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Abstract

This dissertation delves into a comprehensive analysis of electromagnetic wave

behavior in rectangular and cylindrical waveguides having variations in medium

and geometrical properties. The primary focus is on modeling, propagation,

and scattering phenomena, particularly in structures under varying conditions

and in the presence or absence of a strong magnetic field. The investigation

includes the propagation of electromagnetic waves in diverse structures, such

as infinite rectangular waveguides containing semi-bounded regions with cold

plasma situated between dielectric layers, as well as rectangular waveguides with

grooved structures and central cold plasma slabs. Additionally, the electromagnetic

wave scattering in perfectly electric conducting infinite cylindrical waveguides

with central chambers filled with cold plasma, vacuum, and dielectric medium is

discussed in detail. The formulated boundary value problems, represented by the

Helmholtz equation and governed by Maxwell’s equations, were solved using the

Mode Matching technique. This technique serves as a valuable tool for analyzing

the scattering characteristics of structures involving partitioning and material

property discontinuities. The Mode Matching solution elucidates the phenomena of

reflection, transmission, and attenuation of planar mode excitation. The solution is

projected onto the eigenfunctions, and information about the orthogonal properties

is crucial for achieving a convergent solution. The eigenvalue problems with perfectly

electric conducting boundary conditions exhibit eigenfunctions that satisfy usual

orthogonality relations. However, the eigenvalue problems against impedance

type conditions reveal that the eigenfunctions satisfy generalized orthogonality

conditions.

The unique properties of plasma-filled waveguides make them valuable tools in

various technological advancements across different fields, highlighting the relevance

and significance of this research in driving innovation and development. The findings

of this dissertation offer valuable insights into the practical implementation of

electromagnetic wave behavior in waveguide structures, laying the foundation for

prospective advancements in technology and various applications across different

fields.
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Chapter 1

General Introduction

1.1 Introduction

Plasma, a state of matter, is an electrically conducting quasi-neutral gas that

consists of charged particles moving collectively. In addition to charged particles,

plasma also contains molecules and photons across various wavelengths. Plasma is

a significant component of the observable universe due to its prevalence in various

environments. The motion of charged particles in plasma plays a crucial role in

facilitating the propagation of electromagnetic (EM) waves. The magnetosphere

of the Earth, a region of space influenced by Earth’s magnetic field, is home to

dense, cold plasma. This plasma interacts with EM waves, which serves as an

essential source for radio communication. Cold plasma is classified as non-thermal

because the electrons have significantly higher temperatures compared to ions and

neutrals [1]. This medium, in which compression forces play an insignificant role

[2], holds particular importance in biomedicine and healthcare. The cold plasma

technology has emerged as a new and innovative approach in fighting cancer,

due to the ability of cold plasma to eradicate cancer cells and activate specific

signaling pathways essential for treatment responses [3]. In the food industry, this

technology is emerging as a viable nonthermal processing method that reduces the

necessity for prolonged microbial treatments and has the potential to supplant

chemical disinfection techniques in the future [4]. Plasma treatment has been

1
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demonstrated as a fast, easy, and eco-friendly innovative approach for handling the

catalytic materials, sparking the interest of numerous researchers. The treatment

can facilitate the reduction, deposition, combination, and decomposition of active

components in the preparation of catalytic materials [5]. Consequently, plasma

technology has become an object of keen interest due to its manifoldness and

low-cost production.

Waveguides are structures that guide the propagation of energy within a confined

pathway. The alterations in their shape and material composition significantly

influence the scattering of the energy within the pathway. A comparison of the

properties of plasma waveguides and conventional dielectric waveguides reveals

significant differences in many aspects. Plasma-filled rectangular waveguides are

employed in laser-wakefield, a particle acceleration scheme, which has a potential

application in physical sciences, radioisotope production, possible transmutation of

nuclear waste, and generation of broad band X-ray radiation [6, 7]. The microwave-

plasma interaction in these waveguides is viable in material processing, in controlled

fusion and in active contact of radio waves with the ionosphere. Moreover, EM

wave can be generated by injecting Cherenkov free electron laser within such type

of waveguide [8]. Plasma-filled cylindrical waveguides are utilized in the conversion

of methane into hydrogen or synthesis gas, which is crucial for the production

of raw chemicals such as methanol and ammonia. Additionally, they serve as

hydrogenation agents in oil refineries and play a role in reducing gases in the steel

industry [9]-[10]. Additionally, these structures form integral parts of plasma jets,

powerful microwave generators, accelerators in free electron lasers [11–13] and

nuclear fusion equipment such as tokamaks and stellarators [14]. Additionally,

plasma antennas utilizing ionized gas instead of metal-conducting components

are highly efficient and require minimal power consumption [15]. An alternative

structure is an infinite circular corrugated waveguide, which is easier to manufacture

as compared to rectangular symmetry with corrugated walls [16]. The corrugated

surface supports the backward wave, which makes it viable to be applied within a

cylindrical structure as a backward-wave oscillator, a high-power microwave source

at the centimeter and millimeter wavelength bands [17]. The use of electron beam

in this wave structure results in generation of very high-power microwave pulses,
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which are widely applicable in ultra-precise radar systems and high-energy particle

accelerators. Furthermore, the utilization of high-power microwave sources in a

directed-energy weapon can result in permanent harm by emitting concentrated

energy in a specific direction to disrupt or overwhelm electronic equipment [18].

1.2 Literature Review

The rectangular and cylindrical waveguides are uniform structures, characterized

by cross sections transverse to the direction of propagation and almost identical in

size and shape with each other. Therefore, the EM field within such waveguides can

be presented as superposition of an infinite number of modes [19]. If the EM wave

frequency delivered to the plasma surface is greater than the plasma frequency,

the wave passes through it. However, if the frequency of the wave delivered to the

plasma is lower than the plasma frequency, the wave does not pass through the

plasma. Wait [20] elucidated that when a constant magnetic field is present, the

dielectric constant of a plasma takes the form of a tensor. He provided detailed

conclusions for the reflection coefficients of stratified plasma in both planar and

cylindrical configurations.

Plasma waveguides have gained significant attention from researchers due to their

potential in efficiently transferring EM energy [21]-[22]. Such waveguides have a

significance in development of powerful microwave generators, in optical systems

and in the progress of high-power millimeter wave amplifiers, high information

density communication, as radiofrequency sources in accelerators for High Energy

Physics, in reflective-type half-wave plate and for transmission control in quarter-

wave plate and half-wave plate metallic and all-dielectric metasurfaces [23–27].

The importance of collective plasma effects in a hollow-core target for achieving

collimation of injected electrons and the impact of the ion dynamics on a laser-driven

electron acceleration are also investigated [28]-[29].

Malik et al. [30] focused on the Transverse Electric (TE) mode excited by a

high intensity microwave in a lossless inhomogeneous unmagnetized plasma filled

rectangular waveguide and observed that the electron density within the plasma
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changed linearly across the transverse direction of mode propagation. Sakhnenko et

al. [31] gave analytical and numerical analysis of the EM fields of a circular cylinder

of plasma with respect to time and spatial distribution. The investigation carried out

by Gehre et al. [32] focused on the analysis of the scattering behavior of microwaves

as they propagate through a circular waveguide that is partially filled with a uniform,

lossless, and cold electron plasma. Kinderdijk and Hagebeuk [33] conducted a

comparative analysis of various techniques for determining the propagation constant

of the principal mode in a circular waveguide that contains a cold, cylindrically

stratified plasma. A generalized problem for EM wave propagation, was discussed by

Shahid et al. [34] in graphene-wrapped circular waveguides filled with magnetized

plasma. The solution for the scattering of plane EM waves by a plasma-filled

anisotropic sphere was derived by Geng et al. [35]. Achieving a multiscale property

in a Janus metastructure is possible by utilizing the anisotropy of the plasma [36].

Researchers in the past have also examined the scattering of microwaves from a

plasma column within a rectangular waveguide [37]-[38].

Analytical and numerical studies have been conducted on the dispersion properties

of a cylindrical waveguide filled with plasma [39]. The theory of EM waves

in cylindrical structures containing radially inhomogeneous plasma and plasma-

dielectric fillings has also been presented in the past [40–43]. The more homogeneous

layers are added within the cylinder, the higher the solution accuracy becomes,

but this improvement comes at the cost of increased computation time when

dealing with the problem of plane wave scattering from a magnetized, nonuniform,

collisional, cold, and steady-state plasma cylinder [44]. After deriving the plasma

dielectric tensor analytically, Khalil and Mousa [45] conducted investigations on

the propagation of EM waves in a plasma-filled cylindrical waveguide. In order

to determine plasma and collision frequencies in case of plasma or the dielectric

constant and loss in case of dielectric, Thomassen [46] examined how a cylindrical

plasma or dielectric column iteracts with a resonant cavity from which it extends.

Manheimer [47] concluded that a long-wavelength electron plasma wave in a

cylindrical waveguide steepens in the same manner as a nonlinear sound wave.

Strong magnetic fields are essential for the particle transport and propagation of
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laser pulses. The investigation carried out by Dawson and Oberma [48] explored

the complexities of normal modes in a cold plasma slab and cylinder situated

within a strong magnetic field. Electron acceleration and dynamics in plasma-filled

rectangular, cylindrical, corrugated and elliptical waveguides have also drawn

attention of the researchers [49–51]. Alekhina and Tyukhtin [52] studied features

of the Cherenkov-Transition Radiation generated in the vacuum area of a circular

waveguide partly filled with strongly magnetized plasma.

To investigate the impact of electron thermal velocity on the features of eigenmodes

in a cylindrical waveguide, Aghamir and Abbas-nejad [53] gave the numerical

solution of the dispersion relations for these modes. Investigations have also

been carried out to study EM propagation behavior in plasma in the presence

of magnetic field by changing plasma parameters and optimizing the incident

angle and external magnetic field [54–56]. Intense lasers or particle beams [57]

have a great application in producing large electric fields for accelerating particles.

Therefore these beams, particularly plasma beams, are playing a pivotal role in

advancement in astrophysics, in fabricating nanostructures [58] and in energy

production.

Kobayashi et al. [59] conducted an investigation into the impact of plasma on the

linear gain of a traveling wave tube featuring a helix-type interaction structure

which supports Transverse Magnetic (TM) wave. The absorption of a high-power

millimeter pulse in a waveguide comprising of plasma for a below critical density

was established through simulations by Cao et el. [60]. Dvorak et al. [61] conducted

a study on the propagation of an ultra-wide-band EM pulse in a uniform, cold

plasma. Jazi et al. [62] conducted an analytical investigation into the reflection

and absorption of a polarized wave in a magnetized plasma slab that is both

inhomogeneous and dissipative.

Nusinovich et al. [63] reviewed the development of hybrid modes in a slow wave

system containing plasma which results in the improvement of the coupling of the

EM wave and plasma beam. The advantages of implementing the asymmetric as

well as symmetric eigenmodes of a slow EM wave within a traveling-wave tube were

discussed by Abubakirov et al. [64] in their paper. Carmel et al. [65] concluded
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that a high-power microwave pulse is generated in a corrugated wall waveguide or

a cylindrical wave tube when a relativistic electron beam passes. The dispersion

features of a similar wave structure along with a helix type slow wave structure were

analyzed by Hong-Quan and Pu-Kun [66]-[67] for various geometric parameters and

plasma densities. The relativistic traveling-wave tube and relativistic backward-

wave oscillator work efficiently as amplifiers and high-power microwave sources.

Bayat et al. [68] found an exact numerical solution of the dispersion relation of

these structures when they contain plasma and are powered by an electron beam.

Various methods, both analytical and numerical, have been utilized to model the

propagation of waves in isotropic and anisotropic cold plasma within a dielectric-

filled metallic waveguide, for instance [69–82]. Galejs [83] developed a variational

approach to analyze the impedance characteristics of a finite strip antenna, un-

der the influence of a static magnet field, placed within a planar dielectric slab

encompassed by a magnetoionic medium comprising cold electron plasma. Davies

[84] employed a modified version of the Runge-Kutta method to examine how a

transverse plasma velocity component affects the boundary layer structure at the

interface between a plasma and a vacuum magnetic field. Leuterer and Derfler

[85] examined the EM fields produced by a gap with azimuthal symmetry in a

waveguide filled with cold plasma. The fields in the configuration space were

determined through an inverse Fourier transform. Alekhina and Tyukhtin [86]

applied the steepest descent method to obtain asymptotic expressions for the

EM field in cold plasma and vacuum. In another research study, Li and Jiang

[87] conducted an investigation on the characteristics of EM waves as they travel

through magnetized plasma slabs and interact with plasma-coated spheres. They

employed the discontinuous Galerkin finite-element time-domain method for their

analysis. Mitsalas et al. [88] conducted investigation of a canonical problem

involving a Transverse Electromagnetic (TEM) wave propagating within a parallel

plate waveguide containing magnetized plasma by applying Weiner-Hopf tech-

nique. Simple approximate solutions for thin cylindrical antennas immersed in

uniaxial resonant plasmas were obtained by Lee [89] by using an extension of the

Wiener-Hopf technique. Maxwell’s equations were solved numerically using the

fourth-order Runge-Kutta method, by Abdoli-Arani [90] for the field amplitude
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of the microwave in a plasma-filled perfectly conducting waveguide. A modal

solution was found by Nguyen [91] for the associated waveguide problem inside an

infinite cylindrical antenna. Applying the finite-difference time-domain method,

Chaohui et al. [92], numerically, made a three-dimensional model of a rectangular

waveguide used as surface-wave plasma source. Ikuno et al. [93] used the meshless

time domain method to evaluate the propagation of EM waves in various shaped

waveguides.

Most of the above-mentioned analyses are focused on dispersion properties of

rectangular and cylindrical structures or on achieving simple solutions. The

propagation of power and the validation of the truncated solution were some

prominent features that needed to be addressed. The problems discussed in this

dissertation involve EM wave scattering in rectangular/ cylindrical waveguides

containing unmagnetized/strongly magnetized cold plasma environment. Choosing

a rectangular or cylindrical structure involves overcoming several challenges. One of

the primary difficulties is the selection of an appropriate technique for dealing with

geometric partitioning, material property variations, and bounding characteristics.

Calculating roots of characteristic equations by applying an appropriate guess in a

suitable method and constructing orthogonality relations are also complex tasks.

The straightforward part of these configurations is the calculation of eigenvalues

through Helmholtz equation and boundary conditions. The main objective of our

investigation was to introduce an analytical framework and conduct a mathematical

analysis of the problems under discussion.

The Mode Matching (MM) method has recently advanced in various directions not

only to investigate the scattering of EM waves but also to analyze the acoustic wave

scattering at structural discontinuities, for instance, see [94–97]. The application of

MM methods to analyze the EM scattering characteristics of various configurations

can be found in [98–105]. Najari et al. [106] applied MM technique to probe into the

EM wave propagation in a semi-bounded plasma from a lossless isotropic cylindrical

waveguide with metallic walls. Abdoli-Arani and Moghaddasi [107] studied the

acceleration of an electron injected inside a cylindrical waveguide having collisional

plasma, using MM technique. Gashturi et al. [108] suggested the employment of a
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combination of method of moments and the MM technique to numerically simulate

the components of waveguides including the cavity resonators. Efficient MM and

hybrid MM/numerical EM waveguide building blocks have been applied for the

optimized usage of powerful circuit computer-aided design tools and waveguide

components [109]. The MM technique has also been applied in calculations for the

resonator of gyro-devices [110]. The resonators are widely exploited in the gyro-

oscillators and amplifiers. Due to the recognition for its ability to conserve power

balance, meet eigen properties as outlined by Lawrie [111, 112], align tangential

electric and magnetic fields even when facing corners, and exhibit strong contrast

for both fundamental mode forcing, the research methodology adopted in this

dissertation involved employing a MM solution approach. Although, numerical

techniques like finite element method or boundary element method allow for the

study of finite-length conduits of any shape or size, however, as the excitation

frequency and waveguide dimensions increase, the complexity of the problem grows

rapidly due to the escalating number of degrees of freedom. In the context of

guiding structures, MM is a rapid and convergent technique that can be easily

implemented without the need for discretization of variables. It offers an exact

solution to EM scattering challenges in various structures, including discontinuous,

planar, and periodic ones [113]. This method involves matching modes at different

sections of the conduit to analyze the behavior of EM wave scattering.

1.3 Objective and Physical Problems

The study presented in this dissertation is committed to a brief discussion on the

scattering characteristics and power propagation of EM waves through cold plasma

and beam in wave structures with various geometries and discontinuities. This

topic has drawn the attention of the researchers due to the growing involvement of

plasma in a variety of applications. The semi-analytic MM technique is invoked to

handle this category of the problems. The dissertation covers the below-mentioned

physical problems:

1. The EM wave propagation in discontinuous waveguide containing plasma.
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2. Cold plasma-induced effects on EM wave scattering in waveguides: An MM

analysis.

3. Exploring scattering in a cylindrical duct with plasma between vacuum and

dielectric layers.

4. EM wave scattering in plasma beam driven waveguides under strong magnetic

field.

5. TM wave scattering in a cylindrical waveguide with a central chamber con-

taining beam-plasma environment.

1.4 Outline of the Dissertation

The dissertation outlines are as follows.

Chapter 2: The chapter on preliminaries institutes some basic definitions and

notions that are necessary to comprehend the work presented in the subsequent

chapters.

Chapter 3: This chapter comprises the scattering of EM waves encountering

plasma medium and step-discontinuities. The study’s physical model comprises

dielectric and plasma layers separated by metallic conducting material in the

form of horizontal plates. The MM method is employed to address the issue

at hand. This method works by projecting the solution onto an orthogonal

basis. Through this process, it becomes possible to elucidate how planar mode

excitation behaves in terms of reflection, transmission, and attenuation. The

precision of algebraic manipulation and solution scheme utilized is confirmed by the

mathematical and intrinsic power analyses. The investigation offers insights into

both the mathematical and theoretical aspects of the structure being examined.

The contents of this investigation are published in the journal Waves in Random

and Complex Media. The analyses in this chapter also include the examination of

how EM waves scatter when interacting with a plasma slab. This slab can either

be enclosed between Perfectly Electric Conducting (PEC) plates or situated within
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a dielectric medium. The MM method is once again utilized to solve the problem,

and the accuracy of this approach is confirmed through numerical evaluations that

involve verifying the cogency of matching conditions and power conservation. The

study emphasizes the influence of variations in geometry and materials on the

reflection and transmission phenomena within the waveguide. An article based on

this study is published in Communications in Theoretical Physics journal.

Chapter 4: This chapter includes the propagation of EM waves in a cylindrical

PEC waveguide with a central chamber filled with cold plasma embedded in vacuum

which is covered by dielectric layer in conducting cylinder. The mathematical

modeling formulates a boundary value problem which is solved by using the MM

technique to analyze the scattering characteristics. The efficacy of the truncated

solution is exhibited by verifying the matching conditions. The investigation focuses

on the power flux in different regions of the waveguide, considering both trans-

parency and non-transparency regimes. Computational results demonstrate energy

propagation against the properties of the medium and geometrical parameters of

configuration. It is found that the plasma radius alterations do not significantly

affect transmission, but influence the number of cut-on modes in transparency

regime. The contents of this chapter are submitted in the journal Optical and

Quantum Electronics for possible publication.

Chapter 5: The scattering of EM wave in a cold and uniform plasma-filled

waveguide driven by an intense relativistic electron beam under a strong magnetic

field is probed in this chapter. The Helmholtz equation portrays the boundary

value problem which is solved by incorporating the MM technique. Invoking the

boundary and matching conditions and the derived orthogonality and dispersion

relations in this scheme gives an exact solution to the scattering problem. The

numerical results shed light on the occurrence of reflection and transmission and

flow of power. The power flux is plotted against angular frequency and various

duct configurations. The solution is substantiated altogether through the befitting

analytical and numerical results. The investigation of this structure reveals not

only its mathematical but also the physical features. The EM wave scattering

in a beam-plasma configuration, enclosed within a central chamber of an infinite
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cylindrical waveguide, is also meticulously analyzed using the MM technique. This

technique provides an exact solution that is validated through the verification of

matching conditions. Furthermore, the investigation into the power flux behavior

versus angular frequency is carried out.

Chapter 6: In this chapter, a comprehensive summary of the scattering problems

that were discussed throughout the research is provided. Moreover, the conclusion

drawn from the analysis and the interpretation of the scattering data is also

presented in chapter 6. Additionally, this chapter delves into future directions for

research in this field based on the insights gained from the study of the scattering

problems.



Chapter 2

Preliminaries

This chapter renders the fundamental concepts that are indispensable to understand

the propagation and scattering of EM wave in waveguides with step discontinuities

and having different material mediums. The EM scattering problems are governed

by Maxwell’s equations and different types of boundary conditions. Derived from

Maxwell’s equations, the Helmholtz equation depicts the propagation of EM waves.

This equation along with the boundary conditions generates the eigenfunctions that

are linearly dependent and satisfy the usual or generalized orthogonality relations.

The orthogonality relations help to transform the system of differential equations

into linear algebraic system during the matching analysis which is discussed in

ongoing chapters of the dissertation.

Waveguides are structures that confine and direct the propagation of waves. Being

single conductors with no current source, waveguide is a specialized form of

transmission line that is extensively employed to direct EM waves from one location

to another. The TEM mode propagates in presence of two conductors, one of which

is the current source. This concludes that only TE and TM waves can propagate

in a waveguide. More precisely, when an EM wave propagates through a hollow

cylindrical or rectangular waveguide, either the electric field or the magnetic field

will be transverse to the direction of the wave. The EM waves are formed when

electric and magnetic fields come in contact with each other and produce vibrations,

with both fields perpendicular to each other.

12
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2.1 Maxwell’s Equations

James Clark Maxwell was the first scientist who explained the correlation between

electricity and magnetism in the form of equations. Listed below, these equations

provide the relationship of electric and magnetic fields with each other as well as

with electric and magnetic charges and currents.

∇× Ẽ = −∂B̃

∂t
, (2.1)

∇× H̃ = J̃ +
∂D̃

∂t
, (2.2)

∇.D̃ = ρ, (2.3)

∇.B̃ = 0, (2.4)

where, Ẽ = E(r)e−iωt and H̃ = H(r)e−iωt are the time-dependent electric and

magnetic field intensities, D̃ = D(r)e−iωt and B̃ = B(r)e−iωt are the electric and

magnetic flux densities, while ρ denotes the volume charge density and J̃ represents

electric current density. All quantities stated in these equations are vectors except

ρ.

The equations (2.1)-(2.4) are the respective representations of Faraday’s law,

Ampere’s law, Gauss’s law and magnetic Gauss’s law. Note that we have assumed

harmonic dependence of e−iωt which is suppressed throughout this dissertation

[114]. The Maxwell’s equations in time harmonic form can now be written as

follows:

∇× E = iωB, (2.5)

∇×H = J− iωD, (2.6)

∇.D = ρ, (2.7)

∇.B = 0. (2.8)

In a source-free region ρ and J are zero. Throughout this dissertation, the analyses

are carried out in source-free regions, therefore the EM propagation will be governed

by Maxwell’s equations 2.5 and 2.6.
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2.2 Constitutive Relations and Wave Equations

To link the densities with fields, we may assume some material medium. The

constitutive relations express the interconnection between the medium and the EM

field in terms of material parameters. Following types of material mediums are

considered in this dissertation:

• Dielectric Medium,

• Plasma medium.

2.2.1 Dielectric Medium

Dielectrics are poor conductors of electricity. William Whewell introduced the term

dielectric by merging the words ‘dia’ and ‘electric’ on request of Michael Faraday.

The constitutive relations for a dielectric medium are stated as follows:

D = εdE, (2.9)

B = µ0H, (2.10)

J = σE, (2.11)

where εd is the permittivity constant in dielectric medium which is some non-zero

multiple of the permittivity ε0 of free space, which is approximated to be ε0 = 8.8542

× 10−12 F/m (Farads per meter). The magnetic permeability of free space µ0 has

the approximate value µ0 = 4 π × 10−7 N/A2 (Newtons per Ampere squared). The

parameter σ is the conductivity of the medium and (2.11) depicts the Ohm’s law.

The magnetic permeability is assumed to be of free space and permittivity is either

in the form of constant or a tensor in all the mediums discussed in this dissertation.

Consequently, the Faraday’s law remains invariant but the Ampere’s law behaves

differently in these mediums. The Faraday’s law and Ampere’s law together give

rise to the Helmholtz or wave equation which portrays the propagation of EM waves

in a material medium. Applying the constitutive relation (2.9), the dielectrics are
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governed by Faraday’s law and Ampere’s law in following manner:

∇× E = iωB, (2.12)

∇×H = −iωεdE. (2.13)

Multiplying (2.13) throughout by µ0 produces

∇×B = −iωεdµ0E. (2.14)

Taking curl of (2.12), we obtain

∇×∇× E = iω∇×B. (2.15)

Substituting ∇×B in (2.15) yields

∇×∇× E = ω2εdµ0E. (2.16)

Applying the vector equation

∇×∇× E = −∇2E +∇(∇.E),

remolds (2.16) in the following manner:

−∇2E +∇(∇.E) = ω2εdµ0E. (2.17)

The Gauss’s Law in a source-free region implies ∇.E = 0. Therefore, (2.17) reduces

to the wave equation of TM mode in the dielectric medium in the following way:

(
∇2 + ω2εdµ0

)
E = 0. (2.18)

Taking curl of (2.14) and solving in a similar manner generates the wave equation

for TE modes in the dielectric medium as:

(
∇2 + ω2εdµ0

)
B = 0. (2.19)
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The equations (2.18) and (2.19) are known as Helmholtz equations and can be

collectively written as follows:

(
∇2 + ω2εdµ0

) E

B

 =

 0

0

 . (2.20)

The solution to the above wave equation can be obtained by assuming an electric

or magnetic field uniform in the z direction. Thus, the Helmholtz equation (2.20)

reduces to (
∇2 + ω2εdµ0

) Ez

Bz

 =

 0

0

 . (2.21)

For vacuum, the relations (2.10) and (2.11) remain unchanged, while (2.9) is

transformed as follows,

D = ε0E. (2.22)

The wavenumber of the vacuum is stated as ω
√
ε0µ0. As the speed of light c is

associated with permeability and permittivity of free space or vacuum by the

relation c = 1/
√
ε0µ0, therefore the wavenumber of vacuum can be recast as ω/c.

