
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Evaluating the Effectiveness of

Decomposed Halstead Metric

Suite in Software Fault Prediction

by

Muhammad Bilal Khan

A dissertation submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Computing

Department of Computer Science

2025

www.cust.edu.pk
www.cust.edu.pk
drbilal345@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Evaluating the Effectiveness of Decomposed Halstead

Metric Suite in Software Fault Prediction

By

Muhammad Bilal Khan

(DCS171003)

Dr. Mehmet Kaya, Professor

Firat Univeristy, Elazig, Türkiye

(Foreign Evaluator 1)

Dr. Muhammad Younis, Professor

Oxford Brookes University, UK

(Foreign Evaluator 2)

Dr. Nan Jiang, Professor

Bournemouth University, UK

(Foreign Evaluator 3)

Dr. Aamer Nadeem

(Research Supervisor)

Dr. Abdul Basit Siddiqui

(Head, Department of Computer Science)

Dr. Muhammad Abdul Qadir

(Dean, Faculty of Computing)

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2025

ii

Copyright © 2025 by Muhammad Bilal Khan

All rights reserved. No part of this dissertation may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

iii

To my parents, siblings, wife, and five angels, Hiba, Fasih, Shaheer, Anas and Aiza.

vii

List of Publications

It is certified that following publication has been made out of the research work

that has been carried out for this dissertation:-

1. B. Khan and A. Nadeem, “Evaluating the effectiveness of decomposed halstead

metrics in software fault prediction,” PeerJ Computer Science, vol. 9, p.

e1647, 2023.

Muhammad Bilal Khan

(DCS171003)

viii

Acknowledgement

All praise is due to Allah Almighty, who has all knowledge and has the power to

grant from his knowledge and peace, mercy and blessing upon his last and final

messenger and upon good-doers.

I would never have been able to finish my work without the support from my

respected parents and after that my younger sister for her moral support and

encouragement.

One of the most notable of Allah’s blessings upon me was in the form of my

supervisor. I would like to thank my supervisors, Prof. Dr. Aamer Nadeem for his

guidance. I am also grateful to Dr. Muddassar Azam Sindhu, Assistant Professor

Quaid-i-Azam University, whose reviews help me a lot to improve my work. I

feel very lucky to be part of CSD research group members whose discussion and

constructive criticism maintained an environment that was conducive for research.

Moreover, without the recreational activities of our CSD research group, I may

have gone insane over the last few years. I also thank the faculty members of

Capital University of Science and Technology who gave me the resources and

healthy education environment.

Very special thanks to my siblings for their motivation and encouragement. I

would like to thank my beloved Wife. She was always there cheering me up and

stood by me through the good times and bad.

I would like to express my gratitude to my friend and colleague Dr.Muhamad

Rizwan for his technical guidance. Apart from the mentioned above, many people

helped me reach this point. May Allah grant all of them peace and bless them

with prosperity.

ix

Abstract

Occurrence of faults in software systems is an inescapable problem. Testing helps

in identifying those faults, however, exhaustive testing is required to identify all

the residual faults, which is infeasible for any nontrivial system. Software fault

prediction (SFP) refines the process of testing while streamlining the effort to

review/test the code. There are several approaches for SFP, Machine learning

(ML) is the most dominating one. ML based SFP uses some metrics, which

could be file level, class level, method level, or even line level. More granulated

metric is expected to have micro coverage of the code. Halstead metric suite

provides line level coverage of code. It has been used in various domains like, fault

prediction, quality assessment, similarity approximation for last three decades.

Keeping in view its reported effectiveness, this dissertation aims to enhance its

predictive ability through decomposition. Decomposition refers to the splitting of

base Halstead metrics into multiple metrics. We decomposed Halstead base metrics

(Operators/Operands) at multiple levels to evaluate improvement in fault prediction

at each level. In order to test the effectiveness of our multilevel decomposed

Halstead based metrics empirically, five publicly accessible datasets with instances

classified as fault prone and not fault prone were used in each experiment. Logistic

regression, Naive Bayes, Decision Trees, Multilayer Perceptron, Random Forests,

and Support Vector Machines were all used in the machine learning modeling.

These models’ performance was evaluated using Area Under the Curve (AUC),

Accuracy, and F-measure measures. We have performed four experiments with

decomposed Halstead base metric combine with Halstead derived, McCabe and

LoC metrics suites that are frequently used in analysis related to software fault

prediction with Halstead. In the first experiment, we employed the conventional

Halstead base metrics. In the second experiment, decomposed Halstead operators

at level 1 were combined with conventional operands. The third experiment utilized

both decomposed Halstead operators and operands at level 1, while the fourth

experiment integrated decomposed Halstead operators at level 2 and operands

at level 1, in combination with derived Halstead, McCabe, and Lines of Code

(LoC) metrics as predictors. The results of these experiments demonstrate the

x

effectiveness of decomposed Halstead operators and operands at level 1, however,

decrease in the results are observed in decomposed operators at level 2.

Contents

Author’s Declaration iv

Plagiarism Undertaking vi

List of Publications vii

Acknowledgement viii

Abstract ix

List of Figures xv

List of Tables xvii

Abbreviations xviii

1 Introduction 1

1.1 Software Fault Prediction . 2

1.1.1 Machine Learning (ML) . 2

1.1.2 Statistical Modeling (SM) 3

1.1.3 Expert Opinion (EO) . 3

1.1.4 Similarity Based (SB) . 3

1.1.5 Association Rule Mining (AM) 4

1.2 Machine Learning . 4

1.2.1 Data Collection (DC) . 5

1.2.2 Feature Extraction (FE) . 5

1.2.3 Labeling (Lb) . 5

1.2.4 Training Data Preparation(TDP) 6

1.2.5 Model Selection and Training (MST) 6

1.2.6 Model Evaluation (ME) . 7

1.2.7 Deployment and Monitoring (DM) 7

1.3 Software Metrics . 7

1.3.1 Product Metrics . 8

1.3.2 Process Metrics . 9

1.3.3 Project Metrics . 9

xi

xii

1.4 Significance of Software Metrics in SFP 9

1.5 Research Objectives . 10

1.5.1 Decompose Halstead Base Metrics for Enhanced Predictive
Accuracy . 10

1.5.2 Determine Optimal Decomposition Levels 11

1.5.3 Quantify the Impact on Fault Prediction Precision 11

1.5.4 Validate Comparative Models 11

1.5.5 Enhance Quality Assurance Practices in Software Engineering 11

1.5.6 Advance the Understanding of Metric Decomposition in SFP 12

1.6 Problem Statement . 12

1.7 Proposed Idea . 12

1.8 Research Questions . 13

1.9 Research Scope . 14

1.9.1 Focus Areas . 14

1.9.2 Exclusions . 15

1.9.3 Constraints and Limitations 15

1.10 Research Methodology . 15

1.10.1 Understanding Existing SFP Techniques 16

1.10.2 Defining the Research Gap 16

1.10.3 Decomposition of Halstead Metrics 17

1.10.4 Dataset Design and Development 17

1.10.5 ML Model Evaluation . 18

1.11 Contribution . 18

1.12 Dissertation Outline . 19

2 Literature Review 20

2.1 Prevailing Trends in SFP . 21

2.2 Software Metrics . 34

2.2.1 File level metrics . 34

2.2.2 Class level metrics . 35

2.2.3 Method Level Metrics . 35

2.2.4 Component Level Metrics 36

2.2.5 Line Level Metrics . 36

2.3 Software Metrics with Halstead in SFP 37

2.4 Summary . 45

3 Methodology 47

3.1 Selection of Case Studies . 48

3.2 Datasets Enhancement . 49

3.3 Selection of ML Algorithm . 51

3.3.1 Nature of Data . 51

3.3.2 Complexity of Patterns . 51

3.3.3 Performance Requirements 52

3.3.4 Scalability and Efficiency . 52

3.3.5 Interpretability and Explainability 52

xiii

3.3.6 Ensemble Methods . 52

3.3.7 Domain Expertise . 53

3.3.8 Model Maintenance and Adaptation 53

3.4 Selection of performance measures 53

3.4.1 Nature of the Problem . 54

3.4.2 Imbalance in the Dataset . 54

3.4.3 Cost Sensitivity . 54

3.4.4 Interpretability . 54

3.4.5 Threshold Selection . 55

3.4.6 Domain Specific Requirements 55

3.4.7 Validation and Cross Validation 55

3.4.8 Comparative Analysis . 55

3.5 Summary . 56

4 Decomposition of Halstead Metric Suite 57

4.1 Halstead’s Metrics: an Overview . 58

4.1.1 Halstead Base Metrics . 59

4.1.2 Halstead Derived Metrics . 60

4.1.3 Miscellaneous Halstead Metrics Suite Extension 61

4.2 Decomposition of Halstead Operators 62

4.3 Decomposition of Halstead Operands 65

4.4 Mathematical Formulation of Decomposed Halstead Operators and
Operands . 67

4.5 Algorithm to Compute Decomposed Halstead Base Metrics from the
Code . 70

4.6 Justification for Halstead Base Metrics Decomposition 72

4.6.1 Necessity of Decomposition 72

4.6.2 Benefits of Decomposition 72

4.6.2.1 Granular Feature Representation 72

4.6.2.2 Enhanced Model Interoperability 73

4.6.2.3 Improved Prediction Performance 73

4.7 Summary . 73

5 Experimentation and Results 74

5.1 Case Study . 75

5.2 Selected Features . 76

5.3 Data Preprocessing . 80

5.4 ML Modeling . 80

5.4.1 Logistic Regression . 80

5.4.2 Multilayer Perceptron (MLP) 81

5.4.3 Naive Bayes . 82

5.4.4 Decision Trees . 83

5.4.5 Random Forests . 84

5.4.6 Support Vector Machines (SVM) 85

5.5 Cross Validation . 86

xiv

5.6 Evaluation Measure . 87

5.7 Results and Discussion . 88

5.7.1 Experimental Results with Decomposed Halstead Operators
at Level 1 . 89

5.7.2 Experimental Results with Decomposed Halstead Operators
and Operands at Level 1 . 92

5.7.3 Experimental Results with Decomposed Halstead Operators
at Level 2 . 96

5.7.4 Combine Experimental Results 99

5.8 Feature Importance Analysis and Impact on Experimental Results . 109

5.9 Implications of Decomposed Halstead on Classification Model Com-
plexity . 112

5.9.1 Impact on Decision Boundaries Across ML Models 112

5.9.2 Implications of Decomposition on Model Performance 113

5.9.3 Interpretability vs. Complexity: 113

5.9.4 Computational Considerations 113

5.10 Applications of the Study . 114

5.10.1 Software Quality Assurance and Testing Prioritization . . . 114

5.10.2 Automated Fault Detection in CI/CD Pipelines 114

5.10.3 Enhanced Static Code Analysis Tools 115

5.10.4 Resource Allocation in Development and Maintenance . . . 115

5.10.5 Predictive Maintenance in Safety Critical Systems 115

5.10.6 Development of Customizable Fault Prediction Models . . . 115

5.11 Threats to Validity . 116

6 Conclusion and Future Work 117

6.1 Future Work . 118

Bibliography 121

List of Figures

1.1 General procedure proceeds in ML 6

1.2 Methodology of research . 16

2.1 Number of SLRs on SFP per year 25

2.2 Journal publication and distribution of studies in SLRs 26

2.3 Type of datasets in SFP . 27

2.4 Private, Public dataset trend over the time distribution. 28

2.5 Research dimensions in the domain of SFP 29

2.6 Most used methods in SFP . 31

2.7 Methods distribution in studies . 32

2.8 Performance measure used in studies. 33

3.1 Flow Diagram For Proposed Approach 48

4.1 Hierarchy of decomposed operators and operands 67

5.1 Experimental design . 75

5.2 Ratio of fault and fault free in the five datasets 77

5.3 Logistic Regression Model . 81

5.4 Multilayer Perceptron Model . 82

5.5 Naive Bayes . 83

5.6 Decision Trees . 83

5.7 Random Forests . 84

5.8 Support Vector Machines . 85

5.9 Overview of 10 fold cross validation 86

5.10 Difference in average accuracy regarding selected datasets against
ML algorithms in Exp1 and Exp2. 91

5.11 Difference in average F-measure regarding selected datasets against
ML algorithms in Exp1 and Exp2. 91

5.12 Difference in average AUC regarding selected datasets against ML
algorithms in Exp1 and Exp2. 92

5.13 Difference in average accuracy regarding selected datasets against
ML algorithms in Exp2 and Exp3. 94

5.14 Difference in average F-measure regarding selected datasets against
ML algorithms in Exp2 and Exp3. 95

5.15 Difference in average AUC regarding selected datasets against ML
algorithms in Exp2 and Exp3. 95

xv

xvi

5.16 Difference in average accuracy regarding selected datasets against
ML algorithms in Exp3 and Exp4. 98

5.17 Difference in average F-measure regarding selected datasets against
ML algorithms in Exp3 and Exp4. 99

5.18 Difference in average AUC regarding selected datasets against ML
algorithms in Exp3 and Exp4. 99

5.19 Difference in Accuracy with LR by introducing decomposed Halstead.100

5.20 Difference in Accuracy with NB by introducing decomposed Halstead.100

5.21 Difference in Accuracy with DT by introducing decomposed Halstead.101

5.22 Difference in Accuracy with MLP by introducing decomposed Halstead.101

5.23 Difference in Accuracy with RF by introducing decomposed Halstead.102

5.24 Difference in Accuracy with SVM by introducing decomposed Halstead.102

5.25 Difference in F-measure with LR by introducing decomposed Halstead.103

5.26 Difference in F-measure with NB by introducing decomposed Halstead.103

5.27 Difference in F-measure with DT by introducing decomposed Halstead.104

5.28 Difference in F-measure with MLP by introducing decomposed
Halstead. 104

5.29 Difference in F-measure with RF by introducing decomposed Halstead.105

5.30 Difference in F-measure with SVM by introducing decomposed
Halstead. 105

5.31 Difference in AUC with LR by introducing decomposed Halstead. . 106

5.32 Difference in AUC with NB by introducing decomposed Halstead. . 106

5.33 Difference in AUC with DT by introducing decomposed Halstead. . 107

5.34 Difference in AUC with MLP by introducing decomposed Halstead. 107

5.35 Difference in AUC with RF by introducing decomposed Halstead. . 108

5.36 Difference in AUC with SVM by introducing decomposed Halstead. 108

List of Tables

2.1 Public and Private datasets with their names and sours 28

2.2 Summarized view of studies using Halstead metric suite 39

3.1 Types of datasets w.r.t. availability of metrics values, fault informa-
tion, and source code . 49

4.1 Halstead Base Metrics . 60

4.2 Java operators and their category 63

4.3 Halstead operators with their corresponding decomposed operators 65

4.4 Halstead operands with their corresponding decomposed operands . 66

5.1 Features in Set-1 . 77

5.2 Features in Set-2 . 78

5.3 Features in Set-3 . 78

5.4 Feature count in each experiments through decomposition 79

5.5 Accuracy in Experiment 1 and 2 . 89

5.6 F-measure in Experiment 1 and 2 90

5.7 AUC in Experiment 1 and 2 . 90

5.8 Accuracy in Experiment 2 and 3 . 93

5.9 F-measure in Experiment 2 and 3 93

5.10 AUC in Experiment 2 and 3 . 93

5.11 Accuracy in Experiment 3 and 4 . 96

5.12 F-measure in Experiment 3 and 4 97

5.13 AUC in Experiment 3 and 4 . 97

5.14 Feature ranking average score across five selected datasets 110

xvii

Abbreviations

AI Artificial intelligence

AM Association rule Mining

ANN Artificial Neural Networks

AUC Area Under Curve

DC Data Collection

DHM Decomposed Halstead base Metrics

DIT Depth of Inheritance Tree

DM Deployment and Monitoring

DT Decision Tree

EO Experts’ Opinion

FE Feature Extraction

FNR False Negative Rate

IV Independent Variables

k-NN K-Nearest Neighbor

Lb Labeling

LOC Lines of code

LR Logistic Regression

LSSVM Least Squares Support Vector Machines

ME Model Evaluation

ML Machine Learning

MST Model Selection and Training

NASA National Aeronautics and Space Administration

NB Näıve Bayes

NECM Normalized Expected Cost of Misclassification

xviii

xix

NN Neural Network

PFA Probability of False Alarm

RF Random Forest

RQ Research Question

SDLC Software Development Life Cycle

SFP Software Fault Prediction

SLMBC Spiral life cycle model-based Bayesian classification

SLR Systematic literature review

SM Statistical Modeling

SVM Support Vector Machine

TDP Training Data Preparation

Chapter 1

Introduction

A crucial part of the Software Development Life Cycle (SDLC) is software testing,

which is the methodical assessment of software to make sure it satisfies requirements

and operates as intended [1–3]. Its ability to find flaws, faults, or problems early

in the development process reduces the need for expensive modifications and

guarantees that end customers will receive a dependable, high-quality product [4].

This is why software testing is crucial to the SDLC. Functional testing, performance

testing, security testing, and other approaches and procedures are all included in

software testing [5–12]. Utilizing predictive analytics approaches [13], Software

Fault Prediction (SFP) helps software testers identify potential flaws or problems

in software systems before they arise [3]. According to the study conducted by

Timothy et al., in a software system faults are found in only 42% of the software

modules[14] [15]. Likewise, another study reported that about 70% of the faults

are found by testing only 6% of the software modules[16]. Similar results are also

reported by multiple studies conducted by Weyuker et al. [17, 18].

SFP aids in resource allocation, testing effort prioritization, and focusing attention

on software components most likely to contain flaws by examining past data and

spotting trends. According to [19, 20], testing and quality assurance account for

roughly 35% of the overall development cost. SFP integration improves efficacy

and efficiency in the testing process, which lowers development costs and improves

software quality [19]. Additionally, it makes proactive risk management possible,

1

Introduction 2

allowing development teams to address possible problems early in the development

lifecycle and provide users with more dependable and robust software solutions

[12].

1.1 Software Fault Prediction

A crucial step in software engineering, Software Fault Prediction (SFP) identifies

modules that are prone to errors or calculates the total amount of faults in a software

system [21, 22]. Timely identification of malfunctioning modules or the forecasting of

malfunctions within modules is advantageous, especially when it comes to vital and

tactical software systems. It plays a crucial role in improving the system’s overall quality

and reliability in addition to helping to lower testing expenses [22, 23]. SFP’s ability to

direct testing efforts toward the identification and mitigation of fault-prone modules is

one of its main features. SFP maximizes the efficacy of testing procedures and facilitates

optimal resource allocation by prioritizing testing activities based on expected fault

probabilities [24, 25]. Additionally, forecasting the number of errors in a module offers

insightful information about how well tests are done, assisting teams in determining

when sufficient testing coverage has been attained. Several strategies have been created

and used in the field of SFP to address the problem of software fault prediction. These

strategies cover a variety of techniques.

1.1.1 Machine Learning (ML)

As a branch of artificial intelligence, machine learning gives machines the ability

to learn from data and carry out activities that need human knowledge. It

includes a range of methods for extracting patterns and insights from data to

support automated decision-making [26]. Supervised learning [27], which involves

learning from labeled data, unsupervised learning [28], which involves learning

from unlabeled data, and reinforcement learning [29], which involves learning from

feedback, are the three primary forms. In supervised learning, predictions are

created by matching input data with labels. Unsupervised learning is helpful

Introduction 3

for jobs like anomaly detection because it may identify patterns in data such

as associations or outliers. To maximize rewards, reinforcement learning entails

learning from actions and feedback. This technique is helpful in control systems

and decision-making. In software development, machine learning is used for tasks

like defect prediction. Data such as version control history and bug reports are

analyzed using algorithms.

1.1.2 Statistical Modeling (SM)

Predicting software faults is based on statistical modeling, which creates models by

examining past data [30]. By estimating the probability of flaws, statistical methods

increase the precision of fault prediction. These models improve system resilience

and efficiency by facilitating early defect detection, pattern recognition, and resource

allocation optimization in software development [31–33].

1.1.3 Expert Opinion (EO)

Expert judgment is essential in software fault prediction to pinpoint problematic

software modules or code segments [34]. Several methods have been devised to

integrate these viewpoints, augmenting the precision of fault prediction approaches

[34]. These methods improve software system reliability by enabling proactive

issue detection through the combination of human expertise and computational

algorithms.

1.1.4 Similarity Based (SB)

By employing source code similarity to forecast possible mistakes, software fault

prediction through similarity analysis increases testing accuracy in complex soft-

ware systems [35]. Techniques include using probabilistic modeling to assess the

likelihood of faults in individual components and calculating similarity metrics

Introduction 4

based on syntax and semantics. Development teams can improve system depend-

ability and optimize resource allocation across the software development life cycle

by using these strategies to proactively resolve probable faults.

1.1.5 Association Rule Mining (AM)

Software defect prediction relies on association rule mining, a fundamental data

analysis technique that finds important patterns in large datasets by defining rules

based on program parameters like lines of code and object coupling [36]. This

procedure makes it easier to identify rules, improves prediction accuracy, and

makes it possible to manage intricate interactions in dynamic software systems [37].

Software development teams can learn more about the causes of fault occurrences

by assessing the importance of rules that are found. Metrics are also used to

evaluate rule quality, which enhances the quality and dependability of software

systems.

Machine learning (ML) is a popular choice for software fault prediction (SFP) [38].

Metrics and fault data, which might be continuous or discrete (binary or ordinal),

are essential to SFP. Regression-based techniques like Linear Regression handle

continuous defect data [15, 39], while classification-based ML methods like Decision

Trees and Neural Networks handle discrete defect data. In SFP, the emphasis is

frequently on classifying modules as faulty or not, allowing for focused interventions

to raise the caliber of software. The goal of machine learning algorithms customized

for defect data is to improve forecast accuracy and support software development

workflow decision-making.

1.2 Machine Learning

In predictive analytics on software defects, machine learning plays a crucial role

in software fault prediction by helping to identify faults before they happen [40].

This proactive strategy lowers development costs, lessens risks, and improves the

Introduction 5

dependability and quality of software. Usually, the procedure proceeds through

some linked stages (Show in Fig 1.1):

1.2.1 Data Collection (DC)

The gathering of comprehensive and diversified datasets related to software devel-

opment processes is the cornerstone of software fault prediction [40]. Code metrics,

version control information (commits, branches), bug reports, testing outcomes,

and developer activity are just a few of the important pieces of data that are

included in these datasets. Predictive models are built upon this data as their

foundation.

1.2.2 Feature Extraction (FE)

After data collection, essential characteristics are taken out of the collected datasets

to capture important aspects of the software development environment [40]. These

features cover a wide range of topics, such as developer experience, previous issue

complaints linked to particular modules or components, code complexity metrics,

and code churn (frequency of code changes). The next step in the modeling process

depends critically on the extraction of discriminating characteristics.

