6 96.68 95.58 95.75

Decision Tree 81 84 81 83

SVM 81 84 81 82

5.2.5 Various Model Performance

In this analysis, the performance of attack2vec was compared to other models

employed in the research, as shown in Table 5.4. Accuracy, Precision, Recall, and

F1-measure are the performance criteria used for comparison. SMOBI, Word2vec,

SIMVER, and modified LSI models were employed for comparative analysis. The

results show that this model outperforms the other models. In figure 5.11 com-

parison of SIMVER vs attack2vec is shown. The figure shows that attack2vec

outperforms SIMVER and the performance measures of attack2vec is higher than

SIMVER embedding model for individual threat actors.

Table 5.4: Performance of Various Models.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

SMOBI 54.4 63.3 50.8 53.4

Word2vec 84.9 90.9 82.3 85.3

SIMVER 86.5 95.4 83.3 87.9

Modified LSI 94 92 89 89

Attack2vec 96 96.6 95.8 95.75
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Figure 5.11: Individual CTA Results (Attack2vec vs SIMVER.)

5.3 Results for Behavioral Features Attribution

In this section behavioral features attribution results are performed to know the

performance of various models. Firstly, the impact of CBOW and skip-gram is

evaluated with various machine learning models. The results of behavioral features

are discussed in detail.

5.3.1 Model Performance

The performance of the skip-gram and CBOW model is evaluated in this section.

Accuracy, Precision, Recall, and F1-measure are the metrics used in this evalua-

tion. Figure 5.12 illustrates the implemented results when CBOW is used with a

decision tree. For n=3, results of 81%, 84%, 83, and 81% are obtained. For n=5

results of 84%, 85%, 84%, and 82% are achieved. For n=7 82%, 83%, 83% and

82% is obtained.
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Figure 5.12: Performance of CBOW with Decision Tree.

When CBOW is combined with random forest, the implemented results are shown

in figure 5.13. Results for n=3 are 81%, 85%, 82%, and 83%. 83%, 88%, 87%, and

87% are the findings obtained for n=5. Results for n=7 are 82%, 85%, 85%, and

84%.

Figure 5.13: Performance of CBOW with Random Forest.

Figure 5.14 displays the implemented results of combining CBOW and SVM. For

n = 3, the results are 81%, 82%, 81%, and 82%. The results for n=5 are 86%,

83%, 83%, and 86%. The results are 84%, 83%, 82%, and 84% for n=7.
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Figure 5.14: Performance of CBOW with SVM.

Figure 5.15 displays the implemented results of combining CBOW with LSTM.

For n = 3, the results are 91%, 92%, 90%, and 92%. The results for n=5 are 93%,

94%, 93%, and 93%. The results are 91%, 91%, 90%, and 84% for n=7.

Figure 5.15: Performance of CBOW with LSTM.

The results of merging decision trees with skip-gram are shown in figure 5.16. The

findings for n = 3 are 81%, 83%, 82%, and 84%. For n = 5, the outcomes are 83%,

85%, 84%, and 85%. For n = 7, the outcomes are 81%, 83%, 83%, and 83%.
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Figure 5.16: Performance of Skip-gram with Decision Tree.

Figure 5.17 displays the outcomes of the random forest and skip-gram merger. For

n=3, the results are 90%, 94%, 90%, and 90%. The results for n = 5 are 92%,

92%, 94%, and 92%. Results for n = 7 are 92%, 92%, 91%, and 90%.

Figure 5.17: Performance of Skip-gram with Random Forest.

The results of the merger between SVM and skip-gram are shown in figure 5.18.

The findings for n = 3 are 84%, 89%, 84%, and 86%. For n = 5, the findings are

87%, 91%, 90%, and 90%. For n = 7, the findings are 85%, 89.5%, 90%, and 87%.
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Figure 5.18: Performance of Skip-gram with SVM.

The results of merger between LSTM and skip-gram are shown in figure 5.19. The

findings for n = 3 are 94%, 93%, 92%, and 90%. For n = 5, findings are 96%,

97%, 94%, and 92%. For n = 7, the findings are 92%, 92%, 91%, and 92%.

Figure 5.19: Performance of Skip-gram with LSTM.

It is clear from the data that the LSTM deep learning algorithm yields the greatest

results when paired with skip-gram.