Thus, replacing εd by ε0 in (2.13) and following the same procedure as was applied

for dielectric medium, the wave equation for vacuum can be expressed as:

(
∇2 +

ω2

c2

) Ez

Bz

 =

 0

0

 . (2.23)

2.2.2 Plasma Medium

Gyroelectric or gyromagnetic materials are those that exhibit susceptibility to

changes when subjected to a quasistatic magnetic field. The permittivity tensor ε

of “dielectric” (or gyroelectric) materials can be altered by an externally applied

magnetic field. Moreover, such a magnetic field causes a change in the permeability

tensor µ in the case of ferrites (or gyromagnetic materials). In waveguides compris-

ing gyroelectric materials, it is typically assumed that waves propagate along the

z-axis. Consider a cold plasma medium subjected to a direct magnetic field B0

along longitudinal direction and containing induced current J. The constitutive
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relations in plasma are given as

D = ε0εjE, (2.24)

B = µ0H, (2.25)

J = σE. (2.26)

The Maxwell’s equations for plasma medium can be stated as:

∇× E = iωB, (2.27)

∇×B = −iω
c2
εj.E, (2.28)

where j = p, b stand for cold plasma and beam, respectively. The permittivity

tensor εj can be expressed [115], as

εp =


ε1 −iε2 0

iε2 ε1 0

0 0 ε3j

 . (2.29)

The tensor components ε1 and ε2 are determined by analyzing the properties of

EM fields in an anisotropic medium, and are same for both cold plasma and beam

stated as

ε1 = 1−
ω2
p

ω2 − ω2
c

, ε2 =
ωcω

2
p

ω (ω2 − ω2
c )
,

while the component ε3j ; j = p, b can be expressed for the two mediums as

ε3p = 1−
ω2
p

ω2

and

ε3b = 1−
ω2
p

ω2
− ω2

b

γ3(ω − knzv)2
.

Here e, np, nb,m represent the electric charge, plasma density, beam density, and

electron mass, while ωc, ωp and ωb reveal the cyclotron, plasma and beam frequencies,

respectively [116]. The quantity γ is the relativistic factor and v is the electron
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beam velocity, such that γ =

√
1− v2

c2
. The frequencies ωc, ωp and ωb can further

be explained as follows,

ωc =
|e|µ0B0

m
, ωp =

(
e2np
ε0m

)1/2

, ωb =

(
e2nb
ε0m

)1/2

,

where B0 reveals the magnitude of the direct magnetic field.

2.2.2.1 Cold Plasma

Cold plasma is a material medium constituting high-temperature but low density

electrons at room temperature and pressure, which supports the propagation of

EM waves.

Case I: Absence of Magnetic Field; B0 = 0

In absence of magnetic field, i.e., B0 = 0 the plasma behaves as unmagnetized and

ωc = 0. The permittivity tensor εp takes the form

εp =


ε3p 0 0

0 ε3p 0

0 0 ε3p

 . (2.30)

Taking curl of z-component in Faraday’s law in (2.27), we have

(∇×∇× E)z = iω(∇×B)z. (2.31)

Substituting (∇×B)z in (2.31) yields

(∇×∇× E)z =
ω2

c2
ε3pEz. (2.32)

Invoking the vector equation

(∇×∇× E)z = −∇2Ez + (∇(∇.E))z ,
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reforms (2.32) in the following way:

−∇2Ez + (∇(∇.E))z =
ω2

c2
ε3pEz. (2.33)

The Gauss’s Law in a source-free region indicates (∇.E)z = 0. Therefore, (2.33)

reduces to the wave equation of TM mode in the cold plasma as:

(
∇2Ez +

ω2

c2
ε3p

)
Ez = 0. (2.34)

The wave equation of TE mode can be evaluated in a similar way by considering

longitudinal component of magnetic field B.

Hence, the Helmholtz equation for cold unmagnetized plasma, in the form of

longitudinal components of fields [117], is expressed as

{
∇2 +

ω2

c2

(
1−

ω2
p

ω2

)} Ez

Bz

 =

 0

0

 . (2.35)

Case II: Presence of Strong Magnetic Field; B0 →∞

When a strong magnetic field is present, the coupling of TE and TM modes cannot

be formed and the tensor component |ε2| is negligibly small and ε1 = 1 [118]. The

permittivity tensor εp takes the form

ε =


1 0 0

0 1 0

0 0 ε3p

 . (2.36)

The Helmholtz equation becomes

(
∇2 + T 2

1

) Ez

Bz

 =

 0

0

 , (2.37)

where T 2
1 =

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2

)
and knz =

ω

c
+ 2nπ; n = 0, 1, 2, . . . is the axial

wavenumber.
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2.2.2.2 Plasma Beam

A plasma beam passing through a plasma-filled waveguide and a strong external

magnetic field are considered as the mechanisms for controlling the field attenuation

and strength of the waveguide. Therefore, the EM wave propagation in beam-

plasma environment under the influence of a strong external magnetic field is

discussed in this dissertation. Adopting the procedure as was applied for cold

plasma in presence of strong magnetic field, the Helmholtz equation is expressed,

in longitudinal components of fields, as

(
∇2 + T 2

2

) Ez

Bz

 =

 0

0

 , (2.38)

such that T 2
2 =

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2
− ω2

b

γ3(ω − knzv)2

)
.

2.3 Boundary Conditions

With a view to solve Maxwell’s equations in a closed or bounded region, a set of

boundary conditions is required. These conditions help us analyze the behavior of

fields at interfaces and boundaries joining various media. By using waveguides, the

energy loss during propagation can be avoided.

Let (E1,H1) and (E2,H2) be the respective electric and magnetic fields of two

mediums namely Ω1 and Ω2 and n be the unit vector with respect to medium Ω1,

normal to the boundary ∂Ω.

2.3.1 PEC Boundary Conditions

If the second medium is perfectly conducting then it offers zero electrical resistance

(E = 0 in Ω2). Moreover, any magnetic field must be constant in time, i.e.,
∂H

∂t
= 0 in Ω2. The magnetic field is zero, H = 0 in Ω2 in a source-free region.

According to Maxwell’s equations, the normal component of magnetic field and the
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tangential component of electric field exhibit continuity throughout the boundary

∂Ω. Mathematically, these conditions imply

(E× n) |∂Ω = 0, (2.39)

(H · n) |∂Ω = 0. (2.40)

2.3.2 Interface Conditions

Once it is established that the medium Ω2 supports the EM fields, the boundary

∂Ω becomes the interface.

In case of TM wave, the continuity conditions at interface are stated as

(Ez2 − Ez1) ∂Ω = 0, (2.41)

((
1

µ2

∇Ez2 −
1

µ1

∇Ez1
)
· n
)

∂Ω = 0. (2.42)

If the wave propagates in TE mode, the continuity conditions at interface are

stated as

(Hz2 −Hz1) ∂Ω = 0, (2.43)((
1

ε2
∇Hz2 −

1

ε1
∇Hz1

)
· n
)

∂Ω = 0, (2.44)

where ε1 and µ1 represent the permittivity and permeability in Ω1 while ε2 and µ2

indicate the permittivity and permeability in Ω2.

2.4 EM Wave Propagation in Waveguides

The present dissertation is focused on the scattering characteristics of waveguides

containing different mediums and geometric properties. Rectangular and cylindrical

types of configurations have been, specifically, discussed. It is possible to rewrite

the Helmholtz equation in six scalar equations using rectangular or cylindrical

coordinates. All these scalar equations will yield the components of EM waves
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in any medium. In case of plane waves, not all the six components of EM fields

are considered. It has been widely observed in the literature that the propagation

of a plane EM wave is considered for analysis. It is due to the fact that with

increase in components, only the complexity of the problem increases while physical

features remain same. The longitudinal and transverse components of fields in

given configurations for TE and TM modes are briefly expressed in next sections.

2.4.1 EM Fields in Rectangular Coordinate System

Maxwell’s equations subject to prescribed boundary conditions are solved to

ascertain the guided waves. Let us consider waves directed along the z-direction in

a medium whose wavenumber is given as k = ω
√
εµ0. These waves indicate a z-

dependence eikzz and their field components are written as E(x, y, z) = Ẽ(x, y)eikzz

and B(x, y, z) = B̃(x, y)eikzz. For a two dimensional waveguide, the EM fields are

decomposed into longitudinal components Ez and Bz and transverse components

Ex, Ey, Bx and By. The components of electric and magnetic fields for different

mediums will now be determined through Maxwell’s equations (2.5) and (2.6) after

decomposition into six scalar equations as follows:

∂Ez
∂y
− ikzEy = iωBx, (2.45)

− ∂Ez
∂x

+ ikzEx = iωBy, (2.46)

∂Ey
∂x
− ∂Ex

∂y
= iωBz, (2.47)

∂Bz

∂y
− ikzBy = −iωεµ0Ex, (2.48)

− ∂Bz

∂x
+ ikzBx = −iωεµ0Ey, (2.49)

∂By

∂x
− ∂Bx

∂y
= −iωεµ0Ez. (2.50)

All the transverse components are determined in terms of longitudinal components.

For example Ex can be evaluated by exploiting (2.46) and (2.48). In this way we
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Figure 2.1: A two dimensional infinite rectangular waveguide with duct height
2a.

can determine all four transverse components stated as:

Ex =
1

k2 − k2
z

(
ikz

∂Ez
∂x

+ iω
∂Bz

∂y

)
, Ey =

1

k2 − k2
z

(
ikz

∂Ez
∂y
− iω∂Bz

∂x

)
,

Bx =
1

k2 − k2
z

(
−ik

2

ω

∂Ez
∂y

+ ikz
∂Bz

∂x

)
, By =

1

k2 − k2
z

(
ik2

ω

∂Ez
∂x

+ ikz
∂Bz

∂y

)
.

As the waveguides support propagation of EM waves in TE and TM modes only,

so the transverse components of fields will be discussed for these two cases.

2.4.2 TE Wave

If the EM wave is propagating in TE mode, then the component of electric field in

the direction of propagation is zero, i. e., Ez = 0. The transverse components of

fields can be stated as

Ex =
iω

k2 − k2
z

∂Bz

∂y
, Ey = − iω

k2 − k2
z

∂Bz

∂x
,

Bx =
ikz

k2 − k2
z

∂Bz

∂x
, By =

ikz
k2 − k2

z

∂Bz

∂y
.

2.4.3 TM Wave

In case of a TM wave, the components of magnetic field are perpendicular to

the direction of propagation, i. e., Bz = 0. The transverse components can

be determined by utilizing the details from the longitudinal components in the
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following manner:

Ex =
ikz

k2 − k2
z

∂Ez
∂x

, Ey =
ikz

k2 − k2
z

∂Ez
∂y

,

Bx = − ik2

ω(k2 − k2
z)

∂Ez
∂y

, By =
ik2

ω(k2 − k2
z)

∂Ez
∂x

.

2.4.4 EM Fields in a Two Dimensional Rectangular Waveg-

uide

An appropriate representation of wave propagation in real situations is a plane

wave.

Considering a plane wave not only saves time and effort but gives an accurate

analysis of the related EM wave problem without damaging its physical properties.

Therefore, in this dissertation a plane wave will be considered while investigating

the waveguide problems. The Helmholtz equation for a plane wave propagating in

a two dimensional waveguide (∂/∂z = 0) can be described as

(
∂2

∂x2
+

∂2

∂y2
+ k2

) Ez

Bz

 =

 0

0

 . (2.51)

The transverse components of fields can be listed as,

Ex =
iω

k2

∂Bz

∂y
, Ey = −iω

k2

∂Bz

∂x
,

Bx = − i
ω

∂Ez
∂y

, By =
i

ω

∂Ez
∂x

.

The transformation of the electric and magnetic field components occurs differently

for TE and TM waves. The transverse components of fields in the case of a TE

wave are

Ex =
iω

k2

∂Bz

∂y
, Ey = −iω

k2

∂Bz

∂x
,

Bx = 0, By = 0,
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while in the case of a TM wave, the transverse components are given as

Ex = 0, Ey = 0,

Bx = − i
ω

∂Ez
∂y

, By =
i

ω

∂Ez
∂x

.

In the form of harmonic time dependence field potential φ, the Helmholtz equation

for a uniform plane wave can be expressed as

(
∂2

∂x2
+

∂2

∂y2
+ k2

)
φ = 0. (2.52)

The solution of this Helmholtz equation (2.52) by variable separable technique is

known as traveling wave solution that can be expressed as

φ(x, y) =
∞∑
n=0

BnYne±isnx, (2.53)

where Yn(y);n = 0, 1, 2, . . . represent the eigenfunction expansions, Bn are the

amplitudes and sn represent the wavenumber of nth mode. With reference to

Section 2.3, the boundary condition for a perfectly conducting wall is stated as

∂φ

∂y
= 0. (2.54)

2.4.5 Orthogonality Relation

The physical problems considered in this dissertation are dealt with by using MM

technique. In order to implement this technique, the orthogonal features of the

aforementioned eigenfunctions are employed.

Let us consider a duct 0 ≤ y ≤ b bounded between PEC walls at y = 0 and y = b.

The boundary at y = a separates the two material mediums. The eigenfunctions

Yn(y) in these mediums can be expressed as

Yn(y) =

 Y1n(y), 0 ≤ y ≤ a,

Y2n(y), a ≤ y ≤ b.
(2.55)
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The eigen-sub-systems can be formed as

Y
′′

1n(y)− τ 2
nY1n(y) = 0, (2.56)

Y
′′

2n(y)− γ2
nY2n(y) = 0, (2.57)

Y
′

1n(0) = 0 = Y
′

2n(b), (2.58)

Y1n(a) = Y2n(a), (2.59)

η1Y
′

1n(a) = η2Y
′

2n(a). (2.60)

The quantities τn and γn can be revealed as τ 2
n = k2

1 − s2
n and γ2

n = k2
2 − s2

n; n =

0, 1, 2, . . . where k1 and k2 are the wavenumbers of the two mediums.

The respective impedances of these mediums are represented as η1 and η2.

Multiplying equation (2.56) by Y1m(y) and integrating from 0 to a,

∫ a

0

Y
′′

1n(y)Y1m(y)dy = τ 2
n

∫ a

0

Y1n(y)Y1m(y)dy. (2.61)

Applying the integration by parts of the left hand side of (2.61) and employing

condition (2.58), we obtain

∫ a

0

Y
′′

1n(y)Y1m(y)dy =
[
Y
′

1n(y)Y1m(y)
]a

0
−
[
Y1n(y)Y

′

1m(y)
]a

0
+

∫ a

0

Y
′′

1m(y)Y1n(y)dy

= Y
′

1n(a)Y1m(a)− Y1n(a)Y
′

1m(a) + τ 2
m

∫ a

0

Y1n(y)Y1m(y)dy.

(2.62)

Substituting (2.62) in (2.61) results in

(τ 2
n − τ 2

m)

∫ a

0

Y1n(y)Y1m(y)dy = Y
′

1n(a)Y1m(a)− Y1n(a)Y ′1m(a), (2.63)

which can be further transformed by using the given correlation of τn with sn

(s2
n − s2

m)

∫ a

0

Y1n(y)Y1m(y)dy = Y
′

1n(a)Y1m(a)− Y1n(a)Y ′1m(a). (2.64)
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Solving in a similar manner, (2.57) leads to the formation of the following equation

(s2
n − s2

m)

∫ b

a

Y2n(y)Y2m(y)dy = −Y ′2n(a)Y2m(a) + Y2n(a)Y
′

2m(a). (2.65)

Incorporating the boundary conditions (2.59) and (2.60), we obtain

(s2
n − s2

m)

∫ b

a

Y2n(y)Y2m(y)dy = −η1

η2

Y
′

1n(a)Y1m(a) +
η1

η2

Y1n(a)Y
′

1m(a). (2.66)

Multiplying the equation (2.64) by
η1

η2

and adding to (2.66), yields

(s2
n − s2

m)

(
η1

η2

∫ a

0

Y1n(y)Y1m(y)dy +

∫ b

a

Y2n(y)Y2m(y)dy

)
= 0. (2.67)

When m 6= n, the above equation results in

η1

∫ a

0

Y1n(y)Y1m(y)dy + η2

∫ b

a

Y2n(y)Y2m(y)dy = 0. (2.68)

On the other hand m = n, leads to

En = η1

∫ a

0

Y 2
1n(y)dy + η2

∫ b

a

Y 2
2n(y)dy. (2.69)

The equations (2.68) and (2.69) collectively form the orthogonality relation for the

eigenfunctions Yn(y),

η1

∫ a

0

Y1n(y)Y1m(y)dy + η2

∫ b

a

Y2n(y)Y2m(y)dy = δmnEn. (2.70)

2.4.6 EM Fields in Cylindrical Coordinate System

In case of cylindrical coordinates, let us consider waves propagating in the z-

direction in a material medium with wavenumber k = ω
√
εµ0. The field components

of these guided waves are written as E(r, θ, z) = Ẽ(r, θ)eikzz and B(r, θ, z) =

B̃(r, θ)eikzz, where eikzz shows z-dependence. The longitudinal components are

given as Ez and Bz and transverse components are mentioned as Er, Eθ, Br and

Bθ. The components of electric and magnetic fields for various mediums are
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Figure 2.2: A cylindrical waveguide with duct radius a.

enumerated through six scalar counterparts of Maxwell’s equations (2.5) and (2.6)

in the following way:
1

r

∂Ez
∂θ
− ikzEθ = iωBr, (2.71)

− ∂Ez
∂r

+ ikzEr = iωBθ, (2.72)

∂Eθ
∂r
− 1

r

∂Er
∂θ

= iωBz, (2.73)

1

r

∂Bz

∂θ
− ikzBθ = −iωεµ0Er, (2.74)

− ∂Bz

∂r
+ ikzBr = −iωεµ0Eθ, (2.75)

∂Bθ

∂r
− 1

r

∂Br

∂θ
= −iωεµ0Ez. (2.76)

The manipulation of equations (2.71)-(2.76) equips the transverse components in

the form of longitudinal components as follows:

Er =
1

k2 − k2
z

(
ikz

∂Ez
∂r

+ iω
1

r

∂Bz

∂θ

)
, Eθ =

1

k2 − k2
z

(
ikz

1

r

∂Ez
∂θ
− iω∂Bz

∂r

)
,

Br =
1

k2 − k2
z

(
−ik

2

ω

1

r

∂Ez
∂θ

+ ikz
∂Bz

∂r

)
, Bθ =

1

k2 − k2
z

(
ik2

ω

∂Ez
∂r

+ ikz
1

r

∂Bz

∂θ

)
.

The transverse components of fields for TE and TM cases are explained in the next

subsections.
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2.4.7 TE Wave

As the longitudinal component of electric field is zero, i. e., Ez = 0, in the case of

TE wave, therefore the transverse components of fields can be stated as

Er =
iω

k2 − k2
z

1

r

∂Bz

∂θ
, Eθ = − iω

k2 − k2
z

∂Bz

∂r
,

Br =
ikz

k2 − k2
z

∂Bz

∂r
, Bθ =

ikz
k2 − k2

z

1

r

∂Bz

∂θ
.

2.4.8 TM Wave

For a TM wave, the components of magnetic field transverse to the direction of

propagation survive, i. e., Bz = 0. The transverse components can be calculated

through the longitudinal components as follows:

Er =
ikz

k2 − k2
z

∂Ez
∂r

, Eθ =
ikz

k2 − k2
z

1

r

∂Ez
∂θ

,

Br = − ik2

ω(k2 − k2
z)

1

r

∂Ez
∂θ

, Bθ =
ik2

ω(k2 − k2
z)

∂Ez
∂r

.

2.4.9 EM Fields in a Two Dimensional Cylindrical Waveg-

uide

The Helmholtz equation for a plane wave propagating in a two dimensional waveg-

uide (∂/∂θ = 0) can be described as

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ k2

) Ez

Bz

 =

 0

0

 . (2.77)

The transverse field components can be described as

Er =
ikz

k2 − k2
z

∂Ez
∂r

, Eθ = − iω

k2 − k2
z

∂Bz

∂r
,
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Br =
ikz

k2 − k2
z

∂Bz

∂r
, Bθ =

ik2

ω(k2 − k2
z)

∂Ez
∂r

.

The transverse components of fields in case of a TE wave are

Er = 0, Eθ = − iω

k2 − k2
z

∂Bz

∂r
,

Br =
ikz

k2 − k2
z

∂Bz

∂r
, Bθ = 0,

while in the case of a TM wave, the transverse components are given as

Er =
ikz

k2 − k2
z

∂Ez
∂r

, Eθ = 0,

Br = 0, Bθ =
ik2

ω(k2 − k2
z)

∂Ez
∂r

.

The Helmholtz equation for a uniform plane wave can be stated, in the form of

field potential φ, as (
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+ k2

)
φ = 0. (2.78)

The traveling wave solution can be expressed as

φ(r, z) =
∞∑
n=0

BnRn(r)e±isnz, (2.79)

where Rn(r);n = 0, 1, 2, . . . represent the eigenfunction expansions, with Bn and

sn representing the amplitudes and wavenumber of the nth mode.

The boundary condition for a PEC wall in a cylindrical structure is given as

∂φ

∂r
= 0. (2.80)

2.4.10 Orthogonality Relation

Let us consider a duct 0 ≤ y ≤ b, in which the boundary at r = a separates two

material mediums and a PEC wall is positioned at r = b. The eigenfunctions Rn(r)
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for the two mediums can be expressed as

Rn(r) =

 R1n(r), 0 ≤ r ≤ a,

R2n(r), a ≤ r ≤ b.
(2.81)

The eigen-sub-system can be formed as

R
′′

1n(r) +
1

r
R
′

1n(r)− τ 2
nR1n(r) = 0, (2.82)

R
′′

2n(r) +
1

r
R
′

2n(r)− γ2
nR2n(r) = 0, (2.83)

R
′

2n(b) = 0, (2.84)

R1n(a) = R2n(a), (2.85)

η1R
′

1n(a) = η2R
′

2n(a), (2.86)

where τ 2
n = k2

1 − s2
n and γ2

n = k2
2 − s2

n;n = 0, 1, 2, . . . where k1 and k2 are the

wavenumbers of the two mediums, with η1 and η2 representing the impedances in

the respective two mediums.

Multiplying equation (2.82) by R1m(r)r and integrating from 0 to a,

∫ a

0

(rR
′

1n(r))
′
R1m(r)dr = τ 2

n

∫ a

0

R1n(r)R1m(r)rdr. (2.87)

Applying the integration by parts of the left hand side of (2.87), we

obtain

∫ a

0

(rR
′

1n(r))
′
R1m(r)dr =

[
rR
′

1n(r)R1m(r)
]a

0
−
[
rR1n(r)R

′

1m(r)
]a

0

+

∫ a

0

(rR
′

1m(r))
′
R1n(r)dr

= aR
′

1n(a)R1m(a)− aR1n(a)R
′

1m(a) + τ 2
m

∫ a

0

R1n(r)R1m(r)rdr. (2.88)

Substituting (2.88) in (2.87) results in

(τ 2
n − τ 2

m)

∫ a

0

R1n(r)R1m(r)rdr = aR
′

1n(a)R1m(a)− aR1n(a)R
′

1m(a). (2.89)
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The correlation between τn and sn transforms the equation (2.89) as follows

(s2
n − s2

m)

∫ a

0

R1n(y)R1m(r)rdr = aR
′

1n(a)R1m(a)− aR1n(a)R
′

1m(a). (2.90)

Solving (2.83) likewise, the following equation is obtained

(s2
n − s2

m)

∫ b

a

R2n(r)R2m(r)rdr = −aR′2n(a)R2m(a) + aR2n(a)R
′

2m(a). (2.91)

Invoking the boundary conditions (2.84)-(2.86), yields

(s2
n− s2

m)

∫ b

a

R2n(r)R2m(r)rdr = −η1

η2

aR
′

1n(a)R1m(a) +
η1

η2

aR1n(a)R
′

1m(a). (2.92)

Multiplying (2.90) by
η1

η2

and adding to (2.92), yields

(s2
n − s2

m)

(
η1

η2

∫ a

0

R1n(r)R1m(r)rdr +

∫ b

a

R2n(r)R2m(r)rdr

)
= 0. (2.93)

When m 6= n, the equation (2.93) can be expressed as

η1

∫ a

0

R1n(r)R1m(r)rdr + η2

∫ b

a

R2n(r)R2m(r)rdr = 0. (2.94)

However, when m = n, we can write

En = η1

∫ a

0

R2
1n(r)rdr + η2

∫ b

a

R2
2n(r)rdr. (2.95)

The equations (2.94) and (2.95) collectively form the orthogonality relation for the

eigenfunctions Rn(y),

η1

∫ a

0

R1n(r)R1m(r)rdr + η2

∫ b

a

R2n(r)R2m(r)rdr = δmnEn. (2.96)

2.5 MM Technique

The MM method is a useful approach to treat discontinuities in waveguides. This

method is applicable if the structure is piece-wise uniform along one spatial direction.
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It is mandatory that the waveguide at the discontinuous surface can be split into

simpler separate regions each comprising of a different set of waveguide modes.

Expanded theoretically as an infinite series of the waveguide modes, the EM field

in each of these regions is actually a weighted superposition of these modes. The

modes of any two separate regions can be matched at the interface using some

conditions for the EM fields E and H. For computational reasons, these series are

truncated according to the degree of accuracy required. The mode-coefficients of

the two regions are connected through a scattering matrix. The steps involved in

the application of MM method are as follows:

1. The Helmholtz equation is solved in the different regions of the waveguide by

incorporating the variable separable technique and the imposed boundary

conditions.