1.2.3 Labeling (Lb)

Alongside feature extraction, the collected data is carefully labeled to indicate

whether or not specific software modules or components have bugs [40]. This

labeling procedure classifies cases based on previous problem reports or testing

results. In later stages, supervised learning algorithms rely heavily on the precise

labeling of data instances.

Introduction 6

1.2.4 Training Data Preparation(TDP)

To aid in the training and assessment of machine learning models, the labeled

data is divided into separate training and testing datasets [40]. By exposing

prediction models to labeled examples, the training dataset acts as a crucible for

their refinement. On the other hand, the testing dataset makes it possible to

evaluate the generalization and performance of the model on untested data.

Figure 1.1: General procedure proceeds in ML

1.2.5 Model Selection and Training (MST)

For software fault prediction tasks, a wide range of machine learning techniques

can be used, such as logistic regression, decision trees, random forests, support

vector machines, and neural networks [40]. These algorithms iterate over the

training dataset to identify complex correlations and patterns between input feature

existence and software component defects. The choice of the best model depends

on factors including computing efficiency, interpretability, and performance.

Introduction 7

1.2.6 Model Evaluation (ME)

After training the model, a thorough assessment is conducted using the testing

dataset to determine the prediction models’ reliability and effectiveness [40]. Nu-

merous assessment criteria, including receiver operating characteristic (ROC) curve

analysis, accuracy, precision, recall, and F1-score, provide quantifiable information

about how well machine learning models predict the future.

1.2.7 Deployment and Monitoring (DM)

After achieving an acceptable model, it is deployed in real-world software develop-

ment settings to initiate ongoing code change monitoring and fault-prone module

or component identification [40]. Predictive models can be adaptively refined to

take into account changing software development techniques and trends through

regular monitoring and retraining cycles. Organizations can proactively strengthen

their software ecosystems against potential defects by utilizing machine learning

techniques in software fault prediction endeavors. This can improve software

quality, reduce development costs, and strengthen overall software reliability and

maintainability. The deliberate incorporation of predictive analytics portends well

for the further use of flexible and robust software development methodologies in

modern environments.

1.3 Software Metrics

Software metrics are indispensable tools in the realm of software development,

serving as the foundation for understanding, evaluating, and improving various

aspects of software projects [41]. These metrics, ranging from measures of code

complexity to indicators of code quality and performance, offer invaluable insights

that guide developers, project managers, and stakeholders in making informed

decisions [42]. By harnessing software metrics, SFP can proactively detect potential

faults before they escalate into full-blown faults [43] [44] [45]. Early identification

Introduction 8

of problematic areas allows for timely intervention, reducing the likelihood of costly

rework and delays in the development timeline [43]. Moreover, SFP using software

metrics enables teams to prioritize testing efforts by directing resources toward

the most critical and high-risk areas of the code. Through software metrics SFP

enhances the effectiveness of testing processes, resulting in more robust and reliable

software products [46].

Beyond defect prediction, software metrics play a pivotal role in quantifying code quality

and stability. Metrics such as code complexity, code coverage, and code duplication

provide objective measures of the health of the codebase, guiding efforts to refactor

and optimize code for improved maintainability and reliability. Additionally, software

metrics facilitate data-driven decision-making, empowering project managers [47] and

stakeholders to allocate resources efficiently, manage risks effectively, and drive the

project towards successful outcomes[48]. In essence, in SFP software metrics serve as

the compass that navigates software development endeavors, guiding teams toward the

creation of high-quality, fault-tolerant software solutions [49]. Embracing the insights

gleaned from these metrics empowers teams to mitigate risks, streamline processes, and

ultimately deliver software that meets the highest standards of excellence [50].

1.3.1 Product Metrics

Software product metrics are numerical measurements that are used to evaluate

a software product’s size, complexity, quality, performance, and maintainability,

among other characteristics [51]. Software volume is measured by size measures

like function points (FP) and lines of code (LOC). Complexity measures, such

as Halstead and cyclomatic complexity, assess the complexity of code to forecast

fault-proneness and maintainability. Defect density and reliability are examples of

quality metrics that quantify the quantity of flaws and dependability of a system.

While maintainability measures like code churn and coupling measure how easy it is

to update the software, performance metrics evaluate reaction time and throughput.

Additional measures of component adaptation and program resilience against

vulnerabilities are provided by reusability and security metrics. When combined,

Introduction 9

these indicators offer thorough insights to enhance the quality, maintainability, and

overall effectiveness.

1.3.2 Process Metrics

Process metrics, which include development time, and coding standard adherence,

show how effective and efficient the software development process is [52]. These

indicators guide attempts to improve productivity and optimize processes by

providing insights into the state and effectiveness of the development process.

1.3.3 Project Metrics

Project metrics assess variables including resource use, budget adherence, and

schedule compliance, and offer insight into project-specific dynamics [53]. Project

metrics provide project managers with the ability to monitor progress and make

well-informed strategic decisions to ensure project success by providing them with

visibility into key performance indicators, such as resource allocation and milestones

achieved.

To sum up, software metrics are essential instruments for assessing, tracking, and

enhancing software development projects. Organizations can improve their capacity

to produce high-quality software products quickly and effectively, which will lead

to overall success in software development projects, by utilizing product, process,

and project metrics.

1.4 Significance of Software Metrics in SFP

SFP relies heavily on the combination of machine learning and software metrics [43].

These metrics measure several aspects of the software and help find places that are

prone to errors [54]. By automating the discovery of patterns in historical data,

machine learning makes it possible to create prediction models that identify software

Introduction 10

components that are prone to errors. Combining machine learning techniques with

software measurements to detect faults has several advantages [54]:

• Improved prediction accuracy.

• Early detection of faults.

• Resource optimization.

• Continuous improvement.

In summary, the combination of software metrics with machine learning techniques

enables organizations to proactively detect and fix software defects, resulting in the

development of high-caliber software products and enhancing the dependability of

software systems. Employing this cooperative integration, companies set out to

cultivate a proactive fault management strategy, which in turn leads to previously

unheard-of levels of efficacy and durability for their software engineering initiatives.

1.5 Research Objectives

Investigating the breakdown of Halstead base metrics and their use in SFP is the

main goal of this study. This study aims to fill in the gaps in existing approaches

and increase the precision of prediction models in detecting software components

that are prone to faults by utilizing a systematic deconstruction methodology. The

following are the goals of this study:

1.5.1 Decompose Halstead Base Metrics for Enhanced Pre-

dictive Accuracy

Examine the viability and efficiency of breaking down Halstead base metrics into

more manageable parts, such as operators and operands. The goal of this procedure

is to produce a more comprehensive feature set that improves machine learning

models’ ability to predict software faults.

Introduction 11

1.5.2 Determine Optimal Decomposition Levels

Investigate several decomposition levels to determine the ideal granularity that

produces the best prediction accuracy. To guarantee practical applicability, this

goal entails evaluating the trade-offs between computing efficiency and predictive

performance.

1.5.3 Quantify the Impact on Fault Prediction Precision

Examine the effects of deconstructed Halstead metrics on fault prediction models’

accuracy. This entails assessing how well they differentiate between components

that are prone to errors and those that are not, as well as comprehending the

consequences for software testing methodologies.

1.5.4 Validate Comparative Models

Use both traditional and decomposed Halstead measures to validate prediction

models. To find out if decomposition significantly improves predictive performance

especially in datasets with different levels of complexity a comparison analysis will

be carried out.

1.5.5 Enhance Quality Assurance Practices in Software En-

gineering

Give practitioners of software engineering practical advice and insights. The

accuracy and effectiveness of quality assurance procedures can be improved by

showcasing how deconstructed metrics can be incorporated into current fault

prediction methods.

Introduction 12

1.5.6 Advance the Understanding of Metric Decomposi-

tion in SFP

Examine the theoretical foundations and real world uses of metric decomposition

to add to the corpus of knowledge in software defect prediction. The goal of this

study is to lay the groundwork for further research in this area. By fulfilling these

goals, the study not only fills in knowledge gaps in the area but also offers useful

resources and perspectives to practitioners in the industry, thereby advancing the

discipline of software engineering.

1.6 Problem Statement

Feature decomposition to improve ML models predictiveness is proven except in SFP.

The role of SFP is crucial in ensuring software reliability. The research community

has made significant efforts to enhance SFP by selecting effective ML models and

identifying optimal combinations of software metrics. However, the effectiveness of

metric decomposition in SFP remains under explored in the literature. While the

Halstead metric suite has been widely recognized for its contribution to software fault

prediction since its inception in the 1970s, existing studies have predominantly utilized

these metrics in their original form, employing operators and operands as is. The

potential of decomposing operators and operands to provide more granular insights,

thereby improving the performance of machine learning models, has not been adequately

investigated in current research.

1.7 Proposed Idea

Software testing is an essential part of the software development life cycle [55] and

has a big impact on the final product’s quality and dependability [56]. In this

field, software fault prediction shows up as an essential instrument for anticipating

and fixing possible errors [57]. Although research is still being done, improving

Introduction 13

forecast accuracy is still the major goal [58]. The current research efforts are

focused on improving the efficacy of software fault prediction using a variety

of strategies, including improvements in machine learning algorithms, quality

dataset optimization, and the tactical incorporation of software metrics for fault

prediction [59–61]. The Halstead metric stands out as a significant contributor,

demonstrating a high degree of effectiveness in previous fault prediction attempts

[62–69]. However, a fascinating question emerges: is it possible to improve software

defect prediction even more by decomposing the Halstead metric? Although there

is theoretical potential, there are currently few practical studies in the literature

that examine the efficacy of deconstructed Halstead measures. As a result, a sizable

gap remains, emphasizing the necessity for careful testing to assess the viability

and effectiveness of such an advanced strategy. Closing this gap could lead to

improved software engineering predictive tactics and a deeper understanding of

software error prediction mechanisms. Our proposed solution not only provide an

efficient mechanism for fault prediction in resource-constrained software system

but also ensure consistency, which ultimately reduces the computational overhead

of model.

1.8 Research Questions

RQ 1: How can the features (metrics) be decomposed in to more gran-

ular features to improve SFP?

Rationale: The purpose of this research question is to examine the decomposition

of Halstead base metrics. These measures gauge a software program’s complexity

by counting the distinct operators and operands within it. They are essential in

identifying implementation flaws and the amount of effort needed for development

and upkeep. However, there are built-in drawbacks as well, such as the notion that

all operators and operands are of equal significance and that all programming lan-

guages and development environments follow the same metrics. Thus, investigating

possible techniques and approaches for dissecting Halstead’s basic measurements

into its component elements or sub-metrics is essential. This entails classifying

Introduction 14

arithmetic, logical, and control operators in addition to differentiating between

input and output.

RQ 2: What is the impact of decomposed Halstead base metrics in

SFP?

Rationale: The implications of using deconstructed Halstead base metrics in

Software Fault Prediction (SFP) are examined in this research question. SFP

comprises the use of machine learning and data analysis tools to proactively identify

potential software flaws or vulnerabilities. This procedure helps programmers

anticipate issues and address them before they become more serious, producing

software that is more error-free and of higher quality. SFP, however, frequently

ignores the subtleties of the algorithms and code that power system functionality.

Comparing and evaluating the results obtained by breaking down Halstead base

measurements with traditional measurements is crucial. To do this, it is necessary

to choose pertinent performance measures, assess the impact of various datasets,

and determine whether decomposed Halstead base metrics are appropriate in a

variety of software engineering domains, such as reliability testing, prediction, and

maintenance.

1.9 Research Scope

This research focuses on addressing the gap in literature by exploring the impact

of decomposing Halstead metrics on the predictability of software fault prediction

(SFP). The dissertation aims to evaluate how the decomposition of these metrics

influences the accuracy and effectiveness of machine learning models in fault

prediction. Specifically, the research will:

1.9.1 Focus Areas

Investigate the theoretical foundation and practical application of Halstead metrics

in the context of SFP. Propose a method for decomposing Halstead metrics to

Introduction 15

extract potentially more informative features for machine learning models. Conduct

experimental evaluations to assess the predictive performance of machine learning

models using decomposed Halstead metrics.

1.9.2 Exclusions

The research will not explore alternative software metrics beyond the Halstead

suite, as the study is confined to evaluating the decomposition of this specific

metric suite. The research will not explore alternative software metrics beyond the

Halstead suite, as the study is confined to evaluating the decomposition of this

specific metric suite. Broader aspects of software fault prediction, such as runtime

fault analysis, real-time fault detection, or non-machine-learning-based approaches,

are outside the scope of this research. The deseration does not aim to propose new

machine learning algorithms but will utilize existing algorithms to validate the

effectiveness of Halstead metric decomposition.

1.9.3 Constraints and Limitations

The research is limited to publicly available datasets and does not include propri-

etary or domain-specific datasets due to accessibility constraints. The experimental

results are based on controlled setups and may not account for all real-world

complexities, such as rapidly evolving software ecosystems or diverse development

methodologies. By clearly defining the boundaries, this research aims to provide

a focused investigation into the role of Halstead metric decomposition in SFP,

while acknowledging areas that remain outside its scope due to constraints and

limitations.

1.10 Research Methodology

This study uses a systematic approach to enhance software fault prediction (SFP)

through the use of machine learning methods using decomposed Halstead base

Introduction 16

metrics. Five interrelated phases make up the methodology, which is shown in

Figure 1.2 of the dissertation and systematically fills in the gaps in conventional

SFP approaches.

Figure 1.2: Methodology of research

1.10.1 Understanding Existing SFP Techniques

A critical evaluation of previous research and approaches in software fault prediction

is part of the first phase. This entails examining the constraints of Halstead metrics,

evaluating their past implementations, and investigating the developments of SFP’s

machine learning algorithms. The review identifies shortcomings in conventional

SFP models, especially the low granularity of Halstead metrics, which limits the

predictive power of these models. This stage creates a strong basis for suggesting

novel approaches by combining knowledge from earlier studies.

1.10.2 Defining the Research Gap

Building on the literature assessment, the study pinpoints a particular weakness:

the low granularity of un-decomposed Halstead metrics, which limits their usefulness

Introduction 17

in fault prediction. In this stage, it is hypothesized that Halstead measures can be

made more useful as predicting features by breaking them down into smaller parts.

In order to better accommodate the complexity of contemporary software systems,

the decomposition focuses on producing granular representations of operators and

operands.

1.10.3 Decomposition of Halstead Metrics

Halstead base metrics must be systematically decomposed during this crucial stage.

To improve their interoperability and predictive value, operators and operands are

divided into subgroups.

Operators: Divided into assignment, arithmetic, logical, and relational categories.

Operands: Differentiated into variables and constants.

This decomposition facilitates the identification of fault-prone areas in software by

capturing detailed interactions between code components. A custom-built metrics

extractor is utilized to achieve this decomposition efficiently, ensuring accuracy

and scalability.

1.10.4 Dataset Design and Development

A customized dataset is created for experimental assessment based on the decom-

posed Halstead metrics. This dataset consists of:

Decomposed Halstead metrics alongside traditional Halstead metric suite, Lines of

Code (LoC) and McCabe complexity. Fault information obtained from software

sources that are openly accessible. Testing of decomposed Halstead base metrics in

real world settings is made possible by the dataset’s assurance of comprehensiveness

and relevancy. To preserve the contextual links between operators and operands, a

hierarchical tree structure is used during the data extraction process.

Introduction 18

1.10.5 ML Model Evaluation

The effectiveness of decomposed Halstead base metrics in SFP is assessed in the

last stage using machine learning methods. Logistic Regression, Random Forests,

Support Vector Machines (SVM), and Decision Trees are some of the models used.

The created dataset is used to train and evaluate these models. To compare models

and evaluate the advantages of decomposition, performance metrics like Accuracy,

Precision, Recall, F-measure, and Area Under the Curve (AUC) are used. To

guarantee resilience in a variety of software environments, sensitivity analyses are

carried out. This thorough approach offers practical suggestions for enhancing

SFP practices in addition to advancing the theoretical understanding of Halstead

measures. The suggested method improves software engineering by resolving the

drawbacks of conventional metrics and combining them with machine learning.

1.11 Contribution

As scholars, we undertake a critical investigation into the topic of software fault

prediction (SFP) using Halstead metric suite and its essential function in improving

processes related to software testing and quality assurance. Acknowledging the

importance of this field, we conduct a thorough analysis of current SFP approaches,

concentrating on the application of machine learning (ML) methods and various

metrics as predictive markers. We attempt to contribute to this area by putting

out a novel method for decomposing Halstead base metrics in the different types

of operator and operands.

These line-level metrics are essential for measuring the size and complexity of code.

We present an approach that first divides these metrics into operators and operands

and then classifies them into different categories according to their attributes and

functions. Using datasets created especially for this purpose, we do a thorough

examination to verify the effectiveness of our suggested approach. We carefully

compare the performance of our suggested approach with that of the original

Introduction 19

Halstead base measures and other commonly used metrics in the SFP area by

utilizing six ML classifiers.

We believe that this thorough investigation (Effectiveness of Decomposition of

Halstead base metrics in SFP) will shed light on the innovative decomposition

method’s suitability and efficacy for software fault prediction jobs. Through a

thorough analysis of our approach’s performance in comparison to recommended

practices and metrics, we believe in furthering the field of SFP approaches and

providing practitioners with useful tools for improving software maintainability

and accuracy.

Our work aims to close the knowledge gap between theoretical understandings

and real-world implementations, which will ultimately promote stronger software

development procedures and better software quality assurance systems.

1.12 Dissertation Outline

The dissertation outline is as follows: Chapter 2 briefly discusses the literature

review. Chapter 3 focuses on the methodology. Chapter 4 elaborates the concept

of decomposition and its implication in Halstead base metric. Chapter 5 elaborate

the experimental design and results. Finally, Chapter 6 concludes the conclusion

and future directions for research.

Chapter 2

Literature Review

Our main goal is to assess how well software metrics (features) can be decomposed

to improve SFP through ML. In ML, feature decomposition is the process of

dividing intricate features into smaller, more understandable parts. This method

can lower dimensionality, improve model interpretability, and make it easier to

find significant patterns in data. Models can increase prediction accuracy and

generalization by better differentiating between pertinent and irrelevant information

through feature decomposition. Although feature decomposition has been shown to

be useful in a number of fields [70–72], its use in SFP has not yet been investigated.

We have undertaken a thorough review from two different angles to fill the vacuum

in the literature on this subject.

Firstly, we investigated prevailing trends in SFP, with a specific focus on the

utilization of Machine Learning (ML) algorithms and datasets. This exploration

not only provided us with insights into the current state of SFP but also guided

the selection of appropriate datasets and ML algorithms for our experimental

investigations.

Secondly, we aimed to identify commonly employed software metrics used in

conjunction with the Halstead metrics suite for SFP. This objective was pivotal,

as SFP often necessitates the integration of diverse software metrics with ML

techniques for accurate prediction of software faults. By identifying these commonly

used software metrics and understanding their relationship with the Halstead

20

Literature Review 21

metrics suite, we aimed to identify a robust decomposition of features for SFP

that incorporates a comprehensive range of factors for improved fault prediction

accuracy.

Through our literature review, we laid the groundwork for our subsequent empirical

analyses, facilitating a deeper understanding of the complexities inherent in software

fault prediction and potential chances for improvement.

2.1 Prevailing Trends in SFP

We meticulously examined a comprehensive selection of systematic literature reviews

(SLRs) to swiftly discern and synthesize the prevailing trends in SFP. Through this

meticulous process, we aimed to gain a panoramic view of the current landscape

in SFP, paying particular attention to the evolving nature of datasets and the

dynamic utilization of a diverse array of Machine Learning (ML) algorithms. By

harnessing the insights gleaned from these SLRs, we were able to ascertain the

predominant research directions and methodologies, facilitating the identification

of the most pertinent and contemporary research gaps in the field of SFP.

Moreover, this thorough examination of systematic literature reviews served as a

robust foundation for the subsequent steps of our research, enabling us to make

informed decisions regarding the selection of relevant datasets and the adoption of

suitable ML algorithms for our experimental investigations. This strategic approach

not only bolstered the credibility of our research but also fortified the rigor of our

methodology, ensuring that our subsequent analyses and experiments were firmly

grounded in the most up-to-date and relevant research findings.

By leveraging the comprehensive insights garnered from literature review of SLRs,

we were able to lay the groundwork for a well informed and comprehensive analysis of

the decomposed Halstead base metrics in the context of SFP. SLRs findings equipped

us with a holistic understanding of the current research landscape, enabling us

to navigate the complexities of SFP research with precision and purpose, and

Literature Review 22

positioning our study to make significant contributions to the advancement of fault

prediction methodologies in software engineering.

Catal and Diri [38] emphasizes several key findings in SFP research, including

the widespread utilization of method-level metrics, the growing prevalence of

public datasets, and the increased adoption of machine learning techniques. These

observations serve as important insights for advancing the field and enhancing

the precision and efficacy of SFP models. By recognizing and implementing these

recommendations, researchers and practitioners can contribute to the ongoing

development and refinement of SFP methodologies.

Catal [15] presents a comprehensive survey of the software engineering literature

on SFP, covering both machine learning-based and statistical-based approaches.

The survey findings indicate that a significant proportion of the studies examined in

this survey concentrate on method-level metrics, with machine learning techniques

being the primary approach employed for constructing prediction models. Notably,

the study suggests that Näıve Bayes emerges as a robust machine learning algorithm

suitable for supervised SFP.

Hall et al [73] highlights the presence of exemplary fault prediction studies while

emphasizing the existence of unresolved inquiries concerning the development of

efficient fault prediction models for software systems. It asserts the necessity for

additional studies that conform to reliable methodologies and consistently document

contextual details and methodologies. The accumulation of a larger body of such

studies would facilitate meta-analysis, provide practitioners with the confidence to

adeptly choose and implement models in their systems, and ultimately augment the

influence of fault prediction on the quality and cost of industrial software systems.

Malhotra [74] review that focuses on evaluating the performance of machine

learning (ML) techniques in Software SFP. The review involves analyzing the

quality of 64 primary studies conducted between 1991 and 2013. The characteristics

of these studies, including metrics reduction techniques, metrics used, data sets,

and performance measures, are summarized. The performance of ML techniques in

SFP is assessed by comparing them to models predicted using logistic regression.

Literature Review 23

Furthermore, the performance of ML techniques is analyzed in comparison to other

ML approaches.