Experiments & Results 122

5.3.2 Results for Behavioral Features

In this section, results for behavioral feature extraction are shown. Different fea-

tures are the subject of experiments and outcomes. First, behavioral aspects are

investigated through testing and analysis. As performance parameters, Accuracy,

Precision, Recall, and F1-measure are employed. This implementation’s test plat-

form is a Core I-7 computer with 16 GB of RAM. Implementation is performed

using Python. The IDE is Anaconda.

Figure 5.20: Performance of Skip-gram with LSTM.

5.3.3 Confusion Matrix

In figure 5.20 confusion matrix is displayed. It is a table that is frequently used

in ML to evaluate the performance of a classification system. It is a matrix that

displays the model’s true-positive, true-negative, false-positive, and false-negative

predictions in comparison to the actual ground truth. It is a useful tool for de-

termining where a model thrives and where it falters in its predictions, providing

insights into its strengths and shortcomings for various classes or categories being

forecast.
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Figure 5.21: Confusion Matrix for Behavioral Features.

It is a multi-class classification (twelve cyber-threat actors are used in it). It is a

sort of machine learning issue in which the goal is to categorize input data into

three or more classes. In this case, the algorithm must assign the input to one

of several classes. Each data point is assigned to a single class, and the model is

trained to predict the proper class from unseen data. For multi-class classifica-

tion, common algorithms include logistic regression, decision trees, random forests,

support vector machines (SVM), k-nearest neighbors (K-NN), and deep learning

approaches such as neural networks. In it, metrics such as Accuracy, Precision,

Recall, F1-measure, and confusion matrices can be used to analyze how well the

model performs across all classes.

5.3.4 Shape of the Dataset

The geometry of the dataset in the Python implementation is seen in figure 5.21.

The independent and dependent feature set is depicted in figure 5.22 For classifi-

cation, k=10 and k-fold cross-validation are utilized.
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Figure 5.22: Shape of Dataset for Behavioral Features.

Figure 5.23: Independent and Dependent Variables.

The highest Accuracy, Precision, Recall, and F1-measure for behavioral aspects

are recorded at 96%, 97%, 94%, and 92%, respectively, as shown in table 5.5.
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Table 5.5: Results of Behavioral Features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

Decision Tree 83 85 84 85

Random Forest 92 94 92 92

SVM 87 91 90 90

LSTM 96 97 94 92

5.4 Results for Hybrid Features Attribution

In this section results for hybrid feature attribution are conducted. Firstly CBOW

and Skip-gram model performance is evaluated with various machine learning

models.

5.4.1 Model Performance

Skip-gram and CBOW are employed to determine how well various embedding

models function. The most recent models in this field are these two. The two

models have been put to the test using a variety of classifiers, including decision

trees, random forests, support vector machines, and the deep learning classifier

long short-term memory (LSTM). Accuracy, Precision, Recall, and F1-measure

are the performance metrics used.

Figure 5.23 illustrates the implemented results when CBOW is used with a decision

tree. For n=3, results of 82%, 83%, 83, and 82% are obtained. For n=5 results of

84%, 85.8%, 84%, and 84% are achieved . For n=7 results of 81%, 83%, 83% and

82% are obtained. Figure 5.24 illustrates the implemented results when CBOW is

used with random forest. For n=3, results of 80%, 83%, 84, and 82% are obtained.



Experiments & Results 126

Figure 5.24: Performance of CBOW with Decision Tree.

Figure 5.25: Performance of CBOW with Random Forest.

For n=5 results of 86%, 89%, 86%, and 87% are achieved. For n=7 results of 82%,

84%, 83% and 86% are obtained. Figure 5.25 illustrates the implemented results

when CBOW is used with SVM. For n=3, results of 84%, 82%, 82, and 85%

are obtained. For n=5 results of 85%, 84%, 84%, and 87% are achieved. For

n=7 results of 84%, 82%, 82% and 84% are obtained. Figure 5.26 illustrates the

implemented results when CBOW is used with LSTM. For n=3, results of 90%,

93%, 91%, and 92% are obtained. For n=5 results of 92%, 95%, 94%, and 94%

are achieved. For n=7 results of 93%, 93%, 92% and 93% are obtained. Figure

5.27 illustrates the implemented results when skip-gram is used with decision tree.