2. The EM fields in the regions are specified with suitable eigenfunctions ac-

cording to the geometric configuration of the waveguide [119–121].

3. The related orthogonality relations in every region of the waveguide are

determined.

4. The matching of the transverse field components between the regions at their

interface is performed.

5. An infinite system of linear algebraic equations with unknown mode coef-

ficients is obtained. These coefficients are determined after truncating the

number of modes.

The MM technique provides an exact solution to the formulated scattering problems.

The accuracy of the solution can be confirmed easily by reconstruction of matching

conditions and energy conservation.

2.6 Energy Flux

Named after the English physicist John Henry Poynting, the Poynting vector

expressed as S = E × H∗ denotes the energy flux per unit area. A real form
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of the fields E and H is utilized to compute the time average Poynting vector
1

2
Re(E×H∗) [122]. In case of a two dimensional rectangular waveguide, the energy

flux in form of scalar field potential φ is stated as

Power =
1

2
Re

(∫
R

φ

(
∂φ

∂x

)∗
dy

)
, (2.97)

where (*) represents complex conjugate.

For a two dimensional cylindrical waveguide, the power flux can be revealed as

[123]

Power =

∫
R

πrRe

{
φ

(
∂φ

∂z

)∗}
dr. (2.98)

After calculating the powers in all regions of the waveguide the existence of the

law of conservation of energy is confirmed. This law, which mathematically states

that the transmitted power is equal to the sum of incident and reflected powers,

establishes the accuracy of MM solution of the wave scattering problem.



Chapter 3

The EM Wave Propagation in

Discontinuous Waveguide

containing Plasma

3.1 Introduction

A cold plasma rectangular waveguide is a type of waveguide that uses a rectangular

cross-section to guide EM waves through a cold plasma medium. In this chapter, the

electromagnetic wave scattering from the cold plasma rectangular waveguide having

semi-infinite and finite length is discussed. The presence of the cold plasma allows

for the manipulation and control of EM waves within the waveguide, making it a

versatile tool in various applications such as particle acceleration, and microwave

transmission.

This chapter contains two problems. In the first problem, a semi-infinite cold

plasma strip enclosed by metallic walls is placed in an infinite waveguide, and

the scattering behavior of EM waves in the waveguide is discussed. The plasma

layer is positioned between the dielectric layers, with metallic conducting plates

separating them. The waveguide’s enclosing boundaries are also made of metallic

conducting material. However, in the second problem the EM scattering in a

two-dimensional parallel plate rectangular waveguide, featuring a finite slab of cold

35
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plasma sandwiched between metallic strips is discussed. The plasma is positioned

in a groove situated in the central finite region. The central region is enclosed,

with and without metallic strips, by dielectric medium. Both of these problems

are solved by using the MM technique. The eigenfunctions and related features

in the segments of the waveguide with identical physical properties remain same

for both of these problems. However, the eigenfunction expansions, scattering

coefficients and interface conditions are different. In both problems, the solution is

projected on the orthogonal basis while the matching conditions help to convert

the differential system into linear algebraic systems that are truncated and solved

numerically.

This chapter is arranged in ten sections. Sections 3.1-3.5 comprise the discussion

on the scattering of EM waves in a parallel plate waveguide with a rectangular

region containing cold plasma. The problem formulation is described in Section

3.2. The MM solution has been discussed in Section 3.3. The section 3.4 provides

the validation of law of conservation of energy. Numerical results and discussion

on findings are outlined in Section 3.5.

Sections 3.6-3.10 explore electromagnetic wave scattering from a finite plasma

slab enclosed by metal strips as well as embedded within a dielectric environment.

Section 3.7 discusses the physical aspects of the problem and provides a concise

overview of the subject. Section 3.8 presents the solution of the boundary value

problem using Helmholtz equation and boundary conditions, yielding the eigen-

functions, which are then used to numerically compute transmission and reflection

coefficients. The energy identity is established in Section 3.9. In 3.10, simulations

are conducted for both the frequency ranges, namely the transparency region (where

the EM wave frequency exceeds the plasma frequency) and the non-transparency

region (where the EM wave frequency is lower than the plasma frequency). Power

analysis is conducted for different heights in both the frequency regimes. The

reflection and transmission coefficients are also determined with reference to the

normalized wave frequency for both transparency and non-transparency regions.

Conceptually, the problem discussed in Sections 3.6-3.10 represents a finite coun-

terpart to the semi-infinite plasma slab problem addressed in Sections 3.1-3.5.



The EM Wave Propagation in Discontinuous Waveguide containing Plasma 37

3.2 Problem Statement

The scattering of EM waves in a parallel plate waveguide with a rectangular region

containing cold plasma is investigated.

The waveguide, extending along the x-axis, features an abrupt change in height at

x = 0, effectively splitting it into two distinct regions x < 0 and x > 0. Figure 3.1

illustrates the structure under discussion.

The interior of the regions x < 0, |y| < h and x > 0, |y| > a is assumed dielectric

having permittivity and permeability ε0 and µ0, respectively and indicates the

speed of light c =
√

1/ε0µ0.

On the other hand, the region defined as, x > 0, |y| < a, comprises cold plasma

characterized by the permeability µ0 and permittivity tensor ε.

A harmonic time dependence e−iωt is assumed, with ω being the angular frequency,

and is omitted from subsequent expressions for simplicity [114].

Incorporate a direct magnetic field B0 into cold plasma in the longitudinal direction

and containing induced current J = σE, where E represents electric field and σ is

conductivity tensor defined as

σ =
npe

2

m


− iω

ω2
c − ω2

ωc
ω2
c − ω2

0

− ωc
ω2
c − ω2

− iω

ω2
c − ω2

0

0 0
i

ω

 .

The electric charge, plasma density, electron mass, cyclotron frequency, and plasma

frequency are denoted by e, np,m, ωc, and ωp, respectively [116]. The conductivity

tensor’s relationship with the permittivity tensor ε can now be represented as

ε = 1− σ

iωε0
,

where 1 is unit tensor.
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The displacement vector D is now described as D = εE, where ε is the permittivity

tensor for plasma medium and can be expressed as [115]

ε =


ε1 −iε2 0

iε2 ε1 0

0 0 ε3

 .

The tensor components ε1, ε2 and ε3 are found through the properties of EM fields

in an anisotropic medium, that are

ε1 = 1−
ω2
p

ω2 − ω2
c

, ε2 =
ωcω

2
p

ω (ω2 − ω2
c )
, ε3 = 1−

ω2
p

ω2
,

where

ω2
p =

npe
2

mε0
, ωc =

|e|µ0B0

m
.

It is important to note that the quantity B0 represents the magnitude of the direct

magnetic field. The metallic conducting walls, running along y = ±a and y = ±b,

horizontally bound the regions and vertically along −b < y < −a and a < y < b,

where a < b.

The propagation of EM waves in a waveguide is determined by Maxwell’s

equations, which are responsible for governing this phenomenon and are

listed below:

• In dielectric,

∇× E = iωB,

∇×B = −i ω
c2

E. (3.1)

• In plasma,

∇× E = iωB,

∇×B = − i
ω
κ.E. (3.2)
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The tensor κ is defined as

κ =


κ1 κ2 0

−κ2 κ1 0

0 0 κ3

 , (3.3)

where κ1 = k2
0ε1, κ2 = −k2

0iε2, and κ3 = k2
0ε3, in which k0 = ω/c. For a

two dimensional waveguide (∂/∂z = 0), the EM fields can be decomposed into

longitudinal components Ez and Bz and transverse components Ex, Ey, Bx and By.

Figure 3.1: Geometry of the problem.

For a dielectric material, the longitudinal components obey the Helmholtz equation

stated as (
∂2

∂x2
+

∂2

∂y2
+ k2

0

) Ez

Bz

 =

 0

0

 . (3.4)

The transverse components are given as

Ex = − c
2

iω

∂Bz

∂y
, Ey =

c2

iω

∂Bz

∂x
,

Bx =
1

iω

∂Ez
∂y

, By = − 1

iω

∂Ez
∂x

.
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In case of cold unmagnetized plasma, the cyclotron frequency, ωc = 0, then κ2 = 0

and κ1 = κ3. The Helmholtz equation is expressed as [117]

(
∂2

∂x2
+

∂2

∂y2
+ κ3

) Ez

Bz

 =

 0

0

 . (3.5)

The transverse components can be given as

Ex =
iω

κ3

∂Bz

∂y
, Ey = −iω

κ3

∂Bz

∂x
,

Bx =
1

iω

∂Ez
∂y

, By = − 1

iω

∂Ez
∂x

.

3.3 Formulation and Solution of the Governing

Boundary Value Problem using MM Method

Let us formulate the boundary value problem by considering a TE mode incident

from the left and propagating in the positive x direction. The magnetic field

potential Bz(x, y) in harmonic time-independent form, can be expressed by

Bz(x, y) =



B1
z (x, y), x < 0, −h < y < h,

B2
z (x, y), x > 0, −b < y < −a,

B3
z (x, y), x > 0, −a < y < a,

B4
z (x, y), x > 0, a < y < b.

(3.6)

The field potentials B1
z , B

2
z and B4

z satisfy the Helmholtz equation

(
∇2 + k2

0

)
Bj
z = 0, j = 1, 2, 4,

whereas, in cold plasma region, the field B3
z satisfies the equation

(
∇2 + κ3

)
B3
z = 0,
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The boundaries at y = ±h in region −∞ < x < 0 and at y = ±a, ±b in region

0 < x <∞ are metallic conducting. Accordingly, the boundary conditions in these

regions are given by
∂B1

z

∂y
= 0, y = ±h, (3.7)

∂B2
z

∂y
= 0, y = −b,−a, (3.8)

∂B3
z

∂y
= 0, y = ±a, (3.9)

∂B4
z

∂y
= 0, y = a, b. (3.10)

In order to address the boundary value problem using the MM method, the initial

step involves determining the expansions of eigenfunctions and the corresponding

orthogonality conditions within each region of the waveguide.

The Helmholtz equation along with boundary conditions in region −∞ < x < 0,

renders the eigenexpansion form as follows

B1
z = eik0x +

∞∑
n=0

Ane
−iνnxφn(y), −h < y < h, (3.11)

where νn =

√
k2

0 −
(nπ

2h

)2

, n = 0, 1, 2, . . . , is wavenumber of nth reflected mode,

An is the amplitude and φn(y) = cosh
[nπ

2h
(y + h)

]
, n = 0, 1, 2 . . . are the eigen-

functions corresponding to eigenvalues nπ/2h. Accordingly, the eigenexpansion

form in region 0 < x <∞ can be written as

B2
z =

∞∑
n=0

Bne
iτnxY1n(y), (3.12)

B3
z =

∞∑
n=0

Cne
iγnxY2n(y), (3.13)

B4
z =

∞∑
n=0

Dne
iτnxY3n(y). (3.14)

Here Bn, Cn, Dn, n = 0, 1, 2, . . . represent the the amplitudes, the wavenumber of

nth transmitted mode in each dielectric region is given by τn =

√
k2

0 − (
nπ

b− a
)2,
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while γn =

√
κ3 − (

nπ

2a
)2, is the wavenumber in cold plasma. The eigenfunctions

Y1n(y) = cos{ nπ
(b−a)

(y+b)}, Y2n(y) = cos{ nπ
(b−a)

(y+b)} and Y3n(y) = cos{ nπ
(b−a)

(y−b)},

satisfy the following orthogonality relations∫ −a
−b

Y1mY1ndy = δmn

(
b− a

2

)
εm, (3.15)

∫ a

−a
Y2mY2ndy = δmnaεm, (3.16)

∫ b

a

Y3mY3ndy = δmn

(
b− a

2

)
εm, (3.17)

where δmn is Kronecker delta and εm = 2 for m = 0 and 1 otherwise. The continuity

of EM fields at the interface provides the matching conditions as follows,

B1
z (0, y) =


B2
z (0, y), −h < y < −a

B3
z (0, y), −a ≤ y ≤ a,

B4
z (0, y), a < y < h,

(3.18)

∂B2
z

∂x
(0, y) =

 0, −b ≤ y ≤ −h,
∂B1

z

∂x
(0, y), −h ≤ y ≤ −a,

(3.19)

∂B3
z

∂x
(0, y) =

(
κ3

k2
0

)
∂B1

z

∂x
(0, y),−a ≤ y ≤ a, (3.20)

∂B4
z

∂x
(0, y) =


∂B1

z

∂x
(0, y), a ≤ y ≤ h,

0, h ≤ y ≤ b.
(3.21)

Employing (3.11)-(3.14), the matching condition (3.18) readily implies

1 +
∞∑
n=0

Anφn(y) =



∞∑
n=0

BnY1n(y), −h < y < −a,
∞∑
n=0

CnY2n(y), −a < y < a,

∞∑
n=0

DnY3n(y), a < y < h.

(3.22)

To normalize (3.22) with respect to φm(y), we multiply both sides of it by φm(y)
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and integrate from −h to h to get

Am = −δm0 +
1

εmh

{
∞∑
n=0

BnPmn +
∞∑
n=0

CnQmn +
∞∑
n=0

DnRmn

}
, (3.23)

where

Pmn =

∫ −a
−h

φm(y)Y1n(y)dy,

Qmn =

∫ a

−a
φm(y)Y2n(y)dy,

Rmn =

∫ h

a

φm(y)Y3n(y)dy.

Accordingly, on using (3.11)-(3.14) into the matching conditions (3.19)-(3.21)

reveals

∞∑
n=0

BnτnY1n(y) =


0, −b ≤ y ≤ −h

k0 −
∞∑
n=0

Anνnφn(y), −h ≤ y ≤ −a,
(3.24)

∞∑
n=0

CnγnY2n(y) =
κ3

k2
0

(
k0 −

∞∑
n=0

Anνnφn(y)

)
,−a ≤ y ≤ a, (3.25)

∞∑
n=0

DnτnY3n(y) =


k0 −

∞∑
n=0

Anνnφn(y), a ≤ y ≤ h,

0, h ≤ y ≤ b.

(3.26)

After performing mathematical rearrangements, normalizing (3.24)-(3.26) with

respect to the associated Yjn, j = 1, 2, 3 results in

Bm =
2

(b− a)τmεm

(
k0P0m −

∞∑
n=0

AnνnPnm

)
, (3.27)

Cm =
κ3

ak2
0γmεm

(
k0Q0m −

∞∑
n=0

AnνnQnm

)
, (3.28)

Dm =
2

(b− a)τmεm

(
k0R0m −

∞∑
n=0

AnνnRnm

)
. (3.29)

The equation (3.23) in conjunction with equations (3.27)-(3.29) expose a series of

infinite equations with unknowns {An, Bn, Cn, Dn} . The numerical solution of the
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truncated system will be elaborated on in the numerical results section.

3.4 Energy Identity

The energy identity is satisfied by the system mentioned above. By rewriting (3.23),

we can derive the identity as follows:

εmhA
∗
m = −2hδm0 +

∞∑
n=0

{B∗nP ∗mn + C∗nQ
∗
mn +D∗nR

∗
mn} , (3.30)

where (*) denotes the complex conjugate. On multiplying (3.30) by
∞∑
m=0

Amνm, we

find

h
∞∑
m=0

|Am|2νmεm = −2hA0k0

+
∞∑
m=0

Amνm

∞∑
n=0

B∗nP
∗
mn +

∞∑
m=0

Amνm

∞∑
n=0

C∗nQ
∗
mn +

∞∑
m=0

Amνm

∞∑
n=0

D∗nR
∗
mn. (3.31)

Similarly, rearranging (3.27)-(3.29) and multiplying (3.27) by
∞∑
m=0

B∗m, (3.28) by

∞∑
m=0

C∗m and (3.29) by
∞∑
m=0

D∗m, yield

(
b− a

2

) ∞∑
m=0

|Bm|2τmεm = k0

∞∑
m=0

B∗mP0m −
∞∑
n=0

Anνn

∞∑
m=0

B∗mPnm, (3.32)

(
ak2

0

κ3

) ∞∑
m=0

|Cm|2γmεm = k0

∞∑
m=0

C∗mQ0m −
∞∑
n=0

Anνn

∞∑
m=0

C∗mQnm, (3.33)

(
b− a

2

) ∞∑
m=0

|Dm|2τmεm = k0

∞∑
m=0

D∗mR0m −
∞∑
n=0

Anνn

∞∑
m=0

D∗mRnm. (3.34)
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Adding (3.31)-(3.34) and simplifying, we conclude that

1 =
1

2k0

Re

(
∞∑
n=0

|An|2νnεn

)
+

(b− a)

4k0h
Re

(
∞∑
n=0

|Bn|2τnεn

)

+
ak0

2κ3h
Re

(
∞∑
n=0

|Cn|2γnεn

)
+

(b− a)

4k0h
Re

(
∞∑
n=0

|Dn|2τnεn

)
. (3.35)

The energy identity in the duct regions can also be expressed as

P 1
i + P 1

r = P 2
t + P 3

t + P 4
t . (3.36)

To provide a physical interpretation of the identity defined in equation (3.36), we

delve into the calculation of EM power propagation in duct regions Rj, j = 1, 2, 3, 4

by using the Poynting vector given by

Power =
1

2
Re

(∫
R

E∗yBzdy

)
. (3.37)

The Ey component in the transverse direction has been previously discussed in

relation to dielectric materials and cold plasma. The incident power P 1
i , in region

R1 is given by

P 1
i =

1

2
Re

(∫ h

−h

c2

iω

(
∂Bi

z

∂x

)∗
Bi
zdy

)
.

Using the incident field Bi
z = eik0x in above equation gives

P 1
i =

1

2
Re

(∫ h

−h

c2

iω
ik0e

−ik0xeik0xdy

)
,

or

P 1
i = hc. (3.38)

Therefore, an incident power P 1
i = hc is fed into the system. The reflected power

P 1
r in region R1 can be found by using B1

z (x, y) in (3.37) as follows

P 1
r =

1

2
Re

(
−
∫ h

−h

c2

iω

∞∑
n=0

∞∑
m=0

AnA
∗
miν

∗
me

i(νn−ν∗m)xφn(y)φm(y)dy

)
.
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The orthogonality of eigenfunctions φn(y) remolds the above equation as

P 1
r =

1

2
Re

(
−
∫ h

−h

c2

ω

∞∑
n=0

∞∑
m=0

AnA
∗
mν
∗
me

i(νn−ν∗m)xδmnhεm

)
.

On simplifying the above equation, we obtain

P 1
r = − hc

2k0

Re

(
∞∑
n=0

|An|2ν∗nεn

)
. (3.39)

Similarly, using B2
z (x, y) in (3.37), the transmitted power P 2

t in region R2 can be

calculated as

P 2
t =

1

2
Re

(∫ −a
−b

c2

iω

∞∑
n=0

∞∑
m=0

BnB
∗
miτ

∗
me

i(τn−τ∗m)xY1n(y)Y1m(y)dy

)
.

Applying the orthogonality relation (3.15)

P 2
t =

1

2
Re

(∫ −a
−b

c2

iω

∞∑
n=0

∞∑
m=0

BnB
∗
miτ

∗
me

i(τn−τ∗m)xδmn

(
b− a

2

)
εm

)
,

or

P 2
t =

(b− a)c

4k0

Re

(
∞∑
n=0

|Bn|2τ ∗nεn

)
. (3.40)

On the same lines, the energy flux P 3
t and P 4

t in regions R3 and R4 can be obtained

as

P 3
t =

aω

2κ3

Re

(
∞∑
n=0

|Cn|2γ∗nεn

)
, (3.41)

P 4
t =

(b− a)c

4k0

Re

(
∞∑
n=0

|Dn|2τ ∗nεn

)
. (3.42)

Since Re(ν∗n) = Re(νn), Re(τ ∗n) = Re(τn) and Re(γ∗n) = Re(γn), therefore we may

write (3.39)-(3.42) as,

P 1
r = − hc

2k0

Re

(
∞∑
n=0

|An|2νnεn

)
, (3.43)

P 2
t =

(b− a)c

4k0

Re

(
∞∑
n=0

|Bn|2τnεn

)
, (3.44)
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P 3
t =

aω

2κ3

Re

(
∞∑
n=0

|Cn|2γnεn

)
, (3.45)

P 4
t =

(b− a)c

4k0

Re

(
∞∑
n=0

|Dn|2τnεn (3.46)

The law of conservation of power asserts that the energy flow in the left-hand

region equals the energy flow in the right-hand region, that gives

hc− hc

2k0

Re

(
∞∑
n=0

|An|2νnεn

)
=

(b− a)c

4k0

Re

(
∞∑
n=0

|Bn|2τnεn

)

+
aω

2κ3

Re

(
∞∑
n=0

|Cn|2γnεn

)
+

(b− a)c

4k0

Re

(
∞∑
n=0

|Dn|2τnεn

)
. (3.47)

Solving equation (3.47), we get the form

1 = E1 + E2 + E3 + E4,

where

E1 =
1

2k0

Re

(
∞∑
n=0

|An|2νnεn

)
,

E2 =
(b− a)

4k0h
Re

(
∞∑
n=0

|Bn|2τnεn

)
,

E3 =
ak0

2κ3h
Re

(
∞∑
n=0

|Cn|2γnεn

)
,

E4 =
(b− a)

4k0h
Re

(
∞∑
n=0

|Dn|2τnεn

)
.

The calculations presented above clearly demonstrate that the energy flux deter-

mined through mathematical methods aligns with the energy determined physically

using the Poynting vector.

The next section is structured to validate the matching conditions and explore the

role of plasma in the reflection and transmission coefficients across each incident,

reflected, and transmitted mode.
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3.5 Numerical Results and Discussion

The results presented in this study are derived through the truncation and numerical

solution of infinite system of linear algebraic equations, as described in the Section

3.3. The truncation of system of equations up to 150 terms results in a system

containing 151 equations. After solving these equations we get the unknown

coefficients {An, Bn, Cn, Dn} ;n = 0, 1, 2, . . . , 150.

These scattered mode coefficients are utilized for analyzing the propagation of

power in the sections of the duct. The magnetic field potentials B1
z , B

2
z , B

3
z and

B4
z are denoted by φ1(x, y), φ2(x, y), φ3(x, y) and φ4(x, y), respectively. The respec-

tive electric field potentials are represented by φ1x(x, y), φ2x(x, y), φ3x(x, y) and

φ4x(x, y).

The physical parameter chosen is speed of light, c = 3× 108 m/s. The respective

dimensional duct heights are given as a = 0.004 cm, b = 1 cm, h = 0.085 cm.

The plasma frequency is taken as ωp = 109 radian/second. All values, except

h, are consistent with Najari et al. [106]. The radii a, b and h, are the non-

dimensional analogues of a, b and h. The accuracy of the matching conditions

at the interfaces is confirmed by using truncated solutions to reconstruct the

conditions, as demonstrated through figures showing the non-dimensional magnetic

and electric field profiles.

(a) (b)

Figure 3.2: The real parts of (a) magnetic and (b) electric fields at
x = 0,−b < y < −a.
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(a) (b)

Figure 3.3: The imaginary parts of (a) magnetic and (b) electric fields at
x = 0,−b < y < −a.

(a) (b)

Figure 3.4: The real parts of (a) magnetic and (b) electric fields at
x = 0,−a < y < a.

(a) (b)

Figure 3.5: The imaginary parts of (a) magnetic and (b) electric fields at
x = 0,−a < y < a.
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(a) (b)

Figure 3.6: The real parts of (a) magnetic and (b) electric fields at
x = 0, a < y < b.

In case of dielectric regions x < 0 and x > 0, the graphs of fields are shown

in figures 3.2-3.7. The magnetic and electric field curves completely coincide at

the interface x = 0. Figures 3.4 and 3.5, show that the curves of magnetic and

electric fields in cold plasma completely match at interface. The reflected and

transmission coefficients {An, Bn, Cn, Dn} with respect to the normalized wave

frequency bω/c are also determined and are plotted for n = 0, 1, 2. The normalized

frequency is considered higher than 0.1 (bω/c > 0.1) in transparency region and

lower than 0.1 (0 < bω/c < 0.1) in non-transparency region. In order to examine

the reflected and transmitted coefficients, the incident mode numbers n = 0, 1, 2 are

taken into account. The numerical computations have been done by Mathematica

software of version 11. All the chosen parameters are same as were considered

for verifying matching conditions, except ω. In all diagrams, the dimensionless

normalized frequency bω/c has been considered.

(a) (b)

Figure 3.7: The imaginary parts of (a) magnetic and (b) electric fields at
x = 0, a < y < b.
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(a) (b)

Figure 3.8: Reflected coefficients |An| in (a) transparency and (b) non-
transparency region.

Figure 3.8 shows the plot of reflection coefficients with respect to normalized fre-

quency for the first three incident modes, including both transparency (ω > ωp) and

non-transparency (ω < ωp) frequency domains. The first reflected mode stands out

as the dominant mode in both the transparency and non-transparency regions, with

a maximum magnitude in the transparency region. The transmission coefficients

for the initial three incident modes are plotted against the normalized frequency

bω/c in Figure 3.9, encompassing both transparency and non-transparency fre-

quency ranges. Upon examining the diagram, it is clear that in the transparency

frequency regime, mode 2 is the dominant transmitted mode in the dielectric region

(−b < y < −a), whereas in the non-transparency case, mode 1 emerges as the

dominant mode. Figure 3.10 illustrates the transmission coefficients for the first

three incident modes in plasma, with mode 1 dominating in both transparency and

non-transparency frequency regimes. The transmission coefficients in the dielectric

region (a < y < b) display the same pattern as in the region (−b < y < −a), with

mode 2 dominating in transparency and mode 1 in non-transparency, as shown in

Figure 3.11.