Wahono [75] analyzes 71 studies published between 2000 and 2013 to understand

trends, datasets, methods, and frameworks used in software fault prediction. The

research primarily focuses on estimation, association, classification, clustering,

and dataset analysis. Classification methods dominate the studies, accounting

for 77.46%, followed by estimation methods at 14.08%, and clustering/association

methods at 1.41%. Public datasets are utilized in 64.79% of the studies, while

private datasets are used in 35.21%. The review identifies seven frequently employed

methods: Logistic Regression, Näıve Bayes, K-Nearest Neighbor, Neural Network,

Decision Tree, Support Vector Machine, and Random Forest.

Rathore and Kumar [21] provides an examination of SFP through a compre-

hensive analysis of the existing literature. The review encompasses various aspects

including software metrics, fault prediction techniques, concerns related to data

quality, and evaluation measures for performance. By exploring these domains, the

review sheds light on the challenges and methodological issues that are inherent

in this field. Existing studies predominantly concentrate on object-oriented (OO)

metrics and process metrics, and they primarily utilize publicly available data.

Statistical techniques, particularly binary class classification, are widely employed

in these studies. A considerable amount of attention has been given to tackling

issues such as high data dimensionality and class imbalance quality. Performance

metrics like accuracy, precision, and recall are commonly used in assessing the

performance of these fault prediction techniques.

Caulo [76] introduces a comprehensive taxonomy of metrics for SFP. The taxonomy

comprises a total of 526 metrics employed in research papers published from 1991

to 2017. The paper emphasizes the significance of evaluating the efficacy of each

metric in SFP. Additionally, the author proposes to categorize the identified metrics

based on their co-linearity, thereby facilitating the exploration of relationships

between different metrics and their collective influence on SFP.

Literature Review 24

Pandey et al [40] presents a comprehensive analysis of machine learning-based

methods for SFP. Its primary objective is to explore and summarize the current

state of the field by examining a diverse range of ML techniques and approaches

utilized in SFP. The survey underscores the importance of leveraging machine

learning for fault prediction and acknowledges its potential to improve software

quality and reliability.

It delves into various machine learning algorithms, including decision trees, support

vector machines (SVM), neural networks, and ensemble methods, and investigates

their specific applications in the context of fault prediction.

Pachouly et al [57] provides a comprehensive overview of software fault prediction

using artificial intelligence (AI). It covers four key aspects: datasets, data validation

methods, approaches, and tools. The review emphasizes the importance of high-

quality datasets and explores different validation methods to ensure accurate and

reliable data.

It discusses various AI techniques and algorithms used in defect prediction, high-

lighting their strengths and limitations. Additionally, it identifies and examines

tools and frameworks that aid in implementing and evaluating AI models for defect

prediction.

A large number of Systematic Literature Reviews (SLRs) in the field of Software

Fault Prediction (SFP) have produced valuable insights and suggestions that have

advanced this field considerably. The studies that are part of these evaluated SLRs

have carefully examined software fault prediction performance, providing insight

into the effectiveness of different techniques and strategies. As seen in Figure 2.1 of

the examined SLRs, the distribution of these studies over time shows how the field

of interest in software fault prediction has changed over time. The figure provides

a thorough summary of this distribution, highlighting changes and patterns in the

attention and emphasis of research.

Surprisingly, since 2005, there has been a discernible rise in the number of studies

published, suggesting that there is an increasing focus on current and relevant

research in this area. This increase is in line with the creation of the PROMISE

Literature Review 25

repository in 2005, which gave academics access to publicly available datasets for

testing and validation.

4.png 4.png 4.png 4.png 4.png 4.png 4.png 4.png 4.png

Figure 2.1: Number of SLRs on SFP per year

In conclusion, the examined SLRs provide insightful information about the

development and course of software fault prediction research, emphasizing the

field’s continuous quest of innovation and advancement in software engineer-

ing. By means of a methodical analysis and integration of extant literature,

these reviews enhance our comprehension of cutting-edge approaches, pat-

terns, and obstacles in software fault prediction. This, in turn, directs future

research paths and shapes industry standards for the improvement of software

development procedures and results.

According to the conclusions drawn from the primary papers that were included in

the Systematic Literature Review (SLR) that was examined, some journals that

are dedicated to software fault prediction are very important in the field. These

results, which were carefully extracted from the academic literature, are briefly

Literature Review 26

summarised in Figure 2.2, which explains the importance of particular publications

in the field of software fault prediction.

Figure 2.2: Journal publication and distribution of studies in SLRs

The purposeful omission of conference proceedings from the graph’s portrayal is

noteworthy. This limiting step makes sure that the analysis is only about the

contributions of journals in this particular context, which improves the analysis’s

relevance and clarity.

The graphical representation, which is based on the isolation of journal publications,

offers a thorough overview of the scholarly landscape and enables a nuanced

comprehension of the primary sources that propel breakthroughs and insights in

the field of software fault prediction research.

The variety of dataset types used in software fault prediction research between

1990 and 2023 is shown in Figure 2.3. According to the analysis, 52% of the

research projects that were analysed depended on public databases, whereas 31%

Literature Review 27

of the studies used private datasets. This represents a considerable majority. The

majority of public datasets come from repositories such as NASA MDP (Metrics

Data Programme) and PROMISE, where they are freely accessible to the larger

research community.

Private datasets, on the other hand, are the intellectual property of businesses and

are not publicly shared like their public equivalents. Private datasets are typically

restricted to use within their own firms and cannot be accessed for external scrutiny

or analysis. As a result, different methods must be used to validate and replicate

research findings. The distribution throughout the years shows how interest in

different dataset types changes over time.

Figure 2.3: Type of datasets in SFP

Regretfully, a considerable fraction of the research, at 31% of the total, made use

of private datasets.

According to this statistic, just one study out of every three produces findings that

are comparable and repeatable. However, because their datasets are not publicly

available, it is impossible to compare the results of this research with those of

suggested models. Notably, as [77] emphasizes, the use of standard datasets makes

research projects reproducible, disputable, and verifiable.

Literature Review 28

Figure 2.4: Private, Public dataset trend over the time distribution.

Table 2.1: Public and Private datasets with their names and sours

Dataset Name Type Location/ Source

PROMISE Dataset Public http://promise.site.

uottawa.ca/SERepository

NASA MDP (Metric Data Program) Public https://mdp.ivv.nasa.gov

Apache Dataset Public https://github.com/apache

Proprietary Software X Private Confidential –

Internal Repository

Proprietary Software Y Private Confidential -

Client Dataset

The distribution of primary research by source and over time is shown in Figure 2.4.

Interestingly, since 2003, there has been a noticeable increase in publications and

the use of public datasets for research on software fault prediction. The PROMISE

repository was established in the same year as this trend. Moreover, scholars are

becoming increasingly aware of the need to utilize public datasets in their studies.

Literature Review 29

Some of the public and private datasets are listed in Table 2.1 with their sours

information.

Figure 2.5: Research dimensions in the domain of SFP

A detailed breakdown of research areas related to software fault prediction from 2000

to 2024 is shown in Figure 2.5. The analysis shows that classification issues account

for a preponderant 77.3% of research efforts. This large percentage emphasizes how

critical it is to correctly classify software fault in both academic and professional

settings.

On the other hand, a lesser but significant portion of 14.1% of the research addresses

estimating methods, emphasizing how important it is to forecast the frequency and

seriousness of fault in software systems.

Literature Review 30

Moreover, a small percentage of original research 5.6% focuses on themes related to

dataset analysis. The focus on dataset analysis highlights the importance of feature

engineering to enhancing the performance of defect prediction models. Interestingly,

even though they are important, clustering and association are only covered by 1.4%

and 1.6% of all studied subjects. Even though they are less common, these research

areas provide insightful information about different strategies and techniques for

dealing with software fault prediction problems.

To sum up, Figure 2.5 explanation of the research dimensions distribution highlights

the wide range of approaches and strategies used to achieve accurate software fault

prediction. Through exploring a wide range of subjects related to association, clus-

tering, dataset analysis, estimation, and classification, researchers aim to promote

innovation and push the boundaries of this vital field of software engineering.

It can be concluded that a predominant portion of software fault prediction re-

searchers have gravitated towards the classification paradigm as their primary

research focus. This preference can be attributed to several factors, each contribut-

ing to the prominence of classification in the field of SFP.

Firstly, the alignment between classification topics and industrial demands un-

derscores its significance. Industrial requirements necessitate methods capable of

accurately predicting which modules are more susceptible to defects, facilitating

the allocation of testing resources with greater precision.

By employing classification techniques, researchers can provide actionable insights

into defect-prone areas, thereby aiding in the optimization of testing strategies and

resource allocation within software development projects.

Secondly, the widespread availability and utilization of datasets, such as the

NASA MDP dataset, predominantly designed for classification tasks, serve as

another catalyst for the emphasis on classification methods. These datasets offer

comprehensive repositories of historical software metrics and defect data, facilitating

the exploration and application of various classification algorithms for predictive

modeling purposes.

Literature Review 31

Figure 2.6: Most used methods in SFP

However, a notable dearth of studies in clustering and association related topics

persists within the realm of software fault prediction research. This dearth can

potentially be attributed to the perceived inadequacies of clustering and association

methods in yielding desirable performance outcomes. Unlike classification tech-

niques, clustering and association methods may encounter challenges in effectively

delineating distinct groups or uncovering meaningful associations within software

development data. Consequently, researchers may be disinclined to pursue these

avenues due to concerns regarding the viability and publish ability of research

outcomes that fail to meet established performance benchmarks. In essence, while

classification remains the predominant focus in software fault prediction research,

the delineated reasons underscore the multifaceted dynamics shaping research

priorities within the field. The convergence of industrial imperatives, dataset avail-

ability, and performance considerations collectively influence the research landscape,

ultimately guiding the selection and exploration of research topics within software

fault prediction.

Literature Review 32

In the realm of SFP, classification stands as the prevailing method employed

for predictive modeling. Given the significance of classification techniques in this

domain, it is imperative to discern the prominent methodologies utilized for software

fault prediction. As such, a comprehensive examination has been undertaken to

identify the seven most applied classification methods in software fault prediction,

delineating their significance and prevalence within the field of SFP. These methods,

elucidated in Figure 2.6, encompass a spectrum of algorithmic approaches tailored

to address the intricacies inherent in software fault prediction.

Figure 2.7: Methods distribution in studies

In elucidating these seven predominant classification methods, the foundational

pillars of software fault prediction are fortified, providing practitioners and re-

searchers with invaluable insights into the diverse array of methodologies available

to address the challenges inherent in predicting software faults.

Naive Bayes (NB), Decision Trees (DT), Neural Networks (NN), and Random

Forests (RF) represent the four most commonly employed machine learning algo-

rithms in the context of software fault prediction.

Literature Review 33

Remarkably, these algorithms were embraced by a significant majority, constituting

approximately 75% of the studies analyzed, as depicted in Figure 2.7. This preva-

lence underscores the widespread recognition and utilization of these algorithms

within the software engineering community for the critical task of fault prediction.

Figure 2.8: Performance measure used in studies.

Figure 2.8 illustrates the spectrum of performance measurements employed across

numerous studies within the Software Fault Prediction (SFP) discipline. It is

evident that among the array of performance metrics, Recall and Receiver Operating

Characteristics (ROC) have garnered considerable attention and are prominently

featured in the literature. Conversely, the category denoted as ”Miscellaneous”

encompasses a collection of evaluation measures that have been infrequently utilized

in SFP research, as depicted in Figure 2.8. Additionally, Precision and Accuracy

emerge as significant contributors to the evaluation landscape of SFP, finding

consistent application across a majority of studies within the field. The adoption

of these metrics underscores their relevance and utility in assessing the predictive

capabilities of machine learning algorithms for software fault detection. Conversely,

certain performance metrics such as F-measure, Probability of False Alarm (PFA),

Specificity, Balance, G-mean, Completeness, and False Negative Rate (FNR) are

observed to be less prevalent in the literature, as indicated by their minimal

Literature Review 34

representation in Figure 2.8. Despite their potential value in providing nuanced

insights into model performance, their comparatively limited utilization suggests

a need for further exploration and validation within the context of software fault

prediction.

In summary, Figure 2.8 serves as a comprehensive visualization of the distribution

of performance measurements across SFP studies, highlighting the varying degrees

of emphasis placed on different performance metrics and signaling potential areas

for future research inquiry and methodological refinement. Our primary focus

was on Machine Learning (ML) however, Deep Learning (DL) also proves to be

effective for large datasets when sufficient computational resources are available

for Software Fault Prediction (SFP) [78].

2.2 Software Metrics

Software fault prediction relies on a wide range of metrics to assess the quality and

reliability of software code [42]. These metrics, categorized at different levels of

granularity within the software hierarchy, provide insights into potential fault-prone

areas. This section explores software metrics used in fault prediction at various

levels: file, class, method, component, and line [79].

2.2.1 File level metrics

Provide a high-level overview of individual source code files and their characteristics.

Common file-level metrics include:

Lines of Code (LOC): Measures the number of lines of code within a file.

Cyclomatic Complexity: Quantifies the structural complexity of a file based on

control flow.

Code Duplication: Identifies duplicated code segments within files.

Literature Review 35

Halstead Complexity Measures: Evaluate the volume and difficulty of code

within a file.

Analyzing file-level metrics helps identify files that may be more prone to faults

due to their complexity or size.

2.2.2 Class level metrics

Focus on object oriented programming constructs and assess the characteristics of

individual classes or modules. Key class-level metrics include:

Coupling: Measures the degree of interdependence between classes.

Cohesion: Indicates the strength of the relationships within a class.

Depth of Inheritance Tree (DIT): Represents the number of classes in the

inheritance hierarchy.

Identifying classes with high coupling or low cohesion can highlight potential areas

of concern for fault prediction.

2.2.3 Method Level Metrics

Delve into the characteristics of individual methods or functions within classes.

These metrics include:

Cyclometic Complexity: Evaluate the complexity of individual methods based

on control flow.

Lines of Code (LOC) per Method: Measures the size of individual methods.

Halstead base metrics: Measures unique and distinct operators and operands

of individual methods.

Analyzing method-level metrics helps pinpoint specific methods that may be prone

to faults due to their complexity or length.

Literature Review 36

2.2.4 Component Level Metrics

Assess the characteristics and interactions of larger software components or subsys-

tems. These metrics include:

Component Coupling: Measures the degree of interdependence between compo-

nents.

Component Cohesion: Indicates the strength of the relationships within a

component.

Component Size: Quantifies the size or complexity of individual components.

Halstead base metrics: Measures unique and distinct operators and operands

of individual components.

Identifying components with high coupling or low cohesion can aid in predicting

faults within complex software systems.

2.2.5 Line Level Metrics

Provide granular insights into individual lines of code within files. Common line

level metrics include:

Code Churn: Measures the frequency of changes to individual lines of code.

Comment Density: Quantifies the proportion of comments to code within a line.

Halstead base metrics: Measures unique and distinct operators and operands

of individual lines of code.

Analyzing line-level metrics helps identify specific lines of code that may be more

prone to faults due to frequent changes or lack of documentation.

Software development teams can efficiently detect and prioritize potentially fault-

prone areas within the code base by utilizing software metrics at various degrees

of granularity. These metrics support proactive fault prediction and mitigation

Literature Review 37

efforts by offering insightful information on the complexity, size, cohesiveness, and

coupling of software components. Measuring individual functions or methods is

an example of granular metrics that can be used to identify particular locations

where errors may arise due to complexity or size. Higher-level metrics can highlight

more extensive structural problems that may affect maintainability and reliability.

Examples of these metrics are those that evaluate the overall system design or

the inter-module relationships. To get useful insights for software fault prediction

and prevention, these metrics must be interpreted in combination with contextual

information and domain expertise. The context needed to comprehend why some

metrics could point to a problem in one circumstance but not another is provided

by domain knowledge. For example, in a performance-critical module where

optimization is crucial, a high Cyclometic complexity might be acceptable, but in

other areas of the system, it might be cause for concern.

Furthermore, the interpretation of metrics must to take into account contextual elements

including the team’s experience, the development environment, and previous defect data.

Teams can improve the accuracy of fault prediction models by correlating particular metrics

with previous faults using historical data, which can be especially useful. Furthermore,

knowing how external factors—like changing project requirements or technology limita-

tions—affect the data might aid in making better-informed judgments. As a result, even

if software metrics are effective in pointing out possible trouble spots, their full potential

is only fully realized when paired with contextual knowledge and domain-specific insights.

This all-encompassing strategy guarantees that development teams may continuously

enhance the overall quality and resilience of the programme in addition to more successfully

anticipating and preventing errors.

2.3 Software Metrics with Halstead in SFP

Our thorough investigation of studies in the domain of Software Fault Prediction

(SFP) has been specifically geared toward identifying research endeavors that have

exclusively integrated the Halstead metric suite as a fundamental component within

their metric set for software fault prediction. By focusing on these specialized

Literature Review 38

studies, we aimed to discern the distinct impact and significance of the Halstead

metric suite in isolation, thereby elucidating its individual contributions to the

realm of fault prediction within the software engineering domain. Through this

meticulous analysis, we sought to unravel the unique insights and implications

derived from the exclusive utilization of the Halstead metric suite in the context of

SFP. By delving into the methodologies, findings, and limitations of these specific

studies, we aspired to gain a nuanced understanding of the inherent strengths

and potential limitations of the Halstead metrics when employed as the primary

predictive framework for software fault prediction.

Furthermore, by scrutinizing studies that exclusively incorporate the Halstead

metric suite, we aimed to delineate the extent to which these metrics contribute

to the overall efficacy and accuracy of fault prediction models. This exploration

has enabled us to identify the specific nuances and intricacies associated

with the integration of the Halstead metric suite in the predictive analytics

framework, thereby paving the way for a comprehensive evaluation of its

role and significance in the broader context of software fault prediction. By

synthesizing the findings from these studies, our research endeavors to provide

a comprehensive and nuanced perspective on the exclusive utilization of the

Halstead metric suite in SFP, thereby offering valuable insights into its unique

contributions and potential applications in the development of robust and

effective fault prediction models in software engineering. The articles to find

out the accompanying metrics of Halstead metrics suite in SFP have been

discussed below along with the summary in Table 2.2.

Chiu [62] reported the classification accuracy of Halstead, when used with McCabe,

LoC, and Branch count. The modeling has been performed using four different

classification algorithms, i.e., LR, SVM, ANN, and DIN The experiment on KC2

dataset shows the best results when used IDN for modeling.

Dejaeger et al [63] includes LR, RF, and Bayesian Network (BN) classifiers for

modeling on 11 public datasets. Halstead metrics suite along with McCabe and

LoC has been used as an Independent variable (IV) The results, both in terms of

the AUC and H-measure have been recorded wherein NB outperforms.

L
iteratu

re
R

eview
39

Table 2.2: Summarized view of studies using Halstead metric suite

Article Metrics Dataset Technique Performance

Measure

Contribution Best Results

Chiu. (2011) Halstead, McCabe,

LOC, Branch Count

KC2 LR, SVM, ANN,

Integrated decision

network approach

(IDN)

Acc, Pre, Recall, F-

measure

Compare different ML Algorithm IDN Acc(.87)

Dejaeger et al.

(2013)

Halstead, McCabe,

LOC

JM1, KC1,

MC1, PC1,

PC2, PC3,

PC4, PC5,

EC12.0a,

EC12.1a,

EC13.0a

LR, RF, NB AUC, H-Measure Compare different ML Algorithm NB AUC(.85)

Arar and Ayan.

(2015)

Halstead, McCabe KC1, KC2,

JM1, PC1,

CM1

ANN, Artificial Bee

Colony (ABC)

AUC, Acc Compare different ML Algorithm ANN AUC(.79)

Continued on next page

L
iteratu

re
R

eview
40

Article Metrics Dataset Technique Performance

Measure

Contribution Best Results

Dhanajayan and

Pillai. (2017)

Halstead, McCabe,

LOC, Branch Count

CM1 NB, RF, ANN, Spi-

ral life cycle model-

based Bayesian clas-

sification (SLMBC)

False Negative Rate,

False Positive Rate,

Overall error rate

Compare different ML Algorithm RF Acc(.85)

Bhandari and

Gupta. (2018)

Halstead, McCabe,

LOC

JM1, PC1,

KC1, jEdit

RF, DT, NB, SVM,

ANN

Acc, F1-Score, pre-

cision, recall, AUC

Compare different ML Algorithm SVM F1-score(.89)

Shippey et al.

(2019)

Halstead, McCabe,

LOC, Branch Count

T2, T1, EJDT,

ArgoUML, As-

pectJ, JMOL,

GenoViz

NB, DT, RF. Recall, Pre Compare different ML Algorithm SVM Acc(.82)

Ahmed et al. (2020) Halstead, McCabe,

LOC, Branch

Count, Call Pairs

PC1, PC2,

PC3, PC4,

PC5, JM1,

KC1, MC1,

Ecl2.0a,

Ecl2.1a,

Ecl3.0a,

DT, NB, SVM, RF,

KNN, LR,

AUC Compare different ML Algorithm SVM Acc(.86)

Continued on next page

L
iteratu

re
R

eview
41

Article Metrics Dataset Technique Performance

Measure

Contribution Best Results

Cetiner and Sahin-

goz. (2020)

Halstead, McCabe,

LOC

PC1, JM1,

KC1, CM1,

KC2

DT, NB, KNN,

SVM, RF, MLP,

Extra Trees, Ada

boost, Gradient

Boosting, Bagging

Acc Compare different ML Algorithm RF Acc(.88)

Kulamala et al.

(2021)

Halstead, McCabe,

LOC

PC1, PC2,

PC3, PC4,

CM1, JM1

LR, NB, D,T MLP,

SVM, RF, LSSVM

Acc, AUC, F1-Score Compare different ML Algorithm LSSVM Acc(.88)

Liu et al. (2022) Halstead, McCabe,

LOC

PC1, PC2,

PC3, PC4,

CM1, JM1,

KC3 DT, CRV,

BN, LS, LR

LR, NB, D,T MLP,

SVM, RF, LSSVM

Acc, AUC, F1-Score Compare different ML Algorithm SVM Acc(.89)

Maria et al. (2023) Halstead, McCabe,

LOC

CM1, JM1,

KC1

NB Acc, Recall, Preci-

sion, F1-Score

Compare different ML Algorithm NB Acc(.87)

Continued on next page

L
iteratu

re
R

eview
42

Article Metrics Dataset Technique Performance

Measure

Contribution Best Results

Susmita and Luiz

(2024)

Halstead, McCabe,

LOC

PC1, CM1,

JM1, KC2,

KC1

SVM, RF, K-nn,

NN

Acc Compare different ML Algorithm RF Acc(.87)

Concluded

Literature Review 43

Arar and Ayan [64] utilized artificial neural networks (ANN) and the ABC

optimization algorithm to analyze five datasets from the NASA Metrics Data

Program repository. The classification approach was evaluated based on several

performance indicators, including accuracy, probability of detection, probability of

false alarm, balance, Area Under Curve (AUC), and Normalized Expected Cost

of Misclassification (NECM). Halstead and McCabe metrics were employed as

independent variables (IV). The experimental findings demonstrated the successful

creation of a cost-sensitive neural network through the application of the ABC

optimization algorithm.