For n=3, results of 83%, 81%, 84, and 82% are obtained. For n=5 results of 85%,

84%, 85%, and 85% are achieved. For n=7 results of 84%, 82%, 84% and 83% are
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Figure 5.26: Performance of CBOW with SVM.

Figure 5.27: Performance of CBOW with LSTM.

obtained. Figure 5.28 illustrates the implemented results when skip-gram is used

with random forest. For n=3, results of 89%, 93%, 89%, and 91% are obtained.

For n=5 results of 91%, 94%, 93%, and 92% are achieved. For n=7 results of 89%,

91%, 92% and 90% are obtained. Figure 5.29 illustrates the implemented results

when skip-gram is used with SVM. For n=3, results of 83%, 88%, 84, and 84%

are obtained. For n=5 results of 86%, 92%, 91%, and 91% are achieved. For n=7

results of 85%, 90%, 90.5% and 89% are obtained.

Figure 5.30 illustrates the implemented results when skip-gram is used with

LSTM. For n=3, results of 94%, 93%, 92, and 90% are obtained. For n=5 results

of 97%, 98.5%, 96%, and 96% are achieved. For n=7 results of 93%, 95%, 96%

and 95% are obtained. From the experimentation results it is clear that when
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Figure 5.28: Skip-gram with Decision Tree.

Figure 5.29: Skip-gram with Random Forest.

Figure 5.30: Skip-gram with SVM
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Figure 5.31: Skip-gram with LSTM.

combined with skip-gram, the LSTM deep learning algorithm produces the best

results.

5.4.2 Results for Hybrid Features

In this section results for hybrid feature selection are shown. Different machine

and deep learning algorithms such as decision trees, random forests, and LSTM

are used to obtain results. Hybrid features are the subject of experiments and

outcomes. Performance parameters, Accuracy, Precision, recall, and F1-measure

are employed. This implementation’s test platform is a Core I-7 computer with 16

GB of RAM. Implementation is performed using Python. The IDE is Anaconda.

For classification, k=10 and k-fold cross-validation are utilized. The influence

of hybrid features—that is, features that combine technological and behavioral

aspects—is then examined. As indicated in table 5.6, Accuracy, Precision, Recall,

and F1-measure were 97%, 98.5%, 96%, and 96% respectively.

5.5 Results for Selected Features

In this section results for optimal feature selection are shown. Different machine

and deep learning algorithms such as decision tree, random forest, and LSTM
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are used to obtain results. Different machine and deep learning algorithms such

as decision tree, random forest, and LSTM are used to obtain results. Hybrid

features are the subject of experiments and outcomes.

Table 5.6: Results of Hybrid Features.

Algorithm Accuracy (%) Precision (%) Recall (%) F1-measure (%)

Decision Tree 85 86 85 85

Random Forest 91 94 93 92

SVM 86 92 91 91

LSTM 97 98.5 96 96

Performance parameters,Accuracy, Precision, Recall, and F1-measure are em-

ployed. This implementation’s test platform is a Core I-5 computer with 16 GB

of RAM. Implementation is performed using Python. The IDE is Anaconda. For

classification, k=10 and k-fold cross-validation are utilized. The Accuracy, Pre-

cision, Recall, and F1 measure for optimal features are recorded at 97%, 98.8%,

97%, and 97.2%, respectively, as shown in table 5.7.

Table 5.7: Results of Optimal Features

Algorithm Accuracy (%) Precision (%) Recall (%) F1-Measure (%)

Decision Tree 90 92 91 91

Random Forest 91.5 93.8 92 92.4

LSTM 97 98.8 97 97.2



Experiments & Results 131

5.6 Accurate Attack Detection in IDS

Several performance evaluation metrics, including Recall, Accuracy, and Precision

are employed for experimentation.

5.6.1 NSL-KDD Dataset Results

In this section results for the NSL-KDD dataset are shown. It is a commonly

used benchmark dataset for assessing the effectiveness of various machine-learning

models for detecting network assaults and evaluating IDS. A full analysis of the

results for attack detection would include these measures to provide a holistic view

of the IDS performance. Different machine learning methods, such as random

forest, and SVM are typically assessed to determine their efficacy in identifying

various forms of attacks.

The confusion matrix is shown in figure 5.31. It tells the predicted and actual

values. The values that are predicted true by the model against values that are

predicted false.