(a) (b)

Figure 3.9: Transmitted coefficients in |Bn| (a) transparency and (b) non-
transparency region, −b < y < −a.
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The transmission coefficient graphs exhibit a distinct peak at frequency 11.111 in

the dielectric regions of the right duct and cold plasma, signifying resonance in

both cases.

The power distribution graphs for different non-dimensional heights a, b, and h

demonstrate power balance in both transparency and non-transparency regions,

with the exception of the cold plasma region in non-transparency cases, where

energy transmission is zero. The reflected power in left duct (x < 0) is represented

by E1. The quantities E2, E3 and E4 are the transmitted powers in right duct (x > 0)

in regions −b ≤ y ≤ −a,−a ≤ y ≤ a and a ≤ y ≤ b, respectively. The sum of

powers in all duct sections Et is revealed as ,

Et = E1 + E2 + E3 + E4.

(a) (b)

Figure 3.10: Transmitted coefficients |Cn| in (a) transparency and (b) non-
transparency region, −a < y < a.

(a) (b)

Figure 3.11: Transmitted coefficients |Dn| in (a) transparency and (b) non-
transparency region, a < y < b.
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Table 3.1: Cut-on modes versus angular frequency ω.

Frequency (bω/c) Region 1 Region 2 Region 3 Region 4

0.111 1 1 0 1

10.028 1 2 0 2

11.334 1 2 1 2

Table 3.2: Cut-on modes versus height a.

Height (a) Region 1 Region 2 Region 3 Region 4

0.02 2 5 1 5

1.6 2 5 2 5

For the graphs plotted against non-dimensional height a, the values of a are

considered as 0.001 cm < a < 0.084 cm. Figure 3.12(a) illustrates that the

transmission in cold plasma is enhanced as the plasma waveguide height a increases

in the transparency region, whereas the reflection is amplified with the increment

in a for the non-transparency region, see Figure 3.12(b).

(a)

(b)

Figure 3.12: Power flux plotted against a in (a) transparency and (b) non-
transparency region.
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(a) (b)

Figure 3.13: Power flux plotted against b in (a) transparency and (b) non-
transparency region.

(a) (b)

Figure 3.14: Power flux plotted against h in (a) transparency and (b) non-
transparency region.

Table 3.3: Cut-on modes versus height b.

Height (b) Region 1 Region 2 Region 3 Region 4

20 2 7 1 7

24 2 8 1 8

Figure 3.15: Power flux plotted against number of terms N.
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When examining the relationship between power and height b, with a specified

range 1 cm < b < 3 cm, a notable trend emerges. As evident from Figure 3.13(a),

the rise in b implicates a gradual decrease in transmission in dielectric regions in

transparency regime, However, in the non-transparency region, increase in reflection

is apparent with increase in b, as revealed in Figure 3.13(b).

Table 3.4: Cut-on modes versus height h.

Height (h) Region 1 Region 2 Region 3 Region 4

0.86 1 4 2 4

1.66 2 4 2 4

3.26 3 4 2 4

Table 3.5: Power conservation versus number of terms N.

Terms (N) E1 E2 E3 E4 Et
5 0.007210 0.469161 0.054467 0.469161 1

10 0.007204 0.470669 0.051457 0.47669 1

15 0.007249 0.474104 0.044543 0.474104 1

20 0.007250 0.474622 0.043505 0.474622 1

25 0.007246 0.474896 0.042961 0.474896 1

30 0.007246 0.475005 0.042744 0.475005 1

35 0.007246 0.475081 0.042591 0.475081 1

40 0.007246 0.475086 0.042582 0.475086 1

45 0.007245 0.475087 0.042581 0.475087 1

50 0.007245 0.475092 0.042571 0.475092 1

Finally, the power graphs are plotted against the non-dimensional height h, with a

range of 0.043 cm < h < 0.165 cm. The transmission has a dominant behavior in

dielectric regions for transparency regime, while it is insignificant in cold plasma as

apparent from Figure 3.14(a), as h grows. However, for non-transparency frequency

range, the rise in the height h of the waveguide implies a decrease in the reflection

and increase in transmission in dielectric regions, see Figure 3.14(b).

The number of cut-on modes versus angular frequency ω and duct heights a, b and

h, in all regions of waveguide for transparency regime with respect to normalized

frequency, are presented in tables 3.1-3.4. In these tables, Region 1 represents the

left duct region x < 0,−h ≤ y ≤ h. The regions −b ≤ y ≤ −a,−a ≤ y ≤ a and
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a ≤ y ≤ b in right duct (x > 0) are represented by Region 2, Region 3 and Region

4, respectively.

Conservation of power implies that the truncated solution is convergent. The

accuracy is verified up to six decimal places. It is noted that the impact of

truncation diminishes to infinitesimal levels when N ≥ 25. This fact is evident

from Figure 3.15 as well as Table 3.5. Thus,the given system of infinite equations

can be regarded as finite.

3.6 Cold Plasma-induced Effects on EM Scatter-

ing in Waveguides: An MM Analysis

This study deals with the complexities of EM scattering in a two-dimensional

parallel plate rectangular waveguide, featuring a slab of cold plasma sandwiched

between metallic strips. The plasma is positioned in a groove situated in the

central region. The central region is enclosed, with and without metallic strips, by

dielectric medium.

The core of the MM technique lies in the projection of the EM field solution

onto basis functions. By representing the field using these basis functions, the

problem is transformed into a set of linear algebraic equations that can be efficiently

solved. One of the key insights gained from this study is the profound impact that

geometric and material variations have on reflection and transmission phenomena

within the waveguide.

The validation through numerical assessments further enhances confidence in the

method’s accuracy and reliability, highlighting its potential for advancing research

in electromagnetics. The solution to this problem has far-reaching implications, as

waveguides play a crucial role in the functioning of resonators and plasma propulsion

engines, which are critical components in various technological applications.

The formulation of the related boundary problem is furnished in next section.
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3.7 Formulation of Propagating Waves within a

Plasma Slab

The discussion in this section focuses on the examination of how EM waves scatter

when interacting with a plasma slab. This slab can either be situated between

PEC plates or be positioned within a dielectric medium. The depicted physical

arrangement in Figure 3.16 illustrates the central region layout of the metallic

waveguide where the analysis of scattering is carried out. An H-polarized incident

wave, making a zero angle with x axis, is contemplated to be traveling in the positive

x direction within this scenario. The incident wave referred to in this context

is presumed to represent the fundamental duct mode, characterized by a unit

magnitude, traveling from the left inlet towards the interfaces on the right. Figure

3.16(a) shows the plasma slab enclosed by PEC walls, while Figure 3.16(b) depicts

the plasma slab surrounded by a dielectric medium. The plasma slab’s dimensions

are constrained by |y| < a and |x| < L, with PEC walls placed at y = ±a and

y = ±b in Figure 3.16(a), and at y = ±b in Figure 3.16(b). The region between

|y| > a and |y| < b is considered to be a dielectric medium with permittivity ε0

and permeability µ0. This configuration corresponds to a wavenumber k0, which is

defined as k0 = ω
√
µ0ε0, where ω represents the angular frequency and c denotes the

speed of light. The speed of light, connected to the permittivity and permeability

of free space as c =
√

1/ε0µ0, suggests the formation of k0 as k0 = ω/c. However,

for the case of a cold plasma, the permeability remains µ0, and the permittivity

tensor ε, as specified in references [115] and [116], is

ε =


ε1 −iε2 0

iε2 ε1 0

0 0 ε3

 ,

where ε1 = 1 −
ω2
p

ω2 − ω2
c

, ε2 =
ωcω

2
p

ω (ω2 − ω2
c )

and ε3 = 1 −
ω2
p

ω2
. Here the quanti-

ties ωp and ωc stand for the frequencies associated with plasma and cyclotron

effects, respectively. The exponential time-varying function e−iωt is considered and

consistently excluded. [114].
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(a) (b)

Figure 3.16: Cold plasma slab configuration: (a) enclosed by metal strips, and
(b) embedded within a dielectric environment.

Maxwell’s equations govern the transmission of EM waves within a waveguide.

Faraday’s law, as shown below, holds true for both dielectric and cold plasma

mediums.

∇× E = iωB. (3.48)

In the context of dielectrics, Ampere’s law can be expressed as follows:

∇×B = −i ω
c2

E, (3.49)

while in the case of a cold plasma, this law is formulated as:

∇×B = − i
ω
k2

0ε.E. (3.50)

In a two dimensional waveguide (∂/∂z = 0), the EM fields E and B consist of

longitudinal components Ez and Bz as well as transverse components Ex, Ey, Bx

and By. To depict EM wave propagation, the Helmholtz equation is solved along

with boundary and interface conditions. In case of dielectric, the longitudinal

components satisfy the Helmholtz equation

(
∂2

∂x2
+

∂2

∂y2
+ k2

0

) Ez

Bz

 =

 0

0

 , (3.51)

whereas, the transverse components can be determined by utilizing the details

provided in the longitudinal components as indicated below:

Ex = − c
2

iω

∂Bz

∂y
, Ey =

c2

iω

∂Bz

∂x
,
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Bx =
1

iω

∂Ez
∂y

, By = − 1

iω

∂Ez
∂x

.

For cold unmagnetized plasma, the Helmholtz equation is expressed, in longitudinal

components of fields, as [117]

(
∂2

∂x2
+

∂2

∂y2
+ k2

1

) Ez

Bz

 =

 0

0

 . (3.52)

The transverse components can be given as

Ex =
iω

k2
1

∂Bz

∂y
, Ey = −iω

k2
1

∂Bz

∂x
,

Bx =
1

iω

∂Ez
∂y

, By = − 1

iω

∂Ez
∂x

.

The wavenumber of cold plasma medium is indicated as k1 =
ω

c

√
1−

ω2
p

ω2
, where

ωp is the plasma frequency. Under the influence of a magnetic field, like in the

upper atmosphere, ωc assumes a non-zero value.

In such scenario, the presence of all components in the permittivity tensor ε

significantly impacts both the Helmholtz equation and the transverse components

of the electric field, leading to a transformation in the matching conditions.

Solving equations (3.51) and (3.52) with boundary and interface conditions facili-

tates in determining wave propagation in the regions presented in Figure 3.16. The

next subsection explains the traveling wave formulation applicable to H-polarized

scenarios.

3.7.1 Plasma Slab Enclosed by Metal Strips

The boundary conditions at the metallic walls y = ±a and ±b in plasma are

expressed as
∂Bz

∂y
(x,±a) = 0 =

∂Bz

∂y
(x,±b). (3.53)
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On solving (3.52) subject to (3.53) with the separation of variable technique, the

eigenfunction expansion formation can be achieved as:

Bz(x, y) =



∞∑
n=0

(
B(1)
n eiζnx + C(1)

n e−iζnx
)
Y1n(y),

∞∑
n=0

(
B(2)
n eiλnx + C(2)

n e−iλnx
)
Y2n(y),

∞∑
n=0

(
B(3)
n eiζnx + C(3)

n e−iζnx
)
Y3n(y),

(3.54)

where the amplitudes in the respective regions −b < y < −a, a < y < a and

a < y < b are displayed by B
(j)
n and C

(j)
n , j = 1, 2, 3. The wavenumbers of

nth modes in these regions are ζn =

√
k2

0 −
(

nπ

b− a

)2

and λn =

√
k2

1 −
(nπ

2a

)2

,

n = 0, 1, 2, . . . Here the eigenfunctions Y1n(y) = cos

{(
nπ

b− a

)
(y + b)

}
, Y2n(y) =

cos
{(nπ

2a

)
(y + a)

}
, and Y3n(y) = cos

{(
nπ

b− a

)
(y − b)

}
are orthogonal and

satisfy the usual orthogonality relations,

∫ −a
−b

Y1mY1ndy = δmn

(
b− a

2

)
εm,∫ a

−a
Y2mY2ndy = δmnaεm,∫ b

a

Y3mY3ndy = δmn

(
b− a

2

)
εm,


(3.55)

where δmn is Kronecker delta and εm = 2 for m = 0 and 1 otherwise.

3.7.2 Plasma Slab Embedded within a Dielectric Environ-

ment

The boundary conditions in case of slab layered in a dielectric environment are as

follows:

Bz(x,−a−) = Bz(x,−a+), (3.56)

Bz(x, a
−) = Bz(x, a

+), (3.57)

η0
∂Bz

∂y
(x,−a−) = η1

∂Bz

∂y
(x,−a+), (3.58)
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η1
∂Bz

∂y
(x, a−) = η0

∂Bz

∂y
(x, a+), (3.59)

∂Bz

∂y
(x,±b) = 0, (3.60)

such that the wavenumbers of cold plasma and dielectric and the respective surface

impedances, η0 and η1, are correlated as η0 = 1/k2
0 and η1 = 1/k2

1. Using separa-

tion of variables on (3.52) with conditions (3.56)-(3.60) yields the eigenfunction

expansion

Bz(x, y) =
∞∑
n=0

(Bne
isnx + Cne

−isnx)Yn(y), (3.61)

whereas the amplitudes Bn and Cn correspond to the nth mode and the associated

eigenfunctions Yn(y) ;n = 0, 1, 2, . . . in this groove are expressible as,

Yn(y) =


Y1n(y), −b < y < −a,

Y2n(y), −a < y < a,

Y3n(y), a < y < b,

(3.62)

where

Y1n(y) = cosh[τn(y + b)], (3.63)

Y2n(y) =
1

η1γn
{η0τn sinh[τn(b− a)] sinh[γn(y + a)]}

+ cosh[τn(b− a)] cosh[γn(y + a)], (3.64)

Y3n(y) =
cosh[τn(y − b)]

η1γn cosh[τn(b− a)]
{η0τn sinh[τn(b− a)] sinh(2γna)}

+η1γn cosh[τn(y − b)] cosh(2γna), (3.65)

satisfy the orthogonality relation as given below

η0

∫ −a
−b

Y1mY1ndy + η1

∫ a

−a
Y2mY2ndy + η0

∫ b

a

Y3mY3ndy = δmnEm, (3.66)

such that

En = η0

∫ −a
−b

Y 2
1ndy + η1

∫ a

−a
Y 2

2ndy + η0

∫ b

a

Y 2
3ndy. (3.67)
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The quantities τn and γn, expressed as τn =
√
s2
n − k2

0 and γn =
√
s2
n − k2

1, are the

roots corresponding to the characteristic equation,

η2
0τ

2
n sinh2[τn(b− a)] sinh(2γna) + η2

1γ
2
n cosh2[τn(b− a)] sinh(2γna)

+η0η1τnγn sinh[2τn(b− a)] cosh(2γna) = 0. (3.68)

Here sn indicates the wave number of nth mode inside the groove.

3.8 An MM Approach to Plasma Slab Scattering

Within the context of waveguide technology, plasma slabs are implemented in

the central part (|x| < L) of the waveguide, which extends infinitely along the

x-axis. Figure 3.17 illustrates the geometrical configuration of both cases. The

research pertains to examining how EM waves scatter when they encounter a

plasma slab, starting from the region x < −L and observing their interaction with

the plasma-contained region as they leave the domain at x > L.

We consider an H-polarized wave incident on the partially confined waveguide, trav-

eling in the positive x direction. The complete magnetic field potential B
(T )
z (x, y),

is stated as follows:

B(T )
z (x, y) =


B

(1)
z (x, y), x < −L, −h < y < h,

B
(2)
z (x, y), |x| < L, −b < y < b,

B
(3)
z (x, y), x > L, −h < y < h.

(3.69)

(a) (b)

Figure 3.17: Waveguide configuration: (a) enclosed by metal strips, and (b)
embedded within a dielectric environment.
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The eigenfunction expansions and corresponding orthogonality criteria are estab-

lished by implementing the MM technique within each particular region of the

waveguide.

Incorporating the method of separation of variables, the scattered fields within

these regions x < −L and x > L can be illustrated as follows:

B(1)
z (x, y) = eik0(x+L) +

∞∑
n=0

Ane
−iνn(x+L)φn(y), −h < y < h, (3.70)

B(3)
z (x, y) =

∞∑
n=0

Dne
iνn(x−L)φn(y), −h < y < h. (3.71)

In the regions x < −L and x > L, the wavenumber of the nth mode νn, takes

values of n = 0, 1, 2, and so on. The amplitudes An and Dn determine the intensity

of these modes, while the eigenfunctions φn(y) can be expressed as,

φn(y) = cosh
[nπ

2h
(y + h)

]
.

Helmholtz equation and perfectly conducting boundary conditions are satisfied by

the field potentials B
(1)
z and B

(3)
z .

Two different plasma slab configurations - metallic strips and dielectric environments

- have their eigenexpansions derivable from (3.54) and (3.61), respectively.

The eigenexpansions (3.54), (3.61), (3.70), and (3.71) contain unknown amplitudes

that can be resolved by enforcing the matching conditions at the two interfaces.

3.8.1 Matching Conditions

Matching conditions arise from the continuity of fields at the interfaces x = −L

and x = L, namely

B(p)
z (±L, y) = B(2)

z (±L, y), −h ≤ y ≤ h, (3.72)
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∂B
(2)
z

∂x
(±L, y) =


0, −b ≤ y ≤ −h,
∂B

(p)
z

∂x
(±L, y), −h ≤ y ≤ −a,

(3.73)

∂B
(2)
z

∂x
(±L, y) =

η0

η1

∂B
(p)
z

∂x
(±L, y), −a ≤ y ≤ a, (3.74)

∂B
(2)
z

∂x
(±L, y) =


∂B

(p)
z

∂x
(±L, y), a ≤ y ≤ h,

0, h ≤ y ≤ b,

(3.75)

where p = 1 for the field at interface x = −L and p = 3 at interface x = L.

3.8.2 Plasma Slab Enclosed by Metal Strips

Application of the matching condition (3.72) along with some mathematical ma-

nipulations yields

Am = −δm0 +
1

εmh

∞∑
n=0

(
B(1)
n e−iζnL + C(1)

n eiζnL
)
Pmn

+
1

εmh

∞∑
n=0

(
B(2)
n e−iλnL + C(2)

n eiλnL
)
Qmn

+
1

εmh

∞∑
n=0

(
B(3)
n e−iζnL + C(3)

n eiζnL
)
Rmn, (3.76)

Dm =
1

εmh

∞∑
n=0

(
B(1)
n eiζnL + C(1)

n e−iζnL
)
Pmn

+
1

εmh

∞∑
n=0

(
B(2)
n eiλnL + C(2)

n e−iλnL
)
Qmn

+
1

εmh

∞∑
n=0

(
B(3)
n eiζnL + C(3)

n e−iζnL
)
Rmn, (3.77)

where

Pmn =

∫ −a
−h

φm(y)Y1n(y)dy,Qmn =

∫ a

−a
φm(y)Y2n(y)dy,Rmn =

∫ h

a

φm(y)Y3n(y)dy.
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Adding the equations (3.76) and (3.77), leads to

Ψ+
m = −δm0+

2

hεm

[
∞∑
n=0

Φ+
1n cos(ζnL)Pmn + Φ+

2n cos(λnL)Qmn + Φ+
3n cos(ζnL)Rmn

]
,

(3.78)

while subtracting (3.77) from (3.76), submits

Ψ−m = −δm0−
2i

hεm

[
∞∑
n=0

Φ−1n sin(ζnL)Pmn + Φ−2n sin(λnL)Qmn + Φ−3n sin(ζnL)Rmn

]
,

(3.79)

where Ψ±m = Am ±Dm and Φ±jm = B
(j)
m ± C(j)

m , j = 1, 2, 3.

The imposition of the conditions (3.73) to (3.75) at interface x = −L leads to

(
B(1)
m e−iζmL − C(1)

m eiζmL
)

=
2

ζmεm(b− a)

{
k0P0m −

∞∑
n=0

AnνnPnm

}
, (3.80)

(
B(2)
m e−iλmL − C(2)

m eiλmL
)

=
η0

η1λmεma

{
k0Q0m −

∞∑
n=0

AnνnQnm

}
, (3.81)

(
B(3)
m e−iζmL − C(3)

m eiζmL
)

=
2

ζmεm(b− a)

{
k0R0m −

∞∑
n=0

AnνnRnm

}
. (3.82)

Invoking the matching conditions (3.73) to (3.75), in the same manner as before,

at the interface x = L, displays

(
B(1)
m eiζmL − C(1)

m e−iζmL
)

=
2

ζmεm(b− a)

∞∑
n=0

DnνnPnm, (3.83)

(
B(2)
m eiλmL − C(2)

m e−iλmL
)

=
η0

η1λmεma

∞∑
n=0

DnνnQnm, (3.84)

(
B(3)
m eiζmL − C(3)

m e−iζmL
)

=
2

ζmεm(b− a)

∞∑
n=0

DnνnRnm. (3.85)

Subtracting (3.80) from (3.83), (3.81) from (3.84) and (3.82) from (3.85) leads to

the formation of the following equations

Φ+
1m =

i

ζmεm sin(ζmL)(b− a)

(
k0P0m −

∞∑
n=0

Ψ+
n νnPnm

)
, (3.86)
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Φ+
2m =

iη0

2η1λmεma sin(λmL)

(
k0Q0m −

∞∑
n=0

Ψ+
n νnQnm

)
, (3.87)

Φ+
3m =

i

ζmεm sin(ζmL)(b− a)

(
k0R0m −

∞∑
n=0

Ψ+
n νnRnm

)
. (3.88)

Now, respective adding of (3.80) and (3.83), (3.81) and (3.84), (3.82) and (3.85)

forms Φ−1m,Φ
−
2m and Φ−3m in the following way

Φ−1m =
1

ζmεm cos(ζmL)(b− a)

(
k0P0m −

∞∑
n=0

Ψ−n νnPnm

)
, (3.89)

Φ−2m =
η0

2η1λmεma cos(λmL)

(
k0Q0m −

∞∑
n=0

Ψ−n νnQnm

)
, (3.90)

Φ−3m =
1

ζmεm cos(ζmL)(b− a)

(
k0R0m −

∞∑
n=0

Ψ−n νnRnm

)
. (3.91)

The equations (3.78), (3.79) and (3.86)-(3.91) disclose a system of infinite equations

having the unknown coefficients
{
An, B

(j)
n , C

(j)
n , Dn

}
, j = 1, 2, 3. The numerical

solution of this system, truncated to finite number of terms, is acquired and the

results are presented and discussed in Section 3.10.

3.8.3 Plasma Slab Embedded within a Dielectric Environ-

ment

Imposing the matching condition (3.72) and normalizing result in

Am = −δm0 +
1

εmh

{
∞∑
n=0

(
Bne

−isnL + Cne
isnL
)

(Pmn +Qmn +Rmn)

}
, (3.92)

Dm = − 1

εmh

{
∞∑
n=0

(
Bne

isnL + Cne
−isnL

)
(Pmn +Qmn +Rmn)

}
. (3.93)
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Adding (3.92) and (3.93), produces

Ψ+
m = −δm0 +

2

hεm

∞∑
n=0

Φ+
n cos(snL) {Pmn +Qmn +Rmn} , (3.94)

and subtracting (3.93) from (3.92) results in

Ψ−m = −δm0 −
2i

hεm

∞∑
n=0

Φ−n sin(snL) {Pmn +Qmn +Rmn} . (3.95)

where Ψ±m = Am ±Dm and Φ±m = Bm ± Cm.

Applying matching conditions (3.73)-(3.75) at the interface x = −L and solving,

we get

∞∑
n=0

(
Bne

−isnL − CneisnL
)
sn

∫ −a
−b

Y1mY1ndy

= k0

∫ −a
−b

Y1mdy −
∞∑
n=0

Anνn

∫ −a
−b

Y1mφndy, (3.96)

η1

η0

∞∑
n=0

(
Bne

−isnL − CneisnL
)
sn

∫ a

−a
Y2mY2ndy

= k0

∫ a

−a
Y1mdy −

∞∑
n=0

Anνn

∫ a

−a
Y2mφndy, (3.97)

∞∑
n=0

(
Bne

−isnL − CneisnL
)
sn

∫ b

a

Y3mY3ndy

= k0

∫ b

a

Y3mdy −
∞∑
n=0

Anνn

∫ b

a

Y3mφndy. (3.98)

Adding the equations (3.96), (3.97) and (3.98) and employing the orthogonality

relation (3.66), produces

Bme
−ismL − CmeismL =

η0k0

smEm
(P0m +Q0m +R0m)

− η0

smEm

∞∑
n=0

Anνn (Pnm +Qnm +Rnm) . (3.99)
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The same procedure is applied at the interface x = L using conditions (3.73) to

(3.75), leading to

Bme
ismL − Cme−ismL =

η0

smEm

∞∑
n=0

Dnνn (Pnm +Qnm +Rnm) . (3.100)

Subtracting (3.99) from (3.100), brings out

Φ+
m =

ik0η0

2smEm sin(smL)
(P0m +Q0m +R0m)

− iη0

2smEm sin(smL)

∞∑
n=0

Ψ+
n νn (Pnm +Qnm +Rnm) , (3.101)

while adding (3.99) and (3.100) creates

Φ−m =
k0η0

2smEm cos(smL)
(P0m +Q0m +R0m)

− η0

2smEm cos(smL)

∞∑
n=0

Ψ−n νn (Pnm +Qnm +Rnm) . (3.102)

A system of infinite algebraic equations is divulged through equations (3.94),

(3.95), (3.101) and (3.102), with unknowns {An, Bn, Cn, Dn} . Truncating this

system produces a numerical solution, which is then analyzed and presented in the

Numerical Results section.

3.9 Energy Flux

The energy flux serves as a vital indicator of the accuracy and convergence of

approximate solutions. By utilizing the Poynting vector, we can effectively calculate

the energy transmission in duct regions,

Power =
1

2
Re

(∫
R

E∗yBzdy

)
, (3.103)

where (*) represents complex conjugate.