Dhanajayan and Pillai [65] assess the SFP capability of Halstead, McCabe,

LOC, and Branch Count on CM1 data set using NB, RF, ANN, Spiral life cycle

model-based Bayesian classification (SLMBC). The performance has been evaluated

using False Negative Rate, False Positive Rate, and Overall error rate.

Bhandari and Gupta [66] proposes a spiral life cycle model-based Bayesian

classification technique for efficient SFP and classification. In this process, initially,

the independent software modules are identified which are Halstead, McCabe, and

LoC. The experiment results show that RF achieves higher accuracy, precision,

recall, probability of detection, F-measure, and lower error rate than the rest of

the techniques.

Shippey et al [67] employed the utilization of Abstract Syntax Tree (AST) n-

grams to detect characteristics of faulty Java code that enhance the accuracy of

defect prediction. Various metrics such as Halstead, McCabe, Lines of Code (LoC),

and Branch Count have been applied to train Näıve Bayes, J489, and Random

Forest models. The outcome reveals a strong and statistically significant correlation

between AST n-grams and faults in certain systems, demonstrating a substantial

impact.

Ahmed et al [80] proposed a software fault predictive development model using

machine learning techniques that can enable the software to continue its projected

task. Halstead, McCabe, LoC, Branch count and Call pairs have been used for

Literature Review 44

modeling SVM, DT, NB, RF, KNN, and LR on three defect datasets in terms of f1

measure. The experiment results are in favor of LR.

Cetiner and Sahingoz [68] conducted a comparative analysis of machine learning-

based software fault prediction systems by evaluating 10 learning algorithms in-

cluding Decision Tree, Näıve Bayes, K-Nearest Neighbor, Support Vector Machine,

Random Forest, Extra Trees, Ada boost, Gradient Boosting, Bagging, and Multi-

Layer Perceptron. The analysis was performed on the public datasets CM1, KC1,

KC2, JM1, and PC1 obtained from the PROMISE warehouse. Halstead, McCabe,

and LoC were utilized for modeling the classification algorithms. The experimental

findings demonstrated that the Random Forest (RF) model exhibited favorable

accuracy levels in software fault prediction, thus enhancing the software quality.

Kumar et al [69] aimed to create and compare different SFP models using

Least Squares Support Vector Machine (LSSVM) with three types of kernels:

Linear, Polynomial, and Radial Basis Function (RBF). Maria et al [81] explores

the application of Bayesian Networks for software defect prediction to enhance

prediction robustness and interpretability. The study evaluates three algorithms

for constructing Bayesian Networks: K2, Hill Climbing, and Tree Augmented Naive

Bayes (TAN), and compares their performance against Decision Tree and Random

Forest classifiers. The authors use three datasets (CM1, JM1, and KC1) from

the PROMISE repository, leveraging McCabe and Halstead complexity metrics.

Performance evaluation employs cross-validation with metrics including Accuracy,

Recall, and F1 Score. The study finds that while Bayesian Networks exhibit

lower variability across folds, their overall predictive performance is competitive,

providing more stable classification results compared to traditional methods.

Susmita and Luiz [82] presents software fault prediction models emphasizing

interpretability using machine learning techniques. The study uses five datasets

from the PROMISE repository: cm1, kc1, kc2, jm1, and pc1. Performance metrics

employed include Accuracy, F1 Score, and AUC. The models were developed using

Support Vector Machines (SVM), k-Nearest Neighbors (KNN), Random Forest

(RF), and Artificial Neural Networks (ANN). To enhance model transparency,

Literature Review 45

Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive

exPlanations (SHAP) were used.

These studies focus on identifying software modules as either faulty or non-faulty by

employing several software metrics, such as Halstead software metrics, McCabe, and

Lines of Code (LoC). Multiple machine learning models are studied and assessed

on a varied selection of open source projects. The performance of these models is

tested using popular measures, communally including Accuracy, F-measure, and

AUC. The results show that some models perform better than others in terms of

classification efficacy, with performance varying based on the different datasets.

Overall, the findings indicate that when machine learning models assessed, Random

Forests is optimized [81], they typically perform better in software fault prediction,

particularly when assessed using Accuracy, F-measure, and AUC three of the most

popular performance metrics in this domain.

2.4 Summary

A wide range of metrics and classification methods have been incorporated with

the Halstead metric suite for Software Fault Prediction (SFP), according to a

thorough evaluation of previous research. The modeling process highlights the

significance of a multifaceted approach to fault prediction by incorporating metrics

such as Halstead, McCabe, Lines of Code (LoC), and Branch count as independent

variables (IV). This underscores the importance of leveraging a comprehensive set of

software metrics to improve the accuracy and reliability of predictive models. This

research makes significant strides in advancing Software Fault Prediction (SFP)

by integrating diverse metrics and state-of-the-art machine learning techniques.

The study emphasizes a holistic approach, combining theoretical insights with

empirical findings to propose robust models that enhance the accuracy, reliability,

and applicability of fault prediction in complex software systems. Key findings of

this review include:

Literature Review 46

The feature (software metrics) decomposition is not evaluated through any angle

in SFP. That’s show the gap in litterateur to evaluate the effectiveness of feature

decomposition to improve ML models predictiveness in SFP.

Conducted a thorough evaluation of previous research to incorporate a wide range

of metrics and classification methods with the Halstead metric suite for SFP.

Highlighted the importance of a multifaceted approach to fault prediction by

integrating metrics such as Halstead, McCabe, Lines of Code (LoC), and Branch

count as independent variables.

Demonstrated how diverse metrics like McCabe’s Cyclomatic Complexity and

Halstead metrics provide nuanced insights into software complexity and potential

fault areas.

Improved fault detection capabilities and debugging efficiency by combining these

metrics with advanced machine learning algorithms (e.g., decision trees, support

vector machines, and neural networks).

Emphasized the need for continuous validation and empirical refinement of SFP

models to enhance their reliability and generalization across software domains.

Showcased the use of diverse classification algorithms, including Logistic Regression

(LR), Multi-Layer Perceptron (MLP), Random Forest (RF), Näıve Bayes (NB), and

Least Squares Support Vector Machines (LSSVM) with different kernel functions.

Adopted a comprehensive performance evaluation strategy using performance

measure such as AUC, accuracy and F-measure for robust model assessment.

Synthesized findings to propose a framework integrating the decomposed Halstead

base metric with complementary software metrics and advanced classification

algorithms to develop reliable SFP models.

Contributed to actionable insights for managing and mitigating software faults in

complex software development environments.

Chapter 3

Methodology

Our objective is to evaluate the impact of the Decomposed Halstead base metric in

SFP. To achieve this goal, we have designed a methodology as depicted in Figure

3.1, which would steer the execution of our experiment, elaborated in the next

section. In the proposed methodology, our initial step involves the selection of

case studies. The optimal choice for a case study would encompass a publicly

available dataset along with accompanying source code. These case studies will

serve as the foundation for the development of three distinct datasets. The first

dataset, denoted as “Dataset-1”, will encompass the Halstead metric suite as well

as frequently reported valuable metrics utilized in SFP, such as Lines of Code

(LoC) and McCabe. The second dataset, referred to as “Dataset-2”, will consist

of the same software metrics employed in “Dataset-1”, with the exception of the

Halstead base metrics. To obtain the Decomposed Halstead base metrics, the

source code of the selected case studies will be parsed using a metrics extractor.

The parsed Decomposed Halstead base metric will then be merged with “Dataset-2,”

resulting in the creation of a new dataset called “Dataset-3”. This new dataset,

“Dataset-3,” will encompass both the Decomposed Halstead base metric and the

SFP metrics selected in “Dataset-2”. Subsequently, a machine learning algorithm

will be employed to model the relationship between the independent variable (IV)

and the dependent variable (DV) in both “Dataset-1” and “Dataset-3”. Finally, the

performance of “ML Model-1” and “ML Model-2” will be compared and analyzed

47

Methodology 48

utilizing various performance measures. In summary, the methodology comprises

the following key phases:

3.pdf 3.pdf 3.pdf 3.pdf 3.pdf 3.pdf 3.pdf 3.pdf 3.pdf

Source code of the
selected case studies

Metric
Extraction

Dataset 2

Public SFP dataset of the
Selected casestudies

Halstead
Metrics Suite,
LoC, McCabe

MLML

Comparison

ML Model 2ML Model 1

McCabe, LoC
Derived Halstead

Dataset 1

Merging

Decomposed
Halstead Base

Metrics

Dataset 3
Decomposed

 Halstead
Metric

Selection of
Case Study

Phase

Dataset
Development

Phase

Selection of
ML Algorithm

Phase

Selection of
Performance
measure for
Comparison
and Analysis

Figure 3.1: Flow Diagram For Proposed Approach

3.1 Selection of Case Studies

In this phase, a selection of case studies would be made, upon which subsequent

processing shall be performed. It is widely acknowledged that ML-based empirical

studies exhibit a high degree of bias due to the quality of data. This is largely

attributed to the inadequacy of data and the absence of systematic data collection

procedures. It is noteworthy that SFP has been executed using a diverse range of

datasets, which may be classified into four categories based on their availability,

Methodology 49

namely: Private, Partially private, Partially public, and Public, as per [60]. In

private datasets, neither the source code nor the fault information is provided,

rendering studies based on these datasets non-repeatable. Partially private datasets

offer access only to source code and/or metrics values, without fault information.

Table 3.1: Types of datasets w.r.t. availability of metrics values, fault
information, and source code

Type of dataset Metrics’ values Fault information Source code

Private 7 7 7

Partially private X X 7

Partially public 7 X X

Public X X X

Partially public datasets typically provide access to both source code and fault data,

but not metrics values, which must be extracted from the source code and mapped

to fault data from the repository [60]. Public datasets, on the other hand, refer to

datasets in which metrics values, source code, and fault data are publicly available

for all modules in a software system. Table 3.1 illustrates these five dataset types.

Since we aim to evaluate the performance disparity between Halstead base metrics

and Decomposed Halstead base metrics, a suitable dataset for this task would be

one that is at least partially publicly accessible.

3.2 Datasets Enhancement

After the identification of the case studies during the phase of case study selection,

the subsequent task is dataset development. As previously discussed, the appro-

priate case studies for our experiment should possess publicly available software

metrics datasets and their corresponding source code. To fulfill this requirement,

we proceed to construct Dataset-1 using the chosen public dataset, specifically

selecting the Halstead metric suite along with McCabe and LoC metrics. For the

development of Dataset-2, we select all SFP metrics from the public dataset, which

were previously included in dataset-1, excluding the Halstead base metrics. There

Methodology 50

is no publicly available dataset containing information on decomposed Halstead

base metrics. Therefore, we will employ a metrics extractor on the source code

of selected case studies to obtain these metrics. Existing metrics extractors have

been examined to calculate the decomposed Halstead base metrics. However, it

has been noted that these existing extractors possess three primary limitations:

1. The extractors have a lack of extensibility and, hence, may not be used to

integrate with existing frameworks/extractors.

2. The extractors are metrics-specific and may not extract new metrics. Hence

they are not easy to adapt to other metrics.

3. The extractors have an ambiguous interpretation of some metrics. Hence,

more than one variant of the same metric exists which is reported in [83].

Taking into consideration the constraints and requirements of our experimentation,

it is imperative to undertake the development of a custom-built extractor that

possesses the capability to extract Halstead base metrics from the given source

code. The primary function of our extractor involves parsing the source code of

the designated case studies with the objective of extracting decomposed Halstead

base metrics. Throughout the process of parsing the Decomposed Halstead base

metrics suite, a hierarchical tree, as illustrated in Figure 4.1, will be employed.

An algorithm 1 in the section 4.5, Where program statements will first be split

into tokens, and then classified into operands and operators. The process will

be sequential, with operands containing variables and constants being considered

first, followed by operators. Within the operators, assignment, arithmetic, logical,

and relational operators will be identified, while the remaining operators will be

categorized as “others”. Once the decomposed Halstead base metrics have been

extracted, they are to be merged with Dataset-2 in a formal manner. During

the parsing phase, it is imperative to preserve the information pertaining to the

“Complete path of the source code file” as well as the “Name of Class” contained

within that file. This information plays a crucial role in distinguishing between

similar class names across multiple files and different classes within the same

file. Dataset-2 also encompasses this essential information. The merging process

Methodology 51

culminates in the creation of Dataset-3, which encompasses the parsed Decomposed

Halstead base metrics and the specifically chosen SFP metrics from Dataset-2.

Subsequently, Dataset-1 and Dataset-3 will serve as inputs to the machine learning

algorithm for the purposes of model construction and the execution of SFP.

3.3 Selection of ML Algorithm

Once the datasets have been developed, it’s important to determine the suitable

ML algorithm for modeling. Selecting the appropriate machine learning algorithms

for software fault prediction involves considering various aspects to ensure optimal

performance and effectiveness. Some common aspects are:

3.3.1 Nature of Data

Understand the nature and characteristics of the software development data avail-

able, including its volume, variety, velocity, and veracity. Determine whether

the data is structured (e.g., code metrics, historical defect data) or unstructured

(e.g., natural language bug reports). Choose machine learning algorithms that are

well-suited to handle the specific data types and formats present in the software

development environment.

3.3.2 Complexity of Patterns

Assess the complexity of patterns and relationships within the software development

data. Select machine learning algorithms capable of capturing intricate patterns

and non-linear relationships if the data exhibits high complexity. Consider the

trade-offs between model complexity and interpretability, especially in domains

where explain ability is crucial, such as software fault prediction.

Methodology 52

3.3.3 Performance Requirements

Define performance metrics and objectives for the software fault prediction task,

such as accuracy, precision, recall, F1-score, or area under the ROC curve (AUC).

Choose machine learning algorithms that align with the desired performance metrics

and can meet the specified performance requirements within the given constraints.

3.3.4 Scalability and Efficiency

Consider the scalability and computational efficiency of machine learning algorithms,

particularly when dealing with large-scale software development datasets. Evaluate

the algorithm’s training and inference times to ensure practical feasibility within

the software development lifecycle.

3.3.5 Interpretability and Explainability

Assess the interpretability and explainability of machine learning models, especially

in safety-critical domains like software engineering. Choose algorithms that produce

transparent and interpretable results to facilitate understanding and trust among

stakeholders, such as developers and project managers.

3.3.6 Ensemble Methods

Explore ensemble learning techniques, such as random forests, gradient boosting,

or stacking, to combine multiple machine learning models for improved predic-

tive performance. Ensemble methods can mitigate the weaknesses of individual

algorithms and enhance overall fault prediction accuracy and robustness.

Methodology 53

3.3.7 Domain Expertise

Incorporate domain expertise and knowledge of software development practices

into the algorithm selection process. Collaborate with software engineers, quality

assurance professionals, and domain experts to identify relevant features, define

appropriate labels, and validate the effectiveness of machine learning models.

3.3.8 Model Maintenance and Adaptation

Consider the ongoing maintenance and adaptation of machine learning models as

software development practices evolve over time. Choose algorithms that support

incremental learning or online learning to continuously update the model with

new data and adapt to changing patterns and trends in the software development

environment.

By carefully considering these aspects, software development teams can make

informed decisions when selecting machine learning algorithms for software fault

prediction, ultimately improving the effectiveness and reliability of fault prediction

systems.

3.4 Selection of performance measures

The results of ML models are assessed by some performance measures. In clas-

sification, commonly refereed performance measures in our literature review are

Accuracy, AUC, and F-measure. Selecting appropriate performance measures for

machine learning algorithms in software fault prediction is crucial for evaluating

their effectiveness and guiding decision-making processes. Several aspects should

be considered when choosing performance measures.

Methodology 54

3.4.1 Nature of the Problem

Determine whether the software fault prediction problem is binary (fault vs. no

fault), multi-class (predicting fault severity levels), or regression-based (predicting

the number of faults). Select performance measures that are suitable for the specific

problem type. For binary classification, metrics like accuracy, precision, recall,

F1-score, and ROC-AUC are commonly used. For regression tasks, metrics such as

mean absolute error (MAE) and mean squared error (MSE) are appropriate.

3.4.2 Imbalance in the Dataset

Assess the balance between fault and non-fault instances in the dataset. Imbalanced

datasets, where one class is significantly more prevalent than the other, can skew

performance measures. Use metrics like precision, recall, F1-score, and area under

the precision-recall curve (PR AUC) that are robust to class imbalance.

3.4.3 Cost Sensitivity

Consider the costs associated with false positives (misclassifying a non-fault as

a fault) and false negatives (misclassifying a fault as a non-fault). Utilize per-

formance measures that account for these costs, such as cost-sensitive versions

of precision, recall, and F1-score, or cost curves that plot performance against

different misclassification costs.

3.4.4 Interpretability

Choose performance measures that are easily interpretable and provide actionable

insights for software development teams. Metrics like accuracy, precision, and recall

offer straightforward interpretations and are widely understood in the software

engineering domain.

Methodology 55

3.4.5 Threshold Selection

Determine the threshold for classifying instances as fault or non-fault based on

the predicted probabilities or scores provided by the machine learning model.

Consider using performance measures that assess model performance across different

threshold values, such as precision-recall curves and ROC curves.

3.4.6 Domain Specific Requirements

Take into account any specific requirements or constraints of the software devel-

opment environment. For example, in safety-critical systems, minimizing false

negatives (missing faults) may be prioritized over false positives (false alarms),

leading to a focus on metrics like recall.

3.4.7 Validation and Cross Validation

Validate the performance of machine learning algorithms using appropriate valida-

tion techniques such as holdout validation, k-fold cross-validation, or bootstrapping.

Use consistent performance measures across different validation folds to ensure

robust and reliable evaluation results.

3.4.8 Comparative Analysis

Conduct a comparative analysis of multiple machine learning algorithms to identify

the most suitable approach for software fault prediction. Use consistent performance

measures for all algorithms to facilitate fair comparisons and informed decision-

making.

By considering these aspects and selecting appropriate performance measures,

software development teams can effectively evaluate the performance of machine

learning algorithms in software fault prediction and make informed decisions to

improve software quality and reliability.

Methodology 56

3.5 Summary

This chapter begins with the selection of case studies and the development of

datasets to ensure comprehensive and compatible data for analysis. Various

machine learning algorithms, such as Logistic Regression, Decision Trees, Random

Forests, and Support Vector Machines, are employed to model fault prediction. The

performance of these models is assessed using standard metrics, including Accuracy,

F-measure, and AUC. This systematic approach provides a robust framework for

analyzing the impact of decomposed Halstead base metrics in enhancing predictive

capabilities.

Chapter 4

Decomposition of Halstead

Metric Suite

To improve accuracy, and interoperability in software analysis, complicated aggre-

gated metrics are decomposed into their basic components through the process of

decomposition. This approach offers a more detailed knowledge of the features

affecting software quality and fault prediction by decomposition of aggregated

complex feature. By identifying certain areas of complexity and possible flaws,

this better understanding helps developers more efficiently address the underlying

causes of problems and enhances fault detection accuracy, maintainability, and

customization. In order to take advantage of decomposition for fault prediction, the

conventional Halstead measurements are decomposed into more detailed metrics in

this dissertation. The Halstead Software Metrics were chosen for this study due

to their relevance in evaluating software complexity and their alignment with the

objectives of the research. The decision to focus on Halstead, instead of other

metrics, is justified based on the following factors.

Granular complexity measurement: By measuring operators, operands, and

their occurrences, Halstead offers a thorough analysis of code complexity. This

level of detail is necessary to comprehend how various code elements affect fault

proneness.

57

Decomposition of Halstead Metric Suite 58

Feature compatibility for ML models: Different kinds of operators and

operands, which are the decomposed components of Halstead, are significant

features that enhance the predictive precision of machine learning models.

Proven effectiveness in fault prediction: Prior research has validated the

efficacy of Halstead metrics suite in fault-prone module identification. Their

established use in empirical studies supports their inclusion as a robust and reliable

set of features for this research.

Limitations of Alternative Metrics:

McCabe’s Cyclomatic Complexity: Focuses solely on control flow and does

not provide insight into the detailed usage of operators and operands.

Lines of Code (LoC): Although simple, LoC lacks the granularity required to

identify specific fault-prone areas and often correlates with larger modules rather

than complexity itself.

By selecting Halstead, this study aims to leverage detailed software metrics that

capture the nuanced contributions of code components to fault-proneness, ultimately

leading to a more accurate and interpretable fault prediction model.

4.1 Halstead’s Metrics: an Overview

Halstead’s (1977) software science was one of the first attempts to provide a theory

of software measurement that is oriented toward program code [84–87]. Keeping in

view the elaboration of Halstead, every computer software program is a collection

of numerous tokens that can safely be categorized into two classes. The first one

is operators and the second is operands. Based upon these tokens, Halstead has

derived four base metrics and numerous derived metrics [88]. Derived metric can

be computed by frequency of tokens. [84].

Decomposition of Halstead Metric Suite 59

4.1.1 Halstead Base Metrics

Halstead Base Metrics are fundamental components of the Halstead Complexity

Measures, which are used to quantify the complexity of software.

These metrics were introduced by Maurice H. Halstead in 1977 as part of his

Software Science theory.

They are derived from the source code of a program and focus on the number of

operators and operands in the code. The description of base metrics are as in Table

4.1

n1 (Number of distinct operators): This represents the unique operators

used in the program. Operators include arithmetic symbols, relational opera-

tors, logical operators, and others depending on the programming language.

n2 (Number of distinct operands): This represents the unique operands used

in the program. Operands are variables, constants, or values that operators

manipulate.

N1 (Total number of operators): This counts how many times operators are

used throughout the code.

N2 (Total number of operands): This counts how many times operands are

used in the code.

Potential operators: refer to the minimal or ideal set of operators necessary to

implement a specific functionality optimally. They represent the simplest logical

structure of a program.

Using potential operators helps in evaluating how efficiently a program is written

by comparing actual operators to the minimum possible operators for the same

solution.

Decomposition of Halstead Metric Suite 60

Table 4.1: Halstead Base Metrics

Metrics Description

n1: Total count of unique operators

n2: Total count of unique operands

N1: Total count of all operators

N2: Total count of all operands

n1*: Total count of minimum operators.

n2*: Total count of minimum operands.

All of the metrics proposed by Halsteads are also named as Software Science

metrics.

4.1.2 Halstead Derived Metrics

The Halstead base metrics are used to compute numerous derived metrics. This

section briefly describes the driven metrics proposed by Halstead.