Figure 5.32: Confusion Matrix for NSL-KDD Dataset.
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Making use of the NSL-KDD data set, the proposed methodology has a 95%

Accuracy rate, which is higher than that of existing methods. Using random forest,

we achieve Accuracy, Precision, and Recall of 96%, 94%, and 94%, respectively.

SVM achieves 94%, 92%, and 94% Accuracy, Precision, and Recall, respectively.

The decision tree achieves 92%, 92%, and 91% Accuracy, Precision, and Recall,

respectively as shown in table 5.8.

In the experimentation cross validation is used and the value of k=10. The size

of the training and testing data set is in the ratio of 80:20. Python is used for

implementation. Anaconda is used as an IDE. The test bed for implementation

is Core-I-7 processor with 16 GB of RAM. Figure 5.32 shows the results on this

dataset.

Table 5.8: NSL-KDD Dataset Results

Algorithm Accuracy (%) Precision (%) Recall (%)

Random Forest 96 94 94

SVM 94 92 94

Decision Tree 92 92 91

Figure 5.33: NSL-KDD Dataset Results.
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5.6.2 CSE-CIC-IDS2018 Dataset Results

The proposed methodology achieves an Accuracy of 98% when using the CSE-CIC-

IDS2018 dataset, which is greater than that of existing methods. Using random

forest, we get 98% Accuracy, 97% Precision, and 96% Recall. SVM produces Ac-

curacy, Precision, and Recall of 94%, 95%, and 95%, respectively. The decision

tree achieves 93%, 94%, and 94% Accuracy, Precision, and Recall respectively as

shown in table 5.9. Figure 5.33 shows the results comparison.

Table 5.9: CIC-IDS2018 Dataset Results

Algorithm Accuracy (%) Precision (%) Recall (%)

Random Forest 98 97 96

SVM 94 95 94

Decision Tree 93 94 94

Figure 5.34: CIC-IDS2018 Dataset Results.
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5.7 Discussion of Results

1. The performance of skip-gram model is best when used with LSTM for at-

tributing technical features.

2. Random Forest produces high results of 96.6%, 96.8%,95.58%, and 95.75% as

compared to decision tree and SVM while attributing technical features.

3. Attack2vec outperforms other models.

4. The performance of the skip-gram model is best when used with LSTM for

attributing behavioral features.

5. For attributing hybrid features LSTM produces high results in terms of Accu-

racy, Precision, Recall, and F1-measure of 96%, 97%, 94%, and 92%.

6. For optimal features the best results are with LSTM having Accuracy, Preci-

sion, Recall, and F1-measure of 97%, 98.8%, 97%, and 97.2%.

7. For accurate attack detection using the NSL-KDD dataset random forest out-

performs decision tree and SVM having Accuracy, Precision and Recall of 96%,

94%, and 94%.

8. For accurate attack detection using CIC-IDS2018 dataset random forest out-

performs decision tree and SVM having Accuracy, Precision, and Recall of 98%,

97%, and 96%.

5.8 Rationale for Using Datasets

The use of these datasets is motivated by the requirement for a comprehensive

and high-fidelity approach to cyber-attack attribution process. By using unstruc-

tured CTI reports from prominent security vendors like as Fire-eye, Crowd-strike,

and Symantec, one gain access to a massive repository of real-world threat data,

including a wide range of indicators. Also these reports are used by various re-

searchers in their experimentation. They provide a solid platform for modeling

and attributing CTAs. Furthermore, integration of the threat actor encyclopedia

dataset allows for the extraction of detailed CTA specific information for behav-

ioral patterns.
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The variety of datasets enables the synthesis of both technical and behavioral fea-

tures, which is critical for developing a hybrid threat attribution paradigm. The

size and diversity of the data covered a wide range of threat scenarios, improv-

ing the accuracy, scalability of attribution models in the dynamic world of cyber

threat intelligence.

The NSK-KDD and CSE-CIC-IDS2018 datasets are most widely used in accurate

attack detection in IDS. The NSK-KDD dataset, provides a well-structured and

well researched intrusion detection benchmark, making it perfect for testing and

evaluating the performance of new IDS models. Its diverse set of attack scenarios

and network traffic data serves as a thorough test bed for determining the effec-

tiveness of detection algorithms.