The component Ey of electric field in a dielectric medium, is stated as

Ey = − 1

iωε0

∂Bz

∂x
, (3.104)
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while for the case of cold plasma

Ey =
c2η1

iωη0

∂Bz

∂x
. (3.105)

The Poynting vector enables the calculation of the incident Pi, reflected Pr and

transmitted Pt powers, which are listed as

Pi = −k0h

ωε0
, (3.106)

Pr =
h

2ωε0
Re

(
∞∑
n=0

|An|2ν∗nεn

)
, (3.107)

Pt = − h

2ωε0
Re

(
∞∑
n=0

|Dn|2ν∗nεn

)
. (3.108)

Since Re(ν∗n) = Re(νn), therefore, (3.107) and (3.108) take the form,

Pr =
h

2ωε0
Re

(
∞∑
n=0

|An|2νnεn

)
, (3.109)

Pt = − h

2ωε0
Re

(
∞∑
n=0

|Dn|2νnεn

)
. (3.110)

According to the law of conservation of power,

Pi + Pr = Pt.

This principle leads to

− k0h

ωε0
+

h

2ωε0
Re

(
∞∑
n=0

|An|2νnεn

)
= − h

2ωε0
Re

(
∞∑
n=0

|Dn|2νnεn

)
. (3.111)

Normalizing the incident power Pi to 1, equation (3.111) becomes

1 = E1 + E2, (3.112)

where

E1 =
1

2k0

Re

(
∞∑
n=0

|An|2νnεn

)
,
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E2 =
1

2k0

Re

(
∞∑
n=0

|Dn|2νnεn

)
.

3.10 Numerical Results and Discussion

Based on the preceding discussions, we now proceed to solve the physical problem

numerically. We select the speed of light, c = 3 × 108 m/s, as the key physical

parameter for our numerical analysis. The magnetic field potential Bz is presented

in figures as φ(x, y), stated as,

φ(x, y) =



φ1(x, y), x < −L, −h < y < h,

φ2(x, y), |x| < L, −b < y < −a,

φ3(x, y), |x| < L, −a < y < a,

φ4(x, y), |x| < L, a < y < b,

φ5(x, y), x > L, −h < y < h.

The numerical calculations are carried out by using the software Mathematica

(versions 11.0 & 12.1).

3.10.1 Case I

Upon truncating the system described by equations (3.78), (3.79), and (3.86)-

(3.91) to 100 terms, the resulting solution is utilized to confirm the correctness of

the algebraic manipulations and power distribution. The matching conditions at

interfaces x = −L and x = L are subsequently re-established. The solution of these

equations yields the unknown coefficients
{
An, B

(j)
n , C

(j)
n , Dn

}
, j = 1, 2, 3, n =

0, 1, 2, . . . , 99.

The scattered coefficients and power distribution in the duct regions, corresponding

to the incident duct modes (n = 0, 1, 2) are plotted with reference to the normalized

frequency bω/c.
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Matching conditions at interfaces x = −L and x = L are used to validate the MM

solution, with non-dimensional magnetic and electric fields shown in figures 3.18

and 3.19, respectively.
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Figure 3.18: The real and imaginary parts of (a) magnetic and (b) electric
fields at x = −L,−h < y < h.
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Figure 3.19: The real and imaginary parts of (a) magnetic and (b) electric
fields at x = L,−h < y < h.

Figures 3.20 and 3.21 show the reflection and transmission coefficients for the first

three incident modes, plotted against normalized frequency bω/c. Notably, the

frequency spectrum is divided into two distinct regions: a non-transparency region

(ω < ωp), where the angular frequency is lower than the plasma frequency, and a

transparency region (ω > ωp), where the angular frequency exceeds the plasma

frequency.

The normalized frequency, bω/c, distinguishes between two regions: the trans-

parency region, where bω/c > 0.1, and the non-transparency region, where

bω/c < 0.1.

Figures 3.22-3.24 display the power distribution, with E1 and E2 representing the

reflected and transmitted powers in the left duct (x < −L) and right duct (x > L),
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while Et is the aggregate power across all regions of the ducts, such that

Et = E1 + E2.

Reflected and transmitted powers against the number of terms are plotted in Figure

3.25.
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Figure 3.20: Reflected coefficients |An| in (a) transparency and (b) non-
transparency region.
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Figure 3.21: Transmitted coefficients |Dn| in (a) transparency and (b) non-
transparency region.

The following parameters are set: duct heights a = 0.004 cm, b = 1 cm, and

h = 0.085 cm; groove length L = 2 × 0.005 cm; and plasma frequency ωp = 109

radian/second. These values are consistent with Najari et al. [106], ensuring a

reliable basis for the calculations. Note that the non-dimensional quantities a, b, h,

and L correspond to their dimensional counterparts a, b, h, and L, respectively.

Additionally, unless otherwise specified, the angular frequency is set to ω = 6× 109

radian/second for all plots, excluding the incident modes.
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The reconstruction of matching conditions of magnetic field φi and the electric field

φix =
∂φi
∂x

, i = 1, 2, 3, 4 at interface x = −L is shown in 3.18(a) and 3.18(b). The

real and imaginary parts of these fields completely coincide at this interface. Figure

3.19(a) and 3.19(b) show excellent agreement between the real and imaginary

parts of the magnetic φj, j = 2, 3, 4, 5 and the electric field potentials φjx =
∂φj
∂x

,

demonstrating complete coincidence at the interface x = L. Figures 3.20(a) and

3.20(b) show that the first mode is dominant, while the second mode is negligible,

in both transparency and non-transparency regimes, as seen in the reflection

coefficient graphs versus normalized frequency for incident modes. However, in

both transparency and non-transparency frequency regions, the transmitted mode

1 is dominant, while mode 2 is insignificant, as seen in the transmission coefficient

plots for the first three consecutive modes, see 3.21.

Table 3.6: Cut-on modes versus height a.

Height (a) Region 1 Region 2 Region 3 Region 4

0.02 2 5 1 2

1.6 2 5 2 2

Table 3.7: Cut-on modes versus height b.

Height (b) Region 1 Region 2 Region 3 Region 4

20 2 7 1 2

24 2 8 1 2

Cut-on modes are calculated for the transparency regime in all regions of the

waveguide, with respect to heights a, b, and h. The waveguide regions are defined as:

Region 1: left duct x < −L, |y| ≤ h; Region 2: −b ≤ y ≤ −a or a ≤ y ≤ b, |x| < L;

Region 3: cold plasma region a ≤ y ≤ a, |x| < L; and Region 4: right duct

x > L, |y| ≤ h.

The number of cut-on modes varies by region as height h increases: Regions 1 and

4 exhibit two modes, Region 2 (dielectric) has five, and Region 3 (cold plasma) has

only one. The cut-on modes corresponding to heights a and b are listed in tables

3.6 and 3.7, respectively.
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Figure 3.22: Power flux plotted against height a and in (a) transparency region
and (b) non-transparency region.
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Figure 3.23: Power flux plotted against height b and in (a) transparency region
and (b) non-transparency region.

The MM solution satisfies the power balance identity (3.112), stated in Section 3.9,

for varying duct heights, as shown in figures 3.22-3.24. These figures display the

energy flux behavior against duct heights a, b, and h in both transparency (a) and

non-transparency (b) regimes, confirming the power balance identity.

Total transmission increases with height, with the exception of some fluctuations

in the non-transparency regime for heights a and b. This observation is based on

graphs plotted against heights, where the values of a, b and h range from 0.001

cm-0.084 cm, 1 cm-4 cm, and 0.085 cm-0.12 cm, respectively.
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Figure 3.24: Power flux plotted against h in (a) transparency and (b) non-
transparency region.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

N

P
o
w
e
r εt

ε2

ε1

Figure 3.25: Power flux plotted against truncated terms N .

Table 3.8: Power conservation versus number of terms N.

Terms (N) E1 E2 Et
5 0.002922 0.997078 1

10 0.000951 0.999049 1

15 0.000624 0.999376 1

20 0.000760 0.999240 1

25 0.000746 0.999254 1

30 0.000783 0.999217 1

35 0.000816 0.999184 1

40 0.000817 0.999183 1

45 0.000847 0.999153 1

50 0.000847 0.999153 1

The effect of truncation becomes negligible for N ≥ 45, as shown in Figure 3.25 and

Table 3.8, which display the variation of the modulus of powers with truncation

number N. This allows the infinite system of algebraic equations to be effectively

treated as finite.
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3.10.2 Case II

The proposed solution is validated and physical insight is gained by truncating

the system of equations (3.94), (3.95), (3.101) and (3.102) to 70 terms, with the

following parameters: duct heights a = 0.4 cm, b = 0.5 cm, h = 0.45 cm, groove

length 2L = 2× 0.42 cm, and plasma frequency ωp = 109 radians/second.
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Figure 3.26: The real and imaginary parts of (a) magnetic and (b) electric
fields at x = −L,−h < y < h.
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Figure 3.27: The real and imaginary parts of (a) magnetic and (b) electric
fields at x = L,−h < y < h.

The matching conditions of magnetic and electric fields are successfully recon-

structed by the truncated solution, as demonstrated by the excellent agreement

of the real and imaginary parts of the fields at the interfaces. Specifically, figures

3.26(a) and 3.26(b) show the agreement of φi and φix =
∂φi
∂x

, i = 1, 2, 3, 4 at the

interface x = −L, while figures 3.27(a) and 3.27(b) show the agreement of φj and

φjx =
∂φj
∂x

, j = 2, 3, 4, 5 at the interface x = L.



Chapter 4

Exploring Scattering in a

Cylindrical Duct with Plasma

between Vacuum and Dielectric

Layers

The scattering of EM waves in a cylindrical duct filled with plasma between vacuum

and dielectric layers is a complex phenomenon that arises due to the interaction of

the waves with the charged particles in the plasma. This chapter investigates the

propagation of EM waves in a PEC cylindrical waveguide with a central chamber

loaded with cold plasma. This plasma is embedded in vacuum which is covered by

dielectric layer in the conducting cylinder. The ducts located on both the left and

right sides of this bounded chamber contain vacuum. By solving the field equations

rigorously, the dispersion relations are derived for all sections of this waveguide,

providing a comprehensive and accurate understanding of the wave propagation

characteristics. The mode coefficients in different duct regions are computed by

employing MM method. In order to substantiate the accuracy of MM solution, the

energy propagating along with these TM modes in all the regions of the waveguide

is calculated.

77
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The physical configuration of the waveguide having a central chamber filled with

cold unmagnetized plasma in the middle and enveloped, respectively, in vacuum

and dielectric is organized in Section 4.1. In Section 4.2, MM solution of this wave

structure is acquired. Section 4.3 vindicates the cogency of the law of conservation

of energy. Section 4.4 depicts the results obtained through numerical computations

and their physical significance.

4.1 Problem Formulation

The scattering of the fundamental mode of a TM wave, of unit amplitude, in

a waveguide comprising of cold unmagnetized plasma along with vacuum and

dielectric medium is considered. The physical configuration of this setup is depicted

in Figure 4.1. The cold plasma in the center, bounded by PEC walls, is wrapped

around by vacuum. This vacuum is encompassed by a dielectric medium. The

PEC walls enclose both the vacuum and the dielectric. The plasma medium is

located between |z| < L. The PEC walls are positioned at radius r = h1, h2 and a

in the region |z| < L.

The region |z| > L is also considered to contain vacuum medium having PEC walls

at radius r = a. The permittivity and permeability of vacuum are represented as

ε0 and µ0, respectively. This configuration corresponds to a wave number k0 in

vacuum, which is defined as k0 = ω
√
µ0ε0, where ω represents the angular frequency

and the speed of light c is stated as c =
√

1/ε0µ0.

This relation transforms the wavenumber k0, as k0 = ω/c. The permittivity εd in

dielectric medium is assumed to be εd = 2 × ε0, however, for the case of a cold

plasma and dielectric, the permeability remains µ0. In cold plasma, the permittivity

ε is in the form of tensor.

A cold, uniform, collisionless plasma of density np, passes through the center of the

waveguide. Here, ωp = (e2np/ε0m)1/2 is the plasma frequency, and ωc = eB0/m

denotes the electron cyclotron frequency. These frequencies involve e,m and B0

which indicate the electric charge, electron mass and magnitude of direct magnetic
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Figure 4.1: Cylindrical waveguide comprising of cold plasma, vacuum and
dielectric mediums.

field, respectively. The permittivity tensor ε [115]-[116], is

ε =


ε1 −iε2 0

iε2 ε1 0

0 0 ε3

 , (4.1)

where ε1 = 1−
ω2
p

ω2 − ω2
c

, ε2 =
ωcω

2
p

ω (ω2 − ω2
c )

and ε3 = 1−
ω2
p

ω2
. As we are considering

unmagnetized plasma, therefore the effect of the magnetic field is zero in this

medium. Hence ε2 = 0 and ε1 = ε3. A temporal variant e−iωt is considered and is

suppressed throughout the chapter [114].

The EM wave propagation in a waveguide is precisely modeled by Maxwell’s

equations, with Faraday’s law, as stated below, remaining universally applicable

to various mediums, including cold plasma, vacuum, and dielectrics, providing a

fundamental basis for understanding wave behavior in these environments.

∇× E = iωB. (4.2)

However, the Ampere’s law acts differently in each of these mediums and is discussed

in the next subsection.

For a two dimensional cylindrical waveguide (∂/∂θ = 0), the EM fields E =

(Er, Eθ, Ez) and B = (Br, Bθ, Bz) include longitudinal components Ez and Bz



Exploring Scattering in a Cylindrical Duct with Plasma between Vacuum... 80

and transverse components Er, Eθ, Br and Bθ. To depict EM wave propagation,

the Helmholtz equation, which is deduced from Maxwell’s equations, is solved in

conjunction with applicable boundary and interface conditions. In the scenario

where walls are PEC, Maxwell’s equations dictate that the tangential component of

the electric field and the normal component of the magnetic field exhibit continuous

behavior across the boundary ∂Ω. Mathematically, for TM case, these conditions

imply

(E× n) |∂Ω = 0, (4.3)

(H · n) |∂Ω = 0, (4.4)

where t is the tangent and n is the normal to the boundary ∂Ω.

In case of TM wave, the continuity conditions at interface are stated as

(Ez2 − Ez1) ∂Ω = 0, (4.5)

((
1

µ2

∇Ez2 −
1

µ1

∇Ez1
)
· n
)

∂Ω = 0, (4.6)

where the subscripts 1 and 2 stand for any two mediums labeled as medium 1 and

medium 2, along with permeabilities µ1 and µ2, respectively. The regions that

contain vacuum i. e., |z| > L, 0 < r < a, and |z| < L, h1 < r < h2 are denoted by

R1, R3 and R5, respectively. Likewise, R2 represents the region |z| < L, 0 < r < h1

comprising of cold plasma and R4 denotes the region |z| < L, h2 < r < a containing

dielectric.

4.1.1 Traveling Wave Formulation in Vacuum

In context of vacuum, Ampere’s law is formulated as:

∇×B = −iω
c2

E. (4.7)

The longitudinal components satisfy the Helmholtz equation

(
∇2 +

ω2

c2

) Ez

Bz

 =

 0

0

 , (4.8)
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and the transverse components can be given as

Er =
is

λ2

∂Ez
∂r

, Eθ = −iω
λ2

∂Bz

∂r
,

Br =
is

λ2

∂Bz

∂r
, Bθ =

ik2
0

ωλ2

∂Ez
∂r

,

where, λ2 = k2
0 − s2.

The electric scalar field potentials in regions R1, R3, and R5, which contain vacuum,

are denoted as φ1, φ3, and φ5, respectively. The boundary condition at the PEC

wall, representing the zero tangential field component at the wall, in regions |z| > L

at r = a, and in region |z| < L at r = h1, h2, can be expressed as:

∂φ1

∂r
(a, z) = 0 =

∂φ5

∂r
(a, z), (4.9)

∂φ3

∂r
(h1, z) = 0, (4.10)

∂φ3

∂r
(h2, z) = 0. (4.11)

The equation (4.8) represents an eigenvalue problem. The resultant eigenvalues

provide important information about the dynamics of the above-mentioned prob-

lem by using linear equations. Deploying separation of variable technique, the

dimensional equation (4.8) yields the eigenfunction expansion as follows [119, 121]:

φ1(r, z) = eik0(z+L) +
∞∑
n=0

Ane
−isn(z+L)Rn(r), (4.12)

φ3(r, z) =
∞∑
n=0

(
B(II)
n eis

(II)
n z + C(II)

n e−is
(II)
n z
)
R

(II)
2n (r), (4.13)

φ5(r, z) =
∞∑
n=0

Dne
isn(z−L)Rn(r), (4.14)

where An, B
(II)
n , C

(II)
n and Dn express the amplitudes in regions R1, R3 and R5.

Moreover, the propagating modes in these regions contain wavenumbers sn =√
k2

0 − η2
n, s

(II)
n =

√
k2

0 − λ2
n. The eigenfunctions in the regions R1 and R5, can be

expressed as

Rn(r) = J0(ηnr), n = 0, 1, 2, · · · ,
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where J0(.) and N0(.) represent the Bessel functions of first and second kinds with

zero order. Here, J
′
0(.) and N

′
0(.) indicate the derivatives of the Bessel functions

with respect to radius r. After applying condition (4.10), the eigenfunctions in

region R3 exhibit the following form

R
(II)
2n (r) =

C0

N
′
0(λnh1)

{
N
′

0(λnh1)J0(λnr)− J
′

0(λnh1)N0(λnr)
}
.

These eigenfunctions satisfy the usual orthogonality relations,

∫ a

0

Rm(r)Rn(r)rdr = δmnEm,

∫ h2

h1

R
(II)
2m (r)R

(II)
2n (r)rdr = δmnE

(II)
2m ,

such that En =

∫ a

0

R2
n(r)rdr, and E

(II)
2n =

∫ h2

h1

R
(II)2
2n (r)rdr and δmn represents

Kronecker delta. It is important to note that ηn and λn; n = 0, 1, 2, . . . express

the eigenvalues associated with eigenfunctions Rn(r) and R
(II)
n (r), respectively.

Through the implication of boundary conditions (4.9) and (4.11), it is found that

ηn and λn satisfy the dispersion relations

J
′

0(ηna) = 0, (4.15)

N
′

0(λnh1)J
′

0(λnh2)− J ′0(λnh1)N
′

0(λnh2) = 0. (4.16)

To determine these eigenvalues, we can numerically solve (4.15) and (4.16) for their

roots using methods such as Newton-Raphson method or the Secant method.

It is pertinent to mention here that the systems featuring complex eigenvalues,

eigenfunctions, generalized orthogonality conditions, and the point-wise convergence

of generalized series are thoroughly detailed in [111]-[112].

4.1.2 Traveling Wave Formulation in Cold Plasma

The Ampere’s law for cold plasma can be stated as:

∇×B = −iω
c2
ε.E. (4.17)
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In the context of cold, unmagnetized plasma, as discussed in [117], the Helmholtz

equation is formulated in terms of the longitudinal components of the fields,

{
∇2 +

ω2

c2

(
1−

ω2
p

ω2

)} Ez

Bz

 =

 0

0

 . (4.18)

Meanwhile, the longitudinal components also serve as a basis for calculating the

transverse components, as shown in the following expressions

Er =
is

τ 2

∂Ez
∂r

, Eθ = −iω
τ 2

∂Bz

∂r
,

Br =
is

τ 2

∂Bz

∂r
, Bθ =

iω2/c2
(
1− ω2

p/ω
2
)

ωτ 2

∂Ez
∂r

,

where τ 2 =
ω2

c2

(
1−

ω2
p

ω2

)
− s2.

The boundary condition at the PEC wall r = h1, representing the zero tangential

field component at the wall in this region, can be expressed as follows:

∂φ2

∂r
(h1, z) = 0. (4.19)

Invoking the variable separable technique to equation (4.18), the following expres-

sion represents the eigenfunction expansion:

φ2(r, z) =
∞∑
n=0

(
B(I)
n eis

(II)
n z + C(II)

n e−is
(I)
n z
)
R

(I)
2n (r), (4.20)

where B
(I)
n and C

(I)
n reveal the amplitudes in regions R2 and s

(I)
n =

√
k2

1 − τ 2
n reveals

the wavenumber of nth mode, where k2
1 =

ω2

c2

(
1−

ω2
p

ω2

)
. The eigenfunctions, in

this region, are expressed as

R
(I)
2n (r) = B0J0(τnr).

The functions R
(I)
2n (r) satisfy the usual orthogonality relation,

∫ h1

0

R
(I)
2m(r)R

(I)
2n (r)rdr = δmnE

(I)
2m,
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where E
(I)
2n =

∫ h1

0

R
(I)2
2n (r)rdr. Here, τn; n = 0, 1, 2, . . . represent the eigenvalues

associated with the eigenfunctions R
(I)
2n (r). By applying boundary condition (4.19),

we establish that these eigenvalues satisfy the relation

J
′

0(τnh1) = 0, (4.21)

whereas, for τn; n = 0, 1, 2, . . . we numerical solve (4.21) for their roots.

4.1.3 Traveling Wave Formulation in Dielectric Medium

The dielectrics are governed by Ampere’s law in following manner:

∇×B = −iωεdµ0E. (4.22)

The Helmholtz equation, in case of propagation in dielectric medium, is expressed

in longitudinal components as

(
∇2 + ω2εdµ0

) Ez

Bz

 =

 0

0

 , (4.23)

while the transverse components are stated as

Er =
is

χ2

∂Ez
∂r

, Eθ = − iω
χ2

∂Bz

∂r
,

Br =
is

χ2

∂Bz

∂r
, Bθ =

iω2εdµ0

ωχ2

∂Ez
∂r

,

where, χ2 = ω2εdµ0 − s2. The boundary conditions at the PEC walls located at

r = h2 and r = a in this region can be expressed as

∂φ4

∂r
(h2, z) = 0, (4.24)

∂φ4

∂r
(a, z) = 0. (4.25)
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By applying method of separation of variables to dimensional equation (4.23), the

eigenfunction expansion can be presented as:

φ4(r, z) =
∞∑
n=0

(
B(III)
n eis

(III)
n z + C(III)

n e−is
(III)
n z

)
R

(III)
2n (r), (4.26)

where B
(III)
n and C

(III)
n reveal the amplitudes in regions R4. The wavenumber of

nth mode is in the form s
(III)
n =

√
k2

2 − χ2
n, where k2

2 = ω2εdµ0.

The boundary condition (4.24) yields the eigenfunctions, in this region, as

R
(III)
2n (r) =

D0

N
′
0(χnh2)

{
N
′

0(χnh2)J0(χnr)− J
′

0(χnh2)N0(χnr)
}
.

The usual orthogonality relations are satisfied by these functions,

∫ a

h2

R
(III)
2m (r)R

(III)
2n (r)rdr = δmnE

(III)
2m ,

where E
(III)
2n =

∫ a

h2

R
(III)2
2n (r)rdr. By using the boundary condition (4.25), we

determine the eigenvalues χn;n = 0, 1, 2, · · · , that satisfy the equation (4.27) as

follows:

N
′

0(χnh2)J
′

0(χna)− J ′0(χnh2)N
′

0(χna) = 0. (4.27)

Subsequently, we numerically find the roots of (4.27) to obtain the associated

eigenvalues χn;n = 0, 1, 2, · · · .

4.1.4 Matching Conditions

The amplitudes of the propagating modes used in the expansions are still unknown,

and these can be determined by matching the fields at interfaces z = −L and

z = L. This matching is based on the continuity of fields at the interfaces, resulting

in the following matching conditions:

φ1(r,−L) =


φ2(r,−L),

φ3(r,−L),

φ4(r,−L),

(4.28)
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∂φ1

∂z
(r,−L) =

∂φp
∂z

(r,−L), (4.29)

φ5(r, L) =


φ2(r, L),

φ3(r, L),

φ4(r, L),

(4.30)

∂φ5

∂z
(r, L) =

∂φp
∂z

(r, L), (4.31)

where p = 2, 3, 4. The next section explains the mode-matching procedure, which

results in linear algebraic systems with unknown amplitudes.

4.2 MM Solution

The matching conditions outlined in the previous section are employed to calculate

the unknown coefficients An, B
(j)
n , C

(j)
n , Dn, ; j = I, II, III. Based on condition

(4.28), we obtain

1+
∞∑
n=0

AnRn(r) =



∞∑
n=0

(
B(I)
n e−is

(I)
n L + C(I)

n eis
(I)
n L
)
R

(I)
2n (r), 0 ≤ r ≤ h1,

∞∑
n=0

(
B(I)
n e−is

(II)
n L + C(II)

n eis
(II)
n L

)
R

(I)
2n (r), h1 ≤ r ≤ h2,

∞∑
n=0

(
B(III)
n e−is

(III)
n L + C(III)

n eis
(III)
n L

)
R

(I)
2n (r), h2 ≤ r ≤ a.

(4.32)

Multiplying both the sides by Rm(r)r and integrating with respect to r from 0 to

a, we get

Am = −δm0 +
1

Em

∞∑
n=0

(
B(I)
n e−is

(I)
n L + C(I)

n eis
(I)
n L
)
Pmn

+
1

Em

∞∑
n=0

(
B(II)
n e−is

(II)
n L + C(II)

n eis
(II)
n L

)
Qmn

+
1

Em

∞∑
n=0

(
B(III)
n e−is

(III)
n L + C(III)

n eis
(III)
n L

)
Rmn, (4.33)

where δmn represents the Kronecker delta, such that

δmn =

0,m 6= n,

1,m = n.
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The quantities Pmn, Qmn and Rmn can be stated as

Pmn =

∫ h1

0

Rm(r)R
(I)
2n (r)rdr, Qmn =

∫ h2

h1

Rm(r)R
(II)
2n (r)rdr,

Rmn =

∫ a

h2

Rm(r)R
(III)
2n (r)rdr.