The length of a program P is donated by N, can mathematically be written as:

N = N1 +N2 (4.1)

The vocabulary of a program P is donated by n, can mathematically be written

as::

n = n1 + n2 (4.2)

Program volume V of a program P is donated by V, can mathematically be written

as:

V = N ∗ log2n (4.3)

Program potential (minimal) volume, which is denoted by V* can mathematically

be written as:

V ∗ = (2 + n∗
2)log2(2 + n∗

2) (4.4)

Decomposition of Halstead Metric Suite 61

Program level of a program P with volume V can mathematically be computed as:

L =
V ∗

V
(4.5)

The maximum value for L is 1.

Program difficulty of a program P is donated by D, can mathematically be written

as:

D =
1

L
(4.6)

The program level estimator of a program P is donated by (L̂), can mathematically

be written as:

L̂ = 2 ∗ (n2)/(n1)(N2) (4.7)

The intelligent content of a program P is a denoted by I, can mathematically be

written as:

I =
L̂

V
(4.8)

Programming effort of a program P is denoted by E, can mathematically be written

as:

E =
V

L
=
n1n2log2n

2N2

(4.9)

The required programming time of a program P is denoted by R, and can mathe-

matically be written as:

T =
E

S
=
n1n2log2n

2N2S
(4.10)

where S is the Stroud number which is set to 18 by the software scientists.

4.1.3 Miscellaneous Halstead Metrics Suite Extension

Numerous studies propose various extensions to the Halstead metrics suite, like

Halstead Number of Derived Bugs (HNDB) [89], minimal operator count [90].

However, this dissertation document focused on the basic Halstead metric suite.

The reason is its wide acceptability and line-level coverage. The Halstead metric

Decomposition of Halstead Metric Suite 62

suite comprises four base metrics and ten derived metrics which are derived out of

the base metrics. The four base metrics are Total operators N1, Total operands

N2, Unique operators n1, and Unique operands n2. Likewise, these base metrics

are composed of operators and operands. According to the definition of Halstead,

the software program is a composition of tokens. Each token can either be an

operator or an operand. Operand includes variables and constants. While all other

tokens are included in operators [85] which can safely be extracted from various

languages [91]. The following subsection would elaborate the decomposition of

Halstead operators and Halstead operands.

4.2 Decomposition of Halstead Operators

The definition of Halstead operator is more general than that of the operators

defined in conventional programming languages like C, C++, Java, etc. [92–96].

For example, brackets, function name, semicolon, colon, punctuation marks, etc.

are Halstead operators but these are not considered as operators in the C, C++,

Java etc. Moreover, there are few operators that are present in some languages

while missing in some others. Like, increment/decrement operators are present

in C, C++, Java, PhP and they are not present in Python language. Keeping in

view this difference, we conclude that few Halstead operators are considered as

operators by all major languages, while few Halstead operators are either do not

defined as operators by all languages or by few languages. This understanding

lead us to answer our RQ1, possible five broad categories that are applicable to all

major programming languages.

Assignment operators, that are declared as Assignment operators in the conven-

tional languages. The assignment may be performed explicitly by using = operator

or in combination with other operators like, + =, − = or sometime implicitly like,

−−, ++.

Arithmetic operators, that are declared as Arithmetic operators in the conven-

tional languages. Like assignment operators, arithmetic operators may be declared

Decomposition of Halstead Metric Suite 63

explicitly by using +,−, etc operator or in combination with other operators like

+ =, − =.

Logical operators that are declared as Logical operators in the conventional

languages like && (AND), || (OR).

Relational operators that are declared as Relational operators in the conventional

languages like ≤, ≥.

Others constitutes the rest of Halstead operators like brackets and function names

are:

For instance, if A is base metric, it will be decomposed into a1, a2, ..., an such that

the value of metric A is equal to the sum of all the values of decomposed metrics

a1, a2, ..., an. In this dissertation, we demonstrate the effectiveness of decomposed

Halstead base metric using Java language.

The operators that are declared in Java can be placed into the five categories dis-

cussed earlier. The table 4.2 illustrates the Java operators with their corresponding

categories. = belongs to assignment operator category.

There are certain operators which perform both arithmetic and assignment op-

erations These operators include, +=, -=, *=, /=, %=, &= =̂, |=, <<=, >>=,

++, –. Therefore these operators are placed in both categories +, -, *, / and %

belongs to arithmetic operators category. &&, ||, ! belongs to logical operators

category. ==, <, <=, >, >=, ! = belongs to relational operator category. Rest

of the operators like, bitwise operators, brackets, etc. are all belongs to Others

category.

Table 4.2: Java operators and their category

Category Operator Description

Assignment = Simple assignment operator

+ = Addition and assignment operator

− = Subtraction and assignment operator

∗ = Multiplication and assignment operator

/ = Divide and assignment operator

Decomposition of Halstead Metric Suite 64

% = Modulus and assignment operator

& = Bitwise and assignment operator

ˆ= Bitwise exclusive OR and assignment operator

|= Bitwise inclusive OR and assignment operator

<<= Left shift and assignment operator

>>= Right shift and assignment operator

Arithmetic + Additive operator

− Subtraction operator

∗ Multiplication operator

/ Division operator

% Remainder operator

+ Unary plus operator

− Unary minus operator

++ Increment operator

−− Decrement operator

Logical && Conditional-AND

| | Conditional-OR

! Logical complement operator

Relational == Equal to

> Greater than

! = Not equal to

>= Greater than or equal to

< Less than

<= Less than or equal to

Others Function name Any function name in a program

Class name Any class name in a program

{, }, [,] Brackets

int, float, double,

etc.

Data types

; , Special symbols

Decomposition of Halstead Metric Suite 65

The above categorization has been used in case studies (Section 5.1) for empirical

evaluation of decomposed Halstead base metrics.

The Halstead operators along with corresponding decomposed metrics are shown

in Table 4.3.

Table 4.3: Halstead operators with their corresponding decomposed operators

Base metrics Decomposed
metrics

Description

As Total assignment operators

Total

A Total arithmetic operators

R Total relational operators

operators (N1) Log Total logical operators

O Total operators other than assign-
ment, arithmetic, relational, and
logical operators

as Unique assignment operators

Unique

a Unique arithmetic operators

r Unique relational operators

operators (n1) log Unique logical operators

o Unique operators other than as-
signment, arithmetic, relational,
and logical operators

4.3 Decomposition of Halstead Operands

In conventional computer programming, an operand is a term used to describe any

object that is capable of being manipulated. In Halstead’s manuscript operands

are composed of two mutually exclusive types, i.e., variables and constants. A

variable is a data item whose value can be changed during the program’s execution.

A constant is a literal for representing a fixed value in source code. For instance,

in the following code snippet of Java language.

Decomposition of Halstead Metric Suite 66

1. int x = 5;

2. final int y=10;

3. char z=‘b’;

x, y, and z are variables, while 5, 10 and ’b’ are constants, rest of the tokens i.e.,

int, final, char, =, and ;(semicolon) are all operators. Keeping in view such

decomposition, if A is base metric, it will be decomposed into a1, a2, ..., an such

that the value of metric A is equal to the sum of all the values of decomposed

metrics a1, a2, ..., an. The Halstead operands along with corresponding decomposed

metrics are shown in Table 4.4.

Table 4.4: Halstead operands with their corresponding decomposed operands

Base metrics Decomposed metrics Description

Total operands (N2) Var Total variables

C Total constants

Unique operands (n2) var Unique constants

c Unique variables

The decomposed forms of operators and operands apply to all major programming

languages, such as C, C++, and Java. A comparable decomposition structure is

used in all of these languages, which aids in the comprehension and classification

of the components involved in code execution. A clearer and more structured

depiction of the operators’ and operands’ functions and interactions is made

possible by this decomposition, which divides the operators and operands into

mutually exclusive classes. This hierarchical classification is shown in Figure 4.1,

where each class corresponds to a different group of operands or operators. For

example, operands can be classified as variables and constants, and operators

can be classified as Assignment, arithmetic, logical, and relational, among others.

Better understanding and analysis of programming structures are made possible

by this structured approach, which also makes it simpler to teach, learn, and apply

these principles in a variety of programming contexts.

Decomposition of Halstead Metric Suite 67

Figure 4.1: Hierarchy of decomposed operators and operands

The universal classification scheme depicted in the figure 4.1 highlights the ways that

various programming languages handle operators and operands similarly. Program-

mers can become more versatile and proficient in software development by better

translating their knowledge and skills across many languages by comprehending

this hierarchy.

4.4 Mathematical Formulation of Decomposed

Halstead Operators and Operands

This section addresses the mathematical representation of decomposed Halstead

base metrics to improve the complexity analysis of software modules. The summing

and weighted contributions of decomposed operators and operands are defined by

the following equations 4.11 to 4.18, which show how we can compute decomposed

Halstead operator and operands to improve machine learning models predictive

power.

Decomposition of Halstead Metric Suite 68

The total count of operators N1 must be decomposed as the total sum of decomposed

operators like {N11, N12, . . . , N1m} count is equal to total count of operators N1 as

shown in equation 4.11.

N1 =
m∑
i=1

N1i (4.11)

The total count of unique operators n1 must be decomposed as the total sum of

decomposed unique operators like {n11, n12, . . . , n1m} count is equal to total count

of unique operators n1 as shown in equation 4.12.

n1 =
m∑
i=1

n1i (4.12)

The total count of operands N2 must be decomposed as the total sum of decomposed

operands like {N21, N22, . . . , N2m} count is equal to total count of operands N2 as

shown in equation 4.13.

N2 =
m∑
i=1

N2i (4.13)

The total count of unique operands n2 must be decomposed as the total sum of

decomposed unique operands like {n21, n22, . . . , n2m} count is equal to total count

of unique operands n2 as shown in equation 4.14.

n2 =
m∑
i=1

n2i (4.14)

The frequency of operators and operands in a particular software module is

compiled in these summaries. In the context of decomposition, these numbers

show the raw complexity of a program, while typical Halstead base metrics

fail to capture precise interactions between types of separate operators and

operands.

Decomposition of Halstead Metric Suite 69

At level 2, decomposition of each decomposed total operator like N1i is further

decomposed such that that total sum of decomposed operator at level 2 like

{N1i.1, N1i.2, . . . , N1i.m} count is equal to the total count of N1i as depicted in

equation 4.15.

N1i =
m∑
j=1

N1i.j (4.15)

The decomposition of each decomposed unique operator like n1i is further

decomposed such that that total sum of decomposed operator at level 2 like

{n1i.1, n1i.2, . . . , n1i.m} count is equal to the total count of n1i as depicted in

equation 4.16.

n1i =
m∑
j=1

n1i.j (4.16)

The decomposition of each decomposed total operands like N2i is further

decomposed such that that total sum of decomposed operand at level 2 like

{N2i.1, N2i.2, . . . , N2i.m} count is equal to the total count of N2i as depicted in

equation 4.17.

N2i =
m∑
j=1

N2i.j (4.17)

The decomposition of each decomposed unique operand like n2i is further

decomposed such that that total sum of decomposed operand at level 2 like

{n2i.1, n2i.2, . . . , n2i.m} count is equal to the total count of n2i as depicted in

equation 4.18.

n2i =
m∑
j=1

n2i.j (4.18)

Decomposition of Halstead Metric Suite 70

4.5 Algorithm to Compute Decomposed Halstead

Base Metrics from the Code

The algorithm 1 is designed to decompose Halstead base metrics into finer sub-

categories of operators and operands to enhance machine learning efficiency. The

input to the algorithm is the program source code P, and the output is a set of

decomposed metrics for operators and operands, including NAs
1 , NA

1 , N
R
1 , N

Log
1 , NO

1

(representing assignment, arithmetic, relational, logical, and other operators, re-

spectively) and NVar
2 , NConst

2 (representing variables and constants, respectively).

The algorithm begins by initializing counters for

total operators (N1) and operands (N2) and their respective subcategories. In

the first major step, the source code P is tokenized into a list of tokens T =

{t1, t2, . . . , tn}. This tokenization process allows for systematic processing of indi-

vidual components of the source code, ensuring that each token can be categorized

into its appropriate metric.

The decomposition process starts with the classification of operators. For each

token ti ∈ T , the algorithm identifies whether it is an assignment operator (NAs
1),

arithmetic operator (NA
1), relational operator (NR

1), logical operator (NLog
1), or

falls into the ”other” operator category (NO
1). Each operator is incrementally

added to its respective subcategory, while the total operator count (N1) is updated.

Similarly, operands are categorized into variables (NVar
2) and constants (NConst

2)

based on their characteristics. Each occurrence of an operand is recorded in its

subcategory, and the total operand count (N2) is updated. Once all tokens have

been processed, the total metrics are computed: N1 = NAs
1 +NA

1 +NR
1 +NLog

1 +NO
1

and N2 = NVar
2 + NConst

2 . The final results, including the decomposed operators

and operands, are outputted for analysis, allowing for fine-grained evaluation of

the source code’s complexity. This decomposition is critical for optimizing machine

learning algorithms by providing detailed metrics that enhance model training and

performance.

Decomposition of Halstead Metric Suite 71

Algorithm 1 Decomposing Halstead Base Metrics for Machine Learning Efficiency

1: Input: Program source code P
2: Output: Decomposed operators {NAs

1 , NA
1 , N

R
1 , N

Log
1 , NO

1 } and operands
{NVar

2 , NConst
2 }

3: Initialize N1 ← 0, N2 ← 0 . Counters for total operators and operands
4: Initialize NAs

1 ← 0, NA
1 ← 0, NR

1 ← 0, NLog
1 ← 0, NO

1 ← 0 . Operator
subcategories

5: Initialize NVar
2 ← 0, NConst

2 ← 0 . Operand subcategories
Step 1: Tokenize the source code

6: Parse P into a list of tokens T = {t1, t2, . . . , tn}
Step 2: Decompose operators

7: for each token ti ∈ T do
8: if ti is an assignment operator (=, +=, -=, etc.) then
9: NAs

1 ← NAs
1 + 1 . Count assignment operators

10: else if ti is an arithmetic operator (+, -, *, /, %) then
11: NA

1 ← NA
1 + 1 . Count arithmetic operators

12: else if ti is a relational operator (==, !=, >, <, >=, <=) then
13: NR

1 ← NR
1 + 1 . Count relational operators

14: else if ti is a logical operator (&&, ||, !) then
15: NLog

1 ← NLog
1 + 1 . Count logical operators

16: else
17: NO

1 ← NO
1 + 1 . Count other operators

18: end if
19: N1 ← N1 + 1 . Increment total operator count
20: end for

Step 3: Decompose operands
21: for each token ti ∈ T do
22: if ti is a variable name then
23: NVar

2 ← NVar
2 + 1 . Count variable operands

24: else if ti is a constant (e.g., number, string, etc.) then
25: NConst

2 ← NConst
2 + 1 . Count constant operands

26: end if
27: N2 ← N2 + 1 . Increment total operand count
28: end for

Step 4: Compute summary statistics
29: Total Operators (N1)← NAs

1 +NA
1 +NR

1 +NLog
1 +NO

1

30: Total Operands (N2)← NVar
2 +NConst

2

Step 5: Output results
31: Return the decomposed operators:
32: {NAs

1 , NA
1 , N

R
1 , N

Log
1 , NO

1 }
33: Return the decomposed operands:
34: {NVar

2 , NConst
2 }

35: Return total metrics:
36: N1 = N1, N2 = N2

Decomposition of Halstead Metric Suite 72

4.6 Justification for Halstead Base Metrics De-

composition

In order to overcome the hidden information may be associated to fault proneness

of aggregated software metrics which could mask the influence of individual compo-

nents on software complexity and fault prediction. like decomposition of Halstead

base metrics.

The necessity and advantages of this decomposition method are explained in detail

in this section.

4.6.1 Necessity of Decomposition

Traditional Halstead base metrics, while useful for estimating overall program

complexity, often fail to capture the nuanced contributions of specific operators

and operands for fault prediction.

For instance, different operators like control flow operators (if, for, while), arithmetic

operators (+, -, *) etc may have a more significant impact on fault prediction

compared to aggregated metric or Without decomposition.

4.6.2 Benefits of Decomposition

The decomposition of Halstead base metrics provides the following benefits.

4.6.2.1 Granular Feature Representation

A more comprehensive features set is made possible by the decomposition of

operators and operands, which enhances the model’s ability to identify pertinent

patterns in the data.

Decomposition of Halstead Metric Suite 73

4.6.2.2 Enhanced Model Interoperability

Decomposed metrics analysis makes it feasible to pinpoint particular kinds of

operators or operands that have a strong correlation with errors, offering useful

information for enhancing software quality.

4.6.2.3 Improved Prediction Performance

The validity of this strategy is supported by empirical findings showing that machine

learning models trained on decomposed features have better classification accuracy

and robustness.

This decomposition framework improves the models’ interoperability and prediction

performance, leading to a more thorough comprehension of fault-prone modules.

4.7 Summary

The chapter explores the decomposition of Halstead base metrics into more granular

components to enhance their utility in software complexity analysis and machine

learning applications. Halstead’s original framework categorizes program tokens into

operators and operands, deriving four base metrics and various derived metrics to

quantify software complexity. This work breaks down operators into categories such

as assignment, arithmetic, logical, relational, and miscellaneous, while operands

are divided into constants and variables. By creating a hierarchical classification

applicable across programming languages, this decomposition provides a more

detailed and standardized analysis, improving both program comprehension and

empirical evaluations in case studies, particularly using Java.

Chapter 5

Experimentation and Results

Keeping in view the methodology used in the articles which are discussed in the

literature, our experiment comprises four components, i.e., Case study, Set of

variables, Modeling algorithm, and performance measure used.

The datasets used in the literature does not contain information about the decom-

posed Halstead base metrics (Chapter 4 elaborates). Therefore, we build our own

datasets. However, we need to have the source code and bug information of the

projects. Consequently, we take five software projects (Section 5.1 elaborates) that

have both the source code and fault information.

The assessment of the decomposed Halstead metrics has been accomplished by

making four experiments having following three set of variables respectively, i.e.,

Set 1: {Halstead base metrics}

Set 2: {Halstead derived metrics, McCabe, LoC }

Set 3: {Decomposed Halstead Base Metrics}

The literature review indicates the frequently used ML algorithms which are

elaborated in Section 5.4.

The evaluation of the results has been carried out by using Accuracy, F-measure,

and AUC. These performance measures are elaborated in Section 5.6.

The graphical representation of our experiments are shown in Figure 5.1.

74

Experimentation and Results 75

Set of Variables

Datasets

PDE_UI-3.4.1

Mylyn-3.1

lucene-2.4

Equinox-3.4

Eclipse_JDT
Core-3.4

Comparison
and reporting

Halstead Base
Metrics

McCabe metrics,
LoC metrics,

Halstead derived
metrics

Decomposed
Halstead Base

Metrics

ML
algorithms

ML
algorithms

Performance
measures

Performance
measures

Binary dichotomous
fault label

Figure 5.1: Experimental design

5.1 Case Study

For the experimentation purpose we selected following five datasets for being their

public source code along with fault information.

1. Apache Lucene 2.41

2. Eclipse equinox framework 3.42

3. Eclipse JDT Core 3.43

4. Eclipse PDE UI 3.4.14

5. Mylyn 3.15

These object oriented based projects are developed in Java and are publically

available. Toth et al. assigned fault labels using bug tracking system [97].

Apache Lucene is a high-performance, full-featured text search engine library

written entirely in Java. It is a technology suitable for nearly any application that

1lucene.apache.org
2www.eclipse.org/equinox/
3www.eclipse.org/jdt/core/
4www.eclipse.org/pde/pde-ui/
5www.eclipse.org/mylyn/

Experimentation and Results 76

requires full-text search, especially cross-platform. Apache Lucene is an open-source

project available for free download.

Eclipse JDT Core is a Java infrastructure of the Java IDE. It includes an

incremental Java compiler. In particular, it allows to run and debug code that still

contains unresolved errors. It provides a Java-centric view of a project. It also

carries a Java document model providing API for manipulating a structured Java

source document.

Eclipse PDE UI provides a comprehensive set of tools to create, develop, test,

debug and deploy Eclipse plug-ins. PDE UI also provides multi-page editors that

centrally manage all manifest files of a plug-in or feature. It carries new project

creation wizards to create a new plug-in, fragment, feature, feature patch, and

update sites.

Eclipse equinox is an implementation of the OSGi core framework specification,

a set of bundles that implement various optional OSGi services and other infras-

tructure for running OSGi-based systems. It is responsible for developing and

delivering the OSGi framework implementation used for all of Eclipse. The Equinox

OSGi core framework implementation is used as the reference implementation. The

goal of the Equinox project is to be a first-class OSGi community and foster the

vision of Eclipse as a landscape of bundles.

Mylyn is the task and application life cycle management framework for Eclipse.

It provides a revolutionary task-focused interface and a task management tool for

developers.

5.2 Selected Features

In our experimentation, the dependent variable is a binary dichotomous fault label,

i.e., fp and nfp. Since the selected dataset contains the numerical fault label, we

transformed it into binary using the following rulings shown in Equation 5.1.

Experimentation and Results 77

Label =

 fp No. of faults > 0

nfp otherwise
(5.1)

The ratio of fault/fault-free is shown in Figure 5.2.

Figure 5.2: Ratio of fault and fault free in the five datasets

Table 5.1: Features in Set-1

Feature Short Form Description

n1 Total count of unique operators

n2 Total count of unique operands

N1 Total count of all operators

N2 Total count of all operands

Experimentation and Results 78

Table 5.2: Features in Set-2

Feature Short Form Description

N The Halstead program length.

n The Halstead program vocabulary.

V The Halstead program volume.

L The Halstead program level.

D The Halstead program difficulty.

I The Halstead program intelligent.

E The Halstead program effort.

T The Halstead program time.

LoC The total number of lines of the program.

LoEx The total number of executable lines of the pro-

gram.

LoB The total number of blank lines of the program.

LoCm The total number of comment lines of the program.

LoCoCm The total number of code and comments lines of

the program.

v(G) The cyclomatic complexity of the program.

vi(G) The design complexity of the program.

ev(G) The essential complexity of the program.