The CSE-CIC-IDS2018 dataset, on the other hand, is more modern and realistic,

representing a wide range of contemporary attack patterns in a simulated busi-

ness setting. It covers current attack vectors and benign traffic, demonstrating the

changing nature of cyber threats. By utilizing these datasets, a comprehensive as-

sessment of IDS performance across multiple time periods and threat scenarios is

analyzed.

5.9 Limitation of Research Work

The fundamental goal of this research is to extract attack patterns for cyber-threat

actors. This investigation identifies CTA more accurately. The experiments con-

firmed our hypothesis, and the results were correct. Before the proposed approach

can be used in a real-world security context, some restrictions must be overcome.

There is a dataset limitation in this domain; finding an appropriate one for experi-

mentation is a difficult task. Attack patterns and CTA are frequently documented

in the dataset as human-readable enumerations, which are frequently long com-

prehensive statements that make extracting important information challenging.
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Furthermore, many behavioral traits can be used for experimentation but cannot

be extracted due to a lack of adequate datasets.

There is no standard framework for reporting (unstructured reports), so extract-

ing valuable information is challenging. As a result, there are skewed datasets.

There is no benchmark dataset in this field. Because separate research is done on

distinct data, comparing different methodologies is difficult. It is challenging to

extract all aspects from a report; missing values are possible.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this research dissertation, conventional methodologies for detecting cyber-threat

actors with technical and behavioral features were implemented. The changing

nature of the cyber-threat landscape needs a thorough examination of the moti-

vations and backgrounds of CTA. This study investigates how behavioral features

and the optimum feature selection affect the attribution of CTA. It is a novel no-

tion in this field. Machine/deep learning models are used in this study to examine

the impact of behavioral features. It will help to understand the attacker’s back-

ground and motivations. The impact of behavioral features is also studied. The

optimal feature for CTA attribution is chosen.

There is an enormous amount of CTI information available throughout the world.

Threat feeds, hacker forums, social media, the dark web, security websites, threat

warnings, honeypots, CVE, NVD, and unstructured CTI reports are some of the

sources. Manually extracting relevant information from this data is a difficult

task. CTA attribution was conducted in this study by extracting features from

unstructured CTI reports. TTP, tools, malware, target organization, country, and

application have all been used in detail. This extensive feature set offered a full

overview of the attacker profile and aided in more accurate and exact attribution.

137
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The ”Attack2vec” model, which is trained on domain-specific embedding, has been

developed. The results demonstrated that this innovative model outperforms other

models. This unique model achieves 96.5% Accuracy, 96.50% Precision, 95.58%

Recall, and 95.75% F1-measure. For categorization, machine learning methods

such as decision trees, random forests, and support vector machines have been

utilized. The use of a detailed feature set improves classification outcomes.

This research work investigates the impact of behavioral characteristics on cyber-

threat attribution. The incorporation of these elements is a unique notion in this

field that has yet to be extracted for CTA attribution. The attacker will be more

clearly detailed and contextualized by giving behavioral characteristics. Following

the completion of tests and the analysis, it is required to evaluate the influence

of hybrid features by analyzing their impact on the cyber-threat attribution pro-

cess. The results of experimentation show that adding behavioral aspects results

in good outcomes.

This study has made substantial progress towards tackling critical issues in cyber

threat actor attribution by utilizing unstructured CTI reports and threat actor en-

cyclopedia dataset. Explored the extraction of comprehensive technical elements

from unstructured CTI reports and assessed the impact of integrating behavioral

features from the threat actor encyclopedia. Demonstrated a more complete and

successful methodology for attribution of cyber threats by providing a novel hy-

brid approach that incorporates both technical and behavioral elements.

One of the key research gaps discovered was the limited number of available

datasets and their inherent imbalance, which caused issues in feature extraction

and attribution accuracy. Our approach successfully mitigates these difficulties

by applying advanced feature reduction techniques to the feature set, hence im-

proving the accuracy and reliability of cyber threat attribution.This work not only

fills scientific gaps, but also establishes a solid foundation for future research in

this area. Identifying CTA is a complex task, using hybrid features will help to

identify cyber threat actors more precisely and accurately. Using feature selec-

tion/reduction methodologies, the ideal feature set for cyber-threat attribution is

then discovered. In comparison to previous models, attained Accuracy, Precision,
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Recall, and F1-measure of 97.8%, 98.8%, 97.2%, and 97.2%, respectively, which

are good results in this area.