The matching condition (4.29) implies

k0 −
∞∑
n=0

AnsnRn(r) =
∞∑
n=0

(
B(I)
n e−is

(I)
n L − C(I)

n eis
(I)
n L
)
s(I)
n R

(I)
2n (r),

0 ≤ r ≤ h1, (4.34)

k0 −
∞∑
n=0

AnsnRn(r) =
∞∑
n=0

(
B(II)
n e−isn(II)L − C(II)

n eis
(II)
n L

)
s(II)
n R

(II)
2n (r),

h1 ≤ r ≤ h2, (4.35)

k0 −
∞∑
n=0

AnsnRn(r) =
∞∑
n=0

(
B(III)
n e−is

(III)
n L − C(III)

n eis
(III)
n L

)
s(III)
n R

(III)
2n (r),

h2 ≤ r ≤ a.(4.36)

By multiplying (4.34) with R
(I)
2mr, integrating from 0 to h1 and simplifying, we get

B(I)
m e−is

(I)
m L − C(I)

m eis
(I)
m L =

1

s
(I)
m E

(I)
2m

{
k0P0m −

∞∑
n=0

AnsnPnm

}
. (4.37)

Again solving the equations (4.35) and (4.36) and a similar rearrangement leads

to the following equations,

B(II)
m e−is

(II)
m L − C(II)

m eis
(II)
m L =

1

s
(II)
m E

(II)
2m

{
k0Q0m −

∞∑
n=0

AnsnQnm

}
, (4.38)

B(III)
m e−is

(III)
m L − C(III)

m eis
(III)
m L =

1

s
(III)
m E

(III)
2m

{
k0R0m −

∞∑
n=0

AnsnRnm

}
. (4.39)
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The matching condition (4.30) yields

Dm =
1

Em

∞∑
n=0

(
B(I)
n eis

(I)
n L + C(I)

n e−is
(I)
n L
)
Pmn

+
1

Em

∞∑
n=0

(
B(II)
n eis

(II)
n L + C(II)

n e−is
(II)
n L

)
Qmn

+
1

Em

∞∑
n=0

(
B(III)
n eis

(III)
n L + C(III)

n e−is
(III)
n L

)
Rmn. (4.40)

Deploying the matching condition (4.31) gives rise to the following equations,

B(I)
m eis

(I)
m L − C(I)

m e−is
(I)
m L =

1

s
(I)
m E

(I)
2m

∞∑
n=0

DnsnPnm, (4.41)

B(II)
m eis

(II)
m L − C(II)

m e−is
(II)
m L =

1

s
(II)
m E

(II)
2m

∞∑
n=0

DnsnQnm, (4.42)

B(III)
m eis

(III)
m L − C(III)

m e−is
(III)
m L =

1

s
(III)
m E

(III)
2m

∞∑
n=0

DnsnRnm. (4.43)

Adding the equations (4.33) and (4.40), leads to

Ψ+
m = −δm0 +

2

Em

∞∑
n=0

Φ+
In cos(s(I)

n L)Pmn +
2

Em

∞∑
n=0

Φ+
IIn cos(s(II)

n L)Qmn

+
2

Em

∞∑
n=0

Φ+
IIIn cos(s(III)

n L)Rmn. (4.44)

Subtracting (4.40) from (4.33), submits

Ψ−m = −δm0 −
2i

Em

∞∑
n=0

Φ−In sin(s(I)
n L)Pmn −

2i

Em
Φ−IIn sin(s(II)L

n )Qmn

− 2i

Em
Φ−IIIn sin(s(III)

n L)Rmn, (4.45)

where Ψ±m = Am ±Dm and Φ±jm = B
(j)
m ± C(j)

m , j = I, II, III.

Subtracting (4.37) from (4.41), we get

Φ+
Im =

i

2s
(I)
m E

(I)
2m sin(s

(I)
m L)

(
k0P0m −

∞∑
n=0

Ψ+
n snPnm

)
. (4.46)
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Similarly, subtracting (4.38) from (4.42) and (4.39) from (4.43), respectively, yield

Φ+
IIm and Φ+

IIIm as follows

Φ+
IIm =

i

2s
(II)
m E

(II)
2m sin(s

(II)
m L)

(
k0Q0m −

∞∑
n=0

Ψ+
n snQnm

)
, (4.47)

Φ+
IIIm =

i

2s
(III)
m E

(III)
2m sin(s

(III)
m L)

(
k0R0m −

∞∑
n=0

Ψ+
n snRnm

)
. (4.48)

Now, respective adding of (4.37) and (4.41), (4.38) and (4.42), (4.39) and (4.43),

leads to the formation of Φ−Im,Φ
−
IIm and Φ−IIm in the following way:

Φ−Im =
1

2s
(I)
m E

(I)
2m cos(s

(I)
m L)

(
k0P0m −

∞∑
n=0

Ψ−n snPnm

)
, (4.49)

Φ−IIm =
1

2s
(II)
m E

(II)
2m cos(s

(II)
m L)

(
k0Q0m −

∞∑
n=0

Ψ−n snQnm

)
, (4.50)

Φ−IIIm =
1

2s
(III)
m E

(III)
2m cos(s

(III)
m L)

(
k0R0m −

∞∑
n=0

Ψ−n snRnm

)
. (4.51)

The equations (4.44)-(4.51) divulge a system of infinite equations having the

unknown coefficients
{
An, B

(j)
n , C

(j)
n , Dn

}
, j = I, II, III. The system is truncated

and is solved numerically and the results will be probed in the section of numerical

discussion.

4.3 Energy Flux

The proper understanding of the energy flux allows for the measurement of the

accuracy and convergence of an approximate solution. In order to calculate the
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energy propagating in duct regions, we use the Poynting vector [123],

Power =

∫
R

πrRe

{
Ez

(
∂Ez
∂z

)∗}
dr, (4.52)

where (*) represents complex conjugate. Applying the Poynting vector, the quan-

tification of the incident power Pi, Pr and Pt provides,

Pi =
πk0a

2

2
, (4.53)

Pr = −πRe

(
∞∑
n=0

|An|2s∗nEn

)
, (4.54)

Pt = πRe

(
∞∑
n=0

|Dn|2s∗nEn

)
. (4.55)

Since Re(s∗n) = Re(sn), therefore, (4.54) and (4.55) take the form,

Pr = −πRe

(
∞∑
n=0

|An|2snEn

)
, (4.56)

Pt = πRe

(
∞∑
n=0

|Dn|2snEn

)
. (4.57)

The principle of conservation of energy states,

Pi + Pr = Pt.

Applying this principle, yields

πk0a
2

2
− πRe

(
∞∑
n=0

|An|2snEn

)
= πRe

(
∞∑
n=0

|Dn|2snEn

)
. (4.58)

Scaling the incident power Pi to unity, the equation (4.58) is modified as

1 = E1 + E2, (4.59)

where

E1 =
2

k0a2
Re

(
∞∑
n=0

|An|2snEn

)
,
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E2 =
2

k0a2
Re

(
∞∑
n=0

|Dn|2snEn

)
.

4.4 Numerical Results and Discussion

The results of numerical solution of the given physical problem are furnished

in this section. The physical parameters chosen is speed of light, c = 3 × 108

meter/second, permittivity of free space ε0 = 8.85× 10−12 F/m (Farad per meter)

and its permeability µ0 = 4π × 10−7 N/A2(Newtons per Ampere squared). The

numerical calculations are carried out by using the software Mathematica (versions

12.1).

The solutions are obtained after truncating the systems to finite number equations.

The acquired solution is thus employed for confirmation of the accuracy of algebra,

power distribution and its conservation.

The results for both frequency regimes, i.e., transparency (ω > ωp) and non-

transparency (ω < ωp) are also achieved. For transparency regime, the angular

and plasma frequencies are set as ω = 2.5× 109 radian/second and ωp = 2× 109

radian/second. The computations in the case of non-transparency regime are

conducted by fixing the frequencies as: ω = 2×109 radian/second and ωp = 2.5×109

radian/second.
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Figure 4.2: Real parts of the electric field in (a) transparency, and (b) non-
transparency regions at z = −L.
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Figure 4.3: Imaginary parts of the electric field in (a) transparency, and (b)
non-transparency regions at z = −L.
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Figure 4.4: Real parts of the magnetic field in (a) transparency, and (b)
non-transparency regions at z = −L.

After setting the relevant duct radii to a = 0.4 cm, h1 = 0.2 cm and h2 = 0.3 cm,

the matching conditions at the two interfaces x = −L and x = L are reconstructed.

The length of the central chamber is fixed as 2 × L = 2 × 0.5 cm. The system

revealed in the equations (4.44)-(4.51) is truncated up to 120 terms. The solution

of these equations yields the unknowns
{
An, B

(j)
n , C

(j)
n , Dn

}
; j = I, II, III; n =

0, 1, 2, . . . , 119.
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Figure 4.5: Imaginary parts of the magnetic field in (a) transparency, and (b)
non-transparency regions at z = −L.
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Figure 4.6: Real parts of electric field in (a) transparency, and (b) non-
transparency regions at z = L.

The figures 4.2-4.9 present validation of the MM solution with the help of matching

conditions of the dimensional magnetic and electric fields, respectively, at the

interfaces z = ±L. These figures reveal the real and imaginary components of

tangential electric and magnetic fields versus r in both transparency and non-

transparency frequency regimes. The peaks observed in the graph of matching

conditions of real and imaginary parts of magnetic field potential, the derivative

of the electric field with respect to z, represent the discontinuity at the edges.

However, in all mediums, i.e., cold plasma, vacuum and dielectric, the graphs of

magnetic and electric fields reveal that the real and imaginary parts are in excellent

agreement along the interfaces.

The accuracy of algebra is established also through the conservation of energy in

different duct regions. The reflected power in left duct (z < −L) is represented by
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E1. The quantity E2 is the transmitted power in right duct (z > L). Here, Et is the

sum of powers in all duct regions,

Et = E1 + E2.

For the sake of comparison, the behavior of reflected and transmitted powers

is analyzed in both transparency and non-transparency regions against angular

frequency, plasma radius and chamber length.
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Figure 4.7: Imaginary parts of the electric field in (a) transparency, and (b)
non-transparency regions at z = L.

For the plots of energy flux versus angular frequency ω, the values of duct radii

and chamber length are taken to be h1 = 0.1 cm, h2 = 0.2 cm, a = 0.4 cm and

2× L = 2× 0.5 cm. The resonant duct modes, for inlet and outlet regions, occur

at points where sn is zero or a complex number. The modes for n = 1, 2, 3, . . .

become cut-on (energy propagating) when their mode wave number, sn, becomes

real. The complex value of sn appears only if the medium and/or the bounding wall

conditions become complex. Specifically, the cut-on modes appear for frequencies

ω > cηn, where ηn are the roots of characteristic equation (4.15). Thus mode wave

numbers, in all regions of the waveguide, depend on the respective roots of the

characteristic equations.

The peak values and sudden fluctuations observed in the graphs depicting scattering

powers versus frequency and duct radius (evident in figures 4.10-4.13) stem from

the conversion of imaginary values to complex ones and vice versa. Additionally,

fluctuations in the graphs are induced by trigonometric factors present within
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symmetric and anti-symmetric mode amplitudes as defined by equations (4.44)-

(4.51).

In figure 4.10(a), the peaks appearing due to maximum values of reflection and

transmission amplitudes, respectively, at ω = 2.16× 109 radian/second and ω =

2.56× 109 radian/second, represent the feature of resonance in the transparency

regime. In the non-transparency regime, presented in Figure 4.10(b), the resonance

behavior is observed when reflected power amplitude reaches its maximum at

ω = 7.9× 108 radian/second and ω = 1.63× 109 radian/second.
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Figure 4.8: Real parts of the magnetic field in (a) transparency, and (b)
non-transparency regions at z = L.

This section also discusses the impact of changes in material properties. Figure 4.11

compares the given cylindrical structure with a cylindrical waveguide containing

dielectric in all duct regions in terms of power flux to explore this effect. Part (a)
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of the figure illustrates the reflected powers in both scenarios, while part (b) shows

the transmitted powers in both geometries having distinct material properties.

Considering the dielectric in all sections of the waveguide, it is evident that there

is no reflection, leading to total transmission.
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Figure 4.9: Imaginary parts of the magnetic field in (a) transparency, and (b)
non-transparency regions at z = L.
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Figure 4.10: Energy flux in (a) transparency, and (b) non-transparency regions
versus the angular frequency ω.
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Figure 4.11: Comparison of (a) reflected energy, and (b) transmitted energy,
versus the angular frequency ω in dielectric and plasma settings .
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The graphs of power flux plotted versus plasma radius h1 for both frequency regimes

are furnished in figures 4.12(a) and 4.12(b), respectively. The values of the radius

h1 are assumed to be 0 < h1 < 0.5 cm, while the radii of the other two sections of

the duct are set to be h2 = 2× h1 (in cm) and a = 3× h1 (in cm). The length of

chamber is fixed as 2× L = 2× 0.5 cm. In the two regimes, the increase in plasma

radius implies the dominance of transmission of EM waves.

The plots of power flux for transparency and non-transparency regimes, versus

chamber length L, are organized in figures 4.13(a) and 4.13(b). The chamber

length is considered as 0 < L < 1 cm, and radii are set as h1 = 0.1 cm, h2 = 0.2

cm and a = 0.3 cm. It is intriguing to notice that the increase in the length of

this chamber shows almost same behavior of power in both regimes, but the power

fluctuations are more rapid in non-transparency regime. It is evident from the

figures 4.10-4.13 that energy conservation in scattering results is achieved, where

the sum of reflected and transmitted powers is analytically formulated to be unity.
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Figure 4.12: Energy flux in (a) transparency, and (b) non-transparency regions
versus cold plasma radius h1.
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Figure 4.13: Energy flux in (a) transparency, and (b) non-transparency regions
versus half the length of chamber L.

The convergence of solution is explored through the power conservation. The

accuracy is checked up to six decimal places. The effect of the truncation becomes

negligible when N ≥ 110 as is obvious from table 4.1, which demonstrates that the

power components match up to 1 decimal place when the systems are truncated

to N = 20 terms. However, increasing the truncation parameter to 30 leads to a

convergence of power components up to 3 decimal places, as evident from Figure

4.14, which also illustrates the convergence of power components and the satisfaction

of the conserved power identity. Figure 4.14 also confirms that the solution remains

convergent with rise in the truncation number N in the transparency regime in

different sized waveguides. Figures 4.14(a) and 4.14(b) represent the convergence

of reflected and transmitted powers, respectively. Therefore, this system of infinite

algebraic equations can be handled as finite. The frequencies for this regime are
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already set as ωp = 2× 109 radian/second and ω = 2.5× 109 radian/second, while

radius h1 is set to be 0.1, 0.01 and 1 cm for three distinct sizes of waveguides, while

the other two radii are taken as h2 = 2× h1 (in cm) and a = 3× h1 (in cm).
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Figure 4.14: Power flux versus number of terms N in different sized cylindrical
waveguides.

Table 4.1: Energy conservation versus number of terms N for h1 = 0.1 cm.

Terms (N) E1 E2 Et
10 0.330211 0.669789 1

20 0.349128 0.650872 1

30 0.326836 0.673164 1

40 0.326087 0.673913 1

50 0.329381 0.670619 1

60 0.324639 0.675361 1

70 0.323001 0.676999 1

80 0.320453 0.679547 1

90 0.321606 0.678394 1

100 0.321458 0.678542 1

110 0.322149 0.677851 1

120 0.321239 0.678761 1

Cut-on modes, within the central chamber, in regard to the plasma radius h1 are

also computed, which is set as 0 < h1 < 0.5 cm. In transparency regime, the

increase in radius h1 implicates constant number of these modes in all regions, i.

e., the cold plasma, vacuum and dielectric exhibit one cut-on mode. However, in

non-transparency regime, only one cut-on mode exists in the vacuum and dielectric

regions, and no cut-on mode appears in plasma region. The impact on cut-on modes
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due to the variation in angular frequency ω is same as the effect of increasing plasma

radius h1. When the frequency range is 0.01× 109 radian/second < ω < 2× 109

radian/second, then there exists one cut-on mode in the regions containing the

vacuum and dielectric but no cut-on mode is observed in plasma region. On the

other hand, all the three regions including cold plasma display one cut-on mode for

frequency ranging between 2.01×109 radian/second < ω < 3×109 radian/second.



Chapter 5

EM Wave Scattering in Plasma

Beam Driven Waveguides under

Strong Magnetic Field

The analysis of scattering of EM waves in a cold and uniform plasma-filled waveguide

driven by an intense relativistic electron beam under a strong magnetic field is

carried out in this chapter. Plasma, a state of matter consisting of charged particles,

exhibits a strong interaction with EM waves. This interaction arises from the

collective behavior of charged particles in the plasma medium when subjected

to external EM fields. Due to this unique property, plasma has found potential

applications in various types of waveguides. The literature indicates that various

numerical techniques, including the MM method, have been applied to different

types of slow wave structures to investigate EM phenomena. However, the outcomes

of these studies were primarily limited to dispersion relations and electron dynamics.

Therefore, the motivation for this study stems from the necessity to investigate

the scattering characteristics, orthogonality relation, and power analysis within a

plasma-filled cylindrical waveguide. The chapter comprises of two problems. The

first problem pertains to scattering of EM waves through a semi-infinite plasma

beam embedded in cold plasma in presence of a strong magnetic field in an infinite

PEC cylindrical waveguide. The same beam plasma environment is considered

within a central region of an infinite PEC cylindrical waveguide to investigate

101
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the scattering in the second problem. The two problems differ in eigenfunction

expansions, interface conditions and the scattering coefficients. However, for both

problems, the eigenfunctions and orthogonal properties in regions that have similar

physical features remain same. The models presented can be applied as a traveling

wave tube containing uniform cold plasma in a cylindrical structure under the

influence of plasma beam.

This chapter is organized in nine sections. Sections 5.1-5.4 discuss the EM wave

scattering in a cylindrical waveguide having electron beam enveloped between cold

and collisionless plasma under strong magnetic field. The physical configuration

of this problem is laid out in Section 5.1. Section 5.2 provides the MM solution

of this slow wave structure. Section 5.3 delivers the validity of the law of power

conservation. Section 5.4 gathers the detailed results obtained through numerical

computations and their physical importance.

The scattering of EM waves through a same beam plasma environment in a central

chamber of an infinite cylindrical waveguide is analyzed in Sections 5.5-5.9. The

boundary value problem associated with the scattering is formulated in section 5.6.

Section 5.7 renders the MM solution. Section 5.8 provides a rigorous proof of the

power conservation principle, while Section 5.9 provides the validation of matching

conditions and power analysis.

5.1 Formulation of Propagating Waves in an Elec-

tron Beam Embedded in Cold Plasma Envi-

ronment

The wave problem investigated in this section revolves around scattering of EM

waves in a cylindrical waveguide composed of an electron beam immersed in cold

plasma under the influence of strong magnetic field. The scattering of EM waves is

investigated within a PEC waveguide which is depicted in Figure (5.1). This infinite

waveguide has PEC boundary at r = a. The propagation of a TM incident wave,
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having unit amplitude and making a zero incident angle with reference to the z axis,

is considered in positive z direction from the left inlet z < 0 to interface at right.

The region z < 0 comprises of vacuum and dielectric as shown in the figure, with

PEC walls placed at r = h1 and h2. The beam in the right duct z > 0 is wrapped

around by cold plasma at r = h1. The permittivity and permeability of vacuum

are represented as ε0 and µ0, respectively. This configuration corresponds to a

wavenumber k0 divulged as k0 = ω
√
µ0ε0, where ω represents the angular frequency

and the speed of light c is related to free space permittivity and permeability as

c = 1/
√
ε0µ0. This association gives a new description to k0 expressed as k0 = ω/c.

The permittivity εd in dielectric medium is assumed to be εd = 2× ε0. Therefore

the wavenumber in this medium can be manifested as k1 =
√

2k0. However, for the

case of all mediums, i.e., beam, plasma and dielectric, the permeability remains µ0.

A semi-finite intense and thick relativistic beam of density nb, having a cold,

collisionless, uniform plasma with density np, passes through the center of the

waveguide. Here, the plasma, beam and cyclotron frequencies are given, respectively,

as ωp = (e2np/ε0m)1/2, ωb = (e2nb/ε0m)1/2 and ωc = eB0/m. These frequencies

involve B0,m and e which indicate the magnetic field, electron mass and electric

charge, respectively.

The permittivity tensor ε, is

εi =


ε1 −iε2 0

iε2 ε1 0

0 0 ε3i

 , (5.1)

where ε1 = 1−
ω2
p

ω2 − ω2
c

, ε2 =
ωcω

2
p

ω (ω2 − ω2
c )

[115]-[116].

In order to refrain from the association of the TE and TM modes, B0 is considered

very strong so that |ε2| is infinitesimal and ε1 = 1 [118]. When i = b then

ε3b = 1−
ω2
p

ω2
− ω2

b

γ3(ω − knzv)2
[66]. These components form tensor for the beam. γ

is the relativistic factor, knz = k0 + 2nπ, n = 0, 1, 2, . . . , is the axial wave number

while v represents the beam velocity, such that γ =

√
1− v2

c2
. When i = p then
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Figure 5.1: Propagation of EM waves in a cylindrical waveguide comprising of
beam embedded in cold plasma.

ε3p = 1 −
ω2
p

ω2
. The tensor thus formed reveals the case of cold plasma. A time

independent variant e−iωt is considered but ignored throughout this paper [114].

Maxwell’s equations govern the propagation of the EM waves in a waveguide. The

Faraday’s law does not change for any of the four mediums, i.e., vacuum, dielectric,

beam and cold plasma.

∇× E = iωB. (5.2)

However, the Ampere’s law has a different behavior in each of these mediums and

is discussed in the upcoming subsections.

In case of a two dimensional cylindrical waveguide, the fields remain invariant with

respect to θ, i.e., ∂/∂θ = 0. For EM wave propagation, the Helmholtz equation

derived from Maxwell’s equations is solved along with boundary and interface

conditions. The regions z < 0, 0 < r < h1, and z < 0, h2 < r < a contain

vacuum and are denoted by R1, R3, respectively. Likewise, R2 represents the region

z < 0, h1 < r < h2 and contains dielectric, R4 denotes the region z > 0, 0 < r < a

which encircles plasma beam and the cold plasma.
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5.1.1 Traveling Wave Formulation in Vacuum

The formulation of Ampere’s law in vacuum is stated as:

∇×B = −iω
c2

E. (5.3)

The Helmholtz equation in terms of longitudinal components is given as

(
∇2 +

ω2

c2

) Ez

Bz

 =

 0

0

 . (5.4)

The longitudinal components are the source to compute

Er =
is

η2

∂Ez
∂r

, Eθ = 0,

Br = 0, Bθ =
iω2/c2

ωη2

∂Ez
∂r

,

where, η2 =
ω2

c2
− s2 and s represents the wave number.

The electric field potentials in regions R1 and R3 containing vacuum, are expressed

as φ1 and φ3, respectively.

The boundary conditions at the walls r = h1, h2 and a in region z < 0 are manifested

as
∂φ1

∂r
(h1, z) = 0, (5.5)

∂φ3

∂r
(h2, z) = 0, (5.6)

∂φ3

∂r
(a, z) = 0. (5.7)

Applying the separation of variables technique to the dimensional equation (5.4),

the expansion of eigenfunctions is formed as follows:

φ1(r, z) = eik0z +
∞∑
n=0

Ane
−is(I)n (z)R

(I)
1n (r), (5.8)
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φ3(r, z) = eik0z +
∞∑
n=0

Cne
−is(III)n (z)R

(III)
1n (r), (5.9)

where An and Cn exhibit the amplitudes in regions R1 and R3. The nth reflected

modes in these regions of cylindrical waveguide have wavenumbers expressed as

s
(I)2
n = k2

0 − η2
n; s

(III)2
n = k2

0 − λ2
n.

The Bessel functions, in the regions R1, are expressed as:

R
(I)
1n (r) = A0J0(ηnr),

while in region R3, the Bessel functions take the following form after implementation

of condition (5.6),

R
(III)
1n (r) =

C0

N
′
0(λnh2)

{
N
′

0(λnh2)J0(λnr)− J
′

0(λnh2)N0(λnr)
}
.

These functions satisfy the usual orthogonality relations in the following manner:

∫ a

0

RI
1n(r)RI

1m(r)rdr = δmnE
(I)
1m, (5.10)

∫ a

0

RIII
1n (r)RIII

1m (r)rdr = δmnE
(III)
1m , (5.11)

such that

E
(I)
1n =

∫ a

0

RI2
1n(r)rdr,

E
(III)
1n =

∫ h2

h1

R
(III)2
1n (r)rdr.

It is important to note that ηn and λn; n = 0, 1, 2, . . . are the roots of the equations

derived from boundary conditions (5.5) and (5.7),

J
′

0(ηnh1) = 0, (5.12)

N
′

0(λnh2)J
′

0(λna)− J ′0(λnh2)N
′

0(λna) = 0. (5.13)

The equations (5.12) and (5.13) are solved numerically to determine these roots.
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5.1.2 Traveling Wave Formulation in Dielectric Medium

The dielectrics are governed by Ampere’s law in following manner:

∇×B = −iωεdµ0E. (5.14)

The Helmholtz equation for the EM waves propagating in dielectric medium, can

be indicated in longitudinal components as:

(
∇2 + k2

1

) Ez

Bz

 =

 0

0

 . (5.15)

The transverse components can be stated as:

Er =
is

τ 2

∂Ez
∂r

, Eθ = 0,

Br = 0, Bθ =
ik2

1

ωτ 2

∂Ez
∂r

,

such that, τ 2 = k2
1 − s2, and k2

1 = ω2εdµ0.