Table 5.3: Features in Set-3

Feature Short Form Description

As Total assignment operators

A Total arithmetic operators

R Total relational operators

Log Total logical operators

O Total operators other than assign-

ment, arithmetic, relational, and

logical operators

Var Total variables

Experimentation and Results 79

C Total constants

as Unique assignment operators

a Unique arithmetic operators

r Unique relational operators

log Unique logical operators

o Unique operators other than as-

signment, arithmetic, relational,

and logical operators

var Unique constants

c Unique variables

The independent variables comprise three feature sets, i.e., Halstead base metrics,

Halstead derived metrics, LoC metric suite McCabe metric suites, and Decomposed

Halstead base metrics. These feature set are placed in three distinct sets as follows:

Set 1: {Halstead base metrics} Set 2: {McCabe, LoC , Halstead derived metrics}

Set 3: {Decomposed Halstead Base Metrics}

The first experiment comprises the features of Set-1 and Set-2, while the second,

third, and fourth experiment comprises the features of Set-2 and Set-3. The detail

description and their distribution in the experiments are shown in Table 5.1, 5.2,

and 5.3. The total number of features at in each experiment through decomposition

is depicted in table 5.4.

Table 5.4: Feature count in each experiments through decomposition

Experiments McCab LoC Halstead D Halstead B Halstead DB Total

Exp1 L0 3 5 7 4 0 19

Exp2 L1 3 5 7 2 10 27

Exp3 L1 3 5 7 0 14 29

Exp4 L2 3 5 7 0 54 69

Experimentation and Results 80

5.3 Data Preprocessing

The data preprocessing comprises the following two steps:

1. Conversion of numerical fault label to binary fault label as shown in Equation

5.1.

2. Assessing the validation of data. In this activity we analyzed and ensure the

absence of missing values, out of range values, Null value, invalid value (like

negative in total operators), etc.

5.4 ML Modeling

The literature review section indicates the frequent usage and reported effectiveness

of the following six ML algorithms. That provides a bases of the usage of these

algorithms in our experiments also.

5.4.1 Logistic Regression

Logistic regression (as depicted in figure 5.3) model is a statistical model that

models the probability of one event (out of two alternatives) taking place by having

the log-odds (the logarithm of the odds) for the event be a linear combination

of one or more independent variables (”predictors”). Formally, in binary logistic

regression there is a single binary dependent variable, coded by an indicator variable,

where the two values are labeled “0” and “1”, while the independent variables can

continuous variable.

Experimentation and Results 81

Figure 5.3: Logistic Regression Model

5.4.2 Multilayer Perceptron (MLP)

MLP (as depicted in figure 5.4) is a fully connected class of feed forward

artificial neural network (ANN). An MLP consists of at least three layers of

nodes: an input layer, a hidden layer and an output layer. Except for the

input nodes, each node is a neuron that uses a nonlinear activation function.

MLP utilizes a supervised learning technique called backpropagation for

training. Its multiple layers and non-linear activation distinguish MLP from

a linear perceptron. It can distinguish data that is not linearly separable.

MLP is divided into an input layer, an output layer and a hidden layer. The

information is collected through the input layer, and the data is input into

the hidden layer for analysis and processing. This study uses a multi-layer

perceptron (MLP) model with a single hidden layer, and the initial learning

rate is 0.3.

Experimentation and Results 82

Figure 5.4: Multilayer Perceptron Model

5.4.3 Naive Bayes

Naive Bayes (as depicted in figure 5.5) is a simple “probabilistic classifiers” based

on applying Bayes’ theorem with strong independence assumptions between the

features. They are among the simplest Bayesian network models, but coupled with

kernel density estimation, they can achieve high accuracy levels.

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear

in the number of variables (features/predictors) in a learning problem.

Maximum-likelihood training can be done by evaluating a closed-form expression,

which takes linear time, rather than by expensive iterative approximation as used

for many other types of classifiers.

Experimentation and Results 83

Figure 5.5: Naive Bayes

5.4.4 Decision Trees

Decision Trees (as depicted in figure 5.6) classifies instances by sorting them based

on feature values. Each node in a decision tree represents a feature in an instance

to be classified, and each branch represents a value that the node can assume.

Instances are classified starting at the root node and sorted based on their feature

values [98].

Figure 5.6: Decision Trees

Decision tree learning, used in data mining and machine learning, uses a decision

tree as a predictive model which maps observations about an item to conclusions

about the item’s target value. Decision tree classifiers usually employ post-pruning

techniques that evaluate the performance of decision trees, as they are pruned by

Experimentation and Results 84

using a validation set. Any node can be removed and assigned the most common

class of the training instances that are sorted to it [98]. The DT-based model in

this study uses the C5.0 algorithm with a minimum number of leaf nodes, which

avoids the problem of too many branches in the ID3 algorithm. Also, pruning is

performed during the construction of the decision tree to discretize continuous

data, and the limit is set to the maximum number of leaf nodes.

5.4.5 Random Forests

Random forest (as depicted in figure 5.7) is an ensemble learning method for

classification. The output of the random forest is the class selected by most trees.

Random decision forests correct for decision trees’ habit of overfitting to their

training set. Random forests generally outperform decision trees, but their accuracy

is lower than gradient boosted trees.

Figure 5.7: Random Forests

However, data characteristics can affect their performance. In a random forest

(RF) model, the entire random forest is composed of 500 decision trees (ntree =

500), and each decision tree randomly selects 8 variables (mtry = 8) from the given

number of variables to build a decision tree.

Experimentation and Results 85

5.4.6 Support Vector Machines (SVM)

SVM (as depicted in figure 5.8) are closely related to classical multilayer perceptron

neural networks. SVMs revolve around the notion of a margining either side of a

hyperplane that separates two data classes. Maximizing the margin and thereby

creating the largest possible distance between the separating hyperplane and the

instances on either side of it has been proven to reduce an upper bound on the

expected generalisation error [98].

Figure 5.8: Support Vector Machines

SVM based model uses Gaussian inner product as the kernel function (SVM-

Kernel). Through the iterative solution of sub-problems, the prediction of large-

scale problems is finally completed. The gamma parameter in the model is set to

0.024.

Experimentation and Results 86

y(x) = wTΦ(x) + c (5.2)

where x is the input vector and y is the output vector. φ(x) is a polynomial kernel

function. w and c represent the adjusted weight vector and scalar threshold values,

respectively.

5.5 Cross Validation

We divided all 5 datasets into distinct training and testing subsets called folds to

ensure robust training and evaluation of our machine learning models.

Figure 5.9: Overview of 10 fold cross validation

Experimentation and Results 87

The datasets were partitioned using a stratified 10-fold cross-validation technique shown

in figure 5.9, which ensures that each fold maintains the same class distribution as the

original dataset. This approach minimizes bias and variance by cycling through different

folds for training and testing, enhancing the generalization of the models. During each

iteration, nine folds were used for training, while the remaining fold served as the test

set. This process was repeated 20 times i.e. 20 epochs, and the results were compared by

taking the confusion matrices to assess the model’s performance. We choose folds each

time for each epoch randomly. Python using Scikit-learn is used for the implementation

to facilitate the seamless implementation of this partitioning and ensure consistency

across all machine-learning algorithms applied to the datasets.

5.6 Evaluation Measure

For evaluation purposes, we adopt three commonly used performance measures

identified in our literature review: Accuracy, F-measure, and AUC.

Accuracy shows the correct predictions. It is a good measure when the classes

in the test dataset are nearly balanced. It measures the ability of a classifier in

correctly identifying all samples, no matter it is positive or negative.

Accuracy =
TP + TN

P +N
(5.3)

The F-measure is a measure of the model’s accuracy, which considers both precision

and recall. It is known as the harmonic mean of precision and recall. F-measure

is obtained using Equation 5.4. The values of the F-measure range from 0 to 1;

the value of 1 indicates perfect precision and recall, and a value of 0 indicates that

either precision or recall is 0.

Fmeasure =
2× Precision×Recall
Precision+Recall

(5.4)

Experimentation and Results 88

AUC (Area under the Receiver Operating Characteristics Curve) is a probability

curve and represents the degree or measure of separability. It tells how much the

model is capable of distinguishing between the classes. Values of AUC lie in the

range of 0 to 1. An AUC of 0.0 represents 100% wrong prediction, and an AUC of

1.0 represents 100% correct prediction.

To ensure thorough model evaluation, the chosen performance metrics F1-score,

Accuracy, and AUC were properly justified. The F1-score was selected because

it offers a balanced evaluation of false positives and false negatives and is robust

when dealing with imbalanced datasets, where a high accuracy may be deceptive

due to an excessive number of non faulty modules. In order to provide a base-

line understanding of performance across all forecasts, accuracy was added as a

general metric of overall model correctness. The model’s discriminative power

across different classification thresholds was assessed using AUC, which makes it

appropriate for model comparisons without regard to particular decision boundaries.

When taken as a whole, these metrics guarantee a comprehensive evaluation of the

models, encompassing not only their overall performance but also their capacity

to appropriately balance errors and differentiate across classes. Finally, 10-fold

cross-validation is used to validate the performance of the prediction models. In

cross-validation, the input data set is randomly partitioned into 10 folds of equal

size. 9 folds are used to train the model and the remaining 1 fold is used to test

the model. This procedure is repeated 10 times, each time leaving out a different

fold for testing.

5.7 Results and Discussion

In this section, we present the results obtained from four distinct experiments,

namely Experiment-1, Experiment-2, Experiment-3, and Experiment-4. These

experiments aimed to explore the impact of decomposing Halstead metrics on the

performance of fault prediction models. Specifically, we delved into the decom-

position of Halstead metrics for both operators and operands, spanning various

levels of granularity. Our comprehensive analysis involved meticulously examining

Experimentation and Results 89

the experimental results derived from these distinct settings. Through rigorous

experimentation and meticulous analysis, we sought to ascertain the optimal lev-

els of decomposition that yield the most favorable outcomes for fault prediction

tasks. Our findings indicate that, in the case of operator decomposition, the most

favorable results were achieved at level 1. Conversely, for operand decomposition,

optimal outcomes were observed at level 1. These conclusions are drawn based

on a thorough evaluation of prediction performance of decomposed Halstead base

metrics across different levels of decomposition. Moreover, to supplement our

findings, we conducted a comparative analysis with previous research outcomes,

providing further insights into the effectiveness and significance of our experimental

approach. Furthermore, we have meticulously presented our experimental findings

using tabular and graphical representations in the subsequent sections, facilitating

a comprehensive understanding and interpretation of the results obtained.

5.7.1 Experimental Results with Decomposed Halstead Op-

erators at Level 1

The table 5.5, 5.6, and 5.7 presents the results of two experiments, Exp1 and Exp2,

show how well machine learning models perform when employing decomposed

Halstead operators at Level 1 in Experiment 2 and conventional Halstead metrics

in Experiment 1.

Table 5.5: Accuracy in Experiment 1 and 2

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.75 0.79 0.66 0.77 0.80 0.88 0.70 0.80 0.76 0.85 0.82 0.89

Eclipse equinox framework 3.4 0.77 0.83 0.72 0.77 0.69 0.80 0.65 0.78 0.76 0.79 0.79 0.84

Eclipse JDT Core 3.4 0.73 0.83 0.68 0.78 0.73 0.82 0.79 0.80 0.67 0.80 0.81 0.89

Eclipse PDE UI 3.4.1 0.72 0.80 0.79 0.88 0.65 0.80 0.69 0.80 0.65 0.77 0.76 0.82

Mylyn 3.1 0.66 0.75 0.8 0.87 0.72 0.79 0.66 0.74 0.73 0.78 0.76 0.82

Average 0.71 0.79 0.73 0.82 0.72 0.82 0.70 0.79 0.71 0.80 0.79 0.85

Experimentation and Results 90

Table 5.6: F-measure in Experiment 1 and 2

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.78 0.82 0.76 0.82 0.77 0.82 0.74 0.83 0.69 0.78 0.80 0.88

Eclipse equinox framework 3.4 0.70 0.81 0.72 0.84 0.75 0.84 0.75 0.84 0.75 0.86 0.79 0.89

Eclipse JDT Core 3.4 0.72 0.84 0.79 0.87 0.68 0.78 0.70 0.79 0.69 0.80 0.82 0.91

Eclipse PDE UI 3.4.1 0.74 0.83 0.82 0.90 0.69 0.82 0.76 0.82 0.67 0.81 0.78 0.86

Mylyn 3.1 0.74 0.81 0.81 0.90 0.70 0.82 0.73 0.80 0.71 0.82 0.79 0.84

Average 0.74 0.82 0.78 0.86 0.72 0.82 0.74 0.82 0.70 0.81 0.80 0.87

Experiment 2 consistently performs better than Experiment 1 across the three

main assessment metrics of Accuracy, F-measure, and AUC, according to the

experimental results shown in Tables 5.5, 5.6, and 5.7 as well as Figures 5.10, 5.11,

and 5.12.

Table 5.7: AUC in Experiment 1 and 2

Dataset LR NB DT MLP RF SVM

Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2 Exp1 Exp2

Apache Lucene 2.4 0.79 0.87 0.71 0.78 0.66 0.75 0.77 0.87 0.74 0.78 0.82 0.91

Eclipse equinox framework 3.4 0.74 0.84 0.67 0.75 0.68 0.81 0.69 0.77 0.71 0.83 0.79 0.88

Eclipse JDT Core 3.4 0.74 0.81 0.70 0.79 0.73 0.83 0.73 0.80 0.76 0.84 0.81 0.88

Eclipse PDE UI 3.4.1 0.77 0.81 0.81 0.89 0.73 0.80 0.77 0.82 0.66 0.76 0.73 0.81

Mylyn 3.1 0.68 0.77 0.79 0.89 0.73 0.83 0.80 0.88 0.67 0.76 0.68 0.78

Average 0.74 0.82 0.74 0.82 0.71 0.81 0.75 0.83 0.71 0.79 0.77 0.85

With regard to accuracy, the SVM classifier provided the highest average result in

Experiment 2, with 0.85, as opposed to 0.79 in Experiment 1. This enhancement

shows how decomposition of operator at level 1 features can help the classifier

identify intricate patterns in the data.

Similarly, the F-measure results in Table 5.6 show a significant increase, with the

highest average F-measure in Experiment 2 also achieved by the SVM classifier,

reaching 0.87, compared to 0.80 in Experiment 1. This indicates that the models

in Experiment 2 not only make more accurate predictions but also reduce false

positives and false negatives more effectively. The Decision Tree (DT) and Random

Experimentation and Results 91

Forest (RF) classifiers also show notable improvements in their F-measure values,

reinforcing the conclusion that decomposed operators at level 1 enhance the balance

between precision and recall.

Figure 5.10: Difference in average accuracy regarding selected datasets
against ML algorithms in Exp1 and Exp2.

The AUC results in Table 5.7 further confirm the superior classification capability

of Experiment 2. The highest average AUC score, achieved by the SVM model, is

0.85 in Experiment 2, compared to 0.77 in Experiment 1.

Figure 5.11: Difference in average F-measure regarding selected datasets
against ML algorithms in Exp1 and Exp2.

Experimentation and Results 92

Figure 5.12: Difference in average AUC regarding selected datasets against
ML algorithms in Exp1 and Exp2.

This increase suggests that the decomposed metrics provide a richer and more

informative feature set, enabling the classifiers to better distinguish between fault-

prone and non-fault-prone modules. Logistic Regression also benefits from this

added granularity, achieving an AUC score of 0.82 in Experiment 2 compared

to 0.74 in Experiment 1. Overall, the findings highlight that more reliable and

accurate software fault predictions are produced by decomposed Halstead operators

at Level 1. The idea that more feature granularity improves machine learning

models’ predictive ability is supported by the better performance on all metrics,

especially SVM. In order to increase software dependability and testing efficiency,

these results lend credence to the use of deconstructed metrics in fault prediction

systems.

5.7.2 Experimental Results with Decomposed Halstead Op-

erators and Operands at Level 1

Machine learning models utilizing decomposed Halstead operators at Level 1 in

Experiment 2 and both decomposed Halstead operators and operands at Level 1

in Experiment 3 are compared in the results in this section. Accuracy, F-measure,

Experimentation and Results 93

and AUC are the three main metrics that are compared in Tables 5.8, 5.9, and 5.10

as well as Figures 5.13, 5.14, and 5.15. In Experiment 3 addition of decomposed

operands improves feature granularity even further, leading to better performance

across the majority of classifiers as compare to Experiment 2 having decomposed

operators at level 1.

Table 5.8: Accuracy in Experiment 2 and 3

Dataset LR NB DT MLP RF SVM

Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3

Apache Lucene 2.4 0.87 0.94 0.78 0.85 0.75 0.84 0.87 0.96 0.78 0.81 0.91 0.99

Eclipse equinox framework 3.4 0.77 0.83 0.77 0.82 0.80 0.91 0.78 0.91 0.79 0.83 0.84 0.89

Eclipse JDT Core 3.4 0.83 0.93 0.78 0.89 0.82 0.91 0.80 0.82 0.80 0.94 0.89 0.97

Eclipse PDE UI 3.4.1 0.80 0.88 0.88 0.98 0.80 0.96 0.80 0.92 0.77 0.90 0.82 0.87

Mylyn 3.1 0.75 0.83 0.87 0.95 0.79 0.87 0.74 0.82 0.78 0.84 0.82 0.87

Average 0.79 0.86 0.82 0.90 0.82 0.91 0.79 0.88 0.80 0.89 0.85 0.91

Table 5.9: F-measure in Experiment 2 and 3

Dataset LR NB DT MLP RF SVM

Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3

Apache Lucene 2.4 0.82 0.86 0.82 0.87 0.82 0.87 0.83 0.91 0.78 0.86 0.88 0.96

Eclipse equinox framework 3.4 0.81 0.91 0.84 0.95 0.84 0.92 0.83 0.91 0.86 0.95 0.89 0.98

Eclipse JDT Core 3.4 0.84 0.96 0.87 0.95 0.78 0.88 0.79 0.89 0.80 0.91 0.91 0.99

Eclipse PDE UI 3.4.1 0.83 0.91 0.90 0.98 0.82 0.95 0.82 0.88 0.81 0.95 0.86 0.93

Mylyn 3.1 0.81 0.87 0.90 0.99 0.82 0.93 0.80 0.87 0.82 0.92 0.84 0.88

Average 0.82 0.91 0.86 0.95 0.82 0.91 0.82 0.89 0.81 0.92 0.87 0.95

Table 5.10: AUC in Experiment 2 and 3

Dataset LR NB DT MLP RF SVM

Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3 Exp2 Exp3

Apache Lucene 2.4 0.87 0.94 0.78 0.85 0.75 0.84 0.87 0.96 0.78 0.81 0.91 0.99

Eclipse equinox framework 3.4 0.84 0.94 0.75 0.83 0.81 0.93 0.77 0.84 0.83 0.94 0.88 0.97

Eclipse JDT Core 3.4 0.81 0.88 0.79 0.88 0.83 0.93 0.80 0.86 0.84 0.91 0.88 0.95

Eclipse PDE UI 3.4.1 0.81 0.84 0.89 0.96 0.80 0.86 0.82 0.87 0.76 0.86 0.81 0.88

Mylyn 3.1 0.77 0.86 0.89 0.99 0.83 0.92 0.88 0.96 0.76 0.85 0.78 0.87

Average 0.82 0.89 0.82 0.90 0.80 0.90 0.83 0.90 0.79 0.87 0.85 0.93

Experimentation and Results 94

The accuracy findings are displayed in Table 5.8, which demonstrates that, for all

classifiers, Experiment 3 obtains a better average accuracy than Experiment 2.

With an average accuracy of 0.91 in Experiment 3 against 0.85 in Experiment 2,

the SVM classifier once again performs best.

The advantage of including both decomposed operators and operands is highlighted

by this improvement, which enables the model to capture more intricate structural

elements of the code. With an accuracy of 0.89 in Experiment 3 as opposed to 0.80

in Experiment 2, RF likewise shows improvement.

The benefit of Experiment 3 is further supported by the F-measure values in Table

5.9. While Experiment 2’s average F-measure was 0.87, the SVM classifier achieves

the greatest average F-measure of 0.95.

Notable gains are also demonstrated by other classifiers, like Decision Trees and

Multilayer Perceptron (MLP), demonstrating the harmony between recall and

precision attained when employing both decomposed operators and operands.

Figure 5.13: Difference in average accuracy regarding selected datasets
against ML algorithms in Exp2 and Exp3.

Experimentation and Results 95

Figure 5.14: Difference in average F-measure regarding selected datasets
against ML algorithms in Exp2 and Exp3.

This suggests a decrease in the frequencies of false positives and false negatives,

increasing the accuracy of the forecasts.

Figure 5.15: Difference in average AUC regarding selected datasets against
ML algorithms in Exp2 and Exp3.

The AUC scores in Experiment 3 across several classifiers demonstrate notable

increases, as seen in Table 5.10. With an AUC of 0.93 as opposed to 0.85 in

Experiment 2, the SVM model shows a greater capacity to differentiate between

modules that are prone to faulty and those that are not.

Experimentation and Results 96

The RF classifier also benefits, improving its AUC from 0.79 in Experiment 2 to

0.87 in Experiment 3. Figures 5.13, 5.14, and 5.15 illustrate these trends visually,

showing a consistent increase in average performance across accuracy, F-measure,

and AUC for all classifiers when operands are decomposed alongside operators.

Consistent improvements in Experiment 3 across accuracy, F-measure, and AUC

validate the hypothesis that increasing feature granularity improves prediction

performance.

The results show that decomposing both operators and operands at Level 1 gives

machine learning models a richer and more informative feature set, which in turn

improves fault prediction capabilities.

Combining operator and operand decomposition effectively achieves a more com-

prehensive representation of code complexity and structure, which in turn improves

the robustness of software fault prediction frameworks.

5.7.3 Experimental Results with Decomposed Halstead Op-

erators at Level 2

The results in this section compare the performance of machine learning models

using decomposed Halstead operators and operands at Level 1 in Experiment 3

and decomposed Halstead operators at Level 2 in Experiment 4. Tables 5.11, 5.12,

and 5.13, along with Figures 5.16, 5.17, and 5.18, demonstrate the performance

trends across key performance measure accuracy, F-measure, and AUC.