In conclusion, this study improves the field by providing a more refined approach

to cyber threat attribution, emphasizing the relevance of combining technical and

behavioral aspects, and overcoming dataset restrictions. The suggested model is

a big step forward in enhancing the precision of cyber threat intelligence, bringing

useful insights and methodologies to the security community.

Rate of cybercrime is rapidly increasing, which is a significant drawback of technol-

ogy. There are numerous approaches and methods for attackers to breach systems.

Researchers developed several solutions based on machine learning algorithms to

protect systems from such attackers, which are crucial in detecting and safeguard-

ing assets from a variety of threats. This research investigation proposed a way for

more precisely detecting attacks in IDS using machine learning approaches. For

testing, the suggested approach employs two well-used data sets: NSL-KDD and

CSE-CIC-IDS2018. This methodology yields an overall Accuracy of 96% with the

NSL-KDD data set and an Accuracy of 98% with the CSE-CIC-IDS2018 dataset.

This proposed method detects network attacks more accurately and precisely than

earlier methods.

6.2 Future Work

Future research in this field should focus on identifying a fully automated mecha-

nism for drawing a complete picture of attack flow. There exists in the literature

a semi-automated mechanism that draws attack flow. But so far in the research,

no fully automated mechanism exists. It will help in better identifying CTA.

Identifying trends and patterns in the attribution of CTA is an important task.

The grouping of CTAs according to attack patterns will aid in connecting related

CTA based on the attack models they employ. It will aid in designing a thorough

offensive strategy. Deep learning techniques will be employed in the future to

improve classification results for better and more accurate IDS attack detection.

Future studies on this topic will concentrate on discovering trends and patterns
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in the attribution of cyber-threat actors based on numerous variables. Threat

intelligence relies on technical and behavioral characteristics that explain an ad-

versary’s behavior and attack patterns. Identifying regularities among them will

improve the process of attribution of cyber threats. Early assault detection can

result in an efficient technique for evaluating CTAs and their attack pathways.

If CTAs are classified according to attack patterns, it will be easier to connect

relevant cyber-threat actors based on the attack models they utilize. It will aid in

the development of a comprehensive attack strategy.

Deeper understanding of cyber-threat actor attribution may be possible in future

research if malware types (virus, Trojan,ransomware,spyware) are incorporated.

This can improve the attribution models capacity to differentiate between threat

actors according to their preferred malware tools by classifying and examining

malware families, variations, and the behaviors that go along with them. Given

that some threat actors tend to depend on specific malware type, future research

would enable the identification of distinctive attack patterns more accurately.

Future research in this domain could focus on improving attribution accuracy and

granularity by combining advanced machine learning algorithms with larger and

more diversified datasets. This includes investigating real-time attribution sys-

tems that use both technical indications (such as network traffic and malware

signatures) and behavioral characteristics (such as attack patterns and sociopo-

litical circumstances). Another interesting avenue is the creation of standardized

frameworks for sharing and correlating threat intelligence across organizations and

industries, which could boost coordinated efforts to combat cyber threats. Fur-

thermore, tackling the issues of attribution in new technologies such as IoT, cloud

computing, and quantum computing is critical. Finally, in order to strike a bal-

ance between security and civil freedoms, ethical considerations such as privacy

and preventing the misuse of attribution data should be prioritized.

Large Language Models (LLMs) serve an important role in enhancing the cyber-

attack attribution process by overcoming the challenges of analyzing unstructured

threat data. Traditional approaches frequently struggle to handle the vast volume

and complexity of data created in cyber threat landscapes, which comprise a wide
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range of sources such as academic publications, vendor reports, and open-source

intelligence. LLMs excel at natural language understanding and generation, allow-

ing them to process and extract useful information from large amounts of textual

data. They can detect trends, correlations, and subtle contextual indicators that

conventional algorithms may miss, improving the accuracy of threat actor profil-

ing. Furthermore, LLMs can adapt to changing threat landscapes by constantly

learning from fresh data, ensuring that the attribution process remains current

and adaptable to emerging threats. Their ability to integrate technical details

with behavioral research contributes to the hybrid threat attribution technique,

which provides a holistic perspective of cyber threats. This not only increases

the speed and accuracy of attribution, but it also helps to forecast future attacks

by understanding threat actors motivations and plans, resulting in more effective

cyber-security defenses and proactive threat mitigation.
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