The boundary conditions at the walls in dielectric region are exhibited as:

∂φ2

∂r
(h1, z) = 0, (5.16)

∂φ2

∂r
(h2, z) = 0. (5.17)

Incorporating the method of separation of variables to dimensional equation (5.15),

the eigenfunction expansion takes the form:

φ2(r, z) = eik1z +
∞∑
n=0

Bne
−is(II)n zR

(II)
1n (r), (5.18)

where Bn denote the amplitudes in regions R2. The wavenumber of nth mode is

given as s
(II)2
n = ω2εdµ0 − τ 2

n.
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The boundary condition (5.16) yields the Bessel functions, in this region, as

R
(II)
1n (r) =

B0

N
′
0(τnh1)

{
N
′

0(τnh1)J0(τnr)− J
′

0(τnh2)N0(τnr)
}
,

which satisfy the usual orthogonality relations,

∫ h1

0

R
(II)
1n R

(II)
1m (r)rdr = δmnE

(II)
1m , (5.19)

such that

E
(II)
1n =

∫ h1

0

R
(II)2
1n (r)rdr.

The roots of the equation (5.20) derived from boundary condition (5.17) are given

as τn; n = 0, 1, 2, . . . ,

N
′

0(τnh1)J
′

0(τnh2)− J ′0(τnh1)N
′

0(τnh2) = 0. (5.20)

5.1.3 Traveling Wave Formulation in Beam and Cold Plasma

The Ampere’s law for electron beam is of the form:

∇×B = −iω
c2
εb.E. (5.21)

The Helmholtz equation, in case of propagation in beam, is stated in longitudinal

components as:

{
∇2 +

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2
− ω2

b

γ3(ω − knzv)2

)} Ez

Bz

 =

 0

0

 .

is transformed into the equation

(
∇2 + T 2

1

) Ez

Bz

 =

 0

0

 , (5.22)

where T 2
1 =

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2
− ω2

b

γ3(ω − knzv)2

)
.
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The transverse components can be given as

Er =
is

χ2

∂Ez
∂r

, Eθ = 0,

Br = 0, Bθ =
iT 2

1

ωχ2

∂Ez
∂r

.

Here χ2 = T 2
1 − s2.

The Ampere’s law for cold plasma is formulated as:

∇×B = −iω
c2
εp.E. (5.23)

For propagation in cold plasma, the Helmholtz equation in terms of longitudinal

components, is as follows

{
∇2 +

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2

)} Ez

Bz

 =

 0

0

 ,

which can be further transformed as

(
∇2 + T 2

2

) Ez

Bz

 =

 0

0

 , (5.24)

where T 2
2 =

(
ω2

c2
− k2

nz

)(
1−

ω2
p

ω2

)
.

The transverse components of field can be revealed as

Er =
is

γ2

∂Ez
∂r

, Eθ = 0,

Br = 0, Bθ =
iT 2

2

ωγ2

∂Ez
∂r

,

where γ2 = T 2
2 − s2.

The boundary conditions at the walls r = h1 and a in this region are mentioned as

φ
(I)
4 (h1, z) = φ

(II)
4 (h1, z), (5.25)
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∂φ
(I)
4

∂r
(h1, z) =

∂φ
(II)
4

∂r
(h1, z), (5.26)

∂φ
(II)
4

∂r
(a, z) = 0. (5.27)

Employing the variable separable technique to equation (5.22) and (5.24), yields

the eigenfunction expansion as

φ4(r, z) =

 φ
(I)
4 (r, z), 0 < r < h1,

φ
(II)
4 (r, z), h1 < r < a,

=


∞∑
n=0

Dne
isnzR

(I)
2n (r), 0 < r < h1,

∞∑
n=0

Dne
isnzR

(II)
2n (r), h1 < r < a,

(5.28)

where Dn represent the amplitudes in regions R4 and sn ;n = 0, 1, 2, . . . reveals the

wavenumber of nth mode.

The utilization of condition (5.27) reforms the Bessel functions, in this region, as

follows

R
(I)
2n (r) = D0J0(χnr),

R
(II)
2n (r) =

E0

N
′
0(γna)

{
N
′

0(γna)J0(γnr)− J
′

0(γna)N0(γnr)
}
.

The Bessel functions in z > 0, satisfy the derived orthogonality relation

∫ h1

0

R
(I)
2m(r)R

(I)
2n (r)rdr +

∫ a

h1

R
(II)
2m (r)R

(II)
2n (r)rdr = δmnEm, (5.29)

where

En =

∫ h1

0

R
(I)2
2n (r)rdr +

∫ a

h1

R
(II)2
2n (r)rdr.

Here, χn and γn, revealed as χ2
n = T 2

1 − s2
n and γ2

n = T 2
2 − s2

n; n = 0, 1, 2, . . . are

the roots of the equation derived from boundary condition (5.25) and (5.26),

χn

{
J
′

0(χnh1)N
′

0(γna)J0(γnh1)− J ′0(χnh1)J
′

0(γna)N0(γnh1)
}

= γn

{
N
′

0(γna)J
′

0(γnh1)J0(χnh1)− J ′0(γna)N
′

0(γnh1)J0(χnh1)
}
. (5.30)
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5.1.4 Matching Conditions

As the fields are continuous at the interface z = 0, thus the following matching

conditions exist:

φ1(r, 0) = φ
(I)
4 (r, 0), 0 ≤ r ≤ h1, (5.31)

φ2(r, 0) = φ
(II)
4 (r, 0), h1 ≤ r ≤ h2, (5.32)

φ3(r, 0) = φ
(II)
4 (r, 0), h2 ≤ r ≤ a, (5.33)

∂φ1

∂z
(r, 0) =

∂φ
(I)
4

∂z
(r, 0), 0 ≤ r ≤ h1, (5.34)

∂φ2

∂z
(r, 0) =

∂φ
(II)
4

∂z
(r, 0), h1 ≤ r ≤ h2, (5.35)

∂φ1

∂z
(r, 0) =

∂φ
(II)
4

∂z
(r, 0), h2 ≤ r ≤ a. (5.36)

5.2 MM Solution

From conditions (5.31)-(5.33), we have

1 +
∞∑
n=0

AnR
(I)
1n (r) =

∞∑
n=0

DnR
(I)
2n (r), (5.37)

1 +
∞∑
n=0

BnR
(II)
1n (r) =

∞∑
n=0

DnR
(II)
2n (r), (5.38)

1 +
∞∑
n=0

CnR
(III)
1n (r) =

∞∑
n=0

DnR
(II)
2n (r). (5.39)

Multiplying both the sides of (5.36) by R
(I)
1m(r)r and integrating from 0 to h1, we

get

Am = −δm0 +
1

E
(I)
1m

∞∑
n=0

DnPmn, (5.40)

where

Pmn =

∫ h1

0

R
(I)
1m(r)R

(I)
2n (r)rdr.
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A similar treatment to the equations (5.38) and (5.39) produces

Bm = −δm0 +
1

E
(II)
1m

∞∑
n=0

DnQmn, (5.41)

Cm = −δm0 +
1

E
(III)
1m

∞∑
n=0

DnRmn, (5.42)

where

Qmn =

∫ h2

h1

R
(II)
1m (r)R

(II)
2n (r)rdr,

Rmn =

∫ a

h2

R
(III)
1m (r)R

(II)
2n (r)rdr.

Now, incorporating the conditions (5.34)-(5.36) and solving in above mentioned

manner, the following equations are formed,

k0 −
∞∑
n=0

Ans
(I)
n R

(I)
1n (r) =

∞∑
n=0

DnsnR
(I)
2n (r), (5.43)

k1 −
∞∑
n=0

Bns
(II)
n R

(II)
1n (r) =

∞∑
n=0

DnsnR
(II)
2n (r), (5.44)

k0 −
∞∑
n=0

Cns
(III)
n R

(III)
1n (r) =

∞∑
n=0

DnsnR
(II)
2n (r). (5.45)

Multiplying (5.43) with R
(I)
2m(r)r and integrating from 0 to h1, yields

k0P0m −
∞∑
n=0

Ans
(I)
n Pnm =

∞∑
n=0

Dnsn

∫ h1

0

R
(I)
2mR

(I)
2n (r)rdr. (5.46)

Similarly, multiplying (5.44) and (5.45) with R
(II)
2m (r)r and integrating from h1 to

a, the following equation is formed

k1Q0m + k0R0m −
∞∑
n=0

Bns
(II)
n Qnm −

∞∑
n=0

Cns
(III)
n Rnm

=
∞∑
n=0

Dnsn

∫ a

h1

R
(II)
2m R

(II)
2n (r)rdr. (5.47)
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Adding (5.46) and (5.47) and employing the derived orthogonality relation (5.29),

we get

Dm =
1

smEm

(
k0P0m −

∞∑
n=0

Ans
(I)
n Pnm

)

+
1

smEm

(
k1Q0m + k0R0m −

∞∑
n=0

Bns
(II)
n Qnm −

∞∑
n=0

Cns
(III)
n Rnm

)
. (5.48)

A system of infinite equations is manifested through the equations (5.40)-(5.42)

and (5.48) having the unknown coefficients {An, Bn, Cn, Dn} , n = 0, 1, 2, . . . The

system is solved numerically after truncation and the outcomes are displayed and

scrutinized in numerical section.

5.3 Energy Flux

The energy flux is a yardstick that determines the convergence of the truncated

solution and its accuracy. The Poynting vector is utilized to find energy propagating

in different sections of the waveguide, which is stated as [123],

Power =

∫
R

πrRe

{
Ez

(
∂Ez
∂z

)∗}
dr, (5.49)

where (*) represents complex conjugate.

As we have three different regions in the left duct z < 0, the incident and reflected

powers in this duct are of the form

Pi = P
(I)
i + P

(II)
i + P

(III)
i , (5.50)

Pr = P (I)
r + P (II)

r + P (III)
r . (5.51)

By employing the Poynting vector, the incident (Pi), reflected (Pr) and transmitted

(Pt) powers can be ascertained as,

Pi =
πk0h

2
1

2
+
πk1(h2

2 − h2
1)

2
+
πk0(a2 − h2

2)

2
, (5.52)
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Pr = −πRe

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)
− πRe

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)

−πRe

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)
, (5.53)

Pt = πRe

(
∞∑
n=0

|Dn|2snEn

)
. (5.54)

The application of law of conservation of power,

Pi + Pr = Pt.

yields the following form,

πk0h
2
1

2
+
πk1(h2

2 − h2
1)

2
+
πk0(a2 − h2

2)

2

−πRe

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)
− πRe

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)

−πRe

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)
= πRe

(
∞∑
n=0

|Dn|2snEn

)
. (5.55)

The incident power Pi is scaled to unity to reshape the equation (5.55) as

1 = E1 + E2 + E3 + E4, (5.56)

where

E1 =
2

K
Re

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)
,

E2 =
2

K
Re

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)
,

E3 =
2

K
Re

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)
,

E4 =
2

K
Re

(
∞∑
n=0

|Dn|2snEn

)
,
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and

K = k0h
2
1 + k1(h2

2 − h2
1) + k0(a2 − h2

2).

5.4 Numerical Results and Discussion

In this section, the outcomes of the numerical solution of the given physical problem

are provided. The electric field potentials are illustrated in the figures as follows:

φT (r, z) =



φ1(r, z), z < 0, 0 < r < h1,

φ2(r, z), z < 0, h1 < r < h2,

φ3(r, z), z < 0, h2 < r < a,

φ4(r, z), z > 0, 0 < r < a.

The magnetic fields in the respective regions are displayed in the figures in following

manner

φTz(r, z) =



φ1z(r, z), z < 0, 0 < r < h1,

φ2z(r, z), z < 0, h1 < r < h2,

φ3z(r, z), z < 0, h2 < r < a,

φ4z(r, z), z > 0, 0 < r < a,

where φjz =
∂φj
∂z

; j = 1, 2, 3, 4.

The physical parameters chosen are speed of light, c = 3× 108 m/s and free space

permittivity and permeability, mentioned as ε0 = 8.85× 10−12 F/m (Farads per

meter) and µ0 = 4π × 10−7 N/A2 (Newtons per Ampere squared). To attain

rigorous numerical results, the duct radii are set as h1 = 0.2 cm, h2 = 0.3 cm,

and a = 0.4 cm. The beam velocity v is fixed at 0.134× 108 cm/second while the

frequencies are taken as ω = 2.5× 109 radian/second, ωb = 2× 109 radian/second,

and ωp = 109 radian/second. The axial wavenumber is considered k1z = k0 + 2π.

The quantities h1, h2 and a reveal the non-dimensional form of radii h1, h2 and a,

respectively. The software Mathematica (version 12.1) is used to carry out the

simulations.
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The MM solution of the system revealed in the equations (5.40)-(5.42) and (5.48)

with a truncation parameter N is applied to obtain the numerical results. The

solution yields the unknowns {An, Bn, Cn, Dn} ; n = 0, 1, 2, . . . , 149 and is utilized

to exhibit the accuracy of algebra, distribution of energy and its conservation.
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Figure 5.2: Real parts of the electric field and magnetic fields at the interface
z = 0 and 0 ≤ r ≤ h1.
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Figure 5.3: Imaginary parts of the electric field and magnetic fields at the
interface z = 0 and 0 ≤ r ≤ h1.
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Figure 5.4: Real parts of the electric field and magnetic fields at the interface
z = 0 and h1 ≤ r ≤ h2.
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Figure 5.5: Imaginary parts of the electric field and magnetic fields at the
interface z = 0 and h1 ≤ r ≤ h2.
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Figure 5.6: Real parts of the electric field and magnetic fields at the interface
z = 0 and h2 ≤ r ≤ a.
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Figure 5.7: Imaginary parts of the electric field and magnetic fields at the
interface z = 0 and h2 ≤ r ≤ a.

The figures 5.2 to 5.7 confirm that the matching conditions are validated by the

solution at the interface z = 0. Across various media, such as vacuum, dielectric,

beam, and cold plasma, the magnetic and electric field graphs show a remarkable
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consistency between their real and imaginary components, indicating excellent

agreement along the interface between the different media.

The cogency of law of power conservation in different duct regions is another check

on the accuracy of truncated solution. The reflected powers in left duct (z < 0)

for regions R1, R2 and R3 are represented by E1, E2 and E3, respectively while the

transmitted power in right duct (z > 0) is given as E4. Here, Et represents the sum

of all powers within the regions of the duct and can be divulged as

Et = E1 + E2 + E3 + E4.
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Figure 5.8: Energy flux versus (a) beam radius h1 and (b) dielectric radius h2.

The distribution of power versus angular, plasma and beam frequencies as well as

plasma and beam radii in different regions of this cylindrical waveguide is analyzed.

To study the power behavior in regards to the change in beam and vacuum radius

h1, the other radii are fixed as h2 = 2× h1 (in cm) and a = 3× h1 (in cm), while

the values of h1 lie between 0.01 cm < h1 < 32.5 cm. It is apparent from the

graph in (5.8(a)) that the transmission declines very slowly but suddenly drops at

h1 = 16.33 cm and reaches almost zero as h1 grows.

The power is also analyzed against dielectric radius h2. For this purpose h2 is

assumed between 0.01 cm < h2 < 32.5 cm, while h1 and a are set as h1 = 0.5× h2

(in cm) and a = 2 × h2 (in cm). The figure 5.8(b) reveals that though the

transmission seems to have a dominating behavior in the start but after h2 = 22.5
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cm, it has a fluctuating behavior which persists with increase in the radius of the

dielectric duct.

The power graphs against radius a are plotted in Figure 5.9(a) with the assumptions

that the duct radius a takes the values from 0.01 cm < a < 40 cm and h1 = 0.5× a

(in cm) and h2 = 0.7 × a (in cm). The graph also shows that the reflection

is negligible and almost whole power is transmitted through plasma and beam.

Notably, in all the power analyses, the plasma, beam and angular frequencies are

fixed as ωp = 109 radian/second, ωb = 2× 109 radian/second, and ω = 2.5× 109

radian/second.
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Figure 5.9: Energy flux versus (a) plasma radius a and (b) angular frequency
ω.

The impact of angular frequency ω on power propagation is presented in Fig-

ure 5.9(b). To investigate this case, the normalized frequency ranges between

0.33 < ω/c < 10 while the radii and plasma and beam frequencies are fixed to

aforementioned values. It is observed that after some fluctuation all the powers

become zero at ω/c = 3.33. The transmission reappears at ω/c = 4.57 while the

reflection starts decreasing and reaches almost zero as the angular frequency grows.

To study the effect of increasing plasma frequency, the energy flux is displayed in

terms of ωp/ω in Figure 5.10(a), the range being taken as 0 < ωp/ω < 1.2. It is

obvious from the figure that no transmission takes place after 0.94. As the plasma

frequency equals the angular frequency, the reflected and transmitted powers

become zero. The transmission remains zero and the whole energy is reflected with
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increase in ωp. It complies with the fact that propagation of EM waves does not

occur if plasma frequency is greater than wave frequency ω.

The plot of power with respect to ωb/ω, revealed in Figure 5.10(b), shows that the

increase in beam frequency ωb results in gradual increase in reflection of EM waves.

The values vary between 0 < ωb/ω < 1.6.
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Figure 5.10: Energy flux versus (a) plasma frequency ωp and (b) beam
frequency ωb.
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Figure 5.11: Power flux plotted against truncated terms N .

Table 5.1: Energy conservation versus number of terms N .

Terms (N) E1 E2 E3 E4 Et
10 0.010434 0.015087 0.016378 0.958101 1

20 0.010596 0.015090 0.016345 0.957969 1

30 0.010493 0.015347 0.016324 0.957836 1

40 0.010473 0.015508 0.016304 0.957715 1

50 0.010570 0.015505 0.016294 0.957631 1

60 0.010538 0.015593 0.016285 0.957584 1

70 0.010552 0.015655 0.016275 0.957518 1
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Table 5.2: Cut-on modes versus duct radius a

Height (a) R1 R2 R3 R4

3.33333 1 1 1 1

5.16667 1 1 1 2

5.75000 1 1 2 2

8.75000 1 1 2 3

8.91667 1 1 3 3

12.25000 1 1 3 4

15.75000 1 1 3 5

The conserved power also indicates that the truncated solution is convergent. The

accuracy is checked up to six decimal places. The impact of the truncation becomes

negligible when N ≥ 50, which is obvious from Table 5.1 as well as from Figure

5.11. Thus, the given system of infinite equations can easily be considered finite.

Cut-on modes in regard to the plasma and vacuum radius a are computed and

presented in Table 5.2. The regions R1, R2, R3 and R4 are already mentioned in

Section 5.1. The increase in radii h1, h2 and angular frequency ω does not affect

the cut-on modes in any region. There is only one cut-on mode in each region for

increasing values of h1 and ω. The extension of this scattering problem is discussed

in the next section.

5.5 TM Wave Scattering in a Cylindrical Waveg-

uide with a Central Chamber containing Beam-

Plasma Environment

In the current scattering problem, the beam-plasma region discussed in the preced-

ing section is bounded within the central segment (|z| < L) of the waveguide that

extends infinitely along the z-axis to discuss the TM wave scattering. Figure 5.12

illustrates the physical setup, providing a visual representation of the arrangement.

This investigation conducts a comprehensive analysis of the scattering of EM

waves as they propagate in a beam-plasma environment. The study meticulously
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examines the wave propagation, originating from the region z < −L, undergoing

interactions with the central region, and ultimately exiting the domain at z > L,

providing valuable insights into the underlying physical phenomena.

Figure 5.12: Propagation of EM waves in a cylindrical waveguide comprising
of central chamber containing beam-plasma environment.

5.6 Problem Formulation

The infinite waveguide has PEC boundary at r = a. The propagation of a TM

incident wave is considered in positive z direction from the left inlet z < −L to

the chamber enclosed in the region |z| < L. Thus TM wave leaves the chamber

at the interface z = L and exits to the right. This incident wave makes a zero

angle with the z axis and has unit amplitude. The region |z| > L comprises of

vacuum and dielectric, with PEC walls placed at r = h1 and h2. These mediums

are again wrapped in cold magnetized plasma as shown in the figure. The beam

in the central chamber is enveloped by cold magnetized plasma at r = h1. The

regions |z| > L, 0 < r < h1, denoted by R1 and R5 comprise vacuum, while the

regions |z| > L, h1 < r < h2 contain dielectric and are indicated as by R2 and

R6. Likewise, R3 and R7 represent the regions |z| > L, h2 < r < a comprising

plasma. The central region |z| < L decomposed into sub-regions containing beam

and plasma in 0 < r < h1 and h1 < r < a is indicated as R4. The electric fields in

these regions R1 to R7 are expressed in scalar field potential as φ1, φ2, φ3, φ4, φ5, φ6

and φ7, respectively.
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φ1(r, z) = eik0z +
∞∑
n=0

Ane
−is(I)n (z)R

(I)
1n (r), (5.57)

φ2(r, z) = eik1z +
∞∑
n=0

Bne
−is(II)n (z)R

(II)
1n (r), (5.58)

φ3(r, z) = eik2z +
∞∑
n=0

Cne
−is(III)n (z)R

(III)
1n (r), (5.59)

φ4(r, z) =

 φ
(I)
4 (r, z), 0 < r < h1,

φ
(II)
4 (r, z), h1 < r < a,

=


∞∑
n=0

(
D1ne

isnz +D2ne
−isnz

)
R

(I)
2n (r), 0 < r < h1,

∞∑
n=0

(
D1ne

isnz +D2ne
−isnz

)
R

(II)
2n (r), h1 < r < a,

(5.60)

φ5(r, z) =
∞∑
n=0

Fne
is

(I)
n (z)R

(I)
1n (r), (5.61)

φ6(r, z) =
∞∑
n=0

Gne
is

(II)
n (z)R

(II)
1n (r), (5.62)

φ7(r, z) =
∞∑
n=0

Hne
is

(III)
n (z)R

(III)
1n (r). (5.63)

The boundary conditions at the walls r = h1, h2 and a in regions |z| > L and

|z| < L are revealed as

∂φ1

∂r
(h1, z) =

∂φ5

∂r
(h1, z) = 0, (5.64)

∂φ2

∂r
(h1, z) =

∂φ6

∂r
(h1, z) = 0, (5.65)

∂φ2

∂r
(h2, z) =

∂φ6

∂r
(h2, z) = 0, (5.66)

∂φ3

∂r
(h2, z) =

∂φ7

∂r
(h2, z) = 0, (5.67)

∂φ3

∂r
(a, z) =

∂φ7

∂r
(a, z) = 0, (5.68)

φ
(I)
4 (h1, z) = φ

(II)
4 (h1, z), (5.69)
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∂φ
(I)
4

∂r
(h1, z) =

∂φ
(II)
4

∂r
(h1, z), (5.70)

∂φ
(II)
4

∂r
(a, z) = 0, (5.71)

whereAn, Bn, Cn, Fn, Gn andHn exhibit the amplitudes in regionsR1, R2, R3, R5, R6

and R7. The nth reflected modes in these regions of cylindrical waveguide have

wavenumbers expressed as s
(I)2
n = k2

0 − η2
n; s

(II)2
n = k2

1 − τ 2
n; s

(III)2
n = T 2

2 − λ2
n.

The Bessel functions, in the region R1 are expressed as,

R
(I)
1n (r) = A0J0(ηnr),

while in regions R2 and R3 the Bessel functions take the following form after

implementation of condition (5.65) and (5.67),

R
(II)
1n (r) =

B0

N
′
0(τnh1)

{
N
′

0(τnh1)J0(τnr)− J
′

0(τnh2)N0(τnr)
}
,

R
(III)
1n (r) =

C0

N
′
0(λnh2)

{
N
′

0(λnh2)J0(λnr)− J
′

0(λnh2)N0(λnr)
}
,

which satisfy the usual orthogonality relations, such that

∫ h1

0

R
(I)
1m(r)R

(I)
1n (r)rdr = δmnE

(I)
1m,

∫ h2

h1

R
(II)
1m (r)R

(II)
1n (r)rdr = δmnE

(II)
1m ,

∫ a

h2

R
(III)
1m (r)R

(III)
1n (r)rdr = δmnE

(III)
1m ,

where

E
(I)
1n =

∫ h1

0

R
(I)2
1n (r)rdr.,

E
(II)
1n =

∫ h2

h1

RII2
1n (r)rdr,

E
(III)
1n =

∫ a

h2

R
(III)2
1n (r)rdr.
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It is important to note that ηn, τn and λn; n = 0, 1, 2, . . . are the roots of the

characteristic equations derived from boundary conditions (5.64), (5.66) and (5.68),

J
′

0(ηnh1) = 0, (5.72)

N
′

0(τnh1)J
′

0(τnh2)− J ′0(τnh1)N
′

0(τnh2) = 0, (5.73)

N
′

0(λnh2)J
′

0(λna)− J ′0(λnh2)N
′

0(λna) = 0. (5.74)

The Bessel functions and characteristic equations expressed for above-mentioned

regions remain valid for the regions R5, R6 and R7.

Invoking condition (5.71), the Bessel functions, in the region |z| < L, are expressed

as

R
(I)
2n (r) = D0J0(χnr),

R
(II)
2n (r) =

E0

N
′
0(γna)

{
N
′

0(γna)J0(γnr)− J
′

0(γna)N0(γnr)
}
,

where χ2
n = T 2

1 − s2
n and γ2

n = T 2
2 − s2

n; n = 0, 1, 2, . . . , and sn reveals the

wavenumber of nth mode. The Bessel functions in this region satisfy the derived

orthogonality relation

∫ h1

0

R
(I)
2m(r)R

(I)
2n (r)rdr +

∫ a

h1

R
(II)
2m (r)R

(II)
2n (r)rdr = δmnEm, (5.75)

where

En =

∫ h1

0

R
(I)2
2n (r)rdr +

∫ a

h1

R
(II)2
2n (r)rdr.