Table 5.11: Accuracy in Experiment 3 and 4

Dataset LR NB DT MLP RF SVM

Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4

Apache Lucene 2.4 0.83 0.70 0.88 0.70 0.91 0.79 0.91 0.71 0.94 0.72 0.97 0.79

Eclipse equinox framework 3.4 0.83 0.68 0.82 0.69 0.91 0.70 0.91 0.60 0.83 0.71 0.89 0.69

Eclipse JDT Core 3.4 0.93 0.75 0.89 0.60 0.91 0.75 0.82 0.70 0.94 0.69 0.97 0.78

Eclipse PDE UI 3.4.1 0.88 0.77 0.98 0.68 0.96 0.71 0.92 0.68 0.90 0.71 0.87 0.77

Mylyn 3.1 0.83 0.70 0.95 0.84 0.87 0.69 0.82 0.60 0.84 0.70 0.87 0.71

Average 0.86 0.72 0.90 0.70 0.91 0.73 0.88 0.66 0.89 0.71 0.91 0.75

Experimentation and Results 97

Table 5.12: F-measure in Experiment 3 and 4

Dataset LR NB DT MLP RF SVM

Exp3Exp4Exp3Exp4Exp3Exp4Exp3Exp4Exp3Exp4Exp3Exp4

Apache Lucene 2.4 0.86 0.75 0.87 0.71 0.87 0.75 0.91 0.73 0.86 0.71 0.96 0.76

Eclipse equinox framework 3.4 0.91 0.69 0.95 0.68 0.92 0.72 0.92 0.69 0.96 0.73 0.98 0.75

Eclipse JDT Core 3.4 0.96 0.68 0.95 0.72 0.88 0.65 0.89 0.66 0.91 0.65 0.99 0.75

Eclipse PDE UI 3.4.1 0.91 0.71 0.98 0.78 0.95 0.66 0.88 0.71 0.95 0.65 0.93 0.73

Mylyn 3.1 0.87 0.69 0.99 0.77 0.93 0.69 0.87 0.69 0.92 0.69 0.88 0.71

Average 0.91 0.70 0.95 0.73 0.91 0.69 0.89 0.70 0.92 0.69 0.95 0.74

The results indicate a noticeable decline in performance when moving from Level 1

to Level 2 decomposition for operators, emphasizing that the optimal granularity

for software fault prediction is achieved at Level 1 decomposition of both operators

and operands.

In Table 5.11, the accuracy scores show that Experiment 4 generally performs

worse compared to Experiment 3 across most classifiers.

The SVM classifier, which previously achieved the highest average accuracy of 0.91

in Experiment 3, drops to 0.75 in Experiment 4.

Similarly, the accuracy of Logistic Regression decreases from 0.86 to 0.72. This

decline indicates that further decomposition at Level 2 introduces noise rather than

improving the predictive power, as the increased number of features may lead to

over fitting or redundancy in the models.

Table 5.13: AUC in Experiment 3 and 4

Dataset LR NB DT MLP RF SVM

Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4 Exp3 Exp4

Apache Lucene 2.4 0.94 0.78 0.85 0.67 0.84 0.62 0.96 0.68 0.81 0.69 0.99 0.81

Eclipse equinox framework 3.4 0.94 0.71 0.83 0.69 0.93 0.59 0.84 0.67 0.94 0.68 0.97 0.69

Eclipse JDT Core 3.4 0.88 0.69 0.88 0.62 0.93 0.69 0.86 0.74 0.91 0.75 0.95 0.79

Eclipse PDE UI 3.4.1 0.84 0.73 0.96 0.78 0.86 0.69 0.87 0.72 0.86 0.65 0.88 0.69

Mylyn 3.1 0.86 0.71 0.99 0.68 0.92 0.62 0.96 0.79 0.85 0.63 0.67 0.65

Average 0.89 0.72 0.90 0.67 0.90 0.64 0.90 0.72 0.87 0.68 0.93 0.73

Experimentation and Results 98

Table 5.12 presents the F-measure results, which follow a similar trend. The

SVM classifier, which had an F-measure of 0.95 in Experiment 3, drops to 0.74

in Experiment 4. Other classifiers, such as Decision Trees and MLP, also exhibit

noticeable decreases in their F-measure values. The decline in F-measure indicates

that the models are struggling to maintain a balance between precision and recall

when operators are further decomposed at Level 2, leading to an increase in both

false positives and false negatives. In Table 5.13, the AUC values also decrease

across all classifiers in Experiment 4. The Random Forest model’s AUC drops

from 0.87 in Experiment 3 to 0.68 in Experiment 4, and the SVM classifier’s AUC

decreases from 0.93 to 0.73. These decreases highlight that Level 2 decomposition

does not provide meaningful additional information to distinguish between fault-

prone and non-fault-prone modules. Figures 5.16, 5.17, and 5.18 further illustrate

this trend, with the average performance curves for accuracy, F-measure, and AUC

showing a clear decline when Level 2 decomposition is applied.

Figure 5.16: Difference in average accuracy regarding selected datasets
against ML algorithms in Exp3 and Exp4.

Overall, the findings highlight that the optimal granularity for fault prediction

is provided by decomposition of Halstead operators and operands at Level 1,

which captures pertinent feature interactions without adding undue complexity.

Experimentation and Results 99

The diminishing rewards of deeper decomposition levels are highlighted by the

performance drop seen in Experiment 4. These results confirm that Level 1

decomposition is the best method for software fault prediction tasks because it

achieves the ideal balance between feature richness and model interpretability.

Figure 5.17: Difference in average F-measure regarding selected datasets
against ML algorithms in Exp3 and Exp4.

Figure 5.18: Difference in average AUC regarding selected datasets against
ML algorithms in Exp3 and Exp4.

5.7.4 Combine Experimental Results

The combined experimental results from Experiments 1, 2, 3, and 4 are summarized

in this section, which also shows the relative performance of decomposed operators

at Level 1, decomposed operators and operands at Level 1, and traditional Halstead

metrics.

Experimentation and Results 100

Figure 5.19: Difference in Accuracy with LR by introducing decomposed
Halstead.

Figure 5.20: Difference in Accuracy with NB by introducing decomposed
Halstead.

A thorough visual depiction of the effects of these various settings on the accuracy,

F-measure, and AUC metrics of machine learning models can be found in the

graphs from Figures 5.19 to 5.36.

Experimentation and Results 101

Figure 5.21: Difference in Accuracy with DT by introducing decomposed
Halstead.

Figure 5.22: Difference in Accuracy with MLP by introducing decomposed
Halstead.

The general pattern demonstrates that the decomposition of both operators and

operands at Level 1 in Experiment 3 performs the best predictive performance,

Experimentation and Results 102

whereas further decomposition at Level 2 results in worse outcomes.

Figure 5.23: Difference in Accuracy with RF by introducing decomposed
Halstead.

Figure 5.24: Difference in Accuracy with SVM by introducing decomposed
Halstead.

Figures 5.19 to 5.24 accuracy trends demonstrate that while decomposition of

operators alone in Experiment 2 outperforms as compere to traditional Halstead

Experimentation and Results 103

metrics in Experiment 1, the addition of decomposed operands in Experiment 3

greatly increases the predictive power of the models.

Figure 5.25: Difference in F-measure with LR by introducing decomposed
Halstead.

Figure 5.26: Difference in F-measure with NB by introducing decomposed
Halstead.

Experimentation and Results 104

Experiment 3 shows that the SVM classifier has the best accuracy of 0.91, while

RF and Logistic Regression both gain from the higher granularity at Level 1.

Figure 5.27: Difference in F-measure with DT by introducing decomposed
Halstead.

Figure 5.28: Difference in F-measure with MLP by introducing decomposed
Halstead.

Experimentation and Results 105

However, as seen in 5.19 to 5.24, the average accuracy for all classifiers drops in

Experiment 4, when operators are further decomposed at Level 2, suggesting that

excessive feature decomposition increases noise and diminishes generalizability.

Figure 5.29: Difference in F-measure with RF by introducing decomposed
Halstead.

Figure 5.30: Difference in F-measure with SVM by introducing decomposed
Halstead.

Experimentation and Results 106

A similar pattern can be seen in the F-measure comparisons in Figures 5.25 to

5.30. In Experiment 3, the F-measure, which weighs recall and precision, peaks for

all classifiers, with Random Forest reaching 0.95.

Figure 5.31: Difference in AUC with LR by introducing decomposed Halstead.

Figure 5.32: Difference in AUC with NB by introducing decomposed Halstead.

Experimentation and Results 107

When both operators and operands are decomposed at Level 1, the RF and Decision

Tree models likewise exhibit notable gains.

Figure 5.33: Difference in AUC with DT by introducing decomposed Halstead.

Figure 5.34: Difference in AUC with MLP by introducing decomposed
Halstead.

Experimentation and Results 108

But in Experiment 4, the F-measure drops, indicating that deeper decomposition

is unable to sustain a balanced prediction, resulting in a higher number of false

positives and false negatives. The SVM classifier F-measure decreases when

operators are decomposed at Level 2, as shown in Figures 5.25 to 5.30.

Figure 5.35: Difference in AUC with RF by introducing decomposed Halstead.

Figure 5.36: Difference in AUC with SVM by introducing decomposed
Halstead.

Experimentation and Results 109

The benefit of Level 1 decomposition for differentiating between fault-prone and

non-fault-prone modules is confirmed by the AUC results in Figures 5.31 to 5.36.

In Experiment 3, SVM has the highest AUC values of 0.98, closely followed by RF

and Logistic Regression.

Conversely, Experiment 4 exhibits a discernible loss in AUC, especially for SVM

from 0.93 to 0.73 and Logistic Regression from 0.91 to 0.70. These numbers show

that while a certain amount of decomposition enhances predictive power, excessive

decomposition reduces the feature set’s usefulness.

In conclusion, the combined experimental findings show that the best compromise

between feature richness and model performance is achieved by decomposition of

both Halstead operators and operands at Level 1. While Experiment 4 fall confirms

that deeper decomposition adds redundancy and complexity rather than enhancing

predictions, Figures 5.19 to 5.36 consistently demonstrate that Experiment 3

performs better than the other configurations across accuracy, F-measure, and

AUC measures.

These results support the theory that Level 1 decomposition is the best method for

predicting software faults because it captures the pertinent intricacies of software

modules without overloading the models.

5.8 Feature Importance Analysis and Impact on

Experimental Results

The Random Forest feature ranking score is depicted in Table 5.14, demonstrate how

decomposed Halstead operators and operands significantly increase the accuracy of

fault prediction.

Features pertaining to decomposed operators and operands were regularly listed

among the top contributors, according to the ranking, highlighting their crucial

function in differentiating fault-prone modules from non-fault-prone ones.

Experimentation and Results 110

The better performance seen in Experiment 3, where both operators and operands

were decomposed at Level 1, is empirically supported by the higher-ranking scores

for these decomposed features. The decomposed features added more significant

representations of code complexity to the feature set by capturing fine-grained

interactions inside the code.

The classifiers’ capacity to identify intricate patterns linked to software flaws was

strengthened by this better representation, which raised accuracy, F-measure, and

AUC scores.

Table 5.14: Feature ranking average score across five selected datasets

Feature Score

DistinctAOpr 0.89

TotalROpr 0.87

TotalAOpr 0.87

N1 0.83

LoEx 0.78

TotalOthers 0.76

LoB 0.76

iv g 0.71

LoCoCm 0.7

LoCm 0.7

LoC 0.64

n1 0.61

TotalLOpr 0.61

Experimentation and Results 111

v g 0.58

D 0.57

DistinctLOpr 0.57

DistinctROpr 0.56

V 0.55

E 0.54

N 0.54

L 0.50

TotalVariables 0.51

DistinctOthers 0.51

ev g 0.48

TotalConstants 0.42

DistinctConstants 0.38

N2 0.37

n2 0.32

DistinctVariables 0.30

T 0.28

B 0.22

Conversely, Experiment 1 traditional measurements lower significance scores high-

light the drawbacks of employing aggregate-level features. Likewise, Experiment 4

comparatively lower feature ranking lends credence to the conclusion that extra

Experimentation and Results 112

noise is introduced by deeper decomposition at Level 2, which lowers the models’

predictive ability.

Decomposed Halstead operators and operands at Level 1 provide the best trade-off

between feature granularity and model interpretability, according to the feature

ranking score. Their strong significance scores, which are consistent with the

performance improvements seen in the earlier experimental results, confirm how

well they work to improve software fault prediction.

5.9 Implications of Decomposed Halstead on Clas-

sification Model Complexity

To answer our RQ2 we analyses the implications of decomposed Halstead on classi-

fication model complexity. The complexity of decision boundaries in classification

models is greatly impacted by the decomposed Halstead Software Metrics into

smaller, more manageable parts, such as individual operators and operands. In

light of the ML models employed in this investigation, these consequences are

examined in this section.

5.9.1 Impact on Decision Boundaries Across ML Models

Decision Trees and Random Forest: Decision trees become more complicated

and have deeper branches as a result of the decomposition, which increases the

number of possible splits. But by averaging several trees, Random Forest lessens

this complexity, increasing resilience and lowering the chance of over fitting.

Support Vector Machine (SVM): The hyperplane borders become increasingly

complex due to the extra characteristics that come from decomposition, especially

when non-linear kernels are used. This may raise the computational requirements

but enables the SVM to catch more subtle distinctions.

Experimentation and Results 113

Multi-Layer Perceptron (MLP): By increasing the number of input neurons

and adding more weights and biases, the decomposition can improve pattern

recognition; however, it may necessitate more epochs and regularization to prevent

over fitting.

5.9.2 Implications of Decomposition on Model Performance

Improved predictive power: The models’ capacity to identify minute patterns

in the data is improved by the enriched feature set derived from decomposed

metrics, which raises classification accuracy throughout the experiments.

Risk of over fitting: Models such as decision trees and MLP may over fit the

training data due to the increased dimensionality, particularly for smaller datasets.

To solve this problem, methods including regularization, pruning, and dropout

were taken into consideration (for MLP, decision trees, and MLP, respectively).

5.9.3 Interpretability vs. Complexity:

Random Forest: Notwithstanding the intricacy, feature importance ratings can

draw attention to the most significant aspects, improving the interpretability of

the findings.

SVM and MLP: The superior classification performance of these models justifies

their usage for some defect prediction tasks, even though their greater feature

count may make them more difficult to comprehend.

5.9.4 Computational Considerations

For models like MLP and SVM, the breakdown increased the input size, resulting in

longer training periods and higher memory use. However, considering the increase

in prediction performance, this trade off was justified.

Experimentation and Results 114

It is evident that although decision boundaries become more complex, the decom-

position process results in more precise and nuanced fault prediction when the

decomposition approach is linked to the particular ML models employed in this

investigation. The study shows that performance, interpretability, and computing

efficiency may all be balanced with the right model selection and optimization

strategies.

5.10 Applications of the Study

This study investigation on the decomposed of Halstead base metrics for software

defect prediction has a number of practical uses in software engineering and other

fields. These applications show how the suggested method can be used in practice

to increase software maintainability, efficiency, and dependability.

5.10.1 Software Quality Assurance and Testing Prioritiza-

tion

Software quality assurance teams can concentrate their testing efforts thanks to

the more accurate fault prediction made possible by the suggested decomposed

Halstead base metrics. Focusing on modules that are prone to errors, as determined

by Level 1 decomposition, makes the testing process more effective overall, saving

money and time.

5.10.2 Automated Fault Detection in CI/CD Pipelines

Automated defect detection is essential to contemporary software development

methods, especially those that incorporate continuous integration and deployment

(CI/CD). More stable and fault-resistant releases can be ensured by improving the

capacity to identify flaws early in the development cycle by the incorporation of

decomposed Halstead base metrics into fault prediction systems.

Experimentation and Results 115

5.10.3 Enhanced Static Code Analysis Tools

Static analysis tools can incorporate decomposed Halstead base metrics to give

developers more thorough feedback. These tools can provide developers with useful

information at the coding stage by detecting particular types of operators and

operands linked to increased fault probability, which will lower post-deployment

problems.

5.10.4 Resource Allocation in Development and Mainte-

nance

Project managers can more efficiently distribute resources by pinpointing particular

parts of the codebase that are more likely to have errors. The capacity to concentrate

efforts on high risk modules guarantees the effective use of staff and time, enhancing

project management as a whole.

5.10.5 Predictive Maintenance in Safety Critical Systems

High degrees of dependability are necessary in safety-critical fields like financial sys-

tems, healthcare, and aviation. The suggested decomposition technique can enhance

predictive maintenance models in these areas, enabling businesses to anticipate

problems and prevent system breakdowns that could have dire repercussions.

5.10.6 Development of Customizable Fault Prediction Mod-

els

This study’s methodology can serve as a basis for developing fault prediction models

tailored to a particular domain. Organizations can tailor their models to meet

their specific requirements by altering the decomposition levels according to the

software system’s characteristics.

Experimentation and Results 116

The wide range of uses for the suggested decomposed Halstead base metrics shows

how they can influence various facets of software development, including resource

planning, predictive maintenance, and quality assurance. This paper adds to the

larger field of software engineering by illustrating these useful applications and

emphasizes the significance of granular measurements in fault prediction.

5.11 Threats to Validity

The results of our experiment allow us to associate decomposed Halstead base

metrics with SFP. Nevertheless, before we could accept the result, we would have

to consider possible threats to its validity.

Concerning the size of the projects, sufficient comprehensible project size is taken.

The projects of a very large size or very small size were ignored. The reason was

the unavailability of either projects’ source code or fault information. Therefore,

such very large size or small size project may differ in the results reported.

The selected open-source projects are developed in Java, which sufficiently justifies

the objective of the experiment and successfully demonstrates the experimental

methodology. However, since the decomposed Halstead metric varies in different

programming languages. The results may vary when using projects developed in

languages other than Java.

Chapter 6

Conclusion and Future Work

Feature decomposition in Halstead base metrics for software fault prediction (SFP)

has transformed the landscape of software reliability analysis. Through the meticu-

lous breakdown of traditional Halstead metrics into more nuanced components such

as conditionals, decisions, and literals, machine learning algorithms can now extract

highly informative features that intricately reflect the complexities of software

systems.

The decomposition of Halstead base metrics has enhancements in machine learning

algorithms, particularly in the realm of fault prediction. By the decomposed

features, models exhibit heightened predictive accuracy, facilitating more reliable

assessments of software quality and vulnerability detection. Moreover, the increased

granularity of decomposed features enables models to capture subtle patterns and

dependencies within the data, further enhancing their predictive power.

Additionally, the interoperability and explainability of decomposed features em-

power software engineers to glean valuable insights from model predictions, fostering

more informed decision-making and ultimately contributing to the advancement of

software development practices. In conclusion, this research explores two critical as-

pects of decomposing Halstead base metrics to improve SFP. RQ1 investigates how

Halstead base metrics can be decomposed into different types of operators to en-

hance fault prediction, while RQ2 examines the overall impact of this decomposition

on predictive accuracy.

117

Conclusion and Future Work 118

Two levels of decomposition were explored to refine the feature extraction process.

In the first level, traditional decomposition techniques segregated operators and

operands within the Halstead metrics to provide a foundational breakdown. The

second level focused on categorizing operators into distinct groups, such as assign-

ment, logical, arithmetic, and relational operations, allowing for a more nuanced

understanding of the software’s behavior.

The experimentation revealed intriguing insights into the impact of different de-

composition levels on machine learning accuracy. In certain scenarios, particularly

when operators were further decomposed into refined categories, predictive accu-

racy soared to impressive levels of up to 99%. This suggests that the enhanced

granularity of decomposition facilitated the identification of subtle patterns, signifi-

cantly improving predictive performance. However, in some cases, overly detailed

decomposition resulted in a sharp decline in accuracy, highlighting the importance

of selecting an optimal decomposition strategy.

This underscores the necessity of carefully balancing the granularity of decompo-

sition to avoid introducing noise that could adversely affect model performance.

Thus, while deeper levels of decomposition hold the potential to uncover valu-

able insights, the research emphasizes the importance of rigorous evaluation and

optimization to ensure robust and reliable fault prediction models.

6.1 Future Work

In future work, researchers can extend the decomposition process by focusing

on refining the operands category within the decomposed Halstead base metrics.

Specifically, exploration into the decomposition of variables into more granular

subcategories such as literals, primitives, non-primitives, and non-primitive user-

defined types can be pursued. By dissecting the operands into these finer-grained

components, researchers can gain deeper insights into the underlying structure and

characteristics of software code, thereby enhancing the effectiveness of software

fault prediction models. Moreover, the incorporation of additional decomposition

Conclusion and Future Work 119

layers opens avenues for further improvement by enabling the extraction of more

informative features for machine learning algorithms.

Additionally, in order to supplement the improved feature extraction procedure,

future research projects may go into the investigation of other machine learning

techniques. Through the utilisation of diverse machine learning methodologies

such as ensemble methods, probabilistic models, and deep learning, researchers can

investigate substitute approaches for software fault prediction that capitalise on

the enriched dataset that arises from the advanced decomposition scheme. This

all-encompassing method not only improves the models’ predictive power but also

promotes a greater comprehension of the many relationships and dynamics present

in software systems.

Furthermore, the incorporation of explainable AI approaches may provide increased

predictability and interpretability, enabling practitioners to understand the fun-

damental causes of software errors. This may result in better decision-making

procedures and the capacity to identify the precise stages of the software devel-

opment lifecycle that need improvement. The integration of these sophisticated

methodologies with the enhanced feature extraction procedure holds promise for

augmenting not only the accuracy of fault prediction but also the software devel-

opment and maintenance procedures in general. Further investigation into these

varied directions is expected to yield new insights and patterns that might greatly

strengthen software quality assurance protocols.

Ensuring the robustness and generalizability of the produced models will require

the deployment of stringent validation approaches, such as cross-validation and real-

world testing. Through innovation and the sharing of best practices, collaborative

efforts between academics and industry can further accelerate the growth of this

sector. All things considered, greater research in this area could greatly progress

the field of software fault prediction and aid in the creation of more durable

and dependable software engineering procedures. Through the adoption of a

comprehensive methodology that blends advanced machine learning techniques

with an in-depth comprehension of software systems, researchers can pioneer

Conclusion and Future Work 120

significant advancements in the precision and efficacy of software fault prediction

models.

Bibliography

[1] F. Gurcan, G. G. M. Dalveren, N. E. Cagiltay, D. Roman, and A. Soylu,

“Evolution of software testing strategies and trends: Semantic content analysis

of software research corpus of the last 40 years,” IEEE Access, vol. 10, pp.

106 093–106 109, 2022.

[2] V. Garousi and M. V. Mäntylä, “A systematic literature review of literature

reviews in software testing,” Information and Software Technology, vol. 80,

pp. 195–216, 2016.

[3] A. Zakari and S. P. Lee, “Simultaneous isolation of software faults for effective

fault localization,” in 2019 IEEE 15th International Colloquium on Signal

Processing & Its Applications (CSPA). IEEE, 2019, pp. 16–20.

[4] A. Anand and A. Uddin, “Importance of software testing in the process

of software development,” International Journal for Scientfic Research and

Development, vol. 12, no. 6, 2019.

[5] L. Luo, “Software testing techniques,” Institute for Software Research Interna-

tional Carnegie Mellon University Pittsburgh, PA, vol. 15232, no. 1-19, p. 19,

2001.

[6] G. Fraser and A. Arcuri, “A large-scale evaluation of automated unit test

generation using evosuite,” ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 24, no. 2, pp. 1–42, 2014.

[7] A. B. Marques, R. Rodrigues, and T. Conte, “Systematic literature reviews in

distributed software development: A tertiary study,” in 2012 IEEE Seventh

121

Bibliography 122

International Conference on Global Software Engineering. IEEE, 2012, pp.

134–143.

[8] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping

studies in software engineering,” in 12th International Conference on eval-

uation and Assessment in software engineering (EASE). BCS Learning &

Development, 2008.

[9] S. Nidhra and J. Dondeti, “Black box and white box testing techniques-a lit-

erature review,” International Journal of Embedded Systems and Applications

(IJESA), vol. 2, no. 2, pp. 29–50, 2012.

[10] A. Verma, A. Khatana, and S. Chaudhary, “A comparative study of black box

testing and white box testing,” International Journal of Computer Sciences

and Engineering, vol. 5, no. 12, pp. 301–304, 2017.

[11] M. E. Khan and F. Khan, “A comparative study of white box, black box and

grey box testing techniques,” International Journal of Advanced Computer

Science and Applications, vol. 3, no. 6, 2012.

[12] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits and

limitations of automated software testing: Systematic literature review and

practitioner survey,” in 2012 7th International Workshop on Automation of

Software Test (AST). IEEE, 2012, pp. 36–42.

[13] M. K. Thota, F. H. Shajin, P. Rajesh et al., “Survey on software defect predic-

tion techniques,” International Journal of Applied Science and Engineering,

vol. 17, no. 4, pp. 331–344, 2020.

[14] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on

Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[15] C. Catal, “Software fault prediction: A literature review and current trends,”

Expert systems with applications, vol. 38, no. 4, pp. 4626–4636, 2011.

Bibliography 123

[16] G. Abaei and A. Selamat, “A survey on software fault detection

based on different prediction approaches,” Vietnam J. of Computer

Science, vol. 1, no. 2, p. 79–95, may 2014. [Online]. Available:

https://doi.org/10.1007/s40595-013-0008-z

[17] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Comparing negative binomial

and recursive partitioning models for fault prediction,” in Proceedings of the

4th International Workshop on Predictor Models in Software Engineering, ser.

PROMISE ’08. New York, NY, USA: ACM, 2008, pp. 3–10.

[18] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault prediction model to

allow inter languagereuse,” in Proceedings of the 4th International Workshop

on Predictor Models in Software Engineering, ser. PROMISE ’08. New York,

NY, USA: ACM, 2008, pp. 19–24.

[19] Capgemini, “Sogeti:world quality report 2015–16,” World quality report

2015–16, Tech. Rep., 2015.

[20] S. A. Sherer, “Software fault prediction,” Journal of Systems and Software,

vol. 29, no. 2, pp. 97–105, 1995.

[21] S. S. Rathore and S. Kumar, “A study on software fault prediction techniques,”

Artificial Intelligence Review, vol. 51, no. 2, pp. 255–327, Feb 2019.

[22] K. Sandeep and S. R. Santosh, Software Fault Prediction, A Road Map.

Singapore: Springer Singapore, 2018.

[23] M. W. Morris, B. L. Shaw, and C. D. Ziomek, “Modular & benchtop instrument

convergence decreases test costs and increases productivity,” in 2007 IEEE

Autotestcon. IEEE, 2007, pp. 284–290.

[24] N. Seliya and T. M. Khoshgoftaar, “Software quality estimation with limited

fault data: a semi-supervised learning perspective,” Software Quality Journal,

vol. 15, no. 3, pp. 327–344, 2007.

[25] R. Marinescu, “Assessing technical debt by identifying design flaws in software

systems,” IBM Journal of Research and Development, vol. 56, no. 5, pp. 9–1,

2012.

https://doi.org/10.1007/s40595-013-0008-z

Bibliography 124

[26] I. H. Sarker, “Machine learning: Algorithms, real-world applications and

research directions,” SN computer science, vol. 2, no. 3, p. 160, 2021.

[27] N. Burkart and M. F. Huber, “A survey on the explainability of supervised

machine learning,” Journal of Artificial Intelligence Research, vol. 70, pp.

245–317, 2021.

[28] F. Hahne, W. Huber, R. Gentleman, S. Falcon, R. Gentleman, and V. Carey,

“Unsupervised machine learning,” Bioconductor case studies, pp. 137–157, 2008.

[29] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:

A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[30] J. M. Chambers and T. J. Hastie, “Statistical models,” in Statistical models

in S. Routledge, 2017, pp. 13–44.

[31] G. K. Uyanık and N. Güler, “A study on multiple linear regression analysis,”

Procedia-Social and Behavioral Sciences, vol. 106, pp. 234–240, 2013.

[32] S. Sperandei, “Understanding logistic regression analysis,” Biochemia medica,

vol. 24, no. 1, pp. 12–18, 2014.

[33] S. Abd ElHafeez, G. D’Arrigo, D. Leonardis, M. Fusaro, G. Tripepi, and

S. Roumeliotis, “Methods to analyze time-to-event data: the cox regression

analysis,” Oxidative medicine and cellular longevity, vol. 2021, pp. 1–6, 2021.

[34] A. Omer, S. S. Rathore, and S. Kumar, “Me-sfp: A mixture-of-experts-based

approach for software fault prediction,” IEEE Transactions on Reliability,

2023.

[35] T. M. Khoshgoftaar, N. Seliya, and N. Sundaresh, “An empirical study of

predicting software faults with case-based reasoning,” Software Quality Journal,

vol. 14, pp. 85–111, 2006.

[36] G. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction using

relational association rule mining,” Information Sciences, vol. 264, pp. 260–278,

2014.

Bibliography 125

[37] Q. Zhao and S. S. Bhowmick, “Association rule mining: A survey,” Nanyang

Technological University, Singapore, vol. 135, 2003.

[38] C. Catal and B. Diri, “A systematic review of software fault prediction studies,”

Expert Syst. Appl., vol. 36, no. 4, pp. 7346–7354, May 2009.

[39] S. S. Rathore and S. Kumar, “A decision tree logic based recommendation

system to select software fault prediction techniques,” Computing, vol. 99,

no. 3, pp. 255–285, 2017.

[40] S. K. Pandey, R. B. Mishra, and A. K. Tripathi, “Machine learning based meth-

ods for software fault prediction: A survey,” Expert Systems with Applications,

vol. 172, p. 114595, 2021.

[41] E. E. Mills, Software metrics. Software Engineering Institute, 1988.

[42] H. F. Li and W. K. Cheung, “An empirical study of software metrics,” IEEE

Transactions on Software Engineering, no. 6, pp. 697–708, 1987.

[43] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, “Choosing software

metrics for defect prediction: an investigation on feature selection techniques,”

Software: Practice and Experience, vol. 41, no. 5, pp. 579–606, 2011.

[44] M. Jureczko, “Significance of different software metrics in defect prediction,”

Software Engineering: An International Journal, vol. 1, no. 1, pp. 86–95, 2011.

[45] H. Wang, T. M. Khoshgoftaar, and N. Seliya, “How many software metrics

should be selected for defect prediction?” in Twenty-Fourth International

FLAIRS Conference, 2011.

[46] S. SENTHILNATHAN and V. SANGEETHA, “Performance analysis of reli-

ability, quality and metric analysis fault prediction assessment for software

testing.” International Journal of Advanced Research in Computer Science,

vol. 8, no. 9, 2017.

[47] R. A. Paul, T. L. Kunii, Y. Shinagawa, and M. F. Khan, “Software metrics

knowledge and databases for project management,” IEEE Transactions on

Knowledge and Data Engineering, vol. 11, no. 1, pp. 255–264, 1999.

Bibliography 126

[48] M. Bhardwaj and A. Rana, “Key software metrics and its impact on each other

for software development projects,” ACM SIGSOFT Software Engineering

Notes, vol. 41, no. 1, pp. 1–4, 2016.

[49] A.-J. Molnar, A. Neamţu, and S. Motogna, “Evaluation of software product

quality metrics,” in Evaluation of Novel Approaches to Software Engineering:

14th International Conference, ENASE 2019, Heraklion, Crete, Greece, May

4–5, 2019, Revised Selected Papers 14. Springer, 2020, pp. 163–187.

[50] R. Malhotra and A. Bansal, “Predicting change using software metrics: A

review,” in 2015 4th International Conference on Reliability, Infocom Tech-

nologies and Optimization (ICRITO)(Trends and Future Directions). IEEE,

2015, pp. 1–6.

[51] W. Li, “Software product metrics,” IEEE Potentials, vol. 18, no. 5, pp. 24–27,

1999.

[52] S. H. Kan, J. Parrish, and D. Manlove, “In-process metrics for software testing,”

IBM Systems Journal, vol. 40, no. 1, pp. 220–241, 2001.

[53] T. L. Woodings and G. A. Bundell, “A framework for software project met-

rics,” in Proc. 12th European Conference on Software Control and Metrics

(ESCOM’01), 2001.

[54] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of ma-

chine learning in software defect prediction,” IEEE Transactions on Software

Engineering, vol. 40, no. 6, pp. 603–616, 2014.

[55] M. E. Khan and F. Khan, “Importance of software testing in software devel-

opment life cycle,” International Journal of Computer Science Issues (IJCSI),

vol. 11, no. 2, p. 120, 2014.

[56] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkiloğlu, and S. Eldh, “Exploring

the industry’s challenges in software testing: An empirical study,” Journal of

Software: Evolution and Process, vol. 32, no. 8, p. e2251, 2020.

Bibliography 127

[57] J. Pachouly, S. Ahirrao, K. Kotecha, G. Selvachandran, and A. Abraham, “A

systematic literature review on software defect prediction using artificial intelli-

gence: Datasets, data validation methods, approaches, and tools,” Engineering

Applications of Artificial Intelligence, vol. 111, p. 104773, 2022.

[58] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic

literature review on fault prediction performance in software engineering,”

IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304,

2011.

[59] K. Bhandari, K. Kumar, and A. L. Sangal, “Data quality issues in software

fault prediction: a systematic literature review,” Artificial Intelligence Review,

vol. 56, no. 8, pp. 7839–7908, 2023.

[60] D. Radjenovi, M. Heri, R. Torkar, and A. ivkovi, “Software fault prediction

metrics: A systematic literature review,” Information and software technology,

vol. 55, no. 8, pp. 1397–1418, 2013.

[61] I. Batool and T. A. Khan, “Software fault prediction using data mining,

machine learning and deep learning techniques: A systematic literature review,”

Computers and Electrical Engineering, vol. 100, p. 107886, 2022.

[62] N.-H. Chiu, “Combining techniques for software quality classification: An

integrated decision network approach,” Expert Systems with Applications,

vol. 38, no. 4, pp. 4618–4625, 2011.

[63] K. Dejaeger, T. Verbraken, and B. Baesens, “Toward comprehensible software

fault prediction models using bayesian network classifiers,” IEEE Transactions

on Software Engineering, vol. 39, no. 2, pp. 237–257, Feb 2013.

[64] Ö. F. Arar and K. Ayan, “Software defect prediction using cost-sensitive

neural network,” Applied Soft Computing, vol. 33, pp. 263–277, 2015.

[65] R. C. G. Dhanajayan and S. A. Pillai, “Slmbc: spiral life cycle model-based

bayesian classification technique for efficient software fault prediction and

classification,” Soft Computing, vol. 21, no. 2, pp. 403–415, 2017.

Bibliography 128

[66] G. P. Bhandari and R. Gupta, “Machine learning based software fault predic-

tion utilizing source code metrics,” in 2018 IEEE 3rd International Conference

on Computing, Communication and Security (ICCCS). IEEE, 2018, pp.

40–45.

[67] T. Shippey, D. Bowes, and T. Hall, “Automatically identifying code features

for software defect prediction: Using ast n-grams,” Information and Software

Technology, vol. 106, pp. 142–160, 2019.

[68] M. Cetiner and O. K. Sahingoz, “A comparative analysis for machine learning

based software defect prediction systems,” pp. 1–7, 2020.

[69] V. Kumar, Kumar, and D. Mohapatra, “Software fault prediction using lssvm

with different kernel functions,” Arabian Journal for Science and Engineering,

vol. 46, 04 2021.

[70] C. F. Caiafa, J. Solé-Casals, P. Marti-Puig, S. Zhe, and T. Tanaka, “Decompo-

sition methods for machine learning with small, incomplete or noisy datasets,”

Applied Sciences, vol. 10, no. 23, p. 8481, 2020.

[71] O. Maimon and L. Rokach, “Improving supervised learning by feature decom-

position,” in International Symposium on Foundations of Information and

Knowledge Systems. Springer, 2002, pp. 178–196.

[72] T. De Quadros, A. E. Lazzaretti, and F. K. Schneider, “A movement decompo-

sition and machine learning-based fall detection system using wrist wearable

device,” IEEE Sensors Journal, vol. 18, no. 12, pp. 5082–5089, 2018.

[73] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic

literature review on fault prediction performance in software engineering,”

IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304,

2012.

[74] R. Malhotra, “A systematic review of machine learning techniques for software

fault prediction,” Applied Soft Computing, vol. 27, no. C, pp. 504–518, Feb.

2015.

Bibliography 129

[75] R. S. Wahono, “A systematic literature review of software defect prediction,”

Journal of Software Engineering, vol. 1, no. 1, pp. 1–16, 2015.

[76] M. Caulo, “A taxonomy of metrics for software fault prediction,” in Proceedings

of the 2019 27th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, 2019,

pp. 1144–1147.

[77] C. Catal, U. Sevim, and B. Diri, “Software fault prediction of unlabeled

program modules,” in Proceedings of the world congress on engineering, vol. 1,

2009, pp. 1–3.

[78] I. Batool and T. A. Khan, “Software fault prediction using deep learning

techniques,” Software Quality Journal, vol. 31, no. 4, pp. 1241–1280, 2023.

[79] G. Singh, D. Singh, and V. Singh, “A study of software metrics,” IJCEM

International Journal of Computational Engineering & Management, vol. 11,

no. 2011, pp. 22–27, 2011.

[80] M. R. Ahmed, M. A. Ali, N. Ahmed, M. F. B. Zamal, and F. J. M. Shamrat,

“The impact of software fault prediction in real-world application: an automated

approach for software engineering,” in Proceedings of 2020 the 6th international

conference on computing and data engineering, 2020, pp. 247–251.

[81] M. J. Hernández-Molinos, A. J. Sánchez-Garćıa, R. E. Barrientos-Mart́ınez,

J. C. Pérez-Arriaga, and J. O. Ocharán-Hernández, “Software defect prediction

with bayesian approaches,” Mathematics, vol. 11, no. 11, p. 2524, 2023.

[82] S. Haldar and L. F. Capretz, “Interpretable software defect prediction from

project effort and static code metrics,” Computers, vol. 13, no. 2, p. 52, 2024.

[83] M. Nilsson, “A comparative case study on tools for internal software quality

measures,” 2019.

[84] M. H. Halstead, Elements of Software Science (Operating and Programming

Systems Series). New York, NY, USA: Elsevier Science Inc., 1977.

Bibliography 130

[85] H. Maurice H, “Natural laws controlling algorithm structure?” ACM Sigplan

Notices, vol. 7, no. 2, pp. 19–26, 1972.

[86] L. Love and A. Bowman, “An independent test of the theory of software

physics,” ACM Sigplan Notices, vol. 11, no. 11, pp. 42–49, 1976.

[87] A. B. Fitzsimmons, “Relating the presence of software errors to the theory of

software science,” in Proc. 11th Hawaii International Conference on Systems

Sciences, vol. 40, 1978, p. 46.

[88] S. M. Henry and D. Kafura, “Software structure metrics based on information

flow,” IEEE Transactions on Software Engineering, vol. 7, no. 5, pp. 510–518,

Sep. 1981.

[89] Z. Tóth, “New datasets for bug prediction and a method for measuring

maintainability of legacy software systems,” Ph.D. dissertation, University of

Szeged, 2019.

[90] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener, “De-

fect prediction from static code features: current results, limitations, new

approaches,” Automated Software Engineering, vol. 17, no. 4, pp. 375–407,

2010.

[91] N. Govil, “Applying halstead software science on different programming

languages for analyzing software complexity,” in 2020 4th International Con-

ference on Trends in Electronics and Informatics (ICOEI)(48184). IEEE,

2020, pp. 939–943.

[92] P. Academy, Python Programming for Beginners, Python Workbook. FAF

PUBLISHING Limited, 2020.

[93] L. Pratt, PHP: Advanced Guide to Learn the Realms of PHP Programming.

Independently Published, 2021.

[94] N. Feroz, A Step by Step Guide for Beginners. Amazon Digital Services LLC

- KDP Print US, 2019.

[95] J. Gustedt, Modern C. Manning, 2019.

Bibliography 131

[96] I. Gvero, “Core java volume i: Fundamentals, by cay s. horstmann and gary

cornell,” ACM Sigsoft Software Engineering Notes, vol. 38, no. 3, pp. 33–33,

2013.

[97] Z. Tóth, P. Gyimesi, and R. Ferenc, “A public bug database of github projects

and its application in bug prediction,” in International Conference on Com-

putational Science and Its Applications, 2016, pp. 625–638.

[98] S. B. Kotsiantis, I. Zaharakis, P. Pintelas et al., “Supervised machine learn-

ing: A review of classification techniques,” Emerging artificial intelligence

applications in computer engineering, vol. 160, no. 1, pp. 3–24, 2007.

	Author's Declaration
	Plagiarism Undertaking
	List of Publications
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Software Fault Prediction
	1.1.1 Machine Learning (ML)
	1.1.2 Statistical Modeling (SM)
	1.1.3 Expert Opinion (EO)
	1.1.4 Similarity Based (SB)
	1.1.5 Association Rule Mining (AM)

	1.2 Machine Learning
	1.2.1 Data Collection (DC)
	1.2.2 Feature Extraction (FE)
	1.2.3 Labeling (Lb)
	1.2.4 Training Data Preparation(TDP)
	1.2.5 Model Selection and Training (MST)
	1.2.6 Model Evaluation (ME)
	1.2.7 Deployment and Monitoring (DM)

	1.3 Software Metrics
	1.3.1 Product Metrics
	1.3.2 Process Metrics
	1.3.3 Project Metrics

	1.4 Significance of Software Metrics in SFP
	1.5 Research Objectives
	1.5.1 Decompose Halstead Base Metrics for Enhanced Predictive Accuracy
	1.5.2 Determine Optimal Decomposition Levels
	1.5.3 Quantify the Impact on Fault Prediction Precision
	1.5.4 Validate Comparative Models
	1.5.5 Enhance Quality Assurance Practices in Software Engineering
	1.5.6 Advance the Understanding of Metric Decomposition in SFP

	1.6 Problem Statement
	1.7 Proposed Idea
	1.8 Research Questions
	1.9 Research Scope
	1.9.1 Focus Areas
	1.9.2 Exclusions
	1.9.3 Constraints and Limitations

	1.10 Research Methodology
	1.10.1 Understanding Existing SFP Techniques
	1.10.2 Defining the Research Gap
	1.10.3 Decomposition of Halstead Metrics
	1.10.4 Dataset Design and Development
	1.10.5 ML Model Evaluation

	1.11 Contribution
	1.12 Dissertation Outline

	2 Literature Review
	2.1 Prevailing Trends in SFP
	2.2 Software Metrics
	2.2.1 File level metrics
	2.2.2 Class level metrics
	2.2.3 Method Level Metrics
	2.2.4 Component Level Metrics
	2.2.5 Line Level Metrics

	2.3 Software Metrics with Halstead in SFP
	2.4 Summary

	3 Methodology
	3.1 Selection of Case Studies
	3.2 Datasets Enhancement
	3.3 Selection of ML Algorithm
	3.3.1 Nature of Data
	3.3.2 Complexity of Patterns
	3.3.3 Performance Requirements
	3.3.4 Scalability and Efficiency
	3.3.5 Interpretability and Explainability
	3.3.6 Ensemble Methods
	3.3.7 Domain Expertise
	3.3.8 Model Maintenance and Adaptation

	3.4 Selection of performance measures
	3.4.1 Nature of the Problem
	3.4.2 Imbalance in the Dataset
	3.4.3 Cost Sensitivity
	3.4.4 Interpretability
	3.4.5 Threshold Selection
	3.4.6 Domain Specific Requirements
	3.4.7 Validation and Cross Validation
	3.4.8 Comparative Analysis

	3.5 Summary

	4 Decomposition of Halstead Metric Suite
	4.1 Halstead’s Metrics: an Overview
	4.1.1 Halstead Base Metrics
	4.1.2 Halstead Derived Metrics
	4.1.3 Miscellaneous Halstead Metrics Suite Extension

	4.2 Decomposition of Halstead Operators
	4.3 Decomposition of Halstead Operands
	4.4 Mathematical Formulation of Decomposed Halstead Operators and Operands
	4.5 Algorithm to Compute Decomposed Halstead Base Metrics from the Code
	4.6 Justification for Halstead Base Metrics Decomposition
	4.6.1 Necessity of Decomposition
	4.6.2 Benefits of Decomposition
	4.6.2.1 Granular Feature Representation
	4.6.2.2 Enhanced Model Interoperability
	4.6.2.3 Improved Prediction Performance

	4.7 Summary

	5 Experimentation and Results
	5.1 Case Study
	5.2 Selected Features
	5.3 Data Preprocessing
	5.4 ML Modeling
	5.4.1 Logistic Regression
	5.4.2 Multilayer Perceptron (MLP)
	5.4.3 Naive Bayes
	5.4.4 Decision Trees
	5.4.5 Random Forests
	5.4.6 Support Vector Machines (SVM)

	5.5 Cross Validation
	5.6 Evaluation Measure
	5.7 Results and Discussion
	5.7.1 Experimental Results with Decomposed Halstead Operators at Level 1
	5.7.2 Experimental Results with Decomposed Halstead Operators and Operands at Level 1
	5.7.3 Experimental Results with Decomposed Halstead Operators at Level 2
	5.7.4 Combine Experimental Results

	5.8 Feature Importance Analysis and Impact on Experimental Results
	5.9 Implications of Decomposed Halstead on Classification Model Complexity
	5.9.1 Impact on Decision Boundaries Across ML Models
	5.9.2 Implications of Decomposition on Model Performance
	5.9.3 Interpretability vs. Complexity:
	5.9.4 Computational Considerations

	5.10 Applications of the Study
	5.10.1 Software Quality Assurance and Testing Prioritization
	5.10.2 Automated Fault Detection in CI/CD Pipelines
	5.10.3 Enhanced Static Code Analysis Tools
	5.10.4 Resource Allocation in Development and Maintenance
	5.10.5 Predictive Maintenance in Safety Critical Systems
	5.10.6 Development of Customizable Fault Prediction Models

	5.11 Threats to Validity

	6 Conclusion and Future Work
	6.1 Future Work

	Bibliography