Here, χn and γn; n = 0, 1, 2, . . . are the eigenvalues that can be calculated from

the characteristic equation, derived from boundary condition (5.69) and (5.70),

χn

{
J
′

0(χnh1)N
′

0(γna)J0(γnh1)− J ′0(χnh1)J
′

0(γna)N0(γnh1)
}

= γn

{
N
′

0(γna)J
′

0(γnh1)J0(χnh1)− J ′0(γna)N
′

0(γnh1)J0(χnh1)
}
. (5.76)



EM Wave Scattering in Plasma Beam Driven Waveguides under Strong... 126

5.6.1 Matching Conditions

The continuity of electric and magnetic field potentials at the interfaces z = ±L,

implies the existence of the following matching conditions:

φi(r,±L) = φ4(r,±L), 0 ≤ ra, (5.77)

∂φi
∂z

(r,±L) =
∂φ4

∂z
(r,±L), 0 ≤ r ≤ a, (5.78)

where i = 1, 2, 3 at the interface z = −L, while at the interface z = L, the variation

of i is described as i = 5, 6, 7.

5.7 MM Solution

In order to find the unknown coefficients appearing in the field potentials of different

regions of this waveguide, we incorporate the matching conditions. Applying

conditions (5.77) at the interface z = −L, we have

1 +
∞∑
n=0

AnR
(I)
1n (r) =

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
R

(I)
2n (r), (5.79)

1 +
∞∑
n=0

BnR
(II)
1n (r) =

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
R

(II)
2n (r), (5.80)

1 +
∞∑
n=0

CnR
(III)
1n (r) =

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
R

(II)
2n (r). (5.81)

Multiplying both the sides of (5.79) by R
(I)
1m(r)r and integrating from 0 to h1, we

get

Am = −δm0 +
1

E
(I)
1m

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
Pmn, (5.82)

where

Pmn =

∫ h1

0

R
(I)
1m(r)R

(I)
2n (r)rdr.
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Solving in a similar manner, the equations (5.80) and (5.81) produce

Bm = −δm0 +
1

E
(II)
1m

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
Qmn, (5.83)

Cm = −δm0 +
1

E
(III)
1m

∞∑
n=0

(
D1ne

−isnL +D2ne
isnL
)
Rmn, (5.84)

where

Qmn =

∫ h2

h1

R
(II)
1m (r)R

(II)
2n (r)rdr,

Rmn =

∫ a

h2

R
(III)
1m (r)R

(II)
2n (r)rdr.

Employing the matching conditions (5.77) at the interface z = L, yields

∞∑
n=0

FnR
(I)
1n (r) =

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
R

(I)
2n (r), (5.85)

∞∑
n=0

GnR
(II)
1n (r) =

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
R

(II)
2n (r), (5.86)

∞∑
n=0

HnR
(III)
1n (r) =

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
R

(II)
2n (r). (5.87)

Multiplying both the sides of (5.85) by R
(I)
1m(r)r and integrating from 0 to h1, we

get

Fm =
1

E
(I)
1m

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
Pmn. (5.88)

Solving the equations (5.86) and (5.87) in a similar way, produces

Gm =
1

E
(II)
1m

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
Qmn, (5.89)

Hm =
1

E
(III)
1m

∞∑
n=0

(
D1ne

isnL +D2ne
−isnL

)
Rmn, (5.90)

In the above-mentioned manner, by implementing the matching condition (5.78)

at the interface z = −L, the following equations are derived,

k0 −
∞∑
n=0

Ans
(I)
n R

(I)
1n (r) =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
snR

(I)
2n (r), (5.91)
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k1 −
∞∑
n=0

Bns
(II)
n R

(II)
1n (r) =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
snR

(II)
2n (r), (5.92)

T2 −
∞∑
n=0

Cns
(III)
n R

(III)
1n (r) =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
snR

(II)
2n (r). (5.93)

Multiplying (5.91) by R
(I)
2m(r)r and integrating from 0 to h1, yields

k0P0m −
∞∑
n=0

Ans
(I)
n Pnm =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
sn

∫ h1

0

R
(I)
2mR

(I)
2n (r)rdr.

(5.94)

Similarly, multiplying (5.92) and (5.93) with R
(II)
2m (r)r and integrating from h1 to

a, the following equation is formed

k1Q0m + k2R0m −
∞∑
n=0

Bns
(II)
n Qnm −

∞∑
n=0

Cns
(III)
n Rnm

=
∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
sn

∫ a

h1

R
(II)
2m R

(II)
2n (r)rdr. (5.95)

Adding (5.94) and (5.95) and employing the derived orthogonality relation (5.75),

we get

D1me
−ismL −D2me

ismL =
1

smEm

(
k0P0m −

∞∑
n=0

Ans
(I)
n Pnm

)

+
1

smEm

(
k1Q0m + T2R0m −

∞∑
n=0

Bns
(II)
n Qnm −

∞∑
n=0

Cns
(III)
n Rnm

)
. (5.96)

Solving in a similar way, the deployment of condition (5.78) at the interface z = L,

the following equations are formed,

∞∑
n=0

Fns
(I)
n R

(I)
1n (r) =

∞∑
n=0

(
D1ne

isnL −D2ne
−isnL

)
snR

(I)
2n (r), (5.97)

∞∑
n=0

Gns
(II)
n R

(II)
1n (r) =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
snR

(II)
2n (r), (5.98)

∞∑
n=0

Hns
(III)
n R

(III)
1n (r) =

∞∑
n=0

(
D1ne

−isnL −D2ne
isnL
)
snR

(II)
2n (r). (5.99)
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Multiplication of (5.97) by R
(I)
2m(r)r and integrating from 0 to h1, yields

∞∑
n=0

Fns
(I)
n Pnm =

∞∑
n=0

(
D1ne

isnL −D2ne
−isnL

)
sn

∫ h1

0

R
(I)
2mR

(I)
2n (r)rdr. (5.100)

Similarly, multiplying (5.98) and (5.99) with R
(II)
2m (r)r and integrating from h1 to

a, the following equation is formed

∞∑
n=0

Gns
(II)
n Qnm +

∞∑
n=0

Hns
(III)
n Rnm

=
∞∑
n=0

(
D1ne

isnL −D2ne
−isnL

)
sn

∫ a

h1

R
(II)
2m R

(II)
2n (r)rdr. (5.101)

Adding (5.100) to (5.101) and employing the derived orthogonality relation (5.75),

we get

D1me
ismL −D2me

−ismL =
1

smEm

∞∑
n=0

Fns
(I)
n Pnm

+
1

smEm

∞∑
n=0

Gns
(II)
n Qnm +

1

smEm

∞∑
n=0

Hns
(III)
n Rnm. (5.102)

Adding (5.82) and (5.88) yields,

Ψ+
1m = −δm0 +

2

E
(I)
1m

∞∑
n=0

Φ+
n cos(snL)Pmn. (5.103)

Similarly adding (5.83) to (5.89) and (5.84) to (5.90), renders

Ψ+
2m = −δm0 +

2

E
(II)
1m

∞∑
n=0

Φ+
n cos(snL)Qmn, (5.104)

Ψ+
3m = −δm0 +

2

E
(III)
1m

∞∑
n=0

Φ+
n cos(snL)Rmn. (5.105)

Subtracting (5.88) from (5.82), (5.89) from (5.83) and (5.90) from (5.84)

Ψ−1m = −δm0 −
2i

E
(I)
1m

∞∑
n=0

Φ−n cos(snL)Pmn, (5.106)
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Ψ−2m = −δm0 −
2i

E
(II)
1m

∞∑
n=0

Φ−n cos(snL)Qmn, (5.107)

Ψ−3m = −δm0 −
2i

E
(III)
1m

∞∑
n=0

Φ−n cos(snL)Rmn, (5.108)

where Ψ±1m = Am ± Fm,Ψ±2m = Bm ±Gm,Ψ
±
3m = Cm ±Hm and Φ±m = D1m ±D2m.

Subtracting (5.96) from (5.102), we obtain

Φ+
n = −k0P0m + k1Q0m + T2R0m

2ismEm sin(smL)
+

1

2ismEm sin(smL)

∞∑
n=0

Ψ+
1ns

(I)
n Pnm

+
1

2ismEm sin(smL)

∞∑
n=0

Ψ+
2ns

(II)
n Qnm +

1

2ismEm sin(smL)

∞∑
n=0

Ψ+
3ns

(III)
n Rnm.

(5.109)

Adding (5.96) and (5.102), we get

Φ−n =
k0P0m + k1Q0m + T2R0m

2smEm cos(smL)
− 1

2smEm cos(smL)

∞∑
n=0

Ψ−1ns
(I)
n Pnm

− 1

2smEm cos(smL)

∞∑
n=0

Ψ−2ns
(II)
n Qnm −

1

2smEm cos(smL)

∞∑
n=0

Ψ−3ns
(III)
n Rnm.

(5.110)

A system of infinite equations is manifested through the equations (5.103)-(5.110)

having the unknown coefficients {An, Bn, Cn, D1n, D2n, Fn, Gn, Hn} , n = 0, 1, 2, . . .

The system is solved numerically after truncation and the outcomes are displayed

and scrutinized in numerical section.

5.8 Energy Flux

Using the Poynting vector the energy flux is determined to establish the accuracy

and convergence of the MM solution. As we have three different regions in the left

duct z < −L, the incident and reflected powers in this duct are of the form

Pi = P
(I)
i + P

(II)
i + P

(III)
i , (5.111)
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Pr = P (I)
r + P (II)

r + P (III)
r . (5.112)

In the right duct z > L, the transmitted powers in the three regions can be

described as

Pt = P
(I)
t + P

(II)
t + P

(III)
t , (5.113)

By employing the Poynting vector, the incident (Pi), reflected (Pr) and transmitted

(Pt) powers can be ascertained as,

Pi =
πk0h

2
1

2
+
πk1(h2

2 − h2
1)

2
+
πk0(a2 − h2

2)

2
, (5.114)

Pr = −πRe

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)
− πRe

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)

−πRe

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)
, (5.115)

Pt = πRe

(
∞∑
n=0

|Fn|2s(I)
n E

(I)
1n

)
+ πRe

(
∞∑
n=0

|Gn|2s(II)
n E

(II)
1n

)

+πRe

(
∞∑
n=0

|Hn|2s(III)
n E

(III)
1n

)
, (5.116)

The application of law of conservation of power,

Pi + Pr = Pt.

yields the following form,

πk0h
2
1

2
+
πk1(h2

2 − h2
1)

2
+
πk0(a2 − h2

2)

2
− πRe

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)

−πRe

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)
− πRe

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)

= πRe

(
∞∑
n=0

|Fn|2sInE
(I)
1n

)
+ πRe

(
∞∑
n=0

|Gn|2s(II)
n E

(II)
1n

)

+πRe

(
∞∑
n=0

|Hn|2s(III)
n E

(III)
1n

)
. (5.117)
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To reshape the equation (5.117), the incident power Pi is normalized to a value of

1, such that

1 = E1 + E2 + E3 + E4 + E5 + E6, (5.118)

where

E1 =
2

K
Re

(
∞∑
n=0

|An|2s(I)
n E

(I)
1n

)
,

E2 =
2

K
Re

(
∞∑
n=0

|Bn|2s(II)
n E

(II)
1n

)
,

E3 =
2

K
Re

(
∞∑
n=0

|Cn|2s(III)
n E

(III)
1n

)
,

E4 =
2

K
Re

(
∞∑
n=0

|Fn|2s(I)
n E

(I)
1n

)
,

E5 =
2

K
Re

(
∞∑
n=0

|Gn|2s(II)
n E

(II)
1n

)
,

E6 =
2

K
Re

(
∞∑
n=0

|Hn|2s(III)
n E

(III)
1n

)
,

and

K = k0h
2
1 + k1(h2

2 − h2
1) + k0(a2 − h2

2).

5.9 Numerical Discussion

In this section, the results of the numerical solution of the specified physical problem

are presented. The electric field potentials are depicted in the figures as below:

φT (r, z) =



φ1(r, z), z < −L, 0 < r < h1,

φ2(r, z), z < −L, h1 < r < h2,

φ3(r, z), z < −L, h2 < r < a,

φ4(r, z), −L < z < L, 0 < r < a,

φ5(r, z), z > L, 0 < r < h1,

φ6(r, z), z > L, h1 < r < h2,

φ7(r, z), z > L, h2 < r < a.
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Figure 5.13: Real parts of the electric field and magnetic fields at the interface
z = −L and 0 ≤ r ≤ h1.
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Figure 5.14: Imaginary parts of the electric field and magnetic fields at the
interface z = −L and 0 ≤ r ≤ h1.

The figures display the magnetic fields in their respective regions as follows:

φTz(r, z) =



φ1z(r, z), z < −L, 0 < r < h1,

φ2z(r, z), z < −L, h1 < r < h2,

φ3z(r, z), z < −L, h2 < r < a,

φ4z(r, z), −L < z < L, 0 < r < a,

φ5z(r, z), z > L, 0 < r < h1,

φ6z(r, z), z > L, h1 < r < h2,

φ7z(r, z), z > L, h2 < r < a,

where φjz =
∂φj
∂z

; j = 1, 2, 3, 4, 5, 6, 7.
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Figure 5.15: Real parts of the electric field and magnetic fields at the interface
z = −L and h1 ≤ r ≤ h2.

The physical parameters, values of duct radii, axial wavenumber and the frequencies

are same as were considered in Section 5.4. The chamber length L is set as

2×L = 2×0.25 cm. The quantities h1, h2 and a are the non-dimensional analogues

of radii h1, h2 and a, respectively. The truncated system of equations is solved and

the simulations are executed using the software Mathematica (version 12.1).

The utilization of the MM technique has provided the solution for the system

described in the equations (5.103)-(5.110) with a truncation parameter N. Thus

the unknown coefficients {An, Bn, Cn, D1n, D2n, Fn, Gn, Hn} ; n = 0, 1, 2, . . . , 99 are

determined. The solution is further employed to verify the precision of algebra as

well as conservation and distribution of power.
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Figure 5.16: Imaginary parts of the electric field and magnetic fields at the
interface z = −L and h1 ≤ r ≤ h2.
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Figure 5.17: Real parts of the electric field and magnetic fields at the interface
z = −L and h2 ≤ r ≤ a.
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Figure 5.18: Imaginary parts of the electric field and magnetic fields at the
interface z = −L and h2 ≤ r ≤ a.

The accuracy of truncated solution is checked through reconstruction of the match-

ing conditions at the two interfaces z = ±L and are displayed in figures 5.13-5.24.

The real and imaginary parts of electric and magnetic field potentials completely

coincide at the two interfaces in all mediums as is obvious from the figures.
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Figure 5.19: Real parts of the electric field and magnetic fields at the interface
z = L and 0 ≤ r ≤ h1.
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Figure 5.20: Imaginary parts of the electric field and magnetic fields at the
interface z = L and 0 ≤ r ≤ h1.
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Figure 5.21: Real parts of the electric field and magnetic fields at the interface
z = L and h1 ≤ r ≤ h2.

The validity of the law of conservation of energy in various duct regions serves

as another means to verify the accuracy of a truncated solution. The reflected

powers in left duct (z < −L) for regions R1, R2 and R3 are revealed as E1, E2 and
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E3, respectively while E4, E5 and E6 exhibit the transmitted powers in the right duct

(z > L). The sum of all powers Et is stated as:

Et = E1 + E2 + E3 + E4 + E5 + E6.
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Figure 5.22: Imaginary parts of the electric field and magnetic fields at the
interface z = L and h1 ≤ r ≤ h2.
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Figure 5.23: Real parts of the electric field and magnetic fields at the interface
z = L and h2 ≤ r ≤ a.

The influence of increasing angular frequency, plasma radius and plasma frequency

on power propagation is depicted in figures 5.25 and 5.26. The figure 5.25 presents

the effect of angular frequency ω on propagation. In order to study this impact,

the distribution of power versus ω/c is considered. The range of angular frequency

is between 0.33 < ω/c < 10. The graph illustrates the concept of increasing angular

frequency ω leading to predominant transmission and minimal reflection.
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Figure 5.24: Imaginary parts of the electric field and magnetic fields at the
interface z = L and h2 ≤ r ≤ a.
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Figure 5.25: Power flux versus angular frequency ω.
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Figure 5.26: Energy flux versus (a) plasma radius a, and (b) plasma frequency
ωp.

The impact of increasing plasma radius a and plasma frequency ωp/ω on power flux

is exhibited in figures 5.26(a) and 5.26(b), respectively. The plasma radius a ranges

between 0.01 cm < a < 40 cm, while the other two radii are fixed as h1 = 0.5× a

(in cm) and h2 = 0.7× a (in cm). Figure 5.26(a) reveals that transmission in cold

plasma region is dominant as a increases. Meanwhile, the plot of power against
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plasma frequency in Figure 5.26(b) shows that no transmission and reflection takes

place in cold plasma region when ωp/ω > 1. The values of plasma frequency are

set as 0 < ωp/ω < 1.2.



Chapter 6

Conclusion and Future Work

This dissertation explores the scattering analysis of EM waves in various plasma-

filled structures, employing the MM technique to solve the governing boundary

value problems. The results demonstrate a close agreement in the curves of EM

field potentials and scattering of powers.

In the introductory chapter (Chapter 1), the context of this study is established,

including its relevance to current research and an overview of related literature. The

objectives of this dissertation are outlined, focusing on physical problem solutions.

The fundamental concepts required for understanding scattering analysis of EM

waves in diverse waveguide structures, as well as the derivation of wave equations

and different boundary conditions for various waveguide models, are discussed

in Chapter 2. Additionally, standard and generalized orthogonality relations are

explored based on physical models within this chapter.

Chapter 3 of the study focuses on the impact of cold plasma on the transmission

of EM waves within rectangular waveguides. The findings suggest a lossless

configuration suitable for application in plasma waveguide amplifiers, comprising

two partially enclosed waveguides. The first segment consisted of a partially

bounded waveguide featuring a metallic wall with dielectric material. The second

segment involved a partially bounded waveguide incorporating a layer of cold

plasma situated between dielectric layers. The MM solution was explored to

analyze the behavior of transmission and reflection coefficients in relation to

140
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the initial three incident modes, with a focus on both transparency and non-

transparency regions. This analysis is crucial in understanding how EM waves

interact with different mediums and interfaces. In both frequency regimes, the

magnitudes of reflection coefficients for modes other than the dominant mode are

negligible, indicating their insignificant contribution to the overall reflection. The

reflection coefficient magnitude remains constant in both the transparency and

non-transparency frequency regions for the dominant mode. The transmission

coefficient of the dominant mode in the non-transparency frequency region exhibits a

non-zero magnitude, and attains a maximum value in the transparency region. The

analysis also includes the examination of energy flux in various duct sections versus

waveguide dimensions, across both transparency and non-transparency frequency

regions. In the non-transparency region, it is noted that energy propagation in cold

plasma is not possible, regardless of changes to the waveguide dimensions. However,

in the transparency region, energy propagation increases with increment in plasma

width. One significant observation from the analysis is that in the non-transparency

regime, altering the waveguide dimensions has no effect on energy propagation in

cold plasma regions, where energy propagation remains impossible. This suggests a

unique behavior of energy transmission in this specific condition. Moreover, it was

noted that as the width of plasma increases, there is a corresponding increase in

the energy flux. The coefficients are structured in a manner to ensure that the law

of conservation of power is upheld. The comprehensive approach of determining

the conservation of energy both mathematically and intrinsically, utilizing the

Poynting vector, resulted in the verification of the accuracy of the solution.

In Chapter 3, an in-depth analysis was also performed on the behavior of EM

waves in a rectangular waveguide with a grooved structure, featuring a central

cold plasma slab. The study investigated a structure with potential applications in

plasma waveguide resonators and gas chromatography equipment, with versatile

uses in various designs, such as plasma antennas, halfway plates and frequency

selective surfaces. A groove is enveloped between two semi-bounded waveguides

in this arrangement. The semi-bounded regions in the left and right sections

of the waveguide contain dielectric and are bounded by metallic walls. The

bounded metallic groove located in the central section consists of a cold plasma
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slab, configured in two ways: (I) sandwiched between metallic strips, and (II)

sandwiched between dielectric layers, without metallic strips. The systems of

infinite algebraic equations were extracted from the boundary value problems

associated with the reflection and transmission for both cases. The numerical

outcomes acquired for case (I) are comparable with the results presented by Najari

et al. [106] in their article. Using the MM solution, an investigation was conducted

to analyze the transmission and reflection coefficients of the initial three incident

modes in two regimes, i. e., transparency and non-transparency, to understand

their behavior in different scenarios. It is also concluded that first mode of both

reflected and transmitted modes remains dominant in both frequency regimes. In

the non-transparency regime, the reflection and transmission coefficients for the

modes other than the dominant are significantly small, making their contribution

negligible, while the dominant mode plays a significant role. The proposed solution

is validated by the conservation of power, ensuring convergence and accuracy. The

analysis reveals that the energy propagates through different duct sections with

increasing waveguide heights, in both transparency and non-transparency regimes,

with minimal reflection, confirming the efficacy of the solution.

In Chapter 4, the analysis of EM wave scattering in a PEC cylindrical waveguide

comprising a central chamber, having a center filled with cold plasma, has been

carried out rigorously. The study was pivoted around a structure with prospects of

its potential use as a plasma waveguide amplifier. The physical setup consists of

a chamber sandwiched between two semi-bounded waveguides with a PEC wall

and having vacuum, in an infinite cylindrical waveguide. The central section is a

bounded chamber comprising cold plasma, enclosed within vacuum. This vacuum is

again wrapped within a dielectric environment through PEC walls. The boundary

value problem corresponding to reflection and transmission was formed into system

of infinite algebraic equations. The verification of the matching conditions was also

performed. It was concluded that the electric and magnetic fields perfectly coincide

at the two interfaces. The power flux was also probed, for both transparency

and non-transparency regimes, in different duct regions. It was apparent through

computations that energy propagates through this waveguide with some reflection

phenomenon for both frequency regimes. The change in plasma radius or chamber
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length does not have a significant effect on transmission. In transparency regime, a

single cut-on or propagating mode is consistently observed across all three regions

within the chamber, regardless of changes in plasma radius or angular frequency.

In the non-transparency regime, no cut-on modes appear in the cold plasma region,

however, both vacuum and dielectric regions still exhibit one propagating mode

each.

The structure and settings of this cylindrical waveguide are comparable with the

work presented by Saviz [124], though the focus of numerical discussion differs.

In Chapter 5, a detailed analysis on the propagation of EM waves, within a

PEC cylindrical waveguide having an electron beam encompassed by cold plasma,

has been carried out. Plasma conductivity has a substantial influence on EM

propagation in the proposed design. This structure has its utility as high power

microwave source and in cavity resonators. The physical configuration includes

a beam embedded in cold collisionless plasma within an unbounded waveguide.

The waveguide is composed of semi-bounded left and right duct regions and has a

PEC wall. The left section is configured as vacuum-dielectric-vacuum, bounded by

PEC walls. The corresponding boundary value problem was formed into infinite

system of linear algebraic equations. The matching conditions were reconstructed

in order to confirm the accuracy of truncated solution. The real and imaginary

components of the EM fields were observed to match perfectly at the interface. The

energy distribution within this waveguide was also explored. It was noticed through

computations and plots that the increase in beam radius in the right duct leads to

decrease in transmission and increase in dielectric radius results in fluctuation in

powers. However, power seems to be transmitted completely through beam and

plasma as the duct radius increases. It was also noticed that the angular frequency

larger than the plasma and beam frequencies results in total transmission of the

EM waves within the waveguide. The increase in beam and plasma frequencies,

with respect to angular frequency, creates a negative impact on transmission of

EM waves. Cut-on modes were also calculated for all regions of this waveguide.

The number of cut-on modes in right duct increased with increase in the cold

plasma radius. Conversely, the increase in beam radius and angular frequency did
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not affect the number of cut-on modes and only one cut-on mode persists in each

region.

The arrangement inside the right duct of this cylindrical waveguide is analogous to

the design presented by Hong-Quan and Pu-Kun [67] in their paper, however the

numerical results and discussion are different.

The last problem discussed, in chapter 5, is the extension of the beam-plasma

problem discussed earlier. The physical configuration depicts the beam-plasma

region bounded by PEC walls within the central segment of a cylindrical waveguide

that extends infinitely along the z-axis to discuss the TM wave scattering. The

vacuum-dielectric-plasma regions in the semi-bounded left and right ducts are

separated by PEC walls. The system of infinite algebraic equations was derived

from the boundary value problem associated with reflection and transmission. The

matching conditions were reconstructed to validate the accuracy of the truncated

solution. It was determined that the electric and magnetic fields align perfectly

at the two interfaces. The graph of power flux versus angular frequency shows an

increase in transmission as the angular frequency rises. The effect of increasing

cold plasma radius and plasma frequency on power was also ascertained. The

transmission of power in cold plasma region was dominant with increase in plasma

radius, while energy transmission in this region disappeared as plasma frequency

exceeded angular frequency.

Future Directions

• The extension of the physical problems explored in this dissertation can be

expanded to investigate: a structure featuring periodic grooves with plasma

slabs sandwiched between dielectric layers and, a symmetric rectangular

waveguide with multiple plasma slabs embedded between metallic plates or

dielectric layers within the groove. These configurations offer a promising

area of study, with potential for extensive analysis and exploration.

• This study has prospects to be scaled up to a circular waveguide of infinite

length, featuring a plasma beam at the center of a chamber. The chamber
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would be enclosed by semi-bounded waveguides filled with dielectric material,

and the plasma beam could be sandwiched in layers of cold unmagnetized

plasma and dielectric, without PEC walls.

• The research has also the potential to be expanded by exploring an infinite

cylindrical structure where a chamber, containing plasma beam, is bounded

by cold plasma in the left and right ducts, with the cold plasma layers

separated from the beam within the chamber by PEC walls.

• The EM scattering phenomenon analyzed in this dissertation has broad appli-

cability to various plasma-filled structures, including a cylindrical waveguide

with a beam embedded in plasma in left and right ducts, and a central

chamber with a vacuum-dielectric-vacuum configuration. The design offers

opportunities for further discussion and analysis.
